My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

stepper.cpp 40KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t* current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits = 0; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #if ENABLED(Z_DUAL_ENDSTOPS)
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #if ENABLED(ADVANCE)
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static uint8_t step_loops;
  62. static uint8_t step_loops_nominal;
  63. static unsigned short OCR1A_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
  67. #if DISABLED(Z_DUAL_ENDSTOPS)
  68. static byte
  69. #else
  70. static uint16_t
  71. #endif
  72. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
  73. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  74. bool abort_on_endstop_hit = false;
  75. #endif
  76. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  77. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  78. #endif
  79. static bool check_endstops = true;
  80. volatile long count_position[NUM_AXIS] = { 0 };
  81. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  82. //===========================================================================
  83. //================================ functions ================================
  84. //===========================================================================
  85. #if ENABLED(DUAL_X_CARRIAGE)
  86. #define X_APPLY_DIR(v,ALWAYS) \
  87. if (extruder_duplication_enabled || ALWAYS) { \
  88. X_DIR_WRITE(v); \
  89. X2_DIR_WRITE(v); \
  90. } \
  91. else { \
  92. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  93. }
  94. #define X_APPLY_STEP(v,ALWAYS) \
  95. if (extruder_duplication_enabled || ALWAYS) { \
  96. X_STEP_WRITE(v); \
  97. X2_STEP_WRITE(v); \
  98. } \
  99. else { \
  100. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  101. }
  102. #else
  103. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  104. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  105. #endif
  106. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  107. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  108. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  109. #else
  110. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  111. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  112. #endif
  113. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  114. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  115. #if ENABLED(Z_DUAL_ENDSTOPS)
  116. #define Z_APPLY_STEP(v,Q) \
  117. if (performing_homing) { \
  118. if (Z_HOME_DIR > 0) {\
  119. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  120. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  121. } \
  122. else { \
  123. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  124. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  125. } \
  126. } \
  127. else { \
  128. Z_STEP_WRITE(v); \
  129. Z2_STEP_WRITE(v); \
  130. }
  131. #else
  132. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  133. #endif
  134. #else
  135. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  136. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  137. #endif
  138. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  139. // intRes = intIn1 * intIn2 >> 16
  140. // uses:
  141. // r26 to store 0
  142. // r27 to store the byte 1 of the 24 bit result
  143. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  144. asm volatile ( \
  145. "clr r26 \n\t" \
  146. "mul %A1, %B2 \n\t" \
  147. "movw %A0, r0 \n\t" \
  148. "mul %A1, %A2 \n\t" \
  149. "add %A0, r1 \n\t" \
  150. "adc %B0, r26 \n\t" \
  151. "lsr r0 \n\t" \
  152. "adc %A0, r26 \n\t" \
  153. "adc %B0, r26 \n\t" \
  154. "clr r1 \n\t" \
  155. : \
  156. "=&r" (intRes) \
  157. : \
  158. "d" (charIn1), \
  159. "d" (intIn2) \
  160. : \
  161. "r26" \
  162. )
  163. // intRes = longIn1 * longIn2 >> 24
  164. // uses:
  165. // r26 to store 0
  166. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  167. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  168. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  169. // B0 A0 are bits 24-39 and are the returned value
  170. // C1 B1 A1 is longIn1
  171. // D2 C2 B2 A2 is longIn2
  172. //
  173. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  174. asm volatile ( \
  175. "clr r26 \n\t" \
  176. "mul %A1, %B2 \n\t" \
  177. "mov r27, r1 \n\t" \
  178. "mul %B1, %C2 \n\t" \
  179. "movw %A0, r0 \n\t" \
  180. "mul %C1, %C2 \n\t" \
  181. "add %B0, r0 \n\t" \
  182. "mul %C1, %B2 \n\t" \
  183. "add %A0, r0 \n\t" \
  184. "adc %B0, r1 \n\t" \
  185. "mul %A1, %C2 \n\t" \
  186. "add r27, r0 \n\t" \
  187. "adc %A0, r1 \n\t" \
  188. "adc %B0, r26 \n\t" \
  189. "mul %B1, %B2 \n\t" \
  190. "add r27, r0 \n\t" \
  191. "adc %A0, r1 \n\t" \
  192. "adc %B0, r26 \n\t" \
  193. "mul %C1, %A2 \n\t" \
  194. "add r27, r0 \n\t" \
  195. "adc %A0, r1 \n\t" \
  196. "adc %B0, r26 \n\t" \
  197. "mul %B1, %A2 \n\t" \
  198. "add r27, r1 \n\t" \
  199. "adc %A0, r26 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "lsr r27 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %D2, %A1 \n\t" \
  205. "add %A0, r0 \n\t" \
  206. "adc %B0, r1 \n\t" \
  207. "mul %D2, %B1 \n\t" \
  208. "add %B0, r0 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  221. void endstops_hit_on_purpose() {
  222. endstop_hit_bits = 0;
  223. }
  224. void checkHitEndstops() {
  225. if (endstop_hit_bits) {
  226. SERIAL_ECHO_START;
  227. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  228. if (endstop_hit_bits & BIT(X_MIN)) {
  229. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  230. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  231. }
  232. if (endstop_hit_bits & BIT(Y_MIN)) {
  233. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  234. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  235. }
  236. if (endstop_hit_bits & BIT(Z_MIN)) {
  237. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  238. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  239. }
  240. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  241. if (endstop_hit_bits & BIT(Z_MIN_PROBE)) {
  242. SERIAL_ECHOPAIR(" Z_MIN_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  243. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  244. }
  245. #endif
  246. SERIAL_EOL;
  247. endstops_hit_on_purpose();
  248. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
  249. if (abort_on_endstop_hit) {
  250. card.sdprinting = false;
  251. card.closefile();
  252. quickStop();
  253. disable_all_heaters(); // switch off all heaters.
