My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.cpp 56KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.cpp
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. *
  30. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  31. *
  32. *
  33. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  34. *
  35. * s == speed, a == acceleration, t == time, d == distance
  36. *
  37. * Basic definitions:
  38. * Speed[s_, a_, t_] := s + (a*t)
  39. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  40. *
  41. * Distance to reach a specific speed with a constant acceleration:
  42. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  43. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  44. *
  45. * Speed after a given distance of travel with constant acceleration:
  46. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  47. * m -> Sqrt[2 a d + s^2]
  48. *
  49. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  50. *
  51. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  52. * from initial speed s1 without ever stopping at a plateau:
  53. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  54. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  55. *
  56. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  57. *
  58. */
  59. #include "MarlinConfig.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "ultralcd.h"
  64. #include "language.h"
  65. #include "ubl.h"
  66. #include "gcode.h"
  67. #include "Marlin.h"
  68. #if ENABLED(MESH_BED_LEVELING)
  69. #include "mesh_bed_leveling.h"
  70. #endif
  71. Planner planner;
  72. // public:
  73. /**
  74. * A ring buffer of moves described in steps
  75. */
  76. block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
  77. volatile uint8_t Planner::block_buffer_head = 0, // Index of the next block to be pushed
  78. Planner::block_buffer_tail = 0;
  79. float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
  80. Planner::axis_steps_per_mm[XYZE_N],
  81. Planner::steps_to_mm[XYZE_N];
  82. #if ENABLED(DISTINCT_E_FACTORS)
  83. uint8_t Planner::last_extruder = 0; // Respond to extruder change
  84. #endif
  85. bool Planner::split_first_move = true;
  86. int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
  87. float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
  88. Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  89. Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
  90. Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  91. uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
  92. Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
  93. uint32_t Planner::min_segment_time_us;
  94. // Initialized by settings.load()
  95. float Planner::min_feedrate_mm_s,
  96. Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  97. Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  98. Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  99. Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration
  100. Planner::min_travel_feedrate_mm_s;
  101. #if HAS_LEVELING
  102. bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
  103. #if ABL_PLANAR
  104. matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
  105. #endif
  106. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  107. float Planner::z_fade_height, // Initialized by settings.load()
  108. Planner::inverse_z_fade_height,
  109. Planner::last_fade_z;
  110. #endif
  111. #endif
  112. #if ENABLED(SKEW_CORRECTION)
  113. #if ENABLED(SKEW_CORRECTION_GCODE)
  114. // Initialized by settings.load()
  115. float Planner::xy_skew_factor;
  116. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  117. float Planner::xz_skew_factor, Planner::yz_skew_factor;
  118. #endif
  119. #endif
  120. #endif
  121. #if ENABLED(AUTOTEMP)
  122. float Planner::autotemp_max = 250,
  123. Planner::autotemp_min = 210,
  124. Planner::autotemp_factor = 0.1;
  125. bool Planner::autotemp_enabled = false;
  126. #endif
  127. // private:
  128. int32_t Planner::position[NUM_AXIS] = { 0 };
  129. uint32_t Planner::cutoff_long;
  130. float Planner::previous_speed[NUM_AXIS],
  131. Planner::previous_nominal_speed;
  132. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  133. uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
  134. #endif
  135. #ifdef XY_FREQUENCY_LIMIT
  136. // Old direction bits. Used for speed calculations
  137. unsigned char Planner::old_direction_bits = 0;
  138. // Segment times (in µs). Used for speed calculations
  139. uint32_t Planner::axis_segment_time_us[2][3] = { { MAX_FREQ_TIME_US + 1, 0, 0 }, { MAX_FREQ_TIME_US + 1, 0, 0 } };
  140. #endif
  141. #if ENABLED(LIN_ADVANCE)
  142. float Planner::extruder_advance_k, // Initialized by settings.load()
  143. Planner::advance_ed_ratio; // Initialized by settings.load()
  144. #endif
  145. #if ENABLED(ULTRA_LCD)
  146. volatile uint32_t Planner::block_buffer_runtime_us = 0;
  147. #endif
  148. /**
  149. * Class and Instance Methods
  150. */
  151. Planner::Planner() { init(); }
  152. void Planner::init() {
  153. block_buffer_head = block_buffer_tail = 0;
  154. ZERO(position);
  155. ZERO(previous_speed);
  156. previous_nominal_speed = 0.0;
  157. #if ABL_PLANAR
  158. bed_level_matrix.set_to_identity();
  159. #endif
  160. }
  161. #define MINIMAL_STEP_RATE 120
  162. /**
  163. * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
  164. * by the provided factors.
  165. */
  166. void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
  167. uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
  168. final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
  169. // Limit minimal step rate (Otherwise the timer will overflow.)
  170. NOLESS(initial_rate, MINIMAL_STEP_RATE);
  171. NOLESS(final_rate, MINIMAL_STEP_RATE);
  172. const int32_t accel = block->acceleration_steps_per_s2;
  173. // Steps required for acceleration, deceleration to/from nominal rate
  174. int32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
  175. decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
  176. // Steps between acceleration and deceleration, if any
  177. plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  178. // Does accelerate_steps + decelerate_steps exceed step_event_count?
  179. // Then we can't possibly reach the nominal rate, there will be no cruising.
  180. // Use intersection_distance() to calculate accel / braking time in order to
  181. // reach the final_rate exactly at the end of this block.
  182. if (plateau_steps < 0) {
  183. accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
  184. NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
  185. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  186. plateau_steps = 0;
  187. }
  188. // block->accelerate_until = accelerate_steps;
  189. // block->decelerate_after = accelerate_steps+plateau_steps;
  190. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  191. if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy.
  192. block->accelerate_until = accelerate_steps;
  193. block->decelerate_after = accelerate_steps + plateau_steps;
  194. block->initial_rate = initial_rate;
  195. block->final_rate = final_rate;
  196. }
  197. CRITICAL_SECTION_END;
  198. }
  199. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  200. // This method will calculate the junction jerk as the euclidean distance between the nominal
  201. // velocities of the respective blocks.
  202. //inline float junction_jerk(block_t *before, block_t *after) {
  203. // return SQRT(
  204. // POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2));
  205. //}
  206. // The kernel called by recalculate() when scanning the plan from last to first entry.
