My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 241KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. /**
  70. * Look here for descriptions of G-codes:
  71. * - http://linuxcnc.org/handbook/gcode/g-code.html
  72. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  73. *
  74. * Help us document these G-codes online:
  75. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  76. * - http://reprap.org/wiki/G-code
  77. *
  78. * -----------------
  79. * Implemented Codes
  80. * -----------------
  81. *
  82. * "G" Codes
  83. *
  84. * G0 -> G1
  85. * G1 - Coordinated Movement X Y Z E
  86. * G2 - CW ARC
  87. * G3 - CCW ARC
  88. * G4 - Dwell S<seconds> or P<milliseconds>
  89. * G10 - retract filament according to settings of M207
  90. * G11 - retract recover filament according to settings of M208
  91. * G28 - Home one or more axes
  92. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  93. * G30 - Single Z probe, probes bed at current XY location.
  94. * G31 - Dock sled (Z_PROBE_SLED only)
  95. * G32 - Undock sled (Z_PROBE_SLED only)
  96. * G90 - Use Absolute Coordinates
  97. * G91 - Use Relative Coordinates
  98. * G92 - Set current position to coordinates given
  99. *
  100. * "M" Codes
  101. *
  102. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  103. * M1 - Same as M0
  104. * M17 - Enable/Power all stepper motors
  105. * M18 - Disable all stepper motors; same as M84
  106. * M20 - List SD card
  107. * M21 - Init SD card
  108. * M22 - Release SD card
  109. * M23 - Select SD file (M23 filename.g)
  110. * M24 - Start/resume SD print
  111. * M25 - Pause SD print
  112. * M26 - Set SD position in bytes (M26 S12345)
  113. * M27 - Report SD print status
  114. * M28 - Start SD write (M28 filename.g)
  115. * M29 - Stop SD write
  116. * M30 - Delete file from SD (M30 filename.g)
  117. * M31 - Output time since last M109 or SD card start to serial
  118. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  119. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  120. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  121. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  122. * M33 - Get the longname version of a path
  123. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  124. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  125. * M80 - Turn on Power Supply
  126. * M81 - Turn off Power Supply
  127. * M82 - Set E codes absolute (default)
  128. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  129. * M84 - Disable steppers until next move,
  130. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  131. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  132. * M92 - Set axis_steps_per_unit - same syntax as G92
  133. * M104 - Set extruder target temp
  134. * M105 - Read current temp
  135. * M106 - Fan on
  136. * M107 - Fan off
  137. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  138. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  139. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  140. * M110 - Set the current line number
  141. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  142. * M112 - Emergency stop
  143. * M114 - Output current position to serial port
  144. * M115 - Capabilities string
  145. * M117 - Display a message on the controller screen
  146. * M119 - Output Endstop status to serial port
  147. * M120 - Enable endstop detection
  148. * M121 - Disable endstop detection
  149. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  150. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  151. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  152. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  153. * M140 - Set bed target temp
  154. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  155. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  156. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  157. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  158. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  159. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  160. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  161. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  162. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  163. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  164. * M206 - Set additional homing offset
  165. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  166. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  167. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  168. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  169. * M220 - Set speed factor override percentage: S<factor in percent>
  170. * M221 - Set extrude factor override percentage: S<factor in percent>
  171. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  172. * M240 - Trigger a camera to take a photograph
  173. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  174. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  175. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. * M301 - Set PID parameters P I and D
  177. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  178. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  179. * M304 - Set bed PID parameters P I and D
  180. * M380 - Activate solenoid on active extruder
  181. * M381 - Disable all solenoids
  182. * M400 - Finish all moves
  183. * M401 - Lower Z probe if present
  184. * M402 - Raise Z probe if present
  185. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. * M406 - Turn off Filament Sensor extrusion control
  188. * M407 - Display measured filament diameter
  189. * M410 - Quickstop. Abort all the planned moves
  190. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  191. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  192. * M428 - Set the home_offset logically based on the current_position
  193. * M500 - Store parameters in EEPROM
  194. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  197. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  198. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  199. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  200. * M666 - Set delta endstop adjustment
  201. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  202. * M907 - Set digital trimpot motor current using axis codes.
  203. * M908 - Control digital trimpot directly.
  204. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  205. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  206. * M350 - Set microstepping mode.
  207. * M351 - Toggle MS1 MS2 pins directly.
  208. *
  209. * ************ SCARA Specific - This can change to suit future G-code regulations
  210. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  211. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  212. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  213. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  214. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  215. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  216. * ************* SCARA End ***************
  217. *
  218. * ************ Custom codes - This can change to suit future G-code regulations
  219. * M100 - Watch Free Memory (For Debugging Only)
  220. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  221. * M928 - Start SD logging (M928 filename.g) - ended by M29
  222. * M999 - Restart after being stopped by error
  223. *
  224. * "T" Codes
  225. *
  226. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  227. *
  228. */
  229. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  230. void gcode_M100();
  231. #endif
  232. #if ENABLED(SDSUPPORT)
  233. CardReader card;
  234. #endif
  235. bool Running = true;
  236. uint8_t marlin_debug_flags = DEBUG_NONE;
  237. static float feedrate = 1500.0, saved_feedrate;
  238. float current_position[NUM_AXIS] = { 0.0 };
  239. static float destination[NUM_AXIS] = { 0.0 };
  240. bool axis_known_position[3] = { false };
  241. bool axis_homed[3] = { false };
  242. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  243. static char* current_command, *current_command_args;
  244. static int cmd_queue_index_r = 0;
  245. static int cmd_queue_index_w = 0;
  246. static int commands_in_queue = 0;
  247. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  248. const float homing_feedrate[] = HOMING_FEEDRATE;
  249. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  250. int feedrate_multiplier = 100; //100->1 200->2
  251. int saved_feedrate_multiplier;
  252. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  253. bool volumetric_enabled = false;
  254. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  255. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  256. float home_offset[3] = { 0 };
  257. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  258. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  259. #if FAN_COUNT > 0
  260. int fanSpeeds[FAN_COUNT] = { 0 };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. bool cancel_heatup = false;
  264. const char errormagic[] PROGMEM = "Error:";
  265. const char echomagic[] PROGMEM = "echo:";
  266. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  267. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  268. static int serial_count = 0;
  269. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  270. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  271. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  272. // Inactivity shutdown
  273. millis_t previous_cmd_ms = 0;
  274. static millis_t max_inactive_time = 0;
  275. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  276. Stopwatch print_job_timer = Stopwatch();
  277. static uint8_t target_extruder;
  278. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  279. int xy_travel_speed = XY_TRAVEL_SPEED;
  280. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  281. #endif
  282. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  283. float z_endstop_adj = 0;
  284. #endif
  285. // Extruder offsets
  286. #if EXTRUDERS > 1
  287. #ifndef EXTRUDER_OFFSET_X
  288. #define EXTRUDER_OFFSET_X { 0 }
  289. #endif
  290. #ifndef EXTRUDER_OFFSET_Y
  291. #define EXTRUDER_OFFSET_Y { 0 }
  292. #endif
  293. float extruder_offset[][EXTRUDERS] = {
  294. EXTRUDER_OFFSET_X,
  295. EXTRUDER_OFFSET_Y
  296. #if ENABLED(DUAL_X_CARRIAGE)
  297. , { 0 } // supports offsets in XYZ plane
  298. #endif
  299. };
  300. #endif
  301. #if HAS_SERVO_ENDSTOPS
  302. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  303. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  304. #endif
  305. #if ENABLED(BARICUDA)
  306. int ValvePressure = 0;
  307. int EtoPPressure = 0;
  308. #endif
  309. #if ENABLED(FWRETRACT)
  310. bool autoretract_enabled = false;
  311. bool retracted[EXTRUDERS] = { false };
  312. bool retracted_swap[EXTRUDERS] = { false };
  313. float retract_length = RETRACT_LENGTH;
  314. float retract_length_swap = RETRACT_LENGTH_SWAP;
  315. float retract_feedrate = RETRACT_FEEDRATE;
  316. float retract_zlift = RETRACT_ZLIFT;
  317. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  318. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  319. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  320. #endif // FWRETRACT
  321. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  322. bool powersupply =
  323. #if ENABLED(PS_DEFAULT_OFF)
  324. false
  325. #else
  326. true
  327. #endif
  328. ;
  329. #endif
  330. #if ENABLED(DELTA)
  331. #define TOWER_1 X_AXIS
  332. #define TOWER_2 Y_AXIS
  333. #define TOWER_3 Z_AXIS
  334. float delta[3] = { 0 };
  335. #define SIN_60 0.8660254037844386
  336. #define COS_60 0.5
  337. float endstop_adj[3] = { 0 };
  338. // these are the default values, can be overriden with M665
  339. float delta_radius = DELTA_RADIUS;
  340. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  341. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  342. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  343. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  344. float delta_tower3_x = 0; // back middle tower
  345. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  346. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  347. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  348. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  349. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  350. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  351. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  352. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  353. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  354. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  355. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  356. int delta_grid_spacing[2] = { 0, 0 };
  357. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  358. #endif
  359. #else
  360. static bool home_all_axis = true;
  361. #endif
  362. #if ENABLED(SCARA)
  363. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  364. static float delta[3] = { 0 };
  365. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  366. #endif
  367. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  368. //Variables for Filament Sensor input
  369. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  370. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  371. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  372. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  373. int filwidth_delay_index1 = 0; //index into ring buffer
  374. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  375. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  376. #endif
  377. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  378. static bool filrunoutEnqueued = false;
  379. #endif
  380. static bool send_ok[BUFSIZE];
  381. #if HAS_SERVOS
  382. Servo servo[NUM_SERVOS];
  383. #endif
  384. #ifdef CHDK
  385. unsigned long chdkHigh = 0;
  386. boolean chdkActive = false;
  387. #endif
  388. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  389. int lpq_len = 20;
  390. #endif
  391. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  392. // States for managing Marlin and host communication
  393. // Marlin sends messages if blocked or busy
  394. enum MarlinBusyState {
  395. NOT_BUSY, // Not in a handler
  396. IN_HANDLER, // Processing a GCode
  397. IN_PROCESS, // Known to be blocking command input (as in G29)
  398. PAUSED_FOR_USER, // Blocking pending any input
  399. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  400. };
  401. static MarlinBusyState busy_state = NOT_BUSY;
  402. static millis_t next_busy_signal_ms = -1;
  403. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  404. #else
  405. #define host_keepalive() ;
  406. #define KEEPALIVE_STATE(n) ;
  407. #endif // HOST_KEEPALIVE_FEATURE
  408. /**
  409. * ***************************************************************************
  410. * ******************************** FUNCTIONS ********************************
  411. * ***************************************************************************
  412. */
  413. void get_available_commands();
  414. void process_next_command();
  415. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  416. bool setTargetedHotend(int code);
  417. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  418. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  419. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  421. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. void gcode_M114();
  423. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  424. float extrude_min_temp = EXTRUDE_MINTEMP;
  425. #endif
  426. #if ENABLED(HAS_Z_MIN_PROBE)
  427. extern volatile bool z_probe_is_active;
  428. #endif
  429. #if ENABLED(SDSUPPORT)
  430. #include "SdFatUtil.h"
  431. int freeMemory() { return SdFatUtil::FreeRam(); }
  432. #else
  433. extern "C" {
  434. extern unsigned int __bss_end;
  435. extern unsigned int __heap_start;
  436. extern void* __brkval;
  437. int freeMemory() {
  438. int free_memory;
  439. if ((int)__brkval == 0)
  440. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  441. else
  442. free_memory = ((int)&free_memory) - ((int)__brkval);
  443. return free_memory;
  444. }
  445. }
  446. #endif //!SDSUPPORT
  447. /**
  448. * Inject the next "immediate" command, when possible.
  449. * Return true if any immediate commands remain to inject.
  450. */
  451. static bool drain_queued_commands_P() {
  452. if (queued_commands_P != NULL) {
  453. size_t i = 0;
  454. char c, cmd[30];
  455. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  456. cmd[sizeof(cmd) - 1] = '\0';
  457. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  458. cmd[i] = '\0';
  459. if (enqueue_and_echo_command(cmd)) { // success?
  460. if (c) // newline char?
  461. queued_commands_P += i + 1; // advance to the next command
  462. else
  463. queued_commands_P = NULL; // nul char? no more commands
  464. }
  465. }
  466. return (queued_commands_P != NULL); // return whether any more remain
  467. }
  468. /**
  469. * Record one or many commands to run from program memory.
  470. * Aborts the current queue, if any.
  471. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  472. */
  473. void enqueue_and_echo_commands_P(const char* pgcode) {
  474. queued_commands_P = pgcode;
  475. drain_queued_commands_P(); // first command executed asap (when possible)
  476. }
  477. /**
  478. * Once a new command is in the ring buffer, call this to commit it
  479. */
  480. inline void _commit_command(bool say_ok) {
  481. send_ok[cmd_queue_index_w] = say_ok;
  482. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  483. commands_in_queue++;
  484. }
  485. /**
  486. * Copy a command directly into the main command buffer, from RAM.
  487. * Returns true if successfully adds the command
  488. */
  489. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  490. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  491. strcpy(command_queue[cmd_queue_index_w], cmd);
  492. _commit_command(say_ok);
  493. return true;
  494. }
  495. void enqueue_and_echo_command_now(const char* cmd) {
  496. while (!enqueue_and_echo_command(cmd)) idle();
  497. }
  498. /**
  499. * Enqueue with Serial Echo
  500. */
  501. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  502. if (_enqueuecommand(cmd, say_ok)) {
  503. SERIAL_ECHO_START;
  504. SERIAL_ECHOPGM(MSG_Enqueueing);
  505. SERIAL_ECHO(cmd);
  506. SERIAL_ECHOLNPGM("\"");
  507. return true;
  508. }
  509. return false;
  510. }
  511. void setup_killpin() {
  512. #if HAS_KILL
  513. SET_INPUT(KILL_PIN);
  514. WRITE(KILL_PIN, HIGH);
  515. #endif
  516. }
  517. void setup_filrunoutpin() {
  518. #if HAS_FILRUNOUT
  519. pinMode(FILRUNOUT_PIN, INPUT);
  520. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  521. WRITE(FILRUNOUT_PIN, HIGH);
  522. #endif
  523. #endif
  524. }
  525. // Set home pin
  526. void setup_homepin(void) {
  527. #if HAS_HOME
  528. SET_INPUT(HOME_PIN);
  529. WRITE(HOME_PIN, HIGH);
  530. #endif
  531. }
  532. void setup_photpin() {
  533. #if HAS_PHOTOGRAPH
  534. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  535. #endif
  536. }
  537. void setup_powerhold() {
  538. #if HAS_SUICIDE
  539. OUT_WRITE(SUICIDE_PIN, HIGH);
  540. #endif
  541. #if HAS_POWER_SWITCH
  542. #if ENABLED(PS_DEFAULT_OFF)
  543. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  544. #else
  545. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  546. #endif
  547. #endif
  548. }
  549. void suicide() {
  550. #if HAS_SUICIDE
  551. OUT_WRITE(SUICIDE_PIN, LOW);
  552. #endif
  553. }
  554. void servo_init() {
  555. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  556. servo[0].attach(SERVO0_PIN);
  557. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  558. #endif
  559. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  560. servo[1].attach(SERVO1_PIN);
  561. servo[1].detach();
  562. #endif
  563. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  564. servo[2].attach(SERVO2_PIN);
  565. servo[2].detach();
  566. #endif
  567. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  568. servo[3].attach(SERVO3_PIN);
  569. servo[3].detach();
  570. #endif
  571. #if HAS_SERVO_ENDSTOPS
  572. z_probe_is_active = false;
  573. /**
  574. * Set position of all defined Servo Endstops
  575. *
  576. * ** UNSAFE! - NEEDS UPDATE! **
  577. *
  578. * The servo might be deployed and positioned too low to stow
  579. * when starting up the machine or rebooting the board.
  580. * There's no way to know where the nozzle is positioned until
  581. * homing has been done - no homing with z-probe without init!
  582. *
  583. */
  584. for (int i = 0; i < 3; i++)
  585. if (servo_endstop_id[i] >= 0)
  586. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  587. #endif // HAS_SERVO_ENDSTOPS
  588. }
  589. /**
  590. * Stepper Reset (RigidBoard, et.al.)
  591. */
  592. #if HAS_STEPPER_RESET
  593. void disableStepperDrivers() {
  594. pinMode(STEPPER_RESET_PIN, OUTPUT);
  595. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  596. }
  597. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  598. #endif
  599. /**
  600. * Marlin entry-point: Set up before the program loop
  601. * - Set up the kill pin, filament runout, power hold
  602. * - Start the serial port
  603. * - Print startup messages and diagnostics
  604. * - Get EEPROM or default settings
  605. * - Initialize managers for:
  606. * • temperature
  607. * • planner
  608. * • watchdog
  609. * • stepper
  610. * • photo pin
  611. * • servos
  612. * • LCD controller
  613. * • Digipot I2C
  614. * • Z probe sled
  615. * • status LEDs
  616. */
  617. void setup() {
  618. #ifdef DISABLE_JTAG
  619. // Disable JTAG on AT90USB chips to free up pins for IO
  620. MCUCR = 0x80;
  621. MCUCR = 0x80;
  622. #endif
  623. setup_killpin();
  624. setup_filrunoutpin();
  625. setup_powerhold();
  626. #if HAS_STEPPER_RESET
  627. disableStepperDrivers();
  628. #endif
  629. MYSERIAL.begin(BAUDRATE);
  630. SERIAL_PROTOCOLLNPGM("start");
  631. SERIAL_ECHO_START;
  632. // Check startup - does nothing if bootloader sets MCUSR to 0
  633. byte mcu = MCUSR;
  634. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  635. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  636. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  637. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  638. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  639. MCUSR = 0;
  640. SERIAL_ECHOPGM(MSG_MARLIN);
  641. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  642. #ifdef STRING_DISTRIBUTION_DATE
  643. #ifdef STRING_CONFIG_H_AUTHOR
  644. SERIAL_ECHO_START;
  645. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  646. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  647. SERIAL_ECHOPGM(MSG_AUTHOR);
  648. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  649. SERIAL_ECHOPGM("Compiled: ");
  650. SERIAL_ECHOLNPGM(__DATE__);
  651. #endif // STRING_CONFIG_H_AUTHOR
  652. #endif // STRING_DISTRIBUTION_DATE
  653. SERIAL_ECHO_START;
  654. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  655. SERIAL_ECHO(freeMemory());
  656. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  657. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  658. // Send "ok" after commands by default
  659. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  660. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  661. Config_RetrieveSettings();
  662. lcd_init();
  663. tp_init(); // Initialize temperature loop
  664. plan_init(); // Initialize planner;
  665. #if ENABLED(USE_WATCHDOG)
  666. watchdog_init();
  667. #endif
  668. st_init(); // Initialize stepper, this enables interrupts!
  669. setup_photpin();
  670. servo_init();
  671. #if HAS_CONTROLLERFAN
  672. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  673. #endif
  674. #if HAS_STEPPER_RESET
  675. enableStepperDrivers();
  676. #endif
  677. #if ENABLED(DIGIPOT_I2C)
  678. digipot_i2c_init();
  679. #endif
  680. #if ENABLED(Z_PROBE_SLED)
  681. pinMode(SLED_PIN, OUTPUT);
  682. digitalWrite(SLED_PIN, LOW); // turn it off
  683. #endif // Z_PROBE_SLED
  684. setup_homepin();
  685. #ifdef STAT_LED_RED
  686. pinMode(STAT_LED_RED, OUTPUT);
  687. digitalWrite(STAT_LED_RED, LOW); // turn it off
  688. #endif
  689. #ifdef STAT_LED_BLUE
  690. pinMode(STAT_LED_BLUE, OUTPUT);
  691. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  692. #endif
  693. }
  694. /**
  695. * The main Marlin program loop
  696. *
  697. * - Save or log commands to SD
  698. * - Process available commands (if not saving)
  699. * - Call heater manager
  700. * - Call inactivity manager
  701. * - Call endstop manager
  702. * - Call LCD update
  703. */
  704. void loop() {
  705. if (commands_in_queue < BUFSIZE) get_available_commands();
  706. #if ENABLED(SDSUPPORT)
  707. card.checkautostart(false);
  708. #endif
  709. if (commands_in_queue) {
  710. #if ENABLED(SDSUPPORT)
  711. if (card.saving) {
  712. char* command = command_queue[cmd_queue_index_r];
  713. if (strstr_P(command, PSTR("M29"))) {
  714. // M29 closes the file
  715. card.closefile();
  716. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  717. ok_to_send();
  718. }
  719. else {
  720. // Write the string from the read buffer to SD
  721. card.write_command(command);
  722. if (card.logging)
  723. process_next_command(); // The card is saving because it's logging
  724. else
  725. ok_to_send();
  726. }
  727. }
  728. else
  729. process_next_command();
  730. #else
  731. process_next_command();
  732. #endif // SDSUPPORT
  733. commands_in_queue--;
  734. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  735. }
  736. checkHitEndstops();
  737. idle();
  738. }
  739. void gcode_line_error(const char* err, bool doFlush = true) {
  740. SERIAL_ERROR_START;
  741. serialprintPGM(err);
  742. SERIAL_ERRORLN(gcode_LastN);
  743. //Serial.println(gcode_N);
  744. if (doFlush) FlushSerialRequestResend();
  745. serial_count = 0;
  746. }
  747. inline void get_serial_commands() {
  748. static char serial_line_buffer[MAX_CMD_SIZE];
  749. static boolean serial_comment_mode = false;
  750. // If the command buffer is empty for too long,
  751. // send "wait" to indicate Marlin is still waiting.
  752. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  753. static millis_t last_command_time = 0;
  754. millis_t ms = millis();
  755. if (commands_in_queue == 0 && !MYSERIAL.available() && ms > last_command_time + NO_TIMEOUTS) {
  756. SERIAL_ECHOLNPGM(MSG_WAIT);
  757. last_command_time = ms;
  758. }
  759. #endif
  760. /**
  761. * Loop while serial characters are incoming and the queue is not full
  762. */
  763. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  764. char serial_char = MYSERIAL.read();
  765. /**
  766. * If the character ends the line
  767. */
  768. if (serial_char == '\n' || serial_char == '\r') {
  769. serial_comment_mode = false; // end of line == end of comment
  770. if (!serial_count) continue; // skip empty lines
  771. serial_line_buffer[serial_count] = 0; // terminate string
  772. serial_count = 0; //reset buffer
  773. char* command = serial_line_buffer;
  774. while (*command == ' ') command++; // skip any leading spaces
  775. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  776. char* apos = strchr(command, '*');
  777. if (npos) {
  778. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  779. if (M110) {
  780. char* n2pos = strchr(command + 4, 'N');
  781. if (n2pos) npos = n2pos;
  782. }
  783. gcode_N = strtol(npos + 1, NULL, 10);
  784. if (gcode_N != gcode_LastN + 1 && !M110) {
  785. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  786. return;
  787. }
  788. if (apos) {
  789. byte checksum = 0, count = 0;
  790. while (command[count] != '*') checksum ^= command[count++];
  791. if (strtol(apos + 1, NULL, 10) != checksum) {
  792. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  793. return;
  794. }
  795. // if no errors, continue parsing
  796. }
  797. else {
  798. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  799. return;
  800. }
  801. gcode_LastN = gcode_N;
  802. // if no errors, continue parsing
  803. }
  804. else if (apos) { // No '*' without 'N'
  805. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  806. return;
  807. }
  808. // Movement commands alert when stopped
  809. if (IsStopped()) {
  810. char* gpos = strchr(command, 'G');
  811. if (gpos) {
  812. int codenum = strtol(gpos + 1, NULL, 10);
  813. switch (codenum) {
  814. case 0:
  815. case 1:
  816. case 2:
  817. case 3:
  818. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  819. LCD_MESSAGEPGM(MSG_STOPPED);
  820. break;
  821. }
  822. }
  823. }
  824. // If command was e-stop process now
  825. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  826. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  827. last_command_time = ms;
  828. #endif
  829. // Add the command to the queue
  830. _enqueuecommand(serial_line_buffer, true);
  831. }
  832. else if (serial_count >= MAX_CMD_SIZE - 1) {
  833. // Keep fetching, but ignore normal characters beyond the max length
  834. // The command will be injected when EOL is reached
  835. }
  836. else if (serial_char == '\\') { // Handle escapes
  837. if (MYSERIAL.available() > 0) {
  838. // if we have one more character, copy it over
  839. serial_char = MYSERIAL.read();
  840. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  841. }
  842. // otherwise do nothing
  843. }
  844. else { // it's not a newline, carriage return or escape char
  845. if (serial_char == ';') serial_comment_mode = true;
  846. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  847. }
  848. } // queue has space, serial has data
  849. }
  850. #if ENABLED(SDSUPPORT)
  851. inline void get_sdcard_commands() {
  852. static bool stop_buffering = false,
  853. sd_comment_mode = false;
  854. if (!card.sdprinting) return;
  855. /**
  856. * '#' stops reading from SD to the buffer prematurely, so procedural
  857. * macro calls are possible. If it occurs, stop_buffering is triggered
  858. * and the buffer is run dry; this character _can_ occur in serial com
  859. * due to checksums, however, no checksums are used in SD printing.