  254. }
  255. #endif
  256. }
  257. }
  258. void enable_endstops(bool check) { check_endstops = check; }
  259. // Check endstops
  260. inline void update_endstops() {
  261. #if ENABLED(Z_DUAL_ENDSTOPS)
  262. uint16_t
  263. #else
  264. byte
  265. #endif
  266. current_endstop_bits = 0;
  267. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  268. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  269. #define _AXIS(AXIS) AXIS ##_AXIS
  270. #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
  271. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  272. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  273. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  274. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  275. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  276. // TEST_ENDSTOP: test the old and the current status of an endstop
  277. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  278. #define UPDATE_ENDSTOP(AXIS,MINMAX) \
  279. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  280. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
  281. endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
  282. _ENDSTOP_HIT(AXIS); \
  283. step_events_completed = current_block->step_event_count; \
  284. }
  285. #if ENABLED(COREXY)
  286. // Head direction in -X axis for CoreXY bots.
  287. // If DeltaX == -DeltaY, the movement is only in Y axis
  288. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  289. if (TEST(out_bits, X_HEAD))
  290. #elif ENABLED(COREXZ)
  291. // Head direction in -X axis for CoreXZ bots.
  292. // If DeltaX == -DeltaZ, the movement is only in Z axis
  293. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) {
  294. if (TEST(out_bits, X_HEAD))
  295. #else
  296. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  297. #endif
  298. { // -direction
  299. #if ENABLED(DUAL_X_CARRIAGE)
  300. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  301. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  302. #endif
  303. {
  304. #if HAS_X_MIN
  305. UPDATE_ENDSTOP(X, MIN);
  306. #endif
  307. }
  308. }
  309. else { // +direction
  310. #if ENABLED(DUAL_X_CARRIAGE)
  311. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  312. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  313. #endif
  314. {
  315. #if HAS_X_MAX
  316. UPDATE_ENDSTOP(X, MAX);
  317. #endif
  318. }
  319. }
  320. #if ENABLED(COREXY) || ENABLED(COREXZ)
  321. }
  322. #endif
  323. #if ENABLED(COREXY)
  324. // Head direction in -Y axis for CoreXY bots.
  325. // If DeltaX == DeltaY, the movement is only in X axis
  326. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  327. if (TEST(out_bits, Y_HEAD))
  328. #else
  329. if (TEST(out_bits, Y_AXIS)) // -direction
  330. #endif
  331. { // -direction
  332. #if HAS_Y_MIN
  333. UPDATE_ENDSTOP(Y, MIN);
  334. #endif
  335. }
  336. else { // +direction
  337. #if HAS_Y_MAX
  338. UPDATE_ENDSTOP(Y, MAX);
  339. #endif
  340. }
  341. #if ENABLED(COREXY)
  342. }
  343. #endif
  344. #if ENABLED(COREXZ)
  345. // Head direction in -Z axis for CoreXZ bots.