  207. void Planner::reverse_pass_kernel(block_t* const current, const block_t *next) {
  208. if (!current || !next) return;
  209. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  210. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  211. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  212. float max_entry_speed = current->max_entry_speed;
  213. if (current->entry_speed != max_entry_speed) {
  214. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  215. // for max allowable speed if block is decelerating and nominal length is false.
  216. current->entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed)
  217. ? max_entry_speed
  218. : min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  219. SBI(current->flag, BLOCK_BIT_RECALCULATE);
  220. }
  221. }
  222. /**
  223. * recalculate() needs to go over the current plan twice.
  224. * Once in reverse and once forward. This implements the reverse pass.
  225. */
  226. void Planner::reverse_pass() {
  227. if (movesplanned() > 3) {
  228. block_t* block[3] = { NULL, NULL, NULL };
  229. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  230. // Is a critical section REALLY needed for a single byte change?
  231. //CRITICAL_SECTION_START;
  232. uint8_t tail = block_buffer_tail;
  233. //CRITICAL_SECTION_END
  234. uint8_t b = BLOCK_MOD(block_buffer_head - 3);
  235. while (b != tail) {
  236. if (block[0] && TEST(block[0]->flag, BLOCK_BIT_START_FROM_FULL_HALT)) break;
  237. b = prev_block_index(b);
  238. block[2] = block[1];
  239. block[1] = block[0];
  240. block[0] = &block_buffer[b];
  241. reverse_pass_kernel(block[1], block[2]);
  242. }
  243. }
  244. }
  245. // The kernel called by recalculate() when scanning the plan from first to last entry.
  246. void Planner::forward_pass_kernel(const block_t* previous, block_t* const current) {
  247. if (!previous) return;
  248. // If the previous block is an acceleration block, but it is not long enough to complete the
  249. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  250. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  251. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  252. if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) {
  253. if (previous->entry_speed < current->entry_speed) {
  254. float entry_speed = min(current->entry_speed,
  255. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  256. // Check for junction speed change
  257. if (current->entry_speed != entry_speed) {
  258. current->entry_speed = entry_speed;
  259. SBI(current->flag, BLOCK_BIT_RECALCULATE);
  260. }
  261. }
  262. }
  263. }
  264. /**
  265. * recalculate() needs to go over the current plan twice.
  266. * Once in reverse and once forward. This implements the forward pass.
  267. */
  268. void Planner::forward_pass() {
  269. block_t* block[3] = { NULL, NULL, NULL };
  270. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  271. block[0] = block[1];
  272. block[1] = block[2];
  273. block[2] = &block_buffer[b];
  274. forward_pass_kernel(block[0], block[1]);
  275. }
  276. forward_pass_kernel(block[1], block[2]);
  277. }
  278. /**
  279. * Recalculate the trapezoid speed profiles for all blocks in the plan
  280. * according to the entry_factor for each junction. Must be called by
  281. * recalculate() after updating the blocks.
  282. */
  283. void Planner::recalculate_trapezoids() {
  284. int8_t block_index = block_buffer_tail;
  285. block_t *current, *next = NULL;
  286. while (block_index != block_buffer_head) {
  287. current = next;
  288. next = &block_buffer[block_index];
  289. if (current) {
  290. // Recalculate if current block entry or exit junction speed has changed.
  291. if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
  292. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  293. float nom = current->nominal_speed;
  294. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  295. CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed
  296. }
  297. }
  298. block_index = next_block_index(block_index);
  299. }
  300. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  301. if (next) {
  302. float nom = next->nominal_speed;
  303. calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
  304. CBI(next->flag, BLOCK_BIT_RECALCULATE);
  305. }
  306. }
  307. /*
  308. * Recalculate the motion plan according to the following algorithm:
  309. *
  310. * 1. Go over every block in reverse order...
  311. *
  312. * Calculate a junction speed reduction (block_t.entry_factor) so:
  313. *
  314. * a. The junction jerk is within the set limit, and
  315. *
  316. * b. No speed reduction within one block requires faster
  317. * deceleration than the one, true constant acceleration.
  318. *
  319. * 2. Go over every block in chronological order...
  320. *
  321. * Dial down junction speed reduction values if:
  322. * a. The speed increase within one block would require faster
  323. * acceleration than the one, true constant acceleration.
  324. *
  325. * After that, all blocks will have an entry_factor allowing all speed changes to
  326. * be performed using only the one, true constant acceleration, and where no junction
  327. * jerk is jerkier than the set limit, Jerky. Finally it will:
  328. *
  329. * 3. Recalculate "trapezoids" for all blocks.
