My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 98KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V66"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #include "../lcd/ultralcd.h"
  49. #include "../core/language.h"
  50. #include "../libs/vector_3.h"
  51. #include "../gcode/gcode.h"
  52. #include "../Marlin.h"
  53. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  54. #include "../HAL/shared/persistent_store_api.h"
  55. #endif
  56. #if HAS_LEVELING
  57. #include "../feature/bedlevel/bedlevel.h"
  58. #endif
  59. #if ENABLED(EXTENSIBLE_UI)
  60. #include "../lcd/extensible_ui/ui_api.h"
  61. #endif
  62. #if HAS_SERVOS
  63. #include "servo.h"
  64. #endif
  65. #if HAS_SERVOS && HAS_SERVO_ANGLES
  66. #define EEPROM_NUM_SERVOS NUM_SERVOS
  67. #else
  68. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  69. #endif
  70. #if HAS_BED_PROBE
  71. #include "probe.h"
  72. #endif
  73. #include "../feature/fwretract.h"
  74. #if ENABLED(POWER_LOSS_RECOVERY)
  75. #include "../feature/power_loss_recovery.h"
  76. #endif
  77. #include "../feature/pause.h"
  78. #if ENABLED(BACKLASH_COMPENSATION)
  79. #include "../feature/backlash.h"
  80. #endif
  81. #if HAS_FILAMENT_SENSOR
  82. #include "../feature/runout.h"
  83. #endif
  84. #include "../lcd/extensible_ui/ui_api.h"
  85. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  86. extern float saved_extruder_advance_K[EXTRUDERS];
  87. #endif
  88. #if EXTRUDERS > 1
  89. #include "tool_change.h"
  90. void M217_report(const bool eeprom);
  91. #endif
  92. #if HAS_TRINAMIC
  93. #include "stepper_indirection.h"
  94. #include "../feature/tmc_util.h"
  95. #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.settings.axis_steps_per_mm[_AXIS(A)])
  96. #endif
  97. #pragma pack(push, 1) // No padding between variables
  98. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  99. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  100. typedef struct { int16_t X, Y, Z; } tmc_sgt_t;
  101. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stealth_enabled_t;
  102. // Limit an index to an array size
  103. #define ALIM(I,ARR) MIN(I, COUNT(ARR) - 1)
  104. /**
  105. * Current EEPROM Layout
  106. *
  107. * Keep this data structure up to date so
  108. * EEPROM size is known at compile time!
  109. */
  110. typedef struct SettingsDataStruct {
  111. char version[4]; // Vnn\0
  112. uint16_t crc; // Data Checksum
  113. //
  114. // DISTINCT_E_FACTORS
  115. //
  116. uint8_t esteppers; // XYZE_N - XYZ
  117. planner_settings_t planner_settings;
  118. float planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
  119. planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  120. float home_offset[XYZ]; // M206 XYZ / M665 TPZ
  121. #if HAS_HOTEND_OFFSET
  122. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  123. #endif
  124. //
  125. // FILAMENT_RUNOUT_SENSOR
  126. //
  127. bool runout_sensor_enabled; // M412 S
  128. float runout_distance_mm; // M412 D
  129. //
  130. // ENABLE_LEVELING_FADE_HEIGHT
  131. //
  132. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  133. //
  134. // MESH_BED_LEVELING
  135. //
  136. float mbl_z_offset; // mbl.z_offset
  137. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  138. #if ENABLED(MESH_BED_LEVELING)
  139. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  140. #else
  141. float mbl_z_values[3][3];
  142. #endif
  143. //
  144. // HAS_BED_PROBE
  145. //
  146. float zprobe_zoffset;
  147. //
  148. // ABL_PLANAR
  149. //
  150. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  151. //
  152. // AUTO_BED_LEVELING_BILINEAR
  153. //
  154. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  155. int bilinear_grid_spacing[2],
  156. bilinear_start[2]; // G29 L F
  157. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  158. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  159. #else
  160. float z_values[3][3];
  161. #endif
  162. //
  163. // AUTO_BED_LEVELING_UBL
  164. //
  165. bool planner_leveling_active; // M420 S planner.leveling_active