  346. // If DeltaX == DeltaZ, the movement is only in X axis
  347. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
  348. if (TEST(out_bits, Z_HEAD))
  349. #else
  350. if (TEST(out_bits, Z_AXIS))
  351. #endif
  352. { // z -direction
  353. #if HAS_Z_MIN
  354. #if ENABLED(Z_DUAL_ENDSTOPS)
  355. SET_ENDSTOP_BIT(Z, MIN);
  356. #if HAS_Z2_MIN
  357. SET_ENDSTOP_BIT(Z2, MIN);
  358. #else
  359. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
  360. #endif
  361. byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
  362. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  363. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  364. endstop_hit_bits |= BIT(Z_MIN);
  365. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  366. step_events_completed = current_block->step_event_count;
  367. }
  368. #else // !Z_DUAL_ENDSTOPS
  369. UPDATE_ENDSTOP(Z, MIN);
  370. #endif // !Z_DUAL_ENDSTOPS
  371. #endif // Z_MIN_PIN
  372. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  373. UPDATE_ENDSTOP(Z, MIN_PROBE);
  374. if (TEST_ENDSTOP(Z_MIN_PROBE)) {
  375. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  376. endstop_hit_bits |= BIT(Z_MIN_PROBE);
  377. }
  378. #endif
  379. }
  380. else { // z +direction
  381. #if HAS_Z_MAX
  382. #if ENABLED(Z_DUAL_ENDSTOPS)
  383. SET_ENDSTOP_BIT(Z, MAX);
  384. #if HAS_Z2_MAX
  385. SET_ENDSTOP_BIT(Z2, MAX);
  386. #else
  387. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
  388. #endif
  389. byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
  390. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  391. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  392. endstop_hit_bits |= BIT(Z_MIN);
  393. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  394. step_events_completed = current_block->step_event_count;
  395. }
  396. #else // !Z_DUAL_ENDSTOPS
  397. UPDATE_ENDSTOP(Z, MAX);
  398. #endif // !Z_DUAL_ENDSTOPS
  399. #endif // Z_MAX_PIN
  400. }
  401. #if ENABLED(COREXZ)
  402. }
  403. #endif
  404. old_endstop_bits = current_endstop_bits;
  405. }
  406. // __________________________
  407. // /| |\ _________________ ^
  408. // / | | \ /| |\ |
  409. // / | | \ / | | \ s
  410. // / | | | | | \ p
  411. // / | | | | | \ e
  412. // +-----+------------------------+---+--+---------------+----+ e
  413. // | BLOCK 1 | BLOCK 2 | d
  414. //
  415. // time ----->
  416. //
  417. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  418. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  419. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  420. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  421. void st_wake_up() {
  422. // TCNT1 = 0;
  423. ENABLE_STEPPER_DRIVER_INTERRUPT();
  424. }
  425. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  426. unsigned short timer;
  427. NOMORE(step_rate, MAX_STEP_FREQUENCY);
  428. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  429. step_rate = (step_rate >> 2) & 0x3fff;
  430. step_loops = 4;
  431. }
  432. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  433. step_rate = (step_rate >> 1) & 0x7fff;
  434. step_loops = 2;
  435. }
  436. else {
  437. step_loops = 1;
  438. }
  439. NOLESS(step_rate, F_CPU / 500000);
  440. step_rate -= F_CPU / 500000; // Correct for minimal speed
  441. if (step_rate >= (8 * 256)) { // higher step rate
  442. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
  443. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  444. unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
  445. MultiU16X8toH16(timer, tmp_step_rate, gain);
  446. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  447. }
  448. else { // lower step rates
  449. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  450. table_address += ((step_rate) >> 1) & 0xfffc;
  451. timer = (unsigned short)pgm_read_word_near(table_address);
  452. timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
  453. }
  454. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  455. return timer;
  456. }
  457. /**
  458. * Set the stepper direction of each axis
  459. *
  460. * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
  461. * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
  462. */
  463. void set_stepper_direction() {
  464. if (TEST(out_bits, X_AXIS)) { // A_AXIS
  465. X_APPLY_DIR(INVERT_X_DIR, 0);
  466. count_direction[X_AXIS] = -1;
  467. }
  468. else {
  469. X_APPLY_DIR(!INVERT_X_DIR, 0);
  470. count_direction[X_AXIS] = 1;
  471. }
  472. if (TEST(out_bits, Y_AXIS)) { // B_AXIS
  473. Y_APPLY_DIR(INVERT_Y_DIR, 0);
  474. count_direction[Y_AXIS] = -1;
  475. }
  476. else {
  477. Y_APPLY_DIR(!INVERT_Y_DIR, 0);
  478. count_direction[Y_AXIS] = 1;
  479. }
  480. if (TEST(out_bits, Z_AXIS)) { // C_AXIS
  481. Z_APPLY_DIR(INVERT_Z_DIR, 0);
  482. count_direction[Z_AXIS] = -1;
  483. }
  484. else {
  485. Z_APPLY_DIR(!INVERT_Z_DIR, 0);
  486. count_direction[Z_AXIS] = 1;
  487. }
  488. #if DISABLED(ADVANCE)
  489. if (TEST(out_bits, E_AXIS)) {
  490. REV_E_DIR();
  491. count_direction[E_AXIS] = -1;
  492. }
  493. else {
  494. NORM_E_DIR();
  495. count_direction[E_AXIS] = 1;
  496. }
  497. #endif //!ADVANCE
  498. }
  499. // Initializes the trapezoid generator from the current block. Called whenever a new
  500. // block begins.