  330. */
  331. void Planner::recalculate() {
  332. reverse_pass();
  333. forward_pass();
  334. recalculate_trapezoids();
  335. }
  336. #if ENABLED(AUTOTEMP)
  337. void Planner::getHighESpeed() {
  338. static float oldt = 0;
  339. if (!autotemp_enabled) return;
  340. if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
  341. float high = 0.0;
  342. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  343. block_t* block = &block_buffer[b];
  344. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  345. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  346. NOLESS(high, se);
  347. }
  348. }
  349. float t = autotemp_min + high * autotemp_factor;
  350. t = constrain(t, autotemp_min, autotemp_max);
  351. if (t < oldt) t = t * (1 - (AUTOTEMP_OLDWEIGHT)) + oldt * (AUTOTEMP_OLDWEIGHT);
  352. oldt = t;
  353. thermalManager.setTargetHotend(t, 0);
  354. }
  355. #endif // AUTOTEMP
  356. /**
  357. * Maintain fans, paste extruder pressure,
  358. */
  359. void Planner::check_axes_activity() {
  360. unsigned char axis_active[NUM_AXIS] = { 0 },
  361. tail_fan_speed[FAN_COUNT];
  362. #if ENABLED(BARICUDA)
  363. #if HAS_HEATER_1
  364. uint8_t tail_valve_pressure;
  365. #endif
  366. #if HAS_HEATER_2
  367. uint8_t tail_e_to_p_pressure;
  368. #endif
  369. #endif
  370. if (blocks_queued()) {
  371. #if FAN_COUNT > 0
  372. for (uint8_t i = 0; i < FAN_COUNT; i++)
  373. tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
  374. #endif
  375. block_t* block;
  376. #if ENABLED(BARICUDA)
  377. block = &block_buffer[block_buffer_tail];
  378. #if HAS_HEATER_1
  379. tail_valve_pressure = block->valve_pressure;
  380. #endif
  381. #if HAS_HEATER_2
  382. tail_e_to_p_pressure = block->e_to_p_pressure;
  383. #endif
  384. #endif
  385. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  386. block = &block_buffer[b];
  387. LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
  388. }
  389. }
  390. else {
  391. #if FAN_COUNT > 0
  392. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
  393. #endif
  394. #if ENABLED(BARICUDA)
  395. #if HAS_HEATER_1
  396. tail_valve_pressure = baricuda_valve_pressure;
  397. #endif
  398. #if HAS_HEATER_2
  399. tail_e_to_p_pressure = baricuda_e_to_p_pressure;
  400. #endif
  401. #endif
  402. }
  403. #if ENABLED(DISABLE_X)
  404. if (!axis_active[X_AXIS]) disable_X();
  405. #endif
  406. #if ENABLED(DISABLE_Y)
  407. if (!axis_active[Y_AXIS]) disable_Y();
  408. #endif
  409. #if ENABLED(DISABLE_Z)
  410. if (!axis_active[Z_AXIS]) disable_Z();
  411. #endif
  412. #if ENABLED(DISABLE_E)
  413. if (!axis_active[E_AXIS]) disable_e_steppers();
  414. #endif
  415. #if FAN_COUNT > 0
  416. #if FAN_KICKSTART_TIME > 0
  417. static millis_t fan_kick_end[FAN_COUNT] = { 0 };
  418. #define KICKSTART_FAN(f) \
  419. if (tail_fan_speed[f]) { \
  420. millis_t ms = millis(); \
  421. if (fan_kick_end[f] == 0) { \
  422. fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
  423. tail_fan_speed[f] = 255; \
  424. } else if (PENDING(ms, fan_kick_end[f])) \
  425. tail_fan_speed[f] = 255; \
  426. } else fan_kick_end[f] = 0
  427. #if HAS_FAN0
  428. KICKSTART_FAN(0);
  429. #endif
  430. #if HAS_FAN1
  431. KICKSTART_FAN(1);
  432. #endif
  433. #if HAS_FAN2
  434. KICKSTART_FAN(2);
  435. #endif
  436. #endif // FAN_KICKSTART_TIME > 0
  437. #ifdef FAN_MIN_PWM
  438. #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  439. #else
  440. #define CALC_FAN_SPEED(f) tail_fan_speed[f]
  441. #endif
  442. #if ENABLED(FAN_SOFT_PWM)
  443. #if HAS_FAN0
  444. thermalManager.soft_pwm_amount_fan[0] = CALC_FAN_SPEED(0);
  445. #endif
  446. #if HAS_FAN1
  447. thermalManager.soft_pwm_amount_fan[1] = CALC_FAN_SPEED(1);
  448. #endif
  449. #if HAS_FAN2
  450. thermalManager.soft_pwm_amount_fan[2] = CALC_FAN_SPEED(2);
  451. #endif
  452. #else
  453. #if HAS_FAN0
  454. analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
  455. #endif
  456. #if HAS_FAN1
  457. analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
  458. #endif
  459. #if HAS_FAN2
  460. analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
  461. #endif
  462. #endif
  463. #endif // FAN_COUNT > 0
  464. #if ENABLED(AUTOTEMP)
  465. getHighESpeed();
  466. #endif
  467. #if ENABLED(BARICUDA)
  468. #if HAS_HEATER_1
  469. analogWrite(HEATER_1_PIN, tail_valve_pressure);
  470. #endif
  471. #if HAS_HEATER_2
  472. analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
  473. #endif
  474. #endif
  475. }
  476. inline float calculate_volumetric_multiplier(const float &diameter) {
  477. return (parser.volumetric_enabled && diameter) ? 1.0 / CIRCLE_AREA(diameter * 0.5) : 1.0;
  478. }
  479. void Planner::calculate_volumetric_multipliers() {
  480. for (uint8_t i = 0; i < COUNT(filament_size); i++) {
  481. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  482. refresh_e_factor(i);
  483. }
  484. }
  485. #if PLANNER_LEVELING
  486. /**
  487. * rx, ry, rz - Cartesian positions in mm
  488. * Leveled XYZ on completion
  489. */
  490. void Planner::apply_leveling(float &rx, float &ry, float &rz) {
  491. #if ENABLED(SKEW_CORRECTION)
  492. if (WITHIN(rx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(ry, Y_MIN_POS + 1, Y_MAX_POS)) {
  493. const float tempry = ry - (rz * planner.yz_skew_factor),
  494. temprx = rx - (ry * planner.xy_skew_factor) - (rz * (planner.xz_skew_factor - (planner.xy_skew_factor * planner.yz_skew_factor)));
  495. if (WITHIN(temprx, X_MIN_POS, X_MAX_POS) && WITHIN(tempry, Y_MIN_POS, Y_MAX_POS)) {
  496. rx = temprx;
  497. ry = tempry;
  498. }
  499. }
  500. #endif
  501. if (!leveling_active) return;
  502. #if ABL_PLANAR
  503. float dx = rx - (X_TILT_FULCRUM),
  504. dy = ry - (Y_TILT_FULCRUM);
  505. apply_rotation_xyz(bed_level_matrix, dx, dy, rz);
  506. rx = dx + X_TILT_FULCRUM;
  507. ry = dy + Y_TILT_FULCRUM;
  508. #else
  509. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  510. const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
  511. if (!fade_scaling_factor) return;
  512. #elif HAS_MESH
  513. constexpr float fade_scaling_factor = 1.0;
  514. #endif
  515. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  516. const float raw[XYZ] = { rx, ry, 0 };
  517. #endif
  518. rz += (
  519. #if ENABLED(AUTO_BED_LEVELING_UBL) // UBL_DELTA
  520. ubl.get_z_correction(rx, ry) * fade_scaling_factor
  521. #elif ENABLED(MESH_BED_LEVELING)
  522. mbl.get_z(rx, ry
  523. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  524. , fade_scaling_factor
  525. #endif
  526. )
  527. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  528. bilinear_z_offset(raw) * fade_scaling_factor
  529. #else
  530. 0
  531. #endif
  532. );
  533. #endif
  534. }
  535. void Planner::unapply_leveling(float raw[XYZ]) {
  536. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  537. const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
  538. #else
  539. constexpr float fade_scaling_factor = 1.0;
  540. #endif
  541. if (leveling_active && fade_scaling_factor) {
  542. #if ABL_PLANAR
  543. matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
  544. float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
  545. dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
  546. apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
  547. raw[X_AXIS] = dx + X_TILT_FULCRUM;
  548. raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
  549. #else // !ABL_PLANAR
  550. raw[Z_AXIS] -= (
  551. #if ENABLED(AUTO_BED_LEVELING_UBL)
  552. ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) * fade_scaling_factor
  553. #elif ENABLED(MESH_BED_LEVELING)
  554. mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
  555. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  556. , fade_scaling_factor
  557. #endif
  558. )
  559. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  560. bilinear_z_offset(raw) * fade_scaling_factor
  561. #else
  562. 0
  563. #endif
  564. );
  565. #endif // !ABL_PLANAR
  566. }
  567. #if ENABLED(SKEW_CORRECTION)
  568. if (WITHIN(raw[X_AXIS], X_MIN_POS, X_MAX_POS) && WITHIN(raw[Y_AXIS], Y_MIN_POS, Y_MAX_POS)) {
  569. const float temprx = raw[X_AXIS] + raw[Y_AXIS] * planner.xy_skew_factor + raw[Z_AXIS] * planner.xz_skew_factor,
  570. tempry = raw[Y_AXIS] + raw[Z_AXIS] * planner.yz_skew_factor;
  571. if (WITHIN(temprx, X_MIN_POS, X_MAX_POS) && WITHIN(tempry, Y_MIN_POS, Y_MAX_POS)) {
  572. raw[X_AXIS] = temprx;
  573. raw[Y_AXIS] = tempry;
  574. }
  575. }
  576. #endif
  577. }
  578. #endif // PLANNER_LEVELING
  579. /**
  580. * Planner::_buffer_steps
  581. *
  582. * Add a new linear movement to the buffer (in terms of steps).