  166. int8_t ubl_storage_slot; // ubl.storage_slot
  167. //
  168. // SERVO_ANGLES
  169. //
  170. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  171. //
  172. // DELTA / [XYZ]_DUAL_ENDSTOPS
  173. //
  174. #if ENABLED(DELTA)
  175. float delta_height, // M666 H
  176. delta_endstop_adj[ABC], // M666 XYZ
  177. delta_radius, // M665 R
  178. delta_diagonal_rod, // M665 L
  179. delta_segments_per_second, // M665 S
  180. delta_calibration_radius, // M665 B
  181. delta_tower_angle_trim[ABC]; // M665 XYZ
  182. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  183. float x2_endstop_adj, // M666 X
  184. y2_endstop_adj, // M666 Y
  185. z2_endstop_adj, // M666 Z (S2)
  186. z3_endstop_adj; // M666 Z (S3)
  187. #endif
  188. //
  189. // ULTIPANEL
  190. //
  191. int16_t ui_preheat_hotend_temp[2], // M145 S0 H
  192. ui_preheat_bed_temp[2]; // M145 S0 B
  193. uint8_t ui_preheat_fan_speed[2]; // M145 S0 F
  194. //
  195. // PIDTEMP
  196. //
  197. PIDC_t hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
  198. int16_t lpq_len; // M301 L
  199. //
  200. // PIDTEMPBED
  201. //
  202. PID_t bedPID; // M304 PID / M303 E-1 U
  203. //
  204. // User-defined Thermistors
  205. //
  206. #if HAS_USER_THERMISTORS
  207. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  208. #endif
  209. //
  210. // HAS_LCD_CONTRAST
  211. //
  212. int16_t lcd_contrast; // M250 C
  213. //
  214. // POWER_LOSS_RECOVERY
  215. //
  216. bool recovery_enabled; // M413 S
  217. //
  218. // FWRETRACT
  219. //
  220. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  221. bool autoretract_enabled; // M209 S
  222. //
  223. // !NO_VOLUMETRIC
  224. //
  225. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  226. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  227. //
  228. // HAS_TRINAMIC
  229. //
  230. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  231. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  232. tmc_sgt_t tmc_sgt; // M914 X Y Z
  233. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  234. //
  235. // LIN_ADVANCE
  236. //
  237. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  238. //
  239. // HAS_MOTOR_CURRENT_PWM
  240. //
  241. uint32_t motor_current_setting[3]; // M907 X Z E
  242. //
  243. // CNC_COORDINATE_SYSTEMS
  244. //
  245. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  246. //
  247. // SKEW_CORRECTION
  248. //
  249. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  250. //
  251. // ADVANCED_PAUSE_FEATURE
  252. //
  253. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  254. //
  255. // Tool-change settings
  256. //
  257. #if EXTRUDERS > 1
  258. toolchange_settings_t toolchange_settings; // M217 S P R
  259. #endif
  260. //
  261. // BACKLASH_COMPENSATION
  262. //
  263. float backlash_distance_mm[XYZ]; // M425 X Y Z
  264. uint8_t backlash_correction; // M425 F
  265. float backlash_smoothing_mm; // M425 S
  266. //
  267. // EXTENSIBLE_UI
  268. //
  269. #if ENABLED(EXTENSIBLE_UI)
  270. // This is a significant hardware change; don't reserve space when not present
  271. uint8_t extui_data[ExtUI::eeprom_data_size];
  272. #endif
  273. } SettingsData;
  274. //static_assert(sizeof(SettingsData) <= E2END + 1, "EEPROM too small to contain SettingsData!");
  275. MarlinSettings settings;
  276. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  277. /**
  278. * Post-process after Retrieve or Reset
  279. */
  280. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  281. float new_z_fade_height;
  282. #endif
  283. void MarlinSettings::postprocess() {
  284. const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] };
  285. // steps per s2 needs to be updated to agree with units per s2
  286. planner.reset_acceleration_rates();
  287. // Make sure delta kinematics are updated before refreshing the
  288. // planner position so the stepper counts will be set correctly.
  289. #if ENABLED(DELTA)
  290. recalc_delta_settings();
  291. #endif
  292. #if ENABLED(PIDