My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

Marlin_main.cpp 104KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #endif // ENABLE_AUTO_BED_LEVELING
  27. #include "ultralcd.h"
  28. #include "planner.h"
  29. #include "stepper.h"
  30. #include "temperature.h"
  31. #include "motion_control.h"
  32. #include "cardreader.h"
  33. #include "watchdog.h"
  34. #include "ConfigurationStore.h"
  35. #include "language.h"
  36. #include "pins_arduino.h"
  37. #if NUM_SERVOS > 0
  38. #include "Servo.h"
  39. #endif
  40. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  41. #include <SPI.h>
  42. #endif
  43. #define VERSION_STRING "1.0.0"
  44. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  45. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  46. //Implemented Codes
  47. //-------------------
  48. // G0 -> G1
  49. // G1 - Coordinated Movement X Y Z E
  50. // G2 - CW ARC
  51. // G3 - CCW ARC
  52. // G4 - Dwell S<seconds> or P<milliseconds>
  53. // G10 - retract filament according to settings of M207
  54. // G11 - retract recover filament according to settings of M208
  55. // G28 - Home all Axis
  56. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  57. // G30 - Single Z Probe, probes bed at current XY location.
  58. // G90 - Use Absolute Coordinates
  59. // G91 - Use Relative Coordinates
  60. // G92 - Set current position to cordinates given
  61. // M Codes
  62. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  63. // M1 - Same as M0
  64. // M17 - Enable/Power all stepper motors
  65. // M18 - Disable all stepper motors; same as M84
  66. // M20 - List SD card
  67. // M21 - Init SD card
  68. // M22 - Release SD card
  69. // M23 - Select SD file (M23 filename.g)
  70. // M24 - Start/resume SD print
  71. // M25 - Pause SD print
  72. // M26 - Set SD position in bytes (M26 S12345)
  73. // M27 - Report SD print status
  74. // M28 - Start SD write (M28 filename.g)
  75. // M29 - Stop SD write
  76. // M30 - Delete file from SD (M30 filename.g)
  77. // M31 - Output time since last M109 or SD card start to serial
  78. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  79. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  80. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  81. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  82. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  83. // M80 - Turn on Power Supply
  84. // M81 - Turn off Power Supply
  85. // M82 - Set E codes absolute (default)
  86. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  87. // M84 - Disable steppers until next move,
  88. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  89. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  90. // M92 - Set axis_steps_per_unit - same syntax as G92
  91. // M104 - Set extruder target temp
  92. // M105 - Read current temp
  93. // M106 - Fan on
  94. // M107 - Fan off
  95. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  96. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  97. // M114 - Output current position to serial port
  98. // M115 - Capabilities string
  99. // M117 - display message
  100. // M119 - Output Endstop status to serial port
  101. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  102. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  103. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  104. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  105. // M140 - Set bed target temp
  106. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  107. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  108. // M200 - Set filament diameter
  109. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  110. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  111. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  112. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  113. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  114. // M206 - set additional homeing offset
  115. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  116. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  117. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  118. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  119. // M220 S<factor in percent>- set speed factor override percentage
  120. // M221 S<factor in percent>- set extrude factor override percentage
  121. // M240 - Trigger a camera to take a photograph
  122. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  123. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  124. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  125. // M301 - Set PID parameters P I and D
  126. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  127. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  128. // M304 - Set bed PID parameters P I and D
  129. // M400 - Finish all moves
  130. // M401 - Lower z-probe if present
  131. // M402 - Raise z-probe if present
  132. // M500 - stores paramters in EEPROM
  133. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  134. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  135. // M503 - print the current settings (from memory not from eeprom)
  136. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  137. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  138. // M666 - set delta endstop adjustemnt
  139. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  140. // M907 - Set digital trimpot motor current using axis codes.
  141. // M908 - Control digital trimpot directly.
  142. // M350 - Set microstepping mode.
  143. // M351 - Toggle MS1 MS2 pins directly.
  144. // M928 - Start SD logging (M928 filename.g) - ended by M29
  145. // M999 - Restart after being stopped by error
  146. //Stepper Movement Variables
  147. //===========================================================================
  148. //=============================imported variables============================
  149. //===========================================================================
  150. //===========================================================================
  151. //=============================public variables=============================
  152. //===========================================================================
  153. #ifdef SDSUPPORT
  154. CardReader card;
  155. #endif
  156. float homing_feedrate[] = HOMING_FEEDRATE;
  157. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  158. int feedmultiply=100; //100->1 200->2
  159. int saved_feedmultiply;
  160. int extrudemultiply=100; //100->1 200->2
  161. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  162. float add_homeing[3]={0,0,0};
  163. #ifdef DELTA
  164. float endstop_adj[3]={0,0,0};
  165. #endif
  166. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  167. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  168. // Extruder offset
  169. #if EXTRUDERS > 1
  170. #ifndef DUAL_X_CARRIAGE
  171. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  172. #else
  173. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  174. #endif
  175. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  176. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  177. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  178. #endif
  179. };
  180. #endif
  181. uint8_t active_extruder = 0;
  182. int fanSpeed=0;
  183. #ifdef SERVO_ENDSTOPS
  184. int servo_endstops[] = SERVO_ENDSTOPS;
  185. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  186. #endif
  187. #ifdef BARICUDA
  188. int ValvePressure=0;
  189. int EtoPPressure=0;
  190. #endif
  191. #ifdef FWRETRACT
  192. bool autoretract_enabled=true;
  193. bool retracted=false;
  194. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  195. float retract_recover_length=0, retract_recover_feedrate=8*60;
  196. #endif
  197. #ifdef ULTIPANEL
  198. bool powersupply = true;
  199. #endif
  200. #ifdef DELTA
  201. float delta[3] = {0.0, 0.0, 0.0};
  202. #endif
  203. //===========================================================================
  204. //=============================private variables=============================
  205. //===========================================================================
  206. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  207. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  208. static float offset[3] = {0.0, 0.0, 0.0};
  209. static bool home_all_axis = true;
  210. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  211. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  212. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  213. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  214. static bool fromsd[BUFSIZE];
  215. static int bufindr = 0;
  216. static int bufindw = 0;
  217. static int buflen = 0;
  218. //static int i = 0;
  219. static char serial_char;
  220. static int serial_count = 0;
  221. static boolean comment_mode = false;
  222. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  223. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  224. //static float tt = 0;
  225. //static float bt = 0;
  226. //Inactivity shutdown variables
  227. static unsigned long previous_millis_cmd = 0;
  228. static unsigned long max_inactive_time = 0;
  229. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  230. unsigned long starttime=0;
  231. unsigned long stoptime=0;
  232. static uint8_t tmp_extruder;
  233. bool Stopped=false;
  234. #if NUM_SERVOS > 0
  235. Servo servos[NUM_SERVOS];
  236. #endif
  237. bool CooldownNoWait = true;
  238. bool target_direction;
  239. //===========================================================================
  240. //=============================ROUTINES=============================
  241. //===========================================================================
  242. void get_arc_coordinates();
  243. bool setTargetedHotend(int code);
  244. void serial_echopair_P(const char *s_P, float v)
  245. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  246. void serial_echopair_P(const char *s_P, double v)
  247. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  248. void serial_echopair_P(const char *s_P, unsigned long v)
  249. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  250. extern "C"{
  251. extern unsigned int __bss_end;
  252. extern unsigned int __heap_start;
  253. extern void *__brkval;
  254. int freeMemory() {
  255. int free_memory;
  256. if((int)__brkval == 0)
  257. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  258. else
  259. free_memory = ((int)&free_memory) - ((int)__brkval);
  260. return free_memory;
  261. }
  262. }
  263. //adds an command to the main command buffer
  264. //thats really done in a non-safe way.
  265. //needs overworking someday
  266. void enquecommand(const char *cmd)
  267. {
  268. if(buflen < BUFSIZE)
  269. {
  270. //this is dangerous if a mixing of serial and this happsens
  271. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  272. SERIAL_ECHO_START;
  273. SERIAL_ECHOPGM("enqueing \"");
  274. SERIAL_ECHO(cmdbuffer[bufindw]);
  275. SERIAL_ECHOLNPGM("\"");
  276. bufindw= (bufindw + 1)%BUFSIZE;
  277. buflen += 1;
  278. }
  279. }
  280. void enquecommand_P(const char *cmd)
  281. {
  282. if(buflen < BUFSIZE)
  283. {
  284. //this is dangerous if a mixing of serial and this happsens
  285. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  286. SERIAL_ECHO_START;
  287. SERIAL_ECHOPGM("enqueing \"");
  288. SERIAL_ECHO(cmdbuffer[bufindw]);
  289. SERIAL_ECHOLNPGM("\"");
  290. bufindw= (bufindw + 1)%BUFSIZE;
  291. buflen += 1;
  292. }
  293. }
  294. void setup_killpin()
  295. {
  296. #if defined(KILL_PIN) && KILL_PIN > -1
  297. pinMode(KILL_PIN,INPUT);
  298. WRITE(KILL_PIN,HIGH);
  299. #endif
  300. }
  301. void setup_photpin()
  302. {
  303. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  304. SET_OUTPUT(PHOTOGRAPH_PIN);
  305. WRITE(PHOTOGRAPH_PIN, LOW);
  306. #endif
  307. }
  308. void setup_powerhold()
  309. {
  310. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  311. SET_OUTPUT(SUICIDE_PIN);
  312. WRITE(SUICIDE_PIN, HIGH);
  313. #endif
  314. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  315. SET_OUTPUT(PS_ON_PIN);
  316. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  317. #endif
  318. }
  319. void suicide()
  320. {
  321. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  322. SET_OUTPUT(SUICIDE_PIN);
  323. WRITE(SUICIDE_PIN, LOW);
  324. #endif
  325. }
  326. void servo_init()
  327. {
  328. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  329. servos[0].attach(SERVO0_PIN);
  330. #endif
  331. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  332. servos[1].attach(SERVO1_PIN);
  333. #endif
  334. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  335. servos[2].attach(SERVO2_PIN);
  336. #endif
  337. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  338. servos[3].attach(SERVO3_PIN);
  339. #endif
  340. #if (NUM_SERVOS >= 5)
  341. #error "TODO: enter initalisation code for more servos"
  342. #endif
  343. // Set position of Servo Endstops that are defined
  344. #ifdef SERVO_ENDSTOPS
  345. for(int8_t i = 0; i < 3; i++)
  346. {
  347. if(servo_endstops[i] > -1) {
  348. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  349. }
  350. }
  351. #endif
  352. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  353. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  354. servos[servo_endstops[Z_AXIS]].detach();
  355. #endif
  356. }
  357. void setup()
  358. {
  359. setup_killpin();
  360. setup_powerhold();
  361. MYSERIAL.begin(BAUDRATE);
  362. SERIAL_PROTOCOLLNPGM("start");
  363. SERIAL_ECHO_START;
  364. // Check startup - does nothing if bootloader sets MCUSR to 0
  365. byte mcu = MCUSR;
  366. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  367. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  368. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  369. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  370. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  371. MCUSR=0;
  372. SERIAL_ECHOPGM(MSG_MARLIN);
  373. SERIAL_ECHOLNPGM(VERSION_STRING);
  374. #ifdef STRING_VERSION_CONFIG_H
  375. #ifdef STRING_CONFIG_H_AUTHOR
  376. SERIAL_ECHO_START;
  377. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  378. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  379. SERIAL_ECHOPGM(MSG_AUTHOR);
  380. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  381. SERIAL_ECHOPGM("Compiled: ");
  382. SERIAL_ECHOLNPGM(__DATE__);
  383. #endif
  384. #endif
  385. SERIAL_ECHO_START;
  386. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  387. SERIAL_ECHO(freeMemory());
  388. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  389. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  390. for(int8_t i = 0; i < BUFSIZE; i++)
  391. {
  392. fromsd[i] = false;
  393. }
  394. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  395. Config_RetrieveSettings();
  396. tp_init(); // Initialize temperature loop
  397. plan_init(); // Initialize planner;
  398. watchdog_init();
  399. st_init(); // Initialize stepper, this enables interrupts!
  400. setup_photpin();
  401. servo_init();
  402. lcd_init();
  403. _delay_ms(1000); // wait 1sec to display the splash screen
  404. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  405. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  406. #endif
  407. }
  408. void loop()
  409. {
  410. if(buflen < (BUFSIZE-1))
  411. get_command();
  412. #ifdef SDSUPPORT
  413. card.checkautostart(false);
  414. #endif
  415. if(buflen)
  416. {
  417. #ifdef SDSUPPORT
  418. if(card.saving)
  419. {
  420. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  421. {
  422. card.write_command(cmdbuffer[bufindr]);
  423. if(card.logging)
  424. {
  425. process_commands();
  426. }
  427. else
  428. {
  429. SERIAL_PROTOCOLLNPGM(MSG_OK);
  430. }
  431. }
  432. else
  433. {
  434. card.closefile();
  435. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  436. }
  437. }
  438. else
  439. {
  440. process_commands();
  441. }
  442. #else
  443. process_commands();
  444. #endif //SDSUPPORT
  445. buflen = (buflen-1);
  446. bufindr = (bufindr + 1)%BUFSIZE;
  447. }
  448. //check heater every n milliseconds
  449. manage_heater();
  450. manage_inactivity();
  451. checkHitEndstops();
  452. lcd_update();
  453. }
  454. void get_command()
  455. {
  456. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  457. serial_char = MYSERIAL.read();
  458. if(serial_char == '\n' ||
  459. serial_char == '\r' ||
  460. (serial_char == ':' && comment_mode == false) ||
  461. serial_count >= (MAX_CMD_SIZE - 1) )
  462. {
  463. if(!serial_count) { //if empty line
  464. comment_mode = false; //for new command
  465. return;
  466. }
  467. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  468. if(!comment_mode){
  469. comment_mode = false; //for new command
  470. fromsd[bufindw] = false;
  471. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  472. {
  473. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  474. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  475. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  476. SERIAL_ERROR_START;
  477. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  478. SERIAL_ERRORLN(gcode_LastN);
  479. //Serial.println(gcode_N);
  480. FlushSerialRequestResend();
  481. serial_count = 0;
  482. return;
  483. }
  484. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  485. {
  486. byte checksum = 0;
  487. byte count = 0;
  488. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  489. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  490. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  491. SERIAL_ERROR_START;
  492. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  493. SERIAL_ERRORLN(gcode_LastN);
  494. FlushSerialRequestResend();
  495. serial_count = 0;
  496. return;
  497. }
  498. //if no errors, continue parsing
  499. }
  500. else
  501. {
  502. SERIAL_ERROR_START;
  503. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  504. SERIAL_ERRORLN(gcode_LastN);
  505. FlushSerialRequestResend();
  506. serial_count = 0;
  507. return;
  508. }
  509. gcode_LastN = gcode_N;
  510. //if no errors, continue parsing
  511. }
  512. else // if we don't receive 'N' but still see '*'
  513. {
  514. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  515. {
  516. SERIAL_ERROR_START;
  517. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  518. SERIAL_ERRORLN(gcode_LastN);
  519. serial_count = 0;
  520. return;
  521. }
  522. }
  523. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  524. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  525. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  526. case 0:
  527. case 1:
  528. case 2:
  529. case 3:
  530. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  531. #ifdef SDSUPPORT
  532. if(card.saving)
  533. break;
  534. #endif //SDSUPPORT
  535. SERIAL_PROTOCOLLNPGM(MSG_OK);
  536. }
  537. else {
  538. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  539. LCD_MESSAGEPGM(MSG_STOPPED);
  540. }
  541. break;
  542. default:
  543. break;
  544. }
  545. }
  546. bufindw = (bufindw + 1)%BUFSIZE;
  547. buflen += 1;
  548. }
  549. serial_count = 0; //clear buffer
  550. }
  551. else
  552. {
  553. if(serial_char == ';') comment_mode = true;
  554. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  555. }
  556. }
  557. #ifdef SDSUPPORT
  558. if(!card.sdprinting || serial_count!=0){
  559. return;
  560. }
  561. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  562. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  563. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  564. static bool stop_buffering=false;
  565. if(buflen==0) stop_buffering=false;
  566. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  567. int16_t n=card.get();
  568. serial_char = (char)n;
  569. if(serial_char == '\n' ||
  570. serial_char == '\r' ||
  571. serial_char == '#' ||
  572. (serial_char == ':' && comment_mode == false) ||
  573. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  574. {
  575. if(card.eof()){
  576. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  577. stoptime=millis();
  578. char time[30];
  579. unsigned long t=(stoptime-starttime)/1000;
  580. int hours, minutes;
  581. minutes=(t/60)%60;
  582. hours=t/60/60;
  583. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  584. SERIAL_ECHO_START;
  585. SERIAL_ECHOLN(time);
  586. lcd_setstatus(time);
  587. card.printingHasFinished();
  588. card.checkautostart(true);
  589. }
  590. if(serial_char=='#')
  591. stop_buffering=true;
  592. if(!serial_count)
  593. {
  594. comment_mode = false; //for new command
  595. return; //if empty line
  596. }
  597. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  598. // if(!comment_mode){
  599. fromsd[bufindw] = true;
  600. buflen += 1;
  601. bufindw = (bufindw + 1)%BUFSIZE;
  602. // }
  603. comment_mode = false; //for new command
  604. serial_count = 0; //clear buffer
  605. }
  606. else
  607. {
  608. if(serial_char == ';') comment_mode = true;
  609. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  610. }
  611. }
  612. #endif //SDSUPPORT
  613. }
  614. float code_value()
  615. {
  616. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  617. }
  618. long code_value_long()
  619. {
  620. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  621. }
  622. bool code_seen(char code)
  623. {
  624. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  625. return (strchr_pointer != NULL); //Return True if a character was found
  626. }
  627. #define DEFINE_PGM_READ_ANY(type, reader) \
  628. static inline type pgm_read_any(const type *p) \
  629. { return pgm_read_##reader##_near(p); }
  630. DEFINE_PGM_READ_ANY(float, float);
  631. DEFINE_PGM_READ_ANY(signed char, byte);
  632. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  633. static const PROGMEM type array##_P[3] = \
  634. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  635. static inline type array(int axis) \
  636. { return pgm_read_any(&array##_P[axis]); }
  637. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  638. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  639. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  640. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  641. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  642. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  643. #ifdef DUAL_X_CARRIAGE
  644. #if EXTRUDERS == 1 || defined(COREXY) \
  645. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  646. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  647. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  648. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  649. #endif
  650. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  651. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  652. #endif
  653. #define DXC_FULL_CONTROL_MODE 0
  654. #define DXC_AUTO_PARK_MODE 1
  655. #define DXC_DUPLICATION_MODE 2
  656. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  657. static float x_home_pos(int extruder) {
  658. if (extruder == 0)
  659. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  660. else
  661. // In dual carriage mode the extruder offset provides an override of the
  662. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  663. // This allow soft recalibration of the second extruder offset position without firmware reflash
  664. // (through the M218 command).
  665. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  666. }
  667. static int x_home_dir(int extruder) {
  668. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  669. }
  670. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  671. static bool active_extruder_parked = false; // used in mode 1 & 2
  672. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  673. static unsigned long delayed_move_time = 0; // used in mode 1
  674. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  675. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  676. bool extruder_duplication_enabled = false; // used in mode 2
  677. #endif //DUAL_X_CARRIAGE
  678. static void axis_is_at_home(int axis) {
  679. #ifdef DUAL_X_CARRIAGE
  680. if (axis == X_AXIS) {
  681. if (active_extruder != 0) {
  682. current_position[X_AXIS] = x_home_pos(active_extruder);
  683. min_pos[X_AXIS] = X2_MIN_POS;
  684. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  685. return;
  686. }
  687. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  688. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  689. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  690. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  691. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  692. return;
  693. }
  694. }
  695. #endif
  696. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  697. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  698. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  699. }
  700. #ifdef ENABLE_AUTO_BED_LEVELING
  701. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  702. plan_bed_level_matrix.set_to_identity();
  703. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  704. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  705. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  706. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  707. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  708. vector_3 planeNormal = vector_3::cross(yPositive, xPositive).get_normal();
  709. //planeNormal.debug("planeNormal");
  710. //yPositive.debug("yPositive");
  711. matrix_3x3 bedLevel = matrix_3x3::create_look_at(planeNormal, yPositive);
  712. //bedLevel.debug("bedLevel");
  713. //plan_bed_level_matrix.debug("bed level before");
  714. //vector_3 uncorrected_position = plan_get_position_mm();
  715. //uncorrected_position.debug("position before");
  716. // and set our bed level equation to do the right thing
  717. plan_bed_level_matrix = matrix_3x3::create_inverse(bedLevel);
  718. //plan_bed_level_matrix.debug("bed level after");
  719. vector_3 corrected_position = plan_get_position();
  720. //corrected_position.debug("position after");
  721. current_position[X_AXIS] = corrected_position.x;
  722. current_position[Y_AXIS] = corrected_position.y;
  723. current_position[Z_AXIS] = corrected_position.z;
  724. // but the bed at 0 so we don't go below it.
  725. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  727. }
  728. static void run_z_probe() {
  729. plan_bed_level_matrix.set_to_identity();
  730. feedrate = homing_feedrate[Z_AXIS];
  731. // move down until you find the bed
  732. float zPosition = -10;
  733. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  734. st_synchronize();
  735. // we have to let the planner know where we are right now as it is not where we said to go.
  736. zPosition = st_get_position_mm(Z_AXIS);
  737. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  738. // move up the retract distance
  739. zPosition += home_retract_mm(Z_AXIS);
  740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  741. st_synchronize();
  742. // move back down slowly to find bed
  743. feedrate = homing_feedrate[Z_AXIS]/4;
  744. zPosition -= home_retract_mm(Z_AXIS) * 2;
  745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  746. st_synchronize();
  747. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  748. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  749. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  750. }
  751. static void do_blocking_move_to(float x, float y, float z) {
  752. float oldFeedRate = feedrate;
  753. feedrate = XY_TRAVEL_SPEED;
  754. current_position[X_AXIS] = x;
  755. current_position[Y_AXIS] = y;
  756. current_position[Z_AXIS] = z;
  757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  758. st_synchronize();
  759. feedrate = oldFeedRate;
  760. }
  761. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  762. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  763. }
  764. static void setup_for_endstop_move() {
  765. saved_feedrate = feedrate;
  766. saved_feedmultiply = feedmultiply;
  767. feedmultiply = 100;
  768. previous_millis_cmd = millis();
  769. enable_endstops(true);
  770. }
  771. static void clean_up_after_endstop_move() {
  772. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  773. enable_endstops(false);
  774. #endif
  775. feedrate = saved_feedrate;
  776. feedmultiply = saved_feedmultiply;
  777. previous_millis_cmd = millis();
  778. }
  779. static void engage_z_probe() {
  780. // Engage Z Servo endstop if enabled
  781. #ifdef SERVO_ENDSTOPS
  782. if (servo_endstops[Z_AXIS] > -1) {
  783. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  784. servos[servo_endstops[Z_AXIS]].attach(0);
  785. #endif
  786. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  787. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  788. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  789. servos[servo_endstops[Z_AXIS]].detach();
  790. #endif
  791. }
  792. #endif
  793. }
  794. static void retract_z_probe() {
  795. // Retract Z Servo endstop if enabled
  796. #ifdef SERVO_ENDSTOPS
  797. if (servo_endstops[Z_AXIS] > -1) {
  798. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  799. servos[servo_endstops[Z_AXIS]].attach(0);
  800. #endif
  801. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  802. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  803. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  804. servos[servo_endstops[Z_AXIS]].detach();
  805. #endif
  806. }
  807. #endif
  808. }
  809. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  810. static void homeaxis(int axis) {
  811. #define HOMEAXIS_DO(LETTER) \
  812. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  813. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  814. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  815. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  816. 0) {
  817. int axis_home_dir = home_dir(axis);
  818. #ifdef DUAL_X_CARRIAGE
  819. if (axis == X_AXIS)
  820. axis_home_dir = x_home_dir(active_extruder);
  821. #endif
  822. // Engage Servo endstop if enabled
  823. #ifdef SERVO_ENDSTOPS
  824. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  825. if (axis==Z_AXIS) engage_z_probe();
  826. else
  827. #endif
  828. if (servo_endstops[axis] > -1) {
  829. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  830. }
  831. #endif
  832. current_position[axis] = 0;
  833. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  834. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  835. feedrate = homing_feedrate[axis];
  836. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  837. st_synchronize();
  838. current_position[axis] = 0;
  839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  840. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  841. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  842. st_synchronize();
  843. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  844. #ifdef DELTA
  845. feedrate = homing_feedrate[axis]/10;
  846. #else
  847. feedrate = homing_feedrate[axis]/2 ;
  848. #endif
  849. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  850. st_synchronize();
  851. #ifdef DELTA
  852. // retrace by the amount specified in endstop_adj
  853. if (endstop_adj[axis] * axis_home_dir < 0) {
  854. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  855. destination[axis] = endstop_adj[axis];
  856. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  857. st_synchronize();
  858. }
  859. #endif
  860. axis_is_at_home(axis);
  861. destination[axis] = current_position[axis];
  862. feedrate = 0.0;
  863. endstops_hit_on_purpose();
  864. // Retract Servo endstop if enabled
  865. #ifdef SERVO_ENDSTOPS
  866. if (servo_endstops[axis] > -1) {
  867. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  868. }
  869. #endif
  870. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  871. if (axis==Z_AXIS) retract_z_probe();
  872. #endif
  873. }
  874. }
  875. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  876. void process_commands()
  877. {
  878. unsigned long codenum; //throw away variable
  879. char *starpos = NULL;
  880. #ifdef ENABLE_AUTO_BED_LEVELING
  881. float x_tmp, y_tmp, z_tmp, real_z;
  882. #endif
  883. if(code_seen('G'))
  884. {
  885. switch((int)code_value())
  886. {
  887. case 0: // G0 -> G1
  888. case 1: // G1
  889. if(Stopped == false) {
  890. get_coordinates(); // For X Y Z E F
  891. prepare_move();
  892. //ClearToSend();
  893. return;
  894. }
  895. //break;
  896. case 2: // G2 - CW ARC
  897. if(Stopped == false) {
  898. get_arc_coordinates();
  899. prepare_arc_move(true);
  900. return;
  901. }
  902. case 3: // G3 - CCW ARC
  903. if(Stopped == false) {
  904. get_arc_coordinates();
  905. prepare_arc_move(false);
  906. return;
  907. }
  908. case 4: // G4 dwell
  909. LCD_MESSAGEPGM(MSG_DWELL);
  910. codenum = 0;
  911. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  912. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  913. st_synchronize();
  914. codenum += millis(); // keep track of when we started waiting
  915. previous_millis_cmd = millis();
  916. while(millis() < codenum ){
  917. manage_heater();
  918. manage_inactivity();
  919. lcd_update();
  920. }
  921. break;
  922. #ifdef FWRETRACT
  923. case 10: // G10 retract
  924. if(!retracted)
  925. {
  926. destination[X_AXIS]=current_position[X_AXIS];
  927. destination[Y_AXIS]=current_position[Y_AXIS];
  928. destination[Z_AXIS]=current_position[Z_AXIS];
  929. current_position[Z_AXIS]+=-retract_zlift;
  930. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  931. feedrate=retract_feedrate;
  932. retracted=true;
  933. prepare_move();
  934. }
  935. break;
  936. case 11: // G10 retract_recover
  937. if(!retracted)
  938. {
  939. destination[X_AXIS]=current_position[X_AXIS];
  940. destination[Y_AXIS]=current_position[Y_AXIS];
  941. destination[Z_AXIS]=current_position[Z_AXIS];
  942. current_position[Z_AXIS]+=retract_zlift;
  943. current_position[E_AXIS]+=-retract_recover_length;
  944. feedrate=retract_recover_feedrate;
  945. retracted=false;
  946. prepare_move();
  947. }
  948. break;
  949. #endif //FWRETRACT
  950. case 28: //G28 Home all Axis one at a time
  951. #ifdef ENABLE_AUTO_BED_LEVELING
  952. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  953. #endif //ENABLE_AUTO_BED_LEVELING
  954. saved_feedrate = feedrate;
  955. saved_feedmultiply = feedmultiply;
  956. feedmultiply = 100;
  957. previous_millis_cmd = millis();
  958. enable_endstops(true);
  959. for(int8_t i=0; i < NUM_AXIS; i++) {
  960. destination[i] = current_position[i];
  961. }
  962. feedrate = 0.0;
  963. #ifdef DELTA
  964. // A delta can only safely home all axis at the same time
  965. // all axis have to home at the same time
  966. // Move all carriages up together until the first endstop is hit.
  967. current_position[X_AXIS] = 0;
  968. current_position[Y_AXIS] = 0;
  969. current_position[Z_AXIS] = 0;
  970. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  971. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  972. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  973. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  974. feedrate = 1.732 * homing_feedrate[X_AXIS];
  975. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  976. st_synchronize();
  977. endstops_hit_on_purpose();
  978. current_position[X_AXIS] = destination[X_AXIS];
  979. current_position[Y_AXIS] = destination[Y_AXIS];
  980. current_position[Z_AXIS] = destination[Z_AXIS];
  981. // take care of back off and rehome now we are all at the top
  982. HOMEAXIS(X);
  983. HOMEAXIS(Y);
  984. HOMEAXIS(Z);
  985. calculate_delta(current_position);
  986. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  987. #else // NOT DELTA
  988. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  989. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  990. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  991. HOMEAXIS(Z);
  992. }
  993. #endif
  994. #ifdef QUICK_HOME
  995. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  996. {
  997. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  998. #ifndef DUAL_X_CARRIAGE
  999. int x_axis_home_dir = home_dir(X_AXIS);
  1000. #else
  1001. int x_axis_home_dir = x_home_dir(active_extruder);
  1002. extruder_duplication_enabled = false;
  1003. #endif
  1004. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1005. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1006. feedrate = homing_feedrate[X_AXIS];
  1007. if(homing_feedrate[Y_AXIS]<feedrate)
  1008. feedrate =homing_feedrate[Y_AXIS];
  1009. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1010. st_synchronize();
  1011. axis_is_at_home(X_AXIS);
  1012. axis_is_at_home(Y_AXIS);
  1013. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1014. destination[X_AXIS] = current_position[X_AXIS];
  1015. destination[Y_AXIS] = current_position[Y_AXIS];
  1016. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1017. feedrate = 0.0;
  1018. st_synchronize();
  1019. endstops_hit_on_purpose();
  1020. current_position[X_AXIS] = destination[X_AXIS];
  1021. current_position[Y_AXIS] = destination[Y_AXIS];
  1022. current_position[Z_AXIS] = destination[Z_AXIS];
  1023. }
  1024. #endif
  1025. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1026. {
  1027. #ifdef DUAL_X_CARRIAGE
  1028. int tmp_extruder = active_extruder;
  1029. extruder_duplication_enabled = false;
  1030. active_extruder = !active_extruder;
  1031. HOMEAXIS(X);
  1032. inactive_extruder_x_pos = current_position[X_AXIS];
  1033. active_extruder = tmp_extruder;
  1034. HOMEAXIS(X);
  1035. // reset state used by the different modes
  1036. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1037. delayed_move_time = 0;
  1038. active_extruder_parked = true;
  1039. #else
  1040. HOMEAXIS(X);
  1041. #endif
  1042. }
  1043. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1044. HOMEAXIS(Y);
  1045. }
  1046. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1047. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1048. HOMEAXIS(Z);
  1049. }
  1050. #endif
  1051. if(code_seen(axis_codes[X_AXIS]))
  1052. {
  1053. if(code_value_long() != 0) {
  1054. current_position[X_AXIS]=code_value()+add_homeing[0];
  1055. }
  1056. }
  1057. if(code_seen(axis_codes[Y_AXIS])) {
  1058. if(code_value_long() != 0) {
  1059. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1060. }
  1061. }
  1062. if(code_seen(axis_codes[Z_AXIS])) {
  1063. if(code_value_long() != 0) {
  1064. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1065. }
  1066. }
  1067. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1068. #endif // else DELTA
  1069. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1070. enable_endstops(false);
  1071. #endif
  1072. feedrate = saved_feedrate;
  1073. feedmultiply = saved_feedmultiply;
  1074. previous_millis_cmd = millis();
  1075. endstops_hit_on_purpose();
  1076. break;
  1077. #ifdef ENABLE_AUTO_BED_LEVELING
  1078. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1079. {
  1080. #if Z_MIN_PIN == -1
  1081. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1082. #endif
  1083. st_synchronize();
  1084. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1085. //vector_3 corrected_position = plan_get_position_mm();
  1086. //corrected_position.debug("position before G29");
  1087. plan_bed_level_matrix.set_to_identity();
  1088. vector_3 uncorrected_position = plan_get_position();
  1089. //uncorrected_position.debug("position durring G29");
  1090. current_position[X_AXIS] = uncorrected_position.x;
  1091. current_position[Y_AXIS] = uncorrected_position.y;
  1092. current_position[Z_AXIS] = uncorrected_position.z;
  1093. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1094. setup_for_endstop_move();
  1095. feedrate = homing_feedrate[Z_AXIS];
  1096. // prob 1
  1097. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1098. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1099. engage_z_probe(); // Engage Z Servo endstop if available
  1100. run_z_probe();
  1101. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1102. SERIAL_PROTOCOLPGM("Bed x: ");
  1103. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1104. SERIAL_PROTOCOLPGM(" y: ");
  1105. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1106. SERIAL_PROTOCOLPGM(" z: ");
  1107. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1108. SERIAL_PROTOCOLPGM("\n");
  1109. // prob 2
  1110. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1111. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1112. run_z_probe();
  1113. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1114. SERIAL_PROTOCOLPGM("Bed x: ");
  1115. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1116. SERIAL_PROTOCOLPGM(" y: ");
  1117. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1118. SERIAL_PROTOCOLPGM(" z: ");
  1119. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1120. SERIAL_PROTOCOLPGM("\n");
  1121. // prob 3
  1122. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1123. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1124. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1125. run_z_probe();
  1126. float z_at_xRight_yFront = current_position[Z_AXIS];
  1127. SERIAL_PROTOCOLPGM("Bed x: ");
  1128. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1129. SERIAL_PROTOCOLPGM(" y: ");
  1130. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1131. SERIAL_PROTOCOLPGM(" z: ");
  1132. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1133. SERIAL_PROTOCOLPGM("\n");
  1134. clean_up_after_endstop_move();
  1135. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1136. retract_z_probe(); // Retract Z Servo endstop if available
  1137. st_synchronize();
  1138. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1139. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1140. // When the bed is uneven, this height must be corrected.