  583. *
  584. * target - target position in steps units
  585. * fr_mm_s - (target) speed of the move
  586. * extruder - target extruder
  587. */
  588. void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const uint8_t extruder) {
  589. const int32_t da = target[X_AXIS] - position[X_AXIS],
  590. db = target[Y_AXIS] - position[Y_AXIS],
  591. dc = target[Z_AXIS] - position[Z_AXIS];
  592. int32_t de = target[E_AXIS] - position[E_AXIS];
  593. /* <-- add a slash to enable
  594. SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s);
  595. SERIAL_ECHOPAIR(" A:", target[A_AXIS]);
  596. SERIAL_ECHOPAIR(" (", da);
  597. SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]);
  598. SERIAL_ECHOPAIR(" (", db);
  599. SERIAL_ECHOPAIR(" steps) C:", target[C_AXIS]);
  600. SERIAL_ECHOPAIR(" (", dc);
  601. SERIAL_ECHOPAIR(" steps) E:", target[E_AXIS]);
  602. SERIAL_ECHOPAIR(" (", de);
  603. SERIAL_ECHOLNPGM(" steps)");
  604. //*/
  605. #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
  606. if (de) {
  607. #if ENABLED(PREVENT_COLD_EXTRUSION)
  608. if (thermalManager.tooColdToExtrude(extruder)) {
  609. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  610. de = 0; // no difference
  611. SERIAL_ECHO_START();
  612. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  613. }
  614. #endif // PREVENT_COLD_EXTRUSION
  615. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  616. if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
  617. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  618. de = 0; // no difference
  619. SERIAL_ECHO_START();
  620. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  621. }
  622. #endif // PREVENT_LENGTHY_EXTRUDE
  623. }
  624. #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
  625. // Compute direction bit-mask for this block
  626. uint8_t dm = 0;
  627. #if CORE_IS_XY
  628. if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
  629. if (db < 0) SBI(dm, Y_HEAD); // ...and Y
  630. if (dc < 0) SBI(dm, Z_AXIS);
  631. if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
  632. if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
  633. #elif CORE_IS_XZ
  634. if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
  635. if (db < 0) SBI(dm, Y_AXIS);
  636. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  637. if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
  638. if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  639. #elif CORE_IS_YZ
  640. if (da < 0) SBI(dm, X_AXIS);
  641. if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
  642. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  643. if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
  644. if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  645. #else
  646. if (da < 0) SBI(dm, X_AXIS);
  647. if (db < 0) SBI(dm, Y_AXIS);
  648. if (dc < 0) SBI(dm, Z_AXIS);
  649. #endif
  650. if (de < 0) SBI(dm, E_AXIS);
  651. const float esteps_float = de * e_factor[extruder];
  652. const int32_t esteps = abs(esteps_float) + 0.5;
  653. // Calculate the buffer head after we push this byte
  654. const uint8_t next_buffer_head = next_block_index(block_buffer_head);
  655. // If the buffer is full: good! That means we are well ahead of the robot.
  656. // Rest here until there is room in the buffer.
