My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

Marlin_main.cpp 451KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BLINEAR, or AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Set print fan speed.
  119. * M107 - Print fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M290 - Babystepping (Requires BABYSTEPPING)
  175. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  177. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  178. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  179. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  180. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  181. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  182. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  183. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  184. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  185. * M400 - Finish all moves.
  186. * M401 - Lower Z probe. (Requires a probe)
  187. * M402 - Raise Z probe. (Requires a probe)
  188. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  190. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  192. * M410 - Quickstop. Abort all planned moves.
  193. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  194. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  195. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  196. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  197. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  198. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  199. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  200. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  201. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  202. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  203. * M666 - Set delta endstop adjustment. (Requires DELTA)
  204. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  205. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  206. * M860 - Report the position of position encoder modules.
  207. * M861 - Report the status of position encoder modules.
  208. * M862 - Perform an axis continuity test for position encoder modules.
  209. * M863 - Perform steps-per-mm calibration for position encoder modules.
  210. * M864 - Change position encoder module I2C address.
  211. * M865 - Check position encoder module firmware version.
  212. * M866 - Report or reset position encoder module error count.
  213. * M867 - Enable/disable or toggle error correction for position encoder modules.
  214. * M868 - Report or set position encoder module error correction threshold.
  215. * M869 - Report position encoder module error.
  216. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  217. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  218. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  219. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  220. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  221. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  222. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  223. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  224. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  225. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  226. *
  227. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  228. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  229. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  230. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  231. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  232. *
  233. * ************ Custom codes - This can change to suit future G-code regulations
  234. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  235. * M999 - Restart after being stopped by error
  236. *
  237. * "T" Codes
  238. *
  239. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  240. *
  241. */
  242. #include "Marlin.h"
  243. #include "ultralcd.h"
  244. #include "planner.h"
  245. #include "stepper.h"
  246. #include "endstops.h"
  247. #include "temperature.h"
  248. #include "cardreader.h"
  249. #include "configuration_store.h"
  250. #include "language.h"
  251. #include "pins_arduino.h"
  252. #include "math.h"
  253. #include "nozzle.h"
  254. #include "duration_t.h"
  255. #include "types.h"
  256. #include "gcode.h"
  257. #if HAS_ABL
  258. #include "vector_3.h"
  259. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  260. #include "least_squares_fit.h"
  261. #endif
  262. #elif ENABLED(MESH_BED_LEVELING)
  263. #include "mesh_bed_leveling.h"
  264. #endif
  265. #if ENABLED(BEZIER_CURVE_SUPPORT)
  266. #include "planner_bezier.h"
  267. #endif
  268. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  269. #include "buzzer.h"
  270. #endif
  271. #if ENABLED(USE_WATCHDOG)
  272. #include "watchdog.h"
  273. #endif
  274. #if ENABLED(MAX7219_DEBUG)
  275. #include "Max7219_Debug_LEDs.h"
  276. #endif
  277. #if HAS_COLOR_LEDS
  278. #include "leds.h"
  279. #endif
  280. #if HAS_SERVOS
  281. #include "servo.h"
  282. #endif
  283. #if HAS_DIGIPOTSS
  284. #include <SPI.h>
  285. #endif
  286. #if ENABLED(DAC_STEPPER_CURRENT)
  287. #include "stepper_dac.h"
  288. #endif
  289. #if ENABLED(EXPERIMENTAL_I2CBUS)
  290. #include "twibus.h"
  291. #endif
  292. #if ENABLED(I2C_POSITION_ENCODERS)
  293. #include "I2CPositionEncoder.h"
  294. #endif
  295. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  296. #include "endstop_interrupts.h"
  297. #endif
  298. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  299. void gcode_M100();
  300. void M100_dump_routine(const char * const title, const char *start, const char *end);
  301. #endif
  302. #if ENABLED(G26_MESH_VALIDATION)
  303. bool g26_debug_flag; // =false
  304. void gcode_G26();
  305. #endif
  306. #if ENABLED(SDSUPPORT)
  307. CardReader card;
  308. #endif
  309. #if ENABLED(EXPERIMENTAL_I2CBUS)
  310. TWIBus i2c;
  311. #endif
  312. #if ENABLED(G38_PROBE_TARGET)
  313. bool G38_move = false,
  314. G38_endstop_hit = false;
  315. #endif
  316. #if ENABLED(AUTO_BED_LEVELING_UBL)
  317. #include "ubl.h"
  318. extern bool defer_return_to_status;
  319. unified_bed_leveling ubl;
  320. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  321. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  322. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  323. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  324. || isnan(ubl.z_values[0][0]))
  325. #endif
  326. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  327. int8_t active_coordinate_system = -1; // machine space
  328. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  329. #endif
  330. bool Running = true;
  331. uint8_t marlin_debug_flags = DEBUG_NONE;
  332. /**
  333. * Cartesian Current Position
  334. * Used to track the native machine position as moves are queued.
  335. * Used by 'buffer_line_to_current_position' to do a move after changing it.
  336. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  337. */
  338. float current_position[XYZE] = { 0.0 };
  339. /**
  340. * Cartesian Destination
  341. * The destination for a move, filled in by G-code movement commands,
  342. * and expected by functions like 'prepare_move_to_destination'.
  343. * Set with 'gcode_get_destination' or 'set_destination_from_current'.
  344. */
  345. float destination[XYZE] = { 0.0 };
  346. /**
  347. * axis_homed
  348. * Flags that each linear axis was homed.
  349. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  350. *
  351. * axis_known_position
  352. * Flags that the position is known in each linear axis. Set when homed.
  353. * Cleared whenever a stepper powers off, potentially losing its position.
  354. */
  355. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  356. /**
  357. * GCode line number handling. Hosts may opt to include line numbers when
  358. * sending commands to Marlin, and lines will be checked for sequentiality.
  359. * M110 N<int> sets the current line number.
  360. */
  361. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  362. /**
  363. * GCode Command Queue
  364. * A simple ring buffer of BUFSIZE command strings.
  365. *
  366. * Commands are copied into this buffer by the command injectors
  367. * (immediate, serial, sd card) and they are processed sequentially by
  368. * the main loop. The process_next_command function parses the next
  369. * command and hands off execution to individual handler functions.
  370. */
  371. uint8_t commands_in_queue = 0; // Count of commands in the queue
  372. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  373. cmd_queue_index_w = 0; // Ring buffer write position
  374. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  375. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  376. #else // This can be collapsed back to the way it was soon.
  377. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  378. #endif
  379. /**
  380. * Next Injected Command pointer. NULL if no commands are being injected.
  381. * Used by Marlin internally to ensure that commands initiated from within
  382. * are enqueued ahead of any pending serial or sd card commands.
  383. */
  384. static const char *injected_commands_P = NULL;
  385. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  386. TempUnit input_temp_units = TEMPUNIT_C;
  387. #endif
  388. /**
  389. * Feed rates are often configured with mm/m
  390. * but the planner and stepper like mm/s units.
  391. */
  392. static const float homing_feedrate_mm_s[] PROGMEM = {
  393. #if ENABLED(DELTA)
  394. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  395. #else
  396. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  397. #endif
  398. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  399. };
  400. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  401. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  402. static float saved_feedrate_mm_s;
  403. int16_t feedrate_percentage = 100, saved_feedrate_percentage;
  404. // Initialized by settings.load()
  405. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  406. #if HAS_WORKSPACE_OFFSET
  407. #if HAS_POSITION_SHIFT
  408. // The distance that XYZ has been offset by G92. Reset by G28.
  409. float position_shift[XYZ] = { 0 };
  410. #endif
  411. #if HAS_HOME_OFFSET
  412. // This offset is added to the configured home position.
  413. // Set by M206, M428, or menu item. Saved to EEPROM.
  414. float home_offset[XYZ] = { 0 };
  415. #endif
  416. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  417. // The above two are combined to save on computes
  418. float workspace_offset[XYZ] = { 0 };
  419. #endif
  420. #endif
  421. // Software Endstops are based on the configured limits.
  422. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  423. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  424. #if HAS_SOFTWARE_ENDSTOPS
  425. bool soft_endstops_enabled = true;
  426. #if IS_KINEMATIC
  427. float soft_endstop_radius, soft_endstop_radius_2;
  428. #endif
  429. #endif
  430. #if FAN_COUNT > 0
  431. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  432. #if ENABLED(EXTRA_FAN_SPEED)
  433. int16_t old_fanSpeeds[FAN_COUNT],
  434. new_fanSpeeds[FAN_COUNT];
  435. #endif
  436. #if ENABLED(PROBING_FANS_OFF)
  437. bool fans_paused = false;
  438. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  439. #endif
  440. #endif
  441. // The active extruder (tool). Set with T<extruder> command.
  442. uint8_t active_extruder = 0;
  443. // Relative Mode. Enable with G91, disable with G90.
  444. static bool relative_mode = false;
  445. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  446. volatile bool wait_for_heatup = true;
  447. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  448. #if HAS_RESUME_CONTINUE
  449. volatile bool wait_for_user = false;
  450. #endif
  451. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  452. // Number of characters read in the current line of serial input
  453. static int serial_count = 0;
  454. // Inactivity shutdown
  455. millis_t previous_cmd_ms = 0;
  456. static millis_t max_inactive_time = 0;
  457. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  458. // Print Job Timer
  459. #if ENABLED(PRINTCOUNTER)
  460. PrintCounter print_job_timer = PrintCounter();
  461. #else
  462. Stopwatch print_job_timer = Stopwatch();
  463. #endif
  464. // Buzzer - I2C on the LCD or a BEEPER_PIN
  465. #if ENABLED(LCD_USE_I2C_BUZZER)
  466. #define BUZZ(d,f) lcd_buzz(d, f)
  467. #elif PIN_EXISTS(BEEPER)
  468. Buzzer buzzer;
  469. #define BUZZ(d,f) buzzer.tone(d, f)
  470. #else
  471. #define BUZZ(d,f) NOOP
  472. #endif
  473. static uint8_t target_extruder;
  474. #if HAS_BED_PROBE
  475. float zprobe_zoffset; // Initialized by settings.load()
  476. #endif
  477. #if HAS_ABL
  478. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  479. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  480. #elif defined(XY_PROBE_SPEED)
  481. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  482. #else
  483. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  484. #endif
  485. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  486. #if ENABLED(DELTA)
  487. #define ADJUST_DELTA(V) \
  488. if (planner.leveling_active) { \
  489. const float zadj = bilinear_z_offset(V); \
  490. delta[A_AXIS] += zadj; \
  491. delta[B_AXIS] += zadj; \
  492. delta[C_AXIS] += zadj; \
  493. }
  494. #else
  495. #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
  496. #endif
  497. #elif IS_KINEMATIC
  498. #define ADJUST_DELTA(V) NOOP
  499. #endif
  500. #if ENABLED(X_DUAL_ENDSTOPS)
  501. float x_endstop_adj; // Initialized by settings.load()
  502. #endif
  503. #if ENABLED(Y_DUAL_ENDSTOPS)
  504. float y_endstop_adj; // Initialized by settings.load()
  505. #endif
  506. #if ENABLED(Z_DUAL_ENDSTOPS)
  507. float z_endstop_adj; // Initialized by settings.load()
  508. #endif
  509. // Extruder offsets
  510. #if HOTENDS > 1
  511. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  512. #endif
  513. #if HAS_Z_SERVO_ENDSTOP
  514. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  515. #endif
  516. #if ENABLED(BARICUDA)
  517. uint8_t baricuda_valve_pressure = 0,
  518. baricuda_e_to_p_pressure = 0;
  519. #endif
  520. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  521. bool autoretract_enabled, // M209 S - Autoretract switch
  522. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  523. float retract_length, // M207 S - G10 Retract length
  524. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  525. retract_zlift, // M207 Z - G10 Retract hop size
  526. retract_recover_length, // M208 S - G11 Recover length
  527. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  528. swap_retract_length, // M207 W - G10 Swap Retract length
  529. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  530. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  531. #if EXTRUDERS > 1
  532. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  533. #else
  534. constexpr bool retracted_swap[1] = { false };
  535. #endif
  536. #endif // FWRETRACT
  537. #if HAS_POWER_SWITCH
  538. bool powersupply_on =
  539. #if ENABLED(PS_DEFAULT_OFF)
  540. false
  541. #else
  542. true
  543. #endif
  544. ;
  545. #endif
  546. #if ENABLED(DELTA)
  547. float delta[ABC];
  548. // Initialized by settings.load()
  549. float delta_height,
  550. delta_endstop_adj[ABC] = { 0 },
  551. delta_radius,
  552. delta_tower_angle_trim[ABC],
  553. delta_tower[ABC][2],
  554. delta_diagonal_rod,
  555. delta_calibration_radius,
  556. delta_diagonal_rod_2_tower[ABC],
  557. delta_segments_per_second,
  558. delta_clip_start_height = Z_MAX_POS;
  559. float delta_safe_distance_from_top();
  560. #endif
  561. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  562. int bilinear_grid_spacing[2], bilinear_start[2];
  563. float bilinear_grid_factor[2],
  564. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  565. #endif
  566. #if IS_SCARA
  567. // Float constants for SCARA calculations
  568. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  569. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  570. L2_2 = sq(float(L2));
  571. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  572. delta[ABC];
  573. #endif
  574. float cartes[XYZ] = { 0 };
  575. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  576. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  577. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  578. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  579. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  580. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  581. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  582. #endif
  583. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  584. static bool filament_ran_out = false;
  585. #endif
  586. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  587. AdvancedPauseMenuResponse advanced_pause_menu_response;
  588. #endif
  589. #if ENABLED(MIXING_EXTRUDER)
  590. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  591. #if MIXING_VIRTUAL_TOOLS > 1
  592. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  593. #endif
  594. #endif
  595. static bool send_ok[BUFSIZE];
  596. #if HAS_SERVOS
  597. Servo servo[NUM_SERVOS];
  598. #define MOVE_SERVO(I, P) servo[I].move(P)
  599. #if HAS_Z_SERVO_ENDSTOP
  600. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  601. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  602. #endif
  603. #endif
  604. #ifdef CHDK
  605. millis_t chdkHigh = 0;
  606. bool chdkActive = false;
  607. #endif
  608. #ifdef AUTOMATIC_CURRENT_CONTROL
  609. bool auto_current_control = 0;
  610. #endif
  611. #if ENABLED(PID_EXTRUSION_SCALING)
  612. int lpq_len = 20;
  613. #endif
  614. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  615. MarlinBusyState busy_state = NOT_BUSY;
  616. static millis_t next_busy_signal_ms = 0;
  617. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  618. #else
  619. #define host_keepalive() NOOP
  620. #endif
  621. #if ENABLED(I2C_POSITION_ENCODERS)
  622. I2CPositionEncodersMgr I2CPEM;
  623. uint8_t blockBufferIndexRef = 0;
  624. millis_t lastUpdateMillis;
  625. #endif
  626. #if ENABLED(CNC_WORKSPACE_PLANES)
  627. static WorkspacePlane workspace_plane = PLANE_XY;
  628. #endif
  629. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  630. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  631. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  632. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  633. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  634. typedef void __void_##CONFIG##__
  635. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  636. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  637. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  638. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  639. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  640. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  641. /**
  642. * ***************************************************************************
  643. * ******************************** FUNCTIONS ********************************
  644. * ***************************************************************************
  645. */
  646. void stop();
  647. void get_available_commands();
  648. void process_next_command();
  649. void process_parsed_command();
  650. void prepare_move_to_destination();
  651. void get_cartesian_from_steppers();
  652. void set_current_from_steppers_for_axis(const AxisEnum axis);
  653. #if ENABLED(ARC_SUPPORT)
  654. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  655. #endif
  656. #if ENABLED(BEZIER_CURVE_SUPPORT)
  657. void plan_cubic_move(const float offset[4]);
  658. #endif
  659. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  660. void report_current_position();
  661. void report_current_position_detail();
  662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  663. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  664. serialprintPGM(prefix);
  665. SERIAL_CHAR('(');
  666. SERIAL_ECHO(x);
  667. SERIAL_ECHOPAIR(", ", y);
  668. SERIAL_ECHOPAIR(", ", z);
  669. SERIAL_CHAR(')');
  670. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  671. }
  672. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  673. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  674. }
  675. #if HAS_ABL
  676. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  677. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  678. }
  679. #endif
  680. #define DEBUG_POS(SUFFIX,VAR) do { \
  681. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  682. #endif
  683. /**
  684. * sync_plan_position
  685. *
  686. * Set the planner/stepper positions directly from current_position with
  687. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  688. */
  689. void sync_plan_position() {
  690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  691. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  692. #endif
  693. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  694. }
  695. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  696. #if IS_KINEMATIC
  697. inline void sync_plan_position_kinematic() {
  698. #if ENABLED(DEBUG_LEVELING_FEATURE)
  699. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  700. #endif
  701. planner.set_position_mm_kinematic(current_position);
  702. }
  703. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  704. #else
  705. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  706. #endif
  707. #if ENABLED(SDSUPPORT)
  708. #include "SdFatUtil.h"
  709. int freeMemory() { return SdFatUtil::FreeRam(); }
  710. #else
  711. extern "C" {
  712. extern char __bss_end;
  713. extern char __heap_start;
  714. extern void* __brkval;
  715. int freeMemory() {
  716. int free_memory;
  717. if ((int)__brkval == 0)
  718. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  719. else
  720. free_memory = ((int)&free_memory) - ((int)__brkval);
  721. return free_memory;
  722. }
  723. }
  724. #endif // !SDSUPPORT
  725. #if ENABLED(DIGIPOT_I2C)
  726. extern void digipot_i2c_set_current(uint8_t channel, float current);
  727. extern void digipot_i2c_init();
  728. #endif
  729. /**
  730. * Inject the next "immediate" command, when possible, onto the front of the queue.
  731. * Return true if any immediate commands remain to inject.
  732. */
  733. static bool drain_injected_commands_P() {
  734. if (injected_commands_P != NULL) {
  735. size_t i = 0;
  736. char c, cmd[30];
  737. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  738. cmd[sizeof(cmd) - 1] = '\0';
  739. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  740. cmd[i] = '\0';
  741. if (enqueue_and_echo_command(cmd)) // success?
  742. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  743. }
  744. return (injected_commands_P != NULL); // return whether any more remain
  745. }
  746. /**
  747. * Record one or many commands to run from program memory.
  748. * Aborts the current queue, if any.
  749. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  750. */
  751. void enqueue_and_echo_commands_P(const char * const pgcode) {
  752. injected_commands_P = pgcode;
  753. drain_injected_commands_P(); // first command executed asap (when possible)
  754. }
  755. /**
  756. * Clear the Marlin command queue
  757. */
  758. void clear_command_queue() {
  759. cmd_queue_index_r = cmd_queue_index_w;
  760. commands_in_queue = 0;
  761. }
  762. /**
  763. * Once a new command is in the ring buffer, call this to commit it
  764. */
  765. inline void _commit_command(bool say_ok) {
  766. send_ok[cmd_queue_index_w] = say_ok;
  767. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  768. commands_in_queue++;
  769. }
  770. /**
  771. * Copy a command from RAM into the main command buffer.
  772. * Return true if the command was successfully added.
  773. * Return false for a full buffer, or if the 'command' is a comment.
  774. */
  775. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  776. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  777. strcpy(command_queue[cmd_queue_index_w], cmd);
  778. _commit_command(say_ok);
  779. return true;
  780. }
  781. /**
  782. * Enqueue with Serial Echo
  783. */
  784. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  785. if (_enqueuecommand(cmd, say_ok)) {
  786. SERIAL_ECHO_START();
  787. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  788. SERIAL_CHAR('"');
  789. SERIAL_EOL();
  790. return true;
  791. }
  792. return false;
  793. }
  794. void setup_killpin() {
  795. #if HAS_KILL
  796. SET_INPUT_PULLUP(KILL_PIN);
  797. #endif
  798. }
  799. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  800. void setup_filrunoutpin() {
  801. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  802. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  803. #else
  804. SET_INPUT(FIL_RUNOUT_PIN);
  805. #endif
  806. }
  807. #endif
  808. void setup_powerhold() {
  809. #if HAS_SUICIDE
  810. OUT_WRITE(SUICIDE_PIN, HIGH);
  811. #endif
  812. #if HAS_POWER_SWITCH
  813. #if ENABLED(PS_DEFAULT_OFF)
  814. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  815. #else
  816. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  817. #endif
  818. #endif
  819. }
  820. void suicide() {
  821. #if HAS_SUICIDE
  822. OUT_WRITE(SUICIDE_PIN, LOW);
  823. #endif
  824. }
  825. void servo_init() {
  826. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  827. servo[0].attach(SERVO0_PIN);
  828. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  829. #endif
  830. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  831. servo[1].attach(SERVO1_PIN);
  832. servo[1].detach();
  833. #endif
  834. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  835. servo[2].attach(SERVO2_PIN);
  836. servo[2].detach();
  837. #endif
  838. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  839. servo[3].attach(SERVO3_PIN);
  840. servo[3].detach();
  841. #endif
  842. #if HAS_Z_SERVO_ENDSTOP
  843. /**
  844. * Set position of Z Servo Endstop
  845. *
  846. * The servo might be deployed and positioned too low to stow
  847. * when starting up the machine or rebooting the board.
  848. * There's no way to know where the nozzle is positioned until
  849. * homing has been done - no homing with z-probe without init!
  850. *
  851. */
  852. STOW_Z_SERVO();
  853. #endif
  854. }
  855. /**
  856. * Stepper Reset (RigidBoard, et.al.)
  857. */
  858. #if HAS_STEPPER_RESET
  859. void disableStepperDrivers() {
  860. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  861. }
  862. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  863. #endif
  864. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  865. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  866. i2c.receive(bytes);
  867. }
  868. void i2c_on_request() { // just send dummy data for now
  869. i2c.reply("Hello World!\n");
  870. }
  871. #endif
  872. void gcode_line_error(const char* err, bool doFlush = true) {
  873. SERIAL_ERROR_START();
  874. serialprintPGM(err);
  875. SERIAL_ERRORLN(gcode_LastN);
  876. //Serial.println(gcode_N);
  877. if (doFlush) FlushSerialRequestResend();
  878. serial_count = 0;
  879. }
  880. /**
  881. * Get all commands waiting on the serial port and queue them.
  882. * Exit when the buffer is full or when no more characters are
  883. * left on the serial port.
  884. */
  885. inline void get_serial_commands() {
  886. static char serial_line_buffer[MAX_CMD_SIZE];
  887. static bool serial_comment_mode = false;
  888. // If the command buffer is empty for too long,
  889. // send "wait" to indicate Marlin is still waiting.
  890. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  891. static millis_t last_command_time = 0;
  892. const millis_t ms = millis();
  893. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  894. SERIAL_ECHOLNPGM(MSG_WAIT);
  895. last_command_time = ms;
  896. }
  897. #endif
  898. /**
  899. * Loop while serial characters are incoming and the queue is not full
  900. */
  901. int c;
  902. while (commands_in_queue < BUFSIZE && (c = MYSERIAL.read()) >= 0) {
  903. char serial_char = c;
  904. /**
  905. * If the character ends the line
  906. */
  907. if (serial_char == '\n' || serial_char == '\r') {
  908. serial_comment_mode = false; // end of line == end of comment
  909. if (!serial_count) continue; // Skip empty lines
  910. serial_line_buffer[serial_count] = 0; // Terminate string
  911. serial_count = 0; // Reset buffer
  912. char* command = serial_line_buffer;
  913. while (*command == ' ') command++; // Skip leading spaces
  914. char *npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  915. if (npos) {
  916. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  917. if (M110) {
  918. char* n2pos = strchr(command + 4, 'N');
  919. if (n2pos) npos = n2pos;
  920. }
  921. gcode_N = strtol(npos + 1, NULL, 10);
  922. if (gcode_N != gcode_LastN + 1 && !M110) {
  923. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  924. return;
  925. }
  926. char *apos = strrchr(command, '*');
  927. if (apos) {
  928. uint8_t checksum = 0, count = uint8_t(apos - command);
  929. while (count) checksum ^= command[--count];
  930. if (strtol(apos + 1, NULL, 10) != checksum) {
  931. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  932. return;
  933. }
  934. }
  935. else {
  936. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  937. return;
  938. }
  939. gcode_LastN = gcode_N;
  940. }
  941. // Movement commands alert when stopped
  942. if (IsStopped()) {
  943. char* gpos = strchr(command, 'G');
  944. if (gpos) {
  945. const int codenum = strtol(gpos + 1, NULL, 10);
  946. switch (codenum) {
  947. case 0:
  948. case 1:
  949. case 2:
  950. case 3:
  951. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  952. LCD_MESSAGEPGM(MSG_STOPPED);
  953. break;
  954. }
  955. }
  956. }
  957. #if DISABLED(EMERGENCY_PARSER)
  958. // If command was e-stop process now
  959. if (strcmp(command, "M108") == 0) {
  960. wait_for_heatup = false;
  961. #if ENABLED(ULTIPANEL)
  962. wait_for_user = false;
  963. #endif
  964. }
  965. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  966. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  967. #endif
  968. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  969. last_command_time = ms;
  970. #endif
  971. // Add the command to the queue
  972. _enqueuecommand(serial_line_buffer, true);
  973. }
  974. else if (serial_count >= MAX_CMD_SIZE - 1) {
  975. // Keep fetching, but ignore normal characters beyond the max length
  976. // The command will be injected when EOL is reached
  977. }
  978. else if (serial_char == '\\') { // Handle escapes
  979. if ((c = MYSERIAL.read()) >= 0) {
  980. // if we have one more character, copy it over
  981. serial_char = c;
  982. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  983. }
  984. // otherwise do nothing
  985. }
  986. else { // it's not a newline, carriage return or escape char
  987. if (serial_char == ';') serial_comment_mode = true;
  988. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  989. }
  990. } // queue has space, serial has data
  991. }
  992. #if ENABLED(SDSUPPORT)
  993. /**
  994. * Get commands from the SD Card until the command buffer is full
  995. * or until the end of the file is reached. The special character '#'
  996. * can also interrupt buffering.
  997. */
  998. inline void get_sdcard_commands() {
  999. static bool stop_buffering = false,
  1000. sd_comment_mode = false;
  1001. if (!card.sdprinting) return;
  1002. /**
  1003. * '#' stops reading from SD to the buffer prematurely, so procedural
  1004. * macro calls are possible. If it occurs, stop_buffering is triggered
  1005. * and the buffer is run dry; this character _can_ occur in serial com
  1006. * due to checksums, however, no checksums are used in SD printing.
  1007. */
  1008. if (commands_in_queue == 0) stop_buffering = false;
  1009. uint16_t sd_count = 0;
  1010. bool card_eof = card.eof();
  1011. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1012. const int16_t n = card.get();
  1013. char sd_char = (char)n;
  1014. card_eof = card.eof();
  1015. if (card_eof || n == -1
  1016. || sd_char == '\n' || sd_char == '\r'
  1017. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1018. ) {
  1019. if (card_eof) {
  1020. card.printingHasFinished();
  1021. if (card.sdprinting)
  1022. sd_count = 0; // If a sub-file was printing, continue from call point
  1023. else {
  1024. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1025. #if ENABLED(PRINTER_EVENT_LEDS)
  1026. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1027. leds.set_green();
  1028. #if HAS_RESUME_CONTINUE
  1029. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1030. #else
  1031. safe_delay(1000);
  1032. #endif
  1033. leds.set_off();
  1034. #endif
  1035. card.checkautostart(true);
  1036. }
  1037. }
  1038. else if (n == -1) {
  1039. SERIAL_ERROR_START();
  1040. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1041. }
  1042. if (sd_char == '#') stop_buffering = true;
  1043. sd_comment_mode = false; // for new command
  1044. if (!sd_count) continue; // skip empty lines (and comment lines)
  1045. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1046. sd_count = 0; // clear sd line buffer
  1047. _commit_command(false);
  1048. }
  1049. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1050. /**
  1051. * Keep fetching, but ignore normal characters beyond the max length
  1052. * The command will be injected when EOL is reached
  1053. */
  1054. }
  1055. else {
  1056. if (sd_char == ';') sd_comment_mode = true;
  1057. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1058. }
  1059. }
  1060. }
  1061. #endif // SDSUPPORT
  1062. /**
  1063. * Add to the circular command queue the next command from:
  1064. * - The command-injection queue (injected_commands_P)
  1065. * - The active serial input (usually USB)
  1066. * - The SD card file being actively printed
  1067. */
  1068. void get_available_commands() {
  1069. // if any immediate commands remain, don't get other commands yet
  1070. if (drain_injected_commands_P()) return;
  1071. get_serial_commands();
  1072. #if ENABLED(SDSUPPORT)
  1073. get_sdcard_commands();
  1074. #endif
  1075. }
  1076. /**
  1077. * Set target_extruder from the T parameter or the active_extruder
  1078. *
  1079. * Returns TRUE if the target is invalid
  1080. */
  1081. bool get_target_extruder_from_command(const uint16_t code) {
  1082. if (parser.seenval('T')) {
  1083. const int8_t e = parser.value_byte();
  1084. if (e >= EXTRUDERS) {
  1085. SERIAL_ECHO_START();
  1086. SERIAL_CHAR('M');
  1087. SERIAL_ECHO(code);
  1088. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1089. return true;
  1090. }
  1091. target_extruder = e;
  1092. }
  1093. else
  1094. target_extruder = active_extruder;
  1095. return false;
  1096. }
  1097. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1098. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1099. #endif
  1100. #if ENABLED(DUAL_X_CARRIAGE)
  1101. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1102. static float x_home_pos(const int extruder) {
  1103. if (extruder == 0)
  1104. return base_home_pos(X_AXIS);
  1105. else
  1106. /**
  1107. * In dual carriage mode the extruder offset provides an override of the
  1108. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1109. * This allows soft recalibration of the second extruder home position
  1110. * without firmware reflash (through the M218 command).
  1111. */
  1112. return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1113. }
  1114. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1115. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1116. static bool active_extruder_parked = false; // used in mode 1 & 2
  1117. static float raised_parked_position[XYZE]; // used in mode 1
  1118. static millis_t delayed_move_time = 0; // used in mode 1
  1119. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1120. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1121. #endif // DUAL_X_CARRIAGE
  1122. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1123. /**
  1124. * Software endstops can be used to monitor the open end of
  1125. * an axis that has a hardware endstop on the other end. Or
  1126. * they can prevent axes from moving past endstops and grinding.
  1127. *
  1128. * To keep doing their job as the coordinate system changes,
  1129. * the software endstop positions must be refreshed to remain
  1130. * at the same positions relative to the machine.
  1131. */
  1132. void update_software_endstops(const AxisEnum axis) {
  1133. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1134. workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1135. #endif
  1136. #if ENABLED(DUAL_X_CARRIAGE)
  1137. if (axis == X_AXIS) {
  1138. // In Dual X mode hotend_offset[X] is T1's home position
  1139. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1140. if (active_extruder != 0) {
  1141. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1142. soft_endstop_min[X_AXIS] = X2_MIN_POS;
  1143. soft_endstop_max[X_AXIS] = dual_max_x;
  1144. }
  1145. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1146. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1147. // but not so far to the right that T1 would move past the end
  1148. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS);
  1149. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset);
  1150. }
  1151. else {
  1152. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1153. soft_endstop_min[axis] = base_min_pos(axis);
  1154. soft_endstop_max[axis] = base_max_pos(axis);
  1155. }
  1156. }
  1157. #elif ENABLED(DELTA)
  1158. soft_endstop_min[axis] = base_min_pos(axis);
  1159. soft_endstop_max[axis] = axis == Z_AXIS ? delta_height : base_max_pos(axis);
  1160. #else
  1161. soft_endstop_min[axis] = base_min_pos(axis);
  1162. soft_endstop_max[axis] = base_max_pos(axis);
  1163. #endif
  1164. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1165. if (DEBUGGING(LEVELING)) {
  1166. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1167. #if HAS_HOME_OFFSET
  1168. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1169. #endif
  1170. #if HAS_POSITION_SHIFT
  1171. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1172. #endif
  1173. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1174. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1175. }
  1176. #endif
  1177. #if ENABLED(DELTA)
  1178. switch(axis) {
  1179. case X_AXIS:
  1180. case Y_AXIS:
  1181. // Get a minimum radius for clamping
  1182. soft_endstop_radius = MIN3(FABS(max(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
  1183. soft_endstop_radius_2 = sq(soft_endstop_radius);
  1184. break;
  1185. case Z_AXIS:
  1186. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1187. default: break;
  1188. }
  1189. #endif
  1190. }
  1191. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1192. #if HAS_M206_COMMAND
  1193. /**
  1194. * Change the home offset for an axis, update the current
  1195. * position and the software endstops to retain the same
  1196. * relative distance to the new home.
  1197. *
  1198. * Since this changes the current_position, code should
  1199. * call sync_plan_position soon after this.
  1200. */
  1201. static void set_home_offset(const AxisEnum axis, const float v) {
  1202. home_offset[axis] = v;
  1203. update_software_endstops(axis);
  1204. }
  1205. #endif // HAS_M206_COMMAND
  1206. /**
  1207. * Set an axis' current position to its home position (after homing).
  1208. *
  1209. * For Core and Cartesian robots this applies one-to-one when an
  1210. * individual axis has been homed.
  1211. *
  1212. * DELTA should wait until all homing is done before setting the XYZ
  1213. * current_position to home, because homing is a single operation.
  1214. * In the case where the axis positions are already known and previously
  1215. * homed, DELTA could home to X or Y individually by moving either one
  1216. * to the center. However, homing Z always homes XY and Z.
  1217. *
  1218. * SCARA should wait until all XY homing is done before setting the XY
  1219. * current_position to home, because neither X nor Y is at home until
  1220. * both are at home. Z can however be homed individually.
  1221. *
  1222. * Callers must sync the planner position after calling this!
  1223. */
  1224. static void set_axis_is_at_home(const AxisEnum axis) {
  1225. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1226. if (DEBUGGING(LEVELING)) {
  1227. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1228. SERIAL_CHAR(')');
  1229. SERIAL_EOL();
  1230. }
  1231. #endif
  1232. axis_known_position[axis] = axis_homed[axis] = true;
  1233. #if HAS_POSITION_SHIFT
  1234. position_shift[axis] = 0;
  1235. update_software_endstops(axis);
  1236. #endif
  1237. #if ENABLED(DUAL_X_CARRIAGE)
  1238. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1239. current_position[X_AXIS] = x_home_pos(active_extruder);
  1240. return;
  1241. }
  1242. #endif
  1243. #if ENABLED(MORGAN_SCARA)
  1244. /**
  1245. * Morgan SCARA homes XY at the same time
  1246. */
  1247. if (axis == X_AXIS || axis == Y_AXIS) {
  1248. float homeposition[XYZ] = {
  1249. base_home_pos(X_AXIS),
  1250. base_home_pos(Y_AXIS),
  1251. base_home_pos(Z_AXIS)
  1252. };
  1253. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1254. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1255. /**
  1256. * Get Home position SCARA arm angles using inverse kinematics,
  1257. * and calculate homing offset using forward kinematics
  1258. */
  1259. inverse_kinematics(homeposition);
  1260. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1261. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1262. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1263. current_position[axis] = cartes[axis];
  1264. /**
  1265. * SCARA home positions are based on configuration since the actual
  1266. * limits are determined by the inverse kinematic transform.
  1267. */
  1268. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1269. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1270. }
  1271. else
  1272. #elif ENABLED(DELTA)
  1273. if (axis == Z_AXIS)
  1274. current_position[axis] = delta_height;
  1275. else
  1276. #endif
  1277. {
  1278. current_position[axis] = base_home_pos(axis);
  1279. }
  1280. /**
  1281. * Z Probe Z Homing? Account for the probe's Z offset.
  1282. */
  1283. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1284. if (axis == Z_AXIS) {
  1285. #if HOMING_Z_WITH_PROBE
  1286. current_position[Z_AXIS] -= zprobe_zoffset;
  1287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1288. if (DEBUGGING(LEVELING)) {
  1289. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1290. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1291. }
  1292. #endif
  1293. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1294. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1295. #endif
  1296. }
  1297. #endif
  1298. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1299. if (DEBUGGING(LEVELING)) {
  1300. #if HAS_HOME_OFFSET
  1301. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1302. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1303. #endif
  1304. DEBUG_POS("", current_position);
  1305. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1306. SERIAL_CHAR(')');
  1307. SERIAL_EOL();
  1308. }
  1309. #endif
  1310. #if ENABLED(I2C_POSITION_ENCODERS)
  1311. I2CPEM.homed(axis);
  1312. #endif
  1313. }
  1314. /**
  1315. * Some planner shorthand inline functions
  1316. */
  1317. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1318. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1319. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1320. if (hbd < 1) {
  1321. hbd = 10;
  1322. SERIAL_ECHO_START();
  1323. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1324. }
  1325. return homing_feedrate(axis) / hbd;
  1326. }
  1327. /**
  1328. * Move the planner to the current position from wherever it last moved
  1329. * (or from wherever it has been told it is located).
  1330. */
  1331. inline void buffer_line_to_current_position() {
  1332. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1333. }
  1334. /**
  1335. * Move the planner to the position stored in the destination array, which is
  1336. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1337. */
  1338. inline void buffer_line_to_destination(const float fr_mm_s) {
  1339. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1340. }
  1341. inline void set_current_from_destination() { COPY(current_position, destination); }
  1342. inline void set_destination_from_current() { COPY(destination, current_position); }
  1343. #if IS_KINEMATIC
  1344. /**
  1345. * Calculate delta, start a line, and set current_position to destination
  1346. */
  1347. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1348. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1349. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1350. #endif
  1351. refresh_cmd_timeout();
  1352. #if UBL_DELTA
  1353. // ubl segmented line will do z-only moves in single segment
  1354. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1355. #else
  1356. if ( current_position[X_AXIS] == destination[X_AXIS]
  1357. && current_position[Y_AXIS] == destination[Y_AXIS]
  1358. && current_position[Z_AXIS] == destination[Z_AXIS]
  1359. && current_position[E_AXIS] == destination[E_AXIS]
  1360. ) return;
  1361. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1362. #endif
  1363. set_current_from_destination();
  1364. }
  1365. #endif // IS_KINEMATIC
  1366. /**
  1367. * Plan a move to (X, Y, Z) and set the current_position
  1368. * The final current_position may not be the one that was requested
  1369. */
  1370. void do_blocking_move_to(const float &rx, const float &ry, const float &rz, const float &fr_mm_s/*=0.0*/) {
  1371. const float old_feedrate_mm_s = feedrate_mm_s;
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, LOGICAL_X_POSITION(rx), LOGICAL_Y_POSITION(ry), LOGICAL_Z_POSITION(rz));
  1374. #endif
  1375. const float z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1376. #if ENABLED(DELTA)
  1377. if (!position_is_reachable(rx, ry)) return;
  1378. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1379. set_destination_from_current(); // sync destination at the start
  1380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1381. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
  1382. #endif
  1383. // when in the danger zone
  1384. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1385. if (rz > delta_clip_start_height) { // staying in the danger zone
  1386. destination[X_AXIS] = rx; // move directly (uninterpolated)
  1387. destination[Y_AXIS] = ry;
  1388. destination[Z_AXIS] = rz;
  1389. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1390. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1391. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1392. #endif
  1393. return;
  1394. }
  1395. destination[Z_AXIS] = delta_clip_start_height;
  1396. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1398. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1399. #endif
  1400. }
  1401. if (rz > current_position[Z_AXIS]) { // raising?
  1402. destination[Z_AXIS] = rz;
  1403. prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
  1404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1405. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1406. #endif
  1407. }
  1408. destination[X_AXIS] = rx;
  1409. destination[Y_AXIS] = ry;
  1410. prepare_move_to_destination(); // set_current_from_destination
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1413. #endif
  1414. if (rz < current_position[Z_AXIS]) { // lowering?
  1415. destination[Z_AXIS] = rz;
  1416. prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
  1417. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1418. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1419. #endif
  1420. }
  1421. #elif IS_SCARA
  1422. if (!position_is_reachable(rx, ry)) return;
  1423. set_destination_from_current();
  1424. // If Z needs to raise, do it before moving XY
  1425. if (destination[Z_AXIS] < rz) {
  1426. destination[Z_AXIS] = rz;
  1427. prepare_uninterpolated_move_to_destination(z_feedrate);
  1428. }
  1429. destination[X_AXIS] = rx;
  1430. destination[Y_AXIS] = ry;
  1431. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1432. // If Z needs to lower, do it after moving XY
  1433. if (destination[Z_AXIS] > rz) {
  1434. destination[Z_AXIS] = rz;
  1435. prepare_uninterpolated_move_to_destination(z_feedrate);
  1436. }
  1437. #else
  1438. // If Z needs to raise, do it before moving XY
  1439. if (current_position[Z_AXIS] < rz) {
  1440. feedrate_mm_s = z_feedrate;
  1441. current_position[Z_AXIS] = rz;
  1442. buffer_line_to_current_position();
  1443. }
  1444. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1445. current_position[X_AXIS] = rx;
  1446. current_position[Y_AXIS] = ry;
  1447. buffer_line_to_current_position();
  1448. // If Z needs to lower, do it after moving XY
  1449. if (current_position[Z_AXIS] > rz) {
  1450. feedrate_mm_s = z_feedrate;
  1451. current_position[Z_AXIS] = rz;
  1452. buffer_line_to_current_position();
  1453. }
  1454. #endif
  1455. stepper.synchronize();
  1456. feedrate_mm_s = old_feedrate_mm_s;
  1457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1458. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1459. #endif
  1460. }
  1461. void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) {
  1462. do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1463. }
  1464. void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) {
  1465. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);
  1466. }
  1467. void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) {
  1468. do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);
  1469. }
  1470. //
  1471. // Prepare to do endstop or probe moves
  1472. // with custom feedrates.
  1473. //
  1474. // - Save current feedrates
  1475. // - Reset the rate multiplier
  1476. // - Reset the command timeout
  1477. // - Enable the endstops (for endstop moves)
  1478. //
  1479. static void setup_for_endstop_or_probe_move() {
  1480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1481. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1482. #endif
  1483. saved_feedrate_mm_s = feedrate_mm_s;
  1484. saved_feedrate_percentage = feedrate_percentage;
  1485. feedrate_percentage = 100;
  1486. refresh_cmd_timeout();
  1487. }
  1488. static void clean_up_after_endstop_or_probe_move() {
  1489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1490. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1491. #endif
  1492. feedrate_mm_s = saved_feedrate_mm_s;
  1493. feedrate_percentage = saved_feedrate_percentage;
  1494. refresh_cmd_timeout();
  1495. }
  1496. #if HAS_BED_PROBE
  1497. /**
  1498. * Raise Z to a minimum height to make room for a probe to move
  1499. */
  1500. inline void do_probe_raise(const float z_raise) {
  1501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1502. if (DEBUGGING(LEVELING)) {
  1503. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1504. SERIAL_CHAR(')');
  1505. SERIAL_EOL();
  1506. }
  1507. #endif
  1508. float z_dest = z_raise;
  1509. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1510. if (z_dest > current_position[Z_AXIS])
  1511. do_blocking_move_to_z(z_dest);
  1512. }
  1513. #endif // HAS_BED_PROBE
  1514. #if HAS_AXIS_UNHOMED_ERR
  1515. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1516. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1517. const bool xx = x && !axis_known_position[X_AXIS],
  1518. yy = y && !axis_known_position[Y_AXIS],
  1519. zz = z && !axis_known_position[Z_AXIS];
  1520. #else
  1521. const bool xx = x && !axis_homed[X_AXIS],
  1522. yy = y && !axis_homed[Y_AXIS],
  1523. zz = z && !axis_homed[Z_AXIS];
  1524. #endif
  1525. if (xx || yy || zz) {
  1526. SERIAL_ECHO_START();
  1527. SERIAL_ECHOPGM(MSG_HOME " ");
  1528. if (xx) SERIAL_ECHOPGM(MSG_X);
  1529. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1530. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1531. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1532. #if ENABLED(ULTRA_LCD)
  1533. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1534. #endif
  1535. return true;
  1536. }
  1537. return false;
  1538. }
  1539. #endif // HAS_AXIS_UNHOMED_ERR
  1540. #if ENABLED(Z_PROBE_SLED)
  1541. #ifndef SLED_DOCKING_OFFSET
  1542. #define SLED_DOCKING_OFFSET 0
  1543. #endif
  1544. /**
  1545. * Method to dock/undock a sled designed by Charles Bell.
  1546. *
  1547. * stow[in] If false, move to MAX_X and engage the solenoid
  1548. * If true, move to MAX_X and release the solenoid
  1549. */
  1550. static void dock_sled(bool stow) {
  1551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1552. if (DEBUGGING(LEVELING)) {
  1553. SERIAL_ECHOPAIR("dock_sled(", stow);
  1554. SERIAL_CHAR(')');
  1555. SERIAL_EOL();
  1556. }
  1557. #endif
  1558. // Dock sled a bit closer to ensure proper capturing
  1559. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1560. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1561. WRITE(SOL1_PIN, !stow); // switch solenoid
  1562. #endif
  1563. }
  1564. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1565. FORCE_INLINE void do_blocking_move_to(const float raw[XYZ], const float &fr_mm_s) {
  1566. do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
  1567. }
  1568. void run_deploy_moves_script() {
  1569. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1570. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1571. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1574. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1575. #endif
  1576. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1577. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1578. #endif
  1579. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1580. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1581. #endif
  1582. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1583. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1584. #endif
  1585. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1588. #endif
  1589. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1590. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1591. #endif
  1592. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1593. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1594. #endif
  1595. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1596. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1597. #endif
  1598. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1599. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1600. #endif
  1601. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1610. #endif
  1611. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1612. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1613. #endif
  1614. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1615. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1616. #endif
  1617. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1618. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1619. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1620. #endif
  1621. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1622. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1623. #endif
  1624. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1625. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1626. #endif
  1627. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1628. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1629. #endif
  1630. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1631. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1632. #endif
  1633. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1634. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1635. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1638. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1641. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1642. #endif
  1643. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1644. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1645. #endif
  1646. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1647. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1648. #endif
  1649. }
  1650. void run_stow_moves_script() {
  1651. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1653. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1656. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1657. #endif
  1658. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1659. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1660. #endif
  1661. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1662. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1663. #endif
  1664. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1665. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1666. #endif
  1667. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1668. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1669. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1672. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1675. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1678. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1679. #endif
  1680. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1681. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1682. #endif
  1683. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1685. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1686. #endif
  1687. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1688. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1691. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1694. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1695. #endif
  1696. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1697. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1698. #endif
  1699. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1701. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1704. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1705. #endif
  1706. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1707. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1708. #endif
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1710. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1711. #endif
  1712. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1713. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1714. #endif
  1715. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1716. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1717. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1718. #endif
  1719. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1720. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1721. #endif
  1722. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1723. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1724. #endif
  1725. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1726. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1727. #endif
  1728. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1729. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1730. #endif
  1731. }
  1732. #endif // Z_PROBE_ALLEN_KEY
  1733. #if ENABLED(PROBING_FANS_OFF)
  1734. void fans_pause(const bool p) {
  1735. if (p != fans_paused) {
  1736. fans_paused = p;
  1737. if (p)
  1738. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1739. paused_fanSpeeds[x] = fanSpeeds[x];
  1740. fanSpeeds[x] = 0;
  1741. }
  1742. else
  1743. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1744. fanSpeeds[x] = paused_fanSpeeds[x];
  1745. }
  1746. }
  1747. #endif // PROBING_FANS_OFF
  1748. #if HAS_BED_PROBE
  1749. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1750. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1751. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1752. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1753. #else
  1754. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1755. #endif
  1756. #endif
  1757. #if QUIET_PROBING
  1758. void probing_pause(const bool p) {
  1759. #if ENABLED(PROBING_HEATERS_OFF)
  1760. thermalManager.pause(p);
  1761. #endif
  1762. #if ENABLED(PROBING_FANS_OFF)
  1763. fans_pause(p);
  1764. #endif
  1765. if (p) safe_delay(
  1766. #if DELAY_BEFORE_PROBING > 25
  1767. DELAY_BEFORE_PROBING
  1768. #else
  1769. 25
  1770. #endif
  1771. );
  1772. }
  1773. #endif // QUIET_PROBING
  1774. #if ENABLED(BLTOUCH)
  1775. void bltouch_command(int angle) {
  1776. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
  1777. safe_delay(BLTOUCH_DELAY);
  1778. }
  1779. bool set_bltouch_deployed(const bool deploy) {
  1780. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1781. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1782. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1783. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1784. safe_delay(1500); // Wait for internal self-test to complete.
  1785. // (Measured completion time was 0.65 seconds
  1786. // after reset, deploy, and stow sequence)
  1787. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1788. SERIAL_ERROR_START();
  1789. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1790. stop(); // punt!
  1791. return true;
  1792. }
  1793. }
  1794. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1795. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1796. if (DEBUGGING(LEVELING)) {
  1797. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1798. SERIAL_CHAR(')');
  1799. SERIAL_EOL();
  1800. }
  1801. #endif
  1802. return false;
  1803. }
  1804. #endif // BLTOUCH
  1805. // returns false for ok and true for failure
  1806. bool set_probe_deployed(bool deploy) {
  1807. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1808. if (DEBUGGING(LEVELING)) {
  1809. DEBUG_POS("set_probe_deployed", current_position);
  1810. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1811. }
  1812. #endif
  1813. if (endstops.z_probe_enabled == deploy) return false;
  1814. // Make room for probe
  1815. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1816. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1817. #if ENABLED(Z_PROBE_SLED)
  1818. #define _AUE_ARGS true, false, false
  1819. #else
  1820. #define _AUE_ARGS
  1821. #endif
  1822. if (axis_unhomed_error(_AUE_ARGS)) {
  1823. SERIAL_ERROR_START();
  1824. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1825. stop();
  1826. return true;
  1827. }
  1828. #endif
  1829. const float oldXpos = current_position[X_AXIS],
  1830. oldYpos = current_position[Y_AXIS];
  1831. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1832. // If endstop is already false, the Z probe is deployed
  1833. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1834. // Would a goto be less ugly?
  1835. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1836. // for a triggered when stowed manual probe.
  1837. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1838. // otherwise an Allen-Key probe can't be stowed.
  1839. #endif
  1840. #if ENABLED(SOLENOID_PROBE)
  1841. #if HAS_SOLENOID_1
  1842. WRITE(SOL1_PIN, deploy);
  1843. #endif
  1844. #elif ENABLED(Z_PROBE_SLED)
  1845. dock_sled(!deploy);
  1846. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1847. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
  1848. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1849. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1850. #endif
  1851. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1852. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1853. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1854. if (IsRunning()) {
  1855. SERIAL_ERROR_START();
  1856. SERIAL_ERRORLNPGM("Z-Probe failed");
  1857. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1858. }
  1859. stop();
  1860. return true;
  1861. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1862. #endif
  1863. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1864. endstops.enable_z_probe(deploy);
  1865. return false;
  1866. }
  1867. /**
  1868. * @brief Used by run_z_probe to do a single Z probe move.
  1869. *
  1870. * @param z Z destination
  1871. * @param fr_mm_s Feedrate in mm/s
  1872. * @return true to indicate an error
  1873. */
  1874. static bool do_probe_move(const float z, const float fr_mm_m) {
  1875. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1876. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1877. #endif
  1878. // Deploy BLTouch at the start of any probe
  1879. #if ENABLED(BLTOUCH)
  1880. if (set_bltouch_deployed(true)) return true;
  1881. #endif
  1882. #if QUIET_PROBING
  1883. probing_pause(true);
  1884. #endif
  1885. // Move down until probe triggered
  1886. do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
  1887. // Check to see if the probe was triggered
  1888. const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
  1889. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  1890. Z_MIN
  1891. #else
  1892. Z_MIN_PROBE
  1893. #endif
  1894. );
  1895. #if QUIET_PROBING
  1896. probing_pause(false);
  1897. #endif
  1898. // Retract BLTouch immediately after a probe if it was triggered
  1899. #if ENABLED(BLTOUCH)
  1900. if (probe_triggered && set_bltouch_deployed(false)) return true;
  1901. #endif
  1902. // Clear endstop flags
  1903. endstops.hit_on_purpose();
  1904. // Get Z where the steppers were interrupted
  1905. set_current_from_steppers_for_axis(Z_AXIS);
  1906. // Tell the planner where we actually are
  1907. SYNC_PLAN_POSITION_KINEMATIC();
  1908. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1909. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1910. #endif
  1911. return !probe_triggered;
  1912. }
  1913. /**
  1914. * @details Used by probe_pt to do a single Z probe.
  1915. * Leaves current_position[Z_AXIS] at the height where the probe triggered.
  1916. *
  1917. * @return The raw Z position where the probe was triggered
  1918. */
  1919. static float run_z_probe() {
  1920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1921. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1922. #endif
  1923. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1924. refresh_cmd_timeout();
  1925. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1926. // Do a first probe at the fast speed
  1927. if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
  1928. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1929. float first_probe_z = current_position[Z_AXIS];
  1930. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1931. #endif
  1932. // move up to make clearance for the probe
  1933. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1934. #else
  1935. // If the nozzle is above the travel height then
  1936. // move down quickly before doing the slow probe
  1937. float z = Z_CLEARANCE_DEPLOY_PROBE;
  1938. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1939. if (z < current_position[Z_AXIS]) {
  1940. // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
  1941. if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
  1942. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1943. }
  1944. #endif
  1945. // move down slowly to find bed
  1946. if (do_probe_move(-10, Z_PROBE_SPEED_SLOW)) return NAN;
  1947. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1948. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1949. #endif
  1950. // Debug: compare probe heights
  1951. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1952. if (DEBUGGING(LEVELING)) {
  1953. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1954. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1955. }
  1956. #endif
  1957. return current_position[Z_AXIS];
  1958. }
  1959. /**
  1960. * - Move to the given XY
  1961. * - Deploy the probe, if not already deployed
  1962. * - Probe the bed, get the Z position
  1963. * - Depending on the 'stow' flag
  1964. * - Stow the probe, or
  1965. * - Raise to the BETWEEN height
  1966. * - Return the probed Z position
  1967. */
  1968. float probe_pt(const float &rx, const float &ry, const bool stow, const uint8_t verbose_level, const bool probe_relative=true) {
  1969. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1970. if (DEBUGGING(LEVELING)) {
  1971. SERIAL_ECHOPAIR(">>> probe_pt(", LOGICAL_X_POSITION(rx));
  1972. SERIAL_ECHOPAIR(", ", LOGICAL_Y_POSITION(ry));
  1973. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1974. SERIAL_ECHOLNPGM("stow)");
  1975. DEBUG_POS("", current_position);
  1976. }
  1977. #endif
  1978. // TODO: Adapt for SCARA, where the offset rotates
  1979. float nx = rx, ny = ry;
  1980. if (probe_relative) {
  1981. if (!position_is_reachable_by_probe(rx, ry)) return NAN; // The given position is in terms of the probe
  1982. nx -= (X_PROBE_OFFSET_FROM_EXTRUDER); // Get the nozzle position
  1983. ny -= (Y_PROBE_OFFSET_FROM_EXTRUDER);
  1984. }
  1985. else if (!position_is_reachable(nx, ny)) return NAN; // The given position is in terms of the nozzle
  1986. const float nz =
  1987. #if ENABLED(DELTA)
  1988. // Move below clip height or xy move will be aborted by do_blocking_move_to
  1989. min(current_position[Z_AXIS], delta_clip_start_height)
  1990. #else
  1991. current_position[Z_AXIS]
  1992. #endif
  1993. ;
  1994. const float old_feedrate_mm_s = feedrate_mm_s;
  1995. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1996. // Move the probe to the starting XYZ
  1997. do_blocking_move_to(nx, ny, nz);
  1998. float measured_z = NAN;
  1999. if (!DEPLOY_PROBE()) {
  2000. measured_z = run_z_probe() + zprobe_zoffset;
  2001. if (!stow)
  2002. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2003. else
  2004. if (STOW_PROBE()) measured_z = NAN;
  2005. }
  2006. if (verbose_level > 2) {
  2007. SERIAL_PROTOCOLPGM("Bed X: ");
  2008. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);
  2009. SERIAL_PROTOCOLPGM(" Y: ");
  2010. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 3);
  2011. SERIAL_PROTOCOLPGM(" Z: ");
  2012. SERIAL_PROTOCOL_F(measured_z, 3);
  2013. SERIAL_EOL();
  2014. }
  2015. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2016. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2017. #endif
  2018. feedrate_mm_s = old_feedrate_mm_s;
  2019. if (isnan(measured_z)) {
  2020. LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
  2021. SERIAL_ERROR_START();
  2022. SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
  2023. }
  2024. return measured_z;
  2025. }
  2026. #endif // HAS_BED_PROBE
  2027. #if HAS_LEVELING
  2028. bool leveling_is_valid() {
  2029. return
  2030. #if ENABLED(MESH_BED_LEVELING)
  2031. mbl.has_mesh
  2032. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2033. !!bilinear_grid_spacing[X_AXIS]
  2034. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2035. true
  2036. #else // 3POINT, LINEAR
  2037. true
  2038. #endif
  2039. ;
  2040. }
  2041. /**
  2042. * Turn bed leveling on or off, fixing the current
  2043. * position as-needed.
  2044. *
  2045. * Disable: Current position = physical position
  2046. * Enable: Current position = "unleveled" physical position
  2047. */
  2048. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2049. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2050. const bool can_change = (!enable || leveling_is_valid());
  2051. #else
  2052. constexpr bool can_change = true;
  2053. #endif
  2054. if (can_change && enable != planner.leveling_active) {
  2055. #if ENABLED(MESH_BED_LEVELING)
  2056. if (!enable)
  2057. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2058. const bool enabling = enable && leveling_is_valid();
  2059. planner.leveling_active = enabling;
  2060. if (enabling) planner.unapply_leveling(current_position);
  2061. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2062. #if PLANNER_LEVELING
  2063. if (planner.leveling_active) { // leveling from on to off
  2064. // change unleveled current_position to physical current_position without moving steppers.
  2065. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2066. planner.leveling_active = false; // disable only AFTER calling apply_leveling
  2067. }
  2068. else { // leveling from off to on
  2069. planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2070. // change physical current_position to unleveled current_position without moving steppers.
  2071. planner.unapply_leveling(current_position);
  2072. }
  2073. #else
  2074. planner.leveling_active = enable; // just flip the bit, current_position will be wrong until next move.
  2075. #endif
  2076. #else // ABL
  2077. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2078. // Force bilinear_z_offset to re-calculate next time
  2079. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2080. (void)bilinear_z_offset(reset);
  2081. #endif
  2082. // Enable or disable leveling compensation in the planner
  2083. planner.leveling_active = enable;
  2084. if (!enable)
  2085. // When disabling just get the current position from the steppers.
  2086. // This will yield the smallest error when first converted back to steps.
  2087. set_current_from_steppers_for_axis(
  2088. #if ABL_PLANAR
  2089. ALL_AXES
  2090. #else
  2091. Z_AXIS
  2092. #endif
  2093. );
  2094. else
  2095. // When enabling, remove compensation from the current position,
  2096. // so compensation will give the right stepper counts.
  2097. planner.unapply_leveling(current_position);
  2098. #endif // ABL
  2099. }
  2100. }
  2101. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2102. void set_z_fade_height(const float zfh) {
  2103. const bool level_active = planner.leveling_active;
  2104. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2105. if (level_active) set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2106. #endif
  2107. planner.set_z_fade_height(zfh);
  2108. if (level_active) {
  2109. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2110. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2111. #else
  2112. set_current_from_steppers_for_axis(
  2113. #if ABL_PLANAR
  2114. ALL_AXES
  2115. #else
  2116. Z_AXIS
  2117. #endif
  2118. );
  2119. #endif
  2120. }
  2121. }
  2122. #endif // LEVELING_FADE_HEIGHT
  2123. /**
  2124. * Reset calibration results to zero.
  2125. */
  2126. void reset_bed_level() {
  2127. set_bed_leveling_enabled(false);
  2128. #if ENABLED(MESH_BED_LEVELING)
  2129. if (leveling_is_valid()) {
  2130. mbl.reset();
  2131. mbl.has_mesh = false;
  2132. }
  2133. #else
  2134. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2135. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2136. #endif
  2137. #if ABL_PLANAR
  2138. planner.bed_level_matrix.set_to_identity();
  2139. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2140. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2141. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2142. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2143. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2144. z_values[x][y] = NAN;
  2145. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2146. ubl.reset();
  2147. #endif
  2148. #endif
  2149. }
  2150. #endif // HAS_LEVELING
  2151. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2152. /**
  2153. * Enable to produce output in JSON format suitable
  2154. * for SCAD or JavaScript mesh visualizers.
  2155. *
  2156. * Visualize meshes in OpenSCAD using the included script.
  2157. *
  2158. * buildroot/shared/scripts/MarlinMesh.scad
  2159. */
  2160. //#define SCAD_MESH_OUTPUT
  2161. /**
  2162. * Print calibration results for plotting or manual frame adjustment.
  2163. */
  2164. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2165. #ifndef SCAD_MESH_OUTPUT
  2166. for (uint8_t x = 0; x < sx; x++) {
  2167. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2168. SERIAL_PROTOCOLCHAR(' ');
  2169. SERIAL_PROTOCOL((int)x);
  2170. }
  2171. SERIAL_EOL();
  2172. #endif
  2173. #ifdef SCAD_MESH_OUTPUT
  2174. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2175. #endif
  2176. for (uint8_t y = 0; y < sy; y++) {
  2177. #ifdef SCAD_MESH_OUTPUT
  2178. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2179. #else
  2180. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2181. SERIAL_PROTOCOL((int)y);
  2182. #endif
  2183. for (uint8_t x = 0; x < sx; x++) {
  2184. SERIAL_PROTOCOLCHAR(' ');
  2185. const float offset = fn(x, y);
  2186. if (!isnan(offset)) {
  2187. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2188. SERIAL_PROTOCOL_F(offset, precision);
  2189. }
  2190. else {
  2191. #ifdef SCAD_MESH_OUTPUT
  2192. for (uint8_t i = 3; i < precision + 3; i++)
  2193. SERIAL_PROTOCOLCHAR(' ');
  2194. SERIAL_PROTOCOLPGM("NAN");
  2195. #else
  2196. for (uint8_t i = 0; i < precision + 3; i++)
  2197. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2198. #endif
  2199. }
  2200. #ifdef SCAD_MESH_OUTPUT
  2201. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2202. #endif
  2203. }
  2204. #ifdef SCAD_MESH_OUTPUT
  2205. SERIAL_PROTOCOLCHAR(' ');
  2206. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2207. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2208. #endif
  2209. SERIAL_EOL();
  2210. }
  2211. #ifdef SCAD_MESH_OUTPUT
  2212. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2213. #endif
  2214. SERIAL_EOL();
  2215. }
  2216. #endif
  2217. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2218. /**
  2219. * Extrapolate a single point from its neighbors
  2220. */
  2221. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2222. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2223. if (DEBUGGING(LEVELING)) {
  2224. SERIAL_ECHOPGM("Extrapolate [");
  2225. if (x < 10) SERIAL_CHAR(' ');
  2226. SERIAL_ECHO((int)x);
  2227. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2228. SERIAL_CHAR(' ');
  2229. if (y < 10) SERIAL_CHAR(' ');
  2230. SERIAL_ECHO((int)y);
  2231. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2232. SERIAL_CHAR(']');
  2233. }
  2234. #endif
  2235. if (!isnan(z_values[x][y])) {
  2236. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2237. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2238. #endif
  2239. return; // Don't overwrite good values.
  2240. }
  2241. SERIAL_EOL();
  2242. // Get X neighbors, Y neighbors, and XY neighbors
  2243. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2244. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2245. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2246. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2247. // Treat far unprobed points as zero, near as equal to far
  2248. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2249. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2250. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2251. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2252. // Take the average instead of the median
  2253. z_values[x][y] = (a + b + c) / 3.0;
  2254. // Median is robust (ignores outliers).
  2255. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2256. // : ((c < b) ? b : (a < c) ? a : c);
  2257. }
  2258. //Enable this if your SCARA uses 180° of total area
  2259. //#define EXTRAPOLATE_FROM_EDGE
  2260. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2261. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2262. #define HALF_IN_X
  2263. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2264. #define HALF_IN_Y
  2265. #endif
  2266. #endif
  2267. /**
  2268. * Fill in the unprobed points (corners of circular print surface)
  2269. * using linear extrapolation, away from the center.
  2270. */
  2271. static void extrapolate_unprobed_bed_level() {
  2272. #ifdef HALF_IN_X
  2273. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2274. #else
  2275. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2276. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2277. xlen = ctrx1;
  2278. #endif
  2279. #ifdef HALF_IN_Y
  2280. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2281. #else
  2282. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2283. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2284. ylen = ctry1;
  2285. #endif
  2286. for (uint8_t xo = 0; xo <= xlen; xo++)
  2287. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2288. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2289. #ifndef HALF_IN_X
  2290. const uint8_t x1 = ctrx1 - xo;
  2291. #endif
  2292. #ifndef HALF_IN_Y
  2293. const uint8_t y1 = ctry1 - yo;
  2294. #ifndef HALF_IN_X
  2295. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2296. #endif
  2297. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2298. #endif
  2299. #ifndef HALF_IN_X
  2300. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2301. #endif
  2302. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2303. }
  2304. }
  2305. static void print_bilinear_leveling_grid() {
  2306. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2307. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2308. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2309. );
  2310. }
  2311. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2312. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2313. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2314. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2315. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2316. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2317. int bilinear_grid_spacing_virt[2] = { 0 };
  2318. float bilinear_grid_factor_virt[2] = { 0 };
  2319. static void print_bilinear_leveling_grid_virt() {
  2320. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2321. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2322. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2323. );
  2324. }
  2325. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2326. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2327. uint8_t ep = 0, ip = 1;
  2328. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2329. if (x) {
  2330. ep = GRID_MAX_POINTS_X - 1;
  2331. ip = GRID_MAX_POINTS_X - 2;
  2332. }
  2333. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2334. return LINEAR_EXTRAPOLATION(
  2335. z_values[ep][y - 1],
  2336. z_values[ip][y - 1]
  2337. );
  2338. else
  2339. return LINEAR_EXTRAPOLATION(
  2340. bed_level_virt_coord(ep + 1, y),
  2341. bed_level_virt_coord(ip + 1, y)
  2342. );
  2343. }
  2344. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2345. if (y) {
  2346. ep = GRID_MAX_POINTS_Y - 1;
  2347. ip = GRID_MAX_POINTS_Y - 2;
  2348. }
  2349. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2350. return LINEAR_EXTRAPOLATION(
  2351. z_values[x - 1][ep],
  2352. z_values[x - 1][ip]
  2353. );
  2354. else
  2355. return LINEAR_EXTRAPOLATION(
  2356. bed_level_virt_coord(x, ep + 1),
  2357. bed_level_virt_coord(x, ip + 1)
  2358. );
  2359. }
  2360. return z_values[x - 1][y - 1];
  2361. }
  2362. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2363. return (
  2364. p[i-1] * -t * sq(1 - t)
  2365. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2366. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2367. - p[i+2] * sq(t) * (1 - t)
  2368. ) * 0.5;
  2369. }
  2370. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2371. float row[4], column[4];
  2372. for (uint8_t i = 0; i < 4; i++) {
  2373. for (uint8_t j = 0; j < 4; j++) {
  2374. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2375. }
  2376. row[i] = bed_level_virt_cmr(column, 1, ty);
  2377. }
  2378. return bed_level_virt_cmr(row, 1, tx);
  2379. }
  2380. void bed_level_virt_interpolate() {
  2381. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2382. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2383. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2384. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2385. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2386. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2387. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2388. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2389. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2390. continue;
  2391. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2392. bed_level_virt_2cmr(
  2393. x + 1,
  2394. y + 1,
  2395. (float)tx / (BILINEAR_SUBDIVISIONS),
  2396. (float)ty / (BILINEAR_SUBDIVISIONS)
  2397. );
  2398. }
  2399. }
  2400. #endif // ABL_BILINEAR_SUBDIVISION
  2401. // Refresh after other values have been updated
  2402. void refresh_bed_level() {
  2403. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2404. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2405. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2406. bed_level_virt_interpolate();
  2407. #endif
  2408. }
  2409. #endif // AUTO_BED_LEVELING_BILINEAR
  2410. /**
  2411. * Home an individual linear axis
  2412. */
  2413. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2415. if (DEBUGGING(LEVELING)) {
  2416. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2417. SERIAL_ECHOPAIR(", ", distance);
  2418. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2419. SERIAL_CHAR(')');
  2420. SERIAL_EOL();
  2421. }
  2422. #endif
  2423. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2424. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2425. if (deploy_bltouch) set_bltouch_deployed(true);
  2426. #endif
  2427. #if QUIET_PROBING
  2428. if (axis == Z_AXIS) probing_pause(true);
  2429. #endif
  2430. // Tell the planner we're at Z=0
  2431. current_position[axis] = 0;
  2432. #if IS_SCARA
  2433. SYNC_PLAN_POSITION_KINEMATIC();
  2434. current_position[axis] = distance;
  2435. inverse_kinematics(current_position);
  2436. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2437. #else
  2438. sync_plan_position();
  2439. current_position[axis] = distance;
  2440. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2441. #endif
  2442. stepper.synchronize();
  2443. #if QUIET_PROBING
  2444. if (axis == Z_AXIS) probing_pause(false);
  2445. #endif
  2446. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2447. if (deploy_bltouch) set_bltouch_deployed(false);
  2448. #endif
  2449. endstops.hit_on_purpose();
  2450. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2451. if (DEBUGGING(LEVELING)) {
  2452. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2453. SERIAL_CHAR(')');
  2454. SERIAL_EOL();
  2455. }
  2456. #endif
  2457. }
  2458. /**
  2459. * TMC2130 specific sensorless homing using stallGuard2.
  2460. * stallGuard2 only works when in spreadCycle mode.
  2461. * spreadCycle and stealthChop are mutually exclusive.
  2462. */
  2463. #if ENABLED(SENSORLESS_HOMING)
  2464. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2465. #if ENABLED(STEALTHCHOP)
  2466. if (enable) {
  2467. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2468. st.stealthChop(0);
  2469. }
  2470. else {
  2471. st.coolstep_min_speed(0);
  2472. st.stealthChop(1);
  2473. }
  2474. #endif
  2475. st.diag1_stall(enable ? 1 : 0);
  2476. }
  2477. #endif
  2478. /**
  2479. * Home an individual "raw axis" to its endstop.
  2480. * This applies to XYZ on Cartesian and Core robots, and
  2481. * to the individual ABC steppers on DELTA and SCARA.
  2482. *
  2483. * At the end of the procedure the axis is marked as
  2484. * homed and the current position of that axis is updated.
  2485. * Kinematic robots should wait till all axes are homed
  2486. * before updating the current position.
  2487. */
  2488. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2489. static void homeaxis(const AxisEnum axis) {
  2490. #if IS_SCARA
  2491. // Only Z homing (with probe) is permitted
  2492. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2493. #else
  2494. #define CAN_HOME(A) \
  2495. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2496. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2497. #endif
  2498. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2499. if (DEBUGGING(LEVELING)) {
  2500. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2501. SERIAL_CHAR(')');
  2502. SERIAL_EOL();
  2503. }
  2504. #endif
  2505. const int axis_home_dir =
  2506. #if ENABLED(DUAL_X_CARRIAGE)
  2507. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2508. #endif
  2509. home_dir(axis);
  2510. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2511. #if HOMING_Z_WITH_PROBE
  2512. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2513. #endif
  2514. // Set flags for X, Y, Z motor locking
  2515. #if ENABLED(X_DUAL_ENDSTOPS)
  2516. if (axis == X_AXIS) stepper.set_homing_flag_x(true);
  2517. #endif
  2518. #if ENABLED(Y_DUAL_ENDSTOPS)
  2519. if (axis == Y_AXIS) stepper.set_homing_flag_y(true);
  2520. #endif
  2521. #if ENABLED(Z_DUAL_ENDSTOPS)
  2522. if (axis == Z_AXIS) stepper.set_homing_flag_z(true);
  2523. #endif
  2524. // Disable stealthChop if used. Enable diag1 pin on driver.
  2525. #if ENABLED(SENSORLESS_HOMING)
  2526. #if ENABLED(X_IS_TMC2130)
  2527. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2528. #endif
  2529. #if ENABLED(Y_IS_TMC2130)
  2530. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2531. #endif
  2532. #endif
  2533. // Fast move towards endstop until triggered
  2534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2535. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2536. #endif
  2537. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2538. // When homing Z with probe respect probe clearance
  2539. const float bump = axis_home_dir * (
  2540. #if HOMING_Z_WITH_PROBE
  2541. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2542. #endif
  2543. home_bump_mm(axis)
  2544. );
  2545. // If a second homing move is configured...
  2546. if (bump) {
  2547. // Move away from the endstop by the axis HOME_BUMP_MM
  2548. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2549. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2550. #endif
  2551. do_homing_move(axis, -bump);
  2552. // Slow move towards endstop until triggered
  2553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2554. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2555. #endif
  2556. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2557. }
  2558. /**
  2559. * Home axes that have dual endstops... differently
  2560. */
  2561. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2562. const bool pos_dir = axis_home_dir > 0;
  2563. #if ENABLED(X_DUAL_ENDSTOPS)
  2564. if (axis == X_AXIS) {
  2565. const bool lock_x1 = pos_dir ? (x_endstop_adj > 0) : (x_endstop_adj < 0);
  2566. const float adj = FABS(x_endstop_adj);
  2567. if (lock_x1) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
  2568. do_homing_move(axis, pos_dir ? -adj : adj);
  2569. if (lock_x1) stepper.set_x_lock(false); else stepper.set_x2_lock(false);
  2570. stepper.set_homing_flag_x(false);
  2571. }
  2572. #endif
  2573. #if ENABLED(Y_DUAL_ENDSTOPS)
  2574. if (axis == Y_AXIS) {
  2575. const bool lock_y1 = pos_dir ? (y_endstop_adj > 0) : (y_endstop_adj < 0);
  2576. const float adj = FABS(y_endstop_adj);
  2577. if (lock_y1) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
  2578. do_homing_move(axis, pos_dir ? -adj : adj);
  2579. if (lock_y1) stepper.set_y_lock(false); else stepper.set_y2_lock(false);
  2580. stepper.set_homing_flag_y(false);
  2581. }
  2582. #endif
  2583. #if ENABLED(Z_DUAL_ENDSTOPS)
  2584. if (axis == Z_AXIS) {
  2585. const bool lock_z1 = pos_dir ? (z_endstop_adj > 0) : (z_endstop_adj < 0);
  2586. const float adj = FABS(z_endstop_adj);
  2587. if (lock_z1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2588. do_homing_move(axis, pos_dir ? -adj : adj);
  2589. if (lock_z1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2590. stepper.set_homing_flag_z(false);
  2591. }
  2592. #endif
  2593. #endif
  2594. #if IS_SCARA
  2595. set_axis_is_at_home(axis);
  2596. SYNC_PLAN_POSITION_KINEMATIC();
  2597. #elif ENABLED(DELTA)
  2598. // Delta has already moved all three towers up in G28
  2599. // so here it re-homes each tower in turn.
  2600. // Delta homing treats the axes as normal linear axes.
  2601. // retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps
  2602. if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2603. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2604. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
  2605. #endif
  2606. do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR);
  2607. }
  2608. #else
  2609. // For cartesian/core machines,
  2610. // set the axis to its home position
  2611. set_axis_is_at_home(axis);
  2612. sync_plan_position();
  2613. destination[axis] = current_position[axis];
  2614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2615. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2616. #endif
  2617. #endif
  2618. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2619. #if ENABLED(SENSORLESS_HOMING)
  2620. #if ENABLED(X_IS_TMC2130)
  2621. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2622. #endif
  2623. #if ENABLED(Y_IS_TMC2130)
  2624. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2625. #endif
  2626. #endif
  2627. // Put away the Z probe
  2628. #if HOMING_Z_WITH_PROBE
  2629. if (axis == Z_AXIS && STOW_PROBE()) return;
  2630. #endif
  2631. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2632. if (DEBUGGING(LEVELING)) {
  2633. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2634. SERIAL_CHAR(')');
  2635. SERIAL_EOL();
  2636. }
  2637. #endif
  2638. } // homeaxis()
  2639. #if ENABLED(FWRETRACT)
  2640. /**
  2641. * Retract or recover according to firmware settings
  2642. *
  2643. * This function handles retract/recover moves for G10 and G11,
  2644. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2645. *
  2646. * To simplify the logic, doubled retract/recover moves are ignored.
  2647. *
  2648. * Note: Z lift is done transparently to the planner. Aborting
  2649. * a print between G10 and G11 may corrupt the Z position.
  2650. *
  2651. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2652. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2653. */
  2654. void retract(const bool retracting
  2655. #if EXTRUDERS > 1
  2656. , bool swapping = false
  2657. #endif
  2658. ) {
  2659. static float hop_amount = 0.0; // Total amount lifted, for use in recover
  2660. // Prevent two retracts or recovers in a row
  2661. if (retracted[active_extruder] == retracting) return;
  2662. // Prevent two swap-retract or recovers in a row
  2663. #if EXTRUDERS > 1
  2664. // Allow G10 S1 only after G10
  2665. if (swapping && retracted_swap[active_extruder] == retracting) return;
  2666. // G11 priority to recover the long retract if activated
  2667. if (!retracting) swapping = retracted_swap[active_extruder];
  2668. #else
  2669. const bool swapping = false;
  2670. #endif
  2671. /* // debugging
  2672. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2673. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2674. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2675. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2676. SERIAL_ECHOPAIR("retracted[", i);
  2677. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2678. SERIAL_ECHOPAIR("retracted_swap[", i);
  2679. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2680. }
  2681. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2682. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2683. //*/
  2684. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2685. const float old_feedrate_mm_s = feedrate_mm_s;
  2686. // The current position will be the destination for E and Z moves
  2687. set_destination_from_current();
  2688. stepper.synchronize(); // Wait for buffered moves to complete
  2689. const float renormalize = 1.0 / planner.e_factor[active_extruder];
  2690. if (retracting) {
  2691. // Retract by moving from a faux E position back to the current E position
  2692. feedrate_mm_s = retract_feedrate_mm_s;
  2693. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) * renormalize;
  2694. sync_plan_position_e();
  2695. prepare_move_to_destination();
  2696. // Is a Z hop set, and has the hop not yet been done?
  2697. if (has_zhop && !hop_amount) {
  2698. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2699. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2700. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2701. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2702. prepare_move_to_destination(); // Raise up to the old current pos
  2703. feedrate_mm_s = retract_feedrate_mm_s; // Restore feedrate
  2704. }
  2705. }
  2706. else {
  2707. // If a hop was done and Z hasn't changed, undo the Z hop
  2708. if (hop_amount) {
  2709. current_position[Z_AXIS] += retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2710. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2711. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2712. prepare_move_to_destination(); // Raise up to the old current pos
  2713. hop_amount = 0.0; // Clear hop
  2714. }
  2715. // A retract multiplier has been added here to get faster swap recovery
  2716. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2717. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2718. current_position[E_AXIS] -= move_e * renormalize;
  2719. sync_plan_position_e();
  2720. prepare_move_to_destination(); // Recover E
  2721. }
  2722. feedrate_mm_s = old_feedrate_mm_s; // Restore original feedrate
  2723. retracted[active_extruder] = retracting; // Active extruder now retracted / recovered
  2724. // If swap retract/recover update the retracted_swap flag too
  2725. #if EXTRUDERS > 1
  2726. if (swapping) retracted_swap[active_extruder] = retracting;
  2727. #endif
  2728. /* // debugging
  2729. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2730. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2731. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2732. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2733. SERIAL_ECHOPAIR("retracted[", i);
  2734. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2735. SERIAL_ECHOPAIR("retracted_swap[", i);
  2736. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2737. }
  2738. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2739. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2740. //*/
  2741. }
  2742. #endif // FWRETRACT
  2743. #if ENABLED(MIXING_EXTRUDER)
  2744. void normalize_mix() {
  2745. float mix_total = 0.0;
  2746. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2747. // Scale all values if they don't add up to ~1.0
  2748. if (!NEAR(mix_total, 1.0)) {
  2749. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2750. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2751. }
  2752. }
  2753. #if ENABLED(DIRECT_MIXING_IN_G1)
  2754. // Get mixing parameters from the GCode
  2755. // The total "must" be 1.0 (but it will be normalized)
  2756. // If no mix factors are given, the old mix is preserved
  2757. void gcode_get_mix() {
  2758. const char* mixing_codes = "ABCDHI";
  2759. byte mix_bits = 0;
  2760. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2761. if (parser.seenval(mixing_codes[i])) {
  2762. SBI(mix_bits, i);
  2763. float v = parser.value_float();
  2764. NOLESS(v, 0.0);
  2765. mixing_factor[i] = RECIPROCAL(v);
  2766. }
  2767. }
  2768. // If any mixing factors were included, clear the rest
  2769. // If none were included, preserve the last mix
  2770. if (mix_bits) {
  2771. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2772. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2773. normalize_mix();
  2774. }
  2775. }
  2776. #endif
  2777. #endif
  2778. /**
  2779. * ***************************************************************************
  2780. * ***************************** G-CODE HANDLING *****************************
  2781. * ***************************************************************************
  2782. */
  2783. /**
  2784. * Set XYZE destination and feedrate from the current GCode command
  2785. *
  2786. * - Set destination from included axis codes
  2787. * - Set to current for missing axis codes
  2788. * - Set the feedrate, if included
  2789. */
  2790. void gcode_get_destination() {
  2791. LOOP_XYZE(i) {
  2792. if (parser.seen(axis_codes[i])) {
  2793. const float v = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2794. destination[i] = i == E_AXIS ? v : LOGICAL_TO_NATIVE(v, i);
  2795. }
  2796. else
  2797. destination[i] = current_position[i];
  2798. }
  2799. if (parser.linearval('F') > 0.0)
  2800. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2801. #if ENABLED(PRINTCOUNTER)
  2802. if (!DEBUGGING(DRYRUN))
  2803. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2804. #endif
  2805. // Get ABCDHI mixing factors
  2806. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2807. gcode_get_mix();
  2808. #endif
  2809. }
  2810. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2811. /**
  2812. * Output a "busy" message at regular intervals
  2813. * while the machine is not accepting commands.
  2814. */
  2815. void host_keepalive() {
  2816. const millis_t ms = millis();
  2817. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2818. if (PENDING(ms, next_busy_signal_ms)) return;
  2819. switch (busy_state) {
  2820. case IN_HANDLER:
  2821. case IN_PROCESS:
  2822. SERIAL_ECHO_START();
  2823. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2824. break;
  2825. case PAUSED_FOR_USER:
  2826. SERIAL_ECHO_START();
  2827. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2828. break;
  2829. case PAUSED_FOR_INPUT:
  2830. SERIAL_ECHO_START();
  2831. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2832. break;
  2833. default:
  2834. break;
  2835. }
  2836. }
  2837. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2838. }
  2839. #endif // HOST_KEEPALIVE_FEATURE
  2840. /**************************************************
  2841. ***************** GCode Handlers *****************
  2842. **************************************************/
  2843. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2844. #define G0_G1_CONDITION !axis_unhomed_error(parser.seen('X'), parser.seen('Y'), parser.seen('Z'))
  2845. #else
  2846. #define G0_G1_CONDITION true
  2847. #endif
  2848. /**
  2849. * G0, G1: Coordinated movement of X Y Z E axes
  2850. */
  2851. inline void gcode_G0_G1(
  2852. #if IS_SCARA
  2853. bool fast_move=false
  2854. #endif
  2855. ) {
  2856. if (IsRunning() && G0_G1_CONDITION) {
  2857. gcode_get_destination(); // For X Y Z E F
  2858. #if ENABLED(FWRETRACT)
  2859. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2860. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2861. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2862. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2863. // Is this a retract or recover move?
  2864. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2865. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2866. sync_plan_position_e(); // AND from the planner
  2867. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2868. }
  2869. }
  2870. }
  2871. #endif // FWRETRACT
  2872. #if IS_SCARA
  2873. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2874. #else
  2875. prepare_move_to_destination();
  2876. #endif
  2877. #if ENABLED(NANODLP_Z_SYNC)
  2878. // If G0/G1 command include Z-axis, wait for move and output sync text.
  2879. if (parser.seenval('Z')) {
  2880. stepper.synchronize();
  2881. SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
  2882. }
  2883. #endif
  2884. }
  2885. }
  2886. /**
  2887. * G2: Clockwise Arc
  2888. * G3: Counterclockwise Arc
  2889. *
  2890. * This command has two forms: IJ-form and R-form.
  2891. *
  2892. * - I specifies an X offset. J specifies a Y offset.
  2893. * At least one of the IJ parameters is required.
  2894. * X and Y can be omitted to do a complete circle.
  2895. * The given XY is not error-checked. The arc ends
  2896. * based on the angle of the destination.
  2897. * Mixing I or J with R will throw an error.
  2898. *
  2899. * - R specifies the radius. X or Y is required.
  2900. * Omitting both X and Y will throw an error.
  2901. * X or Y must differ from the current XY.
  2902. * Mixing R with I or J will throw an error.
  2903. *
  2904. * - P specifies the number of full circles to do
  2905. * before the specified arc move.
  2906. *
  2907. * Examples:
  2908. *
  2909. * G2 I10 ; CW circle centered at X+10
  2910. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2911. */
  2912. #if ENABLED(ARC_SUPPORT)
  2913. inline void gcode_G2_G3(const bool clockwise) {
  2914. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2915. if (axis_unhomed_error()) return;
  2916. #endif
  2917. if (IsRunning()) {
  2918. #if ENABLED(SF_ARC_FIX)
  2919. const bool relative_mode_backup = relative_mode;
  2920. relative_mode = true;
  2921. #endif
  2922. gcode_get_destination();
  2923. #if ENABLED(SF_ARC_FIX)
  2924. relative_mode = relative_mode_backup;
  2925. #endif
  2926. float arc_offset[2] = { 0.0, 0.0 };
  2927. if (parser.seenval('R')) {
  2928. const float r = parser.value_linear_units(),
  2929. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  2930. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  2931. if (r && (p2 != p1 || q2 != q1)) {
  2932. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2933. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  2934. d = HYPOT(dx, dy), // Linear distance between the points
  2935. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2936. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  2937. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2938. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2939. arc_offset[0] = cx - p1;
  2940. arc_offset[1] = cy - q1;
  2941. }
  2942. }
  2943. else {
  2944. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  2945. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  2946. }
  2947. if (arc_offset[0] || arc_offset[1]) {
  2948. #if ENABLED(ARC_P_CIRCLES)
  2949. // P indicates number of circles to do
  2950. int8_t circles_to_do = parser.byteval('P');
  2951. if (!WITHIN(circles_to_do, 0, 100)) {
  2952. SERIAL_ERROR_START();
  2953. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2954. }
  2955. while (circles_to_do--)
  2956. plan_arc(current_position, arc_offset, clockwise);
  2957. #endif
  2958. // Send the arc to the planner
  2959. plan_arc(destination, arc_offset, clockwise);
  2960. refresh_cmd_timeout();
  2961. }
  2962. else {
  2963. // Bad arguments
  2964. SERIAL_ERROR_START();
  2965. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2966. }
  2967. }
  2968. }
  2969. #endif // ARC_SUPPORT
  2970. void dwell(millis_t time) {
  2971. refresh_cmd_timeout();
  2972. time += previous_cmd_ms;
  2973. while (PENDING(millis(), time)) idle();
  2974. }
  2975. /**
  2976. * G4: Dwell S<seconds> or P<milliseconds>
  2977. */
  2978. inline void gcode_G4() {
  2979. millis_t dwell_ms = 0;
  2980. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  2981. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  2982. stepper.synchronize();
  2983. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2984. dwell(dwell_ms);
  2985. }
  2986. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2987. /**
  2988. * Parameters interpreted according to:
  2989. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2990. * However I, J omission is not supported at this point; all
  2991. * parameters can be omitted and default to zero.
  2992. */
  2993. /**
  2994. * G5: Cubic B-spline
  2995. */
  2996. inline void gcode_G5() {
  2997. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2998. if (axis_unhomed_error()) return;
  2999. #endif
  3000. if (IsRunning()) {
  3001. #if ENABLED(CNC_WORKSPACE_PLANES)
  3002. if (workspace_plane != PLANE_XY) {
  3003. SERIAL_ERROR_START();
  3004. SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
  3005. return;
  3006. }
  3007. #endif
  3008. gcode_get_destination();
  3009. const float offset[] = {
  3010. parser.linearval('I'),
  3011. parser.linearval('J'),
  3012. parser.linearval('P'),
  3013. parser.linearval('Q')
  3014. };
  3015. plan_cubic_move(offset);
  3016. }
  3017. }
  3018. #endif // BEZIER_CURVE_SUPPORT
  3019. #if ENABLED(FWRETRACT)
  3020. /**
  3021. * G10 - Retract filament according to settings of M207
  3022. */
  3023. inline void gcode_G10() {
  3024. #if EXTRUDERS > 1
  3025. const bool rs = parser.boolval('S');
  3026. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3027. #endif
  3028. retract(true
  3029. #if EXTRUDERS > 1
  3030. , rs
  3031. #endif
  3032. );
  3033. }
  3034. /**
  3035. * G11 - Recover filament according to settings of M208
  3036. */
  3037. inline void gcode_G11() { retract(false); }
  3038. #endif // FWRETRACT
  3039. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3040. /**
  3041. * G12: Clean the nozzle
  3042. */
  3043. inline void gcode_G12() {
  3044. // Don't allow nozzle cleaning without homing first
  3045. if (axis_unhomed_error()) return;
  3046. const uint8_t pattern = parser.ushortval('P', 0),
  3047. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3048. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3049. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3050. Nozzle::clean(pattern, strokes, radius, objects);
  3051. }
  3052. #endif
  3053. #if ENABLED(CNC_WORKSPACE_PLANES)
  3054. inline void report_workspace_plane() {
  3055. SERIAL_ECHO_START();
  3056. SERIAL_ECHOPGM("Workspace Plane ");
  3057. serialprintPGM(
  3058. workspace_plane == PLANE_YZ ? PSTR("YZ\n") :
  3059. workspace_plane == PLANE_ZX ? PSTR("ZX\n") :
  3060. PSTR("XY\n")
  3061. );
  3062. }
  3063. inline void set_workspace_plane(const WorkspacePlane plane) {
  3064. workspace_plane = plane;
  3065. if (DEBUGGING(INFO)) report_workspace_plane();
  3066. }
  3067. /**
  3068. * G17: Select Plane XY
  3069. * G18: Select Plane ZX
  3070. * G19: Select Plane YZ
  3071. */
  3072. inline void gcode_G17() { set_workspace_plane(PLANE_XY); }
  3073. inline void gcode_G18() { set_workspace_plane(PLANE_ZX); }
  3074. inline void gcode_G19() { set_workspace_plane(PLANE_YZ); }
  3075. #endif // CNC_WORKSPACE_PLANES
  3076. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  3077. /**
  3078. * Select a coordinate system and update the workspace offset.
  3079. * System index -1 is used to specify machine-native.
  3080. */
  3081. bool select_coordinate_system(const int8_t _new) {
  3082. if (active_coordinate_system == _new) return false;
  3083. float old_offset[XYZ] = { 0 }, new_offset[XYZ] = { 0 };
  3084. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  3085. COPY(old_offset, coordinate_system[active_coordinate_system]);
  3086. if (WITHIN(_new, 0, MAX_COORDINATE_SYSTEMS - 1))
  3087. COPY(new_offset, coordinate_system[_new]);
  3088. active_coordinate_system = _new;
  3089. LOOP_XYZ(i) {
  3090. const float diff = new_offset[i] - old_offset[i];
  3091. if (diff) {
  3092. position_shift[i] += diff;
  3093. update_software_endstops((AxisEnum)i);
  3094. }
  3095. }
  3096. return true;
  3097. }
  3098. /**
  3099. * In CNC G-code G53 is like a modifier
  3100. * It precedes a movement command (or other modifiers) on the same line.
  3101. * This is the first command to use parser.chain() to make this possible.
  3102. */
  3103. inline void gcode_G53() {
  3104. // If this command has more following...
  3105. if (parser.chain()) {
  3106. const int8_t _system = active_coordinate_system;
  3107. active_coordinate_system = -1;
  3108. process_parsed_command();
  3109. active_coordinate_system = _system;
  3110. }
  3111. }
  3112. /**
  3113. * G54-G59.3: Select a new workspace
  3114. *
  3115. * A workspace is an XYZ offset to the machine native space.
  3116. * All workspaces default to 0,0,0 at start, or with EEPROM
  3117. * support they may be restored from a previous session.
  3118. *
  3119. * G92 is used to set the current workspace's offset.
  3120. */
  3121. inline void gcode_G54_59(uint8_t subcode=0) {
  3122. const int8_t _space = parser.codenum - 54 + subcode;
  3123. if (select_coordinate_system(_space)) {
  3124. SERIAL_PROTOCOLLNPAIR("Select workspace ", _space);
  3125. report_current_position();
  3126. }
  3127. }
  3128. FORCE_INLINE void gcode_G54() { gcode_G54_59(); }
  3129. FORCE_INLINE void gcode_G55() { gcode_G54_59(); }
  3130. FORCE_INLINE void gcode_G56() { gcode_G54_59(); }
  3131. FORCE_INLINE void gcode_G57() { gcode_G54_59(); }
  3132. FORCE_INLINE void gcode_G58() { gcode_G54_59(); }
  3133. FORCE_INLINE void gcode_G59() { gcode_G54_59(parser.subcode); }
  3134. #endif
  3135. #if ENABLED(INCH_MODE_SUPPORT)
  3136. /**
  3137. * G20: Set input mode to inches
  3138. */
  3139. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3140. /**
  3141. * G21: Set input mode to millimeters
  3142. */
  3143. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3144. #endif
  3145. #if ENABLED(NOZZLE_PARK_FEATURE)
  3146. /**
  3147. * G27: Park the nozzle
  3148. */
  3149. inline void gcode_G27() {
  3150. // Don't allow nozzle parking without homing first
  3151. if (axis_unhomed_error()) return;
  3152. Nozzle::park(parser.ushortval('P'));
  3153. }
  3154. #endif // NOZZLE_PARK_FEATURE
  3155. #if ENABLED(QUICK_HOME)
  3156. static void quick_home_xy() {
  3157. // Pretend the current position is 0,0
  3158. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3159. sync_plan_position();
  3160. const int x_axis_home_dir =
  3161. #if ENABLED(DUAL_X_CARRIAGE)
  3162. x_home_dir(active_extruder)
  3163. #else
  3164. home_dir(X_AXIS)
  3165. #endif
  3166. ;
  3167. const float mlx = max_length(X_AXIS),
  3168. mly = max_length(Y_AXIS),
  3169. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3170. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3171. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3172. endstops.hit_on_purpose(); // clear endstop hit flags
  3173. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3174. }
  3175. #endif // QUICK_HOME
  3176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3177. void log_machine_info() {
  3178. SERIAL_ECHOPGM("Machine Type: ");
  3179. #if ENABLED(DELTA)
  3180. SERIAL_ECHOLNPGM("Delta");
  3181. #elif IS_SCARA
  3182. SERIAL_ECHOLNPGM("SCARA");
  3183. #elif IS_CORE
  3184. SERIAL_ECHOLNPGM("Core");
  3185. #else
  3186. SERIAL_ECHOLNPGM("Cartesian");
  3187. #endif
  3188. SERIAL_ECHOPGM("Probe: ");
  3189. #if ENABLED(PROBE_MANUALLY)
  3190. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3191. #elif ENABLED(FIX_MOUNTED_PROBE)
  3192. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3193. #elif ENABLED(BLTOUCH)
  3194. SERIAL_ECHOLNPGM("BLTOUCH");
  3195. #elif HAS_Z_SERVO_ENDSTOP
  3196. SERIAL_ECHOLNPGM("SERVO PROBE");
  3197. #elif ENABLED(Z_PROBE_SLED)
  3198. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3199. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3200. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3201. #else
  3202. SERIAL_ECHOLNPGM("NONE");
  3203. #endif
  3204. #if HAS_BED_PROBE
  3205. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3206. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3207. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3208. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3209. SERIAL_ECHOPGM(" (Right");
  3210. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3211. SERIAL_ECHOPGM(" (Left");
  3212. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3213. SERIAL_ECHOPGM(" (Middle");
  3214. #else
  3215. SERIAL_ECHOPGM(" (Aligned With");
  3216. #endif
  3217. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3218. SERIAL_ECHOPGM("-Back");
  3219. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3220. SERIAL_ECHOPGM("-Front");
  3221. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3222. SERIAL_ECHOPGM("-Center");
  3223. #endif
  3224. if (zprobe_zoffset < 0)
  3225. SERIAL_ECHOPGM(" & Below");
  3226. else if (zprobe_zoffset > 0)
  3227. SERIAL_ECHOPGM(" & Above");
  3228. else
  3229. SERIAL_ECHOPGM(" & Same Z as");
  3230. SERIAL_ECHOLNPGM(" Nozzle)");
  3231. #endif
  3232. #if HAS_ABL
  3233. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3234. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3235. SERIAL_ECHOPGM("LINEAR");
  3236. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3237. SERIAL_ECHOPGM("BILINEAR");
  3238. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3239. SERIAL_ECHOPGM("3POINT");
  3240. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3241. SERIAL_ECHOPGM("UBL");
  3242. #endif
  3243. if (planner.leveling_active) {
  3244. SERIAL_ECHOLNPGM(" (enabled)");
  3245. #if ABL_PLANAR
  3246. const float diff[XYZ] = {
  3247. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3248. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3249. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3250. };
  3251. SERIAL_ECHOPGM("ABL Adjustment X");
  3252. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3253. SERIAL_ECHO(diff[X_AXIS]);
  3254. SERIAL_ECHOPGM(" Y");
  3255. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3256. SERIAL_ECHO(diff[Y_AXIS]);
  3257. SERIAL_ECHOPGM(" Z");
  3258. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3259. SERIAL_ECHO(diff[Z_AXIS]);
  3260. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3261. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3262. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3263. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3264. #endif
  3265. }
  3266. else
  3267. SERIAL_ECHOLNPGM(" (disabled)");
  3268. SERIAL_EOL();
  3269. #elif ENABLED(MESH_BED_LEVELING)
  3270. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3271. if (planner.leveling_active) {
  3272. float rz = current_position[Z_AXIS];
  3273. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], rz);
  3274. SERIAL_ECHOLNPGM(" (enabled)");
  3275. SERIAL_ECHOPAIR("MBL Adjustment Z", rz);
  3276. }
  3277. else
  3278. SERIAL_ECHOPGM(" (disabled)");
  3279. SERIAL_EOL();
  3280. #endif // MESH_BED_LEVELING
  3281. }
  3282. #endif // DEBUG_LEVELING_FEATURE
  3283. #if ENABLED(DELTA)
  3284. /**
  3285. * A delta can only safely home all axes at the same time
  3286. * This is like quick_home_xy() but for 3 towers.
  3287. */
  3288. inline bool home_delta() {
  3289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3290. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3291. #endif
  3292. // Init the current position of all carriages to 0,0,0
  3293. ZERO(current_position);
  3294. sync_plan_position();
  3295. // Move all carriages together linearly until an endstop is hit.
  3296. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (delta_height + 10);
  3297. feedrate_mm_s = homing_feedrate(X_AXIS);
  3298. buffer_line_to_current_position();
  3299. stepper.synchronize();
  3300. // If an endstop was not hit, then damage can occur if homing is continued.
  3301. // This can occur if the delta height not set correctly.
  3302. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  3303. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  3304. SERIAL_ERROR_START();
  3305. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  3306. return false;
  3307. }
  3308. endstops.hit_on_purpose(); // clear endstop hit flags
  3309. // At least one carriage has reached the top.
  3310. // Now re-home each carriage separately.
  3311. HOMEAXIS(A);
  3312. HOMEAXIS(B);
  3313. HOMEAXIS(C);
  3314. // Set all carriages to their home positions
  3315. // Do this here all at once for Delta, because
  3316. // XYZ isn't ABC. Applying this per-tower would
  3317. // give the impression that they are the same.
  3318. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3319. SYNC_PLAN_POSITION_KINEMATIC();
  3320. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3321. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3322. #endif
  3323. return true;
  3324. }
  3325. #endif // DELTA
  3326. #if ENABLED(Z_SAFE_HOMING)
  3327. inline void home_z_safely() {
  3328. // Disallow Z homing if X or Y are unknown
  3329. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3330. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3331. SERIAL_ECHO_START();
  3332. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3333. return;
  3334. }
  3335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3336. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3337. #endif
  3338. SYNC_PLAN_POSITION_KINEMATIC();
  3339. /**
  3340. * Move the Z probe (or just the nozzle) to the safe homing point
  3341. */
  3342. destination[X_AXIS] = Z_SAFE_HOMING_X_POINT;
  3343. destination[Y_AXIS] = Z_SAFE_HOMING_Y_POINT;
  3344. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3345. #if HOMING_Z_WITH_PROBE
  3346. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3347. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3348. #endif
  3349. if (position_is_reachable(destination[X_AXIS], destination[Y_AXIS])) {
  3350. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3351. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3352. #endif
  3353. // This causes the carriage on Dual X to unpark
  3354. #if ENABLED(DUAL_X_CARRIAGE)
  3355. active_extruder_parked = false;
  3356. #endif
  3357. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3358. HOMEAXIS(Z);
  3359. }
  3360. else {
  3361. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3362. SERIAL_ECHO_START();
  3363. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3364. }
  3365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3366. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3367. #endif
  3368. }
  3369. #endif // Z_SAFE_HOMING
  3370. #if ENABLED(PROBE_MANUALLY)
  3371. bool g29_in_progress = false;
  3372. #else
  3373. constexpr bool g29_in_progress = false;
  3374. #endif
  3375. /**
  3376. * G28: Home all axes according to settings
  3377. *
  3378. * Parameters
  3379. *
  3380. * None Home to all axes with no parameters.
  3381. * With QUICK_HOME enabled XY will home together, then Z.
  3382. *
  3383. * Cartesian parameters
  3384. *
  3385. * X Home to the X endstop
  3386. * Y Home to the Y endstop
  3387. * Z Home to the Z endstop
  3388. *
  3389. */
  3390. inline void gcode_G28(const bool always_home_all) {
  3391. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3392. if (DEBUGGING(LEVELING)) {
  3393. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3394. log_machine_info();
  3395. }
  3396. #endif
  3397. // Wait for planner moves to finish!
  3398. stepper.synchronize();
  3399. // Cancel the active G29 session
  3400. #if ENABLED(PROBE_MANUALLY)
  3401. g29_in_progress = false;
  3402. #endif
  3403. // Disable the leveling matrix before homing
  3404. #if HAS_LEVELING
  3405. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3406. const bool ubl_state_at_entry = planner.leveling_active;
  3407. #endif
  3408. set_bed_leveling_enabled(false);
  3409. #endif
  3410. #if ENABLED(CNC_WORKSPACE_PLANES)
  3411. workspace_plane = PLANE_XY;
  3412. #endif
  3413. // Always home with tool 0 active
  3414. #if HOTENDS > 1
  3415. const uint8_t old_tool_index = active_extruder;
  3416. tool_change(0, 0, true);
  3417. #endif
  3418. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3419. extruder_duplication_enabled = false;
  3420. #endif
  3421. setup_for_endstop_or_probe_move();
  3422. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3423. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3424. #endif
  3425. endstops.enable(true); // Enable endstops for next homing move
  3426. #if ENABLED(DELTA)
  3427. home_delta();
  3428. UNUSED(always_home_all);
  3429. #else // NOT DELTA
  3430. const bool homeX = always_home_all || parser.seen('X'),
  3431. homeY = always_home_all || parser.seen('Y'),
  3432. homeZ = always_home_all || parser.seen('Z'),
  3433. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3434. set_destination_from_current();
  3435. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3436. if (home_all || homeZ) {
  3437. HOMEAXIS(Z);
  3438. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3439. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3440. #endif
  3441. }
  3442. #else
  3443. if (home_all || homeX || homeY) {
  3444. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3445. destination[Z_AXIS] = Z_HOMING_HEIGHT;
  3446. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3448. if (DEBUGGING(LEVELING))
  3449. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3450. #endif
  3451. do_blocking_move_to_z(destination[Z_AXIS]);
  3452. }
  3453. }
  3454. #endif
  3455. #if ENABLED(QUICK_HOME)
  3456. if (home_all || (homeX && homeY)) quick_home_xy();
  3457. #endif
  3458. #if ENABLED(HOME_Y_BEFORE_X)
  3459. // Home Y
  3460. if (home_all || homeY) {
  3461. HOMEAXIS(Y);
  3462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3463. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3464. #endif
  3465. }
  3466. #endif
  3467. // Home X
  3468. if (home_all || homeX) {
  3469. #if ENABLED(DUAL_X_CARRIAGE)
  3470. // Always home the 2nd (right) extruder first
  3471. active_extruder = 1;
  3472. HOMEAXIS(X);
  3473. // Remember this extruder's position for later tool change
  3474. inactive_extruder_x_pos = current_position[X_AXIS];
  3475. // Home the 1st (left) extruder
  3476. active_extruder = 0;
  3477. HOMEAXIS(X);
  3478. // Consider the active extruder to be parked
  3479. COPY(raised_parked_position, current_position);
  3480. delayed_move_time = 0;
  3481. active_extruder_parked = true;
  3482. #else
  3483. HOMEAXIS(X);
  3484. #endif
  3485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3486. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3487. #endif
  3488. }
  3489. #if DISABLED(HOME_Y_BEFORE_X)
  3490. // Home Y
  3491. if (home_all || homeY) {
  3492. HOMEAXIS(Y);
  3493. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3494. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3495. #endif
  3496. }
  3497. #endif
  3498. // Home Z last if homing towards the bed
  3499. #if Z_HOME_DIR < 0
  3500. if (home_all || homeZ) {
  3501. #if ENABLED(Z_SAFE_HOMING)
  3502. home_z_safely();
  3503. #else
  3504. HOMEAXIS(Z);
  3505. #endif
  3506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3507. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3508. #endif
  3509. } // home_all || homeZ
  3510. #endif // Z_HOME_DIR < 0
  3511. SYNC_PLAN_POSITION_KINEMATIC();
  3512. #endif // !DELTA (gcode_G28)
  3513. endstops.not_homing();
  3514. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3515. // move to a height where we can use the full xy-area
  3516. do_blocking_move_to_z(delta_clip_start_height);
  3517. #endif
  3518. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3519. set_bed_leveling_enabled(ubl_state_at_entry);
  3520. #endif
  3521. clean_up_after_endstop_or_probe_move();
  3522. // Restore the active tool after homing
  3523. #if HOTENDS > 1
  3524. #if ENABLED(PARKING_EXTRUDER)
  3525. #define NO_FETCH false // fetch the previous toolhead
  3526. #else
  3527. #define NO_FETCH true
  3528. #endif
  3529. tool_change(old_tool_index, 0, NO_FETCH);
  3530. #endif
  3531. lcd_refresh();
  3532. report_current_position();
  3533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3534. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3535. #endif
  3536. } // G28
  3537. void home_all_axes() { gcode_G28(true); }
  3538. #if HAS_PROBING_PROCEDURE
  3539. void out_of_range_error(const char* p_edge) {
  3540. SERIAL_PROTOCOLPGM("?Probe ");
  3541. serialprintPGM(p_edge);
  3542. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3543. }
  3544. #endif
  3545. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3546. #if ENABLED(LCD_BED_LEVELING)
  3547. extern bool lcd_wait_for_move;
  3548. #else
  3549. constexpr bool lcd_wait_for_move = false;
  3550. #endif
  3551. inline void _manual_goto_xy(const float &rx, const float &ry) {
  3552. #if MANUAL_PROBE_HEIGHT > 0
  3553. const float prev_z = current_position[Z_AXIS];
  3554. do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);
  3555. do_blocking_move_to_z(prev_z);
  3556. #else
  3557. do_blocking_move_to_xy(rx, ry);
  3558. #endif
  3559. current_position[X_AXIS] = rx;
  3560. current_position[Y_AXIS] = ry;
  3561. #if ENABLED(LCD_BED_LEVELING)
  3562. lcd_wait_for_move = false;
  3563. #endif
  3564. }
  3565. #endif
  3566. #if ENABLED(MESH_BED_LEVELING)
  3567. // Save 130 bytes with non-duplication of PSTR
  3568. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3569. void mbl_mesh_report() {
  3570. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3571. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3572. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3573. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3574. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3575. );
  3576. }
  3577. /**
  3578. * G29: Mesh-based Z probe, probes a grid and produces a
  3579. * mesh to compensate for variable bed height
  3580. *
  3581. * Parameters With MESH_BED_LEVELING:
  3582. *
  3583. * S0 Produce a mesh report
  3584. * S1 Start probing mesh points
  3585. * S2 Probe the next mesh point
  3586. * S3 Xn Yn Zn.nn Manually modify a single point
  3587. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3588. * S5 Reset and disable mesh
  3589. *
  3590. * The S0 report the points as below
  3591. *
  3592. * +----> X-axis 1-n
  3593. * |
  3594. * |
  3595. * v Y-axis 1-n
  3596. *
  3597. */
  3598. inline void gcode_G29() {
  3599. static int mbl_probe_index = -1;
  3600. #if HAS_SOFTWARE_ENDSTOPS
  3601. static bool enable_soft_endstops;
  3602. #endif
  3603. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3604. if (!WITHIN(state, 0, 5)) {
  3605. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3606. return;
  3607. }
  3608. int8_t px, py;
  3609. switch (state) {
  3610. case MeshReport:
  3611. if (leveling_is_valid()) {
  3612. SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
  3613. mbl_mesh_report();
  3614. }
  3615. else
  3616. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3617. break;
  3618. case MeshStart:
  3619. mbl.reset();
  3620. mbl_probe_index = 0;
  3621. enqueue_and_echo_commands_P(lcd_wait_for_move ? PSTR("G29 S2") : PSTR("G28\nG29 S2"));
  3622. break;
  3623. case MeshNext:
  3624. if (mbl_probe_index < 0) {
  3625. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3626. return;
  3627. }
  3628. // For each G29 S2...
  3629. if (mbl_probe_index == 0) {
  3630. #if HAS_SOFTWARE_ENDSTOPS
  3631. // For the initial G29 S2 save software endstop state
  3632. enable_soft_endstops = soft_endstops_enabled;
  3633. #endif
  3634. }
  3635. else {
  3636. // For G29 S2 after adjusting Z.
  3637. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3638. #if HAS_SOFTWARE_ENDSTOPS
  3639. soft_endstops_enabled = enable_soft_endstops;
  3640. #endif
  3641. }
  3642. // If there's another point to sample, move there with optional lift.
  3643. if (mbl_probe_index < GRID_MAX_POINTS) {
  3644. mbl.zigzag(mbl_probe_index, px, py);
  3645. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3646. #if HAS_SOFTWARE_ENDSTOPS
  3647. // Disable software endstops to allow manual adjustment
  3648. // If G29 is not completed, they will not be re-enabled
  3649. soft_endstops_enabled = false;
  3650. #endif
  3651. mbl_probe_index++;
  3652. }
  3653. else {
  3654. // One last "return to the bed" (as originally coded) at completion
  3655. current_position[Z_AXIS] = Z_MIN_POS + MANUAL_PROBE_HEIGHT;
  3656. buffer_line_to_current_position();
  3657. stepper.synchronize();
  3658. // After recording the last point, activate home and activate
  3659. mbl_probe_index = -1;
  3660. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3661. BUZZ(100, 659);
  3662. BUZZ(100, 698);
  3663. mbl.has_mesh = true;
  3664. home_all_axes();
  3665. set_bed_leveling_enabled(true);
  3666. #if ENABLED(MESH_G28_REST_ORIGIN)
  3667. current_position[Z_AXIS] = Z_MIN_POS;
  3668. set_destination_from_current();
  3669. buffer_line_to_destination(homing_feedrate(Z_AXIS));
  3670. stepper.synchronize();
  3671. #endif
  3672. #if ENABLED(LCD_BED_LEVELING)
  3673. lcd_wait_for_move = false;
  3674. #endif
  3675. }
  3676. break;
  3677. case MeshSet:
  3678. if (parser.seenval('X')) {
  3679. px = parser.value_int() - 1;
  3680. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3681. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3682. return;
  3683. }
  3684. }
  3685. else {
  3686. SERIAL_CHAR('X'); echo_not_entered();
  3687. return;
  3688. }
  3689. if (parser.seenval('Y')) {
  3690. py = parser.value_int() - 1;
  3691. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3692. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3693. return;
  3694. }
  3695. }
  3696. else {
  3697. SERIAL_CHAR('Y'); echo_not_entered();
  3698. return;
  3699. }
  3700. if (parser.seenval('Z'))
  3701. mbl.z_values[px][py] = parser.value_linear_units();
  3702. else {
  3703. SERIAL_CHAR('Z'); echo_not_entered();
  3704. return;
  3705. }
  3706. break;
  3707. case MeshSetZOffset:
  3708. if (parser.seenval('Z'))
  3709. mbl.z_offset = parser.value_linear_units();
  3710. else {
  3711. SERIAL_CHAR('Z'); echo_not_entered();
  3712. return;
  3713. }
  3714. break;
  3715. case MeshReset:
  3716. reset_bed_level();
  3717. break;
  3718. } // switch(state)
  3719. if (state == MeshStart || state == MeshNext) {
  3720. SERIAL_PROTOCOLPAIR("MBL G29 point ", min(mbl_probe_index, GRID_MAX_POINTS));
  3721. SERIAL_PROTOCOLLNPAIR(" of ", int(GRID_MAX_POINTS));
  3722. }
  3723. report_current_position();
  3724. }
  3725. #elif OLDSCHOOL_ABL
  3726. #if ABL_GRID
  3727. #if ENABLED(PROBE_Y_FIRST)
  3728. #define PR_OUTER_VAR xCount
  3729. #define PR_OUTER_END abl_grid_points_x
  3730. #define PR_INNER_VAR yCount
  3731. #define PR_INNER_END abl_grid_points_y
  3732. #else
  3733. #define PR_OUTER_VAR yCount
  3734. #define PR_OUTER_END abl_grid_points_y
  3735. #define PR_INNER_VAR xCount
  3736. #define PR_INNER_END abl_grid_points_x
  3737. #endif
  3738. #endif
  3739. /**
  3740. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3741. * Will fail if the printer has not been homed with G28.
  3742. *
  3743. * Enhanced G29 Auto Bed Leveling Probe Routine
  3744. *
  3745. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3746. * or alter the bed level data. Useful to check the topology
  3747. * after a first run of G29.
  3748. *
  3749. * J Jettison current bed leveling data
  3750. *
  3751. * V Set the verbose level (0-4). Example: "G29 V3"
  3752. *
  3753. * Parameters With LINEAR leveling only:
  3754. *
  3755. * P Set the size of the grid that will be probed (P x P points).
  3756. * Example: "G29 P4"
  3757. *
  3758. * X Set the X size of the grid that will be probed (X x Y points).
  3759. * Example: "G29 X7 Y5"
  3760. *
  3761. * Y Set the Y size of the grid that will be probed (X x Y points).
  3762. *
  3763. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3764. * This is useful for manual bed leveling and finding flaws in the bed (to
  3765. * assist with part placement).
  3766. * Not supported by non-linear delta printer bed leveling.
  3767. *
  3768. * Parameters With LINEAR and BILINEAR leveling only:
  3769. *
  3770. * S Set the XY travel speed between probe points (in units/min)
  3771. *
  3772. * F Set the Front limit of the probing grid
  3773. * B Set the Back limit of the probing grid
  3774. * L Set the Left limit of the probing grid
  3775. * R Set the Right limit of the probing grid
  3776. *
  3777. * Parameters with DEBUG_LEVELING_FEATURE only:
  3778. *
  3779. * C Make a totally fake grid with no actual probing.
  3780. * For use in testing when no probing is possible.
  3781. *
  3782. * Parameters with BILINEAR leveling only:
  3783. *
  3784. * Z Supply an additional Z probe offset
  3785. *
  3786. * Extra parameters with PROBE_MANUALLY:
  3787. *
  3788. * To do manual probing simply repeat G29 until the procedure is complete.
  3789. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3790. *
  3791. * Q Query leveling and G29 state
  3792. *
  3793. * A Abort current leveling procedure
  3794. *
  3795. * Extra parameters with BILINEAR only:
  3796. *
  3797. * W Write a mesh point. (If G29 is idle.)
  3798. * I X index for mesh point
  3799. * J Y index for mesh point
  3800. * X X for mesh point, overrides I
  3801. * Y Y for mesh point, overrides J
  3802. * Z Z for mesh point. Otherwise, raw current Z.
  3803. *
  3804. * Without PROBE_MANUALLY:
  3805. *
  3806. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3807. * Include "E" to engage/disengage the Z probe for each sample.
  3808. * There's no extra effect if you have a fixed Z probe.
  3809. *
  3810. */
  3811. inline void gcode_G29() {
  3812. // G29 Q is also available if debugging
  3813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3814. const bool query = parser.seen('Q');
  3815. const uint8_t old_debug_flags = marlin_debug_flags;
  3816. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3817. if (DEBUGGING(LEVELING)) {
  3818. DEBUG_POS(">>> gcode_G29", current_position);
  3819. log_machine_info();
  3820. }
  3821. marlin_debug_flags = old_debug_flags;
  3822. #if DISABLED(PROBE_MANUALLY)
  3823. if (query) return;
  3824. #endif
  3825. #endif
  3826. #if ENABLED(PROBE_MANUALLY)
  3827. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3828. #endif
  3829. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3830. const bool faux = parser.boolval('C');
  3831. #elif ENABLED(PROBE_MANUALLY)
  3832. const bool faux = no_action;
  3833. #else
  3834. bool constexpr faux = false;
  3835. #endif
  3836. // Don't allow auto-leveling without homing first
  3837. if (axis_unhomed_error()) return;
  3838. // Define local vars 'static' for manual probing, 'auto' otherwise
  3839. #if ENABLED(PROBE_MANUALLY)
  3840. #define ABL_VAR static
  3841. #else
  3842. #define ABL_VAR
  3843. #endif
  3844. ABL_VAR int verbose_level;
  3845. ABL_VAR float xProbe, yProbe, measured_z;
  3846. ABL_VAR bool dryrun, abl_should_enable;
  3847. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3848. ABL_VAR int abl_probe_index;
  3849. #endif
  3850. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3851. ABL_VAR bool enable_soft_endstops = true;
  3852. #endif
  3853. #if ABL_GRID
  3854. #if ENABLED(PROBE_MANUALLY)
  3855. ABL_VAR uint8_t PR_OUTER_VAR;
  3856. ABL_VAR int8_t PR_INNER_VAR;
  3857. #endif
  3858. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3859. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3860. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3861. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3862. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3863. ABL_VAR bool do_topography_map;
  3864. #else // Bilinear
  3865. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3866. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3867. #endif
  3868. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3869. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3870. ABL_VAR int abl2;
  3871. #else // Bilinear
  3872. int constexpr abl2 = GRID_MAX_POINTS;
  3873. #endif
  3874. #endif
  3875. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3876. ABL_VAR float zoffset;
  3877. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3878. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3879. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3880. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3881. mean;
  3882. #endif
  3883. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3884. int constexpr abl2 = 3;
  3885. // Probe at 3 arbitrary points
  3886. ABL_VAR vector_3 points[3] = {
  3887. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3888. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3889. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3890. };
  3891. #endif // AUTO_BED_LEVELING_3POINT
  3892. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3893. struct linear_fit_data lsf_results;
  3894. incremental_LSF_reset(&lsf_results);
  3895. #endif
  3896. /**
  3897. * On the initial G29 fetch command parameters.
  3898. */
  3899. if (!g29_in_progress) {
  3900. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3901. abl_probe_index = -1;
  3902. #endif
  3903. abl_should_enable = planner.leveling_active;
  3904. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3905. if (parser.seen('W')) {
  3906. if (!leveling_is_valid()) {
  3907. SERIAL_ERROR_START();
  3908. SERIAL_ERRORLNPGM("No bilinear grid");
  3909. return;
  3910. }
  3911. const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position[Z_AXIS];
  3912. if (!WITHIN(rz, -10, 10)) {
  3913. SERIAL_ERROR_START();
  3914. SERIAL_ERRORLNPGM("Bad Z value");
  3915. return;
  3916. }
  3917. const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
  3918. ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
  3919. int8_t i = parser.byteval('I', -1),
  3920. j = parser.byteval('J', -1);
  3921. if (!isnan(rx) && !isnan(ry)) {
  3922. // Get nearest i / j from x / y
  3923. i = (rx - bilinear_start[X_AXIS] + 0.5 * xGridSpacing) / xGridSpacing;
  3924. j = (ry - bilinear_start[Y_AXIS] + 0.5 * yGridSpacing) / yGridSpacing;
  3925. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3926. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3927. }
  3928. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3929. set_bed_leveling_enabled(false);
  3930. z_values[i][j] = rz;
  3931. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3932. bed_level_virt_interpolate();
  3933. #endif
  3934. set_bed_leveling_enabled(abl_should_enable);
  3935. }
  3936. return;
  3937. } // parser.seen('W')
  3938. #endif
  3939. #if HAS_LEVELING
  3940. // Jettison bed leveling data
  3941. if (parser.seen('J')) {
  3942. reset_bed_level();
  3943. return;
  3944. }
  3945. #endif
  3946. verbose_level = parser.intval('V');
  3947. if (!WITHIN(verbose_level, 0, 4)) {
  3948. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3949. return;
  3950. }
  3951. dryrun = parser.boolval('D')
  3952. #if ENABLED(PROBE_MANUALLY)
  3953. || no_action
  3954. #endif
  3955. ;
  3956. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3957. do_topography_map = verbose_level > 2 || parser.boolval('T');
  3958. // X and Y specify points in each direction, overriding the default
  3959. // These values may be saved with the completed mesh
  3960. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  3961. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  3962. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  3963. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3964. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3965. return;
  3966. }
  3967. abl2 = abl_grid_points_x * abl_grid_points_y;
  3968. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3969. zoffset = parser.linearval('Z');
  3970. #endif
  3971. #if ABL_GRID
  3972. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  3973. left_probe_bed_position = parser.seenval('L') ? (int)RAW_X_POSITION(parser.value_linear_units()) : LEFT_PROBE_BED_POSITION;
  3974. right_probe_bed_position = parser.seenval('R') ? (int)RAW_X_POSITION(parser.value_linear_units()) : RIGHT_PROBE_BED_POSITION;
  3975. front_probe_bed_position = parser.seenval('F') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : FRONT_PROBE_BED_POSITION;
  3976. back_probe_bed_position = parser.seenval('B') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : BACK_PROBE_BED_POSITION;
  3977. const bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  3978. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3979. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  3980. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3981. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  3982. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3983. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  3984. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3985. if (left_out || right_out || front_out || back_out) {
  3986. if (left_out) {
  3987. out_of_range_error(PSTR("(L)eft"));
  3988. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  3989. }
  3990. if (right_out) {
  3991. out_of_range_error(PSTR("(R)ight"));
  3992. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  3993. }
  3994. if (front_out) {
  3995. out_of_range_error(PSTR("(F)ront"));
  3996. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  3997. }
  3998. if (back_out) {
  3999. out_of_range_error(PSTR("(B)ack"));
  4000. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  4001. }
  4002. return;
  4003. }
  4004. // probe at the points of a lattice grid
  4005. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  4006. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  4007. #endif // ABL_GRID
  4008. if (verbose_level > 0) {
  4009. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  4010. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  4011. }
  4012. stepper.synchronize();
  4013. // Disable auto bed leveling during G29
  4014. planner.leveling_active = false;
  4015. if (!dryrun) {
  4016. // Re-orient the current position without leveling
  4017. // based on where the steppers are positioned.
  4018. set_current_from_steppers_for_axis(ALL_AXES);
  4019. // Sync the planner to where the steppers stopped
  4020. SYNC_PLAN_POSITION_KINEMATIC();
  4021. }
  4022. #if HAS_BED_PROBE
  4023. // Deploy the probe. Probe will raise if needed.
  4024. if (DEPLOY_PROBE()) {
  4025. planner.leveling_active = abl_should_enable;
  4026. return;
  4027. }
  4028. #endif
  4029. if (!faux) setup_for_endstop_or_probe_move();
  4030. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4031. #if ENABLED(PROBE_MANUALLY)
  4032. if (!no_action)
  4033. #endif
  4034. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  4035. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  4036. || left_probe_bed_position != bilinear_start[X_AXIS]
  4037. || front_probe_bed_position != bilinear_start[Y_AXIS]
  4038. ) {
  4039. if (dryrun) {
  4040. // Before reset bed level, re-enable to correct the position
  4041. planner.leveling_active = abl_should_enable;
  4042. }
  4043. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  4044. reset_bed_level();
  4045. // Initialize a grid with the given dimensions
  4046. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  4047. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  4048. bilinear_start[X_AXIS] = left_probe_bed_position;
  4049. bilinear_start[Y_AXIS] = front_probe_bed_position;
  4050. // Can't re-enable (on error) until the new grid is written
  4051. abl_should_enable = false;
  4052. }
  4053. #endif // AUTO_BED_LEVELING_BILINEAR
  4054. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  4055. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4056. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  4057. #endif
  4058. // Probe at 3 arbitrary points
  4059. points[0].z = points[1].z = points[2].z = 0;
  4060. #endif // AUTO_BED_LEVELING_3POINT
  4061. } // !g29_in_progress
  4062. #if ENABLED(PROBE_MANUALLY)
  4063. // For manual probing, get the next index to probe now.
  4064. // On the first probe this will be incremented to 0.
  4065. if (!no_action) {
  4066. ++abl_probe_index;
  4067. g29_in_progress = true;
  4068. }
  4069. // Abort current G29 procedure, go back to idle state
  4070. if (seenA && g29_in_progress) {
  4071. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  4072. #if HAS_SOFTWARE_ENDSTOPS
  4073. soft_endstops_enabled = enable_soft_endstops;
  4074. #endif
  4075. planner.leveling_active = abl_should_enable;
  4076. g29_in_progress = false;
  4077. #if ENABLED(LCD_BED_LEVELING)
  4078. lcd_wait_for_move = false;
  4079. #endif
  4080. }
  4081. // Query G29 status
  4082. if (verbose_level || seenQ) {
  4083. SERIAL_PROTOCOLPGM("Manual G29 ");
  4084. if (g29_in_progress) {
  4085. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  4086. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  4087. }
  4088. else
  4089. SERIAL_PROTOCOLLNPGM("idle");
  4090. }
  4091. if (no_action) return;
  4092. if (abl_probe_index == 0) {
  4093. // For the initial G29 save software endstop state
  4094. #if HAS_SOFTWARE_ENDSTOPS
  4095. enable_soft_endstops = soft_endstops_enabled;
  4096. #endif
  4097. }
  4098. else {
  4099. // For G29 after adjusting Z.
  4100. // Save the previous Z before going to the next point
  4101. measured_z = current_position[Z_AXIS];
  4102. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4103. mean += measured_z;
  4104. eqnBVector[abl_probe_index] = measured_z;
  4105. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4106. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4107. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4108. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4109. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4110. z_values[xCount][yCount] = measured_z + zoffset;
  4111. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4112. if (DEBUGGING(LEVELING)) {
  4113. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4114. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4115. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4116. }
  4117. #endif
  4118. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4119. points[abl_probe_index].z = measured_z;
  4120. #endif
  4121. }
  4122. //
  4123. // If there's another point to sample, move there with optional lift.
  4124. //
  4125. #if ABL_GRID
  4126. // Skip any unreachable points
  4127. while (abl_probe_index < abl2) {
  4128. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4129. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4130. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4131. // Probe in reverse order for every other row/column
  4132. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4133. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4134. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4135. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4136. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4137. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4138. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4139. indexIntoAB[xCount][yCount] = abl_probe_index;
  4140. #endif
  4141. // Keep looping till a reachable point is found
  4142. if (position_is_reachable(xProbe, yProbe)) break;
  4143. ++abl_probe_index;
  4144. }
  4145. // Is there a next point to move to?
  4146. if (abl_probe_index < abl2) {
  4147. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4148. #if HAS_SOFTWARE_ENDSTOPS
  4149. // Disable software endstops to allow manual adjustment
  4150. // If G29 is not completed, they will not be re-enabled
  4151. soft_endstops_enabled = false;
  4152. #endif
  4153. return;
  4154. }
  4155. else {
  4156. // Leveling done! Fall through to G29 finishing code below
  4157. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4158. // Re-enable software endstops, if needed
  4159. #if HAS_SOFTWARE_ENDSTOPS
  4160. soft_endstops_enabled = enable_soft_endstops;
  4161. #endif
  4162. }
  4163. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4164. // Probe at 3 arbitrary points
  4165. if (abl_probe_index < 3) {
  4166. xProbe = points[abl_probe_index].x;
  4167. yProbe = points[abl_probe_index].y;
  4168. #if HAS_SOFTWARE_ENDSTOPS
  4169. // Disable software endstops to allow manual adjustment
  4170. // If G29 is not completed, they will not be re-enabled
  4171. soft_endstops_enabled = false;
  4172. #endif
  4173. return;
  4174. }
  4175. else {
  4176. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4177. // Re-enable software endstops, if needed
  4178. #if HAS_SOFTWARE_ENDSTOPS
  4179. soft_endstops_enabled = enable_soft_endstops;
  4180. #endif
  4181. if (!dryrun) {
  4182. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4183. if (planeNormal.z < 0) {
  4184. planeNormal.x *= -1;
  4185. planeNormal.y *= -1;
  4186. planeNormal.z *= -1;
  4187. }
  4188. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4189. // Can't re-enable (on error) until the new grid is written
  4190. abl_should_enable = false;
  4191. }
  4192. }
  4193. #endif // AUTO_BED_LEVELING_3POINT
  4194. #else // !PROBE_MANUALLY
  4195. {
  4196. const bool stow_probe_after_each = parser.boolval('E');
  4197. #if ABL_GRID
  4198. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4199. measured_z = 0;
  4200. // Outer loop is Y with PROBE_Y_FIRST disabled
  4201. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  4202. int8_t inStart, inStop, inInc;
  4203. if (zig) { // away from origin
  4204. inStart = 0;
  4205. inStop = PR_INNER_END;
  4206. inInc = 1;
  4207. }
  4208. else { // towards origin
  4209. inStart = PR_INNER_END - 1;
  4210. inStop = -1;
  4211. inInc = -1;
  4212. }
  4213. zig ^= true; // zag
  4214. // Inner loop is Y with PROBE_Y_FIRST enabled
  4215. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4216. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4217. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4218. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4219. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4220. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4221. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4222. #endif
  4223. #if IS_KINEMATIC
  4224. // Avoid probing outside the round or hexagonal area
  4225. if (!position_is_reachable_by_probe(xProbe, yProbe)) continue;
  4226. #endif
  4227. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4228. if (isnan(measured_z)) {
  4229. planner.leveling_active = abl_should_enable;
  4230. break;
  4231. }
  4232. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4233. mean += measured_z;
  4234. eqnBVector[abl_probe_index] = measured_z;
  4235. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4236. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4237. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4238. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4239. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4240. z_values[xCount][yCount] = measured_z + zoffset;
  4241. #endif
  4242. abl_should_enable = false;
  4243. idle();
  4244. } // inner
  4245. } // outer
  4246. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4247. // Probe at 3 arbitrary points
  4248. for (uint8_t i = 0; i < 3; ++i) {
  4249. // Retain the last probe position
  4250. xProbe = points[i].x;
  4251. yProbe = points[i].y;
  4252. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4253. if (isnan(measured_z)) {
  4254. planner.leveling_active = abl_should_enable;
  4255. break;
  4256. }
  4257. points[i].z = measured_z;
  4258. }
  4259. if (!dryrun && !isnan(measured_z)) {
  4260. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4261. if (planeNormal.z < 0) {
  4262. planeNormal.x *= -1;
  4263. planeNormal.y *= -1;
  4264. planeNormal.z *= -1;
  4265. }
  4266. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4267. // Can't re-enable (on error) until the new grid is written
  4268. abl_should_enable = false;
  4269. }
  4270. #endif // AUTO_BED_LEVELING_3POINT
  4271. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4272. if (STOW_PROBE()) {
  4273. planner.leveling_active = abl_should_enable;
  4274. measured_z = NAN;
  4275. }
  4276. }
  4277. #endif // !PROBE_MANUALLY
  4278. //
  4279. // G29 Finishing Code
  4280. //
  4281. // Unless this is a dry run, auto bed leveling will
  4282. // definitely be enabled after this point.
  4283. //
  4284. // If code above wants to continue leveling, it should
  4285. // return or loop before this point.
  4286. //
  4287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4288. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4289. #endif
  4290. #if ENABLED(PROBE_MANUALLY)
  4291. g29_in_progress = false;
  4292. #if ENABLED(LCD_BED_LEVELING)
  4293. lcd_wait_for_move = false;
  4294. #endif
  4295. #endif
  4296. // Calculate leveling, print reports, correct the position
  4297. if (!isnan(measured_z)) {
  4298. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4299. if (!dryrun) extrapolate_unprobed_bed_level();
  4300. print_bilinear_leveling_grid();
  4301. refresh_bed_level();
  4302. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4303. print_bilinear_leveling_grid_virt();
  4304. #endif
  4305. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4306. // For LINEAR leveling calculate matrix, print reports, correct the position
  4307. /**
  4308. * solve the plane equation ax + by + d = z
  4309. * A is the matrix with rows [x y 1] for all the probed points
  4310. * B is the vector of the Z positions
  4311. * the normal vector to the plane is formed by the coefficients of the
  4312. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4313. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4314. */
  4315. float plane_equation_coefficients[3];
  4316. finish_incremental_LSF(&lsf_results);
  4317. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4318. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4319. plane_equation_coefficients[2] = -lsf_results.D;
  4320. mean /= abl2;
  4321. if (verbose_level) {
  4322. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4323. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4324. SERIAL_PROTOCOLPGM(" b: ");
  4325. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4326. SERIAL_PROTOCOLPGM(" d: ");
  4327. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4328. SERIAL_EOL();
  4329. if (verbose_level > 2) {
  4330. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4331. SERIAL_PROTOCOL_F(mean, 8);
  4332. SERIAL_EOL();
  4333. }
  4334. }
  4335. // Create the matrix but don't correct the position yet
  4336. if (!dryrun)
  4337. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4338. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4339. );
  4340. // Show the Topography map if enabled
  4341. if (do_topography_map) {
  4342. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4343. " +--- BACK --+\n"
  4344. " | |\n"
  4345. " L | (+) | R\n"
  4346. " E | | I\n"
  4347. " F | (-) N (+) | G\n"
  4348. " T | | H\n"
  4349. " | (-) | T\n"
  4350. " | |\n"
  4351. " O-- FRONT --+\n"
  4352. " (0,0)");
  4353. float min_diff = 999;
  4354. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4355. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4356. int ind = indexIntoAB[xx][yy];
  4357. float diff = eqnBVector[ind] - mean,
  4358. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4359. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4360. z_tmp = 0;
  4361. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4362. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4363. if (diff >= 0.0)
  4364. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4365. else
  4366. SERIAL_PROTOCOLCHAR(' ');
  4367. SERIAL_PROTOCOL_F(diff, 5);
  4368. } // xx
  4369. SERIAL_EOL();
  4370. } // yy
  4371. SERIAL_EOL();
  4372. if (verbose_level > 3) {
  4373. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4374. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4375. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4376. int ind = indexIntoAB[xx][yy];
  4377. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4378. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4379. z_tmp = 0;
  4380. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4381. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4382. if (diff >= 0.0)
  4383. SERIAL_PROTOCOLPGM(" +");
  4384. // Include + for column alignment
  4385. else
  4386. SERIAL_PROTOCOLCHAR(' ');
  4387. SERIAL_PROTOCOL_F(diff, 5);
  4388. } // xx
  4389. SERIAL_EOL();
  4390. } // yy
  4391. SERIAL_EOL();
  4392. }
  4393. } //do_topography_map
  4394. #endif // AUTO_BED_LEVELING_LINEAR
  4395. #if ABL_PLANAR
  4396. // For LINEAR and 3POINT leveling correct the current position
  4397. if (verbose_level > 0)
  4398. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4399. if (!dryrun) {
  4400. //
  4401. // Correct the current XYZ position based on the tilted plane.
  4402. //
  4403. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4404. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4405. #endif
  4406. float converted[XYZ];
  4407. COPY(converted, current_position);
  4408. planner.leveling_active = true;
  4409. planner.unapply_leveling(converted); // use conversion machinery
  4410. planner.leveling_active = false;
  4411. // Use the last measured distance to the bed, if possible
  4412. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4413. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4414. ) {
  4415. const float simple_z = current_position[Z_AXIS] - measured_z;
  4416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4417. if (DEBUGGING(LEVELING)) {
  4418. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4419. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4420. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4421. }
  4422. #endif
  4423. converted[Z_AXIS] = simple_z;
  4424. }
  4425. // The rotated XY and corrected Z are now current_position
  4426. COPY(current_position, converted);
  4427. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4428. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4429. #endif
  4430. }
  4431. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4432. if (!dryrun) {
  4433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4434. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4435. #endif
  4436. // Unapply the offset because it is going to be immediately applied
  4437. // and cause compensation movement in Z
  4438. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4440. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4441. #endif
  4442. }
  4443. #endif // ABL_PLANAR
  4444. #ifdef Z_PROBE_END_SCRIPT
  4445. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4446. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4447. #endif
  4448. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4449. stepper.synchronize();
  4450. #endif
  4451. // Auto Bed Leveling is complete! Enable if possible.
  4452. planner.leveling_active = dryrun ? abl_should_enable : true;
  4453. } // !isnan(measured_z)
  4454. // Restore state after probing
  4455. if (!faux) clean_up_after_endstop_or_probe_move();
  4456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4457. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4458. #endif
  4459. report_current_position();
  4460. KEEPALIVE_STATE(IN_HANDLER);
  4461. if (planner.leveling_active)
  4462. SYNC_PLAN_POSITION_KINEMATIC();
  4463. }
  4464. #endif // OLDSCHOOL_ABL
  4465. #if HAS_BED_PROBE
  4466. /**
  4467. * G30: Do a single Z probe at the current XY
  4468. *
  4469. * Parameters:
  4470. *
  4471. * X Probe X position (default current X)
  4472. * Y Probe Y position (default current Y)
  4473. * E Engage the probe for each probe
  4474. */
  4475. inline void gcode_G30() {
  4476. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4477. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4478. if (!position_is_reachable_by_probe(xpos, ypos)) return;
  4479. // Disable leveling so the planner won't mess with us
  4480. #if HAS_LEVELING
  4481. set_bed_leveling_enabled(false);
  4482. #endif
  4483. setup_for_endstop_or_probe_move();
  4484. const float measured_z = probe_pt(xpos, ypos, parser.boolval('E'), 1);
  4485. if (!isnan(measured_z)) {
  4486. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4487. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4488. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4489. }
  4490. clean_up_after_endstop_or_probe_move();
  4491. report_current_position();
  4492. }
  4493. #if ENABLED(Z_PROBE_SLED)
  4494. /**
  4495. * G31: Deploy the Z probe
  4496. */
  4497. inline void gcode_G31() { DEPLOY_PROBE(); }
  4498. /**
  4499. * G32: Stow the Z probe
  4500. */
  4501. inline void gcode_G32() { STOW_PROBE(); }
  4502. #endif // Z_PROBE_SLED
  4503. #endif // HAS_BED_PROBE
  4504. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4505. constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
  4506. _4P_STEP = _7P_STEP * 2, // 4-point step
  4507. NPP = _7P_STEP * 6; // number of calibration points on the radius
  4508. enum CalEnum { // the 7 main calibration points - add definitions if needed
  4509. CEN = 0,
  4510. __A = 1,
  4511. _AB = __A + _7P_STEP,
  4512. __B = _AB + _7P_STEP,
  4513. _BC = __B + _7P_STEP,
  4514. __C = _BC + _7P_STEP,
  4515. _CA = __C + _7P_STEP,
  4516. };
  4517. #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
  4518. #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
  4519. #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
  4520. #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
  4521. #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
  4522. #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
  4523. static void print_signed_float(const char * const prefix, const float &f) {
  4524. SERIAL_PROTOCOLPGM(" ");
  4525. serialprintPGM(prefix);
  4526. SERIAL_PROTOCOLCHAR(':');
  4527. if (f >= 0) SERIAL_CHAR('+');
  4528. SERIAL_PROTOCOL_F(f, 2);
  4529. }
  4530. static void print_G33_settings(const bool end_stops, const bool tower_angles) {
  4531. SERIAL_PROTOCOLPAIR(".Height:", delta_height);
  4532. if (end_stops) {
  4533. print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
  4534. print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
  4535. print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
  4536. }
  4537. if (end_stops && tower_angles) {
  4538. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4539. SERIAL_EOL();
  4540. SERIAL_CHAR('.');
  4541. SERIAL_PROTOCOL_SP(13);
  4542. }
  4543. if (tower_angles) {
  4544. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4545. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4546. print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
  4547. }
  4548. if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
  4549. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4550. }
  4551. SERIAL_EOL();
  4552. }
  4553. static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
  4554. SERIAL_PROTOCOLPGM(". ");
  4555. print_signed_float(PSTR("c"), z_at_pt[CEN]);
  4556. if (tower_points) {
  4557. print_signed_float(PSTR(" x"), z_at_pt[__A]);
  4558. print_signed_float(PSTR(" y"), z_at_pt[__B]);
  4559. print_signed_float(PSTR(" z"), z_at_pt[__C]);
  4560. }
  4561. if (tower_points && opposite_points) {
  4562. SERIAL_EOL();
  4563. SERIAL_CHAR('.');
  4564. SERIAL_PROTOCOL_SP(13);
  4565. }
  4566. if (opposite_points) {
  4567. print_signed_float(PSTR("yz"), z_at_pt[_BC]);
  4568. print_signed_float(PSTR("zx"), z_at_pt[_CA]);
  4569. print_signed_float(PSTR("xy"), z_at_pt[_AB]);
  4570. }
  4571. SERIAL_EOL();
  4572. }
  4573. /**
  4574. * After G33:
  4575. * - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
  4576. * - Stow the probe
  4577. * - Restore endstops state
  4578. * - Select the old tool, if needed
  4579. */
  4580. static void G33_cleanup(
  4581. #if HOTENDS > 1
  4582. const uint8_t old_tool_index
  4583. #endif
  4584. ) {
  4585. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4586. do_blocking_move_to_z(delta_clip_start_height);
  4587. #endif
  4588. STOW_PROBE();
  4589. clean_up_after_endstop_or_probe_move();
  4590. #if HOTENDS > 1
  4591. tool_change(old_tool_index, 0, true);
  4592. #endif
  4593. }
  4594. inline float calibration_probe(const float nx, const float ny, const bool stow) {
  4595. #if HAS_BED_PROBE
  4596. return probe_pt(nx, ny, stow, 0, false);
  4597. #else
  4598. UNUSED(stow);
  4599. return lcd_probe_pt(nx, ny);
  4600. #endif
  4601. }
  4602. static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
  4603. const bool _0p_calibration = probe_points == 0,
  4604. _1p_calibration = probe_points == 1,
  4605. _4p_calibration = probe_points == 2,
  4606. _4p_opposite_points = _4p_calibration && !towers_set,
  4607. _7p_calibration = probe_points >= 3 || probe_points == 0,
  4608. _7p_no_intermediates = probe_points == 3,
  4609. _7p_1_intermediates = probe_points == 4,
  4610. _7p_2_intermediates = probe_points == 5,
  4611. _7p_4_intermediates = probe_points == 6,
  4612. _7p_6_intermediates = probe_points == 7,
  4613. _7p_8_intermediates = probe_points == 8,
  4614. _7p_11_intermediates = probe_points == 9,
  4615. _7p_14_intermediates = probe_points == 10,
  4616. _7p_intermed_points = probe_points >= 4,
  4617. _7p_6_centre = probe_points >= 5 && probe_points <= 7,
  4618. _7p_9_centre = probe_points >= 8;
  4619. LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
  4620. if (!_0p_calibration) {
  4621. if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
  4622. z_at_pt[CEN] += calibration_probe(0, 0, stow_after_each);
  4623. if (isnan(z_at_pt[CEN])) return NAN;
  4624. }
  4625. if (_7p_calibration) { // probe extra center points
  4626. const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
  4627. steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
  4628. I_LOOP_CAL_PT(axis, start, steps) {
  4629. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4630. r = delta_calibration_radius * 0.1;
  4631. z_at_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
  4632. if (isnan(z_at_pt[CEN])) return NAN;
  4633. }
  4634. z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
  4635. }
  4636. if (!_1p_calibration) { // probe the radius
  4637. const CalEnum start = _4p_opposite_points ? _AB : __A;
  4638. const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
  4639. _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
  4640. _7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
  4641. _7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
  4642. _7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
  4643. _7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
  4644. _7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
  4645. _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
  4646. _4P_STEP; // .5r * 6 + 1c = 4
  4647. bool zig_zag = true;
  4648. F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
  4649. const int8_t offset = _7p_9_centre ? 1 : 0;
  4650. for (int8_t circle = -offset; circle <= offset; circle++) {
  4651. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4652. r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
  4653. interpol = fmod(axis, 1);
  4654. const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
  4655. if (isnan(z_temp)) return NAN;
  4656. // split probe point to neighbouring calibration points
  4657. z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
  4658. z_at_pt[uint8_t(round(axis - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
  4659. }
  4660. zig_zag = !zig_zag;
  4661. }
  4662. if (_7p_intermed_points)
  4663. LOOP_CAL_RAD(axis)
  4664. z_at_pt[axis] /= _7P_STEP / steps;
  4665. }
  4666. float S1 = z_at_pt[CEN],
  4667. S2 = sq(z_at_pt[CEN]);
  4668. int16_t N = 1;
  4669. if (!_1p_calibration) { // std dev from zero plane
  4670. LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
  4671. S1 += z_at_pt[axis];
  4672. S2 += sq(z_at_pt[axis]);
  4673. N++;
  4674. }
  4675. return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4676. }
  4677. }
  4678. return 0.00001;
  4679. }
  4680. #if HAS_BED_PROBE
  4681. static bool G33_auto_tune() {
  4682. float z_at_pt[NPP + 1] = { 0.0 },
  4683. z_at_pt_base[NPP + 1] = { 0.0 },
  4684. z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
  4685. #define ZP(N,I) ((N) * z_at_pt[I])
  4686. #define Z06(I) ZP(6, I)
  4687. #define Z03(I) ZP(3, I)
  4688. #define Z02(I) ZP(2, I)
  4689. #define Z01(I) ZP(1, I)
  4690. #define Z32(I) ZP(3/2, I)
  4691. SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
  4692. SERIAL_EOL();
  4693. if (isnan(probe_G33_points(z_at_pt_base, 3, true, false))) return false;
  4694. print_G33_results(z_at_pt_base, true, true);
  4695. LOOP_XYZ(axis) {
  4696. delta_endstop_adj[axis] -= 1.0;
  4697. recalc_delta_settings();
  4698. endstops.enable(true);
  4699. if (!home_delta()) return;
  4700. endstops.not_homing();
  4701. SERIAL_PROTOCOLPGM("Tuning E");
  4702. SERIAL_CHAR(tolower(axis_codes[axis]));
  4703. SERIAL_EOL();
  4704. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4705. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4706. print_G33_results(z_at_pt, true, true);
  4707. delta_endstop_adj[axis] += 1.0;
  4708. recalc_delta_settings();
  4709. switch (axis) {
  4710. case A_AXIS :
  4711. h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
  4712. break;
  4713. case B_AXIS :
  4714. h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
  4715. break;
  4716. case C_AXIS :
  4717. h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
  4718. break;
  4719. }
  4720. }
  4721. h_fac /= 3.0;
  4722. h_fac *= norm; // Normalize to 1.02 for Kossel mini
  4723. for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
  4724. delta_radius += 1.0 * zig_zag;
  4725. recalc_delta_settings();
  4726. endstops.enable(true);
  4727. if (!home_delta()) return;
  4728. endstops.not_homing();
  4729. SERIAL_PROTOCOLPGM("Tuning R");
  4730. SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
  4731. SERIAL_EOL();
  4732. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4733. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4734. print_G33_results(z_at_pt, true, true);
  4735. delta_radius -= 1.0 * zig_zag;
  4736. recalc_delta_settings();
  4737. r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
  4738. }
  4739. r_fac /= 2.0;
  4740. r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
  4741. LOOP_XYZ(axis) {
  4742. delta_tower_angle_trim[axis] += 1.0;
  4743. delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
  4744. delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
  4745. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4746. delta_height -= z_temp;
  4747. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4748. recalc_delta_settings();
  4749. endstops.enable(true);
  4750. if (!home_delta()) return;
  4751. endstops.not_homing();
  4752. SERIAL_PROTOCOLPGM("Tuning T");
  4753. SERIAL_CHAR(tolower(axis_codes[axis]));
  4754. SERIAL_EOL();
  4755. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4756. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4757. print_G33_results(z_at_pt, true, true);
  4758. delta_tower_angle_trim[axis] -= 1.0;
  4759. delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
  4760. delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
  4761. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4762. delta_height -= z_temp;
  4763. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4764. recalc_delta_settings();
  4765. switch (axis) {
  4766. case A_AXIS :
  4767. a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
  4768. break;
  4769. case B_AXIS :
  4770. a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
  4771. break;
  4772. case C_AXIS :
  4773. a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
  4774. break;
  4775. }
  4776. }
  4777. a_fac /= 3.0;
  4778. a_fac *= norm; // Normalize to 0.83 for Kossel mini
  4779. endstops.enable(true);
  4780. if (!home_delta()) return;
  4781. endstops.not_homing();
  4782. print_signed_float(PSTR( "H_FACTOR: "), h_fac);
  4783. print_signed_float(PSTR(" R_FACTOR: "), r_fac);
  4784. print_signed_float(PSTR(" A_FACTOR: "), a_fac);
  4785. SERIAL_EOL();
  4786. SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
  4787. SERIAL_EOL();
  4788. return true;
  4789. }
  4790. #endif // HAS_BED_PROBE
  4791. /**
  4792. * G33 - Delta '1-4-7-point' Auto-Calibration
  4793. * Calibrate height, endstops, delta radius, and tower angles.
  4794. *
  4795. * Parameters:
  4796. *
  4797. * Pn Number of probe points:
  4798. * P0 No probe. Normalize only.
  4799. * P1 Probe center and set height only.
  4800. * P2 Probe center and towers. Set height, endstops and delta radius.
  4801. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4802. * P4-P10 Probe all positions + at different itermediate locations and average them.
  4803. *
  4804. * T Don't calibrate tower angle corrections
  4805. *
  4806. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4807. *
  4808. * Fn Force to run at least n iterations and takes the best result
  4809. *
  4810. * A Auto tune calibartion factors (set in Configuration.h)
  4811. *
  4812. * Vn Verbose level:
  4813. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4814. * V1 Report start and end settings only
  4815. * V2 Report settings at each iteration
  4816. * V3 Report settings and probe results
  4817. *
  4818. * E Engage the probe for each point
  4819. */
  4820. inline void gcode_G33() {
  4821. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4822. if (!WITHIN(probe_points, 0, 10)) {
  4823. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
  4824. return;
  4825. }
  4826. const int8_t verbose_level = parser.byteval('V', 1);
  4827. if (!WITHIN(verbose_level, 0, 3)) {
  4828. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-3).");
  4829. return;
  4830. }
  4831. const float calibration_precision = parser.floatval('C', 0.0);
  4832. if (calibration_precision < 0) {
  4833. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
  4834. return;
  4835. }
  4836. const int8_t force_iterations = parser.intval('F', 0);
  4837. if (!WITHIN(force_iterations, 0, 30)) {
  4838. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4839. return;
  4840. }
  4841. const bool towers_set = !parser.boolval('T'),
  4842. auto_tune = parser.boolval('A'),
  4843. stow_after_each = parser.boolval('E'),
  4844. _0p_calibration = probe_points == 0,
  4845. _1p_calibration = probe_points == 1,
  4846. _4p_calibration = probe_points == 2,
  4847. _7p_9_centre = probe_points >= 8,
  4848. _tower_results = (_4p_calibration && towers_set)
  4849. || probe_points >= 3 || probe_points == 0,
  4850. _opposite_results = (_4p_calibration && !towers_set)
  4851. || probe_points >= 3 || probe_points == 0,
  4852. _endstop_results = probe_points != 1,
  4853. _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
  4854. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4855. int8_t iterations = 0;
  4856. float test_precision,
  4857. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4858. zero_std_dev_min = zero_std_dev,
  4859. e_old[ABC] = {
  4860. delta_endstop_adj[A_AXIS],
  4861. delta_endstop_adj[B_AXIS],
  4862. delta_endstop_adj[C_AXIS]
  4863. },
  4864. dr_old = delta_radius,
  4865. zh_old = delta_height,
  4866. ta_old[ABC] = {
  4867. delta_tower_angle_trim[A_AXIS],
  4868. delta_tower_angle_trim[B_AXIS],
  4869. delta_tower_angle_trim[C_AXIS]
  4870. };
  4871. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4872. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  4873. LOOP_CAL_RAD(axis) {
  4874. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4875. r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
  4876. if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
  4877. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4878. return;
  4879. }
  4880. }
  4881. }
  4882. stepper.synchronize();
  4883. #if HAS_LEVELING
  4884. reset_bed_level(); // After calibration bed-level data is no longer valid
  4885. #endif
  4886. #if HOTENDS > 1
  4887. const uint8_t old_tool_index = active_extruder;
  4888. tool_change(0, 0, true);
  4889. #define G33_CLEANUP() G33_cleanup(old_tool_index)
  4890. #else
  4891. #define G33_CLEANUP() G33_cleanup()
  4892. #endif
  4893. setup_for_endstop_or_probe_move();
  4894. endstops.enable(true);
  4895. if (!_0p_calibration) {
  4896. if (!home_delta())
  4897. return;
  4898. endstops.not_homing();
  4899. }
  4900. if (auto_tune) {
  4901. #if HAS_BED_PROBE
  4902. G33_auto_tune();
  4903. #else
  4904. SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
  4905. #endif
  4906. G33_CLEANUP();
  4907. return;
  4908. }
  4909. // Report settings
  4910. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  4911. serialprintPGM(checkingac);
  4912. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4913. SERIAL_EOL();
  4914. lcd_setstatusPGM(checkingac);
  4915. print_G33_settings(_endstop_results, _angle_results);
  4916. do {
  4917. float z_at_pt[NPP + 1] = { 0.0 };
  4918. test_precision = zero_std_dev;
  4919. iterations++;
  4920. // Probe the points
  4921. zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
  4922. if (isnan(zero_std_dev)) {
  4923. SERIAL_PROTOCOLPGM("Correct delta_radius with M665 R or end-stops with M666 X Y Z");
  4924. SERIAL_EOL();
  4925. return G33_CLEANUP();
  4926. }
  4927. // Solve matrices
  4928. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  4929. if (zero_std_dev < zero_std_dev_min) {
  4930. COPY(e_old, delta_endstop_adj);
  4931. dr_old = delta_radius;
  4932. zh_old = delta_height;
  4933. COPY(ta_old, delta_tower_angle_trim);
  4934. }
  4935. float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
  4936. const float r_diff = delta_radius - delta_calibration_radius,
  4937. h_factor = 1 / 6.0 *
  4938. #ifdef H_FACTOR
  4939. (H_FACTOR), // Set in Configuration.h
  4940. #else
  4941. (1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
  4942. #endif
  4943. r_factor = 1 / 6.0 *
  4944. #ifdef R_FACTOR
  4945. -(R_FACTOR), // Set in Configuration.h
  4946. #else
  4947. -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
  4948. #endif
  4949. a_factor = 1 / 6.0 *
  4950. #ifdef A_FACTOR
  4951. (A_FACTOR); // Set in Configuration.h
  4952. #else
  4953. (66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
  4954. #endif
  4955. #define ZP(N,I) ((N) * z_at_pt[I])
  4956. #define Z6(I) ZP(6, I)
  4957. #define Z4(I) ZP(4, I)
  4958. #define Z2(I) ZP(2, I)
  4959. #define Z1(I) ZP(1, I)
  4960. #if !HAS_BED_PROBE
  4961. test_precision = 0.00; // forced end
  4962. #endif
  4963. switch (probe_points) {
  4964. case 0:
  4965. test_precision = 0.00; // forced end
  4966. break;
  4967. case 1:
  4968. test_precision = 0.00; // forced end
  4969. LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
  4970. break;
  4971. case 2:
  4972. if (towers_set) {
  4973. e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
  4974. e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
  4975. e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
  4976. r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
  4977. }
  4978. else {
  4979. e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
  4980. e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
  4981. e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
  4982. r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
  4983. }
  4984. break;
  4985. default:
  4986. e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
  4987. e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
  4988. e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
  4989. r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
  4990. if (towers_set) {
  4991. t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
  4992. t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
  4993. t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
  4994. e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
  4995. e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
  4996. e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
  4997. }
  4998. break;
  4999. }
  5000. LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
  5001. delta_radius += r_delta;
  5002. LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
  5003. }
  5004. else if (zero_std_dev >= test_precision) { // step one back
  5005. COPY(delta_endstop_adj, e_old);
  5006. delta_radius = dr_old;
  5007. delta_height = zh_old;
  5008. COPY(delta_tower_angle_trim, ta_old);
  5009. }
  5010. if (verbose_level != 0) { // !dry run
  5011. // normalise angles to least squares
  5012. if (_angle_results) {
  5013. float a_sum = 0.0;
  5014. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  5015. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
  5016. }
  5017. // adjust delta_height and endstops by the max amount
  5018. const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  5019. delta_height -= z_temp;
  5020. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  5021. }
  5022. recalc_delta_settings();
  5023. NOMORE(zero_std_dev_min, zero_std_dev);
  5024. // print report
  5025. if (verbose_level > 2)
  5026. print_G33_results(z_at_pt, _tower_results, _opposite_results);
  5027. if (verbose_level != 0) { // !dry run
  5028. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  5029. SERIAL_PROTOCOLPGM("Calibration OK");
  5030. SERIAL_PROTOCOL_SP(32);
  5031. #if HAS_BED_PROBE
  5032. if (zero_std_dev >= test_precision && !_1p_calibration)
  5033. SERIAL_PROTOCOLPGM("rolling back.");
  5034. else
  5035. #endif
  5036. {
  5037. SERIAL_PROTOCOLPGM("std dev:");
  5038. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  5039. }
  5040. SERIAL_EOL();
  5041. char mess[21];
  5042. strcpy_P(mess, PSTR("Calibration sd:"));
  5043. if (zero_std_dev_min < 1)
  5044. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  5045. else
  5046. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  5047. lcd_setstatus(mess);
  5048. print_G33_settings(_endstop_results, _angle_results);
  5049. serialprintPGM(save_message);
  5050. SERIAL_EOL();
  5051. }
  5052. else { // !end iterations
  5053. char mess[15];
  5054. if (iterations < 31)
  5055. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  5056. else
  5057. strcpy_P(mess, PSTR("No convergence"));
  5058. SERIAL_PROTOCOL(mess);
  5059. SERIAL_PROTOCOL_SP(32);
  5060. SERIAL_PROTOCOLPGM("std dev:");
  5061. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5062. SERIAL_EOL();
  5063. lcd_setstatus(mess);
  5064. if (verbose_level > 1)
  5065. print_G33_settings(_endstop_results, _angle_results);
  5066. }
  5067. }
  5068. else { // dry run
  5069. const char *enddryrun = PSTR("End DRY-RUN");
  5070. serialprintPGM(enddryrun);
  5071. SERIAL_PROTOCOL_SP(35);
  5072. SERIAL_PROTOCOLPGM("std dev:");
  5073. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5074. SERIAL_EOL();
  5075. char mess[21];
  5076. strcpy_P(mess, enddryrun);
  5077. strcpy_P(&mess[11], PSTR(" sd:"));
  5078. if (zero_std_dev < 1)
  5079. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  5080. else
  5081. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  5082. lcd_setstatus(mess);
  5083. }
  5084. endstops.enable(true);
  5085. if (!home_delta())
  5086. return;
  5087. endstops.not_homing();
  5088. }
  5089. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  5090. G33_CLEANUP();
  5091. }
  5092. #endif // DELTA_AUTO_CALIBRATION
  5093. #if ENABLED(G38_PROBE_TARGET)
  5094. static bool G38_run_probe() {
  5095. bool G38_pass_fail = false;
  5096. #if ENABLED(PROBE_DOUBLE_TOUCH)
  5097. // Get direction of move and retract
  5098. float retract_mm[XYZ];
  5099. LOOP_XYZ(i) {
  5100. float dist = destination[i] - current_position[i];
  5101. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  5102. }
  5103. #endif
  5104. stepper.synchronize(); // wait until the machine is idle
  5105. // Move until destination reached or target hit
  5106. endstops.enable(true);
  5107. G38_move = true;
  5108. G38_endstop_hit = false;
  5109. prepare_move_to_destination();
  5110. stepper.synchronize();
  5111. G38_move = false;
  5112. endstops.hit_on_purpose();
  5113. set_current_from_steppers_for_axis(ALL_AXES);
  5114. SYNC_PLAN_POSITION_KINEMATIC();
  5115. if (G38_endstop_hit) {
  5116. G38_pass_fail = true;
  5117. #if ENABLED(PROBE_DOUBLE_TOUCH)
  5118. // Move away by the retract distance
  5119. set_destination_from_current();
  5120. LOOP_XYZ(i) destination[i] += retract_mm[i];
  5121. endstops.enable(false);
  5122. prepare_move_to_destination();
  5123. stepper.synchronize();
  5124. feedrate_mm_s /= 4;
  5125. // Bump the target more slowly
  5126. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  5127. endstops.enable(true);
  5128. G38_move = true;
  5129. prepare_move_to_destination();
  5130. stepper.synchronize();
  5131. G38_move = false;
  5132. set_current_from_steppers_for_axis(ALL_AXES);
  5133. SYNC_PLAN_POSITION_KINEMATIC();
  5134. #endif
  5135. }
  5136. endstops.hit_on_purpose();
  5137. endstops.not_homing();
  5138. return G38_pass_fail;
  5139. }
  5140. /**
  5141. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  5142. * G38.3 - probe toward workpiece, stop on contact
  5143. *
  5144. * Like G28 except uses Z min probe for all axes
  5145. */
  5146. inline void gcode_G38(bool is_38_2) {
  5147. // Get X Y Z E F
  5148. gcode_get_destination();
  5149. setup_for_endstop_or_probe_move();
  5150. // If any axis has enough movement, do the move
  5151. LOOP_XYZ(i)
  5152. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  5153. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  5154. // If G38.2 fails throw an error
  5155. if (!G38_run_probe() && is_38_2) {
  5156. SERIAL_ERROR_START();
  5157. SERIAL_ERRORLNPGM("Failed to reach target");
  5158. }
  5159. break;
  5160. }
  5161. clean_up_after_endstop_or_probe_move();
  5162. }
  5163. #endif // G38_PROBE_TARGET
  5164. #if HAS_MESH
  5165. /**
  5166. * G42: Move X & Y axes to mesh coordinates (I & J)
  5167. */
  5168. inline void gcode_G42() {
  5169. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  5170. if (axis_unhomed_error()) return;
  5171. #endif
  5172. if (IsRunning()) {
  5173. const bool hasI = parser.seenval('I');
  5174. const int8_t ix = hasI ? parser.value_int() : 0;
  5175. const bool hasJ = parser.seenval('J');
  5176. const int8_t iy = hasJ ? parser.value_int() : 0;
  5177. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  5178. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  5179. return;
  5180. }
  5181. set_destination_from_current();
  5182. if (hasI) destination[X_AXIS] = _GET_MESH_X(ix);
  5183. if (hasJ) destination[Y_AXIS] = _GET_MESH_Y(iy);
  5184. if (parser.boolval('P')) {
  5185. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  5186. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  5187. }
  5188. const float fval = parser.linearval('F');
  5189. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  5190. // SCARA kinematic has "safe" XY raw moves
  5191. #if IS_SCARA
  5192. prepare_uninterpolated_move_to_destination();
  5193. #else
  5194. prepare_move_to_destination();
  5195. #endif
  5196. }
  5197. }
  5198. #endif // HAS_MESH
  5199. /**
  5200. * G92: Set current position to given X Y Z E
  5201. */
  5202. inline void gcode_G92() {
  5203. stepper.synchronize();
  5204. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5205. switch (parser.subcode) {
  5206. case 1:
  5207. // Zero the G92 values and restore current position
  5208. #if !IS_SCARA
  5209. LOOP_XYZ(i) {
  5210. const float v = position_shift[i];
  5211. if (v) {
  5212. position_shift[i] = 0;
  5213. update_software_endstops((AxisEnum)i);
  5214. }
  5215. }
  5216. #endif // Not SCARA
  5217. return;
  5218. }
  5219. #endif
  5220. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5221. #define IS_G92_0 (parser.subcode == 0)
  5222. #else
  5223. #define IS_G92_0 true
  5224. #endif
  5225. bool didE = false;
  5226. #if IS_SCARA || !HAS_POSITION_SHIFT
  5227. bool didXYZ = false;
  5228. #else
  5229. constexpr bool didXYZ = false;
  5230. #endif
  5231. if (IS_G92_0) LOOP_XYZE(i) {
  5232. if (parser.seenval(axis_codes[i])) {
  5233. const float l = parser.value_axis_units((AxisEnum)i),
  5234. v = i == E_AXIS ? l : LOGICAL_TO_NATIVE(l, i),
  5235. d = v - current_position[i];
  5236. if (!NEAR_ZERO(d)) {
  5237. #if IS_SCARA || !HAS_POSITION_SHIFT
  5238. if (i == E_AXIS) didE = true; else didXYZ = true;
  5239. current_position[i] = v; // Without workspaces revert to Marlin 1.0 behavior
  5240. #elif HAS_POSITION_SHIFT
  5241. if (i == E_AXIS) {
  5242. didE = true;
  5243. current_position[E_AXIS] = v; // When using coordinate spaces, only E is set directly
  5244. }
  5245. else {
  5246. position_shift[i] += d; // Other axes simply offset the coordinate space
  5247. update_software_endstops((AxisEnum)i);
  5248. }
  5249. #endif
  5250. }
  5251. }
  5252. }
  5253. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5254. // Apply workspace offset to the active coordinate system
  5255. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  5256. COPY(coordinate_system[active_coordinate_system], position_shift);
  5257. #endif
  5258. if (didXYZ)
  5259. SYNC_PLAN_POSITION_KINEMATIC();
  5260. else if (didE)
  5261. sync_plan_position_e();
  5262. report_current_position();
  5263. }
  5264. #if HAS_RESUME_CONTINUE
  5265. /**
  5266. * M0: Unconditional stop - Wait for user button press on LCD
  5267. * M1: Conditional stop - Wait for user button press on LCD
  5268. */
  5269. inline void gcode_M0_M1() {
  5270. const char * const args = parser.string_arg;
  5271. millis_t ms = 0;
  5272. bool hasP = false, hasS = false;
  5273. if (parser.seenval('P')) {
  5274. ms = parser.value_millis(); // milliseconds to wait
  5275. hasP = ms > 0;
  5276. }
  5277. if (parser.seenval('S')) {
  5278. ms = parser.value_millis_from_seconds(); // seconds to wait
  5279. hasS = ms > 0;
  5280. }
  5281. #if ENABLED(ULTIPANEL)
  5282. if (!hasP && !hasS && args && *args)
  5283. lcd_setstatus(args, true);
  5284. else {
  5285. LCD_MESSAGEPGM(MSG_USERWAIT);
  5286. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  5287. dontExpireStatus();
  5288. #endif
  5289. }
  5290. #else
  5291. if (!hasP && !hasS && args && *args) {
  5292. SERIAL_ECHO_START();
  5293. SERIAL_ECHOLN(args);
  5294. }
  5295. #endif
  5296. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5297. wait_for_user = true;
  5298. stepper.synchronize();
  5299. refresh_cmd_timeout();
  5300. if (ms > 0) {
  5301. ms += previous_cmd_ms; // wait until this time for a click
  5302. while (PENDING(millis(), ms) && wait_for_user) idle();
  5303. }
  5304. else {
  5305. #if ENABLED(ULTIPANEL)
  5306. if (lcd_detected()) {
  5307. while (wait_for_user) idle();
  5308. print_job_timer.isPaused() ? LCD_MESSAGEPGM(WELCOME_MSG) : LCD_MESSAGEPGM(MSG_RESUMING);
  5309. }
  5310. #else
  5311. while (wait_for_user) idle();
  5312. #endif
  5313. }
  5314. wait_for_user = false;
  5315. KEEPALIVE_STATE(IN_HANDLER);
  5316. }
  5317. #endif // HAS_RESUME_CONTINUE
  5318. #if ENABLED(SPINDLE_LASER_ENABLE)
  5319. /**
  5320. * M3: Spindle Clockwise
  5321. * M4: Spindle Counter-clockwise
  5322. *
  5323. * S0 turns off spindle.
  5324. *
  5325. * If no speed PWM output is defined then M3/M4 just turns it on.
  5326. *
  5327. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  5328. * Hardware PWM is required. ISRs are too slow.
  5329. *
  5330. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  5331. * No other settings give a PWM signal that goes from 0 to 5 volts.
  5332. *
  5333. * The system automatically sets WGM to Mode 1, so no special
  5334. * initialization is needed.
  5335. *
  5336. * WGM bits for timer 2 are automatically set by the system to
  5337. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5338. * No special initialization is needed.
  5339. *
  5340. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5341. * factors for timers 2, 3, 4, and 5 are acceptable.
  5342. *
  5343. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5344. * the spindle/laser during power-up or when connecting to the host
  5345. * (usually goes through a reset which sets all I/O pins to tri-state)
  5346. *
  5347. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5348. */
  5349. // Wait for spindle to come up to speed
  5350. inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
  5351. // Wait for spindle to stop turning
  5352. inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
  5353. /**
  5354. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5355. *
  5356. * it accepts inputs of 0-255
  5357. */
  5358. inline void ocr_val_mode() {
  5359. uint8_t spindle_laser_power = parser.value_byte();
  5360. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5361. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5362. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5363. }
  5364. inline void gcode_M3_M4(bool is_M3) {
  5365. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5366. #if SPINDLE_DIR_CHANGE
  5367. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5368. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5369. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5370. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5371. ) {
  5372. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5373. delay_for_power_down();
  5374. }
  5375. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5376. #endif
  5377. /**
  5378. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5379. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5380. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5381. */
  5382. #if ENABLED(SPINDLE_LASER_PWM)
  5383. if (parser.seen('O')) ocr_val_mode();
  5384. else {
  5385. const float spindle_laser_power = parser.floatval('S');
  5386. if (spindle_laser_power == 0) {
  5387. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5388. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // only write low byte
  5389. delay_for_power_down();
  5390. }
  5391. else {
  5392. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5393. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5394. if (spindle_laser_power <= SPEED_POWER_MIN)
  5395. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5396. if (spindle_laser_power >= SPEED_POWER_MAX)
  5397. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5398. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5399. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5400. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5401. delay_for_power_up();
  5402. }
  5403. }
  5404. #else
  5405. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5406. delay_for_power_up();
  5407. #endif
  5408. }
  5409. /**
  5410. * M5 turn off spindle
  5411. */
  5412. inline void gcode_M5() {
  5413. stepper.synchronize();
  5414. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5415. delay_for_power_down();
  5416. }
  5417. #endif // SPINDLE_LASER_ENABLE
  5418. /**
  5419. * M17: Enable power on all stepper motors
  5420. */
  5421. inline void gcode_M17() {
  5422. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5423. enable_all_steppers();
  5424. }
  5425. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5426. static float resume_position[XYZE];
  5427. static bool move_away_flag = false;
  5428. #if ENABLED(SDSUPPORT)
  5429. static bool sd_print_paused = false;
  5430. #endif
  5431. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5432. static millis_t next_buzz = 0;
  5433. static int8_t runout_beep = 0;
  5434. if (init) next_buzz = runout_beep = 0;
  5435. const millis_t ms = millis();
  5436. if (ELAPSED(ms, next_buzz)) {
  5437. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5438. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5439. BUZZ(300, 2000);
  5440. runout_beep++;
  5441. }
  5442. }
  5443. }
  5444. static void ensure_safe_temperature() {
  5445. bool heaters_heating = true;
  5446. wait_for_heatup = true; // M108 will clear this
  5447. while (wait_for_heatup && heaters_heating) {
  5448. idle();
  5449. heaters_heating = false;
  5450. HOTEND_LOOP() {
  5451. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5452. heaters_heating = true;
  5453. #if ENABLED(ULTIPANEL)
  5454. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5455. #endif
  5456. break;
  5457. }
  5458. }
  5459. }
  5460. }
  5461. #if IS_KINEMATIC
  5462. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5463. #else
  5464. #define RUNPLAN(RATE_MM_S) buffer_line_to_destination(RATE_MM_S)
  5465. #endif
  5466. void do_pause_e_move(const float &length, const float fr) {
  5467. current_position[E_AXIS] += length / planner.e_factor[active_extruder];
  5468. set_destination_from_current();
  5469. RUNPLAN(fr);
  5470. stepper.synchronize();
  5471. }
  5472. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5473. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5474. ) {
  5475. if (move_away_flag) return false; // already paused
  5476. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5477. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5478. if (!thermalManager.allow_cold_extrude &&
  5479. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5480. SERIAL_ERROR_START();
  5481. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5482. return false;
  5483. }
  5484. #endif
  5485. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5486. }
  5487. // Indicate that the printer is paused
  5488. move_away_flag = true;
  5489. // Pause the print job and timer
  5490. #if ENABLED(SDSUPPORT)
  5491. if (card.sdprinting) {
  5492. card.pauseSDPrint();
  5493. sd_print_paused = true;
  5494. }
  5495. #endif
  5496. print_job_timer.pause();
  5497. // Show initial message and wait for synchronize steppers
  5498. if (show_lcd) {
  5499. #if ENABLED(ULTIPANEL)
  5500. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5501. #endif
  5502. }
  5503. // Save current position
  5504. stepper.synchronize();
  5505. COPY(resume_position, current_position);
  5506. // Initial retract before move to filament change position
  5507. if (retract) do_pause_e_move(retract, PAUSE_PARK_RETRACT_FEEDRATE);
  5508. // Lift Z axis
  5509. if (z_lift > 0)
  5510. do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
  5511. // Move XY axes to filament exchange position
  5512. do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
  5513. if (unload_length != 0) {
  5514. if (show_lcd) {
  5515. #if ENABLED(ULTIPANEL)
  5516. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5517. idle();
  5518. #endif
  5519. }
  5520. // Unload filament
  5521. do_pause_e_move(unload_length, FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5522. }
  5523. if (show_lcd) {
  5524. #if ENABLED(ULTIPANEL)
  5525. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5526. #endif
  5527. }
  5528. #if HAS_BUZZER
  5529. filament_change_beep(max_beep_count, true);
  5530. #endif
  5531. idle();
  5532. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5533. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5534. disable_e_steppers();
  5535. safe_delay(100);
  5536. #endif
  5537. // Start the heater idle timers
  5538. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5539. HOTEND_LOOP()
  5540. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5541. return true;
  5542. }
  5543. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5544. bool nozzle_timed_out = false;
  5545. // Wait for filament insert by user and press button
  5546. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5547. wait_for_user = true; // LCD click or M108 will clear this
  5548. while (wait_for_user) {
  5549. #if HAS_BUZZER
  5550. filament_change_beep(max_beep_count);
  5551. #endif
  5552. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5553. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5554. if (!nozzle_timed_out)
  5555. HOTEND_LOOP()
  5556. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5557. if (nozzle_timed_out) {
  5558. #if ENABLED(ULTIPANEL)
  5559. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5560. #endif
  5561. // Wait for LCD click or M108
  5562. while (wait_for_user) idle(true);
  5563. // Re-enable the heaters if they timed out
  5564. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5565. // Wait for the heaters to reach the target temperatures
  5566. ensure_safe_temperature();
  5567. #if ENABLED(ULTIPANEL)
  5568. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5569. #endif
  5570. // Start the heater idle timers
  5571. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5572. HOTEND_LOOP()
  5573. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5574. wait_for_user = true; /* Wait for user to load filament */
  5575. nozzle_timed_out = false;
  5576. #if HAS_BUZZER
  5577. filament_change_beep(max_beep_count, true);
  5578. #endif
  5579. }
  5580. idle(true);
  5581. }
  5582. KEEPALIVE_STATE(IN_HANDLER);
  5583. }
  5584. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5585. bool nozzle_timed_out = false;
  5586. if (!move_away_flag) return;
  5587. // Re-enable the heaters if they timed out
  5588. HOTEND_LOOP() {
  5589. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5590. thermalManager.reset_heater_idle_timer(e);
  5591. }
  5592. if (nozzle_timed_out) ensure_safe_temperature();
  5593. #if HAS_BUZZER
  5594. filament_change_beep(max_beep_count, true);
  5595. #endif
  5596. set_destination_from_current();
  5597. if (load_length != 0) {
  5598. #if ENABLED(ULTIPANEL)
  5599. // Show "insert filament"
  5600. if (nozzle_timed_out)
  5601. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5602. #endif
  5603. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5604. wait_for_user = true; // LCD click or M108 will clear this
  5605. while (wait_for_user && nozzle_timed_out) {
  5606. #if HAS_BUZZER
  5607. filament_change_beep(max_beep_count);
  5608. #endif
  5609. idle(true);
  5610. }
  5611. KEEPALIVE_STATE(IN_HANDLER);
  5612. #if ENABLED(ULTIPANEL)
  5613. // Show "load" message
  5614. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5615. #endif
  5616. // Load filament
  5617. do_pause_e_move(load_length, FILAMENT_CHANGE_LOAD_FEEDRATE);
  5618. }
  5619. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5620. float extrude_length = initial_extrude_length;
  5621. do {
  5622. if (extrude_length > 0) {
  5623. // "Wait for filament extrude"
  5624. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5625. // Extrude filament to get into hotend
  5626. do_pause_e_move(extrude_length, ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5627. }
  5628. // Show "Extrude More" / "Resume" menu and wait for reply
  5629. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5630. wait_for_user = false;
  5631. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5632. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5633. KEEPALIVE_STATE(IN_HANDLER);
  5634. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5635. // Keep looping if "Extrude More" was selected
  5636. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5637. #endif
  5638. #if ENABLED(ULTIPANEL)
  5639. // "Wait for print to resume"
  5640. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5641. #endif
  5642. // Set extruder to saved position
  5643. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5644. planner.set_e_position_mm(current_position[E_AXIS]);
  5645. // Move XY to starting position, then Z
  5646. do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
  5647. do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
  5648. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5649. filament_ran_out = false;
  5650. #endif
  5651. #if ENABLED(ULTIPANEL)
  5652. // Show status screen
  5653. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5654. #endif
  5655. #if ENABLED(SDSUPPORT)
  5656. if (sd_print_paused) {
  5657. card.startFileprint();
  5658. sd_print_paused = false;
  5659. }
  5660. #endif
  5661. move_away_flag = false;
  5662. }
  5663. #endif // ADVANCED_PAUSE_FEATURE
  5664. #if ENABLED(SDSUPPORT)
  5665. /**
  5666. * M20: List SD card to serial output
  5667. */
  5668. inline void gcode_M20() {
  5669. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5670. card.ls();
  5671. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5672. }
  5673. /**
  5674. * M21: Init SD Card
  5675. */
  5676. inline void gcode_M21() { card.initsd(); }
  5677. /**
  5678. * M22: Release SD Card
  5679. */
  5680. inline void gcode_M22() { card.release(); }
  5681. /**
  5682. * M23: Open a file
  5683. */
  5684. inline void gcode_M23() {
  5685. // Simplify3D includes the size, so zero out all spaces (#7227)
  5686. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5687. card.openFile(parser.string_arg, true);
  5688. }
  5689. /**
  5690. * M24: Start or Resume SD Print
  5691. */
  5692. inline void gcode_M24() {
  5693. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5694. resume_print();
  5695. #endif
  5696. card.startFileprint();
  5697. print_job_timer.start();
  5698. }
  5699. /**
  5700. * M25: Pause SD Print
  5701. */
  5702. inline void gcode_M25() {
  5703. card.pauseSDPrint();
  5704. print_job_timer.pause();
  5705. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5706. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5707. #endif
  5708. }
  5709. /**
  5710. * M26: Set SD Card file index
  5711. */
  5712. inline void gcode_M26() {
  5713. if (card.cardOK && parser.seenval('S'))
  5714. card.setIndex(parser.value_long());
  5715. }
  5716. /**
  5717. * M27: Get SD Card status
  5718. */
  5719. inline void gcode_M27() { card.getStatus(); }
  5720. /**
  5721. * M28: Start SD Write
  5722. */
  5723. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5724. /**
  5725. * M29: Stop SD Write
  5726. * Processed in write to file routine above
  5727. */
  5728. inline void gcode_M29() {
  5729. // card.saving = false;
  5730. }
  5731. /**
  5732. * M30 <filename>: Delete SD Card file
  5733. */
  5734. inline void gcode_M30() {
  5735. if (card.cardOK) {
  5736. card.closefile();
  5737. card.removeFile(parser.string_arg);
  5738. }
  5739. }
  5740. #endif // SDSUPPORT
  5741. /**
  5742. * M31: Get the time since the start of SD Print (or last M109)
  5743. */
  5744. inline void gcode_M31() {
  5745. char buffer[21];
  5746. duration_t elapsed = print_job_timer.duration();
  5747. elapsed.toString(buffer);
  5748. lcd_setstatus(buffer);
  5749. SERIAL_ECHO_START();
  5750. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5751. }
  5752. #if ENABLED(SDSUPPORT)
  5753. /**
  5754. * M32: Select file and start SD Print
  5755. *
  5756. * Examples:
  5757. *
  5758. * M32 !PATH/TO/FILE.GCO# ; Start FILE.GCO
  5759. * M32 P !PATH/TO/FILE.GCO# ; Start FILE.GCO as a procedure
  5760. * M32 S60 !PATH/TO/FILE.GCO# ; Start FILE.GCO at byte 60
  5761. *
  5762. */
  5763. inline void gcode_M32() {
  5764. if (card.sdprinting) stepper.synchronize();
  5765. if (card.cardOK) {
  5766. const bool call_procedure = parser.boolval('P');
  5767. card.openFile(parser.string_arg, true, call_procedure);
  5768. if (parser.seenval('S')) card.setIndex(parser.value_long());
  5769. card.startFileprint();
  5770. // Procedure calls count as normal print time.
  5771. if (!call_procedure) print_job_timer.start();
  5772. }
  5773. }
  5774. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5775. /**
  5776. * M33: Get the long full path of a file or folder
  5777. *
  5778. * Parameters:
  5779. * <dospath> Case-insensitive DOS-style path to a file or folder
  5780. *
  5781. * Example:
  5782. * M33 miscel~1/armchair/armcha~1.gco
  5783. *
  5784. * Output:
  5785. * /Miscellaneous/Armchair/Armchair.gcode
  5786. */
  5787. inline void gcode_M33() {
  5788. card.printLongPath(parser.string_arg);
  5789. }
  5790. #endif
  5791. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5792. /**
  5793. * M34: Set SD Card Sorting Options
  5794. */
  5795. inline void gcode_M34() {
  5796. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5797. if (parser.seenval('F')) {
  5798. const int v = parser.value_long();
  5799. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5800. }
  5801. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5802. }
  5803. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5804. /**
  5805. * M928: Start SD Write
  5806. */
  5807. inline void gcode_M928() {
  5808. card.openLogFile(parser.string_arg);
  5809. }
  5810. #endif // SDSUPPORT
  5811. /**
  5812. * Sensitive pin test for M42, M226
  5813. */
  5814. static bool pin_is_protected(const int8_t pin) {
  5815. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5816. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5817. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5818. return false;
  5819. }
  5820. /**
  5821. * M42: Change pin status via GCode
  5822. *
  5823. * P<pin> Pin number (LED if omitted)
  5824. * S<byte> Pin status from 0 - 255
  5825. */
  5826. inline void gcode_M42() {
  5827. if (!parser.seenval('S')) return;
  5828. const byte pin_status = parser.value_byte();
  5829. const int pin_number = parser.intval('P', LED_PIN);
  5830. if (pin_number < 0) return;
  5831. if (pin_is_protected(pin_number)) {
  5832. SERIAL_ERROR_START();
  5833. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5834. return;
  5835. }
  5836. pinMode(pin_number, OUTPUT);
  5837. digitalWrite(pin_number, pin_status);
  5838. analogWrite(pin_number, pin_status);
  5839. #if FAN_COUNT > 0
  5840. switch (pin_number) {
  5841. #if HAS_FAN0
  5842. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5843. #endif
  5844. #if HAS_FAN1
  5845. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5846. #endif
  5847. #if HAS_FAN2
  5848. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5849. #endif
  5850. }
  5851. #endif
  5852. }
  5853. #if ENABLED(PINS_DEBUGGING)
  5854. #include "pinsDebug.h"
  5855. inline void toggle_pins() {
  5856. const bool I_flag = parser.boolval('I');
  5857. const int repeat = parser.intval('R', 1),
  5858. start = parser.intval('S'),
  5859. end = parser.intval('L', NUM_DIGITAL_PINS - 1),
  5860. wait = parser.intval('W', 500);
  5861. for (uint8_t pin = start; pin <= end; pin++) {
  5862. //report_pin_state_extended(pin, I_flag, false);
  5863. if (!I_flag && pin_is_protected(pin)) {
  5864. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5865. SERIAL_EOL();
  5866. }
  5867. else {
  5868. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5869. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5870. if (pin == TEENSY_E2) {
  5871. SET_OUTPUT(TEENSY_E2);
  5872. for (int16_t j = 0; j < repeat; j++) {
  5873. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5874. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5875. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5876. }
  5877. }
  5878. else if (pin == TEENSY_E3) {
  5879. SET_OUTPUT(TEENSY_E3);
  5880. for (int16_t j = 0; j < repeat; j++) {
  5881. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5882. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5883. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5884. }
  5885. }
  5886. else
  5887. #endif
  5888. {
  5889. pinMode(pin, OUTPUT);
  5890. for (int16_t j = 0; j < repeat; j++) {
  5891. digitalWrite(pin, 0); safe_delay(wait);
  5892. digitalWrite(pin, 1); safe_delay(wait);
  5893. digitalWrite(pin, 0); safe_delay(wait);
  5894. }
  5895. }
  5896. }
  5897. SERIAL_EOL();
  5898. }
  5899. SERIAL_ECHOLNPGM("Done.");
  5900. } // toggle_pins
  5901. inline void servo_probe_test() {
  5902. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5903. SERIAL_ERROR_START();
  5904. SERIAL_ERRORLNPGM("SERVO not setup");
  5905. #elif !HAS_Z_SERVO_ENDSTOP
  5906. SERIAL_ERROR_START();
  5907. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5908. #else // HAS_Z_SERVO_ENDSTOP
  5909. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5910. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5911. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5912. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5913. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5914. bool probe_inverting;
  5915. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5916. #define PROBE_TEST_PIN Z_MIN_PIN
  5917. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5918. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5919. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5920. #if Z_MIN_ENDSTOP_INVERTING
  5921. SERIAL_PROTOCOLLNPGM("true");
  5922. #else
  5923. SERIAL_PROTOCOLLNPGM("false");
  5924. #endif
  5925. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5926. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5927. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5928. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5929. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5930. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5931. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5932. SERIAL_PROTOCOLLNPGM("true");
  5933. #else
  5934. SERIAL_PROTOCOLLNPGM("false");
  5935. #endif
  5936. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5937. #endif
  5938. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5939. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  5940. bool deploy_state, stow_state;
  5941. for (uint8_t i = 0; i < 4; i++) {
  5942. MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
  5943. safe_delay(500);
  5944. deploy_state = READ(PROBE_TEST_PIN);
  5945. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5946. safe_delay(500);
  5947. stow_state = READ(PROBE_TEST_PIN);
  5948. }
  5949. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5950. refresh_cmd_timeout();
  5951. if (deploy_state != stow_state) {
  5952. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5953. if (deploy_state) {
  5954. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5955. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5956. }
  5957. else {
  5958. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5959. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5960. }
  5961. #if ENABLED(BLTOUCH)
  5962. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5963. #endif
  5964. }
  5965. else { // measure active signal length
  5966. MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
  5967. safe_delay(500);
  5968. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5969. uint16_t probe_counter = 0;
  5970. // Allow 30 seconds max for operator to trigger probe
  5971. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5972. safe_delay(2);
  5973. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5974. refresh_cmd_timeout();
  5975. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  5976. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  5977. safe_delay(2);
  5978. if (probe_counter == 50)
  5979. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5980. else if (probe_counter >= 2)
  5981. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5982. else
  5983. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5984. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5985. } // pulse detected
  5986. } // for loop waiting for trigger
  5987. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5988. } // measure active signal length
  5989. #endif
  5990. } // servo_probe_test
  5991. /**
  5992. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5993. *
  5994. * M43 - report name and state of pin(s)
  5995. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5996. * I Flag to ignore Marlin's pin protection.
  5997. *
  5998. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5999. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  6000. * I Flag to ignore Marlin's pin protection.
  6001. *
  6002. * M43 E<bool> - Enable / disable background endstop monitoring
  6003. * - Machine continues to operate
  6004. * - Reports changes to endstops
  6005. * - Toggles LED_PIN when an endstop changes
  6006. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  6007. *
  6008. * M43 T - Toggle pin(s) and report which pin is being toggled
  6009. * S<pin> - Start Pin number. If not given, will default to 0
  6010. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  6011. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  6012. * R - Repeat pulses on each pin this number of times before continueing to next pin
  6013. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  6014. *
  6015. * M43 S - Servo probe test
  6016. * P<index> - Probe index (optional - defaults to 0
  6017. */
  6018. inline void gcode_M43() {
  6019. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  6020. toggle_pins();
  6021. return;
  6022. }
  6023. // Enable or disable endstop monitoring
  6024. if (parser.seen('E')) {
  6025. endstop_monitor_flag = parser.value_bool();
  6026. SERIAL_PROTOCOLPGM("endstop monitor ");
  6027. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  6028. SERIAL_PROTOCOLLNPGM("abled");
  6029. return;
  6030. }
  6031. if (parser.seen('S')) {
  6032. servo_probe_test();
  6033. return;
  6034. }
  6035. // Get the range of pins to test or watch
  6036. const uint8_t first_pin = parser.byteval('P'),
  6037. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  6038. if (first_pin > last_pin) return;
  6039. const bool ignore_protection = parser.boolval('I');
  6040. // Watch until click, M108, or reset
  6041. if (parser.boolval('W')) {
  6042. SERIAL_PROTOCOLLNPGM("Watching pins");
  6043. byte pin_state[last_pin - first_pin + 1];
  6044. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6045. if (pin_is_protected(pin) && !ignore_protection) continue;
  6046. pinMode(pin, INPUT_PULLUP);
  6047. delay(1);
  6048. /*
  6049. if (IS_ANALOG(pin))
  6050. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  6051. else
  6052. //*/
  6053. pin_state[pin - first_pin] = digitalRead(pin);
  6054. }
  6055. #if HAS_RESUME_CONTINUE
  6056. wait_for_user = true;
  6057. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6058. #endif
  6059. for (;;) {
  6060. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6061. if (pin_is_protected(pin) && !ignore_protection) continue;
  6062. const byte val =
  6063. /*
  6064. IS_ANALOG(pin)
  6065. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  6066. :
  6067. //*/
  6068. digitalRead(pin);
  6069. if (val != pin_state[pin - first_pin]) {
  6070. report_pin_state_extended(pin, ignore_protection, false);
  6071. pin_state[pin - first_pin] = val;
  6072. }
  6073. }
  6074. #if HAS_RESUME_CONTINUE
  6075. if (!wait_for_user) {
  6076. KEEPALIVE_STATE(IN_HANDLER);
  6077. break;
  6078. }
  6079. #endif
  6080. safe_delay(200);
  6081. }
  6082. return;
  6083. }
  6084. // Report current state of selected pin(s)
  6085. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  6086. report_pin_state_extended(pin, ignore_protection, true);
  6087. }
  6088. #endif // PINS_DEBUGGING
  6089. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6090. /**
  6091. * M48: Z probe repeatability measurement function.
  6092. *
  6093. * Usage:
  6094. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  6095. * P = Number of sampled points (4-50, default 10)
  6096. * X = Sample X position
  6097. * Y = Sample Y position
  6098. * V = Verbose level (0-4, default=1)
  6099. * E = Engage Z probe for each reading
  6100. * L = Number of legs of movement before probe
  6101. * S = Schizoid (Or Star if you prefer)
  6102. *
  6103. * This function assumes the bed has been homed. Specifically, that a G28 command
  6104. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  6105. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  6106. * regenerated.
  6107. */
  6108. inline void gcode_M48() {
  6109. if (axis_unhomed_error()) return;
  6110. const int8_t verbose_level = parser.byteval('V', 1);
  6111. if (!WITHIN(verbose_level, 0, 4)) {
  6112. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  6113. return;
  6114. }
  6115. if (verbose_level > 0)
  6116. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  6117. const int8_t n_samples = parser.byteval('P', 10);
  6118. if (!WITHIN(n_samples, 4, 50)) {
  6119. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  6120. return;
  6121. }
  6122. const bool stow_probe_after_each = parser.boolval('E');
  6123. float X_current = current_position[X_AXIS],
  6124. Y_current = current_position[Y_AXIS];
  6125. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  6126. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6127. #if DISABLED(DELTA)
  6128. if (!WITHIN(X_probe_location, MIN_PROBE_X, MAX_PROBE_X)) {
  6129. out_of_range_error(PSTR("X"));
  6130. return;
  6131. }
  6132. if (!WITHIN(Y_probe_location, MIN_PROBE_Y, MAX_PROBE_Y)) {
  6133. out_of_range_error(PSTR("Y"));
  6134. return;
  6135. }
  6136. #else
  6137. if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) {
  6138. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  6139. return;
  6140. }
  6141. #endif
  6142. bool seen_L = parser.seen('L');
  6143. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  6144. if (n_legs > 15) {
  6145. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  6146. return;
  6147. }
  6148. if (n_legs == 1) n_legs = 2;
  6149. const bool schizoid_flag = parser.boolval('S');
  6150. if (schizoid_flag && !seen_L) n_legs = 7;
  6151. /**
  6152. * Now get everything to the specified probe point So we can safely do a
  6153. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  6154. * we don't want to use that as a starting point for each probe.
  6155. */
  6156. if (verbose_level > 2)
  6157. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  6158. // Disable bed level correction in M48 because we want the raw data when we probe
  6159. #if HAS_LEVELING
  6160. const bool was_enabled = planner.leveling_active;
  6161. set_bed_leveling_enabled(false);
  6162. #endif
  6163. setup_for_endstop_or_probe_move();
  6164. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  6165. // Move to the first point, deploy, and probe
  6166. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  6167. bool probing_good = !isnan(t);
  6168. if (probing_good) {
  6169. randomSeed(millis());
  6170. for (uint8_t n = 0; n < n_samples; n++) {
  6171. if (n_legs) {
  6172. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  6173. float angle = random(0.0, 360.0);
  6174. const float radius = random(
  6175. #if ENABLED(DELTA)
  6176. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  6177. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  6178. #else
  6179. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  6180. #endif
  6181. );
  6182. if (verbose_level > 3) {
  6183. SERIAL_ECHOPAIR("Starting radius: ", radius);
  6184. SERIAL_ECHOPAIR(" angle: ", angle);
  6185. SERIAL_ECHOPGM(" Direction: ");
  6186. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  6187. SERIAL_ECHOLNPGM("Clockwise");
  6188. }
  6189. for (uint8_t l = 0; l < n_legs - 1; l++) {
  6190. double delta_angle;
  6191. if (schizoid_flag)
  6192. // The points of a 5 point star are 72 degrees apart. We need to
  6193. // skip a point and go to the next one on the star.
  6194. delta_angle = dir * 2.0 * 72.0;
  6195. else
  6196. // If we do this line, we are just trying to move further
  6197. // around the circle.
  6198. delta_angle = dir * (float) random(25, 45);
  6199. angle += delta_angle;
  6200. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  6201. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  6202. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  6203. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  6204. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  6205. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  6206. #if DISABLED(DELTA)
  6207. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  6208. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  6209. #else
  6210. // If we have gone out too far, we can do a simple fix and scale the numbers
  6211. // back in closer to the origin.
  6212. while (!position_is_reachable_by_probe(X_current, Y_current)) {
  6213. X_current *= 0.8;
  6214. Y_current *= 0.8;
  6215. if (verbose_level > 3) {
  6216. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  6217. SERIAL_ECHOLNPAIR(", ", Y_current);
  6218. }
  6219. }
  6220. #endif
  6221. if (verbose_level > 3) {
  6222. SERIAL_PROTOCOLPGM("Going to:");
  6223. SERIAL_ECHOPAIR(" X", X_current);
  6224. SERIAL_ECHOPAIR(" Y", Y_current);
  6225. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  6226. }
  6227. do_blocking_move_to_xy(X_current, Y_current);
  6228. } // n_legs loop
  6229. } // n_legs
  6230. // Probe a single point
  6231. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  6232. // Break the loop if the probe fails
  6233. probing_good = !isnan(sample_set[n]);
  6234. if (!probing_good) break;
  6235. /**
  6236. * Get the current mean for the data points we have so far
  6237. */
  6238. double sum = 0.0;
  6239. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  6240. mean = sum / (n + 1);
  6241. NOMORE(min, sample_set[n]);
  6242. NOLESS(max, sample_set[n]);
  6243. /**
  6244. * Now, use that mean to calculate the standard deviation for the
  6245. * data points we have so far
  6246. */
  6247. sum = 0.0;
  6248. for (uint8_t j = 0; j <= n; j++)
  6249. sum += sq(sample_set[j] - mean);
  6250. sigma = SQRT(sum / (n + 1));
  6251. if (verbose_level > 0) {
  6252. if (verbose_level > 1) {
  6253. SERIAL_PROTOCOL(n + 1);
  6254. SERIAL_PROTOCOLPGM(" of ");
  6255. SERIAL_PROTOCOL((int)n_samples);
  6256. SERIAL_PROTOCOLPGM(": z: ");
  6257. SERIAL_PROTOCOL_F(sample_set[n], 3);
  6258. if (verbose_level > 2) {
  6259. SERIAL_PROTOCOLPGM(" mean: ");
  6260. SERIAL_PROTOCOL_F(mean, 4);
  6261. SERIAL_PROTOCOLPGM(" sigma: ");
  6262. SERIAL_PROTOCOL_F(sigma, 6);
  6263. SERIAL_PROTOCOLPGM(" min: ");
  6264. SERIAL_PROTOCOL_F(min, 3);
  6265. SERIAL_PROTOCOLPGM(" max: ");
  6266. SERIAL_PROTOCOL_F(max, 3);
  6267. SERIAL_PROTOCOLPGM(" range: ");
  6268. SERIAL_PROTOCOL_F(max-min, 3);
  6269. }
  6270. SERIAL_EOL();
  6271. }
  6272. }
  6273. } // n_samples loop
  6274. }
  6275. STOW_PROBE();
  6276. if (probing_good) {
  6277. SERIAL_PROTOCOLLNPGM("Finished!");
  6278. if (verbose_level > 0) {
  6279. SERIAL_PROTOCOLPGM("Mean: ");
  6280. SERIAL_PROTOCOL_F(mean, 6);
  6281. SERIAL_PROTOCOLPGM(" Min: ");
  6282. SERIAL_PROTOCOL_F(min, 3);
  6283. SERIAL_PROTOCOLPGM(" Max: ");
  6284. SERIAL_PROTOCOL_F(max, 3);
  6285. SERIAL_PROTOCOLPGM(" Range: ");
  6286. SERIAL_PROTOCOL_F(max-min, 3);
  6287. SERIAL_EOL();
  6288. }
  6289. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  6290. SERIAL_PROTOCOL_F(sigma, 6);
  6291. SERIAL_EOL();
  6292. SERIAL_EOL();
  6293. }
  6294. clean_up_after_endstop_or_probe_move();
  6295. // Re-enable bed level correction if it had been on
  6296. #if HAS_LEVELING
  6297. set_bed_leveling_enabled(was_enabled);
  6298. #endif
  6299. report_current_position();
  6300. }
  6301. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6302. #if ENABLED(G26_MESH_VALIDATION)
  6303. inline void gcode_M49() {
  6304. g26_debug_flag ^= true;
  6305. SERIAL_PROTOCOLPGM("G26 Debug ");
  6306. serialprintPGM(g26_debug_flag ? PSTR("on.") : PSTR("off."));
  6307. }
  6308. #endif // G26_MESH_VALIDATION
  6309. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  6310. /**
  6311. * M73: Set percentage complete (for display on LCD)
  6312. *
  6313. * Example:
  6314. * M73 P25 ; Set progress to 25%
  6315. *
  6316. * Notes:
  6317. * This has no effect during an SD print job
  6318. */
  6319. inline void gcode_M73() {
  6320. if (!IS_SD_PRINTING && parser.seen('P')) {
  6321. progress_bar_percent = parser.value_byte();
  6322. NOMORE(progress_bar_percent, 100);
  6323. }
  6324. }
  6325. #endif // ULTRA_LCD && LCD_SET_PROGRESS_MANUALLY
  6326. /**
  6327. * M75: Start print timer
  6328. */
  6329. inline void gcode_M75() { print_job_timer.start(); }
  6330. /**
  6331. * M76: Pause print timer
  6332. */
  6333. inline void gcode_M76() { print_job_timer.pause(); }
  6334. /**
  6335. * M77: Stop print timer
  6336. */
  6337. inline void gcode_M77() { print_job_timer.stop(); }
  6338. #if ENABLED(PRINTCOUNTER)
  6339. /**
  6340. * M78: Show print statistics
  6341. */
  6342. inline void gcode_M78() {
  6343. // "M78 S78" will reset the statistics
  6344. if (parser.intval('S') == 78)
  6345. print_job_timer.initStats();
  6346. else
  6347. print_job_timer.showStats();
  6348. }
  6349. #endif
  6350. /**
  6351. * M104: Set hot end temperature
  6352. */
  6353. inline void gcode_M104() {
  6354. if (get_target_extruder_from_command(104)) return;
  6355. if (DEBUGGING(DRYRUN)) return;
  6356. #if ENABLED(SINGLENOZZLE)
  6357. if (target_extruder != active_extruder) return;
  6358. #endif
  6359. if (parser.seenval('S')) {
  6360. const int16_t temp = parser.value_celsius();
  6361. thermalManager.setTargetHotend(temp, target_extruder);
  6362. #if ENABLED(DUAL_X_CARRIAGE)
  6363. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6364. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6365. #endif
  6366. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6367. /**
  6368. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6369. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6370. * standby mode, for instance in a dual extruder setup, without affecting
  6371. * the running print timer.
  6372. */
  6373. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6374. print_job_timer.stop();
  6375. LCD_MESSAGEPGM(WELCOME_MSG);
  6376. }
  6377. #endif
  6378. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6379. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6380. }
  6381. #if ENABLED(AUTOTEMP)
  6382. planner.autotemp_M104_M109();
  6383. #endif
  6384. }
  6385. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6386. void print_heater_state(const float &c, const float &t,
  6387. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6388. const float r,
  6389. #endif
  6390. const int8_t e=-2
  6391. ) {
  6392. #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
  6393. UNUSED(e);
  6394. #endif
  6395. SERIAL_PROTOCOLCHAR(' ');
  6396. SERIAL_PROTOCOLCHAR(
  6397. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  6398. e == -1 ? 'B' : 'T'
  6399. #elif HAS_TEMP_HOTEND
  6400. 'T'
  6401. #else
  6402. 'B'
  6403. #endif
  6404. );
  6405. #if HOTENDS > 1
  6406. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  6407. #endif
  6408. SERIAL_PROTOCOLCHAR(':');
  6409. SERIAL_PROTOCOL(c);
  6410. SERIAL_PROTOCOLPAIR(" /" , t);
  6411. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6412. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  6413. SERIAL_PROTOCOLCHAR(')');
  6414. #endif
  6415. }
  6416. void print_heaterstates() {
  6417. #if HAS_TEMP_HOTEND
  6418. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  6419. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6420. , thermalManager.rawHotendTemp(target_extruder)
  6421. #endif
  6422. );
  6423. #endif
  6424. #if HAS_TEMP_BED
  6425. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  6426. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6427. thermalManager.rawBedTemp(),
  6428. #endif
  6429. -1 // BED
  6430. );
  6431. #endif
  6432. #if HOTENDS > 1
  6433. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  6434. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6435. thermalManager.rawHotendTemp(e),
  6436. #endif
  6437. e
  6438. );
  6439. #endif
  6440. SERIAL_PROTOCOLPGM(" @:");
  6441. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  6442. #if HAS_TEMP_BED
  6443. SERIAL_PROTOCOLPGM(" B@:");
  6444. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  6445. #endif
  6446. #if HOTENDS > 1
  6447. HOTEND_LOOP() {
  6448. SERIAL_PROTOCOLPAIR(" @", e);
  6449. SERIAL_PROTOCOLCHAR(':');
  6450. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  6451. }
  6452. #endif
  6453. }
  6454. #endif
  6455. /**
  6456. * M105: Read hot end and bed temperature
  6457. */
  6458. inline void gcode_M105() {
  6459. if (get_target_extruder_from_command(105)) return;
  6460. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6461. SERIAL_PROTOCOLPGM(MSG_OK);
  6462. print_heaterstates();
  6463. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6464. SERIAL_ERROR_START();
  6465. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6466. #endif
  6467. SERIAL_EOL();
  6468. }
  6469. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6470. static uint8_t auto_report_temp_interval;
  6471. static millis_t next_temp_report_ms;
  6472. /**
  6473. * M155: Set temperature auto-report interval. M155 S<seconds>
  6474. */
  6475. inline void gcode_M155() {
  6476. if (parser.seenval('S')) {
  6477. auto_report_temp_interval = parser.value_byte();
  6478. NOMORE(auto_report_temp_interval, 60);
  6479. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6480. }
  6481. }
  6482. inline void auto_report_temperatures() {
  6483. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6484. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6485. print_heaterstates();
  6486. SERIAL_EOL();
  6487. }
  6488. }
  6489. #endif // AUTO_REPORT_TEMPERATURES
  6490. #if FAN_COUNT > 0
  6491. /**
  6492. * M106: Set Fan Speed
  6493. *
  6494. * S<int> Speed between 0-255
  6495. * P<index> Fan index, if more than one fan
  6496. *
  6497. * With EXTRA_FAN_SPEED enabled:
  6498. *
  6499. * T<int> Restore/Use/Set Temporary Speed:
  6500. * 1 = Restore previous speed after T2
  6501. * 2 = Use temporary speed set with T3-255
  6502. * 3-255 = Set the speed for use with T2
  6503. */
  6504. inline void gcode_M106() {
  6505. const uint8_t p = parser.byteval('P');
  6506. if (p < FAN_COUNT) {
  6507. #if ENABLED(EXTRA_FAN_SPEED)
  6508. const int16_t t = parser.intval('T');
  6509. if (t > 0) {
  6510. switch (t) {
  6511. case 1:
  6512. fanSpeeds[p] = old_fanSpeeds[p];
  6513. break;
  6514. case 2:
  6515. old_fanSpeeds[p] = fanSpeeds[p];
  6516. fanSpeeds[p] = new_fanSpeeds[p];
  6517. break;
  6518. default:
  6519. new_fanSpeeds[p] = min(t, 255);
  6520. break;
  6521. }
  6522. return;
  6523. }
  6524. #endif // EXTRA_FAN_SPEED
  6525. const uint16_t s = parser.ushortval('S', 255);
  6526. fanSpeeds[p] = min(s, 255);
  6527. }
  6528. }
  6529. /**
  6530. * M107: Fan Off
  6531. */
  6532. inline void gcode_M107() {
  6533. const uint16_t p = parser.ushortval('P');
  6534. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6535. }
  6536. #endif // FAN_COUNT > 0
  6537. #if DISABLED(EMERGENCY_PARSER)
  6538. /**
  6539. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6540. */
  6541. inline void gcode_M108() { wait_for_heatup = false; }
  6542. /**
  6543. * M112: Emergency Stop
  6544. */
  6545. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6546. /**
  6547. * M410: Quickstop - Abort all planned moves
  6548. *
  6549. * This will stop the carriages mid-move, so most likely they
  6550. * will be out of sync with the stepper position after this.
  6551. */
  6552. inline void gcode_M410() { quickstop_stepper(); }
  6553. #endif
  6554. /**
  6555. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6556. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6557. */
  6558. #ifndef MIN_COOLING_SLOPE_DEG
  6559. #define MIN_COOLING_SLOPE_DEG 1.50
  6560. #endif
  6561. #ifndef MIN_COOLING_SLOPE_TIME
  6562. #define MIN_COOLING_SLOPE_TIME 60
  6563. #endif
  6564. inline void gcode_M109() {
  6565. if (get_target_extruder_from_command(109)) return;
  6566. if (DEBUGGING(DRYRUN)) return;
  6567. #if ENABLED(SINGLENOZZLE)
  6568. if (target_extruder != active_extruder) return;
  6569. #endif
  6570. const bool no_wait_for_cooling = parser.seenval('S');
  6571. if (no_wait_for_cooling || parser.seenval('R')) {
  6572. const int16_t temp = parser.value_celsius();
  6573. thermalManager.setTargetHotend(temp, target_extruder);
  6574. #if ENABLED(DUAL_X_CARRIAGE)
  6575. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6576. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6577. #endif
  6578. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6579. /**
  6580. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6581. * standby mode, (e.g., in a dual extruder setup) without affecting
  6582. * the running print timer.
  6583. */
  6584. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6585. print_job_timer.stop();
  6586. LCD_MESSAGEPGM(WELCOME_MSG);
  6587. }
  6588. else
  6589. print_job_timer.start();
  6590. #endif
  6591. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6592. }
  6593. else return;
  6594. #if ENABLED(AUTOTEMP)
  6595. planner.autotemp_M104_M109();
  6596. #endif
  6597. #if TEMP_RESIDENCY_TIME > 0
  6598. millis_t residency_start_ms = 0;
  6599. // Loop until the temperature has stabilized
  6600. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6601. #else
  6602. // Loop until the temperature is very close target
  6603. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6604. #endif
  6605. float target_temp = -1.0, old_temp = 9999.0;
  6606. bool wants_to_cool = false;
  6607. wait_for_heatup = true;
  6608. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6609. #if DISABLED(BUSY_WHILE_HEATING)
  6610. KEEPALIVE_STATE(NOT_BUSY);
  6611. #endif
  6612. #if ENABLED(PRINTER_EVENT_LEDS)
  6613. const float start_temp = thermalManager.degHotend(target_extruder);
  6614. uint8_t old_blue = 0;
  6615. #endif
  6616. do {
  6617. // Target temperature might be changed during the loop
  6618. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6619. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6620. target_temp = thermalManager.degTargetHotend(target_extruder);
  6621. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6622. if (no_wait_for_cooling && wants_to_cool) break;
  6623. }
  6624. now = millis();
  6625. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6626. next_temp_ms = now + 1000UL;
  6627. print_heaterstates();
  6628. #if TEMP_RESIDENCY_TIME > 0
  6629. SERIAL_PROTOCOLPGM(" W:");
  6630. if (residency_start_ms)
  6631. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6632. else
  6633. SERIAL_PROTOCOLCHAR('?');
  6634. #endif
  6635. SERIAL_EOL();
  6636. }
  6637. idle();
  6638. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6639. const float temp = thermalManager.degHotend(target_extruder);
  6640. #if ENABLED(PRINTER_EVENT_LEDS)
  6641. // Gradually change LED strip from violet to red as nozzle heats up
  6642. if (!wants_to_cool) {
  6643. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6644. if (blue != old_blue) {
  6645. old_blue = blue;
  6646. leds.set_color(
  6647. MakeLEDColor(255, 0, blue, 0, pixels.getBrightness())
  6648. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6649. , true
  6650. #endif
  6651. );
  6652. }
  6653. }
  6654. #endif
  6655. #if TEMP_RESIDENCY_TIME > 0
  6656. const float temp_diff = FABS(target_temp - temp);
  6657. if (!residency_start_ms) {
  6658. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6659. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6660. }
  6661. else if (temp_diff > TEMP_HYSTERESIS) {
  6662. // Restart the timer whenever the temperature falls outside the hysteresis.
  6663. residency_start_ms = now;
  6664. }
  6665. #endif
  6666. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6667. if (wants_to_cool) {
  6668. // break after MIN_COOLING_SLOPE_TIME seconds
  6669. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6670. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6671. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6672. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6673. old_temp = temp;
  6674. }
  6675. }
  6676. } while (wait_for_heatup && TEMP_CONDITIONS);
  6677. if (wait_for_heatup) {
  6678. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6679. #if ENABLED(PRINTER_EVENT_LEDS)
  6680. leds.set_white();
  6681. #endif
  6682. }
  6683. #if DISABLED(BUSY_WHILE_HEATING)
  6684. KEEPALIVE_STATE(IN_HANDLER);
  6685. #endif
  6686. }
  6687. #if HAS_TEMP_BED
  6688. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6689. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6690. #endif
  6691. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6692. #define MIN_COOLING_SLOPE_TIME_BED 60
  6693. #endif
  6694. /**
  6695. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6696. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6697. */
  6698. inline void gcode_M190() {
  6699. if (DEBUGGING(DRYRUN)) return;
  6700. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6701. const bool no_wait_for_cooling = parser.seenval('S');
  6702. if (no_wait_for_cooling || parser.seenval('R')) {
  6703. thermalManager.setTargetBed(parser.value_celsius());
  6704. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6705. if (parser.value_celsius() > BED_MINTEMP)
  6706. print_job_timer.start();
  6707. #endif
  6708. }
  6709. else return;
  6710. #if TEMP_BED_RESIDENCY_TIME > 0
  6711. millis_t residency_start_ms = 0;
  6712. // Loop until the temperature has stabilized
  6713. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6714. #else
  6715. // Loop until the temperature is very close target
  6716. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6717. #endif
  6718. float target_temp = -1.0, old_temp = 9999.0;
  6719. bool wants_to_cool = false;
  6720. wait_for_heatup = true;
  6721. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6722. #if DISABLED(BUSY_WHILE_HEATING)
  6723. KEEPALIVE_STATE(NOT_BUSY);
  6724. #endif
  6725. target_extruder = active_extruder; // for print_heaterstates
  6726. #if ENABLED(PRINTER_EVENT_LEDS)
  6727. const float start_temp = thermalManager.degBed();
  6728. uint8_t old_red = 255;
  6729. #endif
  6730. do {
  6731. // Target temperature might be changed during the loop
  6732. if (target_temp != thermalManager.degTargetBed()) {
  6733. wants_to_cool = thermalManager.isCoolingBed();
  6734. target_temp = thermalManager.degTargetBed();
  6735. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6736. if (no_wait_for_cooling && wants_to_cool) break;
  6737. }
  6738. now = millis();
  6739. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6740. next_temp_ms = now + 1000UL;
  6741. print_heaterstates();
  6742. #if TEMP_BED_RESIDENCY_TIME > 0
  6743. SERIAL_PROTOCOLPGM(" W:");
  6744. if (residency_start_ms)
  6745. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6746. else
  6747. SERIAL_PROTOCOLCHAR('?');
  6748. #endif
  6749. SERIAL_EOL();
  6750. }
  6751. idle();
  6752. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6753. const float temp = thermalManager.degBed();
  6754. #if ENABLED(PRINTER_EVENT_LEDS)
  6755. // Gradually change LED strip from blue to violet as bed heats up
  6756. if (!wants_to_cool) {
  6757. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6758. if (red != old_red) {
  6759. old_red = red;
  6760. leds.set_color(
  6761. MakeLEDColor(red, 0, 255, 0, pixels.getBrightness())
  6762. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6763. , true
  6764. #endif
  6765. );
  6766. }
  6767. }
  6768. #endif
  6769. #if TEMP_BED_RESIDENCY_TIME > 0
  6770. const float temp_diff = FABS(target_temp - temp);
  6771. if (!residency_start_ms) {
  6772. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6773. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6774. }
  6775. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6776. // Restart the timer whenever the temperature falls outside the hysteresis.
  6777. residency_start_ms = now;
  6778. }
  6779. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6780. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6781. if (wants_to_cool) {
  6782. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6783. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6784. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6785. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6786. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6787. old_temp = temp;
  6788. }
  6789. }
  6790. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6791. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6792. #if DISABLED(BUSY_WHILE_HEATING)
  6793. KEEPALIVE_STATE(IN_HANDLER);
  6794. #endif
  6795. }
  6796. #endif // HAS_TEMP_BED
  6797. /**
  6798. * M110: Set Current Line Number
  6799. */
  6800. inline void gcode_M110() {
  6801. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6802. }
  6803. /**
  6804. * M111: Set the debug level
  6805. */
  6806. inline void gcode_M111() {
  6807. if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
  6808. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
  6809. str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
  6810. str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
  6811. str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
  6812. str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
  6813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6814. , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
  6815. #endif
  6816. ;
  6817. const static char* const debug_strings[] PROGMEM = {
  6818. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6819. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6820. , str_debug_32
  6821. #endif
  6822. };
  6823. SERIAL_ECHO_START();
  6824. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6825. if (marlin_debug_flags) {
  6826. uint8_t comma = 0;
  6827. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6828. if (TEST(marlin_debug_flags, i)) {
  6829. if (comma++) SERIAL_CHAR(',');
  6830. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6831. }
  6832. }
  6833. }
  6834. else {
  6835. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6836. }
  6837. SERIAL_EOL();
  6838. }
  6839. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6840. /**
  6841. * M113: Get or set Host Keepalive interval (0 to disable)
  6842. *
  6843. * S<seconds> Optional. Set the keepalive interval.
  6844. */
  6845. inline void gcode_M113() {
  6846. if (parser.seenval('S')) {
  6847. host_keepalive_interval = parser.value_byte();
  6848. NOMORE(host_keepalive_interval, 60);
  6849. }
  6850. else {
  6851. SERIAL_ECHO_START();
  6852. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6853. }
  6854. }
  6855. #endif
  6856. #if ENABLED(BARICUDA)
  6857. #if HAS_HEATER_1
  6858. /**
  6859. * M126: Heater 1 valve open
  6860. */
  6861. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6862. /**
  6863. * M127: Heater 1 valve close
  6864. */
  6865. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6866. #endif
  6867. #if HAS_HEATER_2
  6868. /**
  6869. * M128: Heater 2 valve open
  6870. */
  6871. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6872. /**
  6873. * M129: Heater 2 valve close
  6874. */
  6875. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6876. #endif
  6877. #endif // BARICUDA
  6878. /**
  6879. * M140: Set bed temperature
  6880. */
  6881. inline void gcode_M140() {
  6882. if (DEBUGGING(DRYRUN)) return;
  6883. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6884. }
  6885. #if ENABLED(ULTIPANEL)
  6886. /**
  6887. * M145: Set the heatup state for a material in the LCD menu
  6888. *
  6889. * S<material> (0=PLA, 1=ABS)
  6890. * H<hotend temp>
  6891. * B<bed temp>
  6892. * F<fan speed>
  6893. */
  6894. inline void gcode_M145() {
  6895. const uint8_t material = (uint8_t)parser.intval('S');
  6896. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6897. SERIAL_ERROR_START();
  6898. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6899. }
  6900. else {
  6901. int v;
  6902. if (parser.seenval('H')) {
  6903. v = parser.value_int();
  6904. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6905. }
  6906. if (parser.seenval('F')) {
  6907. v = parser.value_int();
  6908. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6909. }
  6910. #if TEMP_SENSOR_BED != 0
  6911. if (parser.seenval('B')) {
  6912. v = parser.value_int();
  6913. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6914. }
  6915. #endif
  6916. }
  6917. }
  6918. #endif // ULTIPANEL
  6919. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6920. /**
  6921. * M149: Set temperature units
  6922. */
  6923. inline void gcode_M149() {
  6924. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  6925. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  6926. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  6927. }
  6928. #endif
  6929. #if HAS_POWER_SWITCH
  6930. /**
  6931. * M80 : Turn on the Power Supply
  6932. * M80 S : Report the current state and exit
  6933. */
  6934. inline void gcode_M80() {
  6935. // S: Report the current power supply state and exit
  6936. if (parser.seen('S')) {
  6937. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6938. return;
  6939. }
  6940. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6941. /**
  6942. * If you have a switch on suicide pin, this is useful
  6943. * if you want to start another print with suicide feature after
  6944. * a print without suicide...
  6945. */
  6946. #if HAS_SUICIDE
  6947. OUT_WRITE(SUICIDE_PIN, HIGH);
  6948. #endif
  6949. #if ENABLED(HAVE_TMC2130)
  6950. delay(100);
  6951. tmc2130_init(); // Settings only stick when the driver has power
  6952. #endif
  6953. powersupply_on = true;
  6954. #if ENABLED(ULTIPANEL)
  6955. LCD_MESSAGEPGM(WELCOME_MSG);
  6956. #endif
  6957. }
  6958. #endif // HAS_POWER_SWITCH
  6959. /**
  6960. * M81: Turn off Power, including Power Supply, if there is one.
  6961. *
  6962. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6963. */
  6964. inline void gcode_M81() {
  6965. thermalManager.disable_all_heaters();
  6966. stepper.finish_and_disable();
  6967. #if FAN_COUNT > 0
  6968. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6969. #if ENABLED(PROBING_FANS_OFF)
  6970. fans_paused = false;
  6971. ZERO(paused_fanSpeeds);
  6972. #endif
  6973. #endif
  6974. safe_delay(1000); // Wait 1 second before switching off
  6975. #if HAS_SUICIDE
  6976. stepper.synchronize();
  6977. suicide();
  6978. #elif HAS_POWER_SWITCH
  6979. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6980. powersupply_on = false;
  6981. #endif
  6982. #if ENABLED(ULTIPANEL)
  6983. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6984. #endif
  6985. }
  6986. /**
  6987. * M82: Set E codes absolute (default)
  6988. */
  6989. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6990. /**
  6991. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6992. */
  6993. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6994. /**
  6995. * M18, M84: Disable stepper motors
  6996. */
  6997. inline void gcode_M18_M84() {
  6998. if (parser.seenval('S')) {
  6999. stepper_inactive_time = parser.value_millis_from_seconds();
  7000. }
  7001. else {
  7002. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  7003. if (all_axis) {
  7004. stepper.finish_and_disable();
  7005. }
  7006. else {
  7007. stepper.synchronize();
  7008. if (parser.seen('X')) disable_X();
  7009. if (parser.seen('Y')) disable_Y();
  7010. if (parser.seen('Z')) disable_Z();
  7011. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  7012. if (parser.seen('E')) disable_e_steppers();
  7013. #endif
  7014. }
  7015. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  7016. ubl.lcd_map_control = defer_return_to_status = false;
  7017. #endif
  7018. }
  7019. }
  7020. /**
  7021. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  7022. */
  7023. inline void gcode_M85() {
  7024. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  7025. }
  7026. /**
  7027. * Multi-stepper support for M92, M201, M203
  7028. */
  7029. #if ENABLED(DISTINCT_E_FACTORS)
  7030. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  7031. #define TARGET_EXTRUDER target_extruder
  7032. #else
  7033. #define GET_TARGET_EXTRUDER(CMD) NOOP
  7034. #define TARGET_EXTRUDER 0
  7035. #endif
  7036. /**
  7037. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  7038. * (Follows the same syntax as G92)
  7039. *
  7040. * With multiple extruders use T to specify which one.
  7041. */
  7042. inline void gcode_M92() {
  7043. GET_TARGET_EXTRUDER(92);
  7044. LOOP_XYZE(i) {
  7045. if (parser.seen(axis_codes[i])) {
  7046. if (i == E_AXIS) {
  7047. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  7048. if (value < 20.0) {
  7049. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  7050. planner.max_jerk[E_AXIS] *= factor;
  7051. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  7052. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  7053. }
  7054. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  7055. }
  7056. else {
  7057. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  7058. }
  7059. }
  7060. }
  7061. planner.refresh_positioning();
  7062. }
  7063. /**
  7064. * Output the current position to serial
  7065. */
  7066. void report_current_position() {
  7067. SERIAL_PROTOCOLPGM("X:");
  7068. SERIAL_PROTOCOL(LOGICAL_X_POSITION(current_position[X_AXIS]));
  7069. SERIAL_PROTOCOLPGM(" Y:");
  7070. SERIAL_PROTOCOL(LOGICAL_Y_POSITION(current_position[Y_AXIS]));
  7071. SERIAL_PROTOCOLPGM(" Z:");
  7072. SERIAL_PROTOCOL(LOGICAL_Z_POSITION(current_position[Z_AXIS]));
  7073. SERIAL_PROTOCOLPGM(" E:");
  7074. SERIAL_PROTOCOL(current_position[E_AXIS]);
  7075. stepper.report_positions();
  7076. #if IS_SCARA
  7077. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  7078. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  7079. SERIAL_EOL();
  7080. #endif
  7081. }
  7082. #ifdef M114_DETAIL
  7083. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  7084. char str[12];
  7085. for (uint8_t i = 0; i < n; i++) {
  7086. SERIAL_CHAR(' ');
  7087. SERIAL_CHAR(axis_codes[i]);
  7088. SERIAL_CHAR(':');
  7089. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  7090. }
  7091. SERIAL_EOL();
  7092. }
  7093. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  7094. void report_current_position_detail() {
  7095. stepper.synchronize();
  7096. SERIAL_PROTOCOLPGM("\nLogical:");
  7097. const float logical[XYZ] = {
  7098. LOGICAL_X_POSITION(current_position[X_AXIS]),
  7099. LOGICAL_Y_POSITION(current_position[Y_AXIS]),
  7100. LOGICAL_Z_POSITION(current_position[Z_AXIS])
  7101. };
  7102. report_xyze(logical);
  7103. SERIAL_PROTOCOLPGM("Raw: ");
  7104. report_xyz(current_position);
  7105. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  7106. #if PLANNER_LEVELING
  7107. SERIAL_PROTOCOLPGM("Leveled:");
  7108. planner.apply_leveling(leveled);
  7109. report_xyz(leveled);
  7110. SERIAL_PROTOCOLPGM("UnLevel:");
  7111. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  7112. planner.unapply_leveling(unleveled);
  7113. report_xyz(unleveled);
  7114. #endif
  7115. #if IS_KINEMATIC
  7116. #if IS_SCARA
  7117. SERIAL_PROTOCOLPGM("ScaraK: ");
  7118. #else
  7119. SERIAL_PROTOCOLPGM("DeltaK: ");
  7120. #endif
  7121. inverse_kinematics(leveled); // writes delta[]
  7122. report_xyz(delta);
  7123. #endif
  7124. SERIAL_PROTOCOLPGM("Stepper:");
  7125. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  7126. report_xyze(step_count, 4, 0);
  7127. #if IS_SCARA
  7128. const float deg[XYZ] = {
  7129. stepper.get_axis_position_degrees(A_AXIS),
  7130. stepper.get_axis_position_degrees(B_AXIS)
  7131. };
  7132. SERIAL_PROTOCOLPGM("Degrees:");
  7133. report_xyze(deg, 2);
  7134. #endif
  7135. SERIAL_PROTOCOLPGM("FromStp:");
  7136. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  7137. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  7138. report_xyze(from_steppers);
  7139. const float diff[XYZE] = {
  7140. from_steppers[X_AXIS] - leveled[X_AXIS],
  7141. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  7142. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  7143. from_steppers[E_AXIS] - current_position[E_AXIS]
  7144. };
  7145. SERIAL_PROTOCOLPGM("Differ: ");
  7146. report_xyze(diff);
  7147. }
  7148. #endif // M114_DETAIL
  7149. /**
  7150. * M114: Report current position to host
  7151. */
  7152. inline void gcode_M114() {
  7153. #ifdef M114_DETAIL
  7154. if (parser.seen('D')) {
  7155. report_current_position_detail();
  7156. return;
  7157. }
  7158. #endif
  7159. stepper.synchronize();
  7160. report_current_position();
  7161. }
  7162. /**
  7163. * M115: Capabilities string
  7164. */
  7165. inline void gcode_M115() {
  7166. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  7167. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  7168. // EEPROM (M500, M501)
  7169. #if ENABLED(EEPROM_SETTINGS)
  7170. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  7171. #else
  7172. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  7173. #endif
  7174. // AUTOREPORT_TEMP (M155)
  7175. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  7176. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  7177. #else
  7178. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  7179. #endif
  7180. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  7181. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  7182. // Print Job timer M75, M76, M77
  7183. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  7184. // AUTOLEVEL (G29)
  7185. #if HAS_ABL
  7186. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  7187. #else
  7188. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  7189. #endif
  7190. // Z_PROBE (G30)
  7191. #if HAS_BED_PROBE
  7192. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  7193. #else
  7194. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  7195. #endif
  7196. // MESH_REPORT (M420 V)
  7197. #if HAS_LEVELING
  7198. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  7199. #else
  7200. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  7201. #endif
  7202. // BUILD_PERCENT (M73)
  7203. #if ENABLED(LCD_SET_PROGRESS_MANUALLY)
  7204. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:1");
  7205. #else
  7206. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:0");
  7207. #endif
  7208. // SOFTWARE_POWER (M80, M81)
  7209. #if HAS_POWER_SWITCH
  7210. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  7211. #else
  7212. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  7213. #endif
  7214. // CASE LIGHTS (M355)
  7215. #if HAS_CASE_LIGHT
  7216. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  7217. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  7218. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  7219. }
  7220. else
  7221. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7222. #else
  7223. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  7224. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7225. #endif
  7226. // EMERGENCY_PARSER (M108, M112, M410)
  7227. #if ENABLED(EMERGENCY_PARSER)
  7228. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  7229. #else
  7230. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  7231. #endif
  7232. #endif // EXTENDED_CAPABILITIES_REPORT
  7233. }
  7234. /**
  7235. * M117: Set LCD Status Message
  7236. */
  7237. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  7238. /**
  7239. * M118: Display a message in the host console.
  7240. *
  7241. * A1 Append '// ' for an action command, as in OctoPrint
  7242. * E1 Have the host 'echo:' the text
  7243. */
  7244. inline void gcode_M118() {
  7245. if (parser.boolval('E')) SERIAL_ECHO_START();
  7246. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  7247. SERIAL_ECHOLN(parser.string_arg);
  7248. }
  7249. /**
  7250. * M119: Output endstop states to serial output
  7251. */
  7252. inline void gcode_M119() { endstops.M119(); }
  7253. /**
  7254. * M120: Enable endstops and set non-homing endstop state to "enabled"
  7255. */
  7256. inline void gcode_M120() { endstops.enable_globally(true); }
  7257. /**
  7258. * M121: Disable endstops and set non-homing endstop state to "disabled"
  7259. */
  7260. inline void gcode_M121() { endstops.enable_globally(false); }
  7261. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7262. /**
  7263. * M125: Store current position and move to filament change position.
  7264. * Called on pause (by M25) to prevent material leaking onto the
  7265. * object. On resume (M24) the head will be moved back and the
  7266. * print will resume.
  7267. *
  7268. * If Marlin is compiled without SD Card support, M125 can be
  7269. * used directly to pause the print and move to park position,
  7270. * resuming with a button click or M108.
  7271. *
  7272. * L = override retract length
  7273. * X = override X
  7274. * Y = override Y
  7275. * Z = override Z raise
  7276. */
  7277. inline void gcode_M125() {
  7278. // Initial retract before move to filament change position
  7279. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  7280. #ifdef PAUSE_PARK_RETRACT_LENGTH
  7281. - (PAUSE_PARK_RETRACT_LENGTH)
  7282. #endif
  7283. ;
  7284. // Lift Z axis
  7285. const float z_lift = parser.linearval('Z')
  7286. #ifdef PAUSE_PARK_Z_ADD
  7287. + PAUSE_PARK_Z_ADD
  7288. #endif
  7289. ;
  7290. // Move XY axes to filament change position or given position
  7291. const float x_pos = parser.linearval('X')
  7292. #ifdef PAUSE_PARK_X_POS
  7293. + PAUSE_PARK_X_POS
  7294. #endif
  7295. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7296. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  7297. #endif
  7298. ;
  7299. const float y_pos = parser.linearval('Y')
  7300. #ifdef PAUSE_PARK_Y_POS
  7301. + PAUSE_PARK_Y_POS
  7302. #endif
  7303. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7304. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  7305. #endif
  7306. ;
  7307. #if DISABLED(SDSUPPORT)
  7308. const bool job_running = print_job_timer.isRunning();
  7309. #endif
  7310. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  7311. #if DISABLED(SDSUPPORT)
  7312. // Wait for lcd click or M108
  7313. wait_for_filament_reload();
  7314. // Return to print position and continue
  7315. resume_print();
  7316. if (job_running) print_job_timer.start();
  7317. #endif
  7318. }
  7319. }
  7320. #endif // PARK_HEAD_ON_PAUSE
  7321. #if HAS_COLOR_LEDS
  7322. /**
  7323. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  7324. * and Brightness - Use P (for NEOPIXEL only)
  7325. *
  7326. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  7327. * If brightness is left out, no value changed
  7328. *
  7329. * Examples:
  7330. *
  7331. * M150 R255 ; Turn LED red
  7332. * M150 R255 U127 ; Turn LED orange (PWM only)
  7333. * M150 ; Turn LED off
  7334. * M150 R U B ; Turn LED white
  7335. * M150 W ; Turn LED white using a white LED
  7336. * M150 P127 ; Set LED 50% brightness
  7337. * M150 P ; Set LED full brightness
  7338. */
  7339. inline void gcode_M150() {
  7340. leds.set_color(MakeLEDColor(
  7341. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7342. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7343. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7344. parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7345. parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()
  7346. ));
  7347. }
  7348. #endif // HAS_COLOR_LEDS
  7349. /**
  7350. * M200: Set filament diameter and set E axis units to cubic units
  7351. *
  7352. * T<extruder> - Optional extruder number. Current extruder if omitted.
  7353. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  7354. */
  7355. inline void gcode_M200() {
  7356. if (get_target_extruder_from_command(200)) return;
  7357. if (parser.seen('D')) {
  7358. // setting any extruder filament size disables volumetric on the assumption that
  7359. // slicers either generate in extruder values as cubic mm or as as filament feeds
  7360. // for all extruders
  7361. if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0.0)) ) {
  7362. planner.filament_size[target_extruder] = parser.value_linear_units();
  7363. // make sure all extruders have some sane value for the filament size
  7364. for (uint8_t i = 0; i < COUNT(planner.filament_size); i++)
  7365. if (!planner.filament_size[i]) planner.filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  7366. }
  7367. }
  7368. planner.calculate_volumetric_multipliers();
  7369. }
  7370. /**
  7371. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  7372. *
  7373. * With multiple extruders use T to specify which one.
  7374. */
  7375. inline void gcode_M201() {
  7376. GET_TARGET_EXTRUDER(201);
  7377. LOOP_XYZE(i) {
  7378. if (parser.seen(axis_codes[i])) {
  7379. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7380. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7381. }
  7382. }
  7383. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7384. planner.reset_acceleration_rates();
  7385. }
  7386. #if 0 // Not used for Sprinter/grbl gen6
  7387. inline void gcode_M202() {
  7388. LOOP_XYZE(i) {
  7389. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7390. }
  7391. }
  7392. #endif
  7393. /**
  7394. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7395. *
  7396. * With multiple extruders use T to specify which one.
  7397. */
  7398. inline void gcode_M203() {
  7399. GET_TARGET_EXTRUDER(203);
  7400. LOOP_XYZE(i)
  7401. if (parser.seen(axis_codes[i])) {
  7402. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7403. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7404. }
  7405. }
  7406. /**
  7407. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7408. *
  7409. * P = Printing moves
  7410. * R = Retract only (no X, Y, Z) moves
  7411. * T = Travel (non printing) moves
  7412. *
  7413. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7414. */
  7415. inline void gcode_M204() {
  7416. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7417. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7418. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7419. }
  7420. if (parser.seen('P')) {
  7421. planner.acceleration = parser.value_linear_units();
  7422. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7423. }
  7424. if (parser.seen('R')) {
  7425. planner.retract_acceleration = parser.value_linear_units();
  7426. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7427. }
  7428. if (parser.seen('T')) {
  7429. planner.travel_acceleration = parser.value_linear_units();
  7430. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7431. }
  7432. }
  7433. /**
  7434. * M205: Set Advanced Settings
  7435. *
  7436. * S = Min Feed Rate (units/s)
  7437. * T = Min Travel Feed Rate (units/s)
  7438. * B = Min Segment Time (µs)
  7439. * X = Max X Jerk (units/sec^2)
  7440. * Y = Max Y Jerk (units/sec^2)
  7441. * Z = Max Z Jerk (units/sec^2)
  7442. * E = Max E Jerk (units/sec^2)
  7443. */
  7444. inline void gcode_M205() {
  7445. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7446. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7447. if (parser.seen('B')) planner.min_segment_time_us = parser.value_ulong();
  7448. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7449. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7450. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7451. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7452. }
  7453. #if HAS_M206_COMMAND
  7454. /**
  7455. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7456. *
  7457. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7458. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7459. * *** In the next 1.2 release, it will simply be disabled by default.
  7460. */
  7461. inline void gcode_M206() {
  7462. LOOP_XYZ(i)
  7463. if (parser.seen(axis_codes[i]))
  7464. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7465. #if ENABLED(MORGAN_SCARA)
  7466. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_float()); // Theta
  7467. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_float()); // Psi
  7468. #endif
  7469. report_current_position();
  7470. }
  7471. #endif // HAS_M206_COMMAND
  7472. #if ENABLED(DELTA)
  7473. /**
  7474. * M665: Set delta configurations
  7475. *
  7476. * H = delta height
  7477. * L = diagonal rod
  7478. * R = delta radius
  7479. * S = segments per second
  7480. * B = delta calibration radius
  7481. * X = Alpha (Tower 1) angle trim
  7482. * Y = Beta (Tower 2) angle trim
  7483. * Z = Rotate A and B by this angle
  7484. */
  7485. inline void gcode_M665() {
  7486. if (parser.seen('H')) delta_height = parser.value_linear_units();
  7487. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7488. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7489. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7490. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7491. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7492. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7493. if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
  7494. recalc_delta_settings();
  7495. }
  7496. /**
  7497. * M666: Set delta endstop adjustment
  7498. */
  7499. inline void gcode_M666() {
  7500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7501. if (DEBUGGING(LEVELING)) {
  7502. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7503. }
  7504. #endif
  7505. LOOP_XYZ(i) {
  7506. if (parser.seen(axis_codes[i])) {
  7507. if (parser.value_linear_units() * Z_HOME_DIR <= 0)
  7508. delta_endstop_adj[i] = parser.value_linear_units();
  7509. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7510. if (DEBUGGING(LEVELING)) {
  7511. SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);
  7512. SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);
  7513. }
  7514. #endif
  7515. }
  7516. }
  7517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7518. if (DEBUGGING(LEVELING)) {
  7519. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7520. }
  7521. #endif
  7522. }
  7523. #elif IS_SCARA
  7524. /**
  7525. * M665: Set SCARA settings
  7526. *
  7527. * Parameters:
  7528. *
  7529. * S[segments-per-second] - Segments-per-second
  7530. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7531. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7532. *
  7533. * A, P, and X are all aliases for the shoulder angle
  7534. * B, T, and Y are all aliases for the elbow angle
  7535. */
  7536. inline void gcode_M665() {
  7537. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7538. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7539. const uint8_t sumAPX = hasA + hasP + hasX;
  7540. if (sumAPX == 1)
  7541. home_offset[A_AXIS] = parser.value_float();
  7542. else if (sumAPX > 1) {
  7543. SERIAL_ERROR_START();
  7544. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7545. return;
  7546. }
  7547. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7548. const uint8_t sumBTY = hasB + hasT + hasY;
  7549. if (sumBTY == 1)
  7550. home_offset[B_AXIS] = parser.value_float();
  7551. else if (sumBTY > 1) {
  7552. SERIAL_ERROR_START();
  7553. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7554. return;
  7555. }
  7556. }
  7557. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  7558. /**
  7559. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7560. */
  7561. inline void gcode_M666() {
  7562. SERIAL_ECHOPGM("Dual Endstop Adjustment (mm): ");
  7563. #if ENABLED(X_DUAL_ENDSTOPS)
  7564. if (parser.seen('X')) x_endstop_adj = parser.value_linear_units();
  7565. SERIAL_ECHOPAIR(" X", x_endstop_adj);
  7566. #endif
  7567. #if ENABLED(Y_DUAL_ENDSTOPS)
  7568. if (parser.seen('Y')) y_endstop_adj = parser.value_linear_units();
  7569. SERIAL_ECHOPAIR(" Y", y_endstop_adj);
  7570. #endif
  7571. #if ENABLED(Z_DUAL_ENDSTOPS)
  7572. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7573. SERIAL_ECHOPAIR(" Z", z_endstop_adj);
  7574. #endif
  7575. SERIAL_EOL();
  7576. }
  7577. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7578. #if ENABLED(FWRETRACT)
  7579. /**
  7580. * M207: Set firmware retraction values
  7581. *
  7582. * S[+units] retract_length
  7583. * W[+units] swap_retract_length (multi-extruder)
  7584. * F[units/min] retract_feedrate_mm_s
  7585. * Z[units] retract_zlift
  7586. */
  7587. inline void gcode_M207() {
  7588. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7589. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7590. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7591. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7592. }
  7593. /**
  7594. * M208: Set firmware un-retraction values
  7595. *
  7596. * S[+units] retract_recover_length (in addition to M207 S*)
  7597. * W[+units] swap_retract_recover_length (multi-extruder)
  7598. * F[units/min] retract_recover_feedrate_mm_s
  7599. * R[units/min] swap_retract_recover_feedrate_mm_s
  7600. */
  7601. inline void gcode_M208() {
  7602. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7603. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7604. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7605. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7606. }
  7607. /**
  7608. * M209: Enable automatic retract (M209 S1)
  7609. * For slicers that don't support G10/11, reversed extrude-only
  7610. * moves will be classified as retraction.