  1141. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1142. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1143. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1144. z_tmp = current_position[Z_AXIS];
  1145. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1146. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1147. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1148. }
  1149. break;
  1150. case 30: // G30 Single Z Probe
  1151. {
  1152. engage_z_probe(); // Engage Z Servo endstop if available
  1153. st_synchronize();
  1154. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1155. setup_for_endstop_move();
  1156. feedrate = homing_feedrate[Z_AXIS];
  1157. run_z_probe();
  1158. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1159. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1160. SERIAL_PROTOCOLPGM(" Y: ");
  1161. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1162. SERIAL_PROTOCOLPGM(" Z: ");
  1163. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1164. SERIAL_PROTOCOLPGM("\n");
  1165. clean_up_after_endstop_move();
  1166. retract_z_probe(); // Retract Z Servo endstop if available
  1167. }
  1168. break;
  1169. #endif // ENABLE_AUTO_BED_LEVELING
  1170. case 90: // G90
  1171. relative_mode = false;
  1172. break;
  1173. case 91: // G91
  1174. relative_mode = true;
  1175. break;
  1176. case 92: // G92
  1177. if(!code_seen(axis_codes[E_AXIS]))
  1178. st_synchronize();
  1179. for(int8_t i=0; i < NUM_AXIS; i++) {
  1180. if(code_seen(axis_codes[i])) {
  1181. if(i == E_AXIS) {
  1182. current_position[i] = code_value();
  1183. plan_set_e_position(current_position[E_AXIS]);
  1184. }
  1185. else {
  1186. current_position[i] = code_value()+add_homeing[i];
  1187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1188. }
  1189. }
  1190. }
  1191. break;
  1192. }
  1193. }
  1194. else if(code_seen('M'))
  1195. {
  1196. switch( (int)code_value() )
  1197. {
  1198. #ifdef ULTIPANEL
  1199. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1200. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1201. {
  1202. LCD_MESSAGEPGM(MSG_USERWAIT);
  1203. codenum = 0;
  1204. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1205. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1206. st_synchronize();
  1207. previous_millis_cmd = millis();
  1208. if (codenum > 0){
  1209. codenum += millis(); // keep track of when we started waiting
  1210. while(millis() < codenum && !lcd_clicked()){
  1211. manage_heater();
  1212. manage_inactivity();
  1213. lcd_update();
  1214. }
  1215. }else{
  1216. while(!lcd_clicked()){
  1217. manage_heater();
  1218. manage_inactivity();
  1219. lcd_update();
  1220. }
  1221. }
  1222. LCD_MESSAGEPGM(MSG_RESUMING);
  1223. }
  1224. break;
  1225. #endif
  1226. case 17:
  1227. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1228. enable_x();
  1229. enable_y();
  1230. enable_z();
  1231. enable_e0();
  1232. enable_e1();
  1233. enable_e2();
  1234. break;
  1235. #ifdef SDSUPPORT
  1236. case 20: // M20 - list SD card
  1237. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1238. card.ls();
  1239. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1240. break;
  1241. case 21: // M21 - init SD card
  1242. card.initsd();
  1243. break;
  1244. case 22: //M22 - release SD card
  1245. card.release();
  1246. break;
  1247. case 23: //M23 - Select file
  1248. starpos = (strchr(strchr_pointer + 4,'*'));
  1249. if(starpos!=NULL)
  1250. *(starpos-1)='\0';
  1251. card.openFile(strchr_pointer + 4,true);
  1252. break;
  1253. case 24: //M24 - Start SD print
  1254. card.startFileprint();
  1255. starttime=millis();
  1256. break;
  1257. case 25: //M25 - Pause SD print
  1258. card.pauseSDPrint();
  1259. break;
  1260. case 26: //M26 - Set SD index
  1261. if(card.cardOK && code_seen('S')) {
  1262. card.setIndex(code_value_long());
  1263. }
  1264. break;
  1265. case 27: //M27 - Get SD status
  1266. card.getStatus();
  1267. break;
  1268. case 28: //M28 - Start SD write
  1269. starpos = (strchr(strchr_pointer + 4,'*'));
  1270. if(starpos != NULL){
  1271. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1272. strchr_pointer = strchr(npos,' ') + 1;
  1273. *(starpos-1) = '\0';
  1274. }
  1275. card.openFile(strchr_pointer+4,false);
  1276. break;
  1277. case 29: //M29 - Stop SD write
  1278. //processed in write to file routine above
  1279. //card,saving = false;
  1280. break;
  1281. case 30: //M30 <filename> Delete File
  1282. if (card.cardOK){
  1283. card.closefile();
  1284. starpos = (strchr(strchr_pointer + 4,'*'));
  1285. if(starpos != NULL){
  1286. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1287. strchr_pointer = strchr(npos,' ') + 1;
  1288. *(starpos-1) = '\0';
  1289. }
  1290. card.removeFile(strchr_pointer + 4);
  1291. }
  1292. break;
  1293. case 32: //M32 - Select file and start SD print
  1294. {
  1295. if(card.sdprinting) {
  1296. st_synchronize();
  1297. }
  1298. starpos = (strchr(strchr_pointer + 4,'*'));
  1299. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1300. if(namestartpos==NULL)
  1301. {
  1302. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1303. }
  1304. else
  1305. namestartpos++; //to skip the '!'
  1306. if(starpos!=NULL)
  1307. *(starpos-1)='\0';
  1308. bool call_procedure=(code_seen('P'));
  1309. if(strchr_pointer>namestartpos)
  1310. call_procedure=false; //false alert, 'P' found within filename
  1311. if( card.cardOK )
  1312. {
  1313. card.openFile(namestartpos,true,!call_procedure);
  1314. if(code_seen('S'))
  1315. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1316. card.setIndex(code_value_long());
  1317. card.startFileprint();
  1318. if(!call_procedure)
  1319. starttime=millis(); //procedure calls count as normal print time.
  1320. }
  1321. } break;
  1322. case 928: //M928 - Start SD write
  1323. starpos = (strchr(strchr_pointer + 5,'*'));
  1324. if(starpos != NULL){
  1325. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1326. strchr_pointer = strchr(npos,' ') + 1;
  1327. *(starpos-1) = '\0';
  1328. }
  1329. card.openLogFile(strchr_pointer+5);
  1330. break;
  1331. #endif //SDSUPPORT
  1332. case 31: //M31 take time since the start of the SD print or an M109 command
  1333. {
  1334. stoptime=millis();
  1335. char time[30];
  1336. unsigned long t=(stoptime-starttime)/1000;
  1337. int sec,min;
  1338. min=t/60;
  1339. sec=t%60;
  1340. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1341. SERIAL_ECHO_START;
  1342. SERIAL_ECHOLN(time);
  1343. lcd_setstatus(time);
  1344. autotempShutdown();
  1345. }
  1346. break;
  1347. case 42: //M42 -Change pin status via gcode
  1348. if (code_seen('S'))
  1349. {
  1350. int pin_status = code_value();
  1351. int pin_number = LED_PIN;
  1352. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1353. pin_number = code_value();
  1354. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1355. {
  1356. if (sensitive_pins[i] == pin_number)
  1357. {
  1358. pin_number = -1;
  1359. break;
  1360. }
  1361. }
  1362. #if defined(FAN_PIN) && FAN_PIN > -1
  1363. if (pin_number == FAN_PIN)
  1364. fanSpeed = pin_status;
  1365. #endif
  1366. if (pin_number > -1)
  1367. {
  1368. pinMode(pin_number, OUTPUT);
  1369. digitalWrite(pin_number, pin_status);
  1370. analogWrite(pin_number, pin_status);
  1371. }
  1372. }
  1373. break;
  1374. case 104: // M104
  1375. if(setTargetedHotend(104)){
  1376. break;
  1377. }
  1378. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1379. #ifdef DUAL_X_CARRIAGE
  1380. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1381. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1382. #endif
  1383. setWatch();
  1384. break;
  1385. case 140: // M140 set bed temp
  1386. if (code_seen('S')) setTargetBed(code_value());
  1387. break;
  1388. case 105 : // M105
  1389. if(setTargetedHotend(105)){
  1390. break;
  1391. }
  1392. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1393. SERIAL_PROTOCOLPGM("ok T:");
  1394. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1395. SERIAL_PROTOCOLPGM(" /");
  1396. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1397. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1398. SERIAL_PROTOCOLPGM(" B:");
  1399. SERIAL_PROTOCOL_F(degBed(),1);
  1400. SERIAL_PROTOCOLPGM(" /");
  1401. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1402. #endif //TEMP_BED_PIN
  1403. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1404. SERIAL_PROTOCOLPGM(" T");
  1405. SERIAL_PROTOCOL(cur_extruder);
  1406. SERIAL_PROTOCOLPGM(":");
  1407. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1408. SERIAL_PROTOCOLPGM(" /");
  1409. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1410. }
  1411. #else
  1412. SERIAL_ERROR_START;
  1413. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1414. #endif
  1415. SERIAL_PROTOCOLPGM(" @:");
  1416. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1417. SERIAL_PROTOCOLPGM(" B@:");
  1418. SERIAL_PROTOCOL(getHeaterPower(-1));
  1419. SERIAL_PROTOCOLLN("");
  1420. return;
  1421. break;
  1422. case 109:
  1423. {// M109 - Wait for extruder heater to reach target.
