My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 117KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float volumetric_multiplier[EXTRUDERS] = {1.0
  172. #if EXTRUDERS > 1
  173. , 1.0
  174. #if EXTRUDERS > 2
  175. , 1.0
  176. #endif
  177. #endif
  178. };
  179. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  180. float add_homeing[3]={0,0,0};
  181. #ifdef DELTA
  182. float endstop_adj[3]={0,0,0};
  183. #endif
  184. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  185. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  186. bool axis_known_position[3] = {false, false, false};
  187. float zprobe_zoffset;
  188. // Extruder offset
  189. #if EXTRUDERS > 1
  190. #ifndef DUAL_X_CARRIAGE
  191. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  192. #else
  193. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  194. #endif
  195. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  196. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  197. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  198. #endif
  199. };
  200. #endif
  201. uint8_t active_extruder = 0;
  202. int fanSpeed=0;
  203. #ifdef SERVO_ENDSTOPS
  204. int servo_endstops[] = SERVO_ENDSTOPS;
  205. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  206. #endif
  207. #ifdef BARICUDA
  208. int ValvePressure=0;
  209. int EtoPPressure=0;
  210. #endif
  211. #ifdef FWRETRACT
  212. bool autoretract_enabled=false;
  213. bool retracted=false;
  214. float retract_length = RETRACT_LENGTH;
  215. float retract_feedrate = RETRACT_FEEDRATE;
  216. float retract_zlift = RETRACT_ZLIFT;
  217. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  218. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  219. #endif
  220. #ifdef ULTIPANEL
  221. #ifdef PS_DEFAULT_OFF
  222. bool powersupply = false;
  223. #else
  224. bool powersupply = true;
  225. #endif
  226. #endif
  227. #ifdef DELTA
  228. float delta[3] = {0.0, 0.0, 0.0};
  229. #endif
  230. //===========================================================================
  231. //=============================private variables=============================
  232. //===========================================================================
  233. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  234. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  235. static float offset[3] = {0.0, 0.0, 0.0};
  236. static bool home_all_axis = true;
  237. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  238. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  239. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  240. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  241. static bool fromsd[BUFSIZE];
  242. static int bufindr = 0;
  243. static int bufindw = 0;
  244. static int buflen = 0;
  245. //static int i = 0;
  246. static char serial_char;
  247. static int serial_count = 0;
  248. static boolean comment_mode = false;
  249. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  250. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  251. //static float tt = 0;
  252. //static float bt = 0;
  253. //Inactivity shutdown variables
  254. static unsigned long previous_millis_cmd = 0;
  255. static unsigned long max_inactive_time = 0;
  256. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  257. unsigned long starttime=0;
  258. unsigned long stoptime=0;
  259. static uint8_t tmp_extruder;
  260. bool Stopped=false;
  261. #if NUM_SERVOS > 0
  262. Servo servos[NUM_SERVOS];
  263. #endif
  264. bool CooldownNoWait = true;
  265. bool target_direction;
  266. //===========================================================================
  267. //=============================ROUTINES=============================
  268. //===========================================================================
  269. void get_arc_coordinates();
  270. bool setTargetedHotend(int code);
  271. void serial_echopair_P(const char *s_P, float v)
  272. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  273. void serial_echopair_P(const char *s_P, double v)
  274. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  275. void serial_echopair_P(const char *s_P, unsigned long v)
  276. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  277. extern "C"{
  278. extern unsigned int __bss_end;
  279. extern unsigned int __heap_start;
  280. extern void *__brkval;
  281. int freeMemory() {
  282. int free_memory;
  283. if((int)__brkval == 0)
  284. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  285. else
  286. free_memory = ((int)&free_memory) - ((int)__brkval);
  287. return free_memory;
  288. }
  289. }
  290. //adds an command to the main command buffer
  291. //thats really done in a non-safe way.
  292. //needs overworking someday
  293. void enquecommand(const char *cmd)
  294. {
  295. if(buflen < BUFSIZE)
  296. {
  297. //this is dangerous if a mixing of serial and this happsens
  298. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  299. SERIAL_ECHO_START;
  300. SERIAL_ECHOPGM("enqueing \"");
  301. SERIAL_ECHO(cmdbuffer[bufindw]);
  302. SERIAL_ECHOLNPGM("\"");
  303. bufindw= (bufindw + 1)%BUFSIZE;
  304. buflen += 1;
  305. }
  306. }
  307. void enquecommand_P(const char *cmd)
  308. {
  309. if(buflen < BUFSIZE)
  310. {
  311. //this is dangerous if a mixing of serial and this happsens
  312. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  313. SERIAL_ECHO_START;
  314. SERIAL_ECHOPGM("enqueing \"");
  315. SERIAL_ECHO(cmdbuffer[bufindw]);
  316. SERIAL_ECHOLNPGM("\"");
  317. bufindw= (bufindw + 1)%BUFSIZE;
  318. buflen += 1;
  319. }
  320. }
  321. void setup_killpin()
  322. {
  323. #if defined(KILL_PIN) && KILL_PIN > -1
  324. pinMode(KILL_PIN,INPUT);
  325. WRITE(KILL_PIN,HIGH);
  326. #endif
  327. }
  328. void setup_photpin()
  329. {
  330. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  331. SET_OUTPUT(PHOTOGRAPH_PIN);
  332. WRITE(PHOTOGRAPH_PIN, LOW);
  333. #endif
  334. }
  335. void setup_powerhold()
  336. {
  337. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  338. SET_OUTPUT(SUICIDE_PIN);
  339. WRITE(SUICIDE_PIN, HIGH);
  340. #endif
  341. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  342. SET_OUTPUT(PS_ON_PIN);
  343. #if defined(PS_DEFAULT_OFF)
  344. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  345. #else
  346. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  347. #endif
  348. #endif
  349. }
  350. void suicide()
  351. {
  352. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  353. SET_OUTPUT(SUICIDE_PIN);
  354. WRITE(SUICIDE_PIN, LOW);
  355. #endif
  356. }
  357. void servo_init()
  358. {
  359. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  360. servos[0].attach(SERVO0_PIN);
  361. #endif
  362. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  363. servos[1].attach(SERVO1_PIN);
  364. #endif
  365. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  366. servos[2].attach(SERVO2_PIN);
  367. #endif
  368. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  369. servos[3].attach(SERVO3_PIN);
  370. #endif
  371. #if (NUM_SERVOS >= 5)
  372. #error "TODO: enter initalisation code for more servos"
  373. #endif
  374. // Set position of Servo Endstops that are defined
  375. #ifdef SERVO_ENDSTOPS
  376. for(int8_t i = 0; i < 3; i++)
  377. {
  378. if(servo_endstops[i] > -1) {
  379. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  380. }
  381. }
  382. #endif
  383. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  384. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  385. servos[servo_endstops[Z_AXIS]].detach();
  386. #endif
  387. }
  388. void setup()
  389. {
  390. setup_killpin();
  391. setup_powerhold();
  392. MYSERIAL.begin(BAUDRATE);
  393. SERIAL_PROTOCOLLNPGM("start");
  394. SERIAL_ECHO_START;
  395. // Check startup - does nothing if bootloader sets MCUSR to 0
  396. byte mcu = MCUSR;
  397. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  398. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  399. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  400. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  401. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  402. MCUSR=0;
  403. SERIAL_ECHOPGM(MSG_MARLIN);
  404. SERIAL_ECHOLNPGM(VERSION_STRING);
  405. #ifdef STRING_VERSION_CONFIG_H
  406. #ifdef STRING_CONFIG_H_AUTHOR
  407. SERIAL_ECHO_START;
  408. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  409. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  410. SERIAL_ECHOPGM(MSG_AUTHOR);
  411. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  412. SERIAL_ECHOPGM("Compiled: ");
  413. SERIAL_ECHOLNPGM(__DATE__);
  414. #endif
  415. #endif
  416. SERIAL_ECHO_START;
  417. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  418. SERIAL_ECHO(freeMemory());
  419. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  420. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  421. for(int8_t i = 0; i < BUFSIZE; i++)
  422. {
  423. fromsd[i] = false;
  424. }
  425. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  426. Config_RetrieveSettings();
  427. tp_init(); // Initialize temperature loop
  428. plan_init(); // Initialize planner;
  429. watchdog_init();
  430. st_init(); // Initialize stepper, this enables interrupts!
  431. setup_photpin();
  432. servo_init();
  433. lcd_init();
  434. _delay_ms(1000); // wait 1sec to display the splash screen
  435. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  436. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  437. #endif
  438. #ifdef DIGIPOT_I2C
  439. digipot_i2c_init();
  440. #endif
  441. }
  442. void loop()
  443. {
  444. if(buflen < (BUFSIZE-1))
  445. get_command();
  446. #ifdef SDSUPPORT
  447. card.checkautostart(false);
  448. #endif
  449. if(buflen)
  450. {
  451. #ifdef SDSUPPORT
  452. if(card.saving)
  453. {
  454. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  455. {
  456. card.write_command(cmdbuffer[bufindr]);
  457. if(card.logging)
  458. {
  459. process_commands();
  460. }
  461. else
  462. {
  463. SERIAL_PROTOCOLLNPGM(MSG_OK);
  464. }
  465. }
  466. else
  467. {
  468. card.closefile();
  469. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  470. }
  471. }
  472. else
  473. {
  474. process_commands();
  475. }
  476. #else
  477. process_commands();
  478. #endif //SDSUPPORT
  479. buflen = (buflen-1);
  480. bufindr = (bufindr + 1)%BUFSIZE;
  481. }
  482. //check heater every n milliseconds
  483. manage_heater();
  484. manage_inactivity();
  485. checkHitEndstops();
  486. lcd_update();
  487. }
  488. void get_command()
  489. {
  490. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  491. serial_char = MYSERIAL.read();
  492. if(serial_char == '\n' ||
  493. serial_char == '\r' ||
  494. (serial_char == ':' && comment_mode == false) ||
  495. serial_count >= (MAX_CMD_SIZE - 1) )
  496. {
  497. if(!serial_count) { //if empty line
  498. comment_mode = false; //for new command
  499. return;
  500. }
  501. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  502. if(!comment_mode){
  503. comment_mode = false; //for new command
  504. fromsd[bufindw] = false;
  505. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  506. {
  507. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  508. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  509. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  510. SERIAL_ERROR_START;
  511. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  512. SERIAL_ERRORLN(gcode_LastN);
  513. //Serial.println(gcode_N);
  514. FlushSerialRequestResend();
  515. serial_count = 0;
  516. return;
  517. }
  518. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  519. {
  520. byte checksum = 0;
  521. byte count = 0;
  522. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  523. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  524. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  525. SERIAL_ERROR_START;
  526. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  527. SERIAL_ERRORLN(gcode_LastN);
  528. FlushSerialRequestResend();
  529. serial_count = 0;
  530. return;
  531. }
  532. //if no errors, continue parsing
  533. }
  534. else
  535. {
  536. SERIAL_ERROR_START;
  537. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  538. SERIAL_ERRORLN(gcode_LastN);
  539. FlushSerialRequestResend();
  540. serial_count = 0;
  541. return;
  542. }
  543. gcode_LastN = gcode_N;
  544. //if no errors, continue parsing
  545. }
  546. else // if we don't receive 'N' but still see '*'
  547. {
  548. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  549. {
  550. SERIAL_ERROR_START;
  551. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  552. SERIAL_ERRORLN(gcode_LastN);
  553. serial_count = 0;
  554. return;
  555. }
  556. }
  557. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  558. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  559. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  560. case 0:
  561. case 1:
  562. case 2:
  563. case 3:
  564. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  565. #ifdef SDSUPPORT
  566. if(card.saving)
  567. break;
  568. #endif //SDSUPPORT
  569. SERIAL_PROTOCOLLNPGM(MSG_OK);
  570. }
  571. else {
  572. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  573. LCD_MESSAGEPGM(MSG_STOPPED);
  574. }
  575. break;
  576. default:
  577. break;
  578. }
  579. }
  580. bufindw = (bufindw + 1)%BUFSIZE;
  581. buflen += 1;
  582. }
  583. serial_count = 0; //clear buffer
  584. }
  585. else
  586. {
  587. if(serial_char == ';') comment_mode = true;
  588. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  589. }
  590. }
  591. #ifdef SDSUPPORT
  592. if(!card.sdprinting || serial_count!=0){
  593. return;
  594. }
  595. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  596. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  597. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  598. static bool stop_buffering=false;
  599. if(buflen==0) stop_buffering=false;
  600. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  601. int16_t n=card.get();
  602. serial_char = (char)n;
  603. if(serial_char == '\n' ||
  604. serial_char == '\r' ||
  605. (serial_char == '#' && comment_mode == false) ||
  606. (serial_char == ':' && comment_mode == false) ||
  607. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  608. {
  609. if(card.eof()){
  610. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  611. stoptime=millis();
  612. char time[30];
  613. unsigned long t=(stoptime-starttime)/1000;
  614. int hours, minutes;
  615. minutes=(t/60)%60;
  616. hours=t/60/60;
  617. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  618. SERIAL_ECHO_START;
  619. SERIAL_ECHOLN(time);
  620. lcd_setstatus(time);
  621. card.printingHasFinished();
  622. card.checkautostart(true);
  623. }
  624. if(serial_char=='#')
  625. stop_buffering=true;
  626. if(!serial_count)
  627. {
  628. comment_mode = false; //for new command
  629. return; //if empty line
  630. }
  631. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  632. // if(!comment_mode){
  633. fromsd[bufindw] = true;
  634. buflen += 1;
  635. bufindw = (bufindw + 1)%BUFSIZE;
  636. // }
  637. comment_mode = false; //for new command
  638. serial_count = 0; //clear buffer
  639. }
  640. else
  641. {
  642. if(serial_char == ';') comment_mode = true;
  643. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  644. }
  645. }
  646. #endif //SDSUPPORT
  647. }
  648. float code_value()
  649. {
  650. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  651. }
  652. long code_value_long()
  653. {
  654. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  655. }
  656. bool code_seen(char code)
  657. {
  658. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  659. return (strchr_pointer != NULL); //Return True if a character was found
  660. }
  661. #define DEFINE_PGM_READ_ANY(type, reader) \
  662. static inline type pgm_read_any(const type *p) \
  663. { return pgm_read_##reader##_near(p); }
  664. DEFINE_PGM_READ_ANY(float, float);
  665. DEFINE_PGM_READ_ANY(signed char, byte);
  666. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  667. static const PROGMEM type array##_P[3] = \
  668. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  669. static inline type array(int axis) \
  670. { return pgm_read_any(&array##_P[axis]); }
  671. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  672. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  673. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  674. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  675. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  676. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  677. #ifdef DUAL_X_CARRIAGE
  678. #if EXTRUDERS == 1 || defined(COREXY) \
  679. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  680. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  681. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  682. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  683. #endif
  684. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  685. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  686. #endif
  687. #define DXC_FULL_CONTROL_MODE 0
  688. #define DXC_AUTO_PARK_MODE 1
  689. #define DXC_DUPLICATION_MODE 2
  690. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  691. static float x_home_pos(int extruder) {
  692. if (extruder == 0)
  693. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  694. else
  695. // In dual carriage mode the extruder offset provides an override of the
  696. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  697. // This allow soft recalibration of the second extruder offset position without firmware reflash
  698. // (through the M218 command).
  699. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  700. }
  701. static int x_home_dir(int extruder) {
  702. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  703. }
  704. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  705. static bool active_extruder_parked = false; // used in mode 1 & 2
  706. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  707. static unsigned long delayed_move_time = 0; // used in mode 1
  708. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  709. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  710. bool extruder_duplication_enabled = false; // used in mode 2
  711. #endif //DUAL_X_CARRIAGE
  712. static void axis_is_at_home(int axis) {
  713. #ifdef DUAL_X_CARRIAGE
  714. if (axis == X_AXIS) {
  715. if (active_extruder != 0) {
  716. current_position[X_AXIS] = x_home_pos(active_extruder);
  717. min_pos[X_AXIS] = X2_MIN_POS;
  718. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  719. return;
  720. }
  721. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  722. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  723. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  724. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  725. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  726. return;
  727. }
  728. }
  729. #endif
  730. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  731. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  732. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  733. }
  734. #ifdef ENABLE_AUTO_BED_LEVELING
  735. #ifdef ACCURATE_BED_LEVELING
  736. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  737. {
  738. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  739. planeNormal.debug("planeNormal");
  740. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  741. //bedLevel.debug("bedLevel");
  742. //plan_bed_level_matrix.debug("bed level before");
  743. //vector_3 uncorrected_position = plan_get_position_mm();
  744. //uncorrected_position.debug("position before");
  745. vector_3 corrected_position = plan_get_position();
  746. // corrected_position.debug("position after");
  747. current_position[X_AXIS] = corrected_position.x;
  748. current_position[Y_AXIS] = corrected_position.y;
  749. current_position[Z_AXIS] = corrected_position.z;
  750. // but the bed at 0 so we don't go below it.
  751. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  752. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  753. }
  754. #else
  755. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  756. plan_bed_level_matrix.set_to_identity();
  757. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  758. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  759. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  760. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  761. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  762. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  763. //planeNormal.debug("planeNormal");
  764. //yPositive.debug("yPositive");
  765. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  766. //bedLevel.debug("bedLevel");
  767. //plan_bed_level_matrix.debug("bed level before");
  768. //vector_3 uncorrected_position = plan_get_position_mm();
  769. //uncorrected_position.debug("position before");
  770. // and set our bed level equation to do the right thing
  771. //plan_bed_level_matrix.debug("bed level after");
  772. vector_3 corrected_position = plan_get_position();
  773. //corrected_position.debug("position after");
  774. current_position[X_AXIS] = corrected_position.x;
  775. current_position[Y_AXIS] = corrected_position.y;
  776. current_position[Z_AXIS] = corrected_position.z;
  777. // but the bed at 0 so we don't go below it.
  778. current_position[Z_AXIS] = zprobe_zoffset;
  779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  780. }
  781. #endif // ACCURATE_BED_LEVELING
  782. static void run_z_probe() {
  783. plan_bed_level_matrix.set_to_identity();
  784. feedrate = homing_feedrate[Z_AXIS];
  785. // move down until you find the bed
  786. float zPosition = -10;
  787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  788. st_synchronize();
  789. // we have to let the planner know where we are right now as it is not where we said to go.
  790. zPosition = st_get_position_mm(Z_AXIS);
  791. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  792. // move up the retract distance
  793. zPosition += home_retract_mm(Z_AXIS);
  794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  795. st_synchronize();
  796. // move back down slowly to find bed
  797. feedrate = homing_feedrate[Z_AXIS]/4;
  798. zPosition -= home_retract_mm(Z_AXIS) * 2;
  799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  800. st_synchronize();
  801. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  802. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  803. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  804. }
  805. static void do_blocking_move_to(float x, float y, float z) {
  806. float oldFeedRate = feedrate;
  807. feedrate = XY_TRAVEL_SPEED;
  808. current_position[X_AXIS] = x;
  809. current_position[Y_AXIS] = y;
  810. current_position[Z_AXIS] = z;
  811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  812. st_synchronize();
  813. feedrate = oldFeedRate;
  814. }
  815. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  816. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  817. }
  818. static void setup_for_endstop_move() {
  819. saved_feedrate = feedrate;
  820. saved_feedmultiply = feedmultiply;
  821. feedmultiply = 100;
  822. previous_millis_cmd = millis();
  823. enable_endstops(true);
  824. }
  825. static void clean_up_after_endstop_move() {
  826. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  827. enable_endstops(false);
  828. #endif
  829. feedrate = saved_feedrate;
  830. feedmultiply = saved_feedmultiply;
  831. previous_millis_cmd = millis();
  832. }
  833. static void engage_z_probe() {
  834. // Engage Z Servo endstop if enabled
  835. #ifdef SERVO_ENDSTOPS
  836. if (servo_endstops[Z_AXIS] > -1) {
  837. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  838. servos[servo_endstops[Z_AXIS]].attach(0);
  839. #endif
  840. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  841. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  842. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  843. servos[servo_endstops[Z_AXIS]].detach();
  844. #endif
  845. }
  846. #endif
  847. }
  848. static void retract_z_probe() {
  849. // Retract Z Servo endstop if enabled
  850. #ifdef SERVO_ENDSTOPS
  851. if (servo_endstops[Z_AXIS] > -1) {
  852. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  853. servos[servo_endstops[Z_AXIS]].attach(0);
  854. #endif
  855. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  856. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  857. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  858. servos[servo_endstops[Z_AXIS]].detach();
  859. #endif
  860. }
  861. #endif
  862. }
  863. /// Probe bed height at position (x,y), returns the measured z value
  864. static float probe_pt(float x, float y, float z_before) {
  865. // move to right place
  866. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  867. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  868. engage_z_probe(); // Engage Z Servo endstop if available
  869. run_z_probe();
  870. float measured_z = current_position[Z_AXIS];
  871. retract_z_probe();
  872. SERIAL_PROTOCOLPGM("Bed x: ");
  873. SERIAL_PROTOCOL(x);
  874. SERIAL_PROTOCOLPGM(" y: ");
  875. SERIAL_PROTOCOL(y);
  876. SERIAL_PROTOCOLPGM(" z: ");
  877. SERIAL_PROTOCOL(measured_z);
  878. SERIAL_PROTOCOLPGM("\n");
  879. return measured_z;
  880. }
  881. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  882. static void homeaxis(int axis) {
  883. #define HOMEAXIS_DO(LETTER) \
  884. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  885. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  886. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  887. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  888. 0) {