  657. while (block_buffer_tail == next_buffer_head) idle();
  658. // Prepare to set up new block
  659. block_t* block = &block_buffer[block_buffer_head];
  660. // Clear all flags, including the "busy" bit
  661. block->flag = 0;
  662. // Set direction bits
  663. block->direction_bits = dm;
  664. // Number of steps for each axis
  665. // See http://www.corexy.com/theory.html
  666. #if CORE_IS_XY
  667. block->steps[A_AXIS] = labs(da + db);
  668. block->steps[B_AXIS] = labs(da - db);
  669. block->steps[Z_AXIS] = labs(dc);
  670. #elif CORE_IS_XZ
  671. block->steps[A_AXIS] = labs(da + dc);
  672. block->steps[Y_AXIS] = labs(db);
  673. block->steps[C_AXIS] = labs(da - dc);
  674. #elif CORE_IS_YZ
  675. block->steps[X_AXIS] = labs(da);
  676. block->steps[B_AXIS] = labs(db + dc);
  677. block->steps[C_AXIS] = labs(db - dc);
  678. #else
  679. // default non-h-bot planning
  680. block->steps[X_AXIS] = labs(da);
  681. block->steps[Y_AXIS] = labs(db);
  682. block->steps[Z_AXIS] = labs(dc);
  683. #endif
  684. block->steps[E_AXIS] = esteps;
  685. block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], esteps);
  686. // Bail if this is a zero-length block
  687. if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
  688. // For a mixing extruder, get a magnified step_event_count for each
  689. #if ENABLED(MIXING_EXTRUDER)
  690. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  691. block->mix_event_count[i] = mixing_factor[i] * block->step_event_count;
  692. #endif
  693. #if FAN_COUNT > 0
  694. for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
  695. #endif
  696. #if ENABLED(BARICUDA)
  697. block->valve_pressure = baricuda_valve_pressure;
  698. block->e_to_p_pressure = baricuda_e_to_p_pressure;
  699. #endif
  700. block->active_extruder = extruder;
  701. //enable active axes
  702. #if CORE_IS_XY
  703. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  704. enable_X();
  705. enable_Y();
  706. }
  707. #if DISABLED(Z_LATE_ENABLE)
  708. if (block->steps[Z_AXIS]) enable_Z();
  709. #endif
  710. #elif CORE_IS_XZ
  711. if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
  712. enable_X();
  713. enable_Z();
  714. }
  715. if (block->steps[Y_AXIS]) enable_Y();
  716. #elif CORE_IS_YZ
  717. if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
  718. enable_Y();
  719. enable_Z();
  720. }
  721. if (block->steps[X_AXIS]) enable_X();
  722. #else
  723. if (block->steps[X_AXIS]) enable_X();
  724. if (block->steps[Y_AXIS]) enable_Y();
  725. #if DISABLED(Z_LATE_ENABLE)
  726. if (block->steps[Z_AXIS]) enable_Z();
  727. #endif
  728. #endif
  729. // Enable extruder(s)
  730. if (esteps) {
  731. #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
  732. #define DISABLE_IDLE_E(N) if (!g_uc_extruder_last_move[N]) disable_E##N();
  733. for (uint8_t i = 0; i < EXTRUDERS; i++)
  734. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  735. switch(extruder) {
  736. case 0:
  737. enable_E0();
  738. g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
  739. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  740. if (extruder_duplication_enabled) {
  741. enable_E1();
  742. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  743. }
  744. #endif
  745. #if EXTRUDERS > 1
  746. DISABLE_IDLE_E(1);
  747. #if EXTRUDERS > 2
  748. DISABLE_IDLE_E(2);
  749. #if EXTRUDERS > 3
  750. DISABLE_IDLE_E(3);
  751. #if EXTRUDERS > 4
  752. DISABLE_IDLE_E(4);
  753. #endif // EXTRUDERS > 4
  754. #endif // EXTRUDERS > 3
  755. #endif // EXTRUDERS > 2
  756. #endif // EXTRUDERS > 1
  757. break;
  758. #if EXTRUDERS > 1
  759. case 1:
  760. enable_E1();
  761. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  762. DISABLE_IDLE_E(0);
  763. #if EXTRUDERS > 2
  764. DISABLE_IDLE_E(2);
  765. #if EXTRUDERS > 3
  766. DISABLE_IDLE_E(3);
  767. #if EXTRUDERS > 4
  768. DISABLE_IDLE_E(4);
  769. #endif // EXTRUDERS > 4
  770. #endif // EXTRUDERS > 3
  771. #endif // EXTRUDERS > 2
  772. break;
  773. #if EXTRUDERS > 2
  774. case 2:
  775. enable_E2();
  776. g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
  777. DISABLE_IDLE_E(0);
  778. DISABLE_IDLE_E(1);
  779. #if EXTRUDERS > 3
  780. DISABLE_IDLE_E(3);
  781. #if EXTRUDERS > 4
  782. DISABLE_IDLE_E(4);
  783. #endif
  784. #endif
  785. break;
  786. #if EXTRUDERS > 3
  787. case 3:
  788. enable_E3();
  789. g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
  790. DISABLE_IDLE_E(0);
  791. DISABLE_IDLE_E(1);
  792. DISABLE_IDLE_E(2);
  793. #if EXTRUDERS > 4
  794. DISABLE_IDLE_E(4);
  795. #endif
  796. break;
  797. #if EXTRUDERS > 4
  798. case 4:
  799. enable_E4();
  800. g_uc_extruder_last_move[4] = (BLOCK_BUFFER_SIZE) * 2;
  801. DISABLE_IDLE_E(0);
  802. DISABLE_IDLE_E(1);
  803. DISABLE_IDLE_E(2);
  804. DISABLE_IDLE_E(3);
  805. break;
  806. #endif // EXTRUDERS > 4
  807. #endif // EXTRUDERS > 3
  808. #endif // EXTRUDERS > 2
  809. #endif // EXTRUDERS > 1
  810. }
  811. #else
  812. enable_E0();
  813. enable_E1();
  814. enable_E2();
  815. enable_E3();
  816. enable_E4();
  817. #endif
  818. }
  819. if (esteps)
  820. NOLESS(fr_mm_s, min_feedrate_mm_s);
  821. else
  822. NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
  823. /**
  824. * This part of the code calculates the total length of the movement.
  825. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  826. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  827. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  828. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  829. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  830. */
  831. #if IS_CORE
  832. float delta_mm[Z_HEAD + 1];
  833. #if CORE_IS_XY
  834. delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
  835. delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
  836. delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
  837. delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
  838. delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS];
  839. #elif CORE_IS_XZ
  840. delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
  841. delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
  842. delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
  843. delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
  844. delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
  845. #elif CORE_IS_YZ
  846. delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
  847. delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
  848. delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
  849. delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
  850. delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
  851. #endif
  852. #else
  853. float delta_mm[XYZE];
  854. delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
  855. delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
  856. delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
  857. #endif
  858. delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N];
  859. if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
  860. block->millimeters = FABS(delta_mm[E_AXIS]);
  861. }
  862. else {
  863. block->millimeters = SQRT(
  864. #if CORE_IS_XY
  865. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
  866. #elif CORE_IS_XZ
  867. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
  868. #elif CORE_IS_YZ
  869. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
  870. #else
  871. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
  872. #endif
  873. );
  874. }
  875. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  876. // Calculate inverse time for this move. No divide by zero due to previous checks.