  501. FORCE_INLINE void trapezoid_generator_reset() {
  502. if (current_block->direction_bits != out_bits) {
  503. out_bits = current_block->direction_bits;
  504. set_stepper_direction();
  505. }
  506. #if ENABLED(ADVANCE)
  507. advance = current_block->initial_advance;
  508. final_advance = current_block->final_advance;
  509. // Do E steps + advance steps
  510. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  511. old_advance = advance >>8;
  512. #endif
  513. deceleration_time = 0;
  514. // step_rate to timer interval
  515. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  516. // make a note of the number of step loops required at nominal speed
  517. step_loops_nominal = step_loops;
  518. acc_step_rate = current_block->initial_rate;
  519. acceleration_time = calc_timer(acc_step_rate);
  520. OCR1A = acceleration_time;
  521. // SERIAL_ECHO_START;
  522. // SERIAL_ECHOPGM("advance :");
  523. // SERIAL_ECHO(current_block->advance/256.0);
  524. // SERIAL_ECHOPGM("advance rate :");
  525. // SERIAL_ECHO(current_block->advance_rate/256.0);
  526. // SERIAL_ECHOPGM("initial advance :");
  527. // SERIAL_ECHO(current_block->initial_advance/256.0);
  528. // SERIAL_ECHOPGM("final advance :");
  529. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  530. }
  531. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  532. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  533. ISR(TIMER1_COMPA_vect) {
  534. if (cleaning_buffer_counter) {
  535. current_block = NULL;
  536. plan_discard_current_block();
  537. #ifdef SD_FINISHED_RELEASECOMMAND
  538. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  539. #endif
  540. cleaning_buffer_counter--;
  541. OCR1A = 200;
  542. return;
  543. }
  544. // If there is no current block, attempt to pop one from the buffer
  545. if (!current_block) {
  546. // Anything in the buffer?
  547. current_block = plan_get_current_block();
  548. if (current_block) {
  549. current_block->busy = true;
  550. trapezoid_generator_reset();
  551. counter_x = -(current_block->step_event_count >> 1);
  552. counter_y = counter_z = counter_e = counter_x;
  553. step_events_completed = 0;
  554. #if ENABLED(Z_LATE_ENABLE)
  555. if (current_block->steps[Z_AXIS] > 0) {
  556. enable_z();
  557. OCR1A = 2000; //1ms wait
  558. return;
  559. }
  560. #endif
  561. // #if ENABLED(ADVANCE)
  562. // e_steps[current_block->active_extruder] = 0;
  563. // #endif
  564. }
  565. else {
  566. OCR1A = 2000; // 1kHz.
  567. }
  568. }
  569. if (current_block != NULL) {
  570. // Update endstops state, if enabled
  571. if (check_endstops) update_endstops();
  572. // Take multiple steps per interrupt (For high speed moves)
  573. for (int8_t i = 0; i < step_loops; i++) {
  574. #ifndef USBCON
  575. customizedSerial.checkRx(); // Check for serial chars.
  576. #endif
  577. #if ENABLED(ADVANCE)
  578. counter_e += current_block->steps[E_AXIS];
  579. if (counter_e > 0) {
  580. counter_e -= current_block->step_event_count;
  581. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  582. }
  583. #endif //ADVANCE
  584. #define _COUNTER(axis) counter_## axis
  585. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  586. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  587. #define STEP_ADD(axis, AXIS) \
  588. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  589. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  590. STEP_ADD(x,X);
  591. STEP_ADD(y,Y);
  592. STEP_ADD(z,Z);
  593. #if DISABLED(ADVANCE)
  594. STEP_ADD(e,E);
  595. #endif
  596. #define STEP_IF_COUNTER(axis, AXIS) \
  597. if (_COUNTER(axis) > 0) { \
  598. _COUNTER(axis) -= current_block->step_event_count; \
  599. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  600. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  601. }
  602. STEP_IF_COUNTER(x, X);
  603. STEP_IF_COUNTER(y, Y);
  604. STEP_IF_COUNTER(z, Z);
  605. #if DISABLED(ADVANCE)
  606. STEP_IF_COUNTER(e, E);
  607. #endif
  608. step_events_completed++;
  609. if (step_events_completed >= current_block->step_event_count) break;
  610. }
  611. // Calculate new timer value
  612. unsigned short timer;
  613. unsigned short step_rate;
  614. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  615. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  616. acc_step_rate += current_block->initial_rate;
  617. // upper limit
  618. NOMORE(acc_step_rate, current_block->nominal_rate);
  619. // step_rate to timer interval
  620. timer = calc_timer(acc_step_rate);
  621. OCR1A = timer;
  622. acceleration_time += timer;
  623. #if ENABLED(ADVANCE)
  624. advance += advance_rate * step_loops;
  625. //NOLESS(advance, current_block->advance);
  626. // Do E steps + advance steps
  627. e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
  628. old_advance = advance >> 8;
  629. #endif //ADVANCE
  630. }
  631. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  632. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  633. if (step_rate <= acc_step_rate) { // Still decelerating?
  634. step_rate = acc_step_rate - step_rate;
  635. NOLESS(step_rate, current_block->final_rate);
  636. }
  637. else
  638. step_rate = current_block->final_rate;
  639. // step_rate to timer interval
  640. timer = calc_timer(step_rate);
  641. OCR1A = timer;
  642. deceleration_time += timer;
  643. #if ENABLED(ADVANCE)
  644. advance -= advance_rate * step_loops;
  645. NOLESS(advance, final_advance);
  646. // Do E steps + advance steps
  647. uint32_t advance_whole = advance >> 8;
  648. e_steps[current_block->active_extruder] += advance_whole - old_advance;
  649. old_advance = advance_whole;
  650. #endif //ADVANCE
  651. }
  652. else {
  653. OCR1A = OCR1A_nominal;
  654. // ensure we're running at the correct step rate, even if we just came off an acceleration
  655. step_loops = step_loops_nominal;
  656. }
  657. OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
  658. // If current block is finished, reset pointer
  659. if (step_events_completed >= current_block->step_event_count) {
  660. current_block = NULL;
  661. plan_discard_current_block();
  662. }
  663. }
  664. }
  665. #if ENABLED(ADVANCE)
  666. unsigned char old_OCR0A;
  667. // Timer interrupt for E. e_steps is set in the main routine;
  668. // Timer 0 is shared with millies
  669. ISR(TIMER0_COMPA_vect) {
  670. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  671. OCR0A = old_OCR0A;
  672. // Set E direction (Depends on E direction + advance)
  673. for (unsigned char i = 0; i < 4; i++) {
  674. if (e_steps[0] != 0) {
  675. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  676. if (e_steps[0] < 0) {
  677. E0_DIR_WRITE(INVERT_E0_DIR);
  678. e_steps[0]++;
  679. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  680. }
  681. else if (e_steps[0] > 0) {
  682. E0_DIR_WRITE(!INVERT_E0_DIR);
  683. e_steps[0]--;
  684. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  685. }
  686. }
  687. #if EXTRUDERS > 1
  688. if (e_steps[1] != 0) {
  689. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  690. if (e_steps[1] < 0) {
  691. E1_DIR_WRITE(INVERT_E1_DIR);
  692. e_steps[1]++;
  693. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  694. }
  695. else if (e_steps[1] > 0) {
  696. E1_DIR_WRITE(!INVERT_E1_DIR);
  697. e_steps[1]--;
  698. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  699. }
  700. }
  701. #endif
  702. #if EXTRUDERS > 2
  703. if (e_steps[2] != 0) {
  704. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  705. if (e_steps[2] < 0) {
  706. E2_DIR_WRITE(INVERT_E2_DIR);
  707. e_steps[2]++;
  708. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  709. }
  710. else if (e_steps[2] > 0) {
  711. E2_DIR_WRITE(!INVERT_E2_DIR);
  712. e_steps[2]--;
  713. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  714. }
  715. }
  716. #endif
  717. #if EXTRUDERS > 3
  718. if (e_steps[3] != 0) {
  719. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  720. if (e_steps[3] < 0) {
  721. E3_DIR_WRITE(INVERT_E3_DIR);
  722. e_steps[3]++;
  723. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  724. }
  725. else if (e_steps[3] > 0) {
  726. E3_DIR_WRITE(!INVERT_E3_DIR);
  727. e_steps[3]--;
  728. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  729. }
  730. }
  731. #endif
  732. }
  733. }
  734. #endif // ADVANCE
  735. void st_init() {
  736. digipot_init(); //Initialize Digipot Motor Current
  737. microstep_init(); //Initialize Microstepping Pins
  738. // initialise TMC Steppers
  739. #if ENABLED(HAVE_TMCDRIVER)
  740. tmc_init();
  741. #endif
  742. // initialise L6470 Steppers
  743. #if ENABLED(HAVE_L6470DRIVER)
  744. L6470_init();
  745. #endif
  746. // Initialize Dir Pins
  747. #if HAS_X_DIR
  748. X_DIR_INIT;
  749. #endif
  750. #if HAS_X2_DIR
  751. X2_DIR_INIT;
  752. #endif
  753. #if HAS_Y_DIR
  754. Y_DIR_INIT;
  755. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  756. Y2_DIR_INIT;
  757. #endif
  758. #endif
  759. #if HAS_Z_DIR
  760. Z_DIR_INIT;
  761. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  762. Z2_DIR_INIT;
  763. #endif
  764. #endif
  765. #if HAS_E0_DIR
  766. E0_DIR_INIT;
  767. #endif
  768. #if HAS_E1_DIR
  769. E1_DIR_INIT;
  770. #endif
  771. #if HAS_E2_DIR
  772. E2_DIR_INIT;
  773. #endif
  774. #if HAS_E3_DIR
  775. E3_DIR_INIT;
  776. #endif
  777. //Initialize Enable Pins - steppers default to disabled.
  778. #if HAS_X_ENABLE
  779. X_ENABLE_INIT;
  780. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  781. #endif
  782. #if HAS_X2_ENABLE
  783. X2_ENABLE_INIT;
  784. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  785. #endif
  786. #if HAS_Y_ENABLE
  787. Y_ENABLE_INIT;
  788. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  789. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  790. Y2_ENABLE_INIT;
  791. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  792. #endif
  793. #endif
  794. #if HAS_Z_ENABLE
  795. Z_ENABLE_INIT;
  796. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  797. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  798. Z2_ENABLE_INIT;
  799. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  800. #endif
  801. #endif
  802. #if HAS_E0_ENABLE
  803. E0_ENABLE_INIT;
  804. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  805. #endif
  806. #if HAS_E1_ENABLE
  807. E1_ENABLE_INIT;
  808. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  809. #endif
  810. #if HAS_E2_ENABLE
  811. E2_ENABLE_INIT;
  812. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  813. #endif
  814. #if HAS_E3_ENABLE
  815. E3_ENABLE_INIT;
  816. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  817. #endif
  818. //endstops and pullups
  819. #if HAS_X_MIN
  820. SET_INPUT(X_MIN_PIN);
  821. #if ENABLED(ENDSTOPPULLUP_XMIN)
  822. WRITE(X_MIN_PIN,HIGH);
  823. #endif
  824. #endif
  825. #if HAS_Y_MIN
  826. SET_INPUT(Y_MIN_PIN);
  827. #if ENABLED(ENDSTOPPULLUP_YMIN)
  828. WRITE(Y_MIN_PIN,HIGH);
  829. #endif
  830. #endif
  831. #if HAS_Z_MIN
  832. SET_INPUT(Z_MIN_PIN);
  833. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  834. WRITE(Z_MIN_PIN,HIGH);
  835. #endif
  836. #endif
  837. #if HAS_X_MAX
  838. SET_INPUT(X_MAX_PIN);
  839. #if ENABLED(ENDSTOPPULLUP_XMAX)
  840. WRITE(X_MAX_PIN,HIGH);
  841. #endif
  842. #endif
  843. #if HAS_Y_MAX
  844. SET_INPUT(Y_MAX_PIN);
  845. #if ENABLED(ENDSTOPPULLUP_YMAX)
  846. WRITE(Y_MAX_PIN,HIGH);
  847. #endif
  848. #endif
  849. #if HAS_Z_MAX
  850. SET_INPUT(Z_MAX_PIN);
  851. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  852. WRITE(Z_MAX_PIN,HIGH);
  853. #endif
  854. #endif
  855. #if HAS_Z2_MAX
  856. SET_INPUT(Z2_MAX_PIN);
  857. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  858. WRITE(Z2_MAX_PIN,HIGH);
  859. #endif
  860. #endif
  861. #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  862. SET_INPUT(Z_MIN_PROBE_PIN);
  863. #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
  864. WRITE(Z_MIN_PROBE_PIN,HIGH);
  865. #endif
  866. #endif
  867. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  868. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  869. #define _DISABLE(axis) disable_## axis()
  870. #define AXIS_INIT(axis, AXIS, PIN) \
  871. _STEP_INIT(AXIS); \
  872. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  873. _DISABLE(axis)
  874. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  875. // Initialize Step Pins
  876. #if HAS_X_STEP
  877. AXIS_INIT(x, X, X);
  878. #endif
  879. #if HAS_X2_STEP
  880. AXIS_INIT(x, X2, X);
  881. #endif
  882. #if HAS_Y_STEP
  883. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  884. Y2_STEP_INIT;
  885. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  886. #endif
  887. AXIS_INIT(y, Y, Y);
  888. #endif
  889. #if HAS_Z_STEP
  890. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  891. Z2_STEP_INIT;
  892. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  893. #endif
  894. AXIS_INIT(z, Z, Z);
  895. #endif
  896. #if HAS_E0_STEP
  897. E_AXIS_INIT(0);
  898. #endif
  899. #if HAS_E1_STEP
  900. E_AXIS_INIT(1);
  901. #endif
  902. #if HAS_E2_STEP
  903. E_AXIS_INIT(2);
  904. #endif
  905. #if HAS_E3_STEP
  906. E_AXIS_INIT(3);
  907. #endif
  908. // waveform generation = 0100 = CTC
  909. TCCR1B &= ~BIT(WGM13);
  910. TCCR1B |= BIT(WGM12);
  911. TCCR1A &= ~BIT(WGM11);
  912. TCCR1A &= ~BIT(WGM10);
  913. // output mode = 00 (disconnected)
  914. TCCR1A &= ~(3 << COM1A0);
  915. TCCR1A &= ~(3 << COM1B0);
  916. // Set the timer pre-scaler
  917. // Generally we use a divider of 8, resulting in a 2MHz timer
  918. // frequency on a 16MHz MCU. If you are going to change this, be
  919. // sure to regenerate speed_lookuptable.h with
  920. // create_speed_lookuptable.py
  921. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  922. OCR1A = 0x4000;
  923. TCNT1 = 0;
  924. ENABLE_STEPPER_DRIVER_INTERRUPT();
  925. #if ENABLED(ADVANCE)
  926. #if defined(TCCR0A) && defined(WGM01)
  927. TCCR0A &= ~BIT(WGM01);
  928. TCCR0A &= ~BIT(WGM00);
  929. #endif
  930. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  931. TIMSK0 |= BIT(OCIE0A);
  932. #endif //ADVANCE
  933. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  934. sei();
  935. set_stepper_direction(); // Init directions to out_bits = 0
  936. }
  937. /**
  938. * Block until all buffered steps are executed
  939. */
  940. void st_synchronize() { while (blocks_queued()) idle(); }
  941. void st_set_position(const long& x, const long& y, const long& z, const long& e) {
  942. CRITICAL_SECTION_START;
  943. count_position[X_AXIS] = x;
  944. count_position[Y_AXIS] = y;
  945. count_position[Z_AXIS] = z;
  946. count_position[E_AXIS] = e;
  947. CRITICAL_SECTION_END;
  948. }
  949. void st_set_e_position(const long& e) {
  950. CRITICAL_SECTION_START;
  951. count_position[E_AXIS] = e;
  952. CRITICAL_SECTION_END;
  953. }
  954. long st_get_position(uint8_t axis) {
  955. long count_pos;
  956. CRITICAL_SECTION_START;
  957. count_pos = count_position[axis];
  958. CRITICAL_SECTION_END;
  959. return count_pos;
  960. }
  961. float st_get_position_mm(AxisEnum axis) { return st_get_position(axis) / axis_steps_per_unit[axis]; }
  962. void finishAndDisableSteppers() {
  963. st_synchronize();
  964. disable_all_steppers();
  965. }
  966. void quickStop() {
  967. cleaning_buffer_counter = 5000;
  968. DISABLE_STEPPER_DRIVER_INTERRUPT();
  969. while (blocks_queued()) plan_discard_current_block();
  970. current_block = NULL;
  971. ENABLE_STEPPER_DRIVER_INTERRUPT();
  972. }
  973. #if ENABLED(BABYSTEPPING)
  974. // MUST ONLY BE CALLED BY AN ISR,
  975. // No other ISR should ever interrupt this!
  976. void babystep(const uint8_t axis, const bool direction) {
  977. #define _ENABLE(axis) enable_## axis()
  978. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  979. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  980. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  981. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  982. _ENABLE(axis); \
  983. uint8_t old_pin = _READ_DIR(AXIS); \
  984. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  985. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  986. delayMicroseconds(2); \
  987. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  988. _APPLY_DIR(AXIS, old_pin); \
  989. }
  990. switch (axis) {
  991. case X_AXIS:
  992. BABYSTEP_AXIS(x, X, false);
  993. break;
  994. case Y_AXIS:
  995. BABYSTEP_AXIS(y, Y, false);
  996. break;
  997. case Z_AXIS: {
  998. #if DISABLED(DELTA)
  999. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1000. #else // DELTA
  1001. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1002. enable_x();
  1003. enable_y();
  1004. enable_z();
  1005. uint8_t old_x_dir_pin = X_DIR_READ,
  1006. old_y_dir_pin = Y_DIR_READ,
  1007. old_z_dir_pin = Z_DIR_READ;
  1008. //setup new step
  1009. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1010. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1011. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1012. //perform step
  1013. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1014. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1015. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1016. delayMicroseconds(2);
  1017. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1018. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1019. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1020. //get old pin state back.