  889. int axis_home_dir = home_dir(axis);
  890. #ifdef DUAL_X_CARRIAGE
  891. if (axis == X_AXIS)
  892. axis_home_dir = x_home_dir(active_extruder);
  893. #endif
  894. current_position[axis] = 0;
  895. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  896. // Engage Servo endstop if enabled
  897. #ifdef SERVO_ENDSTOPS
  898. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  899. if (axis==Z_AXIS) {
  900. engage_z_probe();
  901. }
  902. else
  903. #endif
  904. if (servo_endstops[axis] > -1) {
  905. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  906. }
  907. #endif
  908. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  909. feedrate = homing_feedrate[axis];
  910. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  911. st_synchronize();
  912. current_position[axis] = 0;
  913. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  914. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  915. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  916. st_synchronize();
  917. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  918. #ifdef DELTA
  919. feedrate = homing_feedrate[axis]/10;
  920. #else
  921. feedrate = homing_feedrate[axis]/2 ;
  922. #endif
  923. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  924. st_synchronize();
  925. #ifdef DELTA
  926. // retrace by the amount specified in endstop_adj
  927. if (endstop_adj[axis] * axis_home_dir < 0) {
  928. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  929. destination[axis] = endstop_adj[axis];
  930. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  931. st_synchronize();
  932. }
  933. #endif
  934. axis_is_at_home(axis);
  935. destination[axis] = current_position[axis];
  936. feedrate = 0.0;
  937. endstops_hit_on_purpose();
  938. axis_known_position[axis] = true;
  939. // Retract Servo endstop if enabled
  940. #ifdef SERVO_ENDSTOPS
  941. if (servo_endstops[axis] > -1) {
  942. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  943. }
  944. #endif
  945. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  946. if (axis==Z_AXIS) retract_z_probe();
  947. #endif
  948. }
  949. }
  950. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  951. #ifdef FWRETRACT
  952. void retract(bool retracting) {
  953. if(retracting && !retracted) {
  954. destination[X_AXIS]=current_position[X_AXIS];
  955. destination[Y_AXIS]=current_position[Y_AXIS];
  956. destination[Z_AXIS]=current_position[Z_AXIS];
  957. destination[E_AXIS]=current_position[E_AXIS];
  958. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  959. plan_set_e_position(current_position[E_AXIS]);
  960. float oldFeedrate = feedrate;
  961. feedrate=retract_feedrate*60;
  962. retracted=true;
  963. prepare_move();
  964. current_position[Z_AXIS]-=retract_zlift;
  965. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  966. prepare_move();
  967. feedrate = oldFeedrate;
  968. } else if(!retracting && retracted) {
  969. destination[X_AXIS]=current_position[X_AXIS];
  970. destination[Y_AXIS]=current_position[Y_AXIS];
  971. destination[Z_AXIS]=current_position[Z_AXIS];
  972. destination[E_AXIS]=current_position[E_AXIS];
  973. current_position[Z_AXIS]+=retract_zlift;
  974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  975. //prepare_move();
  976. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  977. plan_set_e_position(current_position[E_AXIS]);
  978. float oldFeedrate = feedrate;
  979. feedrate=retract_recover_feedrate*60;
  980. retracted=false;
  981. prepare_move();
  982. feedrate = oldFeedrate;
  983. }
  984. } //retract
  985. #endif //FWRETRACT
  986. void process_commands()
  987. {
  988. unsigned long codenum; //throw away variable
  989. char *starpos = NULL;
  990. #ifdef ENABLE_AUTO_BED_LEVELING
  991. float x_tmp, y_tmp, z_tmp, real_z;
  992. #endif
  993. if(code_seen('G'))
  994. {
  995. switch((int)code_value())
  996. {
  997. case 0: // G0 -> G1
  998. case 1: // G1
  999. if(Stopped == false) {
  1000. get_coordinates(); // For X Y Z E F
  1001. #ifdef FWRETRACT
  1002. if(autoretract_enabled)
  1003. if( !(code_seen(X_AXIS) || code_seen(Y_AXIS) || code_seen(Z_AXIS)) && code_seen(E_AXIS)) {
  1004. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1005. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to attract or recover
  1006. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1007. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1008. retract(!retracted);
  1009. return;
  1010. }
  1011. }
  1012. #endif //FWRETRACT
  1013. prepare_move();
  1014. //ClearToSend();
  1015. return;
  1016. }
  1017. //break;
  1018. case 2: // G2 - CW ARC
  1019. if(Stopped == false) {
  1020. get_arc_coordinates();
  1021. prepare_arc_move(true);
  1022. return;
  1023. }
  1024. case 3: // G3 - CCW ARC
  1025. if(Stopped == false) {
  1026. get_arc_coordinates();
  1027. prepare_arc_move(false);
  1028. return;
  1029. }
  1030. case 4: // G4 dwell
  1031. LCD_MESSAGEPGM(MSG_DWELL);
  1032. codenum = 0;
  1033. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1034. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1035. st_synchronize();
  1036. codenum += millis(); // keep track of when we started waiting
  1037. previous_millis_cmd = millis();
  1038. while(millis() < codenum ){
  1039. manage_heater();
  1040. manage_inactivity();
  1041. lcd_update();
  1042. }
  1043. break;
  1044. #ifdef FWRETRACT
  1045. case 10: // G10 retract
  1046. retract(true);
  1047. break;
  1048. case 11: // G11 retract_recover
  1049. retract(false);
  1050. break;
  1051. #endif //FWRETRACT
  1052. case 28: //G28 Home all Axis one at a time
  1053. #ifdef ENABLE_AUTO_BED_LEVELING
  1054. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1055. #endif //ENABLE_AUTO_BED_LEVELING
  1056. saved_feedrate = feedrate;
  1057. saved_feedmultiply = feedmultiply;
  1058. feedmultiply = 100;
  1059. previous_millis_cmd = millis();
  1060. enable_endstops(true);
  1061. for(int8_t i=0; i < NUM_AXIS; i++) {
  1062. destination[i] = current_position[i];
  1063. }
  1064. feedrate = 0.0;
  1065. #ifdef DELTA
  1066. // A delta can only safely home all axis at the same time
  1067. // all axis have to home at the same time
  1068. // Move all carriages up together until the first endstop is hit.
  1069. current_position[X_AXIS] = 0;
  1070. current_position[Y_AXIS] = 0;
  1071. current_position[Z_AXIS] = 0;
  1072. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1073. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1074. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1075. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1076. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1077. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1078. st_synchronize();
  1079. endstops_hit_on_purpose();
  1080. current_position[X_AXIS] = destination[X_AXIS];
  1081. current_position[Y_AXIS] = destination[Y_AXIS];
  1082. current_position[Z_AXIS] = destination[Z_AXIS];
  1083. // take care of back off and rehome now we are all at the top
  1084. HOMEAXIS(X);
  1085. HOMEAXIS(Y);
  1086. HOMEAXIS(Z);
  1087. calculate_delta(current_position);
  1088. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1089. #else // NOT DELTA
  1090. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1091. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1092. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1093. HOMEAXIS(Z);
  1094. }
  1095. #endif
  1096. #ifdef QUICK_HOME
  1097. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1098. {
  1099. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1100. #ifndef DUAL_X_CARRIAGE
  1101. int x_axis_home_dir = home_dir(X_AXIS);
  1102. #else
  1103. int x_axis_home_dir = x_home_dir(active_extruder);
  1104. extruder_duplication_enabled = false;
  1105. #endif
  1106. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1107. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1108. feedrate = homing_feedrate[X_AXIS];
  1109. if(homing_feedrate[Y_AXIS]<feedrate)
  1110. feedrate =homing_feedrate[Y_AXIS];
  1111. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1112. st_synchronize();
  1113. axis_is_at_home(X_AXIS);
  1114. axis_is_at_home(Y_AXIS);
  1115. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1116. destination[X_AXIS] = current_position[X_AXIS];
  1117. destination[Y_AXIS] = current_position[Y_AXIS];
  1118. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1119. feedrate = 0.0;
  1120. st_synchronize();
  1121. endstops_hit_on_purpose();
  1122. current_position[X_AXIS] = destination[X_AXIS];
  1123. current_position[Y_AXIS] = destination[Y_AXIS];
  1124. current_position[Z_AXIS] = destination[Z_AXIS];
  1125. }
  1126. #endif
  1127. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1128. {
  1129. #ifdef DUAL_X_CARRIAGE
  1130. int tmp_extruder = active_extruder;
  1131. extruder_duplication_enabled = false;
  1132. active_extruder = !active_extruder;
  1133. HOMEAXIS(X);
  1134. inactive_extruder_x_pos = current_position[X_AXIS];
  1135. active_extruder = tmp_extruder;
  1136. HOMEAXIS(X);
  1137. // reset state used by the different modes
  1138. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1139. delayed_move_time = 0;
  1140. active_extruder_parked = true;
  1141. #else
  1142. HOMEAXIS(X);
  1143. #endif
  1144. }
  1145. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1146. HOMEAXIS(Y);
  1147. }
  1148. if(code_seen(axis_codes[X_AXIS]))
  1149. {
  1150. if(code_value_long() != 0) {
  1151. current_position[X_AXIS]=code_value()+add_homeing[0];
  1152. }
  1153. }
  1154. if(code_seen(axis_codes[Y_AXIS])) {
  1155. if(code_value_long() != 0) {
  1156. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1157. }
  1158. }
  1159. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1160. #ifndef Z_SAFE_HOMING
  1161. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1162. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1163. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1164. feedrate = max_feedrate[Z_AXIS];
  1165. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1166. st_synchronize();
  1167. #endif
  1168. HOMEAXIS(Z);
  1169. }
  1170. #else // Z Safe mode activated.
  1171. if(home_all_axis) {
  1172. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1173. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1174. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1175. feedrate = XY_TRAVEL_SPEED;
  1176. current_position[Z_AXIS] = 0;
  1177. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1178. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1179. st_synchronize();
  1180. current_position[X_AXIS] = destination[X_AXIS];
  1181. current_position[Y_AXIS] = destination[Y_AXIS];
  1182. HOMEAXIS(Z);
  1183. }
  1184. // Let's see if X and Y are homed and probe is inside bed area.
  1185. if(code_seen(axis_codes[Z_AXIS])) {
  1186. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1187. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1188. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1189. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1190. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1191. current_position[Z_AXIS] = 0;
  1192. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1193. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1194. feedrate = max_feedrate[Z_AXIS];
  1195. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1196. st_synchronize();
  1197. HOMEAXIS(Z);
  1198. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1199. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1200. SERIAL_ECHO_START;
  1201. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1202. } else {
  1203. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1204. SERIAL_ECHO_START;
  1205. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1206. }
  1207. }
  1208. #endif
  1209. #endif
  1210. if(code_seen(axis_codes[Z_AXIS])) {
  1211. if(code_value_long() != 0) {
  1212. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1213. }
  1214. }
  1215. #ifdef ENABLE_AUTO_BED_LEVELING
  1216. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1217. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1218. }
  1219. #endif
  1220. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1221. #endif // else DELTA
  1222. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1223. enable_endstops(false);
  1224. #endif
  1225. feedrate = saved_feedrate;
  1226. feedmultiply = saved_feedmultiply;
  1227. previous_millis_cmd = millis();
  1228. endstops_hit_on_purpose();
  1229. break;
  1230. #ifdef ENABLE_AUTO_BED_LEVELING
  1231. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1232. {
  1233. #if Z_MIN_PIN == -1
  1234. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1235. #endif
  1236. st_synchronize();
  1237. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1238. //vector_3 corrected_position = plan_get_position_mm();
  1239. //corrected_position.debug("position before G29");
  1240. plan_bed_level_matrix.set_to_identity();
  1241. vector_3 uncorrected_position = plan_get_position();
  1242. //uncorrected_position.debug("position durring G29");
  1243. current_position[X_AXIS] = uncorrected_position.x;
  1244. current_position[Y_AXIS] = uncorrected_position.y;
  1245. current_position[Z_AXIS] = uncorrected_position.z;
  1246. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1247. setup_for_endstop_move();
  1248. feedrate = homing_feedrate[Z_AXIS];
  1249. #ifdef ACCURATE_BED_LEVELING
  1250. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1251. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1252. // solve the plane equation ax + by + d = z
  1253. // A is the matrix with rows [x y 1] for all the probed points
  1254. // B is the vector of the Z positions
  1255. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1256. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1257. // "A" matrix of the linear system of equations
  1258. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1259. // "B" vector of Z points
  1260. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1261. int probePointCounter = 0;
  1262. bool zig = true;
  1263. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1264. {
  1265. int xProbe, xInc;
  1266. if (zig)
  1267. {
  1268. xProbe = LEFT_PROBE_BED_POSITION;
  1269. //xEnd = RIGHT_PROBE_BED_POSITION;
  1270. xInc = xGridSpacing;
  1271. zig = false;
  1272. } else // zag
  1273. {
  1274. xProbe = RIGHT_PROBE_BED_POSITION;
  1275. //xEnd = LEFT_PROBE_BED_POSITION;
  1276. xInc = -xGridSpacing;
  1277. zig = true;
  1278. }
  1279. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1280. {
  1281. float z_before;
  1282. if (probePointCounter == 0)
  1283. {
  1284. // raise before probing
  1285. z_before = Z_RAISE_BEFORE_PROBING;
  1286. } else
  1287. {
  1288. // raise extruder
  1289. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1290. }
  1291. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1292. eqnBVector[probePointCounter] = measured_z;
  1293. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1294. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1295. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1296. probePointCounter++;
  1297. xProbe += xInc;
  1298. }
  1299. }
  1300. clean_up_after_endstop_move();
  1301. // solve lsq problem
  1302. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1303. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1304. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1305. SERIAL_PROTOCOLPGM(" b: ");
  1306. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1307. SERIAL_PROTOCOLPGM(" d: ");
  1308. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1309. set_bed_level_equation_lsq(plane_equation_coefficients);
  1310. free(plane_equation_coefficients);
  1311. #else // ACCURATE_BED_LEVELING not defined
  1312. // prob 1
  1313. float z_at_xLeft_yBack = probe_pt(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, Z_RAISE_BEFORE_PROBING);
  1314. // prob 2
  1315. float z_at_xLeft_yFront = probe_pt(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1316. // prob 3
  1317. float z_at_xRight_yFront = probe_pt(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1318. clean_up_after_endstop_move();
  1319. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1320. #endif // ACCURATE_BED_LEVELING
  1321. st_synchronize();
  1322. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1323. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1324. // When the bed is uneven, this height must be corrected.