  877. // Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
  878. float inverse_secs = fr_mm_s * inverse_millimeters;
  879. const uint8_t moves_queued = movesplanned();
  880. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  881. #if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
  882. // Segment time im micro seconds
  883. uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs);
  884. #endif
  885. #if ENABLED(SLOWDOWN)
  886. if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
  887. if (segment_time_us < min_segment_time_us) {
  888. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  889. const uint32_t nst = segment_time_us + LROUND(2 * (min_segment_time_us - segment_time_us) / moves_queued);
  890. inverse_secs = 1000000.0 / nst;
  891. #if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
  892. segment_time_us = nst;
  893. #endif
  894. }
  895. }
  896. #endif
  897. #if ENABLED(ULTRA_LCD)
  898. CRITICAL_SECTION_START
  899. block_buffer_runtime_us += segment_time_us;
  900. CRITICAL_SECTION_END
  901. #endif
  902. block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0
  903. block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
  904. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  905. static float filwidth_e_count = 0, filwidth_delay_dist = 0;
  906. //FMM update ring buffer used for delay with filament measurements
  907. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
  908. const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
  909. // increment counters with next move in e axis
  910. filwidth_e_count += delta_mm[E_AXIS];
  911. filwidth_delay_dist += delta_mm[E_AXIS];
  912. // Only get new measurements on forward E movement
  913. if (!UNEAR_ZERO(filwidth_e_count)) {
  914. // Loop the delay distance counter (modulus by the mm length)
  915. while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
  916. // Convert into an index into the measurement array
  917. filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1);
  918. // If the index has changed (must have gone forward)...
  919. if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
  920. filwidth_e_count = 0; // Reset the E movement counter
  921. const uint8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  922. do {
  923. filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
  924. measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
  925. } while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
  926. }
  927. }
  928. }
  929. #endif
  930. // Calculate and limit speed in mm/sec for each axis
  931. float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
  932. LOOP_XYZE(i) {
  933. const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs));
  934. #if ENABLED(DISTINCT_E_FACTORS)
  935. if (i == E_AXIS) i += extruder;
  936. #endif
  937. if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
  938. }
  939. // Max segment time in µs.
  940. #ifdef XY_FREQUENCY_LIMIT
  941. // Check and limit the xy direction change frequency
  942. const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  943. old_direction_bits = block->direction_bits;
  944. segment_time_us = LROUND((float)segment_time_us / speed_factor);
  945. uint32_t xs0 = axis_segment_time_us[X_AXIS][0],
  946. xs1 = axis_segment_time_us[X_AXIS][1],
  947. xs2 = axis_segment_time_us[X_AXIS][2],
  948. ys0 = axis_segment_time_us[Y_AXIS][0],
  949. ys1 = axis_segment_time_us[Y_AXIS][1],
  950. ys2 = axis_segment_time_us[Y_AXIS][2];
  951. if (TEST(direction_change, X_AXIS)) {
  952. xs2 = axis_segment_time_us[X_AXIS][2] = xs1;
  953. xs1 = axis_segment_time_us[X_AXIS][1] = xs0;
  954. xs0 = 0;
  955. }
  956. xs0 = axis_segment_time_us[X_AXIS][0] = xs0 + segment_time_us;
  957. if (TEST(direction_change, Y_AXIS)) {
  958. ys2 = axis_segment_time_us[Y_AXIS][2] = axis_segment_time_us[Y_AXIS][1];
  959. ys1 = axis_segment_time_us[Y_AXIS][1] = axis_segment_time_us[Y_AXIS][0];
  960. ys0 = 0;
  961. }
  962. ys0 = axis_segment_time_us[Y_AXIS][0] = ys0 + segment_time_us;
  963. const uint32_t max_x_segment_time = MAX3(xs0, xs1, xs2),
  964. max_y_segment_time = MAX3(ys0, ys1, ys2),
  965. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  966. if (min_xy_segment_time < MAX_FREQ_TIME_US) {
  967. const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME_US);
  968. NOMORE(speed_factor, low_sf);
  969. }
  970. #endif // XY_FREQUENCY_LIMIT
  971. // Correct the speed
  972. if (speed_factor < 1.0) {
  973. LOOP_XYZE(i) current_speed[i] *= speed_factor;
  974. block->nominal_speed *= speed_factor;
  975. block->nominal_rate *= speed_factor;
  976. }
  977. // Compute and limit the acceleration rate for the trapezoid generator.
  978. const float steps_per_mm = block->step_event_count * inverse_millimeters;
  979. uint32_t accel;
  980. if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
  981. // convert to: acceleration steps/sec^2
  982. accel = CEIL(retract_acceleration * steps_per_mm);
  983. }
  984. else {
  985. #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
  986. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  987. const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
  988. if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
  989. } \
  990. }while(0)
  991. #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
  992. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  993. const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
  994. if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
  995. } \
  996. }while(0)
  997. // Start with print or travel acceleration
  998. accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm);
  999. #if ENABLED(DISTINCT_E_FACTORS)
  1000. #define ACCEL_IDX extruder
  1001. #else
  1002. #define ACCEL_IDX 0
  1003. #endif
  1004. // Limit acceleration per axis
  1005. if (block->step_event_count <= cutoff_long) {
  1006. LIMIT_ACCEL_LONG(X_AXIS, 0);
  1007. LIMIT_ACCEL_LONG(Y_AXIS, 0);
  1008. LIMIT_ACCEL_LONG(Z_AXIS, 0);
  1009. LIMIT_ACCEL_LONG(E_AXIS, ACCEL_IDX);
  1010. }
  1011. else {
  1012. LIMIT_ACCEL_FLOAT(X_AXIS, 0);
  1013. LIMIT_ACCEL_FLOAT(Y_AXIS, 0);
  1014. LIMIT_ACCEL_FLOAT(Z_AXIS, 0);
  1015. LIMIT_ACCEL_FLOAT(E_AXIS, ACCEL_IDX);
  1016. }
  1017. }
  1018. block->acceleration_steps_per_s2 = accel;
  1019. block->acceleration = accel / steps_per_mm;
  1020. block->acceleration_rate = (long)(accel * 16777216.0 / ((F_CPU) * 0.125)); // * 8.388608
  1021. // Initial limit on the segment entry velocity
  1022. float vmax_junction;
  1023. #if 0 // Use old jerk for now
  1024. float junction_deviation = 0.1;
  1025. // Compute path unit vector
  1026. double unit_vec[XYZ] = {
  1027. delta_mm[X_AXIS] * inverse_millimeters,
  1028. delta_mm[Y_AXIS] * inverse_millimeters,
  1029. delta_mm[Z_AXIS] * inverse_millimeters
  1030. };
  1031. /*
  1032. Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  1033. Let a circle be tangent to both previous and current path line segments, where the junction
  1034. deviation is defined as the distance from the junction to the closest edge of the circle,
  1035. collinear with the circle center.