  860. */
  861. if (commands_in_queue == 0) stop_buffering = false;
  862. uint16_t sd_count = 0;
  863. bool card_eof = card.eof();
  864. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  865. int16_t n = card.get();
  866. char sd_char = (char)n;
  867. card_eof = card.eof();
  868. if (card_eof || n == -1
  869. || sd_char == '\n' || sd_char == '\r'
  870. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  871. ) {
  872. if (card_eof) {
  873. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  874. print_job_timer.stop();
  875. char time[30];
  876. millis_t t = print_job_timer.duration();
  877. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  878. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  879. SERIAL_ECHO_START;
  880. SERIAL_ECHOLN(time);
  881. lcd_setstatus(time, true);
  882. card.printingHasFinished();
  883. card.checkautostart(true);
  884. }
  885. if (sd_char == '#') stop_buffering = true;
  886. sd_comment_mode = false; //for new command
  887. if (!sd_count) continue; //skip empty lines
  888. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  889. sd_count = 0; //clear buffer
  890. _commit_command(false);
  891. }
  892. else if (sd_count >= MAX_CMD_SIZE - 1) {
  893. /**
  894. * Keep fetching, but ignore normal characters beyond the max length
  895. * The command will be injected when EOL is reached
  896. */
  897. }
  898. else {
  899. if (sd_char == ';') sd_comment_mode = true;
  900. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  901. }
  902. }
  903. }
  904. #endif // SDSUPPORT
  905. /**
  906. * Add to the circular command queue the next command from:
  907. * - The command-injection queue (queued_commands_P)
  908. * - The active serial input (usually USB)
  909. * - The SD card file being actively printed
  910. */
  911. void get_available_commands() {
  912. // if any immediate commands remain, don't get other commands yet
  913. if (drain_queued_commands_P()) return;
  914. get_serial_commands();
  915. #if ENABLED(SDSUPPORT)
  916. get_sdcard_commands();
  917. #endif
  918. }
  919. bool code_has_value() {
  920. int i = 1;
  921. char c = seen_pointer[i];
  922. while (c == ' ') c = seen_pointer[++i];
  923. if (c == '-' || c == '+') c = seen_pointer[++i];
  924. if (c == '.') c = seen_pointer[++i];
  925. return NUMERIC(c);
  926. }
  927. float code_value() {
  928. float ret;
  929. char* e = strchr(seen_pointer, 'E');
  930. if (e) {
  931. *e = 0;
  932. ret = strtod(seen_pointer + 1, NULL);
  933. *e = 'E';
  934. }
  935. else
  936. ret = strtod(seen_pointer + 1, NULL);
  937. return ret;
  938. }
  939. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  940. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  941. bool code_seen(char code) {
  942. seen_pointer = strchr(current_command_args, code);
  943. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  944. }
  945. #define DEFINE_PGM_READ_ANY(type, reader) \
  946. static inline type pgm_read_any(const type *p) \
  947. { return pgm_read_##reader##_near(p); }
  948. DEFINE_PGM_READ_ANY(float, float);
  949. DEFINE_PGM_READ_ANY(signed char, byte);
  950. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  951. static const PROGMEM type array##_P[3] = \
  952. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  953. static inline type array(int axis) \
  954. { return pgm_read_any(&array##_P[axis]); }
  955. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  956. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  957. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  958. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  959. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  960. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  961. #if ENABLED(DUAL_X_CARRIAGE)
  962. #define DXC_FULL_CONTROL_MODE 0
  963. #define DXC_AUTO_PARK_MODE 1
  964. #define DXC_DUPLICATION_MODE 2
  965. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  966. static float x_home_pos(int extruder) {
  967. if (extruder == 0)
  968. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  969. else
  970. /**
  971. * In dual carriage mode the extruder offset provides an override of the
  972. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  973. * This allow soft recalibration of the second extruder offset position
  974. * without firmware reflash (through the M218 command).
  975. */
  976. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  977. }
  978. static int x_home_dir(int extruder) {
  979. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  980. }
  981. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  982. static bool active_extruder_parked = false; // used in mode 1 & 2
  983. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  984. static millis_t delayed_move_time = 0; // used in mode 1
  985. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  986. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  987. bool extruder_duplication_enabled = false; // used in mode 2
  988. #endif //DUAL_X_CARRIAGE
  989. #if ENABLED(DEBUG_LEVELING_FEATURE)
  990. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  991. SERIAL_ECHO(prefix);
  992. SERIAL_ECHOPAIR(": (", x);
  993. SERIAL_ECHOPAIR(", ", y);
  994. SERIAL_ECHOPAIR(", ", z);
  995. SERIAL_ECHOLNPGM(")");
  996. }
  997. void print_xyz(const char* prefix, const float xyz[]) {
  998. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  999. }
  1000. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  1001. #endif
  1002. static void set_axis_is_at_home(AxisEnum axis) {
  1003. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1004. if (DEBUGGING(LEVELING)) {
  1005. SERIAL_ECHOPAIR("set_axis_is_at_home(", (unsigned long)axis);
  1006. SERIAL_ECHOLNPGM(") >>>");
  1007. }
  1008. #endif
  1009. #if ENABLED(DUAL_X_CARRIAGE)
  1010. if (axis == X_AXIS) {
  1011. if (active_extruder != 0) {
  1012. current_position[X_AXIS] = x_home_pos(active_extruder);
  1013. min_pos[X_AXIS] = X2_MIN_POS;
  1014. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1015. return;
  1016. }
  1017. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1018. float xoff = home_offset[X_AXIS];
  1019. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  1020. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  1021. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1022. return;
  1023. }
  1024. }
  1025. #endif
  1026. #if ENABLED(SCARA)
  1027. if (axis == X_AXIS || axis == Y_AXIS) {
  1028. float homeposition[3];
  1029. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1030. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1031. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1032. /**
  1033. * Works out real Homeposition angles using inverse kinematics,
  1034. * and calculates homing offset using forward kinematics
  1035. */
  1036. calculate_delta(homeposition);
  1037. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1038. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1039. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1040. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1041. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1042. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1043. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1044. calculate_SCARA_forward_Transform(delta);
  1045. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1046. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1047. current_position[axis] = delta[axis];
  1048. /**
  1049. * SCARA home positions are based on configuration since the actual
  1050. * limits are determined by the inverse kinematic transform.
  1051. */
  1052. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1053. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1054. }
  1055. else
  1056. #endif
  1057. {
  1058. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1059. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1060. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1061. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1062. if (axis == Z_AXIS) {
  1063. current_position[Z_AXIS] -= zprobe_zoffset;
  1064. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1065. if (DEBUGGING(LEVELING)) {
  1066. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1067. SERIAL_EOL;
  1068. }
  1069. #endif
  1070. }
  1071. #endif
  1072. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1073. if (DEBUGGING(LEVELING)) {
  1074. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1075. DEBUG_POS("", current_position);
  1076. }
  1077. #endif
  1078. }
  1079. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1080. if (DEBUGGING(LEVELING)) {
  1081. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", (unsigned long)axis);
  1082. SERIAL_ECHOLNPGM(")");
  1083. }
  1084. #endif
  1085. }
  1086. /**
  1087. * Some planner shorthand inline functions
  1088. */
  1089. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1090. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1091. int hbd = homing_bump_divisor[axis];
  1092. if (hbd < 1) {
  1093. hbd = 10;
  1094. SERIAL_ECHO_START;
  1095. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1096. }
  1097. feedrate = homing_feedrate[axis] / hbd;
  1098. }
  1099. inline void line_to_current_position() {
  1100. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1101. }
  1102. inline void line_to_z(float zPosition) {
  1103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1104. }
  1105. inline void line_to_destination(float mm_m) {
  1106. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1107. }
  1108. inline void line_to_destination() {
  1109. line_to_destination(feedrate);
  1110. }
  1111. inline void sync_plan_position() {
  1112. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1113. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1114. #endif
  1115. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1116. }
  1117. #if ENABLED(DELTA) || ENABLED(SCARA)
  1118. inline void sync_plan_position_delta() {
  1119. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1120. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  1121. #endif
  1122. calculate_delta(current_position);
  1123. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1124. }
  1125. #endif
  1126. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1127. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1128. static void setup_for_endstop_move() {
  1129. saved_feedrate = feedrate;
  1130. saved_feedrate_multiplier = feedrate_multiplier;
  1131. feedrate_multiplier = 100;
  1132. refresh_cmd_timeout();
  1133. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1134. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1135. #endif
  1136. enable_endstops(true);
  1137. }
  1138. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1139. #if ENABLED(DELTA)
  1140. /**
  1141. * Calculate delta, start a line, and set current_position to destination
  1142. */
  1143. void prepare_move_raw() {
  1144. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1145. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1146. #endif
  1147. refresh_cmd_timeout();
  1148. calculate_delta(destination);
  1149. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1150. set_current_to_destination();
  1151. }
  1152. #endif
  1153. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1154. #if DISABLED(DELTA)
  1155. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1156. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1157. if (DEBUGGING(LEVELING)) DEBUG_POS("BEFORE set_bed_level_equation_lsq", current_position);
  1158. #endif
  1159. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1160. // planeNormal.debug("planeNormal");
  1161. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1162. //bedLevel.debug("bedLevel");
  1163. //plan_bed_level_matrix.debug("bed level before");
  1164. //vector_3 uncorrected_position = plan_get_position();
  1165. //uncorrected_position.debug("position before");
  1166. vector_3 corrected_position = plan_get_position();
  1167. //corrected_position.debug("position after");
  1168. current_position[X_AXIS] = corrected_position.x;
  1169. current_position[Y_AXIS] = corrected_position.y;
  1170. current_position[Z_AXIS] = corrected_position.z;
  1171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1172. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER set_bed_level_equation_lsq", current_position);
  1173. #endif
  1174. sync_plan_position();
  1175. }
  1176. #endif // !DELTA
  1177. #else // !AUTO_BED_LEVELING_GRID
  1178. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1179. plan_bed_level_matrix.set_to_identity();
  1180. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1181. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1182. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1183. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1184. if (planeNormal.z < 0) {
  1185. planeNormal.x = -planeNormal.x;
  1186. planeNormal.y = -planeNormal.y;
  1187. planeNormal.z = -planeNormal.z;
  1188. }
  1189. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1190. vector_3 corrected_position = plan_get_position();
  1191. current_position[X_AXIS] = corrected_position.x;
  1192. current_position[Y_AXIS] = corrected_position.y;
  1193. current_position[Z_AXIS] = corrected_position.z;
  1194. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1195. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", current_position);
  1196. #endif
  1197. sync_plan_position();
  1198. }
  1199. #endif // !AUTO_BED_LEVELING_GRID
  1200. static void run_z_probe() {
  1201. /**
  1202. * To prevent stepper_inactive_time from running out and
  1203. * EXTRUDER_RUNOUT_PREVENT from extruding
  1204. */
  1205. refresh_cmd_timeout();
  1206. #if ENABLED(DELTA)
  1207. float start_z = current_position[Z_AXIS];
  1208. long start_steps = st_get_position(Z_AXIS);
  1209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1210. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1211. #endif
  1212. // move down slowly until you find the bed
  1213. feedrate = homing_feedrate[Z_AXIS] / 4;
  1214. destination[Z_AXIS] = -10;
  1215. prepare_move_raw(); // this will also set_current_to_destination
  1216. st_synchronize();
  1217. endstops_hit_on_purpose(); // clear endstop hit flags
  1218. /**
  1219. * We have to let the planner know where we are right now as it
  1220. * is not where we said to go.
  1221. */
  1222. long stop_steps = st_get_position(Z_AXIS);
  1223. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1224. current_position[Z_AXIS] = mm;
  1225. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1226. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1227. #endif
  1228. sync_plan_position_delta();
  1229. #else // !DELTA
  1230. plan_bed_level_matrix.set_to_identity();
  1231. feedrate = homing_feedrate[Z_AXIS];
  1232. // Move down until the Z probe (or endstop?) is triggered
  1233. float zPosition = -(Z_MAX_LENGTH + 10);
  1234. line_to_z(zPosition);
  1235. st_synchronize();
  1236. // Tell the planner where we ended up - Get this from the stepper handler
  1237. zPosition = st_get_axis_position_mm(Z_AXIS);
  1238. plan_set_position(
  1239. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1240. current_position[E_AXIS]
  1241. );
  1242. // move up the retract distance
  1243. zPosition += home_bump_mm(Z_AXIS);
  1244. line_to_z(zPosition);
  1245. st_synchronize();
  1246. endstops_hit_on_purpose(); // clear endstop hit flags
  1247. // move back down slowly to find bed
  1248. set_homing_bump_feedrate(Z_AXIS);
  1249. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1250. line_to_z(zPosition);
  1251. st_synchronize();
  1252. endstops_hit_on_purpose(); // clear endstop hit flags
  1253. // Get the current stepper position after bumping an endstop
  1254. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1255. sync_plan_position();
  1256. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1257. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1258. #endif
  1259. #endif // !DELTA
  1260. }
  1261. /**
  1262. * Plan a move to (X, Y, Z) and set the current_position
  1263. * The final current_position may not be the one that was requested
  1264. */
  1265. static void do_blocking_move_to(float x, float y, float z) {
  1266. float oldFeedRate = feedrate;
  1267. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1268. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1269. #endif
  1270. #if ENABLED(DELTA)
  1271. feedrate = XY_TRAVEL_SPEED;
  1272. destination[X_AXIS] = x;
  1273. destination[Y_AXIS] = y;
  1274. destination[Z_AXIS] = z;
  1275. prepare_move_raw(); // this will also set_current_to_destination
  1276. st_synchronize();
  1277. #else
  1278. feedrate = homing_feedrate[Z_AXIS];
  1279. current_position[Z_AXIS] = z;
  1280. line_to_current_position();
  1281. st_synchronize();
  1282. feedrate = xy_travel_speed;
  1283. current_position[X_AXIS] = x;
  1284. current_position[Y_AXIS] = y;
  1285. line_to_current_position();
  1286. st_synchronize();
  1287. #endif
  1288. feedrate = oldFeedRate;
  1289. }
  1290. inline void do_blocking_move_to_xy(float x, float y) {
  1291. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1292. }
  1293. inline void do_blocking_move_to_x(float x) {
  1294. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1295. }
  1296. inline void do_blocking_move_to_z(float z) {
  1297. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1298. }
  1299. inline void raise_z_after_probing() {
  1300. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1301. }
  1302. static void clean_up_after_endstop_move() {
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1305. #endif
  1306. endstops_not_homing();
  1307. feedrate = saved_feedrate;
  1308. feedrate_multiplier = saved_feedrate_multiplier;
  1309. refresh_cmd_timeout();
  1310. }
  1311. #if ENABLED(HAS_Z_MIN_PROBE)
  1312. static void deploy_z_probe() {
  1313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1314. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1315. #endif
  1316. if (z_probe_is_active) return;
  1317. #if HAS_SERVO_ENDSTOPS
  1318. // Engage Z Servo endstop if enabled
  1319. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1320. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1321. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1322. // If endstop is already false, the Z probe is deployed
  1323. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1324. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1325. if (z_probe_endstop)
  1326. #else
  1327. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1328. if (z_min_endstop)
  1329. #endif
  1330. {
  1331. // Move to the start position to initiate deployment
  1332. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1333. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1334. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1335. prepare_move_raw(); // this will also set_current_to_destination
  1336. // Move to engage deployment
  1337. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1338. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1339. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1340. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1341. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1342. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1343. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1344. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1345. prepare_move_raw();
  1346. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1347. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1348. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1349. // Move to trigger deployment
  1350. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1351. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1352. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1353. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1354. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1355. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1356. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1357. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1358. prepare_move_raw();
  1359. #endif
  1360. }
  1361. // Partially Home X,Y for safety
  1362. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1363. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1364. prepare_move_raw(); // this will also set_current_to_destination
  1365. st_synchronize();
  1366. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1367. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1368. if (z_probe_endstop)
  1369. #else
  1370. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1371. if (z_min_endstop)
  1372. #endif
  1373. {
  1374. if (IsRunning()) {
  1375. SERIAL_ERROR_START;
  1376. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1377. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1378. }
  1379. Stop();
  1380. }
  1381. #endif // Z_PROBE_ALLEN_KEY
  1382. #if ENABLED(FIX_MOUNTED_PROBE)
  1383. // Noting to be done. Just set z_probe_is_active
  1384. #endif
  1385. z_probe_is_active = true;
  1386. }
  1387. static void stow_z_probe(bool doRaise = true) {
  1388. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1389. UNUSED(doRaise);
  1390. #endif
  1391. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1392. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1393. #endif
  1394. if (!z_probe_is_active) return;
  1395. #if HAS_SERVO_ENDSTOPS
  1396. // Retract Z Servo endstop if enabled
  1397. if (servo_endstop_id[Z_AXIS] >= 0) {
  1398. #if Z_RAISE_AFTER_PROBING > 0
  1399. if (doRaise) {
  1400. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1401. if (DEBUGGING(LEVELING)) {
  1402. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1403. SERIAL_EOL;
  1404. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1405. SERIAL_EOL;
  1406. }
  1407. #endif
  1408. raise_z_after_probing(); // this also updates current_position
  1409. st_synchronize();
  1410. }
  1411. #endif
  1412. // Change the Z servo angle
  1413. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1414. }
  1415. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1416. // Move up for safety
  1417. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1418. #if Z_RAISE_AFTER_PROBING > 0
  1419. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1420. prepare_move_raw(); // this will also set_current_to_destination
  1421. #endif
  1422. // Move to the start position to initiate retraction
  1423. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1424. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1425. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1426. prepare_move_raw();
  1427. // Move the nozzle down to push the Z probe into retracted position
  1428. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1429. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1430. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1431. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1432. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1433. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1434. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1435. prepare_move_raw();
  1436. // Move up for safety
  1437. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1438. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1439. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1440. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1441. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1442. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1443. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1444. prepare_move_raw();
  1445. // Home XY for safety
  1446. feedrate = homing_feedrate[X_AXIS] / 2;
  1447. destination[X_AXIS] = 0;
  1448. destination[Y_AXIS] = 0;
  1449. prepare_move_raw(); // this will also set_current_to_destination
  1450. st_synchronize();
  1451. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1452. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1453. if (!z_probe_endstop)
  1454. #else
  1455. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1456. if (!z_min_endstop)
  1457. #endif
  1458. {
  1459. if (IsRunning()) {
  1460. SERIAL_ERROR_START;
  1461. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1462. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1463. }
  1464. Stop();
  1465. }
  1466. #endif // Z_PROBE_ALLEN_KEY
  1467. #if ENABLED(FIX_MOUNTED_PROBE)
  1468. // Noting to be done. Just set z_probe_is_active
  1469. #endif
  1470. z_probe_is_active = false;
  1471. }
  1472. #endif // HAS_Z_MIN_PROBE
  1473. enum ProbeAction {
  1474. ProbeStay = 0,
  1475. ProbeDeploy = _BV(0),
  1476. ProbeStow = _BV(1),
  1477. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1478. };
  1479. // Probe bed height at position (x,y), returns the measured z value
  1480. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1482. if (DEBUGGING(LEVELING)) {
  1483. SERIAL_ECHOLNPGM("probe_pt >>>");
  1484. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1485. SERIAL_EOL;
  1486. DEBUG_POS("", current_position);
  1487. }
  1488. #endif
  1489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1490. if (DEBUGGING(LEVELING)) {
  1491. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1492. SERIAL_EOL;
  1493. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1494. SERIAL_EOL;
  1495. }
  1496. #endif
  1497. // Move Z up to the z_before height, then move the Z probe to the given XY
  1498. do_blocking_move_to_z(z_before); // this also updates current_position
  1499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1500. if (DEBUGGING(LEVELING)) {
  1501. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1502. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1503. SERIAL_EOL;
  1504. }
  1505. #endif
  1506. // this also updates current_position
  1507. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1508. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1509. if (probe_action & ProbeDeploy) {
  1510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1511. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1512. #endif
  1513. deploy_z_probe();
  1514. }
  1515. #endif
  1516. run_z_probe();
  1517. float measured_z = current_position[Z_AXIS];
  1518. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1519. if (probe_action & ProbeStow) {
  1520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1521. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1522. #endif
  1523. stow_z_probe();
  1524. }
  1525. #endif
  1526. if (verbose_level > 2) {
  1527. SERIAL_PROTOCOLPGM("Bed X: ");
  1528. SERIAL_PROTOCOL_F(x, 3);
  1529. SERIAL_PROTOCOLPGM(" Y: ");
  1530. SERIAL_PROTOCOL_F(y, 3);
  1531. SERIAL_PROTOCOLPGM(" Z: ");
  1532. SERIAL_PROTOCOL_F(measured_z, 3);
  1533. SERIAL_EOL;
  1534. }
  1535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1536. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1537. #endif
  1538. return measured_z;
  1539. }
  1540. #if ENABLED(DELTA)
  1541. /**
  1542. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1543. */
  1544. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1545. if (bed_level[x][y] != 0.0) {
  1546. return; // Don't overwrite good values.
  1547. }
  1548. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1549. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1550. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1551. float median = c; // Median is robust (ignores outliers).
  1552. if (a < b) {
  1553. if (b < c) median = b;
  1554. if (c < a) median = a;
  1555. }
  1556. else { // b <= a
  1557. if (c < b) median = b;
  1558. if (a < c) median = a;
  1559. }
  1560. bed_level[x][y] = median;
  1561. }
  1562. /**
  1563. * Fill in the unprobed points (corners of circular print surface)
  1564. * using linear extrapolation, away from the center.
  1565. */
  1566. static void extrapolate_unprobed_bed_level() {
  1567. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1568. for (int y = 0; y <= half; y++) {
  1569. for (int x = 0; x <= half; x++) {
  1570. if (x + y < 3) continue;
  1571. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1572. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1573. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1574. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1575. }
  1576. }
  1577. }
  1578. /**
  1579. * Print calibration results for plotting or manual frame adjustment.
  1580. */
  1581. static void print_bed_level() {
  1582. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1583. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1584. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1585. SERIAL_PROTOCOLCHAR(' ');
  1586. }
  1587. SERIAL_EOL;
  1588. }
  1589. }
  1590. /**
  1591. * Reset calibration results to zero.
  1592. */
  1593. void reset_bed_level() {
  1594. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1595. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1596. #endif
  1597. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1598. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1599. bed_level[x][y] = 0.0;
  1600. }
  1601. }
  1602. }
  1603. #endif // DELTA
  1604. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1605. void raise_z_for_servo() {
  1606. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1607. /**
  1608. * The zprobe_zoffset is negative any switch below the nozzle, so
  1609. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1610. */
  1611. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1612. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1613. }
  1614. #endif
  1615. #endif // AUTO_BED_LEVELING_FEATURE
  1616. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1617. static void axis_unhomed_error() {
  1618. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1619. SERIAL_ECHO_START;
  1620. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1621. }
  1622. #endif
  1623. #if ENABLED(Z_PROBE_SLED)
  1624. #ifndef SLED_DOCKING_OFFSET
  1625. #define SLED_DOCKING_OFFSET 0
  1626. #endif
  1627. /**
  1628. * Method to dock/undock a sled designed by Charles Bell.
  1629. *
  1630. * dock[in] If true, move to MAX_X and engage the electromagnet
  1631. * offset[in] The additional distance to move to adjust docking location
  1632. */
  1633. static void dock_sled(bool dock, int offset = 0) {
  1634. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1635. if (DEBUGGING(LEVELING)) {
  1636. SERIAL_ECHOPAIR("dock_sled(", dock);
  1637. SERIAL_ECHOLNPGM(")");
  1638. }
  1639. #endif
  1640. if (z_probe_is_active == dock) return;
  1641. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1642. axis_unhomed_error();
  1643. return;
  1644. }
  1645. float oldXpos = current_position[X_AXIS]; // save x position
  1646. if (dock) {
  1647. #if Z_RAISE_AFTER_PROBING > 0
  1648. raise_z_after_probing(); // raise Z
  1649. #endif
  1650. // Dock sled a bit closer to ensure proper capturing
  1651. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1652. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1653. }
  1654. else {
  1655. float z_loc = current_position[Z_AXIS];
  1656. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1657. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1658. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1659. }
  1660. do_blocking_move_to_x(oldXpos); // return to position before docking
  1661. z_probe_is_active = dock;
  1662. }
  1663. #endif // Z_PROBE_SLED
  1664. /**
  1665. * Home an individual axis
  1666. */
  1667. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1668. static void homeaxis(AxisEnum axis) {
  1669. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1670. if (DEBUGGING(LEVELING)) {
  1671. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1672. SERIAL_ECHOLNPGM(")");
  1673. }
  1674. #endif
  1675. #define HOMEAXIS_DO(LETTER) \
  1676. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1677. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1678. int axis_home_dir =
  1679. #if ENABLED(DUAL_X_CARRIAGE)
  1680. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1681. #endif
  1682. home_dir(axis);
  1683. // Set the axis position as setup for the move
  1684. current_position[axis] = 0;
  1685. sync_plan_position();
  1686. #if ENABLED(Z_PROBE_SLED)
  1687. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1688. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1689. #define _Z_DEPLOY (dock_sled(false))
  1690. #define _Z_STOW (dock_sled(true))
  1691. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1692. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1693. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1694. #define _Z_DEPLOY (deploy_z_probe())
  1695. #define _Z_STOW (stow_z_probe())
  1696. #elif HAS_SERVO_ENDSTOPS
  1697. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1698. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1699. #endif
  1700. if (axis == Z_AXIS) {
  1701. // If there's a Z probe that needs deployment...