  1325. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1326. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1327. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1328. z_tmp = current_position[Z_AXIS];
  1329. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1330. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1331. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1332. }
  1333. break;
  1334. case 30: // G30 Single Z Probe
  1335. {
  1336. engage_z_probe(); // Engage Z Servo endstop if available
  1337. st_synchronize();
  1338. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1339. setup_for_endstop_move();
  1340. feedrate = homing_feedrate[Z_AXIS];
  1341. run_z_probe();
  1342. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1343. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1344. SERIAL_PROTOCOLPGM(" Y: ");
  1345. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1346. SERIAL_PROTOCOLPGM(" Z: ");
  1347. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1348. SERIAL_PROTOCOLPGM("\n");
  1349. clean_up_after_endstop_move();
  1350. retract_z_probe(); // Retract Z Servo endstop if available
  1351. }
  1352. break;
  1353. #endif // ENABLE_AUTO_BED_LEVELING
  1354. case 90: // G90
  1355. relative_mode = false;
  1356. break;
  1357. case 91: // G91
  1358. relative_mode = true;
  1359. break;
  1360. case 92: // G92
  1361. if(!code_seen(axis_codes[E_AXIS]))
  1362. st_synchronize();
  1363. for(int8_t i=0; i < NUM_AXIS; i++) {
  1364. if(code_seen(axis_codes[i])) {
  1365. if(i == E_AXIS) {
  1366. current_position[i] = code_value();
  1367. plan_set_e_position(current_position[E_AXIS]);
  1368. }
  1369. else {
  1370. current_position[i] = code_value()+add_homeing[i];
  1371. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1372. }
  1373. }
  1374. }
  1375. break;
  1376. }
  1377. }
  1378. else if(code_seen('M'))
  1379. {
  1380. switch( (int)code_value() )
  1381. {
  1382. #ifdef ULTIPANEL
  1383. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1384. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1385. {
  1386. LCD_MESSAGEPGM(MSG_USERWAIT);
  1387. codenum = 0;
  1388. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1389. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1390. st_synchronize();
  1391. previous_millis_cmd = millis();
  1392. if (codenum > 0){
  1393. codenum += millis(); // keep track of when we started waiting
  1394. while(millis() < codenum && !lcd_clicked()){
  1395. manage_heater();
  1396. manage_inactivity();
  1397. lcd_update();
  1398. }
  1399. }else{
  1400. while(!lcd_clicked()){
  1401. manage_heater();
  1402. manage_inactivity();
  1403. lcd_update();
  1404. }
  1405. }
  1406. LCD_MESSAGEPGM(MSG_RESUMING);
  1407. }
  1408. break;
  1409. #endif
  1410. case 17:
  1411. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1412. enable_x();
  1413. enable_y();
  1414. enable_z();
  1415. enable_e0();
  1416. enable_e1();
  1417. enable_e2();
  1418. break;
  1419. #ifdef SDSUPPORT
  1420. case 20: // M20 - list SD card
  1421. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1422. card.ls();
  1423. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1424. break;
  1425. case 21: // M21 - init SD card
  1426. card.initsd();
  1427. break;
  1428. case 22: //M22 - release SD card
  1429. card.release();
  1430. break;
  1431. case 23: //M23 - Select file
  1432. starpos = (strchr(strchr_pointer + 4,'*'));
  1433. if(starpos!=NULL)
  1434. *(starpos-1)='\0';
  1435. card.openFile(strchr_pointer + 4,true);
  1436. break;
  1437. case 24: //M24 - Start SD print
  1438. card.startFileprint();
  1439. starttime=millis();
  1440. break;
  1441. case 25: //M25 - Pause SD print
  1442. card.pauseSDPrint();
  1443. break;
  1444. case 26: //M26 - Set SD index
  1445. if(card.cardOK && code_seen('S')) {
  1446. card.setIndex(code_value_long());
  1447. }
  1448. break;
  1449. case 27: //M27 - Get SD status
  1450. card.getStatus();
  1451. break;
  1452. case 28: //M28 - Start SD write
  1453. starpos = (strchr(strchr_pointer + 4,'*'));
  1454. if(starpos != NULL){
  1455. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1456. strchr_pointer = strchr(npos,' ') + 1;
  1457. *(starpos-1) = '\0';
  1458. }
  1459. card.openFile(strchr_pointer+4,false);
  1460. break;
  1461. case 29: //M29 - Stop SD write
  1462. //processed in write to file routine above
  1463. //card,saving = false;
  1464. break;
  1465. case 30: //M30 <filename> Delete File
  1466. if (card.cardOK){
  1467. card.closefile();
  1468. starpos = (strchr(strchr_pointer + 4,'*'));
  1469. if(starpos != NULL){
  1470. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1471. strchr_pointer = strchr(npos,' ') + 1;
  1472. *(starpos-1) = '\0';
  1473. }
  1474. card.removeFile(strchr_pointer + 4);
  1475. }
  1476. break;
  1477. case 32: //M32 - Select file and start SD print
  1478. {
  1479. if(card.sdprinting) {
  1480. st_synchronize();
  1481. }
  1482. starpos = (strchr(strchr_pointer + 4,'*'));
  1483. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1484. if(namestartpos==NULL)
  1485. {
  1486. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1487. }
  1488. else
  1489. namestartpos++; //to skip the '!'
  1490. if(starpos!=NULL)
  1491. *(starpos-1)='\0';
  1492. bool call_procedure=(code_seen('P'));
  1493. if(strchr_pointer>namestartpos)
  1494. call_procedure=false; //false alert, 'P' found within filename
  1495. if( card.cardOK )
  1496. {
  1497. card.openFile(namestartpos,true,!call_procedure);
  1498. if(code_seen('S'))
  1499. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1500. card.setIndex(code_value_long());
  1501. card.startFileprint();
  1502. if(!call_procedure)
  1503. starttime=millis(); //procedure calls count as normal print time.
  1504. }
  1505. } break;
  1506. case 928: //M928 - Start SD write
  1507. starpos = (strchr(strchr_pointer + 5,'*'));
  1508. if(starpos != NULL){
  1509. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1510. strchr_pointer = strchr(npos,' ') + 1;
  1511. *(starpos-1) = '\0';
  1512. }
  1513. card.openLogFile(strchr_pointer+5);
  1514. break;
  1515. #endif //SDSUPPORT
  1516. case 31: //M31 take time since the start of the SD print or an M109 command
  1517. {
  1518. stoptime=millis();
  1519. char time[30];
  1520. unsigned long t=(stoptime-starttime)/1000;
  1521. int sec,min;
  1522. min=t/60;
  1523. sec=t%60;
  1524. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1525. SERIAL_ECHO_START;
  1526. SERIAL_ECHOLN(time);
  1527. lcd_setstatus(time);
  1528. autotempShutdown();
  1529. }
  1530. break;
  1531. case 42: //M42 -Change pin status via gcode
  1532. if (code_seen('S'))
  1533. {
  1534. int pin_status = code_value();
  1535. int pin_number = LED_PIN;
  1536. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1537. pin_number = code_value();
  1538. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1539. {
  1540. if (sensitive_pins[i] == pin_number)
  1541. {
  1542. pin_number = -1;
  1543. break;
  1544. }
  1545. }
  1546. #if defined(FAN_PIN) && FAN_PIN > -1
  1547. if (pin_number == FAN_PIN)
  1548. fanSpeed = pin_status;
  1549. #endif
  1550. if (pin_number > -1)
  1551. {
  1552. pinMode(pin_number, OUTPUT);
  1553. digitalWrite(pin_number, pin_status);
  1554. analogWrite(pin_number, pin_status);
  1555. }
  1556. }
  1557. break;
  1558. case 104: // M104
  1559. if(setTargetedHotend(104)){
  1560. break;
  1561. }
  1562. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1563. #ifdef DUAL_X_CARRIAGE
  1564. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1565. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1566. #endif
  1567. setWatch();
  1568. break;
  1569. case 140: // M140 set bed temp
  1570. if (code_seen('S')) setTargetBed(code_value());
  1571. break;
  1572. case 105 : // M105
  1573. if(setTargetedHotend(105)){
  1574. break;
  1575. }
  1576. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1577. SERIAL_PROTOCOLPGM("ok T:");
  1578. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1579. SERIAL_PROTOCOLPGM(" /");
  1580. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1581. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1582. SERIAL_PROTOCOLPGM(" B:");
  1583. SERIAL_PROTOCOL_F(degBed(),1);
  1584. SERIAL_PROTOCOLPGM(" /");
  1585. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1586. #endif //TEMP_BED_PIN
  1587. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1588. SERIAL_PROTOCOLPGM(" T");
  1589. SERIAL_PROTOCOL(cur_extruder);
  1590. SERIAL_PROTOCOLPGM(":");
  1591. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1592. SERIAL_PROTOCOLPGM(" /");
  1593. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1594. }
  1595. #else
  1596. SERIAL_ERROR_START;
  1597. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1598. #endif
  1599. SERIAL_PROTOCOLPGM(" @:");
  1600. #ifdef EXTRUDER_WATTS
  1601. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1602. SERIAL_PROTOCOLPGM("W");
  1603. #else
  1604. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1605. #endif
  1606. SERIAL_PROTOCOLPGM(" B@:");
  1607. #ifdef BED_WATTS
  1608. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1609. SERIAL_PROTOCOLPGM("W");
  1610. #else
  1611. SERIAL_PROTOCOL(getHeaterPower(-1));
  1612. #endif
  1613. #ifdef SHOW_TEMP_ADC_VALUES
  1614. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1615. SERIAL_PROTOCOLPGM(" ADC B:");
  1616. SERIAL_PROTOCOL_F(degBed(),1);
  1617. SERIAL_PROTOCOLPGM("C->");
  1618. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1619. #endif
  1620. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1621. SERIAL_PROTOCOLPGM(" T");
  1622. SERIAL_PROTOCOL(cur_extruder);
  1623. SERIAL_PROTOCOLPGM(":");
  1624. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1625. SERIAL_PROTOCOLPGM("C->");
  1626. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1627. }
  1628. #endif
  1629. SERIAL_PROTOCOLLN("");
  1630. return;
  1631. break;
  1632. case 109:
  1633. {// M109 - Wait for extruder heater to reach target.