  7611. */
  7612. inline void gcode_M209() {
  7613. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7614. if (parser.seen('S')) {
  7615. autoretract_enabled = parser.value_bool();
  7616. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7617. }
  7618. }
  7619. }
  7620. #endif // FWRETRACT
  7621. /**
  7622. * M211: Enable, Disable, and/or Report software endstops
  7623. *
  7624. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7625. */
  7626. inline void gcode_M211() {
  7627. SERIAL_ECHO_START();
  7628. #if HAS_SOFTWARE_ENDSTOPS
  7629. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7630. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7631. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7632. #else
  7633. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7634. SERIAL_ECHOPGM(MSG_OFF);
  7635. #endif
  7636. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7637. SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_min[X_AXIS]));
  7638. SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_min[Y_AXIS]));
  7639. SERIAL_ECHOPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_min[Z_AXIS]));
  7640. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7641. SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_max[X_AXIS]));
  7642. SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_max[Y_AXIS]));
  7643. SERIAL_ECHOLNPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_max[Z_AXIS]));
  7644. }
  7645. #if HOTENDS > 1
  7646. /**
  7647. * M218 - set hotend offset (in linear units)
  7648. *
  7649. * T<tool>
  7650. * X<xoffset>
  7651. * Y<yoffset>
  7652. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7653. */
  7654. inline void gcode_M218() {
  7655. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7656. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7657. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7658. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7659. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7660. #endif
  7661. SERIAL_ECHO_START();
  7662. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7663. HOTEND_LOOP() {
  7664. SERIAL_CHAR(' ');
  7665. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7666. SERIAL_CHAR(',');
  7667. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7668. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7669. SERIAL_CHAR(',');
  7670. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7671. #endif
  7672. }
  7673. SERIAL_EOL();
  7674. }
  7675. #endif // HOTENDS > 1
  7676. /**
  7677. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7678. */
  7679. inline void gcode_M220() {
  7680. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7681. }
  7682. /**
  7683. * M221: Set extrusion percentage (M221 T0 S95)
  7684. */
  7685. inline void gcode_M221() {
  7686. if (get_target_extruder_from_command(221)) return;
  7687. if (parser.seenval('S')) {
  7688. planner.flow_percentage[target_extruder] = parser.value_int();
  7689. planner.refresh_e_factor(target_extruder);
  7690. }
  7691. }
  7692. /**
  7693. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7694. */
  7695. inline void gcode_M226() {
  7696. if (parser.seen('P')) {
  7697. const int pin_number = parser.value_int(),
  7698. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7699. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7700. int target = LOW;
  7701. stepper.synchronize();
  7702. pinMode(pin_number, INPUT);
  7703. switch (pin_state) {
  7704. case 1:
  7705. target = HIGH;
  7706. break;
  7707. case 0:
  7708. target = LOW;
  7709. break;
  7710. case -1:
  7711. target = !digitalRead(pin_number);
  7712. break;
  7713. }
  7714. while (digitalRead(pin_number) != target) idle();
  7715. } // pin_state -1 0 1 && pin_number > -1
  7716. } // parser.seen('P')
  7717. }
  7718. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7719. /**
  7720. * M260: Send data to a I2C slave device
  7721. *
  7722. * This is a PoC, the formating and arguments for the GCODE will
  7723. * change to be more compatible, the current proposal is:
  7724. *
  7725. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7726. *
  7727. * M260 B<byte-1 value in base 10>
  7728. * M260 B<byte-2 value in base 10>
  7729. * M260 B<byte-3 value in base 10>
  7730. *
  7731. * M260 S1 ; Send the buffered data and reset the buffer
  7732. * M260 R1 ; Reset the buffer without sending data
  7733. *
  7734. */
  7735. inline void gcode_M260() {
  7736. // Set the target address
  7737. if (parser.seen('A')) i2c.address(parser.value_byte());
  7738. // Add a new byte to the buffer
  7739. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7740. // Flush the buffer to the bus
  7741. if (parser.seen('S')) i2c.send();
  7742. // Reset and rewind the buffer
  7743. else if (parser.seen('R')) i2c.reset();
  7744. }
  7745. /**
  7746. * M261: Request X bytes from I2C slave device
  7747. *
  7748. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7749. */
  7750. inline void gcode_M261() {
  7751. if (parser.seen('A')) i2c.address(parser.value_byte());
  7752. uint8_t bytes = parser.byteval('B', 1);
  7753. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7754. i2c.relay(bytes);
  7755. }
  7756. else {
  7757. SERIAL_ERROR_START();
  7758. SERIAL_ERRORLN("Bad i2c request");
  7759. }
  7760. }
  7761. #endif // EXPERIMENTAL_I2CBUS
  7762. #if HAS_SERVOS
  7763. /**
  7764. * M280: Get or set servo position. P<index> [S<angle>]
  7765. */
  7766. inline void gcode_M280() {
  7767. if (!parser.seen('P')) return;
  7768. const int servo_index = parser.value_int();
  7769. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7770. if (parser.seen('S'))
  7771. MOVE_SERVO(servo_index, parser.value_int());
  7772. else {
  7773. SERIAL_ECHO_START();
  7774. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7775. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7776. }
  7777. }
  7778. else {
  7779. SERIAL_ERROR_START();
  7780. SERIAL_ECHOPAIR("Servo ", servo_index);
  7781. SERIAL_ECHOLNPGM(" out of range");
  7782. }
  7783. }
  7784. #endif // HAS_SERVOS
  7785. #if ENABLED(BABYSTEPPING)
  7786. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7787. FORCE_INLINE void mod_zprobe_zoffset(const float &offs) {
  7788. zprobe_zoffset += offs;
  7789. SERIAL_ECHO_START();
  7790. SERIAL_ECHOLNPAIR(MSG_PROBE_Z_OFFSET ": ", zprobe_zoffset);
  7791. }
  7792. #endif
  7793. /**
  7794. * M290: Babystepping
  7795. */
  7796. inline void gcode_M290() {
  7797. #if ENABLED(BABYSTEP_XY)
  7798. for (uint8_t a = X_AXIS; a <= Z_AXIS; a++)
  7799. if (parser.seenval(axis_codes[a]) || (a == Z_AXIS && parser.seenval('S'))) {
  7800. const float offs = constrain(parser.value_axis_units((AxisEnum)a), -2, 2);
  7801. thermalManager.babystep_axis((AxisEnum)a, offs * planner.axis_steps_per_mm[a]);
  7802. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7803. if (a == Z_AXIS && (!parser.seen('P') || parser.value_bool())) mod_zprobe_zoffset(offs);
  7804. #endif
  7805. }
  7806. #else
  7807. if (parser.seenval('Z') || parser.seenval('S')) {
  7808. const float offs = constrain(parser.value_axis_units(Z_AXIS), -2, 2);
  7809. thermalManager.babystep_axis(Z_AXIS, offs * planner.axis_steps_per_mm[Z_AXIS]);
  7810. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7811. if (!parser.seen('P') || parser.value_bool()) mod_zprobe_zoffset(offs);
  7812. #endif
  7813. }
  7814. #endif
  7815. }
  7816. #endif // BABYSTEPPING
  7817. #if HAS_BUZZER
  7818. /**
  7819. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7820. */
  7821. inline void gcode_M300() {
  7822. uint16_t const frequency = parser.ushortval('S', 260);
  7823. uint16_t duration = parser.ushortval('P', 1000);
  7824. // Limits the tone duration to 0-5 seconds.
  7825. NOMORE(duration, 5000);
  7826. BUZZ(duration, frequency);
  7827. }
  7828. #endif // HAS_BUZZER
  7829. #if ENABLED(PIDTEMP)
  7830. /**
  7831. * M301: Set PID parameters P I D (and optionally C, L)
  7832. *
  7833. * P[float] Kp term
  7834. * I[float] Ki term (unscaled)
  7835. * D[float] Kd term (unscaled)
  7836. *
  7837. * With PID_EXTRUSION_SCALING:
  7838. *
  7839. * C[float] Kc term
  7840. * L[float] LPQ length
  7841. */
  7842. inline void gcode_M301() {
  7843. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7844. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7845. const uint8_t e = parser.byteval('E'); // extruder being updated
  7846. if (e < HOTENDS) { // catch bad input value
  7847. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7848. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7849. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7850. #if ENABLED(PID_EXTRUSION_SCALING)
  7851. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7852. if (parser.seen('L')) lpq_len = parser.value_float();
  7853. NOMORE(lpq_len, LPQ_MAX_LEN);
  7854. #endif
  7855. thermalManager.updatePID();
  7856. SERIAL_ECHO_START();
  7857. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7858. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7859. #endif // PID_PARAMS_PER_HOTEND
  7860. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7861. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7862. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7863. #if ENABLED(PID_EXTRUSION_SCALING)
  7864. //Kc does not have scaling applied above, or in resetting defaults
  7865. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7866. #endif
  7867. SERIAL_EOL();
  7868. }
  7869. else {
  7870. SERIAL_ERROR_START();
  7871. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7872. }
  7873. }
  7874. #endif // PIDTEMP
  7875. #if ENABLED(PIDTEMPBED)
  7876. inline void gcode_M304() {
  7877. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7878. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7879. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7880. SERIAL_ECHO_START();
  7881. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7882. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7883. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7884. }
  7885. #endif // PIDTEMPBED
  7886. #if defined(CHDK) || HAS_PHOTOGRAPH
  7887. /**
  7888. * M240: Trigger a camera by emulating a Canon RC-1
  7889. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7890. */
  7891. inline void gcode_M240() {
  7892. #ifdef CHDK
  7893. OUT_WRITE(CHDK, HIGH);
  7894. chdkHigh = millis();
  7895. chdkActive = true;
  7896. #elif HAS_PHOTOGRAPH
  7897. const uint8_t NUM_PULSES = 16;
  7898. const float PULSE_LENGTH = 0.01524;
  7899. for (int i = 0; i < NUM_PULSES; i++) {
  7900. WRITE(PHOTOGRAPH_PIN, HIGH);
  7901. _delay_ms(PULSE_LENGTH);
  7902. WRITE(PHOTOGRAPH_PIN, LOW);
  7903. _delay_ms(PULSE_LENGTH);
  7904. }
  7905. delay(7.33);
  7906. for (int i = 0; i < NUM_PULSES; i++) {
  7907. WRITE(PHOTOGRAPH_PIN, HIGH);
  7908. _delay_ms(PULSE_LENGTH);
  7909. WRITE(PHOTOGRAPH_PIN, LOW);
  7910. _delay_ms(PULSE_LENGTH);
  7911. }
  7912. #endif // !CHDK && HAS_PHOTOGRAPH
  7913. }
  7914. #endif // CHDK || PHOTOGRAPH_PIN
  7915. #if HAS_LCD_CONTRAST
  7916. /**
  7917. * M250: Read and optionally set the LCD contrast
  7918. */
  7919. inline void gcode_M250() {
  7920. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  7921. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  7922. SERIAL_PROTOCOL(lcd_contrast);
  7923. SERIAL_EOL();
  7924. }
  7925. #endif // HAS_LCD_CONTRAST
  7926. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7927. /**
  7928. * M302: Allow cold extrudes, or set the minimum extrude temperature
  7929. *
  7930. * S<temperature> sets the minimum extrude temperature
  7931. * P<bool> enables (1) or disables (0) cold extrusion
  7932. *
  7933. * Examples:
  7934. *
  7935. * M302 ; report current cold extrusion state
  7936. * M302 P0 ; enable cold extrusion checking
  7937. * M302 P1 ; disables cold extrusion checking
  7938. * M302 S0 ; always allow extrusion (disables checking)
  7939. * M302 S170 ; only allow extrusion above 170
  7940. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  7941. */
  7942. inline void gcode_M302() {
  7943. const bool seen_S = parser.seen('S');
  7944. if (seen_S) {
  7945. thermalManager.extrude_min_temp = parser.value_celsius();
  7946. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  7947. }
  7948. if (parser.seen('P'))
  7949. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  7950. else if (!seen_S) {
  7951. // Report current state
  7952. SERIAL_ECHO_START();
  7953. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  7954. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  7955. SERIAL_ECHOLNPGM("C)");
  7956. }
  7957. }
  7958. #endif // PREVENT_COLD_EXTRUSION
  7959. /**
  7960. * M303: PID relay autotune
  7961. *
  7962. * S<temperature> sets the target temperature. (default 150C)
  7963. * E<extruder> (-1 for the bed) (default 0)
  7964. * C<cycles>
  7965. * U<bool> with a non-zero value will apply the result to current settings
  7966. */
  7967. inline void gcode_M303() {
  7968. #if HAS_PID_HEATING
  7969. const int e = parser.intval('E'), c = parser.intval('C', 5);
  7970. const bool u = parser.boolval('U');
  7971. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  7972. if (WITHIN(e, 0, HOTENDS - 1))
  7973. target_extruder = e;
  7974. #if DISABLED(BUSY_WHILE_HEATING)
  7975. KEEPALIVE_STATE(NOT_BUSY);
  7976. #endif
  7977. thermalManager.PID_autotune(temp, e, c, u);
  7978. #if DISABLED(BUSY_WHILE_HEATING)
  7979. KEEPALIVE_STATE(IN_HANDLER);
  7980. #endif
  7981. #else
  7982. SERIAL_ERROR_START();
  7983. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  7984. #endif
  7985. }
  7986. #if ENABLED(MORGAN_SCARA)
  7987. bool SCARA_move_to_cal(const uint8_t delta_a, const uint8_t delta_b) {
  7988. if (IsRunning()) {
  7989. forward_kinematics_SCARA(delta_a, delta_b);
  7990. destination[X_AXIS] = cartes[X_AXIS];
  7991. destination[Y_AXIS] = cartes[Y_AXIS];
  7992. destination[Z_AXIS] = current_position[Z_AXIS];
  7993. prepare_move_to_destination();
  7994. return true;
  7995. }
  7996. return false;
  7997. }
  7998. /**
  7999. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  8000. */
  8001. inline bool gcode_M360() {
  8002. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  8003. return SCARA_move_to_cal(0, 120);
  8004. }
  8005. /**
  8006. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  8007. */
  8008. inline bool gcode_M361() {
  8009. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  8010. return SCARA_move_to_cal(90, 130);
  8011. }
  8012. /**
  8013. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  8014. */
  8015. inline bool gcode_M362() {
  8016. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  8017. return SCARA_move_to_cal(60, 180);
  8018. }
  8019. /**
  8020. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  8021. */
  8022. inline bool gcode_M363() {
  8023. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  8024. return SCARA_move_to_cal(50, 90);
  8025. }
  8026. /**
  8027. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  8028. */
  8029. inline bool gcode_M364() {
  8030. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  8031. return SCARA_move_to_cal(45, 135);
  8032. }
  8033. #endif // SCARA
  8034. #if ENABLED(EXT_SOLENOID)
  8035. void enable_solenoid(const uint8_t num) {
  8036. switch (num) {
  8037. case 0:
  8038. OUT_WRITE(SOL0_PIN, HIGH);
  8039. break;
  8040. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8041. case 1:
  8042. OUT_WRITE(SOL1_PIN, HIGH);
  8043. break;
  8044. #endif
  8045. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8046. case 2:
  8047. OUT_WRITE(SOL2_PIN, HIGH);
  8048. break;
  8049. #endif
  8050. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8051. case 3:
  8052. OUT_WRITE(SOL3_PIN, HIGH);
  8053. break;
  8054. #endif
  8055. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8056. case 4:
  8057. OUT_WRITE(SOL4_PIN, HIGH);
  8058. break;
  8059. #endif
  8060. default:
  8061. SERIAL_ECHO_START();
  8062. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  8063. break;
  8064. }
  8065. }
  8066. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  8067. void disable_all_solenoids() {
  8068. OUT_WRITE(SOL0_PIN, LOW);
  8069. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8070. OUT_WRITE(SOL1_PIN, LOW);
  8071. #endif
  8072. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8073. OUT_WRITE(SOL2_PIN, LOW);
  8074. #endif
  8075. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8076. OUT_WRITE(SOL3_PIN, LOW);
  8077. #endif
  8078. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8079. OUT_WRITE(SOL4_PIN, LOW);
  8080. #endif
  8081. }
  8082. /**
  8083. * M380: Enable solenoid on the active extruder
  8084. */
  8085. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  8086. /**
  8087. * M381: Disable all solenoids
  8088. */
  8089. inline void gcode_M381() { disable_all_solenoids(); }
  8090. #endif // EXT_SOLENOID
  8091. /**
  8092. * M400: Finish all moves
  8093. */
  8094. inline void gcode_M400() { stepper.synchronize(); }
  8095. #if HAS_BED_PROBE
  8096. /**
  8097. * M401: Engage Z Servo endstop if available
  8098. */
  8099. inline void gcode_M401() { DEPLOY_PROBE(); }
  8100. /**
  8101. * M402: Retract Z Servo endstop if enabled
  8102. */
  8103. inline void gcode_M402() { STOW_PROBE(); }
  8104. #endif // HAS_BED_PROBE
  8105. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8106. /**
  8107. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  8108. */
  8109. inline void gcode_M404() {
  8110. if (parser.seen('W')) {
  8111. filament_width_nominal = parser.value_linear_units();
  8112. planner.volumetric_area_nominal = CIRCLE_AREA(filament_width_nominal * 0.5);
  8113. }
  8114. else {
  8115. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  8116. SERIAL_PROTOCOLLN(filament_width_nominal);
  8117. }
  8118. }
  8119. /**
  8120. * M405: Turn on filament sensor for control
  8121. */
  8122. inline void gcode_M405() {
  8123. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  8124. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  8125. if (parser.seen('D')) {
  8126. meas_delay_cm = parser.value_byte();
  8127. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  8128. }
  8129. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  8130. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  8131. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  8132. measurement_delay[i] = temp_ratio;
  8133. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  8134. }
  8135. filament_sensor = true;
  8136. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8137. //SERIAL_PROTOCOL(filament_width_meas);
  8138. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  8139. //SERIAL_PROTOCOL(planner.flow_percentage[active_extruder]);
  8140. }
  8141. /**
  8142. * M406: Turn off filament sensor for control
  8143. */
  8144. inline void gcode_M406() {
  8145. filament_sensor = false;
  8146. planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
  8147. }
  8148. /**
  8149. * M407: Get measured filament diameter on serial output
  8150. */
  8151. inline void gcode_M407() {
  8152. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8153. SERIAL_PROTOCOLLN(filament_width_meas);
  8154. }
  8155. #endif // FILAMENT_WIDTH_SENSOR
  8156. void quickstop_stepper() {
  8157. stepper.quick_stop();
  8158. stepper.synchronize();
  8159. set_current_from_steppers_for_axis(ALL_AXES);
  8160. SYNC_PLAN_POSITION_KINEMATIC();
  8161. }
  8162. #if HAS_LEVELING
  8163. /**
  8164. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  8165. *
  8166. * S[bool] Turns leveling on or off
  8167. * Z[height] Sets the Z fade height (0 or none to disable)
  8168. * V[bool] Verbose - Print the leveling grid
  8169. *
  8170. * With AUTO_BED_LEVELING_UBL only:
  8171. *
  8172. * L[index] Load UBL mesh from index (0 is default)
  8173. */
  8174. inline void gcode_M420() {
  8175. #if ENABLED(AUTO_BED_LEVELING_UBL)
  8176. // L to load a mesh from the EEPROM
  8177. if (parser.seen('L')) {
  8178. #if ENABLED(EEPROM_SETTINGS)
  8179. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
  8180. const int16_t a = settings.calc_num_meshes();
  8181. if (!a) {
  8182. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8183. return;
  8184. }
  8185. if (!WITHIN(storage_slot, 0, a - 1)) {
  8186. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  8187. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  8188. return;
  8189. }
  8190. settings.load_mesh(storage_slot);
  8191. ubl.storage_slot = storage_slot;
  8192. #else
  8193. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8194. return;
  8195. #endif
  8196. }
  8197. // L to load a mesh from the EEPROM
  8198. if (parser.seen('L') || parser.seen('V')) {
  8199. ubl.display_map(0); // Currently only supports one map type
  8200. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  8201. SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot);
  8202. }
  8203. #endif // AUTO_BED_LEVELING_UBL
  8204. // V to print the matrix or mesh
  8205. if (parser.seen('V')) {
  8206. #if ABL_PLANAR
  8207. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  8208. #else
  8209. if (leveling_is_valid()) {
  8210. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8211. print_bilinear_leveling_grid();
  8212. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8213. print_bilinear_leveling_grid_virt();
  8214. #endif
  8215. #elif ENABLED(MESH_BED_LEVELING)
  8216. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  8217. mbl_mesh_report();
  8218. #endif
  8219. }
  8220. #endif
  8221. }
  8222. const bool to_enable = parser.boolval('S');
  8223. if (parser.seen('S'))
  8224. set_bed_leveling_enabled(to_enable);
  8225. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8226. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  8227. #endif
  8228. const bool new_status = planner.leveling_active;
  8229. if (to_enable && !new_status) {
  8230. SERIAL_ERROR_START();
  8231. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  8232. }
  8233. SERIAL_ECHO_START();
  8234. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  8235. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8236. SERIAL_ECHO_START();
  8237. SERIAL_ECHOPGM("Fade Height ");
  8238. if (planner.z_fade_height > 0.0)
  8239. SERIAL_ECHOLN(planner.z_fade_height);
  8240. else
  8241. SERIAL_ECHOLNPGM(MSG_OFF);
  8242. #endif
  8243. }
  8244. #endif
  8245. #if ENABLED(MESH_BED_LEVELING)
  8246. /**
  8247. * M421: Set a single Mesh Bed Leveling Z coordinate
  8248. *
  8249. * Usage:
  8250. * M421 X<linear> Y<linear> Z<linear>
  8251. * M421 X<linear> Y<linear> Q<offset>
  8252. * M421 I<xindex> J<yindex> Z<linear>
  8253. * M421 I<xindex> J<yindex> Q<offset>
  8254. */
  8255. inline void gcode_M421() {
  8256. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  8257. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(parser.value_linear_units()) : -1;
  8258. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  8259. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(parser.value_linear_units()) : -1;
  8260. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  8261. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  8262. SERIAL_ERROR_START();
  8263. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8264. }
  8265. else if (ix < 0 || iy < 0) {
  8266. SERIAL_ERROR_START();
  8267. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8268. }
  8269. else
  8270. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  8271. }
  8272. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8273. /**
  8274. * M421: Set a single Mesh Bed Leveling Z coordinate
  8275. *
  8276. * Usage:
  8277. * M421 I<xindex> J<yindex> Z<linear>
  8278. * M421 I<xindex> J<yindex> Q<offset>
  8279. */
  8280. inline void gcode_M421() {
  8281. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8282. const bool hasI = ix >= 0,
  8283. hasJ = iy >= 0,
  8284. hasZ = parser.seen('Z'),
  8285. hasQ = !hasZ && parser.seen('Q');
  8286. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  8287. SERIAL_ERROR_START();
  8288. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8289. }
  8290. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8291. SERIAL_ERROR_START();
  8292. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8293. }
  8294. else {
  8295. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  8296. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8297. bed_level_virt_interpolate();
  8298. #endif
  8299. }
  8300. }
  8301. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8302. /**
  8303. * M421: Set a single Mesh Bed Leveling Z coordinate
  8304. *
  8305. * Usage:
  8306. * M421 I<xindex> J<yindex> Z<linear>
  8307. * M421 I<xindex> J<yindex> Q<offset>
  8308. * M421 C Z<linear>
  8309. * M421 C Q<offset>
  8310. */
  8311. inline void gcode_M421() {
  8312. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8313. const bool hasI = ix >= 0,
  8314. hasJ = iy >= 0,
  8315. hasC = parser.seen('C'),
  8316. hasZ = parser.seen('Z'),
  8317. hasQ = !hasZ && parser.seen('Q');
  8318. if (hasC) {
  8319. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL);
  8320. ix = location.x_index;
  8321. iy = location.y_index;
  8322. }
  8323. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  8324. SERIAL_ERROR_START();
  8325. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8326. }
  8327. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8328. SERIAL_ERROR_START();
  8329. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8330. }
  8331. else
  8332. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  8333. }
  8334. #endif // AUTO_BED_LEVELING_UBL
  8335. #if HAS_M206_COMMAND
  8336. /**
  8337. * M428: Set home_offset based on the distance between the
  8338. * current_position and the nearest "reference point."
  8339. * If an axis is past center its endstop position
  8340. * is the reference-point. Otherwise it uses 0. This allows
  8341. * the Z offset to be set near the bed when using a max endstop.
  8342. *
  8343. * M428 can't be used more than 2cm away from 0 or an endstop.
  8344. *
  8345. * Use M206 to set these values directly.
  8346. */
  8347. inline void gcode_M428() {
  8348. if (axis_unhomed_error()) return;
  8349. float diff[XYZ];
  8350. LOOP_XYZ(i) {
  8351. diff[i] = base_home_pos((AxisEnum)i) - current_position[i];
  8352. if (!WITHIN(diff[i], -20, 20) && home_dir((AxisEnum)i) > 0)
  8353. diff[i] = -current_position[i];
  8354. if (!WITHIN(diff[i], -20, 20)) {
  8355. SERIAL_ERROR_START();
  8356. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  8357. LCD_ALERTMESSAGEPGM("Err: Too far!");
  8358. BUZZ(200, 40);
  8359. return;
  8360. }
  8361. }
  8362. LOOP_XYZ(i) set_home_offset((AxisEnum)i, diff[i]);
  8363. report_current_position();
  8364. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  8365. BUZZ(100, 659);
  8366. BUZZ(100, 698);
  8367. }
  8368. #endif // HAS_M206_COMMAND
  8369. /**
  8370. * M500: Store settings in EEPROM
  8371. */
  8372. inline void gcode_M500() {
  8373. (void)settings.save();
  8374. }
  8375. /**
  8376. * M501: Read settings from EEPROM
  8377. */
  8378. inline void gcode_M501() {
  8379. (void)settings.load();
  8380. }
  8381. /**
  8382. * M502: Revert to default settings
  8383. */
  8384. inline void gcode_M502() {
  8385. (void)settings.reset();
  8386. }
  8387. #if DISABLED(DISABLE_M503)
  8388. /**
  8389. * M503: print settings currently in memory
  8390. */
  8391. inline void gcode_M503() {
  8392. (void)settings.report(parser.boolval('S'));
  8393. }
  8394. #endif
  8395. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8396. /**
  8397. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  8398. */
  8399. inline void gcode_M540() {
  8400. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  8401. }
  8402. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  8403. #if HAS_BED_PROBE
  8404. inline void gcode_M851() {
  8405. SERIAL_ECHO_START();
  8406. SERIAL_ECHOPGM(MSG_PROBE_Z_OFFSET);
  8407. if (parser.seen('Z')) {
  8408. const float value = parser.value_linear_units();
  8409. if (!WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8410. SERIAL_ECHOLNPGM(" " MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8411. return;
  8412. }
  8413. zprobe_zoffset = value;
  8414. }
  8415. SERIAL_ECHOLNPAIR(": ", zprobe_zoffset);
  8416. }
  8417. #endif // HAS_BED_PROBE
  8418. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8419. /**
  8420. * M600: Pause for filament change
  8421. *
  8422. * E[distance] - Retract the filament this far (negative value)
  8423. * Z[distance] - Move the Z axis by this distance
  8424. * X[position] - Move to this X position, with Y
  8425. * Y[position] - Move to this Y position, with X
  8426. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8427. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8428. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8429. *
  8430. * Default values are used for omitted arguments.
  8431. *
  8432. */
  8433. inline void gcode_M600() {
  8434. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8435. // Don't allow filament change without homing first
  8436. if (axis_unhomed_error()) home_all_axes();
  8437. #endif
  8438. // Initial retract before move to filament change position
  8439. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8440. #ifdef PAUSE_PARK_RETRACT_LENGTH
  8441. - (PAUSE_PARK_RETRACT_LENGTH)
  8442. #endif
  8443. ;
  8444. // Lift Z axis
  8445. const float z_lift = parser.linearval('Z', 0
  8446. #ifdef PAUSE_PARK_Z_ADD
  8447. + PAUSE_PARK_Z_ADD
  8448. #endif
  8449. );
  8450. // Move XY axes to filament exchange position
  8451. const float x_pos = parser.linearval('X', 0
  8452. #ifdef PAUSE_PARK_X_POS
  8453. + PAUSE_PARK_X_POS
  8454. #endif
  8455. );
  8456. const float y_pos = parser.linearval('Y', 0
  8457. #ifdef PAUSE_PARK_Y_POS
  8458. + PAUSE_PARK_Y_POS
  8459. #endif
  8460. );
  8461. // Unload filament
  8462. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8463. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8464. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8465. #endif
  8466. ;
  8467. // Load filament
  8468. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8469. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8470. + FILAMENT_CHANGE_LOAD_LENGTH
  8471. #endif
  8472. ;
  8473. const int beep_count = parser.intval('B',
  8474. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8475. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8476. #else
  8477. -1
  8478. #endif
  8479. );
  8480. const bool job_running = print_job_timer.isRunning();
  8481. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8482. wait_for_filament_reload(beep_count);
  8483. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8484. }
  8485. // Resume the print job timer if it was running
  8486. if (job_running) print_job_timer.start();
  8487. }
  8488. #endif // ADVANCED_PAUSE_FEATURE
  8489. #if ENABLED(MK2_MULTIPLEXER)
  8490. inline void select_multiplexed_stepper(const uint8_t e) {
  8491. stepper.synchronize();
  8492. disable_e_steppers();
  8493. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8494. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8495. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8496. safe_delay(100);
  8497. }
  8498. /**
  8499. * M702: Unload all extruders
  8500. */
  8501. inline void gcode_M702() {
  8502. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8503. select_multiplexed_stepper(e);
  8504. // TODO: standard unload filament function
  8505. // MK2 firmware behavior:
  8506. // - Make sure temperature is high enough
  8507. // - Raise Z to at least 15 to make room
  8508. // - Extrude 1cm of filament in 1 second
  8509. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8510. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8511. // - Restore E max feedrate to 50
  8512. }
  8513. // Go back to the last active extruder
  8514. select_multiplexed_stepper(active_extruder);
  8515. disable_e_steppers();
  8516. }
  8517. #endif // MK2_MULTIPLEXER
  8518. #if ENABLED(DUAL_X_CARRIAGE)
  8519. /**
  8520. * M605: Set dual x-carriage movement mode
  8521. *
  8522. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8523. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8524. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8525. * units x-offset and an optional differential hotend temperature of
  8526. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8527. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8528. *
  8529. * Note: the X axis should be homed after changing dual x-carriage mode.
  8530. */
  8531. inline void gcode_M605() {
  8532. stepper.synchronize();
  8533. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8534. switch (dual_x_carriage_mode) {
  8535. case DXC_FULL_CONTROL_MODE:
  8536. case DXC_AUTO_PARK_MODE:
  8537. break;
  8538. case DXC_DUPLICATION_MODE:
  8539. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8540. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8541. SERIAL_ECHO_START();
  8542. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8543. SERIAL_CHAR(' ');
  8544. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8545. SERIAL_CHAR(',');
  8546. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8547. SERIAL_CHAR(' ');
  8548. SERIAL_ECHO(duplicate_extruder_x_offset);
  8549. SERIAL_CHAR(',');
  8550. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8551. break;
  8552. default:
  8553. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8554. break;
  8555. }
  8556. active_extruder_parked = false;
  8557. extruder_duplication_enabled = false;
  8558. delayed_move_time = 0;
  8559. }
  8560. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8561. inline void gcode_M605() {
  8562. stepper.synchronize();
  8563. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8564. SERIAL_ECHO_START();
  8565. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8566. }
  8567. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8568. #if ENABLED(LIN_ADVANCE)
  8569. /**
  8570. * M900: Set and/or Get advance K factor and WH/D ratio
  8571. *
  8572. * K<factor> Set advance K factor
  8573. * R<ratio> Set ratio directly (overrides WH/D)
  8574. * W<width> H<height> D<diam> Set ratio from WH/D
  8575. */
  8576. inline void gcode_M900() {
  8577. stepper.synchronize();
  8578. const float newK = parser.floatval('K', -1);
  8579. if (newK >= 0) planner.extruder_advance_k = newK;
  8580. float newR = parser.floatval('R', -1);
  8581. if (newR < 0) {
  8582. const float newD = parser.floatval('D', -1),
  8583. newW = parser.floatval('W', -1),
  8584. newH = parser.floatval('H', -1);
  8585. if (newD >= 0 && newW >= 0 && newH >= 0)
  8586. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8587. }
  8588. if (newR >= 0) planner.advance_ed_ratio = newR;
  8589. SERIAL_ECHO_START();
  8590. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8591. SERIAL_ECHOPGM(" E/D=");
  8592. const float ratio = planner.advance_ed_ratio;
  8593. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8594. SERIAL_EOL();
  8595. }
  8596. #endif // LIN_ADVANCE
  8597. #if ENABLED(HAVE_TMC2130)
  8598. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8599. SERIAL_CHAR(name);
  8600. SERIAL_ECHOPGM(" axis driver current: ");
  8601. SERIAL_ECHOLN(st.getCurrent());
  8602. }
  8603. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8604. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8605. tmc2130_get_current(st, name);
  8606. }
  8607. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8608. SERIAL_CHAR(name);
  8609. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8610. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8611. SERIAL_EOL();
  8612. }
  8613. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8614. st.clear_otpw();
  8615. SERIAL_CHAR(name);
  8616. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8617. }
  8618. #if ENABLED(HYBRID_THRESHOLD)
  8619. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8620. SERIAL_CHAR(name);
  8621. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8622. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8623. }
  8624. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8625. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8626. tmc2130_get_pwmthrs(st, name, spmm);
  8627. }
  8628. #endif
  8629. #if ENABLED(SENSORLESS_HOMING)
  8630. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8631. SERIAL_CHAR(name);
  8632. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8633. SERIAL_ECHOLN(st.sgt());
  8634. }
  8635. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8636. st.sgt(sgt_val);
  8637. tmc2130_get_sgt(st, name);
  8638. }
  8639. #endif
  8640. /**
  8641. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8642. * Report driver currents when no axis specified
  8643. *
  8644. * S1: Enable automatic current control
  8645. * S0: Disable
  8646. */
  8647. inline void gcode_M906() {
  8648. uint16_t values[XYZE];
  8649. LOOP_XYZE(i)
  8650. values[i] = parser.intval(axis_codes[i]);
  8651. #if ENABLED(X_IS_TMC2130)
  8652. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8653. else tmc2130_get_current(stepperX, 'X');
  8654. #endif
  8655. #if ENABLED(Y_IS_TMC2130)
  8656. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8657. else tmc2130_get_current(stepperY, 'Y');
  8658. #endif
  8659. #if ENABLED(Z_IS_TMC2130)
  8660. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8661. else tmc2130_get_current(stepperZ, 'Z');
  8662. #endif
  8663. #if ENABLED(E0_IS_TMC2130)
  8664. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8665. else tmc2130_get_current(stepperE0, 'E');
  8666. #endif
  8667. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8668. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8669. #endif
  8670. }
  8671. /**
  8672. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8673. * The flag is held by the library and persist until manually cleared by M912
  8674. */
  8675. inline void gcode_M911() {
  8676. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8677. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8678. #if ENABLED(X_IS_TMC2130)
  8679. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8680. #endif
  8681. #if ENABLED(Y_IS_TMC2130)
  8682. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8683. #endif
  8684. #if ENABLED(Z_IS_TMC2130)
  8685. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8686. #endif
  8687. #if ENABLED(E0_IS_TMC2130)
  8688. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8689. #endif
  8690. }
  8691. /**
  8692. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8693. */
  8694. inline void gcode_M912() {
  8695. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8696. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8697. #if ENABLED(X_IS_TMC2130)
  8698. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8699. #endif
  8700. #if ENABLED(Y_IS_TMC2130)
  8701. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8702. #endif
  8703. #if ENABLED(Z_IS_TMC2130)
  8704. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8705. #endif
  8706. #if ENABLED(E0_IS_TMC2130)
  8707. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8708. #endif
  8709. }
  8710. /**
  8711. * M913: Set HYBRID_THRESHOLD speed.
  8712. */
  8713. #if ENABLED(HYBRID_THRESHOLD)
  8714. inline void gcode_M913() {
  8715. uint16_t values[XYZE];
  8716. LOOP_XYZE(i)
  8717. values[i] = parser.intval(axis_codes[i]);
  8718. #if ENABLED(X_IS_TMC2130)
  8719. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8720. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8721. #endif
  8722. #if ENABLED(Y_IS_TMC2130)
  8723. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8724. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8725. #endif
  8726. #if ENABLED(Z_IS_TMC2130)
  8727. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8728. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8729. #endif
  8730. #if ENABLED(E0_IS_TMC2130)
  8731. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8732. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8733. #endif
  8734. }
  8735. #endif // HYBRID_THRESHOLD
  8736. /**
  8737. * M914: Set SENSORLESS_HOMING sensitivity.
  8738. */
  8739. #if ENABLED(SENSORLESS_HOMING)
  8740. inline void gcode_M914() {
  8741. #if ENABLED(X_IS_TMC2130)
  8742. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8743. else tmc2130_get_sgt(stepperX, 'X');
  8744. #endif
  8745. #if ENABLED(Y_IS_TMC2130)
  8746. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8747. else tmc2130_get_sgt(stepperY, 'Y');
  8748. #endif
  8749. }
  8750. #endif // SENSORLESS_HOMING
  8751. #endif // HAVE_TMC2130
  8752. /**
  8753. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8754. */
  8755. inline void gcode_M907() {
  8756. #if HAS_DIGIPOTSS
  8757. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8758. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8759. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8760. #elif HAS_MOTOR_CURRENT_PWM
  8761. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8762. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8763. #endif
  8764. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8765. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8766. #endif
  8767. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8768. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8769. #endif
  8770. #endif
  8771. #if ENABLED(DIGIPOT_I2C)
  8772. // this one uses actual amps in floating point
  8773. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8774. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8775. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8776. #endif
  8777. #if ENABLED(DAC_STEPPER_CURRENT)
  8778. if (parser.seen('S')) {
  8779. const float dac_percent = parser.value_float();
  8780. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8781. }
  8782. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8783. #endif
  8784. }
  8785. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8786. /**
  8787. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8788. */
  8789. inline void gcode_M908() {
  8790. #if HAS_DIGIPOTSS
  8791. stepper.digitalPotWrite(
  8792. parser.intval('P'),
  8793. parser.intval('S')
  8794. );
  8795. #endif
  8796. #ifdef DAC_STEPPER_CURRENT
  8797. dac_current_raw(
  8798. parser.byteval('P', -1),
  8799. parser.ushortval('S', 0)
  8800. );
  8801. #endif
  8802. }
  8803. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8804. inline void gcode_M909() { dac_print_values(); }
  8805. inline void gcode_M910() { dac_commit_eeprom(); }
  8806. #endif
  8807. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8808. #if HAS_MICROSTEPS
  8809. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8810. inline void gcode_M350() {
  8811. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8812. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8813. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8814. stepper.microstep_readings();
  8815. }
  8816. /**
  8817. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8818. * S# determines MS1 or MS2, X# sets the pin high/low.
  8819. */
  8820. inline void gcode_M351() {
  8821. if (parser.seenval('S')) switch (parser.value_byte()) {
  8822. case 1:
  8823. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8824. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8825. break;
  8826. case 2:
  8827. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8828. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8829. break;
  8830. }
  8831. stepper.microstep_readings();
  8832. }
  8833. #endif // HAS_MICROSTEPS
  8834. #if HAS_CASE_LIGHT
  8835. #ifndef INVERT_CASE_LIGHT
  8836. #define INVERT_CASE_LIGHT false
  8837. #endif
  8838. uint8_t case_light_brightness; // LCD routine wants INT
  8839. bool case_light_on;
  8840. void update_case_light() {
  8841. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8842. if (case_light_on) {
  8843. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  8844. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness);
  8845. else
  8846. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  8847. }
  8848. else {
  8849. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  8850. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 : 0);
  8851. else
  8852. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8853. }
  8854. }
  8855. #endif // HAS_CASE_LIGHT
  8856. /**
  8857. * M355: Turn case light on/off and set brightness
  8858. *
  8859. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8860. *
  8861. * S<bool> Set case light on/off
  8862. *
  8863. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8864. *
  8865. * M355 P200 S0 turns off the light & sets the brightness level
  8866. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8867. */
  8868. inline void gcode_M355() {
  8869. #if HAS_CASE_LIGHT
  8870. uint8_t args = 0;
  8871. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  8872. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  8873. if (args) update_case_light();
  8874. // always report case light status
  8875. SERIAL_ECHO_START();
  8876. if (!case_light_on) {
  8877. SERIAL_ECHOLN("Case light: off");
  8878. }
  8879. else {
  8880. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  8881. else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness);
  8882. }
  8883. #else
  8884. SERIAL_ERROR_START();
  8885. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8886. #endif // HAS_CASE_LIGHT
  8887. }
  8888. #if ENABLED(MIXING_EXTRUDER)
  8889. /**
  8890. * M163: Set a single mix factor for a mixing extruder
  8891. * This is called "weight" by some systems.
  8892. *
  8893. * S[index] The channel index to set
  8894. * P[float] The mix value
  8895. *
  8896. */
  8897. inline void gcode_M163() {
  8898. const int mix_index = parser.intval('S');
  8899. if (mix_index < MIXING_STEPPERS) {
  8900. float mix_value = parser.floatval('P');
  8901. NOLESS(mix_value, 0.0);
  8902. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  8903. }
  8904. }
  8905. #if MIXING_VIRTUAL_TOOLS > 1
  8906. /**
  8907. * M164: Store the current mix factors as a virtual tool.
  8908. *
  8909. * S[index] The virtual tool to store
  8910. *
  8911. */
  8912. inline void gcode_M164() {
  8913. const int tool_index = parser.intval('S');
  8914. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  8915. normalize_mix();
  8916. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8917. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  8918. }
  8919. }
  8920. #endif
  8921. #if ENABLED(DIRECT_MIXING_IN_G1)
  8922. /**
  8923. * M165: Set multiple mix factors for a mixing extruder.
  8924. * Factors that are left out will be set to 0.
  8925. * All factors together must add up to 1.0.
  8926. *
  8927. * A[factor] Mix factor for extruder stepper 1
  8928. * B[factor] Mix factor for extruder stepper 2
  8929. * C[factor] Mix factor for extruder stepper 3
  8930. * D[factor] Mix factor for extruder stepper 4
  8931. * H[factor] Mix factor for extruder stepper 5
  8932. * I[factor] Mix factor for extruder stepper 6
  8933. *
  8934. */
  8935. inline void gcode_M165() { gcode_get_mix(); }
  8936. #endif
  8937. #endif // MIXING_EXTRUDER
  8938. /**
  8939. * M999: Restart after being stopped
  8940. *
  8941. * Default behaviour is to flush the serial buffer and request
  8942. * a resend to the host starting on the last N line received.
  8943. *
  8944. * Sending "M999 S1" will resume printing without flushing the
  8945. * existing command buffer.
  8946. *
  8947. */
  8948. inline void gcode_M999() {
  8949. Running = true;
  8950. lcd_reset_alert_level();
  8951. if (parser.boolval('S')) return;
  8952. // gcode_LastN = Stopped_gcode_LastN;
  8953. FlushSerialRequestResend();
  8954. }
  8955. #if ENABLED(SWITCHING_EXTRUDER)
  8956. #if EXTRUDERS > 3
  8957. #define REQ_ANGLES 4
  8958. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  8959. #else
  8960. #define REQ_ANGLES 2
  8961. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  8962. #endif
  8963. inline void move_extruder_servo(const uint8_t e) {
  8964. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  8965. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  8966. stepper.synchronize();
  8967. #if EXTRUDERS & 1
  8968. if (e < EXTRUDERS - 1)
  8969. #endif
  8970. {
  8971. MOVE_SERVO(_SERVO_NR, angles[e]);
  8972. safe_delay(500);
  8973. }
  8974. }
  8975. #endif // SWITCHING_EXTRUDER
  8976. #if ENABLED(SWITCHING_NOZZLE)
  8977. inline void move_nozzle_servo(const uint8_t e) {
  8978. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  8979. stepper.synchronize();
  8980. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  8981. safe_delay(500);
  8982. }
  8983. #endif
  8984. inline void invalid_extruder_error(const uint8_t e) {
  8985. SERIAL_ECHO_START();
  8986. SERIAL_CHAR('T');
  8987. SERIAL_ECHO_F(e, DEC);
  8988. SERIAL_CHAR(' ');
  8989. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  8990. }
  8991. #if ENABLED(PARKING_EXTRUDER)
  8992. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8993. #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  8994. #else
  8995. #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  8996. #endif
  8997. void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
  8998. switch (extruder_num) {
  8999. case 1: OUT_WRITE(SOL1_PIN, state); break;
  9000. default: OUT_WRITE(SOL0_PIN, state); break;
  9001. }
  9002. #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
  9003. dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
  9004. #endif
  9005. }
  9006. inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
  9007. inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
  9008. #endif // PARKING_EXTRUDER
  9009. #if HAS_FANMUX
  9010. void fanmux_switch(const uint8_t e) {
  9011. WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  9012. #if PIN_EXISTS(FANMUX1)
  9013. WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  9014. #if PIN_EXISTS(FANMUX2)
  9015. WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
  9016. #endif
  9017. #endif
  9018. }
  9019. FORCE_INLINE void fanmux_init(void) {
  9020. SET_OUTPUT(FANMUX0_PIN);
  9021. #if PIN_EXISTS(FANMUX1)
  9022. SET_OUTPUT(FANMUX1_PIN);
  9023. #if PIN_EXISTS(FANMUX2)
  9024. SET_OUTPUT(FANMUX2_PIN);
  9025. #endif
  9026. #endif
  9027. fanmux_switch(0);
  9028. }
  9029. #endif // HAS_FANMUX
  9030. /**
  9031. * Perform a tool-change, which may result in moving the
  9032. * previous tool out of the way and the new tool into place.
  9033. */
  9034. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  9035. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9036. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  9037. return invalid_extruder_error(tmp_extruder);
  9038. // T0-Tnnn: Switch virtual tool by changing the mix
  9039. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  9040. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  9041. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9042. if (tmp_extruder >= EXTRUDERS)
  9043. return invalid_extruder_error(tmp_extruder);
  9044. #if HOTENDS > 1
  9045. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  9046. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  9047. if (tmp_extruder != active_extruder) {
  9048. if (!no_move && axis_unhomed_error()) {
  9049. no_move = true;
  9050. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9051. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
  9052. #endif
  9053. }
  9054. // Save current position to destination, for use later
  9055. set_destination_from_current();
  9056. #if ENABLED(DUAL_X_CARRIAGE)
  9057. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9058. if (DEBUGGING(LEVELING)) {
  9059. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  9060. switch (dual_x_carriage_mode) {
  9061. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  9062. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  9063. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  9064. }
  9065. }
  9066. #endif
  9067. const float xhome = x_home_pos(active_extruder);
  9068. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  9069. && IsRunning()
  9070. && (delayed_move_time || current_position[X_AXIS] != xhome)
  9071. ) {
  9072. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  9073. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9074. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  9075. #endif
  9076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9077. if (DEBUGGING(LEVELING)) {
  9078. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  9079. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  9080. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  9081. }
  9082. #endif
  9083. // Park old head: 1) raise 2) move to park position 3) lower
  9084. for (uint8_t i = 0; i < 3; i++)
  9085. planner.buffer_line(
  9086. i == 0 ? current_position[X_AXIS] : xhome,
  9087. current_position[Y_AXIS],
  9088. i == 2 ? current_position[Z_AXIS] : raised_z,
  9089. current_position[E_AXIS],
  9090. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  9091. active_extruder
  9092. );
  9093. stepper.synchronize();
  9094. }
  9095. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  9096. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  9097. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9098. // Activate the new extruder ahead of calling set_axis_is_at_home!