  1702. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1703. // ...and homing Z towards the bed? Deploy it.
  1704. if (axis_home_dir < 0) _Z_DEPLOY;
  1705. #endif
  1706. }
  1707. #if HAS_SERVO_ENDSTOPS
  1708. // Engage an X or Y Servo endstop if enabled
  1709. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1710. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1711. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1712. }
  1713. #endif
  1714. // Set a flag for Z motor locking
  1715. #if ENABLED(Z_DUAL_ENDSTOPS)
  1716. if (axis == Z_AXIS) In_Homing_Process(true);
  1717. #endif
  1718. // Move towards the endstop until an endstop is triggered
  1719. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1720. feedrate = homing_feedrate[axis];
  1721. line_to_destination();
  1722. st_synchronize();
  1723. // Set the axis position as setup for the move
  1724. current_position[axis] = 0;
  1725. sync_plan_position();
  1726. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1727. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1728. #endif
  1729. enable_endstops(false); // Disable endstops while moving away
  1730. // Move away from the endstop by the axis HOME_BUMP_MM
  1731. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1732. line_to_destination();
  1733. st_synchronize();
  1734. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1735. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1736. #endif
  1737. enable_endstops(true); // Enable endstops for next homing move
  1738. // Slow down the feedrate for the next move
  1739. set_homing_bump_feedrate(axis);
  1740. // Move slowly towards the endstop until triggered
  1741. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1742. line_to_destination();
  1743. st_synchronize();
  1744. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1745. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1746. #endif
  1747. #if ENABLED(Z_DUAL_ENDSTOPS)
  1748. if (axis == Z_AXIS) {
  1749. float adj = fabs(z_endstop_adj);
  1750. bool lockZ1;
  1751. if (axis_home_dir > 0) {
  1752. adj = -adj;
  1753. lockZ1 = (z_endstop_adj > 0);
  1754. }
  1755. else
  1756. lockZ1 = (z_endstop_adj < 0);
  1757. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1758. sync_plan_position();
  1759. // Move to the adjusted endstop height
  1760. feedrate = homing_feedrate[axis];
  1761. destination[Z_AXIS] = adj;
  1762. line_to_destination();
  1763. st_synchronize();
  1764. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1765. In_Homing_Process(false);
  1766. } // Z_AXIS
  1767. #endif
  1768. #if ENABLED(DELTA)
  1769. // retrace by the amount specified in endstop_adj
  1770. if (endstop_adj[axis] * axis_home_dir < 0) {
  1771. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1772. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1773. #endif
  1774. enable_endstops(false); // Disable endstops while moving away
  1775. sync_plan_position();
  1776. destination[axis] = endstop_adj[axis];
  1777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1778. if (DEBUGGING(LEVELING)) {
  1779. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1780. DEBUG_POS("", destination);
  1781. }
  1782. #endif
  1783. line_to_destination();
  1784. st_synchronize();
  1785. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1786. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1787. #endif
  1788. enable_endstops(true); // Enable endstops for next homing move
  1789. }
  1790. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1791. else {
  1792. if (DEBUGGING(LEVELING)) {
  1793. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1794. SERIAL_EOL;
  1795. }
  1796. }
  1797. #endif
  1798. #endif
  1799. // Set the axis position to its home position (plus home offsets)
  1800. set_axis_is_at_home(axis);
  1801. sync_plan_position();
  1802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1803. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1804. #endif
  1805. destination[axis] = current_position[axis];
  1806. feedrate = 0.0;
  1807. endstops_hit_on_purpose(); // clear endstop hit flags
  1808. axis_known_position[axis] = true;
  1809. axis_homed[axis] = true;
  1810. // Put away the Z probe
  1811. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1812. if (axis == Z_AXIS && axis_home_dir < 0) {
  1813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1814. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1815. #endif
  1816. _Z_STOW;
  1817. }
  1818. #endif
  1819. // Retract Servo endstop if enabled
  1820. #if HAS_SERVO_ENDSTOPS
  1821. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1823. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1824. #endif
  1825. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1826. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1827. }
  1828. #endif
  1829. }
  1830. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1831. if (DEBUGGING(LEVELING)) {
  1832. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1833. SERIAL_ECHOLNPGM(")");
  1834. }
  1835. #endif
  1836. }
  1837. #if ENABLED(FWRETRACT)
  1838. void retract(bool retracting, bool swapping = false) {
  1839. if (retracting == retracted[active_extruder]) return;
  1840. float oldFeedrate = feedrate;
  1841. set_destination_to_current();
  1842. if (retracting) {
  1843. feedrate = retract_feedrate * 60;
  1844. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1845. plan_set_e_position(current_position[E_AXIS]);
  1846. prepare_move();
  1847. if (retract_zlift > 0.01) {
  1848. current_position[Z_AXIS] -= retract_zlift;
  1849. #if ENABLED(DELTA)
  1850. sync_plan_position_delta();
  1851. #else
  1852. sync_plan_position();
  1853. #endif
  1854. prepare_move();
  1855. }
  1856. }
  1857. else {
  1858. if (retract_zlift > 0.01) {
  1859. current_position[Z_AXIS] += retract_zlift;
  1860. #if ENABLED(DELTA)
  1861. sync_plan_position_delta();
  1862. #else
  1863. sync_plan_position();
  1864. #endif
  1865. //prepare_move();
  1866. }
  1867. feedrate = retract_recover_feedrate * 60;
  1868. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1869. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1870. plan_set_e_position(current_position[E_AXIS]);
  1871. prepare_move();
  1872. }
  1873. feedrate = oldFeedrate;
  1874. retracted[active_extruder] = retracting;
  1875. } // retract()
  1876. #endif // FWRETRACT
  1877. /**
  1878. * ***************************************************************************
  1879. * ***************************** G-CODE HANDLING *****************************
  1880. * ***************************************************************************
  1881. */
  1882. /**
  1883. * Set XYZE destination and feedrate from the current GCode command
  1884. *
  1885. * - Set destination from included axis codes
  1886. * - Set to current for missing axis codes
  1887. * - Set the feedrate, if included
  1888. */
  1889. void gcode_get_destination() {
  1890. for (int i = 0; i < NUM_AXIS; i++) {
  1891. if (code_seen(axis_codes[i]))
  1892. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1893. else
  1894. destination[i] = current_position[i];
  1895. }
  1896. if (code_seen('F')) {
  1897. float next_feedrate = code_value();
  1898. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1899. }
  1900. }
  1901. void unknown_command_error() {
  1902. SERIAL_ECHO_START;
  1903. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1904. SERIAL_ECHO(current_command);
  1905. SERIAL_ECHOPGM("\"\n");
  1906. }
  1907. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1908. /**
  1909. * Output a "busy" message at regular intervals
  1910. * while the machine is not accepting commands.
  1911. */
  1912. void host_keepalive() {
  1913. millis_t ms = millis();
  1914. if (busy_state != NOT_BUSY) {
  1915. if (ms < next_busy_signal_ms) return;
  1916. switch (busy_state) {
  1917. case IN_HANDLER:
  1918. case IN_PROCESS:
  1919. SERIAL_ECHO_START;
  1920. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1921. break;
  1922. case PAUSED_FOR_USER:
  1923. SERIAL_ECHO_START;
  1924. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1925. break;
  1926. case PAUSED_FOR_INPUT:
  1927. SERIAL_ECHO_START;
  1928. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1929. break;
  1930. default:
  1931. break;
  1932. }
  1933. }
  1934. next_busy_signal_ms = ms + 10000UL; // "busy: ..." message every 10s
  1935. }
  1936. #endif //HOST_KEEPALIVE_FEATURE
  1937. /**
  1938. * G0, G1: Coordinated movement of X Y Z E axes
  1939. */
  1940. inline void gcode_G0_G1() {
  1941. if (IsRunning()) {
  1942. gcode_get_destination(); // For X Y Z E F
  1943. #if ENABLED(FWRETRACT)
  1944. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1945. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1946. // Is this move an attempt to retract or recover?
  1947. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1948. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1949. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1950. retract(!retracted[active_extruder]);
  1951. return;
  1952. }
  1953. }
  1954. #endif //FWRETRACT
  1955. prepare_move();
  1956. }
  1957. }
  1958. /**
  1959. * G2: Clockwise Arc
  1960. * G3: Counterclockwise Arc
  1961. */
  1962. inline void gcode_G2_G3(bool clockwise) {
  1963. if (IsRunning()) {
  1964. #if ENABLED(SF_ARC_FIX)
  1965. bool relative_mode_backup = relative_mode;
  1966. relative_mode = true;
  1967. #endif
  1968. gcode_get_destination();
  1969. #if ENABLED(SF_ARC_FIX)
  1970. relative_mode = relative_mode_backup;
  1971. #endif
  1972. // Center of arc as offset from current_position
  1973. float arc_offset[2] = {
  1974. code_seen('I') ? code_value() : 0,
  1975. code_seen('J') ? code_value() : 0
  1976. };
  1977. // Send an arc to the planner
  1978. plan_arc(destination, arc_offset, clockwise);
  1979. refresh_cmd_timeout();
  1980. }
  1981. }
  1982. /**
  1983. * G4: Dwell S<seconds> or P<milliseconds>
  1984. */
  1985. inline void gcode_G4() {
  1986. millis_t codenum = 0;
  1987. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1988. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1989. st_synchronize();
  1990. refresh_cmd_timeout();
  1991. codenum += previous_cmd_ms; // keep track of when we started waiting
  1992. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1993. while (millis() < codenum) idle();
  1994. }
  1995. #if ENABLED(FWRETRACT)
  1996. /**
  1997. * G10 - Retract filament according to settings of M207
  1998. * G11 - Recover filament according to settings of M208
  1999. */
  2000. inline void gcode_G10_G11(bool doRetract=false) {
  2001. #if EXTRUDERS > 1
  2002. if (doRetract) {
  2003. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2004. }
  2005. #endif
  2006. retract(doRetract
  2007. #if EXTRUDERS > 1
  2008. , retracted_swap[active_extruder]
  2009. #endif
  2010. );
  2011. }
  2012. #endif //FWRETRACT
  2013. /**
  2014. * G28: Home all axes according to settings
  2015. *
  2016. * Parameters
  2017. *
  2018. * None Home to all axes with no parameters.
  2019. * With QUICK_HOME enabled XY will home together, then Z.
  2020. *
  2021. * Cartesian parameters
  2022. *
  2023. * X Home to the X endstop
  2024. * Y Home to the Y endstop
  2025. * Z Home to the Z endstop
  2026. *
  2027. */
  2028. inline void gcode_G28() {
  2029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2030. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2031. #endif
  2032. // Wait for planner moves to finish!
  2033. st_synchronize();
  2034. // For auto bed leveling, clear the level matrix
  2035. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2036. plan_bed_level_matrix.set_to_identity();
  2037. #if ENABLED(DELTA)
  2038. reset_bed_level();
  2039. #endif
  2040. #endif
  2041. /**
  2042. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2043. * on again when homing all axis
  2044. */
  2045. #if ENABLED(MESH_BED_LEVELING)
  2046. uint8_t mbl_was_active = mbl.active;
  2047. mbl.active = 0;
  2048. #endif
  2049. setup_for_endstop_move();
  2050. /**
  2051. * Directly after a reset this is all 0. Later we get a hint if we have
  2052. * to raise z or not.
  2053. */
  2054. set_destination_to_current();
  2055. feedrate = 0.0;
  2056. #if ENABLED(DELTA)
  2057. /**
  2058. * A delta can only safely home all axis at the same time
  2059. * all axis have to home at the same time
  2060. */
  2061. // Pretend the current position is 0,0,0
  2062. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2063. sync_plan_position();
  2064. // Move all carriages up together until the first endstop is hit.
  2065. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2066. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2067. line_to_destination();
  2068. st_synchronize();
  2069. endstops_hit_on_purpose(); // clear endstop hit flags
  2070. // Destination reached
  2071. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2072. // take care of back off and rehome now we are all at the top
  2073. HOMEAXIS(X);
  2074. HOMEAXIS(Y);
  2075. HOMEAXIS(Z);
  2076. sync_plan_position_delta();
  2077. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2078. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2079. #endif
  2080. #else // NOT DELTA
  2081. bool homeX = code_seen(axis_codes[X_AXIS]),
  2082. homeY = code_seen(axis_codes[Y_AXIS]),
  2083. homeZ = code_seen(axis_codes[Z_AXIS]);
  2084. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2085. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2086. if (home_all_axis || homeZ) {
  2087. HOMEAXIS(Z);
  2088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2089. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2090. #endif
  2091. }
  2092. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2093. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2094. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2095. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2096. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2097. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2098. if (DEBUGGING(LEVELING)) {
  2099. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (float)(MIN_Z_HEIGHT_FOR_HOMING));
  2100. SERIAL_EOL;
  2101. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2102. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2103. }
  2104. #endif
  2105. line_to_destination();
  2106. st_synchronize();
  2107. /**
  2108. * Update the current Z position even if it currently not real from
  2109. * Z-home otherwise each call to line_to_destination() will want to
  2110. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2111. */
  2112. current_position[Z_AXIS] = destination[Z_AXIS];
  2113. }
  2114. #endif
  2115. #if ENABLED(QUICK_HOME)
  2116. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2117. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2118. #if ENABLED(DUAL_X_CARRIAGE)
  2119. int x_axis_home_dir = x_home_dir(active_extruder);
  2120. extruder_duplication_enabled = false;
  2121. #else
  2122. int x_axis_home_dir = home_dir(X_AXIS);
  2123. #endif
  2124. sync_plan_position();
  2125. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2126. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2127. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2128. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2129. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2130. line_to_destination();
  2131. st_synchronize();
  2132. set_axis_is_at_home(X_AXIS);
  2133. set_axis_is_at_home(Y_AXIS);
  2134. sync_plan_position();
  2135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2136. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2137. #endif
  2138. destination[X_AXIS] = current_position[X_AXIS];
  2139. destination[Y_AXIS] = current_position[Y_AXIS];
  2140. line_to_destination();
  2141. feedrate = 0.0;
  2142. st_synchronize();
  2143. endstops_hit_on_purpose(); // clear endstop hit flags
  2144. current_position[X_AXIS] = destination[X_AXIS];
  2145. current_position[Y_AXIS] = destination[Y_AXIS];
  2146. #if DISABLED(SCARA)
  2147. current_position[Z_AXIS] = destination[Z_AXIS];
  2148. #endif
  2149. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2150. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2151. #endif
  2152. }
  2153. #endif // QUICK_HOME
  2154. #if ENABLED(HOME_Y_BEFORE_X)
  2155. // Home Y
  2156. if (home_all_axis || homeY) HOMEAXIS(Y);
  2157. #endif
  2158. // Home X
  2159. if (home_all_axis || homeX) {
  2160. #if ENABLED(DUAL_X_CARRIAGE)
  2161. int tmp_extruder = active_extruder;
  2162. extruder_duplication_enabled = false;
  2163. active_extruder = !active_extruder;
  2164. HOMEAXIS(X);
  2165. inactive_extruder_x_pos = current_position[X_AXIS];
  2166. active_extruder = tmp_extruder;
  2167. HOMEAXIS(X);
  2168. // reset state used by the different modes
  2169. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2170. delayed_move_time = 0;
  2171. active_extruder_parked = true;
  2172. #else
  2173. HOMEAXIS(X);
  2174. #endif
  2175. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2176. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2177. #endif
  2178. }
  2179. #if DISABLED(HOME_Y_BEFORE_X)
  2180. // Home Y
  2181. if (home_all_axis || homeY) {
  2182. HOMEAXIS(Y);
  2183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2184. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2185. #endif
  2186. }
  2187. #endif
  2188. // Home Z last if homing towards the bed
  2189. #if Z_HOME_DIR < 0
  2190. if (home_all_axis || homeZ) {
  2191. #if ENABLED(Z_SAFE_HOMING)
  2192. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2193. if (DEBUGGING(LEVELING)) {
  2194. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2195. }
  2196. #endif
  2197. if (home_all_axis) {
  2198. /**
  2199. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2200. * No need to move Z any more as this height should already be safe
  2201. * enough to reach Z_SAFE_HOMING XY positions.
  2202. * Just make sure the planner is in sync.
  2203. */
  2204. sync_plan_position();
  2205. /**
  2206. * Set the Z probe (or just the nozzle) destination to the safe
  2207. * homing point
  2208. */
  2209. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2210. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2211. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2212. feedrate = XY_TRAVEL_SPEED;
  2213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2214. if (DEBUGGING(LEVELING)) {
  2215. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2216. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2217. }
  2218. #endif
  2219. // Move in the XY plane
  2220. line_to_destination();
  2221. st_synchronize();
  2222. /**
  2223. * Update the current positions for XY, Z is still at least at
  2224. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2225. */
  2226. current_position[X_AXIS] = destination[X_AXIS];
  2227. current_position[Y_AXIS] = destination[Y_AXIS];
  2228. // Home the Z axis
  2229. HOMEAXIS(Z);
  2230. }
  2231. else if (homeZ) { // Don't need to Home Z twice
  2232. // Let's see if X and Y are homed
  2233. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2234. /**
  2235. * Make sure the Z probe is within the physical limits
  2236. * NOTE: This doesn't necessarily ensure the Z probe is also
  2237. * within the bed!
  2238. */
  2239. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2240. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2241. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2242. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2243. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2244. // Home the Z axis
  2245. HOMEAXIS(Z);
  2246. }
  2247. else {
  2248. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2249. SERIAL_ECHO_START;
  2250. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2251. }
  2252. }
  2253. else {
  2254. axis_unhomed_error();
  2255. }
  2256. } // !home_all_axes && homeZ
  2257. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2258. if (DEBUGGING(LEVELING)) {
  2259. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2260. }
  2261. #endif
  2262. #else // !Z_SAFE_HOMING
  2263. HOMEAXIS(Z);
  2264. #endif // !Z_SAFE_HOMING
  2265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2266. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2267. #endif
  2268. } // home_all_axis || homeZ
  2269. #endif // Z_HOME_DIR < 0
  2270. sync_plan_position();
  2271. #endif // else DELTA
  2272. #if ENABLED(SCARA)
  2273. sync_plan_position_delta();
  2274. #endif
  2275. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2276. enable_endstops(false);
  2277. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2278. if (DEBUGGING(LEVELING)) {
  2279. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2280. }
  2281. #endif
  2282. #endif
  2283. // For mesh leveling move back to Z=0
  2284. #if ENABLED(MESH_BED_LEVELING)
  2285. if (mbl_was_active && home_all_axis) {
  2286. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2287. sync_plan_position();
  2288. mbl.active = 1;
  2289. current_position[Z_AXIS] = 0.0;
  2290. set_destination_to_current();
  2291. feedrate = homing_feedrate[Z_AXIS];
  2292. line_to_destination();
  2293. st_synchronize();
  2294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2295. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2296. #endif
  2297. }
  2298. #endif
  2299. feedrate = saved_feedrate;
  2300. feedrate_multiplier = saved_feedrate_multiplier;
  2301. refresh_cmd_timeout();
  2302. endstops_hit_on_purpose(); // clear endstop hit flags
  2303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2304. if (DEBUGGING(LEVELING)) {
  2305. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2306. }
  2307. #endif
  2308. gcode_M114(); // Send end position to RepetierHost
  2309. }
  2310. #if ENABLED(MESH_BED_LEVELING)
  2311. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2312. /**
  2313. * G29: Mesh-based Z probe, probes a grid and produces a
  2314. * mesh to compensate for variable bed height
  2315. *
  2316. * Parameters With MESH_BED_LEVELING:
  2317. *
  2318. * S0 Produce a mesh report
  2319. * S1 Start probing mesh points
  2320. * S2 Probe the next mesh point
  2321. * S3 Xn Yn Zn.nn Manually modify a single point
  2322. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2323. *
  2324. * The S0 report the points as below
  2325. *
  2326. * +----> X-axis 1-n
  2327. * |
  2328. * |
  2329. * v Y-axis 1-n
  2330. *
  2331. */
  2332. inline void gcode_G29() {
  2333. static int probe_point = -1;
  2334. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2335. if (state < 0 || state > 4) {
  2336. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2337. return;
  2338. }
  2339. int ix, iy;
  2340. float z;
  2341. switch (state) {
  2342. case MeshReport:
  2343. if (mbl.active) {
  2344. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2345. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2346. SERIAL_PROTOCOLCHAR(',');
  2347. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2348. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2349. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2350. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2351. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2352. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2353. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2354. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2355. SERIAL_PROTOCOLPGM(" ");
  2356. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2357. }
  2358. SERIAL_EOL;
  2359. }
  2360. }
  2361. else
  2362. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2363. break;
  2364. case MeshStart:
  2365. mbl.reset();
  2366. probe_point = 0;
  2367. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2368. break;
  2369. case MeshNext:
  2370. if (probe_point < 0) {
  2371. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2372. return;
  2373. }
  2374. if (probe_point == 0) {
  2375. // Set Z to a positive value before recording the first Z.
  2376. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2377. sync_plan_position();
  2378. }
  2379. else {
  2380. // For others, save the Z of the previous point, then raise Z again.
  2381. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2382. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2383. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2384. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2385. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2387. st_synchronize();
  2388. }
  2389. // Is there another point to sample? Move there.
  2390. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2391. ix = probe_point % (MESH_NUM_X_POINTS);
  2392. iy = probe_point / (MESH_NUM_X_POINTS);
  2393. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2394. current_position[X_AXIS] = mbl.get_x(ix);
  2395. current_position[Y_AXIS] = mbl.get_y(iy);
  2396. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2397. st_synchronize();
  2398. probe_point++;
  2399. }
  2400. else {
  2401. // After recording the last point, activate the mbl and home
  2402. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2403. probe_point = -1;
  2404. mbl.active = 1;
  2405. enqueue_and_echo_commands_P(PSTR("G28"));
  2406. }
  2407. break;
  2408. case MeshSet:
  2409. if (code_seen('X')) {
  2410. ix = code_value_long() - 1;
  2411. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2412. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2413. return;
  2414. }
  2415. }
  2416. else {
  2417. SERIAL_PROTOCOLPGM("X not entered.\n");
  2418. return;
  2419. }
  2420. if (code_seen('Y')) {
  2421. iy = code_value_long() - 1;
  2422. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2423. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2424. return;
  2425. }
  2426. }
  2427. else {
  2428. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2429. return;
  2430. }
  2431. if (code_seen('Z')) {
  2432. z = code_value();
  2433. }
  2434. else {
  2435. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2436. return;
  2437. }
  2438. mbl.z_values[iy][ix] = z;
  2439. break;
  2440. case MeshSetZOffset:
  2441. if (code_seen('Z')) {
  2442. z = code_value();
  2443. }
  2444. else {
  2445. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2446. return;
  2447. }
  2448. mbl.z_offset = z;
  2449. } // switch(state)
  2450. }
  2451. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2452. void out_of_range_error(const char* p_edge) {
  2453. SERIAL_PROTOCOLPGM("?Probe ");
  2454. serialprintPGM(p_edge);
  2455. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2456. }
  2457. /**
  2458. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2459. * Will fail if the printer has not been homed with G28.
  2460. *
  2461. * Enhanced G29 Auto Bed Leveling Probe Routine
  2462. *
  2463. * Parameters With AUTO_BED_LEVELING_GRID:
  2464. *
  2465. * P Set the size of the grid that will be probed (P x P points).
  2466. * Not supported by non-linear delta printer bed leveling.
  2467. * Example: "G29 P4"
  2468. *
  2469. * S Set the XY travel speed between probe points (in mm/min)
  2470. *
  2471. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2472. * or clean the rotation Matrix. Useful to check the topology
  2473. * after a first run of G29.
  2474. *
  2475. * V Set the verbose level (0-4). Example: "G29 V3"
  2476. *
  2477. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2478. * This is useful for manual bed leveling and finding flaws in the bed (to
  2479. * assist with part placement).
  2480. * Not supported by non-linear delta printer bed leveling.
  2481. *
  2482. * F Set the Front limit of the probing grid
  2483. * B Set the Back limit of the probing grid
  2484. * L Set the Left limit of the probing grid
  2485. * R Set the Right limit of the probing grid
  2486. *
  2487. * Global Parameters:
  2488. *
  2489. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2490. * Include "E" to engage/disengage the Z probe for each sample.
  2491. * There's no extra effect if you have a fixed Z probe.