  1424. if(setTargetedHotend(109)){
  1425. break;
  1426. }
  1427. LCD_MESSAGEPGM(MSG_HEATING);
  1428. #ifdef AUTOTEMP
  1429. autotemp_enabled=false;
  1430. #endif
  1431. if (code_seen('S')) {
  1432. setTargetHotend(code_value(), tmp_extruder);
  1433. #ifdef DUAL_X_CARRIAGE
  1434. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1435. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1436. #endif
  1437. CooldownNoWait = true;
  1438. } else if (code_seen('R')) {
  1439. setTargetHotend(code_value(), tmp_extruder);
  1440. #ifdef DUAL_X_CARRIAGE
  1441. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1442. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1443. #endif
  1444. CooldownNoWait = false;
  1445. }
  1446. #ifdef AUTOTEMP
  1447. if (code_seen('S')) autotemp_min=code_value();
  1448. if (code_seen('B')) autotemp_max=code_value();
  1449. if (code_seen('F'))
  1450. {
  1451. autotemp_factor=code_value();
  1452. autotemp_enabled=true;
  1453. }
  1454. #endif
  1455. setWatch();
  1456. codenum = millis();
  1457. /* See if we are heating up or cooling down */
  1458. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1459. #ifdef TEMP_RESIDENCY_TIME
  1460. long residencyStart;
  1461. residencyStart = -1;
  1462. /* continue to loop until we have reached the target temp
  1463. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1464. while((residencyStart == -1) ||
  1465. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1466. #else
  1467. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1468. #endif //TEMP_RESIDENCY_TIME
  1469. if( (millis() - codenum) > 1000UL )
  1470. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1471. SERIAL_PROTOCOLPGM("T:");
  1472. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1473. SERIAL_PROTOCOLPGM(" E:");
  1474. SERIAL_PROTOCOL((int)tmp_extruder);
  1475. #ifdef TEMP_RESIDENCY_TIME
  1476. SERIAL_PROTOCOLPGM(" W:");
  1477. if(residencyStart > -1)
  1478. {
  1479. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1480. SERIAL_PROTOCOLLN( codenum );
  1481. }
  1482. else
  1483. {
  1484. SERIAL_PROTOCOLLN( "?" );
  1485. }
  1486. #else
  1487. SERIAL_PROTOCOLLN("");
  1488. #endif
  1489. codenum = millis();
  1490. }
  1491. manage_heater();
  1492. manage_inactivity();
  1493. lcd_update();
  1494. #ifdef TEMP_RESIDENCY_TIME
  1495. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1496. or when current temp falls outside the hysteresis after target temp was reached */
  1497. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1498. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1499. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1500. {
  1501. residencyStart = millis();
  1502. }
  1503. #endif //TEMP_RESIDENCY_TIME
  1504. }
  1505. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1506. starttime=millis();
  1507. previous_millis_cmd = millis();
  1508. }
  1509. break;
  1510. case 190: // M190 - Wait for bed heater to reach target.
  1511. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1512. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1513. if (code_seen('S')) {
  1514. setTargetBed(code_value());
  1515. CooldownNoWait = true;
  1516. } else if (code_seen('R')) {
  1517. setTargetBed(code_value());
  1518. CooldownNoWait = false;
  1519. }
  1520. codenum = millis();
  1521. target_direction = isHeatingBed(); // true if heating, false if cooling
  1522. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1523. {
  1524. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1525. {
  1526. float tt=degHotend(active_extruder);
  1527. SERIAL_PROTOCOLPGM("T:");
  1528. SERIAL_PROTOCOL(tt);
  1529. SERIAL_PROTOCOLPGM(" E:");
  1530. SERIAL_PROTOCOL((int)active_extruder);
  1531. SERIAL_PROTOCOLPGM(" B:");
  1532. SERIAL_PROTOCOL_F(degBed(),1);
  1533. SERIAL_PROTOCOLLN("");
  1534. codenum = millis();
  1535. }
  1536. manage_heater();
  1537. manage_inactivity();
  1538. lcd_update();
  1539. }
  1540. LCD_MESSAGEPGM(MSG_BED_DONE);
  1541. previous_millis_cmd = millis();
  1542. #endif
  1543. break;
  1544. #if defined(FAN_PIN) && FAN_PIN > -1
  1545. case 106: //M106 Fan On
  1546. if (code_seen('S')){
  1547. fanSpeed=constrain(code_value(),0,255);
  1548. }
  1549. else {
  1550. fanSpeed=255;
  1551. }
  1552. break;
  1553. case 107: //M107 Fan Off
  1554. fanSpeed = 0;
  1555. break;
  1556. #endif //FAN_PIN
  1557. #ifdef BARICUDA
  1558. // PWM for HEATER_1_PIN
  1559. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1560. case 126: //M126 valve open
  1561. if (code_seen('S')){
  1562. ValvePressure=constrain(code_value(),0,255);
  1563. }
  1564. else {
  1565. ValvePressure=255;
  1566. }
  1567. break;
  1568. case 127: //M127 valve closed
  1569. ValvePressure = 0;
  1570. break;
  1571. #endif //HEATER_1_PIN
  1572. // PWM for HEATER_2_PIN
  1573. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1574. case 128: //M128 valve open
  1575. if (code_seen('S')){
  1576. EtoPPressure=constrain(code_value(),0,255);
  1577. }
  1578. else {
  1579. EtoPPressure=255;
  1580. }
  1581. break;
  1582. case 129: //M129 valve closed
  1583. EtoPPressure = 0;
  1584. break;
  1585. #endif //HEATER_2_PIN
  1586. #endif
  1587. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1588. case 80: // M80 - Turn on Power Supply
  1589. SET_OUTPUT(PS_ON_PIN); //GND
  1590. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1591. #ifdef ULTIPANEL
  1592. powersupply = true;
  1593. LCD_MESSAGEPGM(WELCOME_MSG);
  1594. lcd_update();
  1595. #endif
  1596. break;
  1597. #endif
  1598. case 81: // M81 - Turn off Power Supply
  1599. disable_heater();
  1600. st_synchronize();
  1601. disable_e0();
  1602. disable_e1();
  1603. disable_e2();
  1604. finishAndDisableSteppers();
  1605. fanSpeed = 0;
  1606. delay(1000); // Wait a little before to switch off
  1607. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1608. st_synchronize();
  1609. suicide();
  1610. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1611. SET_OUTPUT(PS_ON_PIN);
  1612. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1613. #endif
  1614. #ifdef ULTIPANEL
  1615. powersupply = false;
  1616. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1617. lcd_update();
  1618. #endif
  1619. break;
  1620. case 82:
  1621. axis_relative_modes[3] = false;
  1622. break;
  1623. case 83:
  1624. axis_relative_modes[3] = true;
  1625. break;
  1626. case 18: //compatibility
  1627. case 84: // M84
  1628. if(code_seen('S')){
  1629. stepper_inactive_time = code_value() * 1000;
  1630. }
  1631. else
  1632. {
  1633. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1634. if(all_axis)
  1635. {
  1636. st_synchronize();
  1637. disable_e0();
  1638. disable_e1();
  1639. disable_e2();
  1640. finishAndDisableSteppers();
  1641. }
  1642. else
  1643. {
  1644. st_synchronize();
  1645. if(code_seen('X')) disable_x();
  1646. if(code_seen('Y')) disable_y();
  1647. if(code_seen('Z')) disable_z();
  1648. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1649. if(code_seen('E')) {
  1650. disable_e0();
  1651. disable_e1();
  1652. disable_e2();
  1653. }
  1654. #endif
  1655. }
  1656. }
  1657. break;
  1658. case 85: // M85
  1659. code_seen('S');
  1660. max_inactive_time = code_value() * 1000;
  1661. break;
  1662. case 92: // M92
  1663. for(int8_t i=0; i < NUM_AXIS; i++)
  1664. {
  1665. if(code_seen(axis_codes[i]))
  1666. {
  1667. if(i == 3) { // E
  1668. float value = code_value();
  1669. if(value < 20.0) {
  1670. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1671. max_e_jerk *= factor;
  1672. max_feedrate[i] *= factor;
  1673. axis_steps_per_sqr_second[i] *= factor;
  1674. }
  1675. axis_steps_per_unit[i] = value;
  1676. }
  1677. else {
  1678. axis_steps_per_unit[i] = code_value();
  1679. }
  1680. }
  1681. }
  1682. break;
  1683. case 115: // M115
  1684. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1685. break;
  1686. case 117: // M117 display message
  1687. starpos = (strchr(strchr_pointer + 5,'*'));
  1688. if(starpos!=NULL)
  1689. *(starpos-1)='\0';
  1690. lcd_setstatus(strchr_pointer + 5);
  1691. break;
  1692. case 114: // M114
  1693. SERIAL_PROTOCOLPGM("X:");
  1694. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1695. SERIAL_PROTOCOLPGM("Y:");
  1696. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1697. SERIAL_PROTOCOLPGM("Z:");
  1698. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1699. SERIAL_PROTOCOLPGM("E:");
  1700. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1701. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1702. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1703. SERIAL_PROTOCOLPGM("Y:");
  1704. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1705. SERIAL_PROTOCOLPGM("Z:");
  1706. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1707. SERIAL_PROTOCOLLN("");
  1708. break;
  1709. case 120: // M120
  1710. enable_endstops(false) ;
  1711. break;
  1712. case 121: // M121
  1713. enable_endstops(true) ;
  1714. break;
  1715. case 119: // M119
  1716. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1717. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1718. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1719. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1720. #endif
  1721. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1722. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1723. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1724. #endif
  1725. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1726. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1727. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1728. #endif
  1729. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1730. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1731. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1732. #endif
  1733. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1734. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1735. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1736. #endif
  1737. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1738. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1739. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1740. #endif
  1741. break;
  1742. //TODO: update for all axis, use for loop
  1743. case 201: // M201
  1744. for(int8_t i=0; i < NUM_AXIS; i++)
  1745. {
  1746. if(code_seen(axis_codes[i]))
  1747. {
  1748. max_acceleration_units_per_sq_second[i] = code_value();
  1749. }
  1750. }
  1751. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1752. reset_acceleration_rates();
  1753. break;