  1036. The circular segment joining the two paths represents the path of centripetal acceleration.
  1037. Solve for max velocity based on max acceleration about the radius of the circle, defined
  1038. indirectly by junction deviation.
  1039. This may be also viewed as path width or max_jerk in the previous grbl version. This approach
  1040. does not actually deviate from path, but used as a robust way to compute cornering speeds, as
  1041. it takes into account the nonlinearities of both the junction angle and junction velocity.
  1042. */
  1043. vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  1044. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  1045. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
  1046. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  1047. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  1048. const float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  1049. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  1050. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS];
  1051. // Skip and use default max junction speed for 0 degree acute junction.
  1052. if (cos_theta < 0.95) {
  1053. vmax_junction = min(previous_nominal_speed, block->nominal_speed);
  1054. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  1055. if (cos_theta > -0.95) {
  1056. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  1057. float sin_theta_d2 = SQRT(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
  1058. NOMORE(vmax_junction, SQRT(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
  1059. }
  1060. }
  1061. }
  1062. #endif
  1063. /**
  1064. * Adapted from Průša MKS firmware
  1065. * https://github.com/prusa3d/Prusa-Firmware
  1066. *
  1067. * Start with a safe speed (from which the machine may halt to stop immediately).
  1068. */
  1069. // Exit speed limited by a jerk to full halt of a previous last segment
  1070. static float previous_safe_speed;
  1071. float safe_speed = block->nominal_speed;
  1072. uint8_t limited = 0;
  1073. LOOP_XYZE(i) {
  1074. const float jerk = FABS(current_speed[i]), maxj = max_jerk[i];
  1075. if (jerk > maxj) {
  1076. if (limited) {
  1077. const float mjerk = maxj * block->nominal_speed;
  1078. if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk;
  1079. }
  1080. else {
  1081. ++limited;
  1082. safe_speed = maxj;
  1083. }
  1084. }
  1085. }
  1086. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
  1087. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1088. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1089. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1090. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1091. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1092. vmax_junction = min(block->nominal_speed, previous_nominal_speed);
  1093. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1094. float v_factor = 1;
  1095. limited = 0;
  1096. // Now limit the jerk in all axes.
  1097. const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
  1098. LOOP_XYZE(axis) {
  1099. // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
  1100. float v_exit = previous_speed[axis] * smaller_speed_factor,
  1101. v_entry = current_speed[axis];
  1102. if (limited) {
  1103. v_exit *= v_factor;
  1104. v_entry *= v_factor;
  1105. }
  1106. // Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
  1107. const float jerk = (v_exit > v_entry)
  1108. ? // coasting axis reversal
  1109. ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : max(v_exit, -v_entry) )
  1110. : // v_exit <= v_entry coasting axis reversal
  1111. ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : max(-v_exit, v_entry) );
  1112. if (jerk > max_jerk[axis]) {
  1113. v_factor *= max_jerk[axis] / jerk;
  1114. ++limited;
  1115. }
  1116. }
  1117. if (limited) vmax_junction *= v_factor;
  1118. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1119. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1120. const float vmax_junction_threshold = vmax_junction * 0.99f;
  1121. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1122. // Not coasting. The machine will stop and start the movements anyway,
  1123. // better to start the segment from start.
  1124. SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
  1125. vmax_junction = safe_speed;
  1126. }
  1127. }
  1128. else {
  1129. SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
  1130. vmax_junction = safe_speed;
  1131. }
  1132. // Max entry speed of this block equals the max exit speed of the previous block.
  1133. block->max_entry_speed = vmax_junction;
  1134. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  1135. const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  1136. block->entry_speed = min(vmax_junction, v_allowable);
  1137. // Initialize planner efficiency flags
  1138. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1139. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1140. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1141. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1142. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1143. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1144. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1145. block->flag |= BLOCK_FLAG_RECALCULATE | (block->nominal_speed <= v_allowable ? BLOCK_FLAG_NOMINAL_LENGTH : 0);
  1146. // Update previous path unit_vector and nominal speed
  1147. COPY(previous_speed, current_speed);
  1148. previous_nominal_speed = block->nominal_speed;
  1149. previous_safe_speed = safe_speed;
  1150. #if ENABLED(LIN_ADVANCE)
  1151. /**
  1152. *
  1153. * Use LIN_ADVANCE for blocks if all these are true:
  1154. *
  1155. * esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) : This is a print move
  1156. *
  1157. * extruder_advance_k : There is an advance factor set.
  1158. *
  1159. * esteps != block->step_event_count : A problem occurs if the move before a retract is too small.
  1160. * In that case, the retract and move will be executed together.
  1161. * This leads to too many advance steps due to a huge e_acceleration.
  1162. * The math is good, but we must avoid retract moves with advance!
  1163. * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1164. */
  1165. block->use_advance_lead = esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS])
  1166. && extruder_advance_k
  1167. && (uint32_t)esteps != block->step_event_count
  1168. && de > 0;
  1169. if (block->use_advance_lead)
  1170. block->abs_adv_steps_multiplier8 = LROUND(
  1171. extruder_advance_k
  1172. * (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set
  1173. * (block->nominal_speed / (float)block->nominal_rate)
  1174. * axis_steps_per_mm[E_AXIS_N] * 256.0
  1175. );
  1176. #endif // LIN_ADVANCE
  1177. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  1178. // Move buffer head
  1179. block_buffer_head = next_buffer_head;
  1180. // Update the position (only when a move was queued)
  1181. static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!");
  1182. COPY(position, target);
  1183. recalculate();
  1184. } // _buffer_steps()
  1185. /**
  1186. * Planner::_buffer_line
  1187. *
  1188. * Add a new linear movement to the buffer in axis units.
  1189. *
  1190. * Leveling and kinematics should be applied ahead of calling this.