  2492. * Usage: "G29 E" or "G29 e"
  2493. *
  2494. */
  2495. inline void gcode_G29() {
  2496. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2497. if (DEBUGGING(LEVELING)) {
  2498. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2499. DEBUG_POS("", current_position);
  2500. }
  2501. #endif
  2502. // Don't allow auto-leveling without homing first
  2503. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2504. axis_unhomed_error();
  2505. return;
  2506. }
  2507. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2508. if (verbose_level < 0 || verbose_level > 4) {
  2509. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2510. return;
  2511. }
  2512. bool dryrun = code_seen('D'),
  2513. deploy_probe_for_each_reading = code_seen('E');
  2514. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2515. #if DISABLED(DELTA)
  2516. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2517. #endif
  2518. if (verbose_level > 0) {
  2519. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2520. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2521. }
  2522. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2523. #if DISABLED(DELTA)
  2524. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2525. if (auto_bed_leveling_grid_points < 2) {
  2526. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2527. return;
  2528. }
  2529. #endif
  2530. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2531. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2532. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2533. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2534. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2535. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2536. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2537. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2538. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2539. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2540. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2541. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2542. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2543. if (left_out || right_out || front_out || back_out) {
  2544. if (left_out) {
  2545. out_of_range_error(PSTR("(L)eft"));
  2546. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2547. }
  2548. if (right_out) {
  2549. out_of_range_error(PSTR("(R)ight"));
  2550. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2551. }
  2552. if (front_out) {
  2553. out_of_range_error(PSTR("(F)ront"));
  2554. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2555. }
  2556. if (back_out) {
  2557. out_of_range_error(PSTR("(B)ack"));
  2558. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2559. }
  2560. return;
  2561. }
  2562. #endif // AUTO_BED_LEVELING_GRID
  2563. if (!dryrun) {
  2564. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2565. plan_bed_level_matrix.set_to_identity();
  2566. #if ENABLED(DELTA)
  2567. reset_bed_level();
  2568. #else //!DELTA
  2569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2570. if (DEBUGGING(LEVELING)) DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2571. #endif
  2572. //vector_3 corrected_position = plan_get_position();
  2573. //corrected_position.debug("position before G29");
  2574. vector_3 uncorrected_position = plan_get_position();
  2575. //uncorrected_position.debug("position during G29");
  2576. current_position[X_AXIS] = uncorrected_position.x;
  2577. current_position[Y_AXIS] = uncorrected_position.y;
  2578. current_position[Z_AXIS] = uncorrected_position.z;
  2579. sync_plan_position();
  2580. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2581. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", current_position);
  2582. #endif
  2583. #endif // !DELTA
  2584. }
  2585. #if ENABLED(Z_PROBE_SLED)
  2586. dock_sled(false); // engage (un-dock) the Z probe
  2587. #elif ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2588. deploy_z_probe();
  2589. #endif
  2590. st_synchronize();
  2591. setup_for_endstop_move();
  2592. feedrate = homing_feedrate[Z_AXIS];
  2593. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2594. // probe at the points of a lattice grid
  2595. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2596. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2597. #if ENABLED(DELTA)
  2598. delta_grid_spacing[0] = xGridSpacing;
  2599. delta_grid_spacing[1] = yGridSpacing;
  2600. float z_offset = zprobe_zoffset;
  2601. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2602. #else // !DELTA
  2603. /**
  2604. * solve the plane equation ax + by + d = z
  2605. * A is the matrix with rows [x y 1] for all the probed points
  2606. * B is the vector of the Z positions
  2607. * the normal vector to the plane is formed by the coefficients of the
  2608. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2609. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2610. */
  2611. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2612. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2613. eqnBVector[abl2], // "B" vector of Z points
  2614. mean = 0.0;
  2615. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2616. #endif // !DELTA
  2617. int probePointCounter = 0;
  2618. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2619. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2620. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2621. int xStart, xStop, xInc;
  2622. if (zig) {
  2623. xStart = 0;
  2624. xStop = auto_bed_leveling_grid_points;
  2625. xInc = 1;
  2626. }
  2627. else {
  2628. xStart = auto_bed_leveling_grid_points - 1;
  2629. xStop = -1;
  2630. xInc = -1;
  2631. }
  2632. zig = !zig;
  2633. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2634. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2635. // raise extruder
  2636. float measured_z,
  2637. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2638. if (probePointCounter) {
  2639. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2640. if (DEBUGGING(LEVELING)) {
  2641. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2642. SERIAL_EOL;
  2643. }
  2644. #endif
  2645. }
  2646. else {
  2647. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2648. if (DEBUGGING(LEVELING)) {
  2649. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2650. SERIAL_EOL;
  2651. }
  2652. #endif
  2653. }
  2654. #if ENABLED(DELTA)
  2655. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2656. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2657. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2658. #endif //DELTA
  2659. ProbeAction act;
  2660. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2661. act = ProbeDeployAndStow;
  2662. else if (yCount == 0 && xCount == xStart)
  2663. act = ProbeDeploy;
  2664. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2665. act = ProbeStow;
  2666. else
  2667. act = ProbeStay;
  2668. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2669. #if DISABLED(DELTA)
  2670. mean += measured_z;
  2671. eqnBVector[probePointCounter] = measured_z;
  2672. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2673. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2674. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2675. indexIntoAB[xCount][yCount] = probePointCounter;
  2676. #else
  2677. bed_level[xCount][yCount] = measured_z + z_offset;
  2678. #endif
  2679. probePointCounter++;
  2680. idle();
  2681. } //xProbe
  2682. } //yProbe
  2683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2684. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2685. #endif
  2686. clean_up_after_endstop_move();
  2687. #if ENABLED(DELTA)
  2688. if (!dryrun) extrapolate_unprobed_bed_level();
  2689. print_bed_level();
  2690. #else // !DELTA
  2691. // solve lsq problem
  2692. double plane_equation_coefficients[3];
  2693. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2694. mean /= abl2;
  2695. if (verbose_level) {
  2696. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2697. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2698. SERIAL_PROTOCOLPGM(" b: ");
  2699. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2700. SERIAL_PROTOCOLPGM(" d: ");
  2701. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2702. SERIAL_EOL;
  2703. if (verbose_level > 2) {
  2704. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2705. SERIAL_PROTOCOL_F(mean, 8);
  2706. SERIAL_EOL;
  2707. }
  2708. }
  2709. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2710. // Show the Topography map if enabled
  2711. if (do_topography_map) {
  2712. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2713. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2714. SERIAL_PROTOCOLPGM(" | |\n");
  2715. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2716. SERIAL_PROTOCOLPGM(" E | | I\n");
  2717. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2718. SERIAL_PROTOCOLPGM(" T | | H\n");
  2719. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2720. SERIAL_PROTOCOLPGM(" | |\n");
  2721. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2722. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2723. float min_diff = 999;
  2724. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2725. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2726. int ind = indexIntoAB[xx][yy];
  2727. float diff = eqnBVector[ind] - mean;
  2728. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2729. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2730. z_tmp = 0;
  2731. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2732. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2733. if (diff >= 0.0)
  2734. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2735. else
  2736. SERIAL_PROTOCOLCHAR(' ');
  2737. SERIAL_PROTOCOL_F(diff, 5);
  2738. } // xx
  2739. SERIAL_EOL;
  2740. } // yy
  2741. SERIAL_EOL;
  2742. if (verbose_level > 3) {
  2743. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2744. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2745. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2746. int ind = indexIntoAB[xx][yy];
  2747. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2748. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2749. z_tmp = 0;
  2750. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2751. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2752. if (diff >= 0.0)
  2753. SERIAL_PROTOCOLPGM(" +");
  2754. // Include + for column alignment
  2755. else
  2756. SERIAL_PROTOCOLCHAR(' ');
  2757. SERIAL_PROTOCOL_F(diff, 5);
  2758. } // xx
  2759. SERIAL_EOL;
  2760. } // yy
  2761. SERIAL_EOL;
  2762. }
  2763. } //do_topography_map
  2764. #endif //!DELTA
  2765. #else // !AUTO_BED_LEVELING_GRID
  2766. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2767. if (DEBUGGING(LEVELING)) {
  2768. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2769. }
  2770. #endif
  2771. // Actions for each probe
  2772. ProbeAction p1, p2, p3;
  2773. if (deploy_probe_for_each_reading)
  2774. p1 = p2 = p3 = ProbeDeployAndStow;
  2775. else
  2776. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2777. // Probe at 3 arbitrary points
  2778. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2779. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2780. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2781. clean_up_after_endstop_move();
  2782. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2783. #endif // !AUTO_BED_LEVELING_GRID
  2784. #if ENABLED(DELTA)
  2785. // Allen Key Probe for Delta
  2786. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2787. stow_z_probe();
  2788. #elif Z_RAISE_AFTER_PROBING > 0
  2789. raise_z_after_probing(); // ???
  2790. #endif
  2791. #else // !DELTA
  2792. if (verbose_level > 0)
  2793. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2794. if (!dryrun) {
  2795. /**
  2796. * Correct the Z height difference from Z probe position and nozzle tip position.
  2797. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2798. * from the nozzle. When the bed is uneven, this height must be corrected.
  2799. */
  2800. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2801. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2802. z_tmp = current_position[Z_AXIS],
  2803. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2804. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2805. if (DEBUGGING(LEVELING)) {
  2806. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2807. SERIAL_EOL;
  2808. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2809. SERIAL_EOL;
  2810. }
  2811. #endif
  2812. // Apply the correction sending the Z probe offset
  2813. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2814. /*
  2815. * Get the current Z position and send it to the planner.
  2816. *
  2817. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2818. * (most recent plan_set_position/sync_plan_position)
  2819. *
  2820. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2821. * (set by default, M851, EEPROM, or Menu)
  2822. *
  2823. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2824. * after the last probe
  2825. *
  2826. * >> Should home_offset[Z_AXIS] be included?
  2827. *
  2828. *
  2829. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2830. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2831. * not actually "homing" Z... then perhaps it should not be included
  2832. * here. The purpose of home_offset[] is to adjust for inaccurate
  2833. * endstops, not for reasonably accurate probes. If it were added
  2834. * here, it could be seen as a compensating factor for the Z probe.
  2835. */
  2836. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2837. if (DEBUGGING(LEVELING)) {
  2838. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2839. SERIAL_EOL;
  2840. }
  2841. #endif
  2842. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2843. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2844. + Z_RAISE_AFTER_PROBING
  2845. #endif
  2846. ;
  2847. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2848. sync_plan_position();
  2849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2850. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2851. #endif
  2852. }
  2853. // Sled assembly for Cartesian bots
  2854. #if ENABLED(Z_PROBE_SLED)
  2855. dock_sled(true); // dock the sled
  2856. #elif Z_RAISE_AFTER_PROBING > 0
  2857. // Raise Z axis for non-delta and non servo based probes
  2858. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2859. raise_z_after_probing();
  2860. #endif
  2861. #endif
  2862. #endif // !DELTA
  2863. #ifdef Z_PROBE_END_SCRIPT
  2864. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2865. if (DEBUGGING(LEVELING)) {
  2866. SERIAL_ECHO("Z Probe End Script: ");
  2867. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2868. }
  2869. #endif
  2870. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2871. #if ENABLED(HAS_Z_MIN_PROBE)
  2872. z_probe_is_active = false;
  2873. #endif
  2874. st_synchronize();
  2875. #endif
  2876. KEEPALIVE_STATE(IN_HANDLER);
  2877. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2878. if (DEBUGGING(LEVELING)) {
  2879. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2880. }
  2881. #endif
  2882. gcode_M114(); // Send end position to RepetierHost
  2883. }
  2884. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2885. /**
  2886. * G30: Do a single Z probe at the current XY
  2887. */
  2888. inline void gcode_G30() {
  2889. #if HAS_SERVO_ENDSTOPS
  2890. raise_z_for_servo();
  2891. #endif
  2892. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2893. st_synchronize();
  2894. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2895. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2896. feedrate = homing_feedrate[Z_AXIS];
  2897. run_z_probe();
  2898. SERIAL_PROTOCOLPGM("Bed X: ");
  2899. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2900. SERIAL_PROTOCOLPGM(" Y: ");
  2901. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2902. SERIAL_PROTOCOLPGM(" Z: ");
  2903. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2904. SERIAL_EOL;
  2905. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2906. #if HAS_SERVO_ENDSTOPS
  2907. raise_z_for_servo();
  2908. #endif
  2909. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2910. gcode_M114(); // Send end position to RepetierHost
  2911. }
  2912. #endif //!Z_PROBE_SLED
  2913. #endif //AUTO_BED_LEVELING_FEATURE
  2914. /**
  2915. * G92: Set current position to given X Y Z E
  2916. */
  2917. inline void gcode_G92() {
  2918. if (!code_seen(axis_codes[E_AXIS]))
  2919. st_synchronize();
  2920. bool didXYZ = false;
  2921. for (int i = 0; i < NUM_AXIS; i++) {
  2922. if (code_seen(axis_codes[i])) {
  2923. float v = current_position[i] = code_value();
  2924. if (i == E_AXIS)
  2925. plan_set_e_position(v);
  2926. else
  2927. didXYZ = true;
  2928. }
  2929. }
  2930. if (didXYZ) {
  2931. #if ENABLED(DELTA) || ENABLED(SCARA)
  2932. sync_plan_position_delta();
  2933. #else
  2934. sync_plan_position();
  2935. #endif
  2936. }
  2937. }
  2938. #if ENABLED(ULTIPANEL)
  2939. /**
  2940. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2941. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2942. */
  2943. inline void gcode_M0_M1() {
  2944. char* args = current_command_args;
  2945. millis_t codenum = 0;
  2946. bool hasP = false, hasS = false;
  2947. if (code_seen('P')) {
  2948. codenum = code_value_short(); // milliseconds to wait
  2949. hasP = codenum > 0;
  2950. }
  2951. if (code_seen('S')) {
  2952. codenum = code_value() * 1000; // seconds to wait
  2953. hasS = codenum > 0;
  2954. }
  2955. if (!hasP && !hasS && *args != '\0')
  2956. lcd_setstatus(args, true);
  2957. else {
  2958. LCD_MESSAGEPGM(MSG_USERWAIT);
  2959. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2960. dontExpireStatus();
  2961. #endif
  2962. }
  2963. lcd_ignore_click();
  2964. st_synchronize();
  2965. refresh_cmd_timeout();
  2966. if (codenum > 0) {
  2967. codenum += previous_cmd_ms; // wait until this time for a click
  2968. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2969. while (millis() < codenum && !lcd_clicked()) idle();
  2970. KEEPALIVE_STATE(IN_HANDLER);
  2971. lcd_ignore_click(false);
  2972. }
  2973. else {
  2974. if (!lcd_detected()) return;
  2975. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2976. while (!lcd_clicked()) idle();
  2977. KEEPALIVE_STATE(IN_HANDLER);
  2978. }
  2979. if (IS_SD_PRINTING)
  2980. LCD_MESSAGEPGM(MSG_RESUMING);
  2981. else
  2982. LCD_MESSAGEPGM(WELCOME_MSG);
  2983. }
  2984. #endif // ULTIPANEL
  2985. /**
  2986. * M17: Enable power on all stepper motors
  2987. */
  2988. inline void gcode_M17() {
  2989. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2990. enable_all_steppers();
  2991. }
  2992. #if ENABLED(SDSUPPORT)
  2993. /**
  2994. * M20: List SD card to serial output
  2995. */
  2996. inline void gcode_M20() {
  2997. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2998. card.ls();
  2999. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3000. }
  3001. /**
  3002. * M21: Init SD Card
  3003. */
  3004. inline void gcode_M21() {
  3005. card.initsd();
  3006. }
  3007. /**
  3008. * M22: Release SD Card
  3009. */
  3010. inline void gcode_M22() {
  3011. card.release();
  3012. }
  3013. /**
  3014. * M23: Open a file
  3015. */
  3016. inline void gcode_M23() {
  3017. card.openFile(current_command_args, true);
  3018. }
  3019. /**
  3020. * M24: Start SD Print
  3021. */
  3022. inline void gcode_M24() {
  3023. card.startFileprint();
  3024. print_job_timer.start();
  3025. }
  3026. /**
  3027. * M25: Pause SD Print
  3028. */
  3029. inline void gcode_M25() {
  3030. card.pauseSDPrint();
  3031. }
  3032. /**
  3033. * M26: Set SD Card file index
  3034. */
  3035. inline void gcode_M26() {
  3036. if (card.cardOK && code_seen('S'))
  3037. card.setIndex(code_value_short());
  3038. }
  3039. /**
  3040. * M27: Get SD Card status
  3041. */
  3042. inline void gcode_M27() {
  3043. card.getStatus();
  3044. }
  3045. /**
  3046. * M28: Start SD Write
  3047. */
  3048. inline void gcode_M28() {
  3049. card.openFile(current_command_args, false);
  3050. }
  3051. /**
  3052. * M29: Stop SD Write
  3053. * Processed in write to file routine above
  3054. */
  3055. inline void gcode_M29() {
  3056. // card.saving = false;
  3057. }
  3058. /**
  3059. * M30 <filename>: Delete SD Card file
  3060. */
  3061. inline void gcode_M30() {
  3062. if (card.cardOK) {
  3063. card.closefile();
  3064. card.removeFile(current_command_args);
  3065. }
  3066. }
  3067. #endif //SDSUPPORT
  3068. /**
  3069. * M31: Get the time since the start of SD Print (or last M109)
  3070. */
  3071. inline void gcode_M31() {
  3072. millis_t t = print_job_timer.duration();
  3073. int min = t / 60, sec = t % 60;
  3074. char time[30];
  3075. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3076. SERIAL_ECHO_START;
  3077. SERIAL_ECHOLN(time);
  3078. lcd_setstatus(time);
  3079. autotempShutdown();
  3080. }
  3081. #if ENABLED(SDSUPPORT)
  3082. /**
  3083. * M32: Select file and start SD Print
  3084. */
  3085. inline void gcode_M32() {
  3086. if (card.sdprinting)
  3087. st_synchronize();
  3088. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3089. if (!namestartpos)
  3090. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3091. else
  3092. namestartpos++; //to skip the '!'
  3093. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3094. if (card.cardOK) {
  3095. card.openFile(namestartpos, true, call_procedure);
  3096. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3097. card.setIndex(code_value_short());
  3098. card.startFileprint();
  3099. // Procedure calls count as normal print time.
  3100. if (!call_procedure) print_job_timer.start();
  3101. }
  3102. }
  3103. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3104. /**
  3105. * M33: Get the long full path of a file or folder
  3106. *
  3107. * Parameters:
  3108. * <dospath> Case-insensitive DOS-style path to a file or folder
  3109. *
  3110. * Example:
  3111. * M33 miscel~1/armchair/armcha~1.gco
  3112. *
  3113. * Output:
  3114. * /Miscellaneous/Armchair/Armchair.gcode
  3115. */
  3116. inline void gcode_M33() {
  3117. card.printLongPath(current_command_args);
  3118. }
  3119. #endif
  3120. /**
  3121. * M928: Start SD Write
  3122. */
  3123. inline void gcode_M928() {
  3124. card.openLogFile(current_command_args);
  3125. }
  3126. #endif // SDSUPPORT
  3127. /**
  3128. * M42: Change pin status via GCode
  3129. *
  3130. * P<pin> Pin number (LED if omitted)
  3131. * S<byte> Pin status from 0 - 255
  3132. */
  3133. inline void gcode_M42() {
  3134. if (code_seen('S')) {
  3135. int pin_status = code_value_short();
  3136. if (pin_status < 0 || pin_status > 255) return;
  3137. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3138. if (pin_number < 0) return;
  3139. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3140. if (pin_number == sensitive_pins[i]) return;
  3141. pinMode(pin_number, OUTPUT);
  3142. digitalWrite(pin_number, pin_status);
  3143. analogWrite(pin_number, pin_status);
  3144. #if FAN_COUNT > 0
  3145. switch (pin_number) {
  3146. #if HAS_FAN0
  3147. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3148. #endif
  3149. #if HAS_FAN1
  3150. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3151. #endif
  3152. #if HAS_FAN2
  3153. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3154. #endif
  3155. }
  3156. #endif
  3157. } // code_seen('S')
  3158. }
  3159. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3160. /**
  3161. * This is redundant since the SanityCheck.h already checks for a valid
  3162. * Z_MIN_PROBE_PIN, but here for clarity.
  3163. */
  3164. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3165. #if !HAS_Z_PROBE
  3166. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3167. #endif
  3168. #elif !HAS_Z_MIN
  3169. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3170. #endif
  3171. /**
  3172. * M48: Z probe repeatability measurement function.
  3173. *
  3174. * Usage:
  3175. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3176. * P = Number of sampled points (4-50, default 10)
  3177. * X = Sample X position
  3178. * Y = Sample Y position
  3179. * V = Verbose level (0-4, default=1)
  3180. * E = Engage Z probe for each reading
  3181. * L = Number of legs of movement before probe
  3182. * S = Schizoid (Or Star if you prefer)
  3183. *
  3184. * This function assumes the bed has been homed. Specifically, that a G28 command
  3185. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3186. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3187. * regenerated.
  3188. */
  3189. inline void gcode_M48() {
  3190. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3191. axis_unhomed_error();
  3192. return;
  3193. }
  3194. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3195. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3196. if (code_seen('V')) {
  3197. verbose_level = code_value_short();
  3198. if (verbose_level < 0 || verbose_level > 4) {
  3199. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3200. return;
  3201. }
  3202. }
  3203. if (verbose_level > 0)
  3204. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3205. if (code_seen('P')) {
  3206. n_samples = code_value_short();
  3207. if (n_samples < 4 || n_samples > 50) {
  3208. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3209. return;
  3210. }
  3211. }
  3212. float X_current = current_position[X_AXIS],
  3213. Y_current = current_position[Y_AXIS],
  3214. Z_current = current_position[Z_AXIS],
  3215. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3216. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3217. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3218. bool deploy_probe_for_each_reading = code_seen('E');
  3219. if (code_seen('X')) {
  3220. X_probe_location = code_value();
  3221. #if DISABLED(DELTA)
  3222. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3223. out_of_range_error(PSTR("X"));
  3224. return;
  3225. }
  3226. #endif
  3227. }
  3228. if (code_seen('Y')) {
  3229. Y_probe_location = code_value();
  3230. #if DISABLED(DELTA)
  3231. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3232. out_of_range_error(PSTR("Y"));
  3233. return;
  3234. }
  3235. #endif
  3236. }
  3237. #if ENABLED(DELTA)
  3238. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3239. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3240. return;
  3241. }
  3242. #endif
  3243. bool seen_L = code_seen('L');
  3244. if (seen_L) {
  3245. n_legs = code_value_short();
  3246. if (n_legs < 0 || n_legs > 15) {
  3247. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3248. return;
  3249. }
  3250. if (n_legs == 1) n_legs = 2;
  3251. }
  3252. if (code_seen('S')) {
  3253. schizoid_flag++;
  3254. if (!seen_L) n_legs = 7;
  3255. }
  3256. /**
  3257. * Now get everything to the specified probe point So we can safely do a
  3258. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3259. * we don't want to use that as a starting point for each probe.
  3260. */
  3261. if (verbose_level > 2)
  3262. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3263. #if ENABLED(DELTA)
  3264. // we don't do bed level correction in M48 because we want the raw data when we probe
  3265. reset_bed_level();
  3266. #else
  3267. // we don't do bed level correction in M48 because we want the raw data when we probe
  3268. plan_bed_level_matrix.set_to_identity();
  3269. #endif
  3270. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3271. do_blocking_move_to_z(Z_start_location);
  3272. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3273. /**
  3274. * OK, do the initial probe to get us close to the bed.
  3275. * Then retrace the right amount and use that in subsequent probes
  3276. */
  3277. setup_for_endstop_move();
  3278. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3279. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3280. verbose_level);
  3281. raise_z_after_probing();
  3282. for (uint8_t n = 0; n < n_samples; n++) {
  3283. randomSeed(millis());
  3284. delay(500);
  3285. if (n_legs) {
  3286. float radius, angle = random(0.0, 360.0);
  3287. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3288. radius = random(
  3289. #if ENABLED(DELTA)
  3290. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3291. #else
  3292. 5, X_MAX_LENGTH / 8
  3293. #endif
  3294. );
  3295. if (verbose_level > 3) {
  3296. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3297. SERIAL_ECHOPAIR(" angle: ", angle);
  3298. delay(100);
  3299. if (dir > 0)
  3300. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3301. else
  3302. SERIAL_ECHO(" Direction: Clockwise \n");
  3303. delay(100);
  3304. }
  3305. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3306. double delta_angle;
  3307. if (schizoid_flag)
  3308. // The points of a 5 point star are 72 degrees apart. We need to
  3309. // skip a point and go to the next one on the star.
  3310. delta_angle = dir * 2.0 * 72.0;
  3311. else
  3312. // If we do this line, we are just trying to move further
  3313. // around the circle.
  3314. delta_angle = dir * (float) random(25, 45);
  3315. angle += delta_angle;
  3316. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3317. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3318. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3319. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3320. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3321. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3322. #if DISABLED(DELTA)
  3323. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3324. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3325. #else
  3326. // If we have gone out too far, we can do a simple fix and scale the numbers
  3327. // back in closer to the origin.