  1634. if(setTargetedHotend(109)){
  1635. break;
  1636. }
  1637. LCD_MESSAGEPGM(MSG_HEATING);
  1638. #ifdef AUTOTEMP
  1639. autotemp_enabled=false;
  1640. #endif
  1641. if (code_seen('S')) {
  1642. setTargetHotend(code_value(), tmp_extruder);
  1643. #ifdef DUAL_X_CARRIAGE
  1644. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1645. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1646. #endif
  1647. CooldownNoWait = true;
  1648. } else if (code_seen('R')) {
  1649. setTargetHotend(code_value(), tmp_extruder);
  1650. #ifdef DUAL_X_CARRIAGE
  1651. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1652. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1653. #endif
  1654. CooldownNoWait = false;
  1655. }
  1656. #ifdef AUTOTEMP
  1657. if (code_seen('S')) autotemp_min=code_value();
  1658. if (code_seen('B')) autotemp_max=code_value();
  1659. if (code_seen('F'))
  1660. {
  1661. autotemp_factor=code_value();
  1662. autotemp_enabled=true;
  1663. }
  1664. #endif
  1665. setWatch();
  1666. codenum = millis();
  1667. /* See if we are heating up or cooling down */
  1668. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1669. #ifdef TEMP_RESIDENCY_TIME
  1670. long residencyStart;
  1671. residencyStart = -1;
  1672. /* continue to loop until we have reached the target temp
  1673. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1674. while((residencyStart == -1) ||
  1675. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1676. #else
  1677. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1678. #endif //TEMP_RESIDENCY_TIME
  1679. if( (millis() - codenum) > 1000UL )
  1680. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1681. SERIAL_PROTOCOLPGM("T:");
  1682. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1683. SERIAL_PROTOCOLPGM(" E:");
  1684. SERIAL_PROTOCOL((int)tmp_extruder);
  1685. #ifdef TEMP_RESIDENCY_TIME
  1686. SERIAL_PROTOCOLPGM(" W:");
  1687. if(residencyStart > -1)
  1688. {
  1689. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1690. SERIAL_PROTOCOLLN( codenum );
  1691. }
  1692. else
  1693. {
  1694. SERIAL_PROTOCOLLN( "?" );
  1695. }
  1696. #else
  1697. SERIAL_PROTOCOLLN("");
  1698. #endif
  1699. codenum = millis();
  1700. }
  1701. manage_heater();
  1702. manage_inactivity();
  1703. lcd_update();
  1704. #ifdef TEMP_RESIDENCY_TIME
  1705. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1706. or when current temp falls outside the hysteresis after target temp was reached */
  1707. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1708. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1709. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1710. {
  1711. residencyStart = millis();
  1712. }
  1713. #endif //TEMP_RESIDENCY_TIME
  1714. }
  1715. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1716. starttime=millis();
  1717. previous_millis_cmd = millis();
  1718. }
  1719. break;
  1720. case 190: // M190 - Wait for bed heater to reach target.
  1721. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1722. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1723. if (code_seen('S')) {
  1724. setTargetBed(code_value());
  1725. CooldownNoWait = true;
  1726. } else if (code_seen('R')) {
  1727. setTargetBed(code_value());
  1728. CooldownNoWait = false;
  1729. }
  1730. codenum = millis();
  1731. target_direction = isHeatingBed(); // true if heating, false if cooling
  1732. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1733. {
  1734. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1735. {
  1736. float tt=degHotend(active_extruder);
  1737. SERIAL_PROTOCOLPGM("T:");
  1738. SERIAL_PROTOCOL(tt);
  1739. SERIAL_PROTOCOLPGM(" E:");
  1740. SERIAL_PROTOCOL((int)active_extruder);
  1741. SERIAL_PROTOCOLPGM(" B:");
  1742. SERIAL_PROTOCOL_F(degBed(),1);
  1743. SERIAL_PROTOCOLLN("");
  1744. codenum = millis();
  1745. }
  1746. manage_heater();
  1747. manage_inactivity();
  1748. lcd_update();
  1749. }
  1750. LCD_MESSAGEPGM(MSG_BED_DONE);
  1751. previous_millis_cmd = millis();
  1752. #endif
  1753. break;
  1754. #if defined(FAN_PIN) && FAN_PIN > -1
  1755. case 106: //M106 Fan On
  1756. if (code_seen('S')){
  1757. fanSpeed=constrain(code_value(),0,255);
  1758. }
  1759. else {
  1760. fanSpeed=255;
  1761. }
  1762. break;
  1763. case 107: //M107 Fan Off
  1764. fanSpeed = 0;
  1765. break;
  1766. #endif //FAN_PIN
  1767. #ifdef BARICUDA
  1768. // PWM for HEATER_1_PIN
  1769. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1770. case 126: //M126 valve open
  1771. if (code_seen('S')){
  1772. ValvePressure=constrain(code_value(),0,255);
  1773. }
  1774. else {
  1775. ValvePressure=255;
  1776. }
  1777. break;
  1778. case 127: //M127 valve closed
  1779. ValvePressure = 0;
  1780. break;
  1781. #endif //HEATER_1_PIN
  1782. // PWM for HEATER_2_PIN
  1783. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1784. case 128: //M128 valve open
  1785. if (code_seen('S')){
  1786. EtoPPressure=constrain(code_value(),0,255);
  1787. }
  1788. else {
  1789. EtoPPressure=255;
  1790. }
  1791. break;
  1792. case 129: //M129 valve closed
  1793. EtoPPressure = 0;
  1794. break;
  1795. #endif //HEATER_2_PIN
  1796. #endif
  1797. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1798. case 80: // M80 - Turn on Power Supply
  1799. SET_OUTPUT(PS_ON_PIN); //GND
  1800. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1801. // If you have a switch on suicide pin, this is useful
  1802. // if you want to start another print with suicide feature after
  1803. // a print without suicide...
  1804. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1805. SET_OUTPUT(SUICIDE_PIN);
  1806. WRITE(SUICIDE_PIN, HIGH);
  1807. #endif
  1808. #ifdef ULTIPANEL
  1809. powersupply = true;
  1810. LCD_MESSAGEPGM(WELCOME_MSG);
  1811. lcd_update();
  1812. #endif
  1813. break;
  1814. #endif
  1815. case 81: // M81 - Turn off Power Supply
  1816. disable_heater();
  1817. st_synchronize();
  1818. disable_e0();
  1819. disable_e1();
  1820. disable_e2();
  1821. finishAndDisableSteppers();
  1822. fanSpeed = 0;
  1823. delay(1000); // Wait a little before to switch off
  1824. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1825. st_synchronize();
  1826. suicide();
  1827. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1828. SET_OUTPUT(PS_ON_PIN);
  1829. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1830. #endif
  1831. #ifdef ULTIPANEL
  1832. powersupply = false;
  1833. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1834. lcd_update();
  1835. #endif
  1836. break;
  1837. case 82:
  1838. axis_relative_modes[3] = false;
  1839. break;
  1840. case 83:
  1841. axis_relative_modes[3] = true;
  1842. break;
  1843. case 18: //compatibility
  1844. case 84: // M84
  1845. if(code_seen('S')){
  1846. stepper_inactive_time = code_value() * 1000;
  1847. }
  1848. else
  1849. {
  1850. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1851. if(all_axis)
  1852. {
  1853. st_synchronize();
  1854. disable_e0();
  1855. disable_e1();
  1856. disable_e2();
  1857. finishAndDisableSteppers();
  1858. }
  1859. else
  1860. {
  1861. st_synchronize();
  1862. if(code_seen('X')) disable_x();
  1863. if(code_seen('Y')) disable_y();
  1864. if(code_seen('Z')) disable_z();
  1865. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1866. if(code_seen('E')) {
  1867. disable_e0();
  1868. disable_e1();
  1869. disable_e2();
  1870. }
  1871. #endif
  1872. }
  1873. }
  1874. break;
  1875. case 85: // M85
  1876. code_seen('S');
  1877. max_inactive_time = code_value() * 1000;
  1878. break;
  1879. case 92: // M92
  1880. for(int8_t i=0; i < NUM_AXIS; i++)
  1881. {
  1882. if(code_seen(axis_codes[i]))
  1883. {
  1884. if(i == 3) { // E
  1885. float value = code_value();
  1886. if(value < 20.0) {
  1887. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1888. max_e_jerk *= factor;
  1889. max_feedrate[i] *= factor;
  1890. axis_steps_per_sqr_second[i] *= factor;
  1891. }
  1892. axis_steps_per_unit[i] = value;
  1893. }
  1894. else {
  1895. axis_steps_per_unit[i] = code_value();
  1896. }
  1897. }
  1898. }
  1899. break;
  1900. case 115: // M115
  1901. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1902. break;
  1903. case 117: // M117 display message
  1904. starpos = (strchr(strchr_pointer + 5,'*'));
  1905. if(starpos!=NULL)
  1906. *(starpos-1)='\0';
  1907. lcd_setstatus(strchr_pointer + 5);
  1908. break;
  1909. case 114: // M114
  1910. SERIAL_PROTOCOLPGM("X:");
  1911. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1912. SERIAL_PROTOCOLPGM("Y:");
  1913. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1914. SERIAL_PROTOCOLPGM("Z:");
  1915. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1916. SERIAL_PROTOCOLPGM("E:");
  1917. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1918. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1919. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1920. SERIAL_PROTOCOLPGM("Y:");
  1921. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1922. SERIAL_PROTOCOLPGM("Z:");
  1923. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1924. SERIAL_PROTOCOLLN("");
  1925. break;
  1926. case 120: // M120
  1927. enable_endstops(false) ;
  1928. break;
  1929. case 121: // M121
  1930. enable_endstops(true) ;
  1931. break;
  1932. case 119: // M119
  1933. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1934. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1935. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1936. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1937. #endif
  1938. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1939. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1940. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1941. #endif
  1942. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1943. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1944. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1945. #endif
  1946. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1947. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1948. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1949. #endif
  1950. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1951. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1952. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1953. #endif
  1954. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1955. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1956. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1957. #endif
  1958. break;
  1959. //TODO: update for all axis, use for loop
  1960. #ifdef BLINKM
  1961. case 150: // M150
  1962. {
  1963. byte red;
  1964. byte grn;
  1965. byte blu;
  1966. if(code_seen('R')) red = code_value();
  1967. if(code_seen('U')) grn = code_value();
  1968. if(code_seen('B')) blu = code_value();
  1969. SendColors(red,grn,blu);
  1970. }
  1971. break;
  1972. #endif //BLINKM
  1973. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  1974. {
  1975. float area = .0;
  1976. float radius = .0;
  1977. if(code_seen('D')) {
  1978. radius = (float)code_value() * .5;
  1979. if(radius == 0) {
  1980. area = 1;
  1981. } else {
  1982. area = M_PI * pow(radius, 2);
  1983. }
  1984. } else {
  1985. //reserved for setting filament diameter via UFID or filament measuring device
  1986. break;
  1987. }
  1988. tmp_extruder = active_extruder;
  1989. if(code_seen('T')) {
  1990. tmp_extruder = code_value();
  1991. if(tmp_extruder >= EXTRUDERS) {
  1992. SERIAL_ECHO_START;
  1993. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  1994. }
  1995. }
  1996. volumetric_multiplier[tmp_extruder] = 1 / area;
  1997. }
  1998. break;
  1999. case 201: // M201