  1754. #if 0 // Not used for Sprinter/grbl gen6
  1755. case 202: // M202
  1756. for(int8_t i=0; i < NUM_AXIS; i++) {
  1757. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1758. }
  1759. break;
  1760. #endif
  1761. case 203: // M203 max feedrate mm/sec
  1762. for(int8_t i=0; i < NUM_AXIS; i++) {
  1763. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1764. }
  1765. break;
  1766. case 204: // M204 acclereration S normal moves T filmanent only moves
  1767. {
  1768. if(code_seen('S')) acceleration = code_value() ;
  1769. if(code_seen('T')) retract_acceleration = code_value() ;
  1770. }
  1771. break;
  1772. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1773. {
  1774. if(code_seen('S')) minimumfeedrate = code_value();
  1775. if(code_seen('T')) mintravelfeedrate = code_value();
  1776. if(code_seen('B')) minsegmenttime = code_value() ;
  1777. if(code_seen('X')) max_xy_jerk = code_value() ;
  1778. if(code_seen('Z')) max_z_jerk = code_value() ;
  1779. if(code_seen('E')) max_e_jerk = code_value() ;
  1780. }
  1781. break;
  1782. case 206: // M206 additional homeing offset
  1783. for(int8_t i=0; i < 3; i++)
  1784. {
  1785. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1786. }
  1787. break;
  1788. #ifdef DELTA
  1789. case 666: // M666 set delta endstop adjustemnt
  1790. for(int8_t i=0; i < 3; i++)
  1791. {
  1792. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1793. }
  1794. break;
  1795. #endif
  1796. #ifdef FWRETRACT
  1797. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1798. {
  1799. if(code_seen('S'))
  1800. {
  1801. retract_length = code_value() ;
  1802. }
  1803. if(code_seen('F'))
  1804. {
  1805. retract_feedrate = code_value() ;
  1806. }
  1807. if(code_seen('Z'))
  1808. {
  1809. retract_zlift = code_value() ;
  1810. }
  1811. }break;
  1812. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1813. {
  1814. if(code_seen('S'))
  1815. {
  1816. retract_recover_length = code_value() ;
  1817. }
  1818. if(code_seen('F'))
  1819. {
  1820. retract_recover_feedrate = code_value() ;
  1821. }
  1822. }break;
  1823. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1824. {
  1825. if(code_seen('S'))
  1826. {
  1827. int t= code_value() ;
  1828. switch(t)
  1829. {
  1830. case 0: autoretract_enabled=false;retracted=false;break;
  1831. case 1: autoretract_enabled=true;retracted=false;break;
  1832. default:
  1833. SERIAL_ECHO_START;
  1834. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1835. SERIAL_ECHO(cmdbuffer[bufindr]);
  1836. SERIAL_ECHOLNPGM("\"");
  1837. }
  1838. }
  1839. }break;
  1840. #endif // FWRETRACT
  1841. #if EXTRUDERS > 1
  1842. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1843. {
  1844. if(setTargetedHotend(218)){
  1845. break;
  1846. }
  1847. if(code_seen('X'))
  1848. {
  1849. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1850. }
  1851. if(code_seen('Y'))
  1852. {
  1853. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1854. }
  1855. #ifdef DUAL_X_CARRIAGE
  1856. if(code_seen('Z'))
  1857. {
  1858. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  1859. }
  1860. #endif
  1861. SERIAL_ECHO_START;
  1862. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1863. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1864. {
  1865. SERIAL_ECHO(" ");
  1866. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1867. SERIAL_ECHO(",");
  1868. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1869. #ifdef DUAL_X_CARRIAGE
  1870. SERIAL_ECHO(",");
  1871. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  1872. #endif
  1873. }
  1874. SERIAL_ECHOLN("");
  1875. }break;
  1876. #endif
  1877. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1878. {
  1879. if(code_seen('S'))
  1880. {
  1881. feedmultiply = code_value() ;
  1882. }
  1883. }
  1884. break;
  1885. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1886. {
  1887. if(code_seen('S'))
  1888. {
  1889. extrudemultiply = code_value() ;
  1890. }
  1891. }
  1892. break;
  1893. #if NUM_SERVOS > 0
  1894. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  1895. {
  1896. int servo_index = -1;
  1897. int servo_position = 0;
  1898. if (code_seen('P'))
  1899. servo_index = code_value();
  1900. if (code_seen('S')) {
  1901. servo_position = code_value();
  1902. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  1903. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1904. servos[servo_index].attach(0);
  1905. #endif
  1906. servos[servo_index].write(servo_position);
  1907. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1908. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1909. servos[servo_index].detach();
  1910. #endif
  1911. }
  1912. else {
  1913. SERIAL_ECHO_START;
  1914. SERIAL_ECHO("Servo ");
  1915. SERIAL_ECHO(servo_index);
  1916. SERIAL_ECHOLN(" out of range");
  1917. }
  1918. }
  1919. else if (servo_index >= 0) {
  1920. SERIAL_PROTOCOL(MSG_OK);
  1921. SERIAL_PROTOCOL(" Servo ");
  1922. SERIAL_PROTOCOL(servo_index);
  1923. SERIAL_PROTOCOL(": ");
  1924. SERIAL_PROTOCOL(servos[servo_index].read());
  1925. SERIAL_PROTOCOLLN("");
  1926. }
  1927. }
  1928. break;
  1929. #endif // NUM_SERVOS > 0
  1930. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  1931. case 300: // M300
  1932. {
  1933. int beepS = code_seen('S') ? code_value() : 110;
  1934. int beepP = code_seen('P') ? code_value() : 1000;
  1935. if (beepS > 0)
  1936. {
  1937. #if BEEPER > 0
  1938. tone(BEEPER, beepS);
  1939. delay(beepP);
  1940. noTone(BEEPER);
  1941. #elif defined(ULTRALCD)
  1942. lcd_buzz(beepS, beepP);
  1943. #endif
  1944. }
  1945. else
  1946. {
  1947. delay(beepP);
  1948. }
  1949. }
  1950. break;
  1951. #endif // M300
  1952. #ifdef PIDTEMP
  1953. case 301: // M301
  1954. {
  1955. if(code_seen('P')) Kp = code_value();
  1956. if(code_seen('I')) Ki = scalePID_i(code_value());
  1957. if(code_seen('D')) Kd = scalePID_d(code_value());
  1958. #ifdef PID_ADD_EXTRUSION_RATE
  1959. if(code_seen('C')) Kc = code_value();
  1960. #endif
  1961. updatePID();
  1962. SERIAL_PROTOCOL(MSG_OK);
  1963. SERIAL_PROTOCOL(" p:");
  1964. SERIAL_PROTOCOL(Kp);
  1965. SERIAL_PROTOCOL(" i:");
  1966. SERIAL_PROTOCOL(unscalePID_i(Ki));
  1967. SERIAL_PROTOCOL(" d:");
  1968. SERIAL_PROTOCOL(unscalePID_d(Kd));
  1969. #ifdef PID_ADD_EXTRUSION_RATE
  1970. SERIAL_PROTOCOL(" c:");
  1971. //Kc does not have scaling applied above, or in resetting defaults
  1972. SERIAL_PROTOCOL(Kc);
  1973. #endif
  1974. SERIAL_PROTOCOLLN("");
  1975. }
  1976. break;
  1977. #endif //PIDTEMP
  1978. #ifdef PIDTEMPBED
  1979. case 304: // M304
  1980. {
  1981. if(code_seen('P')) bedKp = code_value();
  1982. if(code_seen('I')) bedKi = scalePID_i(code_value());
  1983. if(code_seen('D')) bedKd = scalePID_d(code_value());
  1984. updatePID();
  1985. SERIAL_PROTOCOL(MSG_OK);
  1986. SERIAL_PROTOCOL(" p:");
  1987. SERIAL_PROTOCOL(bedKp);
  1988. SERIAL_PROTOCOL(" i:");
  1989. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  1990. SERIAL_PROTOCOL(" d:");
  1991. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  1992. SERIAL_PROTOCOLLN("");
  1993. }
  1994. break;
  1995. #endif //PIDTEMP
  1996. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1997. {
  1998. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  1999. const uint8_t NUM_PULSES=16;
  2000. const float PULSE_LENGTH=0.01524;
  2001. for(int i=0; i < NUM_PULSES; i++) {
  2002. WRITE(PHOTOGRAPH_PIN, HIGH);
  2003. _delay_ms(PULSE_LENGTH);
  2004. WRITE(PHOTOGRAPH_PIN, LOW);
  2005. _delay_ms(PULSE_LENGTH);
  2006. }
  2007. delay(7.33);
  2008. for(int i=0; i < NUM_PULSES; i++) {
  2009. WRITE(PHOTOGRAPH_PIN, HIGH);
  2010. _delay_ms(PULSE_LENGTH);
  2011. WRITE(PHOTOGRAPH_PIN, LOW);
  2012. _delay_ms(PULSE_LENGTH);
  2013. }
  2014. #endif
  2015. }
  2016. break;
  2017. #ifdef DOGLCD
  2018. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2019. {
  2020. if (code_seen('C')) {
  2021. lcd_setcontrast( ((int)code_value())&63 );
  2022. }
  2023. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2024. SERIAL_PROTOCOL(lcd_contrast);
  2025. SERIAL_PROTOCOLLN("");
  2026. }
  2027. break;
  2028. #endif
  2029. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2030. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2031. {
  2032. float temp = .0;
  2033. if (code_seen('S')) temp=code_value();
  2034. set_extrude_min_temp(temp);
  2035. }
  2036. break;
  2037. #endif
  2038. case 303: // M303 PID autotune
  2039. {
  2040. float temp = 150.0;
  2041. int e=0;
  2042. int c=5;
  2043. if (code_seen('E')) e=code_value();
  2044. if (e<0)
  2045. temp=70;
  2046. if (code_seen('S')) temp=code_value();
  2047. if (code_seen('C')) c=code_value();
  2048. PID_autotune(temp, e, c);
  2049. }
  2050. break;
  2051. case 400: // M400 finish all moves
  2052. {
  2053. st_synchronize();
  2054. }
  2055. break;
  2056. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2057. case 401:
  2058. {
  2059. engage_z_probe(); // Engage Z Servo endstop if available
  2060. }
  2061. break;
  2062. case 402:
  2063. {
  2064. retract_z_probe(); // Retract Z Servo endstop if enabled
  2065. }
  2066. break;
  2067. #endif
  2068. case 500: // M500 Store settings in EEPROM
  2069. {
  2070. Config_StoreSettings();
  2071. }
  2072. break;
  2073. case 501: // M501 Read settings from EEPROM
  2074. {
  2075. Config_RetrieveSettings();
  2076. }
  2077. break;
  2078. case 502: // M502 Revert to default settings
  2079. {
  2080. Config_ResetDefault();
  2081. }
  2082. break;
  2083. case 503: // M503 print settings currently in memory
  2084. {
  2085. Config_PrintSettings();
  2086. }
  2087. break;
  2088. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2089. case 540:
  2090. {
  2091. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2092. }
  2093. break;
  2094. #endif
  2095. #ifdef FILAMENTCHANGEENABLE
  2096. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2097. {
  2098. float target[4];
  2099. float lastpos[4];
  2100. target[X_AXIS]=current_position[X_AXIS];
  2101. target[Y_AXIS]=current_position[Y_AXIS];
  2102. target[Z_AXIS]=current_position[Z_AXIS];
  2103. target[E_AXIS]=current_position[E_AXIS];
  2104. lastpos[X_AXIS]=current_position[X_AXIS];
  2105. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2106. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2107. lastpos[E_AXIS]=current_position[E_AXIS];
  2108. //retract by E
  2109. if(code_seen('E'))
  2110. {
  2111. target[E_AXIS]+= code_value();
  2112. }
  2113. else
  2114. {
  2115. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2116. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2117. #endif