  3328. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3329. X_current /= 1.25;
  3330. Y_current /= 1.25;
  3331. if (verbose_level > 3) {
  3332. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3333. SERIAL_ECHOPAIR(", ", Y_current);
  3334. SERIAL_EOL;
  3335. delay(50);
  3336. }
  3337. }
  3338. #endif
  3339. if (verbose_level > 3) {
  3340. SERIAL_PROTOCOL("Going to:");
  3341. SERIAL_ECHOPAIR("x: ", X_current);
  3342. SERIAL_ECHOPAIR("y: ", Y_current);
  3343. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3344. SERIAL_EOL;
  3345. delay(55);
  3346. }
  3347. do_blocking_move_to_xy(X_current, Y_current);
  3348. } // n_legs loop
  3349. } // n_legs
  3350. /**
  3351. * We don't really have to do this move, but if we don't we can see a
  3352. * funny shift in the Z Height because the user might not have the
  3353. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3354. * height. This gets us back to the probe location at the same height that
  3355. * we have been running around the circle at.
  3356. */
  3357. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3358. if (deploy_probe_for_each_reading)
  3359. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3360. else {
  3361. if (n == n_samples - 1)
  3362. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3363. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3364. }
  3365. /**
  3366. * Get the current mean for the data points we have so far
  3367. */
  3368. sum = 0.0;
  3369. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3370. mean = sum / (n + 1);
  3371. /**
  3372. * Now, use that mean to calculate the standard deviation for the
  3373. * data points we have so far
  3374. */
  3375. sum = 0.0;
  3376. for (uint8_t j = 0; j <= n; j++) {
  3377. float ss = sample_set[j] - mean;
  3378. sum += ss * ss;
  3379. }
  3380. sigma = sqrt(sum / (n + 1));
  3381. if (verbose_level > 1) {
  3382. SERIAL_PROTOCOL(n + 1);
  3383. SERIAL_PROTOCOLPGM(" of ");
  3384. SERIAL_PROTOCOL((int)n_samples);
  3385. SERIAL_PROTOCOLPGM(" z: ");
  3386. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3387. delay(50);
  3388. if (verbose_level > 2) {
  3389. SERIAL_PROTOCOLPGM(" mean: ");
  3390. SERIAL_PROTOCOL_F(mean, 6);
  3391. SERIAL_PROTOCOLPGM(" sigma: ");
  3392. SERIAL_PROTOCOL_F(sigma, 6);
  3393. }
  3394. }
  3395. if (verbose_level > 0) SERIAL_EOL;
  3396. delay(50);
  3397. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3398. } // End of probe loop code
  3399. // raise_z_after_probing();
  3400. if (verbose_level > 0) {
  3401. SERIAL_PROTOCOLPGM("Mean: ");
  3402. SERIAL_PROTOCOL_F(mean, 6);
  3403. SERIAL_EOL;
  3404. delay(25);
  3405. }
  3406. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3407. SERIAL_PROTOCOL_F(sigma, 6);
  3408. SERIAL_EOL; SERIAL_EOL;
  3409. delay(25);
  3410. clean_up_after_endstop_move();
  3411. gcode_M114(); // Send end position to RepetierHost
  3412. }
  3413. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3414. /**
  3415. * M75: Start print timer
  3416. */
  3417. inline void gcode_M75() {
  3418. print_job_timer.start();
  3419. }
  3420. /**
  3421. * M76: Pause print timer
  3422. */
  3423. inline void gcode_M76() {
  3424. print_job_timer.pause();
  3425. }
  3426. /**
  3427. * M77: Stop print timer
  3428. */
  3429. inline void gcode_M77() {
  3430. print_job_timer.stop();
  3431. }
  3432. /**
  3433. * M104: Set hot end temperature
  3434. */
  3435. inline void gcode_M104() {
  3436. if (setTargetedHotend(104)) return;
  3437. if (DEBUGGING(DRYRUN)) return;
  3438. if (code_seen('S')) {
  3439. float temp = code_value();
  3440. setTargetHotend(temp, target_extruder);
  3441. #if ENABLED(DUAL_X_CARRIAGE)
  3442. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3443. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3444. #endif
  3445. /**
  3446. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3447. * stand by mode, for instance in a dual extruder setup, without affecting
  3448. * the running print timer.
  3449. */
  3450. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3451. print_job_timer.stop();
  3452. LCD_MESSAGEPGM(WELCOME_MSG);
  3453. }
  3454. /**
  3455. * We do not check if the timer is already running because this check will
  3456. * be done for us inside the Stopwatch::start() method thus a running timer
  3457. * will not restart.
  3458. */
  3459. else print_job_timer.start();
  3460. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3461. }
  3462. }
  3463. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3464. void print_heaterstates() {
  3465. #if HAS_TEMP_HOTEND
  3466. SERIAL_PROTOCOLPGM(" T:");
  3467. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3468. SERIAL_PROTOCOLPGM(" /");
  3469. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3470. #endif
  3471. #if HAS_TEMP_BED
  3472. SERIAL_PROTOCOLPGM(" B:");
  3473. SERIAL_PROTOCOL_F(degBed(), 1);
  3474. SERIAL_PROTOCOLPGM(" /");
  3475. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3476. #endif
  3477. #if EXTRUDERS > 1
  3478. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3479. SERIAL_PROTOCOLPGM(" T");
  3480. SERIAL_PROTOCOL(e);
  3481. SERIAL_PROTOCOLCHAR(':');
  3482. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3483. SERIAL_PROTOCOLPGM(" /");
  3484. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3485. }
  3486. #endif
  3487. #if HAS_TEMP_BED
  3488. SERIAL_PROTOCOLPGM(" B@:");
  3489. #ifdef BED_WATTS
  3490. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3491. SERIAL_PROTOCOLCHAR('W');
  3492. #else
  3493. SERIAL_PROTOCOL(getHeaterPower(-1));
  3494. #endif
  3495. #endif
  3496. SERIAL_PROTOCOLPGM(" @:");
  3497. #ifdef EXTRUDER_WATTS
  3498. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3499. SERIAL_PROTOCOLCHAR('W');
  3500. #else
  3501. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3502. #endif
  3503. #if EXTRUDERS > 1
  3504. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3505. SERIAL_PROTOCOLPGM(" @");
  3506. SERIAL_PROTOCOL(e);
  3507. SERIAL_PROTOCOLCHAR(':');
  3508. #ifdef EXTRUDER_WATTS
  3509. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3510. SERIAL_PROTOCOLCHAR('W');
  3511. #else
  3512. SERIAL_PROTOCOL(getHeaterPower(e));
  3513. #endif
  3514. }
  3515. #endif
  3516. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3517. #if HAS_TEMP_BED
  3518. SERIAL_PROTOCOLPGM(" ADC B:");
  3519. SERIAL_PROTOCOL_F(degBed(), 1);
  3520. SERIAL_PROTOCOLPGM("C->");
  3521. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3522. #endif
  3523. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3524. SERIAL_PROTOCOLPGM(" T");
  3525. SERIAL_PROTOCOL(cur_extruder);
  3526. SERIAL_PROTOCOLCHAR(':');
  3527. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3528. SERIAL_PROTOCOLPGM("C->");
  3529. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3530. }
  3531. #endif
  3532. }
  3533. #endif
  3534. /**
  3535. * M105: Read hot end and bed temperature
  3536. */
  3537. inline void gcode_M105() {
  3538. if (setTargetedHotend(105)) return;
  3539. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3540. SERIAL_PROTOCOLPGM(MSG_OK);
  3541. print_heaterstates();
  3542. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3543. SERIAL_ERROR_START;
  3544. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3545. #endif
  3546. SERIAL_EOL;
  3547. }
  3548. #if FAN_COUNT > 0
  3549. /**
  3550. * M106: Set Fan Speed
  3551. *
  3552. * S<int> Speed between 0-255
  3553. * P<index> Fan index, if more than one fan
  3554. */
  3555. inline void gcode_M106() {
  3556. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3557. p = code_seen('P') ? code_value_short() : 0;
  3558. NOMORE(s, 255);
  3559. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3560. }
  3561. /**
  3562. * M107: Fan Off
  3563. */
  3564. inline void gcode_M107() {
  3565. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3566. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3567. }
  3568. #endif // FAN_COUNT > 0
  3569. /**
  3570. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3571. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3572. */
  3573. inline void gcode_M109() {
  3574. bool no_wait_for_cooling = true;
  3575. if (setTargetedHotend(109)) return;
  3576. if (DEBUGGING(DRYRUN)) return;
  3577. no_wait_for_cooling = code_seen('S');
  3578. if (no_wait_for_cooling || code_seen('R')) {
  3579. float temp = code_value();
  3580. setTargetHotend(temp, target_extruder);
  3581. #if ENABLED(DUAL_X_CARRIAGE)
  3582. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3583. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3584. #endif
  3585. /**
  3586. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3587. * stand by mode, for instance in a dual extruder setup, without affecting
  3588. * the running print timer.
  3589. */
  3590. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3591. print_job_timer.stop();
  3592. LCD_MESSAGEPGM(WELCOME_MSG);
  3593. }
  3594. /**
  3595. * We do not check if the timer is already running because this check will
  3596. * be done for us inside the Stopwatch::start() method thus a running timer
  3597. * will not restart.
  3598. */
  3599. else print_job_timer.start();
  3600. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3601. }
  3602. #if ENABLED(AUTOTEMP)
  3603. autotemp_enabled = code_seen('F');
  3604. if (autotemp_enabled) autotemp_factor = code_value();
  3605. if (code_seen('S')) autotemp_min = code_value();
  3606. if (code_seen('B')) autotemp_max = code_value();
  3607. #endif
  3608. // Exit if the temperature is above target and not waiting for cooling
  3609. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3610. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3611. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3612. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return;
  3613. #ifdef TEMP_RESIDENCY_TIME
  3614. long residency_start_ms = -1;
  3615. // Loop until the temperature has stabilized
  3616. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3617. #else
  3618. // Loop until the temperature is very close target
  3619. #define TEMP_CONDITIONS (isHeatingHotend(target_extruder))
  3620. #endif //TEMP_RESIDENCY_TIME
  3621. cancel_heatup = false;
  3622. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3623. while (!cancel_heatup && TEMP_CONDITIONS) {
  3624. now = millis();
  3625. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3626. next_temp_ms = now + 1000UL;
  3627. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3628. print_heaterstates();
  3629. #endif
  3630. #ifdef TEMP_RESIDENCY_TIME
  3631. SERIAL_PROTOCOLPGM(" W:");
  3632. if (residency_start_ms >= 0) {
  3633. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3634. SERIAL_PROTOCOLLN(rem);
  3635. }
  3636. else {
  3637. SERIAL_PROTOCOLLNPGM("?");
  3638. }
  3639. #else
  3640. SERIAL_EOL;
  3641. #endif
  3642. }
  3643. idle();
  3644. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3645. #ifdef TEMP_RESIDENCY_TIME
  3646. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3647. // Restart the timer whenever the temperature falls outside the hysteresis.
  3648. if (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS))
  3649. residency_start_ms = millis();
  3650. #endif //TEMP_RESIDENCY_TIME
  3651. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3652. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3653. }
  3654. #if HAS_TEMP_BED
  3655. /**
  3656. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3657. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3658. */
  3659. inline void gcode_M190() {
  3660. if (DEBUGGING(DRYRUN)) return;
  3661. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3662. bool no_wait_for_cooling = code_seen('S');
  3663. if (no_wait_for_cooling || code_seen('R'))
  3664. setTargetBed(code_value());
  3665. // Exit if the temperature is above target and not waiting for cooling
  3666. if (no_wait_for_cooling && !isHeatingBed()) return;
  3667. cancel_heatup = false;
  3668. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3669. while (!cancel_heatup && isHeatingBed()) {
  3670. millis_t now = millis();
  3671. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3672. next_temp_ms = now + 1000UL;
  3673. print_heaterstates();
  3674. SERIAL_EOL;
  3675. }
  3676. idle();
  3677. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3678. }
  3679. LCD_MESSAGEPGM(MSG_BED_DONE);
  3680. }
  3681. #endif // HAS_TEMP_BED
  3682. /**
  3683. * M110: Set Current Line Number
  3684. */
  3685. inline void gcode_M110() {
  3686. if (code_seen('N')) gcode_N = code_value_long();
  3687. }
  3688. /**
  3689. * M111: Set the debug level
  3690. */
  3691. inline void gcode_M111() {
  3692. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3693. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3694. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3695. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3696. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3697. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3698. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3699. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3700. #endif
  3701. const static char* const debug_strings[] PROGMEM = {
  3702. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3703. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3704. str_debug_32
  3705. #endif
  3706. };
  3707. SERIAL_ECHO_START;
  3708. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3709. if (marlin_debug_flags) {
  3710. uint8_t comma = 0;
  3711. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3712. if (TEST(marlin_debug_flags, i)) {
  3713. if (comma++) SERIAL_CHAR(',');
  3714. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3715. }
  3716. }
  3717. }
  3718. else {
  3719. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3720. }
  3721. SERIAL_EOL;
  3722. }
  3723. /**
  3724. * M112: Emergency Stop
  3725. */
  3726. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3727. #if ENABLED(BARICUDA)
  3728. #if HAS_HEATER_1
  3729. /**
  3730. * M126: Heater 1 valve open
  3731. */
  3732. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3733. /**
  3734. * M127: Heater 1 valve close
  3735. */
  3736. inline void gcode_M127() { ValvePressure = 0; }
  3737. #endif
  3738. #if HAS_HEATER_2
  3739. /**
  3740. * M128: Heater 2 valve open
  3741. */
  3742. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3743. /**
  3744. * M129: Heater 2 valve close
  3745. */
  3746. inline void gcode_M129() { EtoPPressure = 0; }
  3747. #endif
  3748. #endif //BARICUDA
  3749. /**
  3750. * M140: Set bed temperature
  3751. */
  3752. inline void gcode_M140() {
  3753. if (DEBUGGING(DRYRUN)) return;
  3754. if (code_seen('S')) setTargetBed(code_value());
  3755. }
  3756. #if ENABLED(ULTIPANEL)
  3757. /**
  3758. * M145: Set the heatup state for a material in the LCD menu
  3759. * S<material> (0=PLA, 1=ABS)
  3760. * H<hotend temp>
  3761. * B<bed temp>
  3762. * F<fan speed>
  3763. */
  3764. inline void gcode_M145() {
  3765. int8_t material = code_seen('S') ? code_value_short() : 0;
  3766. if (material < 0 || material > 1) {
  3767. SERIAL_ERROR_START;
  3768. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3769. }
  3770. else {
  3771. int v;
  3772. switch (material) {
  3773. case 0:
  3774. if (code_seen('H')) {
  3775. v = code_value_short();
  3776. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3777. }
  3778. if (code_seen('F')) {
  3779. v = code_value_short();
  3780. plaPreheatFanSpeed = constrain(v, 0, 255);
  3781. }
  3782. #if TEMP_SENSOR_BED != 0
  3783. if (code_seen('B')) {
  3784. v = code_value_short();
  3785. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3786. }
  3787. #endif
  3788. break;
  3789. case 1:
  3790. if (code_seen('H')) {
  3791. v = code_value_short();
  3792. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3793. }
  3794. if (code_seen('F')) {
  3795. v = code_value_short();
  3796. absPreheatFanSpeed = constrain(v, 0, 255);
  3797. }
  3798. #if TEMP_SENSOR_BED != 0
  3799. if (code_seen('B')) {
  3800. v = code_value_short();
  3801. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3802. }
  3803. #endif
  3804. break;
  3805. }
  3806. }
  3807. }
  3808. #endif
  3809. #if HAS_POWER_SWITCH
  3810. /**
  3811. * M80: Turn on Power Supply
  3812. */
  3813. inline void gcode_M80() {
  3814. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3815. /**
  3816. * If you have a switch on suicide pin, this is useful
  3817. * if you want to start another print with suicide feature after
  3818. * a print without suicide...
  3819. */
  3820. #if HAS_SUICIDE
  3821. OUT_WRITE(SUICIDE_PIN, HIGH);
  3822. #endif
  3823. #if ENABLED(ULTIPANEL)
  3824. powersupply = true;
  3825. LCD_MESSAGEPGM(WELCOME_MSG);
  3826. lcd_update();
  3827. #endif
  3828. }
  3829. #endif // HAS_POWER_SWITCH
  3830. /**
  3831. * M81: Turn off Power, including Power Supply, if there is one.
  3832. *
  3833. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3834. */
  3835. inline void gcode_M81() {
  3836. disable_all_heaters();
  3837. finishAndDisableSteppers();
  3838. #if FAN_COUNT > 0
  3839. #if FAN_COUNT > 1
  3840. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3841. #else
  3842. fanSpeeds[0] = 0;
  3843. #endif
  3844. #endif
  3845. delay(1000); // Wait 1 second before switching off
  3846. #if HAS_SUICIDE
  3847. st_synchronize();
  3848. suicide();
  3849. #elif HAS_POWER_SWITCH
  3850. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3851. #endif
  3852. #if ENABLED(ULTIPANEL)
  3853. #if HAS_POWER_SWITCH
  3854. powersupply = false;
  3855. #endif
  3856. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3857. lcd_update();
  3858. #endif
  3859. }
  3860. /**
  3861. * M82: Set E codes absolute (default)
  3862. */
  3863. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3864. /**
  3865. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3866. */
  3867. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3868. /**
  3869. * M18, M84: Disable all stepper motors
  3870. */
  3871. inline void gcode_M18_M84() {
  3872. if (code_seen('S')) {
  3873. stepper_inactive_time = code_value() * 1000;
  3874. }
  3875. else {
  3876. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3877. if (all_axis) {
  3878. finishAndDisableSteppers();
  3879. }
  3880. else {
  3881. st_synchronize();
  3882. if (code_seen('X')) disable_x();
  3883. if (code_seen('Y')) disable_y();
  3884. if (code_seen('Z')) disable_z();
  3885. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3886. if (code_seen('E')) {
  3887. disable_e0();
  3888. disable_e1();
  3889. disable_e2();
  3890. disable_e3();
  3891. }
  3892. #endif
  3893. }
  3894. }
  3895. }
  3896. /**
  3897. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3898. */
  3899. inline void gcode_M85() {
  3900. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3901. }
  3902. /**
  3903. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3904. * (Follows the same syntax as G92)
  3905. */
  3906. inline void gcode_M92() {
  3907. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3908. if (code_seen(axis_codes[i])) {
  3909. if (i == E_AXIS) {
  3910. float value = code_value();
  3911. if (value < 20.0) {
  3912. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3913. max_e_jerk *= factor;
  3914. max_feedrate[i] *= factor;
  3915. axis_steps_per_sqr_second[i] *= factor;
  3916. }
  3917. axis_steps_per_unit[i] = value;
  3918. }
  3919. else {
  3920. axis_steps_per_unit[i] = code_value();
  3921. }
  3922. }
  3923. }
  3924. }
  3925. /**
  3926. * M114: Output current position to serial port
  3927. */
  3928. inline void gcode_M114() {
  3929. SERIAL_PROTOCOLPGM("X:");
  3930. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3931. SERIAL_PROTOCOLPGM(" Y:");
  3932. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3933. SERIAL_PROTOCOLPGM(" Z:");
  3934. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3935. SERIAL_PROTOCOLPGM(" E:");
  3936. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3937. CRITICAL_SECTION_START;
  3938. extern volatile long count_position[NUM_AXIS];
  3939. long xpos = count_position[X_AXIS],
  3940. ypos = count_position[Y_AXIS],
  3941. zpos = count_position[Z_AXIS];
  3942. CRITICAL_SECTION_END;
  3943. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3944. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3945. #else
  3946. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3947. #endif
  3948. SERIAL_PROTOCOL(xpos);
  3949. #if ENABLED(COREXY)
  3950. SERIAL_PROTOCOLPGM(" B:");
  3951. #else
  3952. SERIAL_PROTOCOLPGM(" Y:");
  3953. #endif
  3954. SERIAL_PROTOCOL(ypos);
  3955. #if ENABLED(COREXZ)
  3956. SERIAL_PROTOCOLPGM(" C:");
  3957. #else
  3958. SERIAL_PROTOCOLPGM(" Z:");
  3959. #endif
  3960. SERIAL_PROTOCOL(zpos);
  3961. SERIAL_EOL;
  3962. #if ENABLED(SCARA)
  3963. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3964. SERIAL_PROTOCOL(delta[X_AXIS]);
  3965. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3966. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3967. SERIAL_EOL;
  3968. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3969. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3970. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3971. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3972. SERIAL_EOL;
  3973. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3974. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3975. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3976. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3977. SERIAL_EOL; SERIAL_EOL;
  3978. #endif
  3979. }
  3980. /**
  3981. * M115: Capabilities string
  3982. */
  3983. inline void gcode_M115() {
  3984. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3985. }
  3986. /**
  3987. * M117: Set LCD Status Message
  3988. */
  3989. inline void gcode_M117() {
  3990. lcd_setstatus(current_command_args);
  3991. }
  3992. /**
  3993. * M119: Output endstop states to serial output
  3994. */
  3995. inline void gcode_M119() {
  3996. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3997. #if HAS_X_MIN
  3998. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3999. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4000. #endif
  4001. #if HAS_X_MAX
  4002. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4003. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4004. #endif
  4005. #if HAS_Y_MIN
  4006. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4007. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4008. #endif
  4009. #if HAS_Y_MAX
  4010. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4011. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4012. #endif
  4013. #if HAS_Z_MIN
  4014. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4015. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4016. #endif
  4017. #if HAS_Z_MAX
  4018. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4019. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4020. #endif
  4021. #if HAS_Z2_MAX
  4022. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4023. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4024. #endif
  4025. #if HAS_Z_PROBE
  4026. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4027. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4028. #endif
  4029. }
  4030. /**
  4031. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4032. */
  4033. inline void gcode_M120() { enable_endstops_globally(true); }
  4034. /**
  4035. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4036. */
  4037. inline void gcode_M121() { enable_endstops_globally(false); }
  4038. #if ENABLED(BLINKM)
  4039. /**
  4040. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4041. */
  4042. inline void gcode_M150() {
  4043. SendColors(
  4044. code_seen('R') ? (byte)code_value_short() : 0,
  4045. code_seen('U') ? (byte)code_value_short() : 0,
  4046. code_seen('B') ? (byte)code_value_short() : 0
  4047. );
  4048. }
  4049. #endif // BLINKM
  4050. /**
  4051. * M200: Set filament diameter and set E axis units to cubic millimeters
  4052. *
  4053. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4054. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4055. */
  4056. inline void gcode_M200() {
  4057. if (setTargetedHotend(200)) return;
  4058. if (code_seen('D')) {
  4059. float diameter = code_value();
  4060. // setting any extruder filament size disables volumetric on the assumption that
  4061. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4062. // for all extruders
  4063. volumetric_enabled = (diameter != 0.0);
  4064. if (volumetric_enabled) {
  4065. filament_size[target_extruder] = diameter;
  4066. // make sure all extruders have some sane value for the filament size
  4067. for (int i = 0; i < EXTRUDERS; i++)
  4068. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4069. }
  4070. }
  4071. else {
  4072. //reserved for setting filament diameter via UFID or filament measuring device
  4073. return;
  4074. }
  4075. calculate_volumetric_multipliers();
  4076. }
  4077. /**
  4078. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4079. */
  4080. inline void gcode_M201() {
  4081. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4082. if (code_seen(axis_codes[i])) {
  4083. max_acceleration_units_per_sq_second[i] = code_value();
  4084. }
  4085. }
  4086. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4087. reset_acceleration_rates();
  4088. }
  4089. #if 0 // Not used for Sprinter/grbl gen6
  4090. inline void gcode_M202() {
  4091. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4092. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4093. }
  4094. }
  4095. #endif
  4096. /**
  4097. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4098. */
  4099. inline void gcode_M203() {
  4100. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4101. if (code_seen(axis_codes[i])) {
  4102. max_feedrate[i] = code_value();
  4103. }
  4104. }
  4105. }
  4106. /**
  4107. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4108. *
  4109. * P = Printing moves
  4110. * R = Retract only (no X, Y, Z) moves
  4111. * T = Travel (non printing) moves
  4112. *
  4113. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4114. */
  4115. inline void gcode_M204() {
  4116. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4117. travel_acceleration = acceleration = code_value();
  4118. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4119. SERIAL_EOL;
  4120. }
  4121. if (code_seen('P')) {
  4122. acceleration = code_value();
  4123. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4124. SERIAL_EOL;
  4125. }
  4126. if (code_seen('R')) {
  4127. retract_acceleration = code_value();
  4128. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4129. SERIAL_EOL;
  4130. }
  4131. if (code_seen('T')) {
  4132. travel_acceleration = code_value();
  4133. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4134. SERIAL_EOL;
  4135. }
  4136. }
  4137. /**
  4138. * M205: Set Advanced Settings
  4139. *
  4140. * S = Min Feed Rate (mm/s)
  4141. * T = Min Travel Feed Rate (mm/s)
  4142. * B = Min Segment Time (µs)
  4143. * X = Max XY Jerk (mm/s/s)
  4144. * Z = Max Z Jerk (mm/s/s)
  4145. * E = Max E Jerk (mm/s/s)
  4146. */
  4147. inline void gcode_M205() {
  4148. if (code_seen('S')) minimumfeedrate = code_value();
  4149. if (code_seen('T')) mintravelfeedrate = code_value();
  4150. if (code_seen('B')) minsegmenttime = code_value();