  2000. for(int8_t i=0; i < NUM_AXIS; i++)
  2001. {
  2002. if(code_seen(axis_codes[i]))
  2003. {
  2004. max_acceleration_units_per_sq_second[i] = code_value();
  2005. }
  2006. }
  2007. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2008. reset_acceleration_rates();
  2009. break;
  2010. #if 0 // Not used for Sprinter/grbl gen6
  2011. case 202: // M202
  2012. for(int8_t i=0; i < NUM_AXIS; i++) {
  2013. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2014. }
  2015. break;
  2016. #endif
  2017. case 203: // M203 max feedrate mm/sec
  2018. for(int8_t i=0; i < NUM_AXIS; i++) {
  2019. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2020. }
  2021. break;
  2022. case 204: // M204 acclereration S normal moves T filmanent only moves
  2023. {
  2024. if(code_seen('S')) acceleration = code_value() ;
  2025. if(code_seen('T')) retract_acceleration = code_value() ;
  2026. }
  2027. break;
  2028. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2029. {
  2030. if(code_seen('S')) minimumfeedrate = code_value();
  2031. if(code_seen('T')) mintravelfeedrate = code_value();
  2032. if(code_seen('B')) minsegmenttime = code_value() ;
  2033. if(code_seen('X')) max_xy_jerk = code_value() ;
  2034. if(code_seen('Z')) max_z_jerk = code_value() ;
  2035. if(code_seen('E')) max_e_jerk = code_value() ;
  2036. }
  2037. break;
  2038. case 206: // M206 additional homeing offset
  2039. for(int8_t i=0; i < 3; i++)
  2040. {
  2041. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2042. }
  2043. break;
  2044. #ifdef DELTA
  2045. case 666: // M666 set delta endstop adjustemnt
  2046. for(int8_t i=0; i < 3; i++)
  2047. {
  2048. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2049. }
  2050. break;
  2051. #endif
  2052. #ifdef FWRETRACT
  2053. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2054. {
  2055. if(code_seen('S'))
  2056. {
  2057. retract_length = code_value() ;
  2058. }
  2059. if(code_seen('F'))
  2060. {
  2061. retract_feedrate = code_value()/60 ;
  2062. }
  2063. if(code_seen('Z'))
  2064. {
  2065. retract_zlift = code_value() ;
  2066. }
  2067. }break;
  2068. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2069. {
  2070. if(code_seen('S'))
  2071. {
  2072. retract_recover_length = code_value() ;
  2073. }
  2074. if(code_seen('F'))
  2075. {
  2076. retract_recover_feedrate = code_value()/60 ;
  2077. }
  2078. }break;
  2079. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2080. {
  2081. if(code_seen('S'))
  2082. {
  2083. int t= code_value() ;
  2084. switch(t)
  2085. {
  2086. case 0: autoretract_enabled=false;retracted=false;break;
  2087. case 1: autoretract_enabled=true;retracted=false;break;
  2088. default:
  2089. SERIAL_ECHO_START;
  2090. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2091. SERIAL_ECHO(cmdbuffer[bufindr]);
  2092. SERIAL_ECHOLNPGM("\"");
  2093. }
  2094. }
  2095. }break;
  2096. #endif // FWRETRACT
  2097. #if EXTRUDERS > 1
  2098. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2099. {
  2100. if(setTargetedHotend(218)){
  2101. break;
  2102. }
  2103. if(code_seen('X'))
  2104. {
  2105. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2106. }
  2107. if(code_seen('Y'))
  2108. {
  2109. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2110. }
  2111. #ifdef DUAL_X_CARRIAGE
  2112. if(code_seen('Z'))
  2113. {
  2114. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2115. }
  2116. #endif
  2117. SERIAL_ECHO_START;
  2118. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2119. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2120. {
  2121. SERIAL_ECHO(" ");
  2122. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2123. SERIAL_ECHO(",");
  2124. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2125. #ifdef DUAL_X_CARRIAGE
  2126. SERIAL_ECHO(",");
  2127. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2128. #endif
  2129. }
  2130. SERIAL_ECHOLN("");
  2131. }break;
  2132. #endif
  2133. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2134. {
  2135. if(code_seen('S'))
  2136. {
  2137. feedmultiply = code_value() ;
  2138. }
  2139. }
  2140. break;
  2141. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2142. {
  2143. if(code_seen('S'))
  2144. {
  2145. extrudemultiply = code_value() ;
  2146. }
  2147. }
  2148. break;
  2149. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2150. {
  2151. if(code_seen('P')){
  2152. int pin_number = code_value(); // pin number
  2153. int pin_state = -1; // required pin state - default is inverted
  2154. if(code_seen('S')) pin_state = code_value(); // required pin state
  2155. if(pin_state >= -1 && pin_state <= 1){
  2156. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2157. {
  2158. if (sensitive_pins[i] == pin_number)
  2159. {
  2160. pin_number = -1;
  2161. break;
  2162. }
  2163. }
  2164. if (pin_number > -1)
  2165. {
  2166. st_synchronize();
  2167. pinMode(pin_number, INPUT);
  2168. int target;
  2169. switch(pin_state){
  2170. case 1:
  2171. target = HIGH;
  2172. break;
  2173. case 0:
  2174. target = LOW;
  2175. break;
  2176. case -1:
  2177. target = !digitalRead(pin_number);
  2178. break;
  2179. }
  2180. while(digitalRead(pin_number) != target){
  2181. manage_heater();
  2182. manage_inactivity();
  2183. lcd_update();
  2184. }
  2185. }
  2186. }
  2187. }
  2188. }
  2189. break;
  2190. #if NUM_SERVOS > 0
  2191. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2192. {
  2193. int servo_index = -1;
  2194. int servo_position = 0;
  2195. if (code_seen('P'))
  2196. servo_index = code_value();
  2197. if (code_seen('S')) {
  2198. servo_position = code_value();
  2199. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2200. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2201. servos[servo_index].attach(0);
  2202. #endif
  2203. servos[servo_index].write(servo_position);
  2204. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2205. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2206. servos[servo_index].detach();
  2207. #endif
  2208. }
  2209. else {
  2210. SERIAL_ECHO_START;
  2211. SERIAL_ECHO("Servo ");
  2212. SERIAL_ECHO(servo_index);
  2213. SERIAL_ECHOLN(" out of range");
  2214. }
  2215. }
  2216. else if (servo_index >= 0) {
  2217. SERIAL_PROTOCOL(MSG_OK);
  2218. SERIAL_PROTOCOL(" Servo ");
  2219. SERIAL_PROTOCOL(servo_index);
  2220. SERIAL_PROTOCOL(": ");
  2221. SERIAL_PROTOCOL(servos[servo_index].read());
  2222. SERIAL_PROTOCOLLN("");
  2223. }
  2224. }
  2225. break;
  2226. #endif // NUM_SERVOS > 0
  2227. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2228. case 300: // M300
  2229. {
  2230. int beepS = code_seen('S') ? code_value() : 110;
  2231. int beepP = code_seen('P') ? code_value() : 1000;
  2232. if (beepS > 0)
  2233. {
  2234. #if BEEPER > 0
  2235. tone(BEEPER, beepS);
  2236. delay(beepP);
  2237. noTone(BEEPER);
  2238. #elif defined(ULTRALCD)
  2239. lcd_buzz(beepS, beepP);
  2240. #elif defined(LCD_USE_I2C_BUZZER)
  2241. lcd_buzz(beepP, beepS);
  2242. #endif
  2243. }
  2244. else
  2245. {
  2246. delay(beepP);
  2247. }
  2248. }
  2249. break;
  2250. #endif // M300
  2251. #ifdef PIDTEMP
  2252. case 301: // M301
  2253. {
  2254. if(code_seen('P')) Kp = code_value();
  2255. if(code_seen('I')) Ki = scalePID_i(code_value());
  2256. if(code_seen('D')) Kd = scalePID_d(code_value());
  2257. #ifdef PID_ADD_EXTRUSION_RATE
  2258. if(code_seen('C')) Kc = code_value();
  2259. #endif
  2260. updatePID();
  2261. SERIAL_PROTOCOL(MSG_OK);
  2262. SERIAL_PROTOCOL(" p:");
  2263. SERIAL_PROTOCOL(Kp);
  2264. SERIAL_PROTOCOL(" i:");
  2265. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2266. SERIAL_PROTOCOL(" d:");
  2267. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2268. #ifdef PID_ADD_EXTRUSION_RATE
  2269. SERIAL_PROTOCOL(" c:");
  2270. //Kc does not have scaling applied above, or in resetting defaults
  2271. SERIAL_PROTOCOL(Kc);
  2272. #endif
  2273. SERIAL_PROTOCOLLN("");
  2274. }
  2275. break;
  2276. #endif //PIDTEMP
  2277. #ifdef PIDTEMPBED
  2278. case 304: // M304
  2279. {
  2280. if(code_seen('P')) bedKp = code_value();
  2281. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2282. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2283. updatePID();
  2284. SERIAL_PROTOCOL(MSG_OK);
  2285. SERIAL_PROTOCOL(" p:");
  2286. SERIAL_PROTOCOL(bedKp);
  2287. SERIAL_PROTOCOL(" i:");
  2288. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2289. SERIAL_PROTOCOL(" d:");
  2290. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2291. SERIAL_PROTOCOLLN("");
  2292. }
  2293. break;
  2294. #endif //PIDTEMP
  2295. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2296. {
  2297. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2298. const uint8_t NUM_PULSES=16;
  2299. const float PULSE_LENGTH=0.01524;
  2300. for(int i=0; i < NUM_PULSES; i++) {
  2301. WRITE(PHOTOGRAPH_PIN, HIGH);
  2302. _delay_ms(PULSE_LENGTH);
  2303. WRITE(PHOTOGRAPH_PIN, LOW);
  2304. _delay_ms(PULSE_LENGTH);
  2305. }
  2306. delay(7.33);
  2307. for(int i=0; i < NUM_PULSES; i++) {
  2308. WRITE(PHOTOGRAPH_PIN, HIGH);
  2309. _delay_ms(PULSE_LENGTH);
  2310. WRITE(PHOTOGRAPH_PIN, LOW);
  2311. _delay_ms(PULSE_LENGTH);
  2312. }
  2313. #endif
  2314. }
  2315. break;
  2316. #ifdef DOGLCD
  2317. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2318. {
  2319. if (code_seen('C')) {
  2320. lcd_setcontrast( ((int)code_value())&63 );
  2321. }
  2322. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2323. SERIAL_PROTOCOL(lcd_contrast);
  2324. SERIAL_PROTOCOLLN("");
  2325. }
  2326. break;
  2327. #endif
  2328. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2329. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2330. {
  2331. float temp = .0;
  2332. if (code_seen('S')) temp=code_value();
  2333. set_extrude_min_temp(temp);
  2334. }
  2335. break;
  2336. #endif
  2337. case 303: // M303 PID autotune
  2338. {
  2339. float temp = 150.0;
  2340. int e=0;
  2341. int c=5;
  2342. if (code_seen('E')) e=code_value();
  2343. if (e<0)
  2344. temp=70;
  2345. if (code_seen('S')) temp=code_value();
  2346. if (code_seen('C')) c=code_value();
  2347. PID_autotune(temp, e, c);
  2348. }
  2349. break;
  2350. case 400: // M400 finish all moves
  2351. {
  2352. st_synchronize();
  2353. }
  2354. break;
  2355. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2356. case 401:
  2357. {
  2358. engage_z_probe(); // Engage Z Servo endstop if available
  2359. }
  2360. break;
  2361. case 402:
  2362. {
  2363. retract_z_probe(); // Retract Z Servo endstop if enabled
  2364. }
  2365. break;
  2366. #endif
  2367. case 500: // M500 Store settings in EEPROM
  2368. {
  2369. Config_StoreSettings();
  2370. }
  2371. break;
  2372. case 501: // M501 Read settings from EEPROM
  2373. {
  2374. Config_RetrieveSettings();
  2375. }
  2376. break;
  2377. case 502: // M502 Revert to default settings
  2378. {
  2379. Config_ResetDefault();
  2380. }
  2381. break;
  2382. case 503: // M503 print settings currently in memory
  2383. {
  2384. Config_PrintSettings();
  2385. }
  2386. break;
  2387. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2388. case 540:
  2389. {
  2390. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2391. }
  2392. break;
  2393. #endif
  2394. #ifdef FILAMENTCHANGEENABLE
  2395. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2396. {
  2397. float target[4];
  2398. float lastpos[4];
  2399. target[X_AXIS]=current_position[X_AXIS];
  2400. target[Y_AXIS]=current_position[Y_AXIS];
  2401. target[Z_AXIS]=current_position[Z_AXIS];
  2402. target[E_AXIS]=current_position[E_AXIS];
  2403. lastpos[X_AXIS]=current_position[X_AXIS];