  1021. X_DIR_WRITE(old_x_dir_pin);
  1022. Y_DIR_WRITE(old_y_dir_pin);
  1023. Z_DIR_WRITE(old_z_dir_pin);
  1024. #endif
  1025. } break;
  1026. default: break;
  1027. }
  1028. }
  1029. #endif //BABYSTEPPING
  1030. // From Arduino DigitalPotControl example
  1031. void digitalPotWrite(int address, int value) {
  1032. #if HAS_DIGIPOTSS
  1033. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1034. SPI.transfer(address); // send in the address and value via SPI:
  1035. SPI.transfer(value);
  1036. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1037. //delay(10);
  1038. #else
  1039. UNUSED(address);
  1040. UNUSED(value);
  1041. #endif
  1042. }
  1043. // Initialize Digipot Motor Current
  1044. void digipot_init() {
  1045. #if HAS_DIGIPOTSS
  1046. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1047. SPI.begin();
  1048. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1049. for (int i = 0; i < COUNT(digipot_motor_current); i++) {
  1050. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1051. digipot_current(i, digipot_motor_current[i]);
  1052. }
  1053. #endif
  1054. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1055. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1056. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1057. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1058. digipot_current(0, motor_current_setting[0]);
  1059. digipot_current(1, motor_current_setting[1]);
  1060. digipot_current(2, motor_current_setting[2]);
  1061. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1062. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1063. #endif
  1064. }
  1065. void digipot_current(uint8_t driver, int current) {
  1066. #if HAS_DIGIPOTSS
  1067. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1068. digitalPotWrite(digipot_ch[driver], current);
  1069. #elif defined(MOTOR_CURRENT_PWM_XY_PIN)
  1070. switch (driver) {
  1071. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1072. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1073. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1074. }
  1075. #else
  1076. UNUSED(driver);
  1077. UNUSED(current);
  1078. #endif
  1079. }
  1080. void microstep_init() {
  1081. #if HAS_MICROSTEPS_E1
  1082. pinMode(E1_MS1_PIN, OUTPUT);
  1083. pinMode(E1_MS2_PIN, OUTPUT);
  1084. #endif
  1085. #if HAS_MICROSTEPS
  1086. pinMode(X_MS1_PIN, OUTPUT);
  1087. pinMode(X_MS2_PIN, OUTPUT);
  1088. pinMode(Y_MS1_PIN, OUTPUT);
  1089. pinMode(Y_MS2_PIN, OUTPUT);
  1090. pinMode(Z_MS1_PIN, OUTPUT);
  1091. pinMode(Z_MS2_PIN, OUTPUT);
  1092. pinMode(E0_MS1_PIN, OUTPUT);
  1093. pinMode(E0_MS2_PIN, OUTPUT);
  1094. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1095. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1096. microstep_mode(i, microstep_modes[i]);
  1097. #endif
  1098. }
  1099. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1100. if (ms1 >= 0) switch (driver) {
  1101. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1102. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1103. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1104. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1105. #if HAS_MICROSTEPS_E1
  1106. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1107. #endif
  1108. }
  1109. if (ms2 >= 0) switch (driver) {
  1110. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1111. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1112. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1113. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1114. #if PIN_EXISTS(E1_MS2)
  1115. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1116. #endif
  1117. }
  1118. }
  1119. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1120. switch (stepping_mode) {
  1121. case 1: microstep_ms(driver, MICROSTEP1); break;
  1122. case 2: microstep_ms(driver, MICROSTEP2); break;
  1123. case 4: microstep_ms(driver, MICROSTEP4); break;
  1124. case 8: microstep_ms(driver, MICROSTEP8); break;
  1125. case 16: microstep_ms(driver, MICROSTEP16); break;
  1126. }
  1127. }
  1128. void microstep_readings() {
  1129. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1130. SERIAL_PROTOCOLPGM("X: ");
  1131. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1132. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1133. SERIAL_PROTOCOLPGM("Y: ");
  1134. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1135. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1136. SERIAL_PROTOCOLPGM("Z: ");
  1137. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1138. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1139. SERIAL_PROTOCOLPGM("E0: ");
  1140. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1141. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1142. #if HAS_MICROSTEPS_E1
  1143. SERIAL_PROTOCOLPGM("E1: ");
  1144. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1145. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1146. #endif
  1147. }
  1148. #if ENABLED(Z_DUAL_ENDSTOPS)
  1149. void In_Homing_Process(bool state) { performing_homing = state; }
  1150. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1151. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1152. #endif