  4151. if (code_seen('X')) max_xy_jerk = code_value();
  4152. if (code_seen('Z')) max_z_jerk = code_value();
  4153. if (code_seen('E')) max_e_jerk = code_value();
  4154. }
  4155. /**
  4156. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4157. */
  4158. inline void gcode_M206() {
  4159. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4160. if (code_seen(axis_codes[i])) {
  4161. home_offset[i] = code_value();
  4162. }
  4163. }
  4164. #if ENABLED(SCARA)
  4165. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  4166. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  4167. #endif
  4168. }
  4169. #if ENABLED(DELTA)
  4170. /**
  4171. * M665: Set delta configurations
  4172. *
  4173. * L = diagonal rod
  4174. * R = delta radius
  4175. * S = segments per second
  4176. * A = Alpha (Tower 1) diagonal rod trim
  4177. * B = Beta (Tower 2) diagonal rod trim
  4178. * C = Gamma (Tower 3) diagonal rod trim
  4179. */
  4180. inline void gcode_M665() {
  4181. if (code_seen('L')) delta_diagonal_rod = code_value();
  4182. if (code_seen('R')) delta_radius = code_value();
  4183. if (code_seen('S')) delta_segments_per_second = code_value();
  4184. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4185. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4186. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4187. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4188. }
  4189. /**
  4190. * M666: Set delta endstop adjustment
  4191. */
  4192. inline void gcode_M666() {
  4193. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4194. if (DEBUGGING(LEVELING)) {
  4195. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4196. }
  4197. #endif
  4198. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4199. if (code_seen(axis_codes[i])) {
  4200. endstop_adj[i] = code_value();
  4201. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4202. if (DEBUGGING(LEVELING)) {
  4203. SERIAL_ECHOPGM("endstop_adj[");
  4204. SERIAL_ECHO(axis_codes[i]);
  4205. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4206. SERIAL_EOL;
  4207. }
  4208. #endif
  4209. }
  4210. }
  4211. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4212. if (DEBUGGING(LEVELING)) {
  4213. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4214. }
  4215. #endif
  4216. }
  4217. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4218. /**
  4219. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4220. */
  4221. inline void gcode_M666() {
  4222. if (code_seen('Z')) z_endstop_adj = code_value();
  4223. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4224. SERIAL_EOL;
  4225. }
  4226. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4227. #if ENABLED(FWRETRACT)
  4228. /**
  4229. * M207: Set firmware retraction values
  4230. *
  4231. * S[+mm] retract_length
  4232. * W[+mm] retract_length_swap (multi-extruder)
  4233. * F[mm/min] retract_feedrate
  4234. * Z[mm] retract_zlift
  4235. */
  4236. inline void gcode_M207() {
  4237. if (code_seen('S')) retract_length = code_value();
  4238. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4239. if (code_seen('Z')) retract_zlift = code_value();
  4240. #if EXTRUDERS > 1
  4241. if (code_seen('W')) retract_length_swap = code_value();
  4242. #endif
  4243. }
  4244. /**
  4245. * M208: Set firmware un-retraction values
  4246. *
  4247. * S[+mm] retract_recover_length (in addition to M207 S*)
  4248. * W[+mm] retract_recover_length_swap (multi-extruder)
  4249. * F[mm/min] retract_recover_feedrate
  4250. */
  4251. inline void gcode_M208() {
  4252. if (code_seen('S')) retract_recover_length = code_value();
  4253. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4254. #if EXTRUDERS > 1
  4255. if (code_seen('W')) retract_recover_length_swap = code_value();
  4256. #endif
  4257. }
  4258. /**
  4259. * M209: Enable automatic retract (M209 S1)
  4260. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4261. */
  4262. inline void gcode_M209() {
  4263. if (code_seen('S')) {
  4264. int t = code_value_short();
  4265. switch (t) {
  4266. case 0:
  4267. autoretract_enabled = false;
  4268. break;
  4269. case 1:
  4270. autoretract_enabled = true;
  4271. break;
  4272. default:
  4273. unknown_command_error();
  4274. return;
  4275. }
  4276. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4277. }
  4278. }
  4279. #endif // FWRETRACT
  4280. #if EXTRUDERS > 1
  4281. /**
  4282. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4283. */
  4284. inline void gcode_M218() {
  4285. if (setTargetedHotend(218)) return;
  4286. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4287. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4288. #if ENABLED(DUAL_X_CARRIAGE)
  4289. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4290. #endif
  4291. SERIAL_ECHO_START;
  4292. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4293. for (int e = 0; e < EXTRUDERS; e++) {
  4294. SERIAL_CHAR(' ');
  4295. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4296. SERIAL_CHAR(',');
  4297. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4298. #if ENABLED(DUAL_X_CARRIAGE)
  4299. SERIAL_CHAR(',');
  4300. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4301. #endif
  4302. }
  4303. SERIAL_EOL;
  4304. }
  4305. #endif // EXTRUDERS > 1
  4306. /**
  4307. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4308. */
  4309. inline void gcode_M220() {
  4310. if (code_seen('S')) feedrate_multiplier = code_value();
  4311. }
  4312. /**
  4313. * M221: Set extrusion percentage (M221 T0 S95)
  4314. */
  4315. inline void gcode_M221() {
  4316. if (code_seen('S')) {
  4317. int sval = code_value();
  4318. if (setTargetedHotend(221)) return;
  4319. extruder_multiplier[target_extruder] = sval;
  4320. }
  4321. }
  4322. /**
  4323. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4324. */
  4325. inline void gcode_M226() {
  4326. if (code_seen('P')) {
  4327. int pin_number = code_value();
  4328. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4329. if (pin_state >= -1 && pin_state <= 1) {
  4330. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4331. if (sensitive_pins[i] == pin_number) {
  4332. pin_number = -1;
  4333. break;
  4334. }
  4335. }
  4336. if (pin_number > -1) {
  4337. int target = LOW;
  4338. st_synchronize();
  4339. pinMode(pin_number, INPUT);
  4340. switch (pin_state) {
  4341. case 1:
  4342. target = HIGH;
  4343. break;
  4344. case 0:
  4345. target = LOW;
  4346. break;
  4347. case -1:
  4348. target = !digitalRead(pin_number);
  4349. break;
  4350. }
  4351. while (digitalRead(pin_number) != target) idle();
  4352. } // pin_number > -1
  4353. } // pin_state -1 0 1
  4354. } // code_seen('P')
  4355. }
  4356. #if HAS_SERVOS
  4357. /**
  4358. * M280: Get or set servo position. P<index> S<angle>
  4359. */
  4360. inline void gcode_M280() {
  4361. int servo_index = code_seen('P') ? code_value_short() : -1;
  4362. int servo_position = 0;
  4363. if (code_seen('S')) {
  4364. servo_position = code_value_short();
  4365. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4366. servo[servo_index].move(servo_position);
  4367. else {
  4368. SERIAL_ERROR_START;
  4369. SERIAL_ERROR("Servo ");
  4370. SERIAL_ERROR(servo_index);
  4371. SERIAL_ERRORLN(" out of range");
  4372. }
  4373. }
  4374. else if (servo_index >= 0) {
  4375. SERIAL_ECHO_START;
  4376. SERIAL_ECHO(" Servo ");
  4377. SERIAL_ECHO(servo_index);
  4378. SERIAL_ECHO(": ");
  4379. SERIAL_ECHOLN(servo[servo_index].read());
  4380. }
  4381. }
  4382. #endif // HAS_SERVOS
  4383. #if HAS_BUZZER
  4384. /**
  4385. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4386. */
  4387. inline void gcode_M300() {
  4388. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4389. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4390. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4391. buzz(beepP, beepS);
  4392. }
  4393. #endif // HAS_BUZZER
  4394. #if ENABLED(PIDTEMP)
  4395. /**
  4396. * M301: Set PID parameters P I D (and optionally C, L)
  4397. *
  4398. * P[float] Kp term
  4399. * I[float] Ki term (unscaled)
  4400. * D[float] Kd term (unscaled)
  4401. *
  4402. * With PID_ADD_EXTRUSION_RATE:
  4403. *
  4404. * C[float] Kc term
  4405. * L[float] LPQ length
  4406. */
  4407. inline void gcode_M301() {
  4408. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4409. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4410. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4411. if (e < EXTRUDERS) { // catch bad input value
  4412. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4413. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4414. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4415. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4416. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4417. if (code_seen('L')) lpq_len = code_value();
  4418. NOMORE(lpq_len, LPQ_MAX_LEN);
  4419. #endif
  4420. updatePID();
  4421. SERIAL_ECHO_START;
  4422. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4423. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4424. SERIAL_ECHO(e);
  4425. #endif // PID_PARAMS_PER_EXTRUDER
  4426. SERIAL_ECHO(" p:");
  4427. SERIAL_ECHO(PID_PARAM(Kp, e));
  4428. SERIAL_ECHO(" i:");
  4429. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4430. SERIAL_ECHO(" d:");
  4431. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4432. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4433. SERIAL_ECHO(" c:");
  4434. //Kc does not have scaling applied above, or in resetting defaults
  4435. SERIAL_ECHO(PID_PARAM(Kc, e));
  4436. #endif
  4437. SERIAL_EOL;
  4438. }
  4439. else {
  4440. SERIAL_ERROR_START;
  4441. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4442. }
  4443. }
  4444. #endif // PIDTEMP
  4445. #if ENABLED(PIDTEMPBED)
  4446. inline void gcode_M304() {
  4447. if (code_seen('P')) bedKp = code_value();
  4448. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4449. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4450. updatePID();
  4451. SERIAL_ECHO_START;
  4452. SERIAL_ECHO(" p:");
  4453. SERIAL_ECHO(bedKp);
  4454. SERIAL_ECHO(" i:");
  4455. SERIAL_ECHO(unscalePID_i(bedKi));
  4456. SERIAL_ECHO(" d:");
  4457. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4458. }
  4459. #endif // PIDTEMPBED
  4460. #if defined(CHDK) || HAS_PHOTOGRAPH
  4461. /**
  4462. * M240: Trigger a camera by emulating a Canon RC-1
  4463. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4464. */
  4465. inline void gcode_M240() {
  4466. #ifdef CHDK
  4467. OUT_WRITE(CHDK, HIGH);
  4468. chdkHigh = millis();
  4469. chdkActive = true;
  4470. #elif HAS_PHOTOGRAPH
  4471. const uint8_t NUM_PULSES = 16;
  4472. const float PULSE_LENGTH = 0.01524;
  4473. for (int i = 0; i < NUM_PULSES; i++) {
  4474. WRITE(PHOTOGRAPH_PIN, HIGH);
  4475. _delay_ms(PULSE_LENGTH);
  4476. WRITE(PHOTOGRAPH_PIN, LOW);
  4477. _delay_ms(PULSE_LENGTH);
  4478. }
  4479. delay(7.33);
  4480. for (int i = 0; i < NUM_PULSES; i++) {
  4481. WRITE(PHOTOGRAPH_PIN, HIGH);
  4482. _delay_ms(PULSE_LENGTH);
  4483. WRITE(PHOTOGRAPH_PIN, LOW);
  4484. _delay_ms(PULSE_LENGTH);
  4485. }
  4486. #endif // !CHDK && HAS_PHOTOGRAPH
  4487. }
  4488. #endif // CHDK || PHOTOGRAPH_PIN
  4489. #if ENABLED(HAS_LCD_CONTRAST)
  4490. /**
  4491. * M250: Read and optionally set the LCD contrast
  4492. */
  4493. inline void gcode_M250() {
  4494. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4495. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4496. SERIAL_PROTOCOL(lcd_contrast);
  4497. SERIAL_EOL;
  4498. }
  4499. #endif // HAS_LCD_CONTRAST
  4500. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4501. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4502. /**
  4503. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4504. */
  4505. inline void gcode_M302() {
  4506. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4507. }
  4508. #endif // PREVENT_DANGEROUS_EXTRUDE
  4509. /**
  4510. * M303: PID relay autotune
  4511. *
  4512. * S<temperature> sets the target temperature. (default 150C)
  4513. * E<extruder> (-1 for the bed) (default 0)
  4514. * C<cycles>
  4515. * U<bool> with a non-zero value will apply the result to current settings
  4516. */
  4517. inline void gcode_M303() {
  4518. int e = code_seen('E') ? code_value_short() : 0;
  4519. int c = code_seen('C') ? code_value_short() : 5;
  4520. bool u = code_seen('U') && code_value_short() != 0;
  4521. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4522. if (e >= 0 && e < EXTRUDERS)
  4523. target_extruder = e;
  4524. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4525. PID_autotune(temp, e, c, u);
  4526. KEEPALIVE_STATE(IN_HANDLER);
  4527. }
  4528. #if ENABLED(SCARA)
  4529. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4530. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4531. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4532. if (IsRunning()) {
  4533. //gcode_get_destination(); // For X Y Z E F
  4534. delta[X_AXIS] = delta_x;
  4535. delta[Y_AXIS] = delta_y;
  4536. calculate_SCARA_forward_Transform(delta);
  4537. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4538. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4539. prepare_move();
  4540. //ok_to_send();
  4541. return true;
  4542. }
  4543. return false;
  4544. }
  4545. /**
  4546. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4547. */
  4548. inline bool gcode_M360() {
  4549. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4550. return SCARA_move_to_cal(0, 120);
  4551. }
  4552. /**
  4553. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4554. */
  4555. inline bool gcode_M361() {
  4556. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4557. return SCARA_move_to_cal(90, 130);
  4558. }
  4559. /**
  4560. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4561. */
  4562. inline bool gcode_M362() {
  4563. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4564. return SCARA_move_to_cal(60, 180);
  4565. }
  4566. /**
  4567. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4568. */
  4569. inline bool gcode_M363() {
  4570. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4571. return SCARA_move_to_cal(50, 90);
  4572. }
  4573. /**
  4574. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4575. */
  4576. inline bool gcode_M364() {
  4577. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4578. return SCARA_move_to_cal(45, 135);
  4579. }
  4580. /**
  4581. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4582. */
  4583. inline void gcode_M365() {
  4584. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4585. if (code_seen(axis_codes[i])) {
  4586. axis_scaling[i] = code_value();
  4587. }
  4588. }
  4589. }
  4590. #endif // SCARA
  4591. #if ENABLED(EXT_SOLENOID)
  4592. void enable_solenoid(uint8_t num) {
  4593. switch (num) {
  4594. case 0:
  4595. OUT_WRITE(SOL0_PIN, HIGH);
  4596. break;
  4597. #if HAS_SOLENOID_1
  4598. case 1:
  4599. OUT_WRITE(SOL1_PIN, HIGH);
  4600. break;
  4601. #endif
  4602. #if HAS_SOLENOID_2
  4603. case 2:
  4604. OUT_WRITE(SOL2_PIN, HIGH);
  4605. break;
  4606. #endif
  4607. #if HAS_SOLENOID_3
  4608. case 3:
  4609. OUT_WRITE(SOL3_PIN, HIGH);
  4610. break;
  4611. #endif
  4612. default:
  4613. SERIAL_ECHO_START;
  4614. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4615. break;
  4616. }
  4617. }
  4618. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4619. void disable_all_solenoids() {
  4620. OUT_WRITE(SOL0_PIN, LOW);
  4621. OUT_WRITE(SOL1_PIN, LOW);
  4622. OUT_WRITE(SOL2_PIN, LOW);
  4623. OUT_WRITE(SOL3_PIN, LOW);
  4624. }
  4625. /**
  4626. * M380: Enable solenoid on the active extruder
  4627. */
  4628. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4629. /**
  4630. * M381: Disable all solenoids
  4631. */
  4632. inline void gcode_M381() { disable_all_solenoids(); }
  4633. #endif // EXT_SOLENOID
  4634. /**
  4635. * M400: Finish all moves
  4636. */
  4637. inline void gcode_M400() { st_synchronize(); }
  4638. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4639. /**
  4640. * M401: Engage Z Servo endstop if available
  4641. */
  4642. inline void gcode_M401() {
  4643. #if HAS_SERVO_ENDSTOPS
  4644. raise_z_for_servo();
  4645. #endif
  4646. deploy_z_probe();
  4647. }
  4648. /**
  4649. * M402: Retract Z Servo endstop if enabled
  4650. */
  4651. inline void gcode_M402() {
  4652. #if HAS_SERVO_ENDSTOPS
  4653. raise_z_for_servo();
  4654. #endif
  4655. stow_z_probe(false);
  4656. }
  4657. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4658. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4659. /**
  4660. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4661. */
  4662. inline void gcode_M404() {
  4663. if (code_seen('W')) {
  4664. filament_width_nominal = code_value();
  4665. }
  4666. else {
  4667. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4668. SERIAL_PROTOCOLLN(filament_width_nominal);
  4669. }
  4670. }
  4671. /**
  4672. * M405: Turn on filament sensor for control
  4673. */
  4674. inline void gcode_M405() {
  4675. if (code_seen('D')) meas_delay_cm = code_value();
  4676. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4677. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4678. int temp_ratio = widthFil_to_size_ratio();
  4679. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4680. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4681. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4682. }
  4683. filament_sensor = true;
  4684. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4685. //SERIAL_PROTOCOL(filament_width_meas);
  4686. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4687. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4688. }
  4689. /**
  4690. * M406: Turn off filament sensor for control
  4691. */
  4692. inline void gcode_M406() { filament_sensor = false; }
  4693. /**
  4694. * M407: Get measured filament diameter on serial output
  4695. */
  4696. inline void gcode_M407() {
  4697. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4698. SERIAL_PROTOCOLLN(filament_width_meas);
  4699. }
  4700. #endif // FILAMENT_WIDTH_SENSOR
  4701. /**
  4702. * M410: Quickstop - Abort all planned moves
  4703. *
  4704. * This will stop the carriages mid-move, so most likely they
  4705. * will be out of sync with the stepper position after this.
  4706. */
  4707. inline void gcode_M410() { quickStop(); }
  4708. #if ENABLED(MESH_BED_LEVELING)
  4709. /**
  4710. * M420: Enable/Disable Mesh Bed Leveling
  4711. */
  4712. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4713. /**
  4714. * M421: Set a single Mesh Bed Leveling Z coordinate
  4715. */
  4716. inline void gcode_M421() {
  4717. float x = 0, y = 0, z = 0;
  4718. bool err = false, hasX, hasY, hasZ;
  4719. if ((hasX = code_seen('X'))) x = code_value();
  4720. if ((hasY = code_seen('Y'))) y = code_value();
  4721. if ((hasZ = code_seen('Z'))) z = code_value();
  4722. if (!hasX || !hasY || !hasZ) {
  4723. SERIAL_ERROR_START;
  4724. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4725. err = true;
  4726. }
  4727. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4728. SERIAL_ERROR_START;
  4729. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4730. err = true;
  4731. }
  4732. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4733. }
  4734. #endif
  4735. /**
  4736. * M428: Set home_offset based on the distance between the
  4737. * current_position and the nearest "reference point."
  4738. * If an axis is past center its endstop position
  4739. * is the reference-point. Otherwise it uses 0. This allows
  4740. * the Z offset to be set near the bed when using a max endstop.
  4741. *
  4742. * M428 can't be used more than 2cm away from 0 or an endstop.
  4743. *
  4744. * Use M206 to set these values directly.
  4745. */
  4746. inline void gcode_M428() {
  4747. bool err = false;
  4748. float new_offs[3], new_pos[3];
  4749. memcpy(new_pos, current_position, sizeof(new_pos));
  4750. memcpy(new_offs, home_offset, sizeof(new_offs));
  4751. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4752. if (axis_homed[i]) {
  4753. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4754. diff = new_pos[i] - base;
  4755. if (diff > -20 && diff < 20) {
  4756. new_offs[i] -= diff;
  4757. new_pos[i] = base;
  4758. }
  4759. else {
  4760. SERIAL_ERROR_START;
  4761. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4762. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4763. #if HAS_BUZZER
  4764. buzz(200, 40);
  4765. #endif
  4766. err = true;
  4767. break;
  4768. }
  4769. }
  4770. }
  4771. if (!err) {
  4772. memcpy(current_position, new_pos, sizeof(new_pos));
  4773. memcpy(home_offset, new_offs, sizeof(new_offs));
  4774. sync_plan_position();
  4775. LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4776. #if HAS_BUZZER
  4777. buzz(200, 659);
  4778. buzz(200, 698);
  4779. #endif
  4780. }
  4781. }
  4782. /**
  4783. * M500: Store settings in EEPROM
  4784. */
  4785. inline void gcode_M500() {
  4786. Config_StoreSettings();
  4787. }
  4788. /**
  4789. * M501: Read settings from EEPROM
  4790. */
  4791. inline void gcode_M501() {
  4792. Config_RetrieveSettings();
  4793. }
  4794. /**
  4795. * M502: Revert to default settings
  4796. */
  4797. inline void gcode_M502() {
  4798. Config_ResetDefault();
  4799. }
  4800. /**
  4801. * M503: print settings currently in memory
  4802. */
  4803. inline void gcode_M503() {
  4804. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4805. }
  4806. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4807. /**
  4808. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4809. */
  4810. inline void gcode_M540() {
  4811. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4812. }
  4813. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4814. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4815. inline void gcode_SET_Z_PROBE_OFFSET() {
  4816. SERIAL_ECHO_START;
  4817. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4818. SERIAL_CHAR(' ');
  4819. if (code_seen('Z')) {
  4820. float value = code_value();
  4821. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4822. zprobe_zoffset = value;
  4823. SERIAL_ECHO(zprobe_zoffset);
  4824. }
  4825. else {
  4826. SERIAL_ECHOPGM(MSG_Z_MIN);
  4827. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4828. SERIAL_ECHOPGM(MSG_Z_MAX);
  4829. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4830. }
  4831. }
  4832. else {
  4833. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4834. }
  4835. SERIAL_EOL;
  4836. }
  4837. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4838. #if ENABLED(FILAMENTCHANGEENABLE)
  4839. /**
  4840. * M600: Pause for filament change
  4841. *
  4842. * E[distance] - Retract the filament this far (negative value)
  4843. * Z[distance] - Move the Z axis by this distance
  4844. * X[position] - Move to this X position, with Y
  4845. * Y[position] - Move to this Y position, with X
  4846. * L[distance] - Retract distance for removal (manual reload)
  4847. *
  4848. * Default values are used for omitted arguments.
  4849. *
  4850. */
  4851. inline void gcode_M600() {
  4852. if (degHotend(active_extruder) < extrude_min_temp) {
  4853. SERIAL_ERROR_START;
  4854. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4855. return;
  4856. }
  4857. float lastpos[NUM_AXIS];
  4858. #if ENABLED(DELTA)
  4859. float fr60 = feedrate / 60;
  4860. #endif
  4861. for (int i = 0; i < NUM_AXIS; i++)
  4862. lastpos[i] = destination[i] = current_position[i];
  4863. #if ENABLED(DELTA)
  4864. #define RUNPLAN calculate_delta(destination); \
  4865. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4866. #else
  4867. #define RUNPLAN line_to_destination();
  4868. #endif
  4869. //retract by E
  4870. if (code_seen('E')) destination[E_AXIS] += code_value();
  4871. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4872. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4873. #endif
  4874. RUNPLAN;
  4875. //lift Z
  4876. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4877. #ifdef FILAMENTCHANGE_ZADD
  4878. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4879. #endif
  4880. RUNPLAN;
  4881. //move xy
  4882. if (code_seen('X')) destination[X_AXIS] = code_value();
  4883. #ifdef FILAMENTCHANGE_XPOS
  4884. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4885. #endif
  4886. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4887. #ifdef FILAMENTCHANGE_YPOS
  4888. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4889. #endif
  4890. RUNPLAN;
  4891. if (code_seen('L')) destination[E_AXIS] += code_value();
  4892. #ifdef FILAMENTCHANGE_FINALRETRACT
  4893. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4894. #endif
  4895. RUNPLAN;
  4896. //finish moves
  4897. st_synchronize();
  4898. //disable extruder steppers so filament can be removed
  4899. disable_e0();
  4900. disable_e1();
  4901. disable_e2();
  4902. disable_e3();
  4903. delay(100);
  4904. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4905. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4906. millis_t next_tick = 0;
  4907. #endif
  4908. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4909. while (!lcd_clicked()) {
  4910. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4911. millis_t ms = millis();
  4912. if (ms >= next_tick) {
  4913. lcd_quick_feedback();
  4914. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4915. }
  4916. idle(true);
  4917. #else
  4918. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4919. destination[E_AXIS] = current_position[E_AXIS];
  4920. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4921. st_synchronize();
  4922. #endif
  4923. } // while(!lcd_clicked)
  4924. KEEPALIVE_STATE(IN_HANDLER);
  4925. lcd_quick_feedback(); // click sound feedback
  4926. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4927. current_position[E_AXIS] = 0;
  4928. st_synchronize();
  4929. #endif
  4930. //return to normal
  4931. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4932. #ifdef FILAMENTCHANGE_FINALRETRACT
  4933. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4934. #endif
  4935. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4936. plan_set_e_position(current_position[E_AXIS]);
  4937. RUNPLAN; //should do nothing
  4938. lcd_reset_alert_level();
  4939. #if ENABLED(DELTA)
  4940. // Move XYZ to starting position, then E
  4941. calculate_delta(lastpos);
  4942. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4943. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4944. #else
  4945. // Move XY to starting position, then Z, then E
  4946. destination[X_AXIS] = lastpos[X_AXIS];
  4947. destination[Y_AXIS] = lastpos[Y_AXIS];
  4948. line_to_destination();
  4949. destination[Z_AXIS] = lastpos[Z_AXIS];
  4950. line_to_destination();
  4951. destination[E_AXIS] = lastpos[E_AXIS];
  4952. line_to_destination();
  4953. #endif
  4954. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4955. filrunoutEnqueued = false;
  4956. #endif
  4957. }
  4958. #endif // FILAMENTCHANGEENABLE
  4959. #if ENABLED(DUAL_X_CARRIAGE)
  4960. /**
  4961. * M605: Set dual x-carriage movement mode
  4962. *
  4963. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4964. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4965. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4966. * millimeters x-offset and an optional differential hotend temperature of
  4967. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4968. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4969. *
  4970. * Note: the X axis should be homed after changing dual x-carriage mode.