  2404. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2405. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2406. lastpos[E_AXIS]=current_position[E_AXIS];
  2407. //retract by E
  2408. if(code_seen('E'))
  2409. {
  2410. target[E_AXIS]+= code_value();
  2411. }
  2412. else
  2413. {
  2414. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2415. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2416. #endif
  2417. }
  2418. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2419. //lift Z
  2420. if(code_seen('Z'))
  2421. {
  2422. target[Z_AXIS]+= code_value();
  2423. }
  2424. else
  2425. {
  2426. #ifdef FILAMENTCHANGE_ZADD
  2427. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2428. #endif
  2429. }
  2430. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2431. //move xy
  2432. if(code_seen('X'))
  2433. {
  2434. target[X_AXIS]+= code_value();
  2435. }
  2436. else
  2437. {
  2438. #ifdef FILAMENTCHANGE_XPOS
  2439. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2440. #endif
  2441. }
  2442. if(code_seen('Y'))
  2443. {
  2444. target[Y_AXIS]= code_value();
  2445. }
  2446. else
  2447. {
  2448. #ifdef FILAMENTCHANGE_YPOS
  2449. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2450. #endif
  2451. }
  2452. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2453. if(code_seen('L'))
  2454. {
  2455. target[E_AXIS]+= code_value();
  2456. }
  2457. else
  2458. {
  2459. #ifdef FILAMENTCHANGE_FINALRETRACT
  2460. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2461. #endif
  2462. }
  2463. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2464. //finish moves
  2465. st_synchronize();
  2466. //disable extruder steppers so filament can be removed
  2467. disable_e0();
  2468. disable_e1();
  2469. disable_e2();
  2470. delay(100);
  2471. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2472. uint8_t cnt=0;
  2473. while(!lcd_clicked()){
  2474. cnt++;
  2475. manage_heater();
  2476. manage_inactivity();
  2477. lcd_update();
  2478. if(cnt==0)
  2479. {
  2480. #if BEEPER > 0
  2481. SET_OUTPUT(BEEPER);
  2482. WRITE(BEEPER,HIGH);
  2483. delay(3);
  2484. WRITE(BEEPER,LOW);
  2485. delay(3);
  2486. #else
  2487. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2488. lcd_buzz(1000/6,100);
  2489. #else
  2490. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2491. #endif
  2492. #endif
  2493. }
  2494. }
  2495. //return to normal
  2496. if(code_seen('L'))
  2497. {
  2498. target[E_AXIS]+= -code_value();
  2499. }
  2500. else
  2501. {
  2502. #ifdef FILAMENTCHANGE_FINALRETRACT
  2503. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2504. #endif
  2505. }
  2506. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2507. plan_set_e_position(current_position[E_AXIS]);
  2508. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2509. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2510. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2511. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2512. }
  2513. break;
  2514. #endif //FILAMENTCHANGEENABLE
  2515. #ifdef DUAL_X_CARRIAGE
  2516. case 605: // Set dual x-carriage movement mode:
  2517. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2518. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2519. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2520. // millimeters x-offset and an optional differential hotend temperature of
  2521. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2522. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2523. //
  2524. // Note: the X axis should be homed after changing dual x-carriage mode.
  2525. {
  2526. st_synchronize();
  2527. if (code_seen('S'))
  2528. dual_x_carriage_mode = code_value();
  2529. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2530. {
  2531. if (code_seen('X'))
  2532. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2533. if (code_seen('R'))
  2534. duplicate_extruder_temp_offset = code_value();
  2535. SERIAL_ECHO_START;
  2536. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2537. SERIAL_ECHO(" ");
  2538. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2539. SERIAL_ECHO(",");
  2540. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2541. SERIAL_ECHO(" ");
  2542. SERIAL_ECHO(duplicate_extruder_x_offset);
  2543. SERIAL_ECHO(",");
  2544. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2545. }
  2546. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2547. {
  2548. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2549. }
  2550. active_extruder_parked = false;
  2551. extruder_duplication_enabled = false;
  2552. delayed_move_time = 0;
  2553. }
  2554. break;
  2555. #endif //DUAL_X_CARRIAGE
  2556. case 907: // M907 Set digital trimpot motor current using axis codes.
  2557. {
  2558. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2559. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2560. if(code_seen('B')) digipot_current(4,code_value());
  2561. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2562. #endif
  2563. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2564. if(code_seen('X')) digipot_current(0, code_value());
  2565. #endif
  2566. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2567. if(code_seen('Z')) digipot_current(1, code_value());
  2568. #endif
  2569. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2570. if(code_seen('E')) digipot_current(2, code_value());
  2571. #endif
  2572. #ifdef DIGIPOT_I2C
  2573. // this one uses actual amps in floating point
  2574. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2575. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2576. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2577. #endif
  2578. }
  2579. break;
  2580. case 908: // M908 Control digital trimpot directly.
  2581. {
  2582. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2583. uint8_t channel,current;
  2584. if(code_seen('P')) channel=code_value();
  2585. if(code_seen('S')) current=code_value();
  2586. digitalPotWrite(channel, current);
  2587. #endif
  2588. }
  2589. break;
  2590. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2591. {
  2592. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2593. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2594. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2595. if(code_seen('B')) microstep_mode(4,code_value());
  2596. microstep_readings();
  2597. #endif
  2598. }
  2599. break;
  2600. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2601. {
  2602. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2603. if(code_seen('S')) switch((int)code_value())
  2604. {
  2605. case 1:
  2606. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2607. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2608. break;
  2609. case 2:
  2610. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2611. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2612. break;
  2613. }
  2614. microstep_readings();
  2615. #endif
  2616. }
  2617. break;
  2618. case 999: // M999: Restart after being stopped
  2619. Stopped = false;
  2620. lcd_reset_alert_level();
  2621. gcode_LastN = Stopped_gcode_LastN;
  2622. FlushSerialRequestResend();
  2623. break;
  2624. }
  2625. }
  2626. else if(code_seen('T'))
  2627. {
  2628. tmp_extruder = code_value();
  2629. if(tmp_extruder >= EXTRUDERS) {
  2630. SERIAL_ECHO_START;
  2631. SERIAL_ECHO("T");
  2632. SERIAL_ECHO(tmp_extruder);
  2633. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2634. }
  2635. else {
  2636. boolean make_move = false;
  2637. if(code_seen('F')) {
  2638. make_move = true;
  2639. next_feedrate = code_value();
  2640. if(next_feedrate > 0.0) {
  2641. feedrate = next_feedrate;
  2642. }
  2643. }
  2644. #if EXTRUDERS > 1
  2645. if(tmp_extruder != active_extruder) {
  2646. // Save current position to return to after applying extruder offset
  2647. memcpy(destination, current_position, sizeof(destination));
  2648. #ifdef DUAL_X_CARRIAGE
  2649. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2650. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2651. {
  2652. // Park old head: 1) raise 2) move to park position 3) lower
  2653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2654. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2655. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2656. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2657. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2658. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2659. st_synchronize();
  2660. }
  2661. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2662. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2663. extruder_offset[Y_AXIS][active_extruder] +
  2664. extruder_offset[Y_AXIS][tmp_extruder];
  2665. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2666. extruder_offset[Z_AXIS][active_extruder] +
  2667. extruder_offset[Z_AXIS][tmp_extruder];
  2668. active_extruder = tmp_extruder;
  2669. // This function resets the max/min values - the current position may be overwritten below.
  2670. axis_is_at_home(X_AXIS);
  2671. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2672. {
  2673. current_position[X_AXIS] = inactive_extruder_x_pos;
  2674. inactive_extruder_x_pos = destination[X_AXIS];
  2675. }
  2676. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2677. {
  2678. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2679. if (active_extruder == 0 || active_extruder_parked)
  2680. current_position[X_AXIS] = inactive_extruder_x_pos;
  2681. else
  2682. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2683. inactive_extruder_x_pos = destination[X_AXIS];
  2684. extruder_duplication_enabled = false;
  2685. }
  2686. else
  2687. {
  2688. // record raised toolhead position for use by unpark
  2689. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2690. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2691. active_extruder_parked = true;
  2692. delayed_move_time = 0;
  2693. }
  2694. #else
  2695. // Offset extruder (only by XY)
  2696. int i;
  2697. for(i = 0; i < 2; i++) {
  2698. current_position[i] = current_position[i] -
  2699. extruder_offset[i][active_extruder] +
  2700. extruder_offset[i][tmp_extruder];
  2701. }
  2702. // Set the new active extruder and position
  2703. active_extruder = tmp_extruder;
  2704. #endif //else DUAL_X_CARRIAGE
  2705. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2706. // Move to the old position if 'F' was in the parameters
  2707. if(make_move && Stopped == false) {
  2708. prepare_move();
  2709. }
  2710. }
  2711. #endif
  2712. SERIAL_ECHO_START;
  2713. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2714. SERIAL_PROTOCOLLN((int)active_extruder);
  2715. }
  2716. }
  2717. else
  2718. {
  2719. SERIAL_ECHO_START;
  2720. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2721. SERIAL_ECHO(cmdbuffer[bufindr]);
  2722. SERIAL_ECHOLNPGM("\"");
  2723. }
  2724. ClearToSend();
  2725. }
  2726. void FlushSerialRequestResend()
  2727. {
  2728. //char cmdbuffer[bufindr][100]="Resend:";
  2729. MYSERIAL.flush();
  2730. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2731. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2732. ClearToSend();
  2733. }
  2734. void ClearToSend()
  2735. {
  2736. previous_millis_cmd = millis();
  2737. #ifdef SDSUPPORT
  2738. if(fromsd[bufindr])
  2739. return;
  2740. #endif //SDSUPPORT
  2741. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2742. }
  2743. void get_coordinates()
  2744. {
  2745. bool seen[4]={false,false,false,false};
  2746. for(int8_t i=0; i < NUM_AXIS; i++) {
  2747. if(code_seen(axis_codes[i]))
  2748. {
  2749. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2750. seen[i]=true;
  2751. }
  2752. else destination[i] = current_position[i]; //Are these else lines really needed?