  1191. *
  1192. * a,b,c,e - target positions in mm and/or degrees
  1193. * fr_mm_s - (target) speed of the move
  1194. * extruder - target extruder
  1195. */
  1196. void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder) {
  1197. // When changing extruders recalculate steps corresponding to the E position
  1198. #if ENABLED(DISTINCT_E_FACTORS)
  1199. if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
  1200. position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
  1201. last_extruder = extruder;
  1202. }
  1203. #endif
  1204. // The target position of the tool in absolute steps
  1205. // Calculate target position in absolute steps
  1206. const int32_t target[XYZE] = {
  1207. LROUND(a * axis_steps_per_mm[X_AXIS]),
  1208. LROUND(b * axis_steps_per_mm[Y_AXIS]),
  1209. LROUND(c * axis_steps_per_mm[Z_AXIS]),
  1210. LROUND(e * axis_steps_per_mm[E_AXIS_N])
  1211. };
  1212. /* <-- add a slash to enable
  1213. SERIAL_ECHOPAIR(" _buffer_line FR:", fr_mm_s);
  1214. #if IS_KINEMATIC
  1215. SERIAL_ECHOPAIR(" A:", a);
  1216. SERIAL_ECHOPAIR(" (", position[A_AXIS]);
  1217. SERIAL_ECHOPAIR("->", target[A_AXIS]);
  1218. SERIAL_ECHOPAIR(") B:", b);
  1219. #else
  1220. SERIAL_ECHOPAIR(" X:", a);
  1221. SERIAL_ECHOPAIR(" (", position[X_AXIS]);
  1222. SERIAL_ECHOPAIR("->", target[X_AXIS]);
  1223. SERIAL_ECHOPAIR(") Y:", b);
  1224. #endif
  1225. SERIAL_ECHOPAIR(" (", position[Y_AXIS]);
  1226. SERIAL_ECHOPAIR("->", target[Y_AXIS]);
  1227. #if ENABLED(DELTA)
  1228. SERIAL_ECHOPAIR(") C:", c);
  1229. #else
  1230. SERIAL_ECHOPAIR(") Z:", c);
  1231. #endif
  1232. SERIAL_ECHOPAIR(" (", position[Z_AXIS]);
  1233. SERIAL_ECHOPAIR("->", target[Z_AXIS]);
  1234. SERIAL_ECHOPAIR(") E:", e);
  1235. SERIAL_ECHOPAIR(" (", position[E_AXIS]);
  1236. SERIAL_ECHOPAIR("->", target[E_AXIS]);
  1237. SERIAL_ECHOLNPGM(")");
  1238. //*/
  1239. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  1240. if (DEBUGGING(DRYRUN))
  1241. position[E_AXIS] = target[E_AXIS];
  1242. // Always split the first move into two (if not homing or probing)
  1243. if (!blocks_queued() && split_first_move) {
  1244. #define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
  1245. const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) };
  1246. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1247. _buffer_steps(between, fr_mm_s, extruder);
  1248. _buffer_steps(target, fr_mm_s, extruder);
  1249. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1250. }
  1251. else
  1252. _buffer_steps(target, fr_mm_s, extruder);
  1253. stepper.wake_up();
  1254. } // _buffer_line()
  1255. /**
  1256. * Directly set the planner XYZ position (and stepper positions)
  1257. * converting mm (or angles for SCARA) into steps.
  1258. *
  1259. * On CORE machines stepper ABC will be translated from the given XYZ.
  1260. */
  1261. void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) {
  1262. #if ENABLED(DISTINCT_E_FACTORS)
  1263. #define _EINDEX (E_AXIS + active_extruder)
  1264. last_extruder = active_extruder;
  1265. #else
  1266. #define _EINDEX E_AXIS
  1267. #endif
  1268. const int32_t na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
  1269. nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
  1270. nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
  1271. ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
  1272. stepper.set_position(na, nb, nc, ne);
  1273. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1274. ZERO(previous_speed);
  1275. }
  1276. void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
  1277. #if PLANNER_LEVELING
  1278. float lpos[XYZ] = { position[X_AXIS], position[Y_AXIS], position[Z_AXIS] };
  1279. apply_leveling(lpos);
  1280. #else
  1281. const float * const lpos = position;
  1282. #endif
  1283. #if IS_KINEMATIC
  1284. inverse_kinematics(lpos);
  1285. _set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], position[E_AXIS]);
  1286. #else
  1287. _set_position_mm(lpos[X_AXIS], lpos[Y_AXIS], lpos[Z_AXIS], position[E_AXIS]);
  1288. #endif
  1289. }
  1290. /**
  1291. * Sync from the stepper positions. (e.g., after an interrupted move)
  1292. */
  1293. void Planner::sync_from_steppers() {
  1294. LOOP_XYZE(i)
  1295. position[i] = stepper.position((AxisEnum)i);
  1296. }
  1297. /**
  1298. * Setters for planner position (also setting stepper position).
  1299. */
  1300. void Planner::set_position_mm(const AxisEnum axis, const float &v) {
  1301. #if ENABLED(DISTINCT_E_FACTORS)
  1302. const uint8_t axis_index = axis + (axis == E_AXIS ? active_extruder : 0);
  1303. last_extruder = active_extruder;
  1304. #else
  1305. const uint8_t axis_index = axis;
  1306. #endif
  1307. position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
  1308. stepper.set_position(axis, v);
  1309. previous_speed[axis] = 0.0;
  1310. }
  1311. // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
  1312. void Planner::reset_acceleration_rates() {
  1313. #if ENABLED(DISTINCT_E_FACTORS)
  1314. #define HIGHEST_CONDITION (i < E_AXIS || i == E_AXIS + active_extruder)
  1315. #else
  1316. #define HIGHEST_CONDITION true
  1317. #endif
  1318. uint32_t highest_rate = 1;
  1319. LOOP_XYZE_N(i) {
  1320. max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
  1321. if (HIGHEST_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
  1322. }
  1323. cutoff_long = 4294967295UL / highest_rate;
  1324. }
  1325. // Recalculate position, steps_to_mm if axis_steps_per_mm changes!
  1326. void Planner::refresh_positioning() {
  1327. LOOP_XYZE_N(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
  1328. set_position_mm_kinematic(current_position);
  1329. reset_acceleration_rates();
  1330. }
  1331. #if ENABLED(AUTOTEMP)
  1332. void Planner::autotemp_M104_M109() {
  1333. autotemp_enabled = parser.seen('F');
  1334. if (autotemp_enabled) autotemp_factor = parser.value_celsius_diff();
  1335. if (parser.seen('S')) autotemp_min = parser.value_celsius();
  1336. if (parser.seen('B')) autotemp_max = parser.value_celsius();
  1337. }
  1338. #endif