  2118. }
  2119. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2120. //lift Z
  2121. if(code_seen('Z'))
  2122. {
  2123. target[Z_AXIS]+= code_value();
  2124. }
  2125. else
  2126. {
  2127. #ifdef FILAMENTCHANGE_ZADD
  2128. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2129. #endif
  2130. }
  2131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2132. //move xy
  2133. if(code_seen('X'))
  2134. {
  2135. target[X_AXIS]+= code_value();
  2136. }
  2137. else
  2138. {
  2139. #ifdef FILAMENTCHANGE_XPOS
  2140. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2141. #endif
  2142. }
  2143. if(code_seen('Y'))
  2144. {
  2145. target[Y_AXIS]= code_value();
  2146. }
  2147. else
  2148. {
  2149. #ifdef FILAMENTCHANGE_YPOS
  2150. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2151. #endif
  2152. }
  2153. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2154. if(code_seen('L'))
  2155. {
  2156. target[E_AXIS]+= code_value();
  2157. }
  2158. else
  2159. {
  2160. #ifdef FILAMENTCHANGE_FINALRETRACT
  2161. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2162. #endif
  2163. }
  2164. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2165. //finish moves
  2166. st_synchronize();
  2167. //disable extruder steppers so filament can be removed
  2168. disable_e0();
  2169. disable_e1();
  2170. disable_e2();
  2171. delay(100);
  2172. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2173. uint8_t cnt=0;
  2174. while(!lcd_clicked()){
  2175. cnt++;
  2176. manage_heater();
  2177. manage_inactivity();
  2178. lcd_update();
  2179. if(cnt==0)
  2180. {
  2181. #if BEEPER > 0
  2182. SET_OUTPUT(BEEPER);
  2183. WRITE(BEEPER,HIGH);
  2184. delay(3);
  2185. WRITE(BEEPER,LOW);
  2186. delay(3);
  2187. #else
  2188. lcd_buzz(1000/6,100);
  2189. #endif
  2190. }
  2191. }
  2192. //return to normal
  2193. if(code_seen('L'))
  2194. {
  2195. target[E_AXIS]+= -code_value();
  2196. }
  2197. else
  2198. {
  2199. #ifdef FILAMENTCHANGE_FINALRETRACT
  2200. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2201. #endif
  2202. }
  2203. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2204. plan_set_e_position(current_position[E_AXIS]);
  2205. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2206. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2207. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2208. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2209. }
  2210. break;
  2211. #endif //FILAMENTCHANGEENABLE
  2212. #ifdef DUAL_X_CARRIAGE
  2213. case 605: // Set dual x-carriage movement mode:
  2214. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2215. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2216. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2217. // millimeters x-offset and an optional differential hotend temperature of
  2218. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2219. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2220. //
  2221. // Note: the X axis should be homed after changing dual x-carriage mode.
  2222. {
  2223. st_synchronize();
  2224. if (code_seen('S'))
  2225. dual_x_carriage_mode = code_value();
  2226. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2227. {
  2228. if (code_seen('X'))
  2229. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2230. if (code_seen('R'))
  2231. duplicate_extruder_temp_offset = code_value();
  2232. SERIAL_ECHO_START;
  2233. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2234. SERIAL_ECHO(" ");
  2235. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2236. SERIAL_ECHO(",");
  2237. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2238. SERIAL_ECHO(" ");
  2239. SERIAL_ECHO(duplicate_extruder_x_offset);
  2240. SERIAL_ECHO(",");
  2241. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2242. }
  2243. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2244. {
  2245. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2246. }
  2247. active_extruder_parked = false;
  2248. extruder_duplication_enabled = false;
  2249. delayed_move_time = 0;
  2250. }
  2251. break;
  2252. #endif //DUAL_X_CARRIAGE
  2253. case 907: // M907 Set digital trimpot motor current using axis codes.
  2254. {
  2255. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2256. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2257. if(code_seen('B')) digipot_current(4,code_value());
  2258. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2259. #endif
  2260. }
  2261. break;
  2262. case 908: // M908 Control digital trimpot directly.
  2263. {
  2264. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2265. uint8_t channel,current;
  2266. if(code_seen('P')) channel=code_value();
  2267. if(code_seen('S')) current=code_value();
  2268. digitalPotWrite(channel, current);
  2269. #endif
  2270. }
  2271. break;
  2272. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2273. {
  2274. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2275. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2276. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2277. if(code_seen('B')) microstep_mode(4,code_value());
  2278. microstep_readings();
  2279. #endif
  2280. }
  2281. break;
  2282. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2283. {
  2284. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2285. if(code_seen('S')) switch((int)code_value())
  2286. {
  2287. case 1:
  2288. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2289. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2290. break;
  2291. case 2:
  2292. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2293. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2294. break;
  2295. }
  2296. microstep_readings();
  2297. #endif
  2298. }
  2299. break;
  2300. case 999: // M999: Restart after being stopped
  2301. Stopped = false;
  2302. lcd_reset_alert_level();
  2303. gcode_LastN = Stopped_gcode_LastN;
  2304. FlushSerialRequestResend();
  2305. break;
  2306. }
  2307. }
  2308. else if(code_seen('T'))
  2309. {
  2310. tmp_extruder = code_value();
  2311. if(tmp_extruder >= EXTRUDERS) {
  2312. SERIAL_ECHO_START;
  2313. SERIAL_ECHO("T");
  2314. SERIAL_ECHO(tmp_extruder);
  2315. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2316. }
  2317. else {
  2318. boolean make_move = false;
  2319. if(code_seen('F')) {
  2320. make_move = true;
  2321. next_feedrate = code_value();
  2322. if(next_feedrate > 0.0) {
  2323. feedrate = next_feedrate;
  2324. }
  2325. }
  2326. #if EXTRUDERS > 1
  2327. if(tmp_extruder != active_extruder) {
  2328. // Save current position to return to after applying extruder offset
  2329. memcpy(destination, current_position, sizeof(destination));
  2330. #ifdef DUAL_X_CARRIAGE
  2331. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2332. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2333. {
  2334. // Park old head: 1) raise 2) move to park position 3) lower
  2335. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2336. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2337. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2338. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2339. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2340. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2341. st_synchronize();
  2342. }
  2343. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2344. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2345. extruder_offset[Y_AXIS][active_extruder] +
  2346. extruder_offset[Y_AXIS][tmp_extruder];
  2347. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2348. extruder_offset[Z_AXIS][active_extruder] +
  2349. extruder_offset[Z_AXIS][tmp_extruder];
  2350. active_extruder = tmp_extruder;
  2351. // This function resets the max/min values - the current position may be overwritten below.
  2352. axis_is_at_home(X_AXIS);
  2353. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2354. {
  2355. current_position[X_AXIS] = inactive_extruder_x_pos;
  2356. inactive_extruder_x_pos = destination[X_AXIS];
  2357. }
  2358. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2359. {
  2360. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2361. if (active_extruder == 0 || active_extruder_parked)
  2362. current_position[X_AXIS] = inactive_extruder_x_pos;
  2363. else
  2364. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2365. inactive_extruder_x_pos = destination[X_AXIS];
  2366. extruder_duplication_enabled = false;
  2367. }
  2368. else
  2369. {
  2370. // record raised toolhead position for use by unpark
  2371. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2372. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2373. active_extruder_parked = true;
  2374. delayed_move_time = 0;
  2375. }
  2376. #else
  2377. // Offset extruder (only by XY)
  2378. int i;
  2379. for(i = 0; i < 2; i++) {
  2380. current_position[i] = current_position[i] -
  2381. extruder_offset[i][active_extruder] +
  2382. extruder_offset[i][tmp_extruder];
  2383. }
  2384. // Set the new active extruder and position
  2385. active_extruder = tmp_extruder;
  2386. #endif //else DUAL_X_CARRIAGE
  2387. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2388. // Move to the old position if 'F' was in the parameters
  2389. if(make_move && Stopped == false) {
  2390. prepare_move();
  2391. }
  2392. }
  2393. #endif
  2394. SERIAL_ECHO_START;
  2395. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2396. SERIAL_PROTOCOLLN((int)active_extruder);
  2397. }
  2398. }
  2399. else
  2400. {
  2401. SERIAL_ECHO_START;
  2402. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2403. SERIAL_ECHO(cmdbuffer[bufindr]);
  2404. SERIAL_ECHOLNPGM("\"");
  2405. }
  2406. ClearToSend();
  2407. }
  2408. void FlushSerialRequestResend()
  2409. {
  2410. //char cmdbuffer[bufindr][100]="Resend:";
  2411. MYSERIAL.flush();
  2412. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2413. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2414. ClearToSend();
  2415. }
  2416. void ClearToSend()
  2417. {
  2418. previous_millis_cmd = millis();
  2419. #ifdef SDSUPPORT
  2420. if(fromsd[bufindr])
  2421. return;
  2422. #endif //SDSUPPORT
  2423. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2424. }
  2425. void get_coordinates()
  2426. {
  2427. bool seen[4]={false,false,false,false};
  2428. for(int8_t i=0; i < NUM_AXIS; i++) {
  2429. if(code_seen(axis_codes[i]))
  2430. {
  2431. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2432. seen[i]=true;
  2433. }
  2434. else destination[i] = current_position[i]; //Are these else lines really needed?