  9099. active_extruder = tmp_extruder;
  9100. // This function resets the max/min values - the current position may be overwritten below.
  9101. set_axis_is_at_home(X_AXIS);
  9102. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9103. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  9104. #endif
  9105. // Only when auto-parking are carriages safe to move
  9106. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  9107. switch (dual_x_carriage_mode) {
  9108. case DXC_FULL_CONTROL_MODE:
  9109. // New current position is the position of the activated extruder
  9110. current_position[X_AXIS] = inactive_extruder_x_pos;
  9111. // Save the inactive extruder's position (from the old current_position)
  9112. inactive_extruder_x_pos = destination[X_AXIS];
  9113. break;
  9114. case DXC_AUTO_PARK_MODE:
  9115. // record raised toolhead position for use by unpark
  9116. COPY(raised_parked_position, current_position);
  9117. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  9118. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9119. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9120. #endif
  9121. active_extruder_parked = true;
  9122. delayed_move_time = 0;
  9123. break;
  9124. case DXC_DUPLICATION_MODE:
  9125. // If the new extruder is the left one, set it "parked"
  9126. // This triggers the second extruder to move into the duplication position
  9127. active_extruder_parked = (active_extruder == 0);
  9128. if (active_extruder_parked)
  9129. current_position[X_AXIS] = inactive_extruder_x_pos;
  9130. else
  9131. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  9132. inactive_extruder_x_pos = destination[X_AXIS];
  9133. extruder_duplication_enabled = false;
  9134. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9135. if (DEBUGGING(LEVELING)) {
  9136. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  9137. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  9138. }
  9139. #endif
  9140. break;
  9141. }
  9142. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9143. if (DEBUGGING(LEVELING)) {
  9144. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  9145. DEBUG_POS("New extruder (parked)", current_position);
  9146. }
  9147. #endif
  9148. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  9149. #else // !DUAL_X_CARRIAGE
  9150. #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
  9151. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9152. float z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
  9153. if (!no_move) {
  9154. const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
  9155. midpos = (parkingposx[0] + parkingposx[1]) * 0.5 + hotend_offset[X_AXIS][active_extruder],
  9156. grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
  9157. + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
  9158. /**
  9159. * Steps:
  9160. * 1. Raise Z-Axis to give enough clearance
  9161. * 2. Move to park position of old extruder
  9162. * 3. Disengage magnetic field, wait for delay
  9163. * 4. Move near new extruder
  9164. * 5. Engage magnetic field for new extruder
  9165. * 6. Move to parking incl. offset of new extruder
  9166. * 7. Lower Z-Axis
  9167. */
  9168. // STEP 1
  9169. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9170. SERIAL_ECHOLNPGM("Starting Autopark");
  9171. if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
  9172. #endif
  9173. current_position[Z_AXIS] += z_raise;
  9174. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9175. SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
  9176. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
  9177. #endif
  9178. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9179. stepper.synchronize();
  9180. // STEP 2
  9181. current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
  9182. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9183. SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
  9184. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
  9185. #endif
  9186. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9187. stepper.synchronize();
  9188. // STEP 3
  9189. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9190. SERIAL_ECHOLNPGM("(3) Disengage magnet ");
  9191. #endif
  9192. pe_deactivate_magnet(active_extruder);
  9193. // STEP 4
  9194. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9195. SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
  9196. #endif
  9197. current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
  9198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9199. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
  9200. #endif
  9201. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9202. stepper.synchronize();
  9203. // STEP 5
  9204. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9205. SERIAL_ECHOLNPGM("(5) Engage magnetic field");
  9206. #endif
  9207. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9208. pe_activate_magnet(active_extruder); //just save power for inverted magnets
  9209. #endif
  9210. pe_activate_magnet(tmp_extruder);
  9211. // STEP 6
  9212. current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
  9213. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9214. current_position[X_AXIS] = grabpos;
  9215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9216. SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
  9217. if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
  9218. #endif
  9219. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
  9220. stepper.synchronize();
  9221. // Step 7
  9222. current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
  9223. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9224. SERIAL_ECHOLNPGM("(7) Move midway between hotends");
  9225. if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
  9226. #endif
  9227. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9228. stepper.synchronize();
  9229. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9230. SERIAL_ECHOLNPGM("Autopark done.");
  9231. #endif
  9232. }
  9233. else { // nomove == true
  9234. // Only engage magnetic field for new extruder
  9235. pe_activate_magnet(tmp_extruder);
  9236. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9237. pe_activate_magnet(active_extruder); // Just save power for inverted magnets
  9238. #endif
  9239. }
  9240. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
  9241. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9242. if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
  9243. #endif
  9244. #endif // dualParking extruder
  9245. #if ENABLED(SWITCHING_NOZZLE)
  9246. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  9247. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  9248. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  9249. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  9250. // Always raise by some amount (destination copied from current_position earlier)
  9251. current_position[Z_AXIS] += z_raise;
  9252. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9253. move_nozzle_servo(tmp_extruder);
  9254. #endif
  9255. /**
  9256. * Set current_position to the position of the new nozzle.
  9257. * Offsets are based on linear distance, so we need to get
  9258. * the resulting position in coordinate space.
  9259. *
  9260. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  9261. * - With mesh leveling, update Z for the new position
  9262. * - Otherwise, just use the raw linear distance
  9263. *
  9264. * Software endstops are altered here too. Consider a case where:
  9265. * E0 at X=0 ... E1 at X=10
  9266. * When we switch to E1 now X=10, but E1 can't move left.
  9267. * To express this we apply the change in XY to the software endstops.
  9268. * E1 can move farther right than E0, so the right limit is extended.
  9269. *
  9270. * Note that we don't adjust the Z software endstops. Why not?
  9271. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  9272. * because the bed is 1mm lower at the new position. As long as
  9273. * the first nozzle is out of the way, the carriage should be
  9274. * allowed to move 1mm lower. This technically "breaks" the
  9275. * Z software endstop. But this is technically correct (and
  9276. * there is no viable alternative).
  9277. */
  9278. #if ABL_PLANAR
  9279. // Offset extruder, make sure to apply the bed level rotation matrix
  9280. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  9281. hotend_offset[Y_AXIS][tmp_extruder],
  9282. 0),
  9283. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  9284. hotend_offset[Y_AXIS][active_extruder],
  9285. 0),
  9286. offset_vec = tmp_offset_vec - act_offset_vec;
  9287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9288. if (DEBUGGING(LEVELING)) {
  9289. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  9290. act_offset_vec.debug(PSTR("act_offset_vec"));
  9291. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  9292. }
  9293. #endif
  9294. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  9295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9296. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  9297. #endif
  9298. // Adjustments to the current position
  9299. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  9300. current_position[Z_AXIS] += offset_vec.z;
  9301. #else // !ABL_PLANAR
  9302. const float xydiff[2] = {
  9303. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  9304. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  9305. };
  9306. #if ENABLED(MESH_BED_LEVELING)
  9307. if (planner.leveling_active) {
  9308. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9309. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  9310. #endif
  9311. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  9312. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  9313. z1 = current_position[Z_AXIS], z2 = z1;
  9314. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  9315. planner.apply_leveling(x2, y2, z2);
  9316. current_position[Z_AXIS] += z2 - z1;
  9317. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9318. if (DEBUGGING(LEVELING))
  9319. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  9320. #endif
  9321. }
  9322. #endif // MESH_BED_LEVELING
  9323. #endif // !HAS_ABL
  9324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9325. if (DEBUGGING(LEVELING)) {
  9326. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  9327. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  9328. SERIAL_ECHOLNPGM(" }");
  9329. }
  9330. #endif
  9331. // The newly-selected extruder XY is actually at...
  9332. current_position[X_AXIS] += xydiff[X_AXIS];
  9333. current_position[Y_AXIS] += xydiff[Y_AXIS];
  9334. // Set the new active extruder
  9335. active_extruder = tmp_extruder;
  9336. #endif // !DUAL_X_CARRIAGE
  9337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9338. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  9339. #endif
  9340. // Tell the planner the new "current position"
  9341. SYNC_PLAN_POSITION_KINEMATIC();
  9342. // Move to the "old position" (move the extruder into place)
  9343. #if ENABLED(SWITCHING_NOZZLE)
  9344. destination[Z_AXIS] += z_diff; // Include the Z restore with the "move back"
  9345. #endif
  9346. if (!no_move && IsRunning()) {
  9347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9348. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  9349. #endif
  9350. // Move back to the original (or tweaked) position
  9351. do_blocking_move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS]);
  9352. }
  9353. #if ENABLED(SWITCHING_NOZZLE)
  9354. else {
  9355. // Move back down. (Including when the new tool is higher.)
  9356. do_blocking_move_to_z(destination[Z_AXIS], planner.max_feedrate_mm_s[Z_AXIS]);
  9357. }
  9358. #endif
  9359. } // (tmp_extruder != active_extruder)
  9360. stepper.synchronize();
  9361. #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
  9362. disable_all_solenoids();
  9363. enable_solenoid_on_active_extruder();
  9364. #endif // EXT_SOLENOID
  9365. feedrate_mm_s = old_feedrate_mm_s;
  9366. #else // HOTENDS <= 1
  9367. UNUSED(fr_mm_s);
  9368. UNUSED(no_move);
  9369. #if ENABLED(MK2_MULTIPLEXER)
  9370. if (tmp_extruder >= E_STEPPERS)
  9371. return invalid_extruder_error(tmp_extruder);
  9372. select_multiplexed_stepper(tmp_extruder);
  9373. #endif
  9374. // Set the new active extruder
  9375. active_extruder = tmp_extruder;
  9376. #endif // HOTENDS <= 1
  9377. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  9378. stepper.synchronize();
  9379. move_extruder_servo(active_extruder);
  9380. #endif
  9381. #if HAS_FANMUX
  9382. fanmux_switch(active_extruder);
  9383. #endif
  9384. SERIAL_ECHO_START();
  9385. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  9386. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9387. }
  9388. /**
  9389. * T0-T3: Switch tool, usually switching extruders
  9390. *
  9391. * F[units/min] Set the movement feedrate
  9392. * S1 Don't move the tool in XY after change
  9393. */
  9394. inline void gcode_T(const uint8_t tmp_extruder) {
  9395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9396. if (DEBUGGING(LEVELING)) {
  9397. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  9398. SERIAL_CHAR(')');
  9399. SERIAL_EOL();
  9400. DEBUG_POS("BEFORE", current_position);
  9401. }
  9402. #endif
  9403. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  9404. tool_change(tmp_extruder);
  9405. #elif HOTENDS > 1
  9406. tool_change(
  9407. tmp_extruder,
  9408. MMM_TO_MMS(parser.linearval('F')),
  9409. (tmp_extruder == active_extruder) || parser.boolval('S')
  9410. );
  9411. #endif
  9412. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9413. if (DEBUGGING(LEVELING)) {
  9414. DEBUG_POS("AFTER", current_position);
  9415. SERIAL_ECHOLNPGM("<<< gcode_T");
  9416. }
  9417. #endif
  9418. }
  9419. /**
  9420. * Process the parsed command and dispatch it to its handler
  9421. */
  9422. void process_parsed_command() {
  9423. KEEPALIVE_STATE(IN_HANDLER);
  9424. // Handle a known G, M, or T
  9425. switch (parser.command_letter) {
  9426. case 'G': switch (parser.codenum) {
  9427. // G0, G1
  9428. case 0:
  9429. case 1:
  9430. #if IS_SCARA
  9431. gcode_G0_G1(parser.codenum == 0);
  9432. #else
  9433. gcode_G0_G1();
  9434. #endif
  9435. break;
  9436. // G2, G3
  9437. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  9438. case 2: // G2: CW ARC
  9439. case 3: // G3: CCW ARC
  9440. gcode_G2_G3(parser.codenum == 2);
  9441. break;
  9442. #endif
  9443. // G4 Dwell
  9444. case 4:
  9445. gcode_G4();
  9446. break;
  9447. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9448. case 5: // G5: Cubic B_spline
  9449. gcode_G5();
  9450. break;
  9451. #endif // BEZIER_CURVE_SUPPORT
  9452. #if ENABLED(FWRETRACT)
  9453. case 10: // G10: retract
  9454. gcode_G10();
  9455. break;
  9456. case 11: // G11: retract_recover
  9457. gcode_G11();
  9458. break;
  9459. #endif // FWRETRACT
  9460. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  9461. case 12:
  9462. gcode_G12(); // G12: Nozzle Clean
  9463. break;
  9464. #endif // NOZZLE_CLEAN_FEATURE
  9465. #if ENABLED(CNC_WORKSPACE_PLANES)
  9466. case 17: // G17: Select Plane XY
  9467. gcode_G17();
  9468. break;
  9469. case 18: // G18: Select Plane ZX
  9470. gcode_G18();
  9471. break;
  9472. case 19: // G19: Select Plane YZ
  9473. gcode_G19();
  9474. break;
  9475. #endif // CNC_WORKSPACE_PLANES
  9476. #if ENABLED(INCH_MODE_SUPPORT)
  9477. case 20: // G20: Inch Mode
  9478. gcode_G20();
  9479. break;
  9480. case 21: // G21: MM Mode
  9481. gcode_G21();
  9482. break;
  9483. #endif // INCH_MODE_SUPPORT
  9484. #if ENABLED(G26_MESH_VALIDATION)
  9485. case 26: // G26: Mesh Validation Pattern generation
  9486. gcode_G26();
  9487. break;
  9488. #endif // G26_MESH_VALIDATION
  9489. #if ENABLED(NOZZLE_PARK_FEATURE)
  9490. case 27: // G27: Nozzle Park
  9491. gcode_G27();
  9492. break;
  9493. #endif // NOZZLE_PARK_FEATURE
  9494. case 28: // G28: Home all axes, one at a time
  9495. gcode_G28(false);
  9496. break;
  9497. #if HAS_LEVELING
  9498. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  9499. // or provides access to the UBL System if enabled.
  9500. gcode_G29();
  9501. break;
  9502. #endif // HAS_LEVELING
  9503. #if HAS_BED_PROBE
  9504. case 30: // G30 Single Z probe
  9505. gcode_G30();
  9506. break;
  9507. #if ENABLED(Z_PROBE_SLED)
  9508. case 31: // G31: dock the sled
  9509. gcode_G31();
  9510. break;
  9511. case 32: // G32: undock the sled
  9512. gcode_G32();
  9513. break;
  9514. #endif // Z_PROBE_SLED
  9515. #endif // HAS_BED_PROBE
  9516. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9517. case 33: // G33: Delta Auto-Calibration
  9518. gcode_G33();
  9519. break;
  9520. #endif // DELTA_AUTO_CALIBRATION
  9521. #if ENABLED(G38_PROBE_TARGET)
  9522. case 38: // G38.2 & G38.3
  9523. if (parser.subcode == 2 || parser.subcode == 3)
  9524. gcode_G38(parser.subcode == 2);
  9525. break;
  9526. #endif
  9527. case 90: // G90
  9528. relative_mode = false;
  9529. break;
  9530. case 91: // G91
  9531. relative_mode = true;
  9532. break;
  9533. case 92: // G92
  9534. gcode_G92();
  9535. break;
  9536. #if HAS_MESH
  9537. case 42:
  9538. gcode_G42();
  9539. break;
  9540. #endif
  9541. #if ENABLED(DEBUG_GCODE_PARSER)
  9542. case 800:
  9543. parser.debug(); // GCode Parser Test for G
  9544. break;
  9545. #endif
  9546. }
  9547. break;
  9548. case 'M': switch (parser.codenum) {
  9549. #if HAS_RESUME_CONTINUE
  9550. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9551. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9552. gcode_M0_M1();
  9553. break;
  9554. #endif // ULTIPANEL
  9555. #if ENABLED(SPINDLE_LASER_ENABLE)
  9556. case 3:
  9557. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9558. break; // synchronizes with movement commands
  9559. case 4:
  9560. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9561. break; // synchronizes with movement commands
  9562. case 5:
  9563. gcode_M5(); // M5 - turn spindle/laser off
  9564. break; // synchronizes with movement commands
  9565. #endif
  9566. case 17: // M17: Enable all stepper motors
  9567. gcode_M17();
  9568. break;
  9569. #if ENABLED(SDSUPPORT)
  9570. case 20: // M20: list SD card
  9571. gcode_M20(); break;
  9572. case 21: // M21: init SD card
  9573. gcode_M21(); break;
  9574. case 22: // M22: release SD card
  9575. gcode_M22(); break;
  9576. case 23: // M23: Select file
  9577. gcode_M23(); break;
  9578. case 24: // M24: Start SD print
  9579. gcode_M24(); break;
  9580. case 25: // M25: Pause SD print
  9581. gcode_M25(); break;
  9582. case 26: // M26: Set SD index
  9583. gcode_M26(); break;
  9584. case 27: // M27: Get SD status
  9585. gcode_M27(); break;
  9586. case 28: // M28: Start SD write
  9587. gcode_M28(); break;
  9588. case 29: // M29: Stop SD write
  9589. gcode_M29(); break;
  9590. case 30: // M30 <filename> Delete File
  9591. gcode_M30(); break;
  9592. case 32: // M32: Select file and start SD print
  9593. gcode_M32(); break;
  9594. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  9595. case 33: // M33: Get the long full path to a file or folder
  9596. gcode_M33(); break;
  9597. #endif
  9598. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  9599. case 34: // M34: Set SD card sorting options
  9600. gcode_M34(); break;
  9601. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  9602. case 928: // M928: Start SD write
  9603. gcode_M928(); break;
  9604. #endif // SDSUPPORT
  9605. case 31: // M31: Report time since the start of SD print or last M109
  9606. gcode_M31(); break;
  9607. case 42: // M42: Change pin state
  9608. gcode_M42(); break;
  9609. #if ENABLED(PINS_DEBUGGING)
  9610. case 43: // M43: Read pin state
  9611. gcode_M43(); break;
  9612. #endif
  9613. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  9614. case 48: // M48: Z probe repeatability test
  9615. gcode_M48();
  9616. break;
  9617. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  9618. #if ENABLED(G26_MESH_VALIDATION)
  9619. case 49: // M49: Turn on or off G26 debug flag for verbose output
  9620. gcode_M49();
  9621. break;
  9622. #endif // G26_MESH_VALIDATION
  9623. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  9624. case 73: // M73: Set print progress percentage
  9625. gcode_M73(); break;
  9626. #endif
  9627. case 75: // M75: Start print timer
  9628. gcode_M75(); break;
  9629. case 76: // M76: Pause print timer
  9630. gcode_M76(); break;
  9631. case 77: // M77: Stop print timer
  9632. gcode_M77(); break;
  9633. #if ENABLED(PRINTCOUNTER)
  9634. case 78: // M78: Show print statistics
  9635. gcode_M78(); break;
  9636. #endif
  9637. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9638. case 100: // M100: Free Memory Report
  9639. gcode_M100();
  9640. break;
  9641. #endif
  9642. case 104: // M104: Set hot end temperature
  9643. gcode_M104();
  9644. break;
  9645. case 110: // M110: Set Current Line Number
  9646. gcode_M110();
  9647. break;
  9648. case 111: // M111: Set debug level
  9649. gcode_M111();
  9650. break;
  9651. #if DISABLED(EMERGENCY_PARSER)
  9652. case 108: // M108: Cancel Waiting
  9653. gcode_M108();
  9654. break;
  9655. case 112: // M112: Emergency Stop
  9656. gcode_M112();
  9657. break;
  9658. case 410: // M410 quickstop - Abort all the planned moves.
  9659. gcode_M410();
  9660. break;
  9661. #endif
  9662. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  9663. case 113: // M113: Set Host Keepalive interval
  9664. gcode_M113();
  9665. break;
  9666. #endif
  9667. case 140: // M140: Set bed temperature
  9668. gcode_M140();
  9669. break;
  9670. case 105: // M105: Report current temperature
  9671. gcode_M105();
  9672. KEEPALIVE_STATE(NOT_BUSY);
  9673. return; // "ok" already printed
  9674. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9675. case 155: // M155: Set temperature auto-report interval
  9676. gcode_M155();
  9677. break;
  9678. #endif
  9679. case 109: // M109: Wait for hotend temperature to reach target
  9680. gcode_M109();
  9681. break;
  9682. #if HAS_TEMP_BED
  9683. case 190: // M190: Wait for bed temperature to reach target
  9684. gcode_M190();
  9685. break;
  9686. #endif // HAS_TEMP_BED
  9687. #if FAN_COUNT > 0
  9688. case 106: // M106: Fan On
  9689. gcode_M106();
  9690. break;
  9691. case 107: // M107: Fan Off
  9692. gcode_M107();
  9693. break;
  9694. #endif // FAN_COUNT > 0
  9695. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9696. case 125: // M125: Store current position and move to filament change position
  9697. gcode_M125(); break;
  9698. #endif
  9699. #if ENABLED(BARICUDA)
  9700. // PWM for HEATER_1_PIN
  9701. #if HAS_HEATER_1
  9702. case 126: // M126: valve open
  9703. gcode_M126();
  9704. break;
  9705. case 127: // M127: valve closed
  9706. gcode_M127();
  9707. break;
  9708. #endif // HAS_HEATER_1
  9709. // PWM for HEATER_2_PIN
  9710. #if HAS_HEATER_2
  9711. case 128: // M128: valve open
  9712. gcode_M128();
  9713. break;
  9714. case 129: // M129: valve closed
  9715. gcode_M129();
  9716. break;
  9717. #endif // HAS_HEATER_2
  9718. #endif // BARICUDA
  9719. #if HAS_POWER_SWITCH
  9720. case 80: // M80: Turn on Power Supply
  9721. gcode_M80();
  9722. break;
  9723. #endif // HAS_POWER_SWITCH
  9724. case 81: // M81: Turn off Power, including Power Supply, if possible
  9725. gcode_M81();
  9726. break;
  9727. case 82: // M82: Set E axis normal mode (same as other axes)
  9728. gcode_M82();
  9729. break;
  9730. case 83: // M83: Set E axis relative mode
  9731. gcode_M83();
  9732. break;
  9733. case 18: // M18 => M84
  9734. case 84: // M84: Disable all steppers or set timeout
  9735. gcode_M18_M84();
  9736. break;
  9737. case 85: // M85: Set inactivity stepper shutdown timeout
  9738. gcode_M85();
  9739. break;
  9740. case 92: // M92: Set the steps-per-unit for one or more axes
  9741. gcode_M92();
  9742. break;
  9743. case 114: // M114: Report current position
  9744. gcode_M114();
  9745. break;
  9746. case 115: // M115: Report capabilities
  9747. gcode_M115();
  9748. break;
  9749. case 117: // M117: Set LCD message text, if possible
  9750. gcode_M117();
  9751. break;
  9752. case 118: // M118: Display a message in the host console
  9753. gcode_M118();
  9754. break;
  9755. case 119: // M119: Report endstop states
  9756. gcode_M119();
  9757. break;
  9758. case 120: // M120: Enable endstops
  9759. gcode_M120();
  9760. break;
  9761. case 121: // M121: Disable endstops
  9762. gcode_M121();
  9763. break;
  9764. #if ENABLED(ULTIPANEL)
  9765. case 145: // M145: Set material heatup parameters
  9766. gcode_M145();
  9767. break;
  9768. #endif
  9769. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9770. case 149: // M149: Set temperature units
  9771. gcode_M149();
  9772. break;
  9773. #endif
  9774. #if HAS_COLOR_LEDS
  9775. case 150: // M150: Set Status LED Color
  9776. gcode_M150();
  9777. break;
  9778. #endif // HAS_COLOR_LEDS
  9779. #if ENABLED(MIXING_EXTRUDER)
  9780. case 163: // M163: Set a component weight for mixing extruder
  9781. gcode_M163();
  9782. break;
  9783. #if MIXING_VIRTUAL_TOOLS > 1
  9784. case 164: // M164: Save current mix as a virtual extruder
  9785. gcode_M164();
  9786. break;
  9787. #endif
  9788. #if ENABLED(DIRECT_MIXING_IN_G1)
  9789. case 165: // M165: Set multiple mix weights
  9790. gcode_M165();
  9791. break;
  9792. #endif
  9793. #endif
  9794. case 200: // M200: Set filament diameter, E to cubic units
  9795. gcode_M200();
  9796. break;
  9797. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9798. gcode_M201();
  9799. break;
  9800. #if 0 // Not used for Sprinter/grbl gen6
  9801. case 202: // M202
  9802. gcode_M202();
  9803. break;
  9804. #endif
  9805. case 203: // M203: Set max feedrate (units/sec)
  9806. gcode_M203();
  9807. break;
  9808. case 204: // M204: Set acceleration
  9809. gcode_M204();
  9810. break;
  9811. case 205: // M205: Set advanced settings
  9812. gcode_M205();
  9813. break;
  9814. #if HAS_M206_COMMAND
  9815. case 206: // M206: Set home offsets
  9816. gcode_M206();
  9817. break;
  9818. #endif
  9819. #if ENABLED(DELTA)
  9820. case 665: // M665: Set delta configurations
  9821. gcode_M665();
  9822. break;
  9823. #endif
  9824. #if ENABLED(DELTA) || ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  9825. case 666: // M666: Set delta or dual endstop adjustment
  9826. gcode_M666();
  9827. break;
  9828. #endif
  9829. #if ENABLED(FWRETRACT)
  9830. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9831. gcode_M207();
  9832. break;
  9833. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9834. gcode_M208();
  9835. break;
  9836. case 209: // M209: Turn Automatic Retract Detection on/off
  9837. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  9838. break;
  9839. #endif // FWRETRACT
  9840. case 211: // M211: Enable, Disable, and/or Report software endstops
  9841. gcode_M211();
  9842. break;
  9843. #if HOTENDS > 1
  9844. case 218: // M218: Set a tool offset
  9845. gcode_M218();
  9846. break;
  9847. #endif // HOTENDS > 1
  9848. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9849. gcode_M220();
  9850. break;
  9851. case 221: // M221: Set Flow Percentage
  9852. gcode_M221();
  9853. break;
  9854. case 226: // M226: Wait until a pin reaches a state
  9855. gcode_M226();
  9856. break;
  9857. #if HAS_SERVOS
  9858. case 280: // M280: Set servo position absolute
  9859. gcode_M280();
  9860. break;
  9861. #endif // HAS_SERVOS
  9862. #if ENABLED(BABYSTEPPING)
  9863. case 290: // M290: Babystepping
  9864. gcode_M290();
  9865. break;
  9866. #endif // BABYSTEPPING
  9867. #if HAS_BUZZER
  9868. case 300: // M300: Play beep tone
  9869. gcode_M300();
  9870. break;
  9871. #endif // HAS_BUZZER
  9872. #if ENABLED(PIDTEMP)
  9873. case 301: // M301: Set hotend PID parameters
  9874. gcode_M301();
  9875. break;
  9876. #endif // PIDTEMP
  9877. #if ENABLED(PIDTEMPBED)
  9878. case 304: // M304: Set bed PID parameters
  9879. gcode_M304();
  9880. break;
  9881. #endif // PIDTEMPBED
  9882. #if defined(CHDK) || HAS_PHOTOGRAPH
  9883. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  9884. gcode_M240();
  9885. break;
  9886. #endif // CHDK || PHOTOGRAPH_PIN
  9887. #if HAS_LCD_CONTRAST
  9888. case 250: // M250: Set LCD contrast
  9889. gcode_M250();
  9890. break;
  9891. #endif // HAS_LCD_CONTRAST
  9892. #if ENABLED(EXPERIMENTAL_I2CBUS)
  9893. case 260: // M260: Send data to an i2c slave
  9894. gcode_M260();
  9895. break;
  9896. case 261: // M261: Request data from an i2c slave
  9897. gcode_M261();
  9898. break;
  9899. #endif // EXPERIMENTAL_I2CBUS
  9900. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9901. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  9902. gcode_M302();
  9903. break;
  9904. #endif // PREVENT_COLD_EXTRUSION
  9905. case 303: // M303: PID autotune
  9906. gcode_M303();
  9907. break;
  9908. #if ENABLED(MORGAN_SCARA)
  9909. case 360: // M360: SCARA Theta pos1
  9910. if (gcode_M360()) return;
  9911. break;
  9912. case 361: // M361: SCARA Theta pos2
  9913. if (gcode_M361()) return;
  9914. break;
  9915. case 362: // M362: SCARA Psi pos1
  9916. if (gcode_M362()) return;
  9917. break;
  9918. case 363: // M363: SCARA Psi pos2
  9919. if (gcode_M363()) return;
  9920. break;
  9921. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  9922. if (gcode_M364()) return;
  9923. break;
  9924. #endif // SCARA
  9925. case 400: // M400: Finish all moves
  9926. gcode_M400();
  9927. break;
  9928. #if HAS_BED_PROBE
  9929. case 401: // M401: Deploy probe
  9930. gcode_M401();
  9931. break;
  9932. case 402: // M402: Stow probe
  9933. gcode_M402();
  9934. break;
  9935. #endif // HAS_BED_PROBE
  9936. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  9937. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  9938. gcode_M404();
  9939. break;
  9940. case 405: // M405: Turn on filament sensor for control
  9941. gcode_M405();
  9942. break;
  9943. case 406: // M406: Turn off filament sensor for control
  9944. gcode_M406();
  9945. break;
  9946. case 407: // M407: Display measured filament diameter
  9947. gcode_M407();
  9948. break;
  9949. #endif // FILAMENT_WIDTH_SENSOR
  9950. #if HAS_LEVELING
  9951. case 420: // M420: Enable/Disable Bed Leveling
  9952. gcode_M420();
  9953. break;
  9954. #endif
  9955. #if HAS_MESH
  9956. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  9957. gcode_M421();
  9958. break;
  9959. #endif
  9960. #if HAS_M206_COMMAND
  9961. case 428: // M428: Apply current_position to home_offset
  9962. gcode_M428();
  9963. break;
  9964. #endif
  9965. case 500: // M500: Store settings in EEPROM
  9966. gcode_M500();
  9967. break;
  9968. case 501: // M501: Read settings from EEPROM
  9969. gcode_M501();
  9970. break;
  9971. case 502: // M502: Revert to default settings
  9972. gcode_M502();
  9973. break;
  9974. #if DISABLED(DISABLE_M503)
  9975. case 503: // M503: print settings currently in memory
  9976. gcode_M503();
  9977. break;
  9978. #endif
  9979. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  9980. case 540: // M540: Set abort on endstop hit for SD printing
  9981. gcode_M540();
  9982. break;
  9983. #endif
  9984. #if HAS_BED_PROBE
  9985. case 851: // M851: Set Z Probe Z Offset
  9986. gcode_M851();
  9987. break;
  9988. #endif // HAS_BED_PROBE
  9989. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  9990. case 600: // M600: Pause for filament change
  9991. gcode_M600();
  9992. break;
  9993. #endif // ADVANCED_PAUSE_FEATURE
  9994. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  9995. case 605: // M605: Set Dual X Carriage movement mode
  9996. gcode_M605();
  9997. break;
  9998. #endif // DUAL_X_CARRIAGE
  9999. #if ENABLED(MK2_MULTIPLEXER)
  10000. case 702: // M702: Unload all extruders
  10001. gcode_M702();
  10002. break;
  10003. #endif
  10004. #if ENABLED(LIN_ADVANCE)
  10005. case 900: // M900: Set advance K factor.
  10006. gcode_M900();
  10007. break;
  10008. #endif
  10009. #if ENABLED(HAVE_TMC2130)
  10010. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  10011. gcode_M906();
  10012. break;
  10013. #endif
  10014. case 907: // M907: Set digital trimpot motor current using axis codes.
  10015. gcode_M907();
  10016. break;
  10017. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  10018. case 908: // M908: Control digital trimpot directly.
  10019. gcode_M908();
  10020. break;
  10021. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  10022. case 909: // M909: Print digipot/DAC current value
  10023. gcode_M909();
  10024. break;
  10025. case 910: // M910: Commit digipot/DAC value to external EEPROM
  10026. gcode_M910();
  10027. break;
  10028. #endif
  10029. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  10030. #if ENABLED(HAVE_TMC2130)
  10031. case 911: // M911: Report TMC2130 prewarn triggered flags
  10032. gcode_M911();
  10033. break;
  10034. case 912: // M911: Clear TMC2130 prewarn triggered flags
  10035. gcode_M912();
  10036. break;
  10037. #if ENABLED(HYBRID_THRESHOLD)
  10038. case 913: // M913: Set HYBRID_THRESHOLD speed.
  10039. gcode_M913();
  10040. break;
  10041. #endif
  10042. #if ENABLED(SENSORLESS_HOMING)
  10043. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  10044. gcode_M914();
  10045. break;
  10046. #endif
  10047. #endif
  10048. #if HAS_MICROSTEPS
  10049. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  10050. gcode_M350();
  10051. break;
  10052. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  10053. gcode_M351();
  10054. break;
  10055. #endif // HAS_MICROSTEPS
  10056. case 355: // M355 set case light brightness
  10057. gcode_M355();
  10058. break;
  10059. #if ENABLED(DEBUG_GCODE_PARSER)
  10060. case 800:
  10061. parser.debug(); // GCode Parser Test for M
  10062. break;
  10063. #endif
  10064. #if ENABLED(I2C_POSITION_ENCODERS)
  10065. case 860: // M860 Report encoder module position
  10066. gcode_M860();
  10067. break;
  10068. case 861: // M861 Report encoder module status
  10069. gcode_M861();
  10070. break;
  10071. case 862: // M862 Perform axis test
  10072. gcode_M862();
  10073. break;
  10074. case 863: // M863 Calibrate steps/mm
  10075. gcode_M863();
  10076. break;
  10077. case 864: // M864 Change module address
  10078. gcode_M864();
  10079. break;
  10080. case 865: // M865 Check module firmware version
  10081. gcode_M865();
  10082. break;
  10083. case 866: // M866 Report axis error count
  10084. gcode_M866();
  10085. break;
  10086. case 867: // M867 Toggle error correction
  10087. gcode_M867();
  10088. break;
  10089. case 868: // M868 Set error correction threshold
  10090. gcode_M868();
  10091. break;
  10092. case 869: // M869 Report axis error
  10093. gcode_M869();
  10094. break;
  10095. #endif // I2C_POSITION_ENCODERS
  10096. case 999: // M999: Restart after being Stopped
  10097. gcode_M999();
  10098. break;
  10099. }
  10100. break;
  10101. case 'T':
  10102. gcode_T(parser.codenum);
  10103. break;
  10104. default: parser.unknown_command_error();
  10105. }
  10106. KEEPALIVE_STATE(NOT_BUSY);
  10107. ok_to_send();
  10108. }
  10109. void process_next_command() {
  10110. char * const current_command = command_queue[cmd_queue_index_r];
  10111. if (DEBUGGING(ECHO)) {
  10112. SERIAL_ECHO_START();
  10113. SERIAL_ECHOLN(current_command);
  10114. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  10115. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  10116. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  10117. #endif
  10118. }
  10119. // Parse the next command in the queue
  10120. parser.parse(current_command);
  10121. process_parsed_command();
  10122. }
  10123. /**
  10124. * Send a "Resend: nnn" message to the host to
  10125. * indicate that a command needs to be re-sent.
  10126. */
  10127. void FlushSerialRequestResend() {
  10128. //char command_queue[cmd_queue_index_r][100]="Resend:";
  10129. MYSERIAL.flush();
  10130. SERIAL_PROTOCOLPGM(MSG_RESEND);
  10131. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  10132. ok_to_send();
  10133. }
  10134. /**
  10135. * Send an "ok" message to the host, indicating
  10136. * that a command was successfully processed.
  10137. *
  10138. * If ADVANCED_OK is enabled also include:
  10139. * N<int> Line number of the command, if any
  10140. * P<int> Planner space remaining
  10141. * B<int> Block queue space remaining
  10142. */
  10143. void ok_to_send() {
  10144. refresh_cmd_timeout();
  10145. if (!send_ok[cmd_queue_index_r]) return;
  10146. SERIAL_PROTOCOLPGM(MSG_OK);
  10147. #if ENABLED(ADVANCED_OK)
  10148. char* p = command_queue[cmd_queue_index_r];
  10149. if (*p == 'N') {
  10150. SERIAL_PROTOCOL(' ');
  10151. SERIAL_ECHO(*p++);
  10152. while (NUMERIC_SIGNED(*p))
  10153. SERIAL_ECHO(*p++);
  10154. }
  10155. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  10156. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  10157. #endif
  10158. SERIAL_EOL();
  10159. }
  10160. #if HAS_SOFTWARE_ENDSTOPS
  10161. /**
  10162. * Constrain the given coordinates to the software endstops.
  10163. *
  10164. * For DELTA/SCARA the XY constraint is based on the smallest
  10165. * radius within the set software endstops.
  10166. */
  10167. void clamp_to_software_endstops(float target[XYZ]) {
  10168. if (!soft_endstops_enabled) return;
  10169. #if IS_KINEMATIC
  10170. const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);
  10171. if (dist_2 > soft_endstop_radius_2) {
  10172. const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66
  10173. target[X_AXIS] *= ratio;
  10174. target[Y_AXIS] *= ratio;
  10175. }
  10176. #else
  10177. #if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
  10178. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  10179. #endif
  10180. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
  10181. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  10182. #endif
  10183. #if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
  10184. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  10185. #endif
  10186. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
  10187. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  10188. #endif
  10189. #endif
  10190. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
  10191. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  10192. #endif
  10193. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
  10194. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  10195. #endif
  10196. }
  10197. #endif
  10198. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10199. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  10200. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  10201. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  10202. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  10203. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  10204. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  10205. #else
  10206. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  10207. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  10208. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  10209. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  10210. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  10211. #endif
  10212. // Get the Z adjustment for non-linear bed leveling
  10213. float bilinear_z_offset(const float raw[XYZ]) {
  10214. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  10215. last_x = -999.999, last_y = -999.999;
  10216. // Whole units for the grid line indices. Constrained within bounds.
  10217. static int8_t gridx, gridy, nextx, nexty,
  10218. last_gridx = -99, last_gridy = -99;
  10219. // XY relative to the probed area
  10220. const float rx = raw[X_AXIS] - bilinear_start[X_AXIS],
  10221. ry = raw[Y_AXIS] - bilinear_start[Y_AXIS];
  10222. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  10223. // Keep using the last grid box
  10224. #define FAR_EDGE_OR_BOX 2
  10225. #else
  10226. // Just use the grid far edge
  10227. #define FAR_EDGE_OR_BOX 1
  10228. #endif
  10229. if (last_x != rx) {
  10230. last_x = rx;
  10231. ratio_x = rx * ABL_BG_FACTOR(X_AXIS);
  10232. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  10233. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  10234. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10235. // Beyond the grid maintain height at grid edges
  10236. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  10237. #endif
  10238. gridx = gx;
  10239. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  10240. }
  10241. if (last_y != ry || last_gridx != gridx) {
  10242. if (last_y != ry) {
  10243. last_y = ry;
  10244. ratio_y = ry * ABL_BG_FACTOR(Y_AXIS);
  10245. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  10246. ratio_y -= gy;
  10247. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10248. // Beyond the grid maintain height at grid edges
  10249. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  10250. #endif
  10251. gridy = gy;
  10252. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  10253. }
  10254. if (last_gridx != gridx || last_gridy != gridy) {
  10255. last_gridx = gridx;
  10256. last_gridy = gridy;
  10257. // Z at the box corners
  10258. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  10259. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  10260. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  10261. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  10262. }
  10263. // Bilinear interpolate. Needed since ry or gridx has changed.
  10264. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  10265. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  10266. D = R - L;
  10267. }
  10268. const float offset = L + ratio_x * D; // the offset almost always changes
  10269. /*
  10270. static float last_offset = 0;
  10271. if (FABS(last_offset - offset) > 0.2) {
  10272. SERIAL_ECHOPGM("Sudden Shift at ");
  10273. SERIAL_ECHOPAIR("x=", rx);
  10274. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  10275. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  10276. SERIAL_ECHOPAIR(" y=", ry);
  10277. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  10278. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  10279. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  10280. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  10281. SERIAL_ECHOPAIR(" z1=", z1);
  10282. SERIAL_ECHOPAIR(" z2=", z2);
  10283. SERIAL_ECHOPAIR(" z3=", z3);
  10284. SERIAL_ECHOLNPAIR(" z4=", z4);
  10285. SERIAL_ECHOPAIR(" L=", L);
  10286. SERIAL_ECHOPAIR(" R=", R);
  10287. SERIAL_ECHOLNPAIR(" offset=", offset);
  10288. }
  10289. last_offset = offset;
  10290. //*/
  10291. return offset;
  10292. }
  10293. #endif // AUTO_BED_LEVELING_BILINEAR
  10294. #if ENABLED(DELTA)
  10295. /**
  10296. * Recalculate factors used for delta kinematics whenever
  10297. * settings have been changed (e.g., by M665).
  10298. */
  10299. void recalc_delta_settings() {
  10300. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  10301. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  10302. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower
  10303. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);
  10304. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower
  10305. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);
  10306. delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower
  10307. delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);
  10308. delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);
  10309. delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
  10310. delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
  10311. update_software_endstops(Z_AXIS);
  10312. axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
  10313. }
  10314. #if ENABLED(DELTA_FAST_SQRT)
  10315. /**
  10316. * Fast inverse sqrt from Quake III Arena
  10317. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  10318. */
  10319. float Q_rsqrt(float number) {
  10320. long i;
  10321. float x2, y;
  10322. const float threehalfs = 1.5f;
  10323. x2 = number * 0.5f;
  10324. y = number;
  10325. i = * ( long * ) &y; // evil floating point bit level hacking
  10326. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  10327. y = * ( float * ) &i;
  10328. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  10329. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  10330. return y;
  10331. }
  10332. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  10333. #else
  10334. #define _SQRT(n) SQRT(n)
  10335. #endif
  10336. /**
  10337. * Delta Inverse Kinematics
  10338. *
  10339. * Calculate the tower positions for a given machine
  10340. * position, storing the result in the delta[] array.
  10341. *
  10342. * This is an expensive calculation, requiring 3 square
  10343. * roots per segmented linear move, and strains the limits
  10344. * of a Mega2560 with a Graphical Display.
  10345. *
  10346. * Suggested optimizations include:
  10347. *
  10348. * - Disable the home_offset (M206) and/or position_shift (G92)
  10349. * features to remove up to 12 float additions.
  10350. *
  10351. * - Use a fast-inverse-sqrt function and add the reciprocal.
  10352. * (see above)
  10353. */
  10354. // Macro to obtain the Z position of an individual tower
  10355. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  10356. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  10357. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  10358. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  10359. ) \
  10360. )
  10361. #define DELTA_RAW_IK() do { \
  10362. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  10363. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  10364. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  10365. }while(0)
  10366. #define DELTA_DEBUG() do { \
  10367. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  10368. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  10369. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  10370. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  10371. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  10372. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  10373. }while(0)
  10374. void inverse_kinematics(const float raw[XYZ]) {
  10375. DELTA_RAW_IK();
  10376. // DELTA_DEBUG();
  10377. }
  10378. /**
  10379. * Calculate the highest Z position where the
  10380. * effector has the full range of XY motion.
  10381. */
  10382. float delta_safe_distance_from_top() {
  10383. float cartesian[XYZ] = { 0, 0, 0 };
  10384. inverse_kinematics(cartesian);
  10385. float distance = delta[A_AXIS];
  10386. cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
  10387. inverse_kinematics(cartesian);
  10388. return FABS(distance - delta[A_AXIS]);
  10389. }
  10390. /**
  10391. * Delta Forward Kinematics
  10392. *
  10393. * See the Wikipedia article "Trilateration"
  10394. * https://en.wikipedia.org/wiki/Trilateration
  10395. *
  10396. * Establish a new coordinate system in the plane of the
  10397. * three carriage points. This system has its origin at
  10398. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  10399. * plane with a Z component of zero.
  10400. * We will define unit vectors in this coordinate system
  10401. * in our original coordinate system. Then when we calculate
  10402. * the Xnew, Ynew and Znew values, we can translate back into
  10403. * the original system by moving along those unit vectors
  10404. * by the corresponding values.
  10405. *
  10406. * Variable names matched to Marlin, c-version, and avoid the
  10407. * use of any vector library.
  10408. *
  10409. * by Andreas Hardtung 2016-06-07
  10410. * based on a Java function from "Delta Robot Kinematics V3"
  10411. * by Steve Graves
  10412. *
  10413. * The result is stored in the cartes[] array.
  10414. */
  10415. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  10416. // Create a vector in old coordinates along x axis of new coordinate
  10417. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  10418. // Get the Magnitude of vector.
  10419. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  10420. // Create unit vector by dividing by magnitude.
  10421. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  10422. // Get the vector from the origin of the new system to the third point.
  10423. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  10424. // Use the dot product to find the component of this vector on the X axis.
  10425. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  10426. // Create a vector along the x axis that represents the x component of p13.
  10427. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  10428. // Subtract the X component from the original vector leaving only Y. We use the
  10429. // variable that will be the unit vector after we scale it.
  10430. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  10431. // The magnitude of Y component
  10432. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  10433. // Convert to a unit vector
  10434. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  10435. // The cross product of the unit x and y is the unit z
  10436. // float[] ez = vectorCrossProd(ex, ey);
  10437. float ez[3] = {
  10438. ex[1] * ey[2] - ex[2] * ey[1],
  10439. ex[2] * ey[0] - ex[0] * ey[2],
  10440. ex[0] * ey[1] - ex[1] * ey[0]
  10441. };
  10442. // We now have the d, i and j values defined in Wikipedia.
  10443. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  10444. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  10445. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  10446. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  10447. // Start from the origin of the old coordinates and add vectors in the
  10448. // old coords that represent the Xnew, Ynew and Znew to find the point
  10449. // in the old system.
  10450. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  10451. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  10452. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  10453. }
  10454. void forward_kinematics_DELTA(float point[ABC]) {
  10455. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  10456. }
  10457. #endif // DELTA
  10458. /**
  10459. * Get the stepper positions in the cartes[] array.
  10460. * Forward kinematics are applied for DELTA and SCARA.
  10461. *
  10462. * The result is in the current coordinate space with
  10463. * leveling applied. The coordinates need to be run through
  10464. * unapply_leveling to obtain machine coordinates suitable
  10465. * for current_position, etc.
  10466. */
  10467. void get_cartesian_from_steppers() {
  10468. #if ENABLED(DELTA)
  10469. forward_kinematics_DELTA(
  10470. stepper.get_axis_position_mm(A_AXIS),
  10471. stepper.get_axis_position_mm(B_AXIS),
  10472. stepper.get_axis_position_mm(C_AXIS)
  10473. );
  10474. #else
  10475. #if IS_SCARA
  10476. forward_kinematics_SCARA(
  10477. stepper.get_axis_position_degrees(A_AXIS),
  10478. stepper.get_axis_position_degrees(B_AXIS)
  10479. );
  10480. #else
  10481. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  10482. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  10483. #endif
  10484. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10485. #endif
  10486. }
  10487. /**
  10488. * Set the current_position for an axis based on
  10489. * the stepper positions, removing any leveling that
  10490. * may have been applied.
  10491. */
  10492. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  10493. get_cartesian_from_steppers();
  10494. #if PLANNER_LEVELING
  10495. planner.unapply_leveling(cartes);
  10496. #endif
  10497. if (axis == ALL_AXES)
  10498. COPY(current_position, cartes);
  10499. else
  10500. current_position[axis] = cartes[axis];
  10501. }
  10502. #if IS_CARTESIAN
  10503. #if ENABLED(SEGMENT_LEVELED_MOVES)
  10504. /**
  10505. * Prepare a segmented move on a CARTESIAN setup.
  10506. *
  10507. * This calls planner.buffer_line several times, adding
  10508. * small incremental moves. This allows the planner to
  10509. * apply more detailed bed leveling to the full move.