  2753. }
  2754. if(code_seen('F')) {
  2755. next_feedrate = code_value();
  2756. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2757. }
  2758. }
  2759. void get_arc_coordinates()
  2760. {
  2761. #ifdef SF_ARC_FIX
  2762. bool relative_mode_backup = relative_mode;
  2763. relative_mode = true;
  2764. #endif
  2765. get_coordinates();
  2766. #ifdef SF_ARC_FIX
  2767. relative_mode=relative_mode_backup;
  2768. #endif
  2769. if(code_seen('I')) {
  2770. offset[0] = code_value();
  2771. }
  2772. else {
  2773. offset[0] = 0.0;
  2774. }
  2775. if(code_seen('J')) {
  2776. offset[1] = code_value();
  2777. }
  2778. else {
  2779. offset[1] = 0.0;
  2780. }
  2781. }
  2782. void clamp_to_software_endstops(float target[3])
  2783. {
  2784. if (min_software_endstops) {
  2785. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2786. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2787. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2788. }
  2789. if (max_software_endstops) {
  2790. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2791. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2792. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2793. }
  2794. }
  2795. #ifdef DELTA
  2796. void calculate_delta(float cartesian[3])
  2797. {
  2798. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2799. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2800. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2801. ) + cartesian[Z_AXIS];
  2802. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2803. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2804. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2805. ) + cartesian[Z_AXIS];
  2806. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2807. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2808. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2809. ) + cartesian[Z_AXIS];
  2810. /*
  2811. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2812. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2813. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2814. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2815. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2816. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2817. */
  2818. }
  2819. #endif
  2820. void prepare_move()
  2821. {
  2822. clamp_to_software_endstops(destination);
  2823. previous_millis_cmd = millis();
  2824. #ifdef DELTA
  2825. float difference[NUM_AXIS];
  2826. for (int8_t i=0; i < NUM_AXIS; i++) {
  2827. difference[i] = destination[i] - current_position[i];
  2828. }
  2829. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2830. sq(difference[Y_AXIS]) +
  2831. sq(difference[Z_AXIS]));
  2832. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2833. if (cartesian_mm < 0.000001) { return; }
  2834. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2835. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2836. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2837. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2838. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2839. for (int s = 1; s <= steps; s++) {
  2840. float fraction = float(s) / float(steps);
  2841. for(int8_t i=0; i < NUM_AXIS; i++) {
  2842. destination[i] = current_position[i] + difference[i] * fraction;
  2843. }
  2844. calculate_delta(destination);
  2845. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2846. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2847. active_extruder);
  2848. }
  2849. #else
  2850. #ifdef DUAL_X_CARRIAGE
  2851. if (active_extruder_parked)
  2852. {
  2853. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2854. {
  2855. // move duplicate extruder into correct duplication position.
  2856. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2857. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2858. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2859. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2860. st_synchronize();
  2861. extruder_duplication_enabled = true;
  2862. active_extruder_parked = false;
  2863. }
  2864. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2865. {
  2866. if (current_position[E_AXIS] == destination[E_AXIS])
  2867. {
  2868. // this is a travel move - skit it but keep track of current position (so that it can later
  2869. // be used as start of first non-travel move)
  2870. if (delayed_move_time != 0xFFFFFFFFUL)
  2871. {
  2872. memcpy(current_position, destination, sizeof(current_position));
  2873. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2874. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2875. delayed_move_time = millis();
  2876. return;
  2877. }
  2878. }
  2879. delayed_move_time = 0;
  2880. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2881. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2883. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2885. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2886. active_extruder_parked = false;
  2887. }
  2888. }
  2889. #endif //DUAL_X_CARRIAGE
  2890. // Do not use feedmultiply for E or Z only moves
  2891. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2892. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2893. }
  2894. else {
  2895. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2896. }
  2897. #endif //else DELTA
  2898. for(int8_t i=0; i < NUM_AXIS; i++) {
  2899. current_position[i] = destination[i];
  2900. }
  2901. }
  2902. void prepare_arc_move(char isclockwise) {
  2903. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2904. // Trace the arc
  2905. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2906. // As far as the parser is concerned, the position is now == target. In reality the
  2907. // motion control system might still be processing the action and the real tool position
  2908. // in any intermediate location.
  2909. for(int8_t i=0; i < NUM_AXIS; i++) {
  2910. current_position[i] = destination[i];
  2911. }
  2912. previous_millis_cmd = millis();
  2913. }
  2914. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2915. #if defined(FAN_PIN)
  2916. #if CONTROLLERFAN_PIN == FAN_PIN
  2917. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2918. #endif
  2919. #endif
  2920. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2921. unsigned long lastMotorCheck = 0;
  2922. void controllerFan()
  2923. {
  2924. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2925. {
  2926. lastMotorCheck = millis();
  2927. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2928. #if EXTRUDERS > 2
  2929. || !READ(E2_ENABLE_PIN)
  2930. #endif
  2931. #if EXTRUDER > 1
  2932. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2933. || !READ(X2_ENABLE_PIN)
  2934. #endif
  2935. || !READ(E1_ENABLE_PIN)
  2936. #endif
  2937. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2938. {
  2939. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2940. }
  2941. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2942. {
  2943. digitalWrite(CONTROLLERFAN_PIN, 0);
  2944. analogWrite(CONTROLLERFAN_PIN, 0);
  2945. }
  2946. else
  2947. {
  2948. // allows digital or PWM fan output to be used (see M42 handling)
  2949. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2950. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2951. }
  2952. }
  2953. }
  2954. #endif
  2955. #ifdef TEMP_STAT_LEDS
  2956. static bool blue_led = false;
  2957. static bool red_led = false;
  2958. static uint32_t stat_update = 0;
  2959. void handle_status_leds(void) {
  2960. float max_temp = 0.0;
  2961. if(millis() > stat_update) {
  2962. stat_update += 500; // Update every 0.5s
  2963. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2964. max_temp = max(max_temp, degHotend(cur_extruder));
  2965. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2966. }
  2967. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2968. max_temp = max(max_temp, degTargetBed());
  2969. max_temp = max(max_temp, degBed());
  2970. #endif
  2971. if((max_temp > 55.0) && (red_led == false)) {
  2972. digitalWrite(STAT_LED_RED, 1);
  2973. digitalWrite(STAT_LED_BLUE, 0);
  2974. red_led = true;
  2975. blue_led = false;
  2976. }
  2977. if((max_temp < 54.0) && (blue_led == false)) {
  2978. digitalWrite(STAT_LED_RED, 0);
  2979. digitalWrite(STAT_LED_BLUE, 1);
  2980. red_led = false;
  2981. blue_led = true;
  2982. }
  2983. }
  2984. }
  2985. #endif
  2986. void manage_inactivity()
  2987. {
  2988. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2989. if(max_inactive_time)
  2990. kill();
  2991. if(stepper_inactive_time) {
  2992. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2993. {
  2994. if(blocks_queued() == false) {
  2995. disable_x();
  2996. disable_y();
  2997. disable_z();
  2998. disable_e0();
  2999. disable_e1();
  3000. disable_e2();
  3001. }
  3002. }
  3003. }
  3004. #if defined(KILL_PIN) && KILL_PIN > -1
  3005. if( 0 == READ(KILL_PIN) )
  3006. kill();
  3007. #endif
  3008. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3009. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3010. #endif
  3011. #ifdef EXTRUDER_RUNOUT_PREVENT
  3012. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3013. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3014. {
  3015. bool oldstatus=READ(E0_ENABLE_PIN);
  3016. enable_e0();
  3017. float oldepos=current_position[E_AXIS];
  3018. float oldedes=destination[E_AXIS];
  3019. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3020. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3021. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3022. current_position[E_AXIS]=oldepos;
  3023. destination[E_AXIS]=oldedes;
  3024. plan_set_e_position(oldepos);
  3025. previous_millis_cmd=millis();
  3026. st_synchronize();
  3027. WRITE(E0_ENABLE_PIN,oldstatus);
  3028. }
  3029. #endif
  3030. #if defined(DUAL_X_CARRIAGE)
  3031. // handle delayed move timeout
  3032. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3033. {
  3034. // travel moves have been received so enact them
  3035. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3036. memcpy(destination,current_position,sizeof(destination));
  3037. prepare_move();
  3038. }
  3039. #endif
  3040. #ifdef TEMP_STAT_LEDS
  3041. handle_status_leds();
  3042. #endif
  3043. check_axes_activity();
  3044. }
  3045. void kill()
  3046. {
  3047. cli(); // Stop interrupts
  3048. disable_heater();
  3049. disable_x();
  3050. disable_y();
  3051. disable_z();
  3052. disable_e0();
  3053. disable_e1();
  3054. disable_e2();
  3055. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3056. pinMode(PS_ON_PIN,INPUT);
  3057. #endif
  3058. SERIAL_ERROR_START;
  3059. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3060. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3061. suicide();
  3062. while(1) { /* Intentionally left empty */ } // Wait for reset
  3063. }
  3064. void Stop()
  3065. {
  3066. disable_heater();
  3067. if(Stopped == false) {
  3068. Stopped = true;
  3069. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3070. SERIAL_ERROR_START;
  3071. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3072. LCD_MESSAGEPGM(MSG_STOPPED);
  3073. }
  3074. }
  3075. bool IsStopped() { return Stopped; };
  3076. #ifdef FAST_PWM_FAN
  3077. void setPwmFrequency(uint8_t pin, int val)
  3078. {
  3079. val &= 0x07;
  3080. switch(digitalPinToTimer(pin))
  3081. {
  3082. #if defined(TCCR0A)
  3083. case TIMER0A:
  3084. case TIMER0B:
  3085. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3086. // TCCR0B |= val;
  3087. break;
  3088. #endif
  3089. #if defined(TCCR1A)
  3090. case TIMER1A:
  3091. case TIMER1B:
  3092. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3093. // TCCR1B |= val;
  3094. break;
  3095. #endif
  3096. #if defined(TCCR2)
  3097. case TIMER2:
  3098. case TIMER2:
  3099. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3100. TCCR2 |= val;
  3101. break;
  3102. #endif
  3103. #if defined(TCCR2A)
  3104. case TIMER2A:
  3105. case TIMER2B:
  3106. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3107. TCCR2B |= val;
  3108. break;
  3109. #endif
  3110. #if defined(TCCR3A)
  3111. case TIMER3A:
  3112. case TIMER3B:
  3113. case TIMER3C:
  3114. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3115. TCCR3B |= val;
  3116. break;
  3117. #endif
  3118. #if defined(TCCR4A)
  3119. case TIMER4A:
  3120. case TIMER4B:
  3121. case TIMER4C:
  3122. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3123. TCCR4B |= val;
  3124. break;
  3125. #endif
  3126. #if defined(TCCR5A)
  3127. case TIMER5A:
  3128. case TIMER5B:
  3129. case TIMER5C:
  3130. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3131. TCCR5B |= val;
  3132. break;
  3133. #endif
  3134. }
  3135. }
  3136. #endif //FAST_PWM_FAN
  3137. bool setTargetedHotend(int code){
  3138. tmp_extruder = active_extruder;
  3139. if(code_seen('T')) {
  3140. tmp_extruder = code_value();
  3141. if(tmp_extruder >= EXTRUDERS) {
  3142. SERIAL_ECHO_START;
  3143. switch(code){
  3144. case 104:
  3145. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3146. break;
  3147. case 105:
  3148. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3149. break;
  3150. case 109:
  3151. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3152. break;
  3153. case 218:
  3154. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3155. break;
  3156. }
  3157. SERIAL_ECHOLN(tmp_extruder);
  3158. return true;
  3159. }
  3160. }
  3161. return false;
  3162. }