  2435. }
  2436. if(code_seen('F')) {
  2437. next_feedrate = code_value();
  2438. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2439. }
  2440. #ifdef FWRETRACT
  2441. if(autoretract_enabled)
  2442. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2443. {
  2444. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2445. if(echange<-MIN_RETRACT) //retract
  2446. {
  2447. if(!retracted)
  2448. {
  2449. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2450. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2451. float correctede=-echange-retract_length;
  2452. //to generate the additional steps, not the destination is changed, but inversely the current position
  2453. current_position[E_AXIS]+=-correctede;
  2454. feedrate=retract_feedrate;
  2455. retracted=true;
  2456. }
  2457. }
  2458. else
  2459. if(echange>MIN_RETRACT) //retract_recover
  2460. {
  2461. if(retracted)
  2462. {
  2463. //current_position[Z_AXIS]+=-retract_zlift;
  2464. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2465. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2466. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2467. feedrate=retract_recover_feedrate;
  2468. retracted=false;
  2469. }
  2470. }
  2471. }
  2472. #endif //FWRETRACT
  2473. }
  2474. void get_arc_coordinates()
  2475. {
  2476. #ifdef SF_ARC_FIX
  2477. bool relative_mode_backup = relative_mode;
  2478. relative_mode = true;
  2479. #endif
  2480. get_coordinates();
  2481. #ifdef SF_ARC_FIX
  2482. relative_mode=relative_mode_backup;
  2483. #endif
  2484. if(code_seen('I')) {
  2485. offset[0] = code_value();
  2486. }
  2487. else {
  2488. offset[0] = 0.0;
  2489. }
  2490. if(code_seen('J')) {
  2491. offset[1] = code_value();
  2492. }
  2493. else {
  2494. offset[1] = 0.0;
  2495. }
  2496. }
  2497. void clamp_to_software_endstops(float target[3])
  2498. {
  2499. if (min_software_endstops) {
  2500. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2501. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2502. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2503. }
  2504. if (max_software_endstops) {
  2505. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2506. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2507. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2508. }
  2509. }
  2510. #ifdef DELTA
  2511. void calculate_delta(float cartesian[3])
  2512. {
  2513. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2514. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2515. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2516. ) + cartesian[Z_AXIS];
  2517. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2518. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2519. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2520. ) + cartesian[Z_AXIS];
  2521. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2522. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2523. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2524. ) + cartesian[Z_AXIS];
  2525. /*
  2526. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2527. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2528. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2529. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2530. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2531. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2532. */
  2533. }
  2534. #endif
  2535. void prepare_move()
  2536. {
  2537. clamp_to_software_endstops(destination);
  2538. previous_millis_cmd = millis();
  2539. #ifdef DELTA
  2540. float difference[NUM_AXIS];
  2541. for (int8_t i=0; i < NUM_AXIS; i++) {
  2542. difference[i] = destination[i] - current_position[i];
  2543. }
  2544. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2545. sq(difference[Y_AXIS]) +
  2546. sq(difference[Z_AXIS]));
  2547. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2548. if (cartesian_mm < 0.000001) { return; }
  2549. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2550. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2551. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2552. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2553. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2554. for (int s = 1; s <= steps; s++) {
  2555. float fraction = float(s) / float(steps);
  2556. for(int8_t i=0; i < NUM_AXIS; i++) {
  2557. destination[i] = current_position[i] + difference[i] * fraction;
  2558. }
  2559. calculate_delta(destination);
  2560. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2561. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2562. active_extruder);
  2563. }
  2564. #else
  2565. #ifdef DUAL_X_CARRIAGE
  2566. if (active_extruder_parked)
  2567. {
  2568. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2569. {
  2570. // move duplicate extruder into correct duplication position.
  2571. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2572. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2573. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2574. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2575. st_synchronize();
  2576. extruder_duplication_enabled = true;
  2577. active_extruder_parked = false;
  2578. }
  2579. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2580. {
  2581. if (current_position[E_AXIS] == destination[E_AXIS])
  2582. {
  2583. // this is a travel move - skit it but keep track of current position (so that it can later
  2584. // be used as start of first non-travel move)
  2585. if (delayed_move_time != 0xFFFFFFFFUL)
  2586. {
  2587. memcpy(current_position, destination, sizeof(current_position));
  2588. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2589. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2590. delayed_move_time = millis();
  2591. return;
  2592. }
  2593. }
  2594. delayed_move_time = 0;
  2595. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2596. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2598. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2600. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2601. active_extruder_parked = false;
  2602. }
  2603. }
  2604. #endif //DUAL_X_CARRIAGE
  2605. // Do not use feedmultiply for E or Z only moves
  2606. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2607. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2608. }
  2609. else {
  2610. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2611. }
  2612. #endif //else DELTA
  2613. for(int8_t i=0; i < NUM_AXIS; i++) {
  2614. current_position[i] = destination[i];
  2615. }
  2616. }
  2617. void prepare_arc_move(char isclockwise) {
  2618. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2619. // Trace the arc
  2620. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2621. // As far as the parser is concerned, the position is now == target. In reality the
  2622. // motion control system might still be processing the action and the real tool position
  2623. // in any intermediate location.
  2624. for(int8_t i=0; i < NUM_AXIS; i++) {
  2625. current_position[i] = destination[i];
  2626. }
  2627. previous_millis_cmd = millis();
  2628. }
  2629. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2630. #if defined(FAN_PIN)
  2631. #if CONTROLLERFAN_PIN == FAN_PIN
  2632. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2633. #endif
  2634. #endif
  2635. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2636. unsigned long lastMotorCheck = 0;
  2637. void controllerFan()
  2638. {
  2639. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2640. {
  2641. lastMotorCheck = millis();
  2642. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  2643. #if EXTRUDERS > 2
  2644. || !READ(E2_ENABLE_PIN)
  2645. #endif
  2646. #if EXTRUDER > 1
  2647. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2648. || !READ(X2_ENABLE_PIN)
  2649. #endif
  2650. || !READ(E1_ENABLE_PIN)
  2651. #endif
  2652. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2653. {
  2654. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2655. }
  2656. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2657. {
  2658. digitalWrite(CONTROLLERFAN_PIN, 0);
  2659. analogWrite(CONTROLLERFAN_PIN, 0);
  2660. }
  2661. else
  2662. {
  2663. // allows digital or PWM fan output to be used (see M42 handling)
  2664. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2665. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2666. }
  2667. }
  2668. }
  2669. #endif
  2670. void manage_inactivity()
  2671. {
  2672. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2673. if(max_inactive_time)
  2674. kill();
  2675. if(stepper_inactive_time) {
  2676. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2677. {
  2678. if(blocks_queued() == false) {
  2679. disable_x();
  2680. disable_y();
  2681. disable_z();
  2682. disable_e0();
  2683. disable_e1();
  2684. disable_e2();
  2685. }
  2686. }
  2687. }
  2688. #if defined(KILL_PIN) && KILL_PIN > -1
  2689. if( 0 == READ(KILL_PIN) )
  2690. kill();
  2691. #endif
  2692. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2693. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2694. #endif
  2695. #ifdef EXTRUDER_RUNOUT_PREVENT
  2696. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2697. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2698. {
  2699. bool oldstatus=READ(E0_ENABLE_PIN);
  2700. enable_e0();
  2701. float oldepos=current_position[E_AXIS];
  2702. float oldedes=destination[E_AXIS];
  2703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2704. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2705. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2706. current_position[E_AXIS]=oldepos;
  2707. destination[E_AXIS]=oldedes;
  2708. plan_set_e_position(oldepos);
  2709. previous_millis_cmd=millis();
  2710. st_synchronize();
  2711. WRITE(E0_ENABLE_PIN,oldstatus);
  2712. }
  2713. #endif
  2714. #if defined(DUAL_X_CARRIAGE)
  2715. // handle delayed move timeout
  2716. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2717. {
  2718. // travel moves have been received so enact them
  2719. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2720. memcpy(destination,current_position,sizeof(destination));
  2721. prepare_move();
  2722. }
  2723. #endif
  2724. check_axes_activity();
  2725. }
  2726. void kill()
  2727. {
  2728. cli(); // Stop interrupts
  2729. disable_heater();
  2730. disable_x();
  2731. disable_y();
  2732. disable_z();
  2733. disable_e0();
  2734. disable_e1();
  2735. disable_e2();
  2736. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2737. pinMode(PS_ON_PIN,INPUT);
  2738. #endif
  2739. SERIAL_ERROR_START;
  2740. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2741. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2742. suicide();
  2743. while(1) { /* Intentionally left empty */ } // Wait for reset
  2744. }
  2745. void Stop()
  2746. {
  2747. disable_heater();
  2748. if(Stopped == false) {
  2749. Stopped = true;
  2750. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2751. SERIAL_ERROR_START;
  2752. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2753. LCD_MESSAGEPGM(MSG_STOPPED);
  2754. }
  2755. }
  2756. bool IsStopped() { return Stopped; };
  2757. #ifdef FAST_PWM_FAN
  2758. void setPwmFrequency(uint8_t pin, int val)
  2759. {
  2760. val &= 0x07;
  2761. switch(digitalPinToTimer(pin))
  2762. {
  2763. #if defined(TCCR0A)
  2764. case TIMER0A:
  2765. case TIMER0B:
  2766. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2767. // TCCR0B |= val;
  2768. break;
  2769. #endif
  2770. #if defined(TCCR1A)
  2771. case TIMER1A:
  2772. case TIMER1B:
  2773. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2774. // TCCR1B |= val;
  2775. break;
  2776. #endif
  2777. #if defined(TCCR2)
  2778. case TIMER2:
  2779. case TIMER2:
  2780. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2781. TCCR2 |= val;
  2782. break;
  2783. #endif
  2784. #if defined(TCCR2A)
  2785. case TIMER2A:
  2786. case TIMER2B:
  2787. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2788. TCCR2B |= val;
  2789. break;
  2790. #endif
  2791. #if defined(TCCR3A)
  2792. case TIMER3A:
  2793. case TIMER3B:
  2794. case TIMER3C:
  2795. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2796. TCCR3B |= val;
  2797. break;
  2798. #endif
  2799. #if defined(TCCR4A)
  2800. case TIMER4A:
  2801. case TIMER4B:
  2802. case TIMER4C:
  2803. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2804. TCCR4B |= val;
  2805. break;
  2806. #endif
  2807. #if defined(TCCR5A)
  2808. case TIMER5A:
  2809. case TIMER5B:
  2810. case TIMER5C:
  2811. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2812. TCCR5B |= val;
  2813. break;
  2814. #endif
  2815. }
  2816. }
  2817. #endif //FAST_PWM_FAN
  2818. bool setTargetedHotend(int code){
  2819. tmp_extruder = active_extruder;
  2820. if(code_seen('T')) {
  2821. tmp_extruder = code_value();
  2822. if(tmp_extruder >= EXTRUDERS) {
  2823. SERIAL_ECHO_START;
  2824. switch(code){
  2825. case 104:
  2826. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  2827. break;
  2828. case 105:
  2829. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  2830. break;
  2831. case 109:
  2832. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  2833. break;
  2834. case 218:
  2835. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  2836. break;
  2837. }
  2838. SERIAL_ECHOLN(tmp_extruder);
  2839. return true;
  2840. }
  2841. }
  2842. return false;
  2843. }