  10510. */
  10511. inline void segmented_line_to_destination(const float fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
  10512. const float xdiff = destination[X_AXIS] - current_position[X_AXIS],
  10513. ydiff = destination[Y_AXIS] - current_position[Y_AXIS];
  10514. // If the move is only in Z/E don't split up the move
  10515. if (!xdiff && !ydiff) {
  10516. planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder);
  10517. return;
  10518. }
  10519. // Remaining cartesian distances
  10520. const float zdiff = destination[Z_AXIS] - current_position[Z_AXIS],
  10521. ediff = destination[E_AXIS] - current_position[E_AXIS];
  10522. // Get the linear distance in XYZ
  10523. // If the move is very short, check the E move distance
  10524. // No E move either? Game over.
  10525. float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
  10526. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(ediff);
  10527. if (UNEAR_ZERO(cartesian_mm)) return;
  10528. // The length divided by the segment size
  10529. // At least one segment is required
  10530. uint16_t segments = cartesian_mm / segment_size;
  10531. NOLESS(segments, 1);
  10532. // The approximate length of each segment
  10533. const float inv_segments = 1.0 / float(segments),
  10534. segment_distance[XYZE] = {
  10535. xdiff * inv_segments,
  10536. ydiff * inv_segments,
  10537. zdiff * inv_segments,
  10538. ediff * inv_segments
  10539. };
  10540. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10541. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10542. // Drop one segment so the last move is to the exact target.
  10543. // If there's only 1 segment, loops will be skipped entirely.
  10544. --segments;
  10545. // Get the raw current position as starting point
  10546. float raw[XYZE];
  10547. COPY(raw, current_position);
  10548. // Calculate and execute the segments
  10549. for (uint16_t s = segments + 1; --s;) {
  10550. static millis_t next_idle_ms = millis() + 200UL;
  10551. thermalManager.manage_heater(); // This returns immediately if not really needed.
  10552. if (ELAPSED(millis(), next_idle_ms)) {
  10553. next_idle_ms = millis() + 200UL;
  10554. idle();
  10555. }
  10556. LOOP_XYZE(i) raw[i] += segment_distance[i];
  10557. planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
  10558. }
  10559. // Since segment_distance is only approximate,
  10560. // the final move must be to the exact destination.
  10561. planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder);
  10562. }
  10563. #elif ENABLED(MESH_BED_LEVELING)
  10564. /**
  10565. * Prepare a mesh-leveled linear move in a Cartesian setup,
  10566. * splitting the move where it crosses mesh borders.
  10567. */
  10568. void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  10569. int cx1 = mbl.cell_index_x(current_position[X_AXIS]),
  10570. cy1 = mbl.cell_index_y(current_position[Y_AXIS]),
  10571. cx2 = mbl.cell_index_x(destination[X_AXIS]),
  10572. cy2 = mbl.cell_index_y(destination[Y_AXIS]);
  10573. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  10574. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  10575. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  10576. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  10577. if (cx1 == cx2 && cy1 == cy2) {
  10578. // Start and end on same mesh square
  10579. buffer_line_to_destination(fr_mm_s);
  10580. set_current_from_destination();
  10581. return;
  10582. }
  10583. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10584. float normalized_dist, end[XYZE];
  10585. // Split at the left/front border of the right/top square
  10586. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10587. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10588. COPY(end, destination);
  10589. destination[X_AXIS] = mbl.index_to_xpos[gcx];
  10590. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10591. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  10592. CBI(x_splits, gcx);
  10593. }
  10594. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10595. COPY(end, destination);
  10596. destination[Y_AXIS] = mbl.index_to_ypos[gcy];
  10597. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10598. destination[X_AXIS] = MBL_SEGMENT_END(X);
  10599. CBI(y_splits, gcy);
  10600. }
  10601. else {
  10602. // Already split on a border
  10603. buffer_line_to_destination(fr_mm_s);
  10604. set_current_from_destination();
  10605. return;
  10606. }
  10607. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  10608. destination[E_AXIS] = MBL_SEGMENT_END(E);
  10609. // Do the split and look for more borders
  10610. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10611. // Restore destination from stack
  10612. COPY(destination, end);
  10613. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10614. }
  10615. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10616. #define CELL_INDEX(A,V) ((V - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  10617. /**
  10618. * Prepare a bilinear-leveled linear move on Cartesian,
  10619. * splitting the move where it crosses grid borders.
  10620. */
  10621. void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  10622. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  10623. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  10624. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  10625. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  10626. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  10627. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  10628. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  10629. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  10630. if (cx1 == cx2 && cy1 == cy2) {
  10631. // Start and end on same mesh square
  10632. buffer_line_to_destination(fr_mm_s);
  10633. set_current_from_destination();
  10634. return;
  10635. }
  10636. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10637. float normalized_dist, end[XYZE];
  10638. // Split at the left/front border of the right/top square
  10639. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10640. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10641. COPY(end, destination);
  10642. destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx;
  10643. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10644. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  10645. CBI(x_splits, gcx);
  10646. }
  10647. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10648. COPY(end, destination);
  10649. destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy;
  10650. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10651. destination[X_AXIS] = LINE_SEGMENT_END(X);
  10652. CBI(y_splits, gcy);
  10653. }
  10654. else {
  10655. // Already split on a border
  10656. buffer_line_to_destination(fr_mm_s);
  10657. set_current_from_destination();
  10658. return;
  10659. }
  10660. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  10661. destination[E_AXIS] = LINE_SEGMENT_END(E);
  10662. // Do the split and look for more borders
  10663. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10664. // Restore destination from stack
  10665. COPY(destination, end);
  10666. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10667. }
  10668. #endif // AUTO_BED_LEVELING_BILINEAR
  10669. #endif // IS_CARTESIAN
  10670. #if !UBL_DELTA
  10671. #if IS_KINEMATIC
  10672. /**
  10673. * Prepare a linear move in a DELTA or SCARA setup.
  10674. *
  10675. * This calls planner.buffer_line several times, adding
  10676. * small incremental moves for DELTA or SCARA.
  10677. *
  10678. * For Unified Bed Leveling (Delta or Segmented Cartesian)
  10679. * the ubl.prepare_segmented_line_to method replaces this.
  10680. */
  10681. inline bool prepare_kinematic_move_to(float rtarget[XYZE]) {
  10682. // Get the top feedrate of the move in the XY plane
  10683. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  10684. const float xdiff = rtarget[X_AXIS] - current_position[X_AXIS],
  10685. ydiff = rtarget[Y_AXIS] - current_position[Y_AXIS];
  10686. // If the move is only in Z/E don't split up the move
  10687. if (!xdiff && !ydiff) {
  10688. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  10689. return false;
  10690. }
  10691. // Fail if attempting move outside printable radius
  10692. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true;
  10693. // Remaining cartesian distances
  10694. const float zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS],
  10695. ediff = rtarget[E_AXIS] - current_position[E_AXIS];
  10696. // Get the linear distance in XYZ
  10697. // If the move is very short, check the E move distance
  10698. // No E move either? Game over.
  10699. float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
  10700. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(ediff);
  10701. if (UNEAR_ZERO(cartesian_mm)) return true;
  10702. // Minimum number of seconds to move the given distance
  10703. const float seconds = cartesian_mm / _feedrate_mm_s;
  10704. // The number of segments-per-second times the duration
  10705. // gives the number of segments
  10706. uint16_t segments = delta_segments_per_second * seconds;
  10707. // For SCARA minimum segment size is 0.25mm
  10708. #if IS_SCARA
  10709. NOMORE(segments, cartesian_mm * 4);
  10710. #endif
  10711. // At least one segment is required
  10712. NOLESS(segments, 1);
  10713. // The approximate length of each segment
  10714. const float inv_segments = 1.0 / float(segments),
  10715. segment_distance[XYZE] = {
  10716. xdiff * inv_segments,
  10717. ydiff * inv_segments,
  10718. zdiff * inv_segments,
  10719. ediff * inv_segments
  10720. };
  10721. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10722. // SERIAL_ECHOPAIR(" seconds=", seconds);
  10723. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10724. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10725. // SCARA needs to scale the feed rate from mm/s to degrees/s
  10726. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  10727. feed_factor = inv_segment_length * _feedrate_mm_s;
  10728. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  10729. oldB = stepper.get_axis_position_degrees(B_AXIS);
  10730. #endif
  10731. // Get the raw current position as starting point
  10732. float raw[XYZE];
  10733. COPY(raw, current_position);
  10734. // Drop one segment so the last move is to the exact target.
  10735. // If there's only 1 segment, loops will be skipped entirely.
  10736. --segments;
  10737. // Calculate and execute the segments
  10738. for (uint16_t s = segments + 1; --s;) {
  10739. static millis_t next_idle_ms = millis() + 200UL;
  10740. thermalManager.manage_heater(); // This returns immediately if not really needed.
  10741. if (ELAPSED(millis(), next_idle_ms)) {
  10742. next_idle_ms = millis() + 200UL;
  10743. idle();
  10744. }
  10745. LOOP_XYZE(i) raw[i] += segment_distance[i];
  10746. #if ENABLED(DELTA)
  10747. DELTA_RAW_IK(); // Delta can inline its kinematics
  10748. #else
  10749. inverse_kinematics(raw);
  10750. #endif
  10751. ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
  10752. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10753. // For SCARA scale the feed rate from mm/s to degrees/s
  10754. // Use ratio between the length of the move and the larger angle change
  10755. const float adiff = abs(delta[A_AXIS] - oldA),
  10756. bdiff = abs(delta[B_AXIS] - oldB);
  10757. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10758. oldA = delta[A_AXIS];
  10759. oldB = delta[B_AXIS];
  10760. #else
  10761. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder);
  10762. #endif
  10763. }
  10764. // Since segment_distance is only approximate,
  10765. // the final move must be to the exact destination.
  10766. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10767. // For SCARA scale the feed rate from mm/s to degrees/s
  10768. // With segments > 1 length is 1 segment, otherwise total length
  10769. inverse_kinematics(rtarget);
  10770. ADJUST_DELTA(rtarget);
  10771. const float adiff = abs(delta[A_AXIS] - oldA),
  10772. bdiff = abs(delta[B_AXIS] - oldB);
  10773. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10774. #else
  10775. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  10776. #endif
  10777. return false;
  10778. }
  10779. #else // !IS_KINEMATIC
  10780. /**
  10781. * Prepare a linear move in a Cartesian setup.
  10782. *
  10783. * When a mesh-based leveling system is active, moves are segmented
  10784. * according to the configuration of the leveling system.
  10785. *
  10786. * Returns true if current_position[] was set to destination[]
  10787. */
  10788. inline bool prepare_move_to_destination_cartesian() {
  10789. #if HAS_MESH
  10790. if (planner.leveling_active && planner.leveling_active_at_z(destination[Z_AXIS])) {
  10791. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10792. ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about
  10793. return true; // all moves, including Z-only moves.
  10794. #elif ENABLED(SEGMENT_LEVELED_MOVES)
  10795. segmented_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10796. return false;
  10797. #else
  10798. /**
  10799. * For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
  10800. * Otherwise fall through to do a direct single move.
  10801. */
  10802. if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
  10803. #if ENABLED(MESH_BED_LEVELING)
  10804. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10805. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10806. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10807. #endif
  10808. return true;
  10809. }
  10810. #endif
  10811. }
  10812. #endif // HAS_MESH
  10813. buffer_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10814. return false;
  10815. }
  10816. #endif // !IS_KINEMATIC
  10817. #endif // !UBL_DELTA
  10818. #if ENABLED(DUAL_X_CARRIAGE)
  10819. /**
  10820. * Prepare a linear move in a dual X axis setup
  10821. */
  10822. inline bool prepare_move_to_destination_dualx() {
  10823. if (active_extruder_parked) {
  10824. switch (dual_x_carriage_mode) {
  10825. case DXC_FULL_CONTROL_MODE:
  10826. break;
  10827. case DXC_AUTO_PARK_MODE:
  10828. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10829. // This is a travel move (with no extrusion)
  10830. // Skip it, but keep track of the current position
  10831. // (so it can be used as the start of the next non-travel move)
  10832. if (delayed_move_time != 0xFFFFFFFFUL) {
  10833. set_current_from_destination();
  10834. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10835. delayed_move_time = millis();
  10836. return true;
  10837. }
  10838. }
  10839. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10840. for (uint8_t i = 0; i < 3; i++)
  10841. planner.buffer_line(
  10842. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10843. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10844. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10845. current_position[E_AXIS],
  10846. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10847. active_extruder
  10848. );
  10849. delayed_move_time = 0;
  10850. active_extruder_parked = false;
  10851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10852. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10853. #endif
  10854. break;
  10855. case DXC_DUPLICATION_MODE:
  10856. if (active_extruder == 0) {
  10857. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10858. if (DEBUGGING(LEVELING)) {
  10859. SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos);
  10860. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10861. }
  10862. #endif
  10863. // move duplicate extruder into correct duplication position.
  10864. planner.set_position_mm(
  10865. inactive_extruder_x_pos,
  10866. current_position[Y_AXIS],
  10867. current_position[Z_AXIS],
  10868. current_position[E_AXIS]
  10869. );
  10870. planner.buffer_line(
  10871. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10872. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10873. planner.max_feedrate_mm_s[X_AXIS], 1
  10874. );
  10875. SYNC_PLAN_POSITION_KINEMATIC();
  10876. stepper.synchronize();
  10877. extruder_duplication_enabled = true;
  10878. active_extruder_parked = false;
  10879. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10880. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10881. #endif
  10882. }
  10883. else {
  10884. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10885. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10886. #endif
  10887. }
  10888. break;
  10889. }
  10890. }
  10891. return prepare_move_to_destination_cartesian();
  10892. }
  10893. #endif // DUAL_X_CARRIAGE
  10894. /**
  10895. * Prepare a single move and get ready for the next one
  10896. *
  10897. * This may result in several calls to planner.buffer_line to
  10898. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10899. *
  10900. * Make sure current_position[E] and destination[E] are good
  10901. * before calling or cold/lengthy extrusion may get missed.
  10902. */
  10903. void prepare_move_to_destination() {
  10904. clamp_to_software_endstops(destination);
  10905. refresh_cmd_timeout();
  10906. #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10907. if (!DEBUGGING(DRYRUN)) {
  10908. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10909. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10910. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10911. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10912. SERIAL_ECHO_START();
  10913. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10914. }
  10915. #endif // PREVENT_COLD_EXTRUSION
  10916. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10917. if (FABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) {
  10918. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10919. SERIAL_ECHO_START();
  10920. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10921. }
  10922. #endif // PREVENT_LENGTHY_EXTRUDE
  10923. }
  10924. }
  10925. #endif
  10926. if (
  10927. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10928. ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
  10929. #elif IS_KINEMATIC
  10930. prepare_kinematic_move_to(destination)
  10931. #elif ENABLED(DUAL_X_CARRIAGE)
  10932. prepare_move_to_destination_dualx()
  10933. #else
  10934. prepare_move_to_destination_cartesian()
  10935. #endif
  10936. ) return;
  10937. set_current_from_destination();
  10938. }
  10939. #if ENABLED(ARC_SUPPORT)
  10940. #if N_ARC_CORRECTION < 1
  10941. #undef N_ARC_CORRECTION
  10942. #define N_ARC_CORRECTION 1
  10943. #endif
  10944. /**
  10945. * Plan an arc in 2 dimensions
  10946. *
  10947. * The arc is approximated by generating many small linear segments.
  10948. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  10949. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  10950. * larger segments will tend to be more efficient. Your slicer should have
  10951. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  10952. */
  10953. void plan_arc(
  10954. float raw[XYZE], // Destination position
  10955. float *offset, // Center of rotation relative to current_position
  10956. uint8_t clockwise // Clockwise?
  10957. ) {
  10958. #if ENABLED(CNC_WORKSPACE_PLANES)
  10959. AxisEnum p_axis, q_axis, l_axis;
  10960. switch (workspace_plane) {
  10961. default:
  10962. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  10963. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  10964. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  10965. }
  10966. #else
  10967. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  10968. #endif
  10969. // Radius vector from center to current location
  10970. float r_P = -offset[0], r_Q = -offset[1];
  10971. const float radius = HYPOT(r_P, r_Q),
  10972. center_P = current_position[p_axis] - r_P,
  10973. center_Q = current_position[q_axis] - r_Q,
  10974. rt_X = raw[p_axis] - center_P,
  10975. rt_Y = raw[q_axis] - center_Q,
  10976. linear_travel = raw[l_axis] - current_position[l_axis],
  10977. extruder_travel = raw[E_AXIS] - current_position[E_AXIS];
  10978. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  10979. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  10980. if (angular_travel < 0) angular_travel += RADIANS(360);
  10981. if (clockwise) angular_travel -= RADIANS(360);
  10982. // Make a circle if the angular rotation is 0 and the target is current position
  10983. if (angular_travel == 0 && current_position[p_axis] == raw[p_axis] && current_position[q_axis] == raw[q_axis])
  10984. angular_travel = RADIANS(360);
  10985. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  10986. if (mm_of_travel < 0.001) return;
  10987. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  10988. if (segments == 0) segments = 1;
  10989. /**
  10990. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  10991. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  10992. * r_T = [cos(phi) -sin(phi);
  10993. * sin(phi) cos(phi)] * r ;
  10994. *
  10995. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  10996. * defined from the circle center to the initial position. Each line segment is formed by successive
  10997. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  10998. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  10999. * all double numbers are single precision on the Arduino. (True double precision will not have
  11000. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  11001. * tool precision in some cases. Therefore, arc path correction is implemented.
  11002. *
  11003. * Small angle approximation may be used to reduce computation overhead further. This approximation
  11004. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  11005. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  11006. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  11007. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  11008. * issue for CNC machines with the single precision Arduino calculations.
  11009. *
  11010. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  11011. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  11012. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  11013. * This is important when there are successive arc motions.
  11014. */
  11015. // Vector rotation matrix values
  11016. float arc_target[XYZE];
  11017. const float theta_per_segment = angular_travel / segments,
  11018. linear_per_segment = linear_travel / segments,
  11019. extruder_per_segment = extruder_travel / segments,
  11020. sin_T = theta_per_segment,
  11021. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  11022. // Initialize the linear axis
  11023. arc_target[l_axis] = current_position[l_axis];
  11024. // Initialize the extruder axis
  11025. arc_target[E_AXIS] = current_position[E_AXIS];
  11026. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  11027. millis_t next_idle_ms = millis() + 200UL;
  11028. #if N_ARC_CORRECTION > 1
  11029. int8_t arc_recalc_count = N_ARC_CORRECTION;
  11030. #endif
  11031. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  11032. thermalManager.manage_heater();
  11033. if (ELAPSED(millis(), next_idle_ms)) {
  11034. next_idle_ms = millis() + 200UL;
  11035. idle();
  11036. }
  11037. #if N_ARC_CORRECTION > 1
  11038. if (--arc_recalc_count) {
  11039. // Apply vector rotation matrix to previous r_P / 1
  11040. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  11041. r_P = r_P * cos_T - r_Q * sin_T;
  11042. r_Q = r_new_Y;
  11043. }
  11044. else
  11045. #endif
  11046. {
  11047. #if N_ARC_CORRECTION > 1
  11048. arc_recalc_count = N_ARC_CORRECTION;
  11049. #endif
  11050. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  11051. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  11052. // To reduce stuttering, the sin and cos could be computed at different times.
  11053. // For now, compute both at the same time.
  11054. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  11055. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  11056. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  11057. }
  11058. // Update arc_target location
  11059. arc_target[p_axis] = center_P + r_P;
  11060. arc_target[q_axis] = center_Q + r_Q;
  11061. arc_target[l_axis] += linear_per_segment;
  11062. arc_target[E_AXIS] += extruder_per_segment;
  11063. clamp_to_software_endstops(arc_target);
  11064. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  11065. }
  11066. // Ensure last segment arrives at target location.
  11067. planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
  11068. // As far as the parser is concerned, the position is now == target. In reality the
  11069. // motion control system might still be processing the action and the real tool position
  11070. // in any intermediate location.
  11071. set_current_from_destination();
  11072. } // plan_arc
  11073. #endif // ARC_SUPPORT
  11074. #if ENABLED(BEZIER_CURVE_SUPPORT)
  11075. void plan_cubic_move(const float offset[4]) {
  11076. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  11077. // As far as the parser is concerned, the position is now == destination. In reality the
  11078. // motion control system might still be processing the action and the real tool position
  11079. // in any intermediate location.
  11080. set_current_from_destination();
  11081. }
  11082. #endif // BEZIER_CURVE_SUPPORT
  11083. #if ENABLED(USE_CONTROLLER_FAN)
  11084. void controllerFan() {
  11085. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  11086. nextMotorCheck = 0; // Last time the state was checked
  11087. const millis_t ms = millis();
  11088. if (ELAPSED(ms, nextMotorCheck)) {
  11089. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  11090. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  11091. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  11092. #if E_STEPPERS > 1
  11093. || E1_ENABLE_READ == E_ENABLE_ON
  11094. #if HAS_X2_ENABLE
  11095. || X2_ENABLE_READ == X_ENABLE_ON
  11096. #endif
  11097. #if E_STEPPERS > 2
  11098. || E2_ENABLE_READ == E_ENABLE_ON
  11099. #if E_STEPPERS > 3
  11100. || E3_ENABLE_READ == E_ENABLE_ON
  11101. #if E_STEPPERS > 4
  11102. || E4_ENABLE_READ == E_ENABLE_ON
  11103. #endif // E_STEPPERS > 4
  11104. #endif // E_STEPPERS > 3
  11105. #endif // E_STEPPERS > 2
  11106. #endif // E_STEPPERS > 1
  11107. ) {
  11108. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  11109. }
  11110. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  11111. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  11112. // allows digital or PWM fan output to be used (see M42 handling)
  11113. WRITE(CONTROLLER_FAN_PIN, speed);
  11114. analogWrite(CONTROLLER_FAN_PIN, speed);
  11115. }
  11116. }
  11117. #endif // USE_CONTROLLER_FAN
  11118. #if ENABLED(MORGAN_SCARA)
  11119. /**
  11120. * Morgan SCARA Forward Kinematics. Results in cartes[].
  11121. * Maths and first version by QHARLEY.
  11122. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11123. */
  11124. void forward_kinematics_SCARA(const float &a, const float &b) {
  11125. float a_sin = sin(RADIANS(a)) * L1,
  11126. a_cos = cos(RADIANS(a)) * L1,
  11127. b_sin = sin(RADIANS(b)) * L2,
  11128. b_cos = cos(RADIANS(b)) * L2;
  11129. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  11130. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  11131. /*
  11132. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  11133. SERIAL_ECHOPAIR(" b=", b);
  11134. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  11135. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  11136. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  11137. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  11138. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  11139. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  11140. //*/
  11141. }
  11142. /**
  11143. * Morgan SCARA Inverse Kinematics. Results in delta[].
  11144. *
  11145. * See http://forums.reprap.org/read.php?185,283327
  11146. *
  11147. * Maths and first version by QHARLEY.
  11148. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11149. */
  11150. void inverse_kinematics(const float raw[XYZ]) {
  11151. static float C2, S2, SK1, SK2, THETA, PSI;
  11152. float sx = raw[X_AXIS] - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  11153. sy = raw[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.
  11154. if (L1 == L2)
  11155. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  11156. else
  11157. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  11158. S2 = SQRT(1 - sq(C2));
  11159. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  11160. SK1 = L1 + L2 * C2;
  11161. // Rotated Arm2 gives the distance from Arm1 to Arm2
  11162. SK2 = L2 * S2;
  11163. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  11164. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  11165. // Angle of Arm2
  11166. PSI = ATAN2(S2, C2);
  11167. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  11168. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  11169. delta[C_AXIS] = raw[Z_AXIS];
  11170. /*
  11171. DEBUG_POS("SCARA IK", raw);
  11172. DEBUG_POS("SCARA IK", delta);
  11173. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  11174. SERIAL_ECHOPAIR(",", sy);
  11175. SERIAL_ECHOPAIR(" C2=", C2);
  11176. SERIAL_ECHOPAIR(" S2=", S2);
  11177. SERIAL_ECHOPAIR(" Theta=", THETA);
  11178. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  11179. //*/
  11180. }
  11181. #endif // MORGAN_SCARA
  11182. #if ENABLED(TEMP_STAT_LEDS)
  11183. static bool red_led = false;
  11184. static millis_t next_status_led_update_ms = 0;
  11185. void handle_status_leds(void) {
  11186. if (ELAPSED(millis(), next_status_led_update_ms)) {
  11187. next_status_led_update_ms += 500; // Update every 0.5s
  11188. float max_temp = 0.0;
  11189. #if HAS_TEMP_BED
  11190. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  11191. #endif
  11192. HOTEND_LOOP()
  11193. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  11194. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  11195. if (new_led != red_led) {
  11196. red_led = new_led;
  11197. #if PIN_EXISTS(STAT_LED_RED)
  11198. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  11199. #if PIN_EXISTS(STAT_LED_BLUE)
  11200. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  11201. #endif
  11202. #else
  11203. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  11204. #endif
  11205. }
  11206. }
  11207. }
  11208. #endif
  11209. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11210. void handle_filament_runout() {
  11211. if (!filament_ran_out) {
  11212. filament_ran_out = true;
  11213. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  11214. stepper.synchronize();
  11215. }
  11216. }
  11217. #endif // FILAMENT_RUNOUT_SENSOR
  11218. #if ENABLED(FAST_PWM_FAN)
  11219. void setPwmFrequency(uint8_t pin, int val) {
  11220. val &= 0x07;
  11221. switch (digitalPinToTimer(pin)) {
  11222. #ifdef TCCR0A
  11223. #if !AVR_AT90USB1286_FAMILY
  11224. case TIMER0A:
  11225. #endif
  11226. case TIMER0B: //_SET_CS(0, val);
  11227. break;
  11228. #endif
  11229. #ifdef TCCR1A
  11230. case TIMER1A: case TIMER1B: //_SET_CS(1, val);
  11231. break;
  11232. #endif
  11233. #if defined(TCCR2) || defined(TCCR2A)
  11234. #ifdef TCCR2
  11235. case TIMER2:
  11236. #endif
  11237. #ifdef TCCR2A
  11238. case TIMER2A: case TIMER2B:
  11239. #endif
  11240. _SET_CS(2, val); break;
  11241. #endif
  11242. #ifdef TCCR3A
  11243. case TIMER3A: case TIMER3B: case TIMER3C: _SET_CS(3, val); break;
  11244. #endif
  11245. #ifdef TCCR4A
  11246. case TIMER4A: case TIMER4B: case TIMER4C: _SET_CS(4, val); break;
  11247. #endif
  11248. #ifdef TCCR5A
  11249. case TIMER5A: case TIMER5B: case TIMER5C: _SET_CS(5, val); break;
  11250. #endif
  11251. }
  11252. }
  11253. #endif // FAST_PWM_FAN
  11254. void enable_all_steppers() {
  11255. enable_X();
  11256. enable_Y();
  11257. enable_Z();
  11258. enable_E0();
  11259. enable_E1();
  11260. enable_E2();
  11261. enable_E3();
  11262. enable_E4();
  11263. }
  11264. void disable_e_steppers() {
  11265. disable_E0();
  11266. disable_E1();
  11267. disable_E2();
  11268. disable_E3();
  11269. disable_E4();
  11270. }
  11271. void disable_all_steppers() {
  11272. disable_X();
  11273. disable_Y();
  11274. disable_Z();
  11275. disable_e_steppers();
  11276. }
  11277. #if ENABLED(HAVE_TMC2130)
  11278. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  11279. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  11280. const bool is_otpw = st.checkOT();
  11281. // Report if a warning was triggered
  11282. static bool previous_otpw = false;
  11283. if (is_otpw && !previous_otpw) {
  11284. char timestamp[10];
  11285. duration_t elapsed = print_job_timer.duration();
  11286. const bool has_days = (elapsed.value > 60*60*24L);
  11287. (void)elapsed.toDigital(timestamp, has_days);
  11288. SERIAL_ECHO(timestamp);
  11289. SERIAL_ECHOPGM(": ");
  11290. SERIAL_ECHO(axisID);
  11291. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  11292. }
  11293. previous_otpw = is_otpw;
  11294. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  11295. // Return if user has not enabled current control start with M906 S1.
  11296. if (!auto_current_control) return;
  11297. /**
  11298. * Decrease current if is_otpw is true.
  11299. * Bail out if driver is disabled.
  11300. * Increase current if OTPW has not been triggered yet.
  11301. */
  11302. uint16_t current = st.getCurrent();
  11303. if (is_otpw) {
  11304. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  11305. #if ENABLED(REPORT_CURRENT_CHANGE)
  11306. SERIAL_ECHO(axisID);
  11307. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  11308. #endif
  11309. }
  11310. else if (!st.isEnabled())
  11311. return;
  11312. else if (!is_otpw && !st.getOTPW()) {
  11313. current += CURRENT_STEP;
  11314. if (current <= AUTO_ADJUST_MAX) {
  11315. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  11316. #if ENABLED(REPORT_CURRENT_CHANGE)
  11317. SERIAL_ECHO(axisID);
  11318. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  11319. #endif
  11320. }
  11321. }
  11322. SERIAL_EOL();
  11323. #endif
  11324. }
  11325. void checkOverTemp() {
  11326. static millis_t next_cOT = 0;
  11327. if (ELAPSED(millis(), next_cOT)) {
  11328. next_cOT = millis() + 5000;
  11329. #if ENABLED(X_IS_TMC2130)
  11330. automatic_current_control(stepperX, "X");
  11331. #endif
  11332. #if ENABLED(Y_IS_TMC2130)
  11333. automatic_current_control(stepperY, "Y");
  11334. #endif
  11335. #if ENABLED(Z_IS_TMC2130)
  11336. automatic_current_control(stepperZ, "Z");
  11337. #endif
  11338. #if ENABLED(X2_IS_TMC2130)
  11339. automatic_current_control(stepperX2, "X2");
  11340. #endif
  11341. #if ENABLED(Y2_IS_TMC2130)
  11342. automatic_current_control(stepperY2, "Y2");
  11343. #endif
  11344. #if ENABLED(Z2_IS_TMC2130)
  11345. automatic_current_control(stepperZ2, "Z2");
  11346. #endif
  11347. #if ENABLED(E0_IS_TMC2130)
  11348. automatic_current_control(stepperE0, "E0");
  11349. #endif
  11350. #if ENABLED(E1_IS_TMC2130)
  11351. automatic_current_control(stepperE1, "E1");
  11352. #endif
  11353. #if ENABLED(E2_IS_TMC2130)
  11354. automatic_current_control(stepperE2, "E2");
  11355. #endif
  11356. #if ENABLED(E3_IS_TMC2130)
  11357. automatic_current_control(stepperE3, "E3");
  11358. #endif
  11359. #if ENABLED(E4_IS_TMC2130)
  11360. automatic_current_control(stepperE4, "E4");
  11361. #endif
  11362. }
  11363. }
  11364. #endif // HAVE_TMC2130
  11365. /**
  11366. * Manage several activities:
  11367. * - Check for Filament Runout
  11368. * - Keep the command buffer full
  11369. * - Check for maximum inactive time between commands
  11370. * - Check for maximum inactive time between stepper commands
  11371. * - Check if pin CHDK needs to go LOW
  11372. * - Check for KILL button held down
  11373. * - Check for HOME button held down
  11374. * - Check if cooling fan needs to be switched on
  11375. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  11376. */
  11377. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  11378. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11379. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  11380. handle_filament_runout();
  11381. #endif
  11382. if (commands_in_queue < BUFSIZE) get_available_commands();
  11383. const millis_t ms = millis();
  11384. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  11385. SERIAL_ERROR_START();
  11386. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  11387. kill(PSTR(MSG_KILLED));
  11388. }
  11389. // Prevent steppers timing-out in the middle of M600
  11390. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  11391. #define MOVE_AWAY_TEST !move_away_flag
  11392. #else
  11393. #define MOVE_AWAY_TEST true
  11394. #endif
  11395. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  11396. && !ignore_stepper_queue && !planner.blocks_queued()) {
  11397. #if ENABLED(DISABLE_INACTIVE_X)
  11398. disable_X();
  11399. #endif
  11400. #if ENABLED(DISABLE_INACTIVE_Y)
  11401. disable_Y();
  11402. #endif
  11403. #if ENABLED(DISABLE_INACTIVE_Z)
  11404. disable_Z();
  11405. #endif
  11406. #if ENABLED(DISABLE_INACTIVE_E)
  11407. disable_e_steppers();
  11408. #endif
  11409. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  11410. ubl.lcd_map_control = defer_return_to_status = false;
  11411. #endif
  11412. }
  11413. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  11414. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  11415. chdkActive = false;
  11416. WRITE(CHDK, LOW);
  11417. }
  11418. #endif
  11419. #if HAS_KILL
  11420. // Check if the kill button was pressed and wait just in case it was an accidental
  11421. // key kill key press
  11422. // -------------------------------------------------------------------------------
  11423. static int killCount = 0; // make the inactivity button a bit less responsive
  11424. const int KILL_DELAY = 750;
  11425. if (!READ(KILL_PIN))
  11426. killCount++;
  11427. else if (killCount > 0)
  11428. killCount--;
  11429. // Exceeded threshold and we can confirm that it was not accidental
  11430. // KILL the machine
  11431. // ----------------------------------------------------------------
  11432. if (killCount >= KILL_DELAY) {
  11433. SERIAL_ERROR_START();
  11434. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  11435. kill(PSTR(MSG_KILLED));
  11436. }
  11437. #endif
  11438. #if HAS_HOME
  11439. // Check to see if we have to home, use poor man's debouncer
  11440. // ---------------------------------------------------------
  11441. static int homeDebounceCount = 0; // poor man's debouncing count
  11442. const int HOME_DEBOUNCE_DELAY = 2500;
  11443. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  11444. if (!homeDebounceCount) {
  11445. enqueue_and_echo_commands_P(PSTR("G28"));
  11446. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  11447. }
  11448. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  11449. homeDebounceCount++;
  11450. else
  11451. homeDebounceCount = 0;
  11452. }
  11453. #endif
  11454. #if ENABLED(USE_CONTROLLER_FAN)
  11455. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  11456. #endif
  11457. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  11458. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  11459. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  11460. #if ENABLED(SWITCHING_EXTRUDER)
  11461. const bool oldstatus = E0_ENABLE_READ;
  11462. enable_E0();
  11463. #else // !SWITCHING_EXTRUDER
  11464. bool oldstatus;
  11465. switch (active_extruder) {
  11466. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  11467. #if E_STEPPERS > 1
  11468. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  11469. #if E_STEPPERS > 2
  11470. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  11471. #if E_STEPPERS > 3
  11472. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  11473. #if E_STEPPERS > 4
  11474. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  11475. #endif // E_STEPPERS > 4
  11476. #endif // E_STEPPERS > 3
  11477. #endif // E_STEPPERS > 2
  11478. #endif // E_STEPPERS > 1
  11479. }
  11480. #endif // !SWITCHING_EXTRUDER
  11481. previous_cmd_ms = ms; // refresh_cmd_timeout()
  11482. const float olde = current_position[E_AXIS];
  11483. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  11484. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  11485. current_position[E_AXIS] = olde;
  11486. planner.set_e_position_mm(olde);
  11487. stepper.synchronize();
  11488. #if ENABLED(SWITCHING_EXTRUDER)
  11489. E0_ENABLE_WRITE(oldstatus);
  11490. #else
  11491. switch (active_extruder) {
  11492. case 0: E0_ENABLE_WRITE(oldstatus); break;
  11493. #if E_STEPPERS > 1
  11494. case 1: E1_ENABLE_WRITE(oldstatus); break;
  11495. #if E_STEPPERS > 2
  11496. case 2: E2_ENABLE_WRITE(oldstatus); break;
  11497. #if E_STEPPERS > 3
  11498. case 3: E3_ENABLE_WRITE(oldstatus); break;
  11499. #if E_STEPPERS > 4
  11500. case 4: E4_ENABLE_WRITE(oldstatus); break;
  11501. #endif // E_STEPPERS > 4
  11502. #endif // E_STEPPERS > 3
  11503. #endif // E_STEPPERS > 2
  11504. #endif // E_STEPPERS > 1
  11505. }
  11506. #endif // !SWITCHING_EXTRUDER
  11507. }
  11508. #endif // EXTRUDER_RUNOUT_PREVENT
  11509. #if ENABLED(DUAL_X_CARRIAGE)
  11510. // handle delayed move timeout
  11511. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  11512. // travel moves have been received so enact them
  11513. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  11514. set_destination_from_current();
  11515. prepare_move_to_destination();
  11516. }
  11517. #endif
  11518. #if ENABLED(TEMP_STAT_LEDS)
  11519. handle_status_leds();
  11520. #endif
  11521. #if ENABLED(HAVE_TMC2130)
  11522. checkOverTemp();
  11523. #endif
  11524. planner.check_axes_activity();
  11525. }
  11526. /**
  11527. * Standard idle routine keeps the machine alive
  11528. */
  11529. void idle(
  11530. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11531. bool no_stepper_sleep/*=false*/
  11532. #endif
  11533. ) {
  11534. #if ENABLED(MAX7219_DEBUG)
  11535. Max7219_idle_tasks();
  11536. #endif // MAX7219_DEBUG
  11537. lcd_update();
  11538. host_keepalive();
  11539. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  11540. auto_report_temperatures();
  11541. #endif
  11542. manage_inactivity(
  11543. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11544. no_stepper_sleep
  11545. #endif
  11546. );
  11547. thermalManager.manage_heater();
  11548. #if ENABLED(PRINTCOUNTER)
  11549. print_job_timer.tick();
  11550. #endif
  11551. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  11552. buzzer.tick();
  11553. #endif
  11554. #if ENABLED(I2C_POSITION_ENCODERS)
  11555. if (planner.blocks_queued() &&
  11556. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  11557. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  11558. blockBufferIndexRef = planner.block_buffer_head;
  11559. I2CPEM.update();
  11560. lastUpdateMillis = millis();
  11561. }
  11562. #endif
  11563. }
  11564. /**
  11565. * Kill all activity and lock the machine.
  11566. * After this the machine will need to be reset.
  11567. */
  11568. void kill(const char* lcd_msg) {
  11569. SERIAL_ERROR_START();
  11570. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  11571. thermalManager.disable_all_heaters();
  11572. disable_all_steppers();
  11573. #if ENABLED(ULTRA_LCD)
  11574. kill_screen(lcd_msg);
  11575. #else
  11576. UNUSED(lcd_msg);
  11577. #endif
  11578. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  11579. cli(); // Stop interrupts
  11580. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  11581. thermalManager.disable_all_heaters(); //turn off heaters again
  11582. #ifdef ACTION_ON_KILL
  11583. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  11584. #endif
  11585. #if HAS_POWER_SWITCH
  11586. SET_INPUT(PS_ON_PIN);
  11587. #endif
  11588. suicide();
  11589. while (1) {
  11590. #if ENABLED(USE_WATCHDOG)
  11591. watchdog_reset();
  11592. #endif
  11593. } // Wait for reset
  11594. }
  11595. /**
  11596. * Turn off heaters and stop the print in progress
  11597. * After a stop the machine may be resumed with M999
  11598. */
  11599. void stop() {
  11600. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  11601. #if ENABLED(PROBING_FANS_OFF)
  11602. if (fans_paused) fans_pause(false); // put things back the way they were
  11603. #endif
  11604. if (IsRunning()) {
  11605. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  11606. SERIAL_ERROR_START();
  11607. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  11608. LCD_MESSAGEPGM(MSG_STOPPED);
  11609. safe_delay(350); // allow enough time for messages to get out before stopping
  11610. Running = false;
  11611. }
  11612. }
  11613. /**
  11614. * Marlin entry-point: Set up before the program loop
  11615. * - Set up the kill pin, filament runout, power hold
  11616. * - Start the serial port
  11617. * - Print startup messages and diagnostics
  11618. * - Get EEPROM or default settings
  11619. * - Initialize managers for:
  11620. * • temperature
  11621. * • planner
  11622. * • watchdog
  11623. * • stepper
  11624. * • photo pin
  11625. * • servos
  11626. * • LCD controller
  11627. * • Digipot I2C
  11628. * • Z probe sled
  11629. * • status LEDs
  11630. */
  11631. void setup() {
  11632. #if ENABLED(MAX7219_DEBUG)
  11633. Max7219_init();
  11634. #endif
  11635. #if ENABLED(DISABLE_JTAG)
  11636. // Disable JTAG on AT90USB chips to free up pins for IO
  11637. MCUCR = 0x80;
  11638. MCUCR = 0x80;
  11639. #endif
  11640. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11641. setup_filrunoutpin();
  11642. #endif
  11643. setup_killpin();
  11644. setup_powerhold();
  11645. #if HAS_STEPPER_RESET
  11646. disableStepperDrivers();
  11647. #endif
  11648. MYSERIAL.begin(BAUDRATE);
  11649. SERIAL_PROTOCOLLNPGM("start");
  11650. SERIAL_ECHO_START();
  11651. // Check startup - does nothing if bootloader sets MCUSR to 0
  11652. byte mcu = MCUSR;
  11653. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  11654. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  11655. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  11656. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  11657. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  11658. MCUSR = 0;
  11659. SERIAL_ECHOPGM(MSG_MARLIN);
  11660. SERIAL_CHAR(' ');
  11661. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  11662. SERIAL_EOL();
  11663. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  11664. SERIAL_ECHO_START();
  11665. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  11666. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  11667. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  11668. SERIAL_ECHO_START();
  11669. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  11670. #endif
  11671. SERIAL_ECHO_START();
  11672. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  11673. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  11674. // Send "ok" after commands by default
  11675. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  11676. // Load data from EEPROM if available (or use defaults)
  11677. // This also updates variables in the planner, elsewhere
  11678. (void)settings.load();
  11679. #if HAS_M206_COMMAND
  11680. // Initialize current position based on home_offset
  11681. COPY(current_position, home_offset);
  11682. #else
  11683. ZERO(current_position);
  11684. #endif
  11685. // Vital to init stepper/planner equivalent for current_position
  11686. SYNC_PLAN_POSITION_KINEMATIC();
  11687. thermalManager.init(); // Initialize temperature loop
  11688. #if ENABLED(USE_WATCHDOG)
  11689. watchdog_init();
  11690. #endif
  11691. stepper.init(); // Initialize stepper, this enables interrupts!
  11692. servo_init();
  11693. #if HAS_PHOTOGRAPH
  11694. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  11695. #endif
  11696. #if HAS_CASE_LIGHT
  11697. case_light_on = CASE_LIGHT_DEFAULT_ON;
  11698. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  11699. update_case_light();
  11700. #endif
  11701. #if ENABLED(SPINDLE_LASER_ENABLE)
  11702. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  11703. #if SPINDLE_DIR_CHANGE
  11704. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  11705. #endif
  11706. #if ENABLED(SPINDLE_LASER_PWM)
  11707. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  11708. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  11709. #endif
  11710. #endif
  11711. #if HAS_BED_PROBE
  11712. endstops.enable_z_probe(false);
  11713. #endif
  11714. #if ENABLED(USE_CONTROLLER_FAN)
  11715. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  11716. #endif
  11717. #if HAS_STEPPER_RESET
  11718. enableStepperDrivers();
  11719. #endif
  11720. #if ENABLED(DIGIPOT_I2C)
  11721. digipot_i2c_init();
  11722. #endif
  11723. #if ENABLED(DAC_STEPPER_CURRENT)
  11724. dac_init();
  11725. #endif
  11726. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  11727. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  11728. #endif
  11729. #if HAS_HOME
  11730. SET_INPUT_PULLUP(HOME_PIN);
  11731. #endif
  11732. #if PIN_EXISTS(STAT_LED_RED)
  11733. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  11734. #endif
  11735. #if PIN_EXISTS(STAT_LED_BLUE)
  11736. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  11737. #endif
  11738. #if HAS_COLOR_LEDS
  11739. leds.setup();
  11740. #endif
  11741. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  11742. SET_OUTPUT(RGB_LED_R_PIN);
  11743. SET_OUTPUT(RGB_LED_G_PIN);
  11744. SET_OUTPUT(RGB_LED_B_PIN);
  11745. #if ENABLED(RGBW_LED)
  11746. SET_OUTPUT(RGB_LED_W_PIN);
  11747. #endif
  11748. #endif
  11749. #if ENABLED(MK2_MULTIPLEXER)
  11750. SET_OUTPUT(E_MUX0_PIN);
  11751. SET_OUTPUT(E_MUX1_PIN);
  11752. SET_OUTPUT(E_MUX2_PIN);
  11753. #endif
  11754. #if HAS_FANMUX
  11755. fanmux_init();
  11756. #endif
  11757. lcd_init();
  11758. #if ENABLED(SHOW_BOOTSCREEN)
  11759. lcd_bootscreen();
  11760. #endif
  11761. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11762. // Virtual Tools 0, 1, 2, 3 = Filament 1, 2, 3, 4, etc.
  11763. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS && t < MIXING_STEPPERS; t++)
  11764. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11765. mixing_virtual_tool_mix[t][i] = (t == i) ? 1.0 : 0.0;
  11766. // Remaining virtual tools are 100% filament 1
  11767. #if MIXING_STEPPERS < MIXING_VIRTUAL_TOOLS
  11768. for (uint8_t t = MIXING_STEPPERS; t < MIXING_VIRTUAL_TOOLS; t++)
  11769. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11770. mixing_virtual_tool_mix[t][i] = (i == 0) ? 1.0 : 0.0;
  11771. #endif
  11772. // Initialize mixing to tool 0 color
  11773. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11774. mixing_factor[i] = mixing_virtual_tool_mix[0][i];
  11775. #endif
  11776. #if ENABLED(BLTOUCH)
  11777. // Make sure any BLTouch error condition is cleared
  11778. bltouch_command(BLTOUCH_RESET);
  11779. set_bltouch_deployed(true);
  11780. set_bltouch_deployed(false);
  11781. #endif
  11782. #if ENABLED(I2C_POSITION_ENCODERS)
  11783. I2CPEM.init();
  11784. #endif
  11785. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11786. i2c.onReceive(i2c_on_receive);
  11787. i2c.onRequest(i2c_on_request);
  11788. #endif
  11789. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11790. setup_endstop_interrupts();
  11791. #endif
  11792. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  11793. move_extruder_servo(0); // Initialize extruder servo
  11794. #endif
  11795. #if ENABLED(SWITCHING_NOZZLE)
  11796. move_nozzle_servo(0); // Initialize nozzle servo
  11797. #endif
  11798. #if ENABLED(PARKING_EXTRUDER)
  11799. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  11800. pe_activate_magnet(0);
  11801. pe_activate_magnet(1);
  11802. #else
  11803. pe_deactivate_magnet(0);
  11804. pe_deactivate_magnet(1);
  11805. #endif
  11806. #endif
  11807. #if ENABLED(MKS_12864OLED)
  11808. SET_OUTPUT(LCD_PINS_DC);
  11809. OUT_WRITE(LCD_PINS_RS, LOW);
  11810. delay(1000);
  11811. WRITE(LCD_PINS_RS, HIGH);
  11812. #endif
  11813. }
  11814. /**
  11815. * The main Marlin program loop
  11816. *
  11817. * - Save or log commands to SD
  11818. * - Process available commands (if not saving)
  11819. * - Call heater manager
  11820. * - Call inactivity manager
  11821. * - Call endstop manager
  11822. * - Call LCD update
  11823. */
  11824. void loop() {
  11825. if (commands_in_queue < BUFSIZE) get_available_commands();
  11826. #if ENABLED(SDSUPPORT)
  11827. card.checkautostart(false);
  11828. #endif
  11829. if (commands_in_queue) {
  11830. #if ENABLED(SDSUPPORT)
  11831. if (card.saving) {
  11832. char* command = command_queue[cmd_queue_index_r];
  11833. if (strstr_P(command, PSTR("M29"))) {
  11834. // M29 closes the file
  11835. card.closefile();
  11836. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11837. #if ENABLED(SERIAL_STATS_DROPPED_RX)
  11838. SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
  11839. #endif
  11840. #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
  11841. SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
  11842. #endif
  11843. ok_to_send();
  11844. }
  11845. else {
  11846. // Write the string from the read buffer to SD
  11847. card.write_command(command);
  11848. if (card.logging)
  11849. process_next_command(); // The card is saving because it's logging
  11850. else
  11851. ok_to_send();
  11852. }
  11853. }
  11854. else
  11855. process_next_command();
  11856. #else
  11857. process_next_command();
  11858. #endif // SDSUPPORT
  11859. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11860. if (commands_in_queue) {
  11861. --commands_in_queue;
  11862. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11863. }
  11864. }
  11865. endstops.report_state();
  11866. idle();
  11867. }