  4971. */
  4972. inline void gcode_M605() {
  4973. st_synchronize();
  4974. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4975. switch (dual_x_carriage_mode) {
  4976. case DXC_DUPLICATION_MODE:
  4977. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4978. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4979. SERIAL_ECHO_START;
  4980. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4981. SERIAL_CHAR(' ');
  4982. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4983. SERIAL_CHAR(',');
  4984. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4985. SERIAL_CHAR(' ');
  4986. SERIAL_ECHO(duplicate_extruder_x_offset);
  4987. SERIAL_CHAR(',');
  4988. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4989. break;
  4990. case DXC_FULL_CONTROL_MODE:
  4991. case DXC_AUTO_PARK_MODE:
  4992. break;
  4993. default:
  4994. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4995. break;
  4996. }
  4997. active_extruder_parked = false;
  4998. extruder_duplication_enabled = false;
  4999. delayed_move_time = 0;
  5000. }
  5001. #endif // DUAL_X_CARRIAGE
  5002. /**
  5003. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5004. */
  5005. inline void gcode_M907() {
  5006. #if HAS_DIGIPOTSS
  5007. for (int i = 0; i < NUM_AXIS; i++)
  5008. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5009. if (code_seen('B')) digipot_current(4, code_value());
  5010. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5011. #endif
  5012. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5013. if (code_seen('X')) digipot_current(0, code_value());
  5014. #endif
  5015. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5016. if (code_seen('Z')) digipot_current(1, code_value());
  5017. #endif
  5018. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5019. if (code_seen('E')) digipot_current(2, code_value());
  5020. #endif
  5021. #if ENABLED(DIGIPOT_I2C)
  5022. // this one uses actual amps in floating point
  5023. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5024. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5025. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5026. #endif
  5027. #if ENABLED(DAC_STEPPER_CURRENT)
  5028. if (code_seen('S')) {
  5029. float dac_percent = code_value();
  5030. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5031. }
  5032. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5033. #endif
  5034. }
  5035. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5036. /**
  5037. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5038. */
  5039. inline void gcode_M908() {
  5040. #if HAS_DIGIPOTSS
  5041. digitalPotWrite(
  5042. code_seen('P') ? code_value() : 0,
  5043. code_seen('S') ? code_value() : 0
  5044. );
  5045. #endif
  5046. #ifdef DAC_STEPPER_CURRENT
  5047. dac_current_raw(
  5048. code_seen('P') ? code_value_long() : -1,
  5049. code_seen('S') ? code_value_short() : 0
  5050. );
  5051. #endif
  5052. }
  5053. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5054. inline void gcode_M909() { dac_print_values(); }
  5055. inline void gcode_M910() { dac_commit_eeprom(); }
  5056. #endif
  5057. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5058. #if HAS_MICROSTEPS
  5059. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5060. inline void gcode_M350() {
  5061. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5062. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5063. if (code_seen('B')) microstep_mode(4, code_value());
  5064. microstep_readings();
  5065. }
  5066. /**
  5067. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5068. * S# determines MS1 or MS2, X# sets the pin high/low.
  5069. */
  5070. inline void gcode_M351() {
  5071. if (code_seen('S')) switch (code_value_short()) {
  5072. case 1:
  5073. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5074. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5075. break;
  5076. case 2:
  5077. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5078. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5079. break;
  5080. }
  5081. microstep_readings();
  5082. }
  5083. #endif // HAS_MICROSTEPS
  5084. /**
  5085. * M999: Restart after being stopped
  5086. */
  5087. inline void gcode_M999() {
  5088. Running = true;
  5089. lcd_reset_alert_level();
  5090. // gcode_LastN = Stopped_gcode_LastN;
  5091. FlushSerialRequestResend();
  5092. }
  5093. /**
  5094. * T0-T3: Switch tool, usually switching extruders
  5095. *
  5096. * F[mm/min] Set the movement feedrate
  5097. */
  5098. inline void gcode_T(uint8_t tmp_extruder) {
  5099. if (tmp_extruder >= EXTRUDERS) {
  5100. SERIAL_ECHO_START;
  5101. SERIAL_CHAR('T');
  5102. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5103. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5104. }
  5105. else {
  5106. target_extruder = tmp_extruder;
  5107. #if EXTRUDERS > 1
  5108. bool make_move = false;
  5109. #endif
  5110. if (code_seen('F')) {
  5111. #if EXTRUDERS > 1
  5112. make_move = true;
  5113. #endif
  5114. float next_feedrate = code_value();
  5115. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5116. }
  5117. #if EXTRUDERS > 1
  5118. if (tmp_extruder != active_extruder) {
  5119. // Save current position to return to after applying extruder offset
  5120. set_destination_to_current();
  5121. #if ENABLED(DUAL_X_CARRIAGE)
  5122. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5123. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5124. // Park old head: 1) raise 2) move to park position 3) lower
  5125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5126. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5127. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5128. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5129. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5130. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5131. st_synchronize();
  5132. }
  5133. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5134. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5135. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5136. active_extruder = tmp_extruder;
  5137. // This function resets the max/min values - the current position may be overwritten below.
  5138. set_axis_is_at_home(X_AXIS);
  5139. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5140. current_position[X_AXIS] = inactive_extruder_x_pos;
  5141. inactive_extruder_x_pos = destination[X_AXIS];
  5142. }
  5143. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5144. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5145. if (active_extruder == 0 || active_extruder_parked)
  5146. current_position[X_AXIS] = inactive_extruder_x_pos;
  5147. else
  5148. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5149. inactive_extruder_x_pos = destination[X_AXIS];
  5150. extruder_duplication_enabled = false;
  5151. }
  5152. else {
  5153. // record raised toolhead position for use by unpark
  5154. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5155. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5156. active_extruder_parked = true;
  5157. delayed_move_time = 0;
  5158. }
  5159. #else // !DUAL_X_CARRIAGE
  5160. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5161. // Offset extruder, make sure to apply the bed level rotation matrix
  5162. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5163. extruder_offset[Y_AXIS][tmp_extruder],
  5164. extruder_offset[Z_AXIS][tmp_extruder]),
  5165. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5166. extruder_offset[Y_AXIS][active_extruder],
  5167. extruder_offset[Z_AXIS][active_extruder]),
  5168. offset_vec = tmp_offset_vec - act_offset_vec;
  5169. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5170. current_position[X_AXIS] += offset_vec.x;
  5171. current_position[Y_AXIS] += offset_vec.y;
  5172. current_position[Z_AXIS] += offset_vec.z;
  5173. #else // !AUTO_BED_LEVELING_FEATURE
  5174. // Offset extruder (only by XY)
  5175. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5176. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5177. #endif // !AUTO_BED_LEVELING_FEATURE
  5178. // Set the new active extruder and position
  5179. active_extruder = tmp_extruder;
  5180. #endif // !DUAL_X_CARRIAGE
  5181. #if ENABLED(DELTA)
  5182. sync_plan_position_delta();
  5183. #else
  5184. sync_plan_position();
  5185. #endif
  5186. // Move to the old position if 'F' was in the parameters
  5187. if (make_move && IsRunning()) prepare_move();
  5188. }
  5189. #if ENABLED(EXT_SOLENOID)
  5190. st_synchronize();
  5191. disable_all_solenoids();
  5192. enable_solenoid_on_active_extruder();
  5193. #endif // EXT_SOLENOID
  5194. #endif // EXTRUDERS > 1
  5195. SERIAL_ECHO_START;
  5196. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5197. SERIAL_PROTOCOLLN((int)active_extruder);
  5198. }
  5199. }
  5200. /**
  5201. * Process a single command and dispatch it to its handler
  5202. * This is called from the main loop()
  5203. */
  5204. void process_next_command() {
  5205. current_command = command_queue[cmd_queue_index_r];
  5206. if (DEBUGGING(ECHO)) {
  5207. SERIAL_ECHO_START;
  5208. SERIAL_ECHOLN(current_command);
  5209. }
  5210. // Sanitize the current command:
  5211. // - Skip leading spaces
  5212. // - Bypass N[-0-9][0-9]*[ ]*
  5213. // - Overwrite * with nul to mark the end
  5214. while (*current_command == ' ') ++current_command;
  5215. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5216. current_command += 2; // skip N[-0-9]
  5217. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5218. while (*current_command == ' ') ++current_command; // skip [ ]*
  5219. }
  5220. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5221. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5222. char *cmd_ptr = current_command;
  5223. // Get the command code, which must be G, M, or T
  5224. char command_code = *cmd_ptr++;
  5225. // Skip spaces to get the numeric part
  5226. while (*cmd_ptr == ' ') cmd_ptr++;
  5227. uint16_t codenum = 0; // define ahead of goto
  5228. // Bail early if there's no code
  5229. bool code_is_good = NUMERIC(*cmd_ptr);
  5230. if (!code_is_good) goto ExitUnknownCommand;
  5231. // Get and skip the code number
  5232. do {
  5233. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5234. cmd_ptr++;
  5235. } while (NUMERIC(*cmd_ptr));
  5236. // Skip all spaces to get to the first argument, or nul
  5237. while (*cmd_ptr == ' ') cmd_ptr++;
  5238. // The command's arguments (if any) start here, for sure!
  5239. current_command_args = cmd_ptr;
  5240. KEEPALIVE_STATE(IN_HANDLER);
  5241. // Handle a known G, M, or T
  5242. switch (command_code) {
  5243. case 'G': switch (codenum) {
  5244. // G0, G1
  5245. case 0:
  5246. case 1:
  5247. gcode_G0_G1();
  5248. break;
  5249. // G2, G3
  5250. #if DISABLED(SCARA)
  5251. case 2: // G2 - CW ARC
  5252. case 3: // G3 - CCW ARC
  5253. gcode_G2_G3(codenum == 2);
  5254. break;
  5255. #endif
  5256. // G4 Dwell
  5257. case 4:
  5258. gcode_G4();
  5259. break;
  5260. #if ENABLED(FWRETRACT)
  5261. case 10: // G10: retract
  5262. case 11: // G11: retract_recover
  5263. gcode_G10_G11(codenum == 10);
  5264. break;
  5265. #endif //FWRETRACT
  5266. case 28: // G28: Home all axes, one at a time
  5267. gcode_G28();
  5268. break;
  5269. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5270. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5271. gcode_G29();
  5272. break;
  5273. #endif
  5274. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5275. #if DISABLED(Z_PROBE_SLED)
  5276. case 30: // G30 Single Z probe
  5277. gcode_G30();
  5278. break;
  5279. #else // Z_PROBE_SLED
  5280. case 31: // G31: dock the sled
  5281. case 32: // G32: undock the sled
  5282. dock_sled(codenum == 31);
  5283. break;
  5284. #endif // Z_PROBE_SLED
  5285. #endif // AUTO_BED_LEVELING_FEATURE
  5286. case 90: // G90
  5287. relative_mode = false;
  5288. break;
  5289. case 91: // G91
  5290. relative_mode = true;
  5291. break;
  5292. case 92: // G92
  5293. gcode_G92();
  5294. break;
  5295. }
  5296. break;
  5297. case 'M': switch (codenum) {
  5298. #if ENABLED(ULTIPANEL)
  5299. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5300. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5301. gcode_M0_M1();
  5302. break;
  5303. #endif // ULTIPANEL
  5304. case 17:
  5305. gcode_M17();
  5306. break;
  5307. #if ENABLED(SDSUPPORT)
  5308. case 20: // M20 - list SD card
  5309. gcode_M20(); break;
  5310. case 21: // M21 - init SD card
  5311. gcode_M21(); break;
  5312. case 22: //M22 - release SD card
  5313. gcode_M22(); break;
  5314. case 23: //M23 - Select file
  5315. gcode_M23(); break;
  5316. case 24: //M24 - Start SD print
  5317. gcode_M24(); break;
  5318. case 25: //M25 - Pause SD print
  5319. gcode_M25(); break;
  5320. case 26: //M26 - Set SD index
  5321. gcode_M26(); break;
  5322. case 27: //M27 - Get SD status
  5323. gcode_M27(); break;
  5324. case 28: //M28 - Start SD write
  5325. gcode_M28(); break;
  5326. case 29: //M29 - Stop SD write
  5327. gcode_M29(); break;
  5328. case 30: //M30 <filename> Delete File
  5329. gcode_M30(); break;
  5330. case 32: //M32 - Select file and start SD print
  5331. gcode_M32(); break;
  5332. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5333. case 33: //M33 - Get the long full path to a file or folder
  5334. gcode_M33(); break;
  5335. #endif // LONG_FILENAME_HOST_SUPPORT
  5336. case 928: //M928 - Start SD write
  5337. gcode_M928(); break;
  5338. #endif //SDSUPPORT
  5339. case 31: //M31 take time since the start of the SD print or an M109 command
  5340. gcode_M31();
  5341. break;
  5342. case 42: //M42 -Change pin status via gcode
  5343. gcode_M42();
  5344. break;
  5345. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5346. case 48: // M48 Z probe repeatability
  5347. gcode_M48();
  5348. break;
  5349. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5350. case 75: // Start print timer
  5351. gcode_M75();
  5352. break;
  5353. case 76: // Pause print timer
  5354. gcode_M76();
  5355. break;
  5356. case 77: // Stop print timer
  5357. gcode_M77();
  5358. break;
  5359. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5360. case 100:
  5361. gcode_M100();
  5362. break;
  5363. #endif
  5364. case 104: // M104
  5365. gcode_M104();
  5366. break;
  5367. case 110: // M110: Set Current Line Number
  5368. gcode_M110();
  5369. break;
  5370. case 111: // M111: Set debug level
  5371. gcode_M111();
  5372. break;
  5373. case 112: // M112: Emergency Stop
  5374. gcode_M112();
  5375. break;
  5376. case 140: // M140: Set bed temp
  5377. gcode_M140();
  5378. break;
  5379. case 105: // M105: Read current temperature
  5380. gcode_M105();
  5381. KEEPALIVE_STATE(NOT_BUSY);
  5382. return; // "ok" already printed
  5383. case 109: // M109: Wait for temperature
  5384. gcode_M109();
  5385. break;
  5386. #if HAS_TEMP_BED
  5387. case 190: // M190: Wait for bed heater to reach target
  5388. gcode_M190();
  5389. break;
  5390. #endif // HAS_TEMP_BED
  5391. #if FAN_COUNT > 0
  5392. case 106: // M106: Fan On
  5393. gcode_M106();
  5394. break;
  5395. case 107: // M107: Fan Off
  5396. gcode_M107();
  5397. break;
  5398. #endif // FAN_COUNT > 0
  5399. #if ENABLED(BARICUDA)
  5400. // PWM for HEATER_1_PIN
  5401. #if HAS_HEATER_1
  5402. case 126: // M126: valve open
  5403. gcode_M126();
  5404. break;
  5405. case 127: // M127: valve closed
  5406. gcode_M127();
  5407. break;
  5408. #endif // HAS_HEATER_1
  5409. // PWM for HEATER_2_PIN
  5410. #if HAS_HEATER_2
  5411. case 128: // M128: valve open
  5412. gcode_M128();
  5413. break;
  5414. case 129: // M129: valve closed
  5415. gcode_M129();
  5416. break;
  5417. #endif // HAS_HEATER_2
  5418. #endif // BARICUDA
  5419. #if HAS_POWER_SWITCH
  5420. case 80: // M80: Turn on Power Supply
  5421. gcode_M80();
  5422. break;
  5423. #endif // HAS_POWER_SWITCH
  5424. case 81: // M81: Turn off Power, including Power Supply, if possible
  5425. gcode_M81();
  5426. break;
  5427. case 82:
  5428. gcode_M82();
  5429. break;
  5430. case 83:
  5431. gcode_M83();
  5432. break;
  5433. case 18: // (for compatibility)
  5434. case 84: // M84
  5435. gcode_M18_M84();
  5436. break;
  5437. case 85: // M85
  5438. gcode_M85();
  5439. break;
  5440. case 92: // M92: Set the steps-per-unit for one or more axes
  5441. gcode_M92();
  5442. break;
  5443. case 115: // M115: Report capabilities
  5444. gcode_M115();
  5445. break;
  5446. case 117: // M117: Set LCD message text, if possible
  5447. gcode_M117();
  5448. break;
  5449. case 114: // M114: Report current position
  5450. gcode_M114();
  5451. break;
  5452. case 120: // M120: Enable endstops
  5453. gcode_M120();
  5454. break;
  5455. case 121: // M121: Disable endstops
  5456. gcode_M121();
  5457. break;
  5458. case 119: // M119: Report endstop states
  5459. gcode_M119();
  5460. break;
  5461. #if ENABLED(ULTIPANEL)
  5462. case 145: // M145: Set material heatup parameters
  5463. gcode_M145();
  5464. break;
  5465. #endif
  5466. #if ENABLED(BLINKM)
  5467. case 150: // M150
  5468. gcode_M150();
  5469. break;
  5470. #endif //BLINKM
  5471. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5472. gcode_M200();
  5473. break;
  5474. case 201: // M201
  5475. gcode_M201();
  5476. break;
  5477. #if 0 // Not used for Sprinter/grbl gen6
  5478. case 202: // M202
  5479. gcode_M202();
  5480. break;
  5481. #endif
  5482. case 203: // M203 max feedrate mm/sec
  5483. gcode_M203();
  5484. break;
  5485. case 204: // M204 acclereration S normal moves T filmanent only moves
  5486. gcode_M204();
  5487. break;
  5488. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5489. gcode_M205();
  5490. break;
  5491. case 206: // M206 additional homing offset
  5492. gcode_M206();
  5493. break;
  5494. #if ENABLED(DELTA)
  5495. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5496. gcode_M665();
  5497. break;
  5498. #endif
  5499. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5500. case 666: // M666 set delta / dual endstop adjustment
  5501. gcode_M666();
  5502. break;
  5503. #endif
  5504. #if ENABLED(FWRETRACT)
  5505. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5506. gcode_M207();
  5507. break;
  5508. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5509. gcode_M208();
  5510. break;
  5511. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5512. gcode_M209();
  5513. break;
  5514. #endif // FWRETRACT
  5515. #if EXTRUDERS > 1
  5516. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5517. gcode_M218();
  5518. break;
  5519. #endif
  5520. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5521. gcode_M220();
  5522. break;
  5523. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5524. gcode_M221();
  5525. break;
  5526. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5527. gcode_M226();
  5528. break;
  5529. #if HAS_SERVOS
  5530. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5531. gcode_M280();
  5532. break;
  5533. #endif // HAS_SERVOS
  5534. #if HAS_BUZZER
  5535. case 300: // M300 - Play beep tone
  5536. gcode_M300();
  5537. break;
  5538. #endif // HAS_BUZZER
  5539. #if ENABLED(PIDTEMP)
  5540. case 301: // M301
  5541. gcode_M301();
  5542. break;
  5543. #endif // PIDTEMP
  5544. #if ENABLED(PIDTEMPBED)
  5545. case 304: // M304
  5546. gcode_M304();
  5547. break;
  5548. #endif // PIDTEMPBED
  5549. #if defined(CHDK) || HAS_PHOTOGRAPH
  5550. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5551. gcode_M240();
  5552. break;
  5553. #endif // CHDK || PHOTOGRAPH_PIN
  5554. #if ENABLED(HAS_LCD_CONTRAST)
  5555. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5556. gcode_M250();
  5557. break;
  5558. #endif // HAS_LCD_CONTRAST
  5559. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5560. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5561. gcode_M302();
  5562. break;
  5563. #endif // PREVENT_DANGEROUS_EXTRUDE
  5564. case 303: // M303 PID autotune
  5565. gcode_M303();
  5566. break;
  5567. #if ENABLED(SCARA)
  5568. case 360: // M360 SCARA Theta pos1
  5569. if (gcode_M360()) return;
  5570. break;
  5571. case 361: // M361 SCARA Theta pos2
  5572. if (gcode_M361()) return;
  5573. break;
  5574. case 362: // M362 SCARA Psi pos1
  5575. if (gcode_M362()) return;
  5576. break;
  5577. case 363: // M363 SCARA Psi pos2
  5578. if (gcode_M363()) return;
  5579. break;
  5580. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5581. if (gcode_M364()) return;
  5582. break;
  5583. case 365: // M365 Set SCARA scaling for X Y Z
  5584. gcode_M365();
  5585. break;
  5586. #endif // SCARA
  5587. case 400: // M400 finish all moves
  5588. gcode_M400();
  5589. break;
  5590. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5591. case 401:
  5592. gcode_M401();
  5593. break;
  5594. case 402:
  5595. gcode_M402();
  5596. break;
  5597. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5598. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5599. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5600. gcode_M404();
  5601. break;
  5602. case 405: //M405 Turn on filament sensor for control
  5603. gcode_M405();
  5604. break;
  5605. case 406: //M406 Turn off filament sensor for control
  5606. gcode_M406();
  5607. break;
  5608. case 407: //M407 Display measured filament diameter
  5609. gcode_M407();
  5610. break;
  5611. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5612. case 410: // M410 quickstop - Abort all the planned moves.
  5613. gcode_M410();
  5614. break;
  5615. #if ENABLED(MESH_BED_LEVELING)
  5616. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5617. gcode_M420();
  5618. break;
  5619. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5620. gcode_M421();
  5621. break;
  5622. #endif
  5623. case 428: // M428 Apply current_position to home_offset
  5624. gcode_M428();
  5625. break;
  5626. case 500: // M500 Store settings in EEPROM
  5627. gcode_M500();
  5628. break;
  5629. case 501: // M501 Read settings from EEPROM
  5630. gcode_M501();
  5631. break;
  5632. case 502: // M502 Revert to default settings
  5633. gcode_M502();
  5634. break;
  5635. case 503: // M503 print settings currently in memory
  5636. gcode_M503();
  5637. break;
  5638. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5639. case 540:
  5640. gcode_M540();
  5641. break;
  5642. #endif
  5643. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5644. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5645. gcode_SET_Z_PROBE_OFFSET();
  5646. break;
  5647. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5648. #if ENABLED(FILAMENTCHANGEENABLE)
  5649. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5650. gcode_M600();
  5651. break;
  5652. #endif // FILAMENTCHANGEENABLE
  5653. #if ENABLED(DUAL_X_CARRIAGE)
  5654. case 605:
  5655. gcode_M605();
  5656. break;
  5657. #endif // DUAL_X_CARRIAGE
  5658. case 907: // M907 Set digital trimpot motor current using axis codes.
  5659. gcode_M907();
  5660. break;
  5661. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5662. case 908: // M908 Control digital trimpot directly.
  5663. gcode_M908();
  5664. break;
  5665. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5666. case 909: // M909 Print digipot/DAC current value
  5667. gcode_M909();
  5668. break;
  5669. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5670. gcode_M910();
  5671. break;
  5672. #endif
  5673. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5674. #if HAS_MICROSTEPS
  5675. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5676. gcode_M350();
  5677. break;
  5678. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5679. gcode_M351();
  5680. break;
  5681. #endif // HAS_MICROSTEPS
  5682. case 999: // M999: Restart after being Stopped
  5683. gcode_M999();
  5684. break;
  5685. }
  5686. break;
  5687. case 'T':
  5688. gcode_T(codenum);
  5689. break;
  5690. default: code_is_good = false;
  5691. }
  5692. KEEPALIVE_STATE(NOT_BUSY);
  5693. ExitUnknownCommand:
  5694. // Still unknown command? Throw an error
  5695. if (!code_is_good) unknown_command_error();
  5696. ok_to_send();
  5697. }
  5698. void FlushSerialRequestResend() {
  5699. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5700. MYSERIAL.flush();
  5701. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5702. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5703. ok_to_send();
  5704. }
  5705. void ok_to_send() {
  5706. refresh_cmd_timeout();
  5707. if (!send_ok[cmd_queue_index_r]) return;
  5708. SERIAL_PROTOCOLPGM(MSG_OK);
  5709. #if ENABLED(ADVANCED_OK)
  5710. char* p = command_queue[cmd_queue_index_r];
  5711. if (*p == 'N') {
  5712. SERIAL_PROTOCOL(' ');
  5713. SERIAL_ECHO(*p++);
  5714. while (NUMERIC_SIGNED(*p))
  5715. SERIAL_ECHO(*p++);
  5716. }
  5717. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5718. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5719. #endif
  5720. SERIAL_EOL;
  5721. }
  5722. void clamp_to_software_endstops(float target[3]) {
  5723. if (min_software_endstops) {
  5724. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5725. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5726. float negative_z_offset = 0;
  5727. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5728. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5729. if (home_offset[Z_AXIS] < 0) {
  5730. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5731. if (DEBUGGING(LEVELING)) {
  5732. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5733. SERIAL_EOL;
  5734. }
  5735. #endif
  5736. negative_z_offset += home_offset[Z_AXIS];
  5737. }
  5738. #endif
  5739. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5740. }
  5741. if (max_software_endstops) {
  5742. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5743. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5744. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5745. }
  5746. }
  5747. #if ENABLED(DELTA)
  5748. void recalc_delta_settings(float radius, float diagonal_rod) {
  5749. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5750. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5751. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5752. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5753. delta_tower3_x = 0.0; // back middle tower
  5754. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5755. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5756. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5757. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5758. }
  5759. void calculate_delta(float cartesian[3]) {
  5760. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5761. - sq(delta_tower1_x - cartesian[X_AXIS])
  5762. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5763. ) + cartesian[Z_AXIS];
  5764. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5765. - sq(delta_tower2_x - cartesian[X_AXIS])
  5766. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5767. ) + cartesian[Z_AXIS];
  5768. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5769. - sq(delta_tower3_x - cartesian[X_AXIS])
  5770. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5771. ) + cartesian[Z_AXIS];
  5772. /**
  5773. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5774. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5775. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5776. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5777. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5778. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5779. */
  5780. }
  5781. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5782. // Adjust print surface height by linear interpolation over the bed_level array.
  5783. void adjust_delta(float cartesian[3]) {
  5784. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5785. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5786. float h1 = 0.001 - half, h2 = half - 0.001,
  5787. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5788. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5789. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5790. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5791. z1 = bed_level[floor_x + half][floor_y + half],
  5792. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5793. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5794. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5795. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5796. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5797. offset = (1 - ratio_x) * left + ratio_x * right;
  5798. delta[X_AXIS] += offset;
  5799. delta[Y_AXIS] += offset;
  5800. delta[Z_AXIS] += offset;
  5801. /**
  5802. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5803. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5804. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5805. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5806. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5807. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5808. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5809. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5810. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5811. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5812. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5813. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5814. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5815. */
  5816. }
  5817. #endif // AUTO_BED_LEVELING_FEATURE
  5818. #endif // DELTA
  5819. #if ENABLED(MESH_BED_LEVELING)
  5820. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5821. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5822. if (!mbl.active) {
  5823. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5824. set_current_to_destination();
  5825. return;
  5826. }
  5827. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5828. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5829. int ix = mbl.select_x_index(x);
  5830. int iy = mbl.select_y_index(y);
  5831. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5832. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5833. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5834. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5835. if (pix == ix && piy == iy) {
  5836. // Start and end on same mesh square
  5837. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5838. set_current_to_destination();
  5839. return;
  5840. }
  5841. float nx, ny, nz, ne, normalized_dist;
  5842. if (ix > pix && TEST(x_splits, ix)) {
  5843. nx = mbl.get_x(ix);
  5844. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5845. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5846. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5847. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5848. CBI(x_splits, ix);
  5849. }
  5850. else if (ix < pix && TEST(x_splits, pix)) {
  5851. nx = mbl.get_x(pix);
  5852. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5853. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5854. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5855. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5856. CBI(x_splits, pix);
  5857. }
  5858. else if (iy > piy && TEST(y_splits, iy)) {
  5859. ny = mbl.get_y(iy);
  5860. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5861. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5862. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5863. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5864. CBI(y_splits, iy);
  5865. }
  5866. else if (iy < piy && TEST(y_splits, piy)) {
  5867. ny = mbl.get_y(piy);
  5868. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5869. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5870. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5871. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5872. CBI(y_splits, piy);
  5873. }
  5874. else {
  5875. // Already split on a border
  5876. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5877. set_current_to_destination();
  5878. return;
  5879. }
  5880. // Do the split and look for more borders
  5881. destination[X_AXIS] = nx;
  5882. destination[Y_AXIS] = ny;
  5883. destination[Z_AXIS] = nz;
  5884. destination[E_AXIS] = ne;
  5885. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5886. destination[X_AXIS] = x;
  5887. destination[Y_AXIS] = y;
  5888. destination[Z_AXIS] = z;
  5889. destination[E_AXIS] = e;
  5890. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5891. }
  5892. #endif // MESH_BED_LEVELING
  5893. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5894. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5895. if (DEBUGGING(DRYRUN)) return;
  5896. float de = dest_e - curr_e;
  5897. if (de) {
  5898. if (degHotend(active_extruder) < extrude_min_temp) {
  5899. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5900. SERIAL_ECHO_START;
  5901. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5902. }
  5903. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5904. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5905. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5906. SERIAL_ECHO_START;
  5907. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5908. }
  5909. #endif
  5910. }
  5911. }
  5912. #endif // PREVENT_DANGEROUS_EXTRUDE
  5913. #if ENABLED(DELTA) || ENABLED(SCARA)
  5914. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5915. float difference[NUM_AXIS];
  5916. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5917. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5918. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5919. if (cartesian_mm < 0.000001) return false;
  5920. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5921. int steps = max(1, int(delta_segments_per_second * seconds));
  5922. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5923. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5924. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5925. for (int s = 1; s <= steps; s++) {
  5926. float fraction = float(s) / float(steps);
  5927. for (int8_t i = 0; i < NUM_AXIS; i++)
  5928. target[i] = current_position[i] + difference[i] * fraction;
  5929. calculate_delta(target);
  5930. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5931. adjust_delta(target);
  5932. #endif
  5933. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5934. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5935. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5936. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5937. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5938. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5939. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5940. }
  5941. return true;
  5942. }
  5943. #endif // DELTA || SCARA
  5944. #if ENABLED(SCARA)
  5945. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5946. #endif
  5947. #if ENABLED(DUAL_X_CARRIAGE)
  5948. inline bool prepare_move_dual_x_carriage() {
  5949. if (active_extruder_parked) {
  5950. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5951. // move duplicate extruder into correct duplication position.
  5952. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5953. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5954. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5955. sync_plan_position();
  5956. st_synchronize();
  5957. extruder_duplication_enabled = true;
  5958. active_extruder_parked = false;
  5959. }
  5960. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5961. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5962. // This is a travel move (with no extrusion)
  5963. // Skip it, but keep track of the current position
  5964. // (so it can be used as the start of the next non-travel move)
  5965. if (delayed_move_time != 0xFFFFFFFFUL) {
  5966. set_current_to_destination();
  5967. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5968. delayed_move_time = millis();
  5969. return false;
  5970. }
  5971. }
  5972. delayed_move_time = 0;
  5973. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5974. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5977. active_extruder_parked = false;
  5978. }
  5979. }
  5980. return true;
  5981. }
  5982. #endif // DUAL_X_CARRIAGE
  5983. #if DISABLED(DELTA) && DISABLED(SCARA)
  5984. inline bool prepare_move_cartesian() {
  5985. // Do not use feedrate_multiplier for E or Z only moves
  5986. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5987. line_to_destination();
  5988. }
  5989. else {
  5990. #if ENABLED(MESH_BED_LEVELING)
  5991. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  5992. return false;
  5993. #else
  5994. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5995. #endif
  5996. }
  5997. return true;
  5998. }
  5999. #endif // !DELTA && !SCARA
  6000. /**
  6001. * Prepare a single move and get ready for the next one
  6002. *
  6003. * (This may call plan_buffer_line several times to put
  6004. * smaller moves into the planner for DELTA or SCARA.)
  6005. */
  6006. void prepare_move() {
  6007. clamp_to_software_endstops(destination);
  6008. refresh_cmd_timeout();
  6009. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6010. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6011. #endif
  6012. #if ENABLED(SCARA)
  6013. if (!prepare_move_scara(destination)) return;
  6014. #elif ENABLED(DELTA)
  6015. if (!prepare_move_delta(destination)) return;
  6016. #endif
  6017. #if ENABLED(DUAL_X_CARRIAGE)
  6018. if (!prepare_move_dual_x_carriage()) return;
  6019. #endif
  6020. #if DISABLED(DELTA) && DISABLED(SCARA)
  6021. if (!prepare_move_cartesian()) return;
  6022. #endif
  6023. set_current_to_destination();
  6024. }
  6025. /**
  6026. * Plan an arc in 2 dimensions
  6027. *
  6028. * The arc is approximated by generating many small linear segments.
  6029. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6030. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6031. * larger segments will tend to be more efficient. Your slicer should have
  6032. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6033. */
  6034. void plan_arc(
  6035. float target[NUM_AXIS], // Destination position
  6036. float* offset, // Center of rotation relative to current_position
  6037. uint8_t clockwise // Clockwise?
  6038. ) {
  6039. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6040. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  6041. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  6042. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6043. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6044. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  6045. r_axis1 = -offset[Y_AXIS],
  6046. rt_axis0 = target[X_AXIS] - center_axis0,
  6047. rt_axis1 = target[Y_AXIS] - center_axis1;
  6048. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6049. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  6050. if (angular_travel < 0) angular_travel += RADIANS(360);
  6051. if (clockwise) angular_travel -= RADIANS(360);
  6052. // Make a circle if the angular rotation is 0
  6053. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  6054. angular_travel += RADIANS(360);
  6055. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6056. if (mm_of_travel < 0.001) return;
  6057. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6058. if (segments == 0) segments = 1;
  6059. float theta_per_segment = angular_travel / segments;
  6060. float linear_per_segment = linear_travel / segments;
  6061. float extruder_per_segment = extruder_travel / segments;
  6062. /**
  6063. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6064. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6065. * r_T = [cos(phi) -sin(phi);
  6066. * sin(phi) cos(phi] * r ;
  6067. *
  6068. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6069. * defined from the circle center to the initial position. Each line segment is formed by successive
  6070. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6071. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6072. * all double numbers are single precision on the Arduino. (True double precision will not have
  6073. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6074. * tool precision in some cases. Therefore, arc path correction is implemented.
  6075. *
  6076. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6077. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6078. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6079. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6080. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6081. * issue for CNC machines with the single precision Arduino calculations.
  6082. *
  6083. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6084. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6085. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6086. * This is important when there are successive arc motions.
  6087. */
  6088. // Vector rotation matrix values
  6089. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6090. float sin_T = theta_per_segment;
  6091. float arc_target[NUM_AXIS];
  6092. float sin_Ti;
  6093. float cos_Ti;
  6094. float r_axisi;
  6095. uint16_t i;
  6096. int8_t count = 0;
  6097. // Initialize the linear axis
  6098. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6099. // Initialize the extruder axis
  6100. arc_target[E_AXIS] = current_position[E_AXIS];
  6101. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6102. for (i = 1; i < segments; i++) { // Increment (segments-1)
  6103. if (count < N_ARC_CORRECTION) {
  6104. // Apply vector rotation matrix to previous r_axis0 / 1
  6105. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  6106. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  6107. r_axis1 = r_axisi;
  6108. count++;
  6109. }
  6110. else {
  6111. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6112. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6113. cos_Ti = cos(i * theta_per_segment);
  6114. sin_Ti = sin(i * theta_per_segment);
  6115. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6116. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6117. count = 0;
  6118. }
  6119. // Update arc_target location
  6120. arc_target[X_AXIS] = center_axis0 + r_axis0;
  6121. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  6122. arc_target[Z_AXIS] += linear_per_segment;
  6123. arc_target[E_AXIS] += extruder_per_segment;
  6124. clamp_to_software_endstops(arc_target);
  6125. #if ENABLED(DELTA) || ENABLED(SCARA)
  6126. calculate_delta(arc_target);
  6127. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6128. adjust_delta(arc_target);
  6129. #endif
  6130. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6131. #else
  6132. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6133. #endif
  6134. }
  6135. // Ensure last segment arrives at target location.
  6136. #if ENABLED(DELTA) || ENABLED(SCARA)
  6137. calculate_delta(target);
  6138. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6139. adjust_delta(target);
  6140. #endif
  6141. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6142. #else
  6143. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6144. #endif
  6145. // As far as the parser is concerned, the position is now == target. In reality the
  6146. // motion control system might still be processing the action and the real tool position
  6147. // in any intermediate location.
  6148. set_current_to_destination();
  6149. }
  6150. #if HAS_CONTROLLERFAN
  6151. void controllerFan() {
  6152. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6153. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6154. millis_t ms = millis();
  6155. if (ms >= nextMotorCheck) {
  6156. nextMotorCheck = ms + 2500; // Not a time critical function, so only check every 2.5s
  6157. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6158. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6159. #if EXTRUDERS > 1
  6160. || E1_ENABLE_READ == E_ENABLE_ON
  6161. #if HAS_X2_ENABLE
  6162. || X2_ENABLE_READ == X_ENABLE_ON
  6163. #endif
  6164. #if EXTRUDERS > 2
  6165. || E2_ENABLE_READ == E_ENABLE_ON
  6166. #if EXTRUDERS > 3
  6167. || E3_ENABLE_READ == E_ENABLE_ON
  6168. #endif
  6169. #endif
  6170. #endif
  6171. ) {
  6172. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6173. }
  6174. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6175. uint8_t speed = (lastMotorOn == 0 || ms >= lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL) ? 0 : CONTROLLERFAN_SPEED;
  6176. // allows digital or PWM fan output to be used (see M42 handling)
  6177. digitalWrite(CONTROLLERFAN_PIN, speed);
  6178. analogWrite(CONTROLLERFAN_PIN, speed);
  6179. }
  6180. }
  6181. #endif // HAS_CONTROLLERFAN
  6182. #if ENABLED(SCARA)
  6183. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6184. // Perform forward kinematics, and place results in delta[3]
  6185. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6186. float x_sin, x_cos, y_sin, y_cos;
  6187. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6188. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6189. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6190. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6191. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6192. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6193. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6194. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6195. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6196. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6197. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6198. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6199. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6200. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6201. }
  6202. void calculate_delta(float cartesian[3]) {
  6203. //reverse kinematics.
  6204. // Perform reversed kinematics, and place results in delta[3]
  6205. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6206. float SCARA_pos[2];
  6207. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6208. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6209. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6210. #if (Linkage_1 == Linkage_2)
  6211. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6212. #else
  6213. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6214. #endif
  6215. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6216. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6217. SCARA_K2 = Linkage_2 * SCARA_S2;
  6218. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6219. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6220. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6221. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6222. delta[Z_AXIS] = cartesian[Z_AXIS];
  6223. /**
  6224. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6225. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6226. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6227. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6228. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6229. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6230. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6231. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6232. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6233. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6234. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6235. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6236. SERIAL_EOL;
  6237. */
  6238. }
  6239. #endif // SCARA
  6240. #if ENABLED(TEMP_STAT_LEDS)
  6241. static bool red_led = false;
  6242. static millis_t next_status_led_update_ms = 0;
  6243. void handle_status_leds(void) {
  6244. float max_temp = 0.0;
  6245. if (millis() > next_status_led_update_ms) {
  6246. next_status_led_update_ms += 500; // Update every 0.5s
  6247. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6248. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6249. #if HAS_TEMP_BED
  6250. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6251. #endif
  6252. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6253. if (new_led != red_led) {
  6254. red_led = new_led;
  6255. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6256. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6257. }
  6258. }
  6259. }
  6260. #endif
  6261. void enable_all_steppers() {
  6262. enable_x();
  6263. enable_y();
  6264. enable_z();
  6265. enable_e0();
  6266. enable_e1();
  6267. enable_e2();
  6268. enable_e3();
  6269. }
  6270. void disable_all_steppers() {
  6271. disable_x();
  6272. disable_y();
  6273. disable_z();
  6274. disable_e0();
  6275. disable_e1();
  6276. disable_e2();
  6277. disable_e3();
  6278. }
  6279. /**
  6280. * Standard idle routine keeps the machine alive
  6281. */
  6282. void idle(
  6283. #if ENABLED(FILAMENTCHANGEENABLE)
  6284. bool no_stepper_sleep/*=false*/
  6285. #endif
  6286. ) {
  6287. manage_heater();
  6288. manage_inactivity(
  6289. #if ENABLED(FILAMENTCHANGEENABLE)
  6290. no_stepper_sleep
  6291. #endif
  6292. );
  6293. host_keepalive();
  6294. lcd_update();
  6295. }
  6296. /**
  6297. * Manage several activities:
  6298. * - Check for Filament Runout
  6299. * - Keep the command buffer full
  6300. * - Check for maximum inactive time between commands
  6301. * - Check for maximum inactive time between stepper commands
  6302. * - Check if pin CHDK needs to go LOW
  6303. * - Check for KILL button held down
  6304. * - Check for HOME button held down
  6305. * - Check if cooling fan needs to be switched on
  6306. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6307. */
  6308. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6309. #if HAS_FILRUNOUT
  6310. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6311. filrunout();
  6312. #endif
  6313. if (commands_in_queue < BUFSIZE) get_available_commands();
  6314. millis_t ms = millis();
  6315. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6316. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6317. && !ignore_stepper_queue && !blocks_queued()) {
  6318. #if ENABLED(DISABLE_INACTIVE_X)
  6319. disable_x();
  6320. #endif
  6321. #if ENABLED(DISABLE_INACTIVE_Y)
  6322. disable_y();
  6323. #endif
  6324. #if ENABLED(DISABLE_INACTIVE_Z)
  6325. disable_z();
  6326. #endif
  6327. #if ENABLED(DISABLE_INACTIVE_E)
  6328. disable_e0();
  6329. disable_e1();
  6330. disable_e2();
  6331. disable_e3();
  6332. #endif
  6333. }
  6334. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6335. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6336. chdkActive = false;
  6337. WRITE(CHDK, LOW);
  6338. }
  6339. #endif
  6340. #if HAS_KILL
  6341. // Check if the kill button was pressed and wait just in case it was an accidental
  6342. // key kill key press
  6343. // -------------------------------------------------------------------------------
  6344. static int killCount = 0; // make the inactivity button a bit less responsive
  6345. const int KILL_DELAY = 750;
  6346. if (!READ(KILL_PIN))
  6347. killCount++;
  6348. else if (killCount > 0)
  6349. killCount--;
  6350. // Exceeded threshold and we can confirm that it was not accidental
  6351. // KILL the machine
  6352. // ----------------------------------------------------------------
  6353. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6354. #endif
  6355. #if HAS_HOME
  6356. // Check to see if we have to home, use poor man's debouncer
  6357. // ---------------------------------------------------------
  6358. static int homeDebounceCount = 0; // poor man's debouncing count
  6359. const int HOME_DEBOUNCE_DELAY = 2500;
  6360. if (!READ(HOME_PIN)) {
  6361. if (!homeDebounceCount) {
  6362. enqueue_and_echo_commands_P(PSTR("G28"));
  6363. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6364. }
  6365. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6366. homeDebounceCount++;
  6367. else
  6368. homeDebounceCount = 0;
  6369. }
  6370. #endif
  6371. #if HAS_CONTROLLERFAN
  6372. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6373. #endif
  6374. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6375. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6376. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6377. bool oldstatus;
  6378. switch (active_extruder) {
  6379. case 0:
  6380. oldstatus = E0_ENABLE_READ;
  6381. enable_e0();
  6382. break;
  6383. #if EXTRUDERS > 1
  6384. case 1:
  6385. oldstatus = E1_ENABLE_READ;
  6386. enable_e1();
  6387. break;
  6388. #if EXTRUDERS > 2
  6389. case 2:
  6390. oldstatus = E2_ENABLE_READ;
  6391. enable_e2();
  6392. break;
  6393. #if EXTRUDERS > 3
  6394. case 3:
  6395. oldstatus = E3_ENABLE_READ;
  6396. enable_e3();
  6397. break;
  6398. #endif
  6399. #endif
  6400. #endif
  6401. }
  6402. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6403. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6404. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6405. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6406. current_position[E_AXIS] = oldepos;
  6407. destination[E_AXIS] = oldedes;
  6408. plan_set_e_position(oldepos);
  6409. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6410. st_synchronize();
  6411. switch (active_extruder) {
  6412. case 0:
  6413. E0_ENABLE_WRITE(oldstatus);
  6414. break;
  6415. #if EXTRUDERS > 1
  6416. case 1:
  6417. E1_ENABLE_WRITE(oldstatus);
  6418. break;
  6419. #if EXTRUDERS > 2
  6420. case 2:
  6421. E2_ENABLE_WRITE(oldstatus);
  6422. break;
  6423. #if EXTRUDERS > 3
  6424. case 3:
  6425. E3_ENABLE_WRITE(oldstatus);
  6426. break;
  6427. #endif
  6428. #endif
  6429. #endif
  6430. }
  6431. }
  6432. #endif
  6433. #if ENABLED(DUAL_X_CARRIAGE)
  6434. // handle delayed move timeout
  6435. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6436. // travel moves have been received so enact them
  6437. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6438. set_destination_to_current();
  6439. prepare_move();
  6440. }
  6441. #endif
  6442. #if ENABLED(TEMP_STAT_LEDS)
  6443. handle_status_leds();
  6444. #endif
  6445. check_axes_activity();
  6446. }
  6447. void kill(const char* lcd_msg) {
  6448. #if ENABLED(ULTRA_LCD)
  6449. lcd_setalertstatuspgm(lcd_msg);
  6450. #else
  6451. UNUSED(lcd_msg);
  6452. #endif
  6453. cli(); // Stop interrupts
  6454. disable_all_heaters();
  6455. disable_all_steppers();
  6456. #if HAS_POWER_SWITCH
  6457. pinMode(PS_ON_PIN, INPUT);
  6458. #endif
  6459. SERIAL_ERROR_START;
  6460. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6461. // FMC small patch to update the LCD before ending
  6462. sei(); // enable interrupts
  6463. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6464. cli(); // disable interrupts
  6465. suicide();
  6466. while (1) {
  6467. #if ENABLED(USE_WATCHDOG)
  6468. watchdog_reset();
  6469. #endif
  6470. } // Wait for reset
  6471. }
  6472. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6473. void filrunout() {
  6474. if (!filrunoutEnqueued) {
  6475. filrunoutEnqueued = true;
  6476. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6477. st_synchronize();
  6478. }
  6479. }
  6480. #endif // FILAMENT_RUNOUT_SENSOR
  6481. #if ENABLED(FAST_PWM_FAN)
  6482. void setPwmFrequency(uint8_t pin, int val) {
  6483. val &= 0x07;
  6484. switch (digitalPinToTimer(pin)) {
  6485. #if defined(TCCR0A)
  6486. case TIMER0A:
  6487. case TIMER0B:
  6488. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6489. // TCCR0B |= val;
  6490. break;
  6491. #endif
  6492. #if defined(TCCR1A)
  6493. case TIMER1A:
  6494. case TIMER1B:
  6495. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6496. // TCCR1B |= val;
  6497. break;
  6498. #endif
  6499. #if defined(TCCR2)
  6500. case TIMER2:
  6501. case TIMER2:
  6502. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6503. TCCR2 |= val;
  6504. break;
  6505. #endif
  6506. #if defined(TCCR2A)
  6507. case TIMER2A:
  6508. case TIMER2B:
  6509. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6510. TCCR2B |= val;
  6511. break;
  6512. #endif
  6513. #if defined(TCCR3A)
  6514. case TIMER3A:
  6515. case TIMER3B:
  6516. case TIMER3C:
  6517. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6518. TCCR3B |= val;
  6519. break;
  6520. #endif
  6521. #if defined(TCCR4A)
  6522. case TIMER4A:
  6523. case TIMER4B:
  6524. case TIMER4C:
  6525. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6526. TCCR4B |= val;
  6527. break;
  6528. #endif
  6529. #if defined(TCCR5A)
  6530. case TIMER5A:
  6531. case TIMER5B:
  6532. case TIMER5C:
  6533. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6534. TCCR5B |= val;
  6535. break;
  6536. #endif
  6537. }
  6538. }
  6539. #endif // FAST_PWM_FAN
  6540. void Stop() {
  6541. disable_all_heaters();
  6542. if (IsRunning()) {
  6543. Running = false;
  6544. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6545. SERIAL_ERROR_START;
  6546. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6547. LCD_MESSAGEPGM(MSG_STOPPED);
  6548. }
  6549. }
  6550. /**
  6551. * Set target_extruder from the T parameter or the active_extruder
  6552. *
  6553. * Returns TRUE if the target is invalid
  6554. */
  6555. bool setTargetedHotend(int code) {
  6556. target_extruder = active_extruder;
  6557. if (code_seen('T')) {
  6558. target_extruder = code_value_short();
  6559. if (target_extruder >= EXTRUDERS) {
  6560. SERIAL_ECHO_START;
  6561. SERIAL_CHAR('M');
  6562. SERIAL_ECHO(code);
  6563. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6564. SERIAL_ECHOLN((int)target_extruder);
  6565. return true;
  6566. }
  6567. }
  6568. return false;
  6569. }
  6570. float calculate_volumetric_multiplier(float diameter) {
  6571. if (!volumetric_enabled || diameter == 0) return 1.0;
  6572. float d2 = diameter * 0.5;
  6573. return 1.0 / (M_PI * d2 * d2);
  6574. }
  6575. void calculate_volumetric_multipliers() {
  6576. for (int i = 0; i < EXTRUDERS; i++)
  6577. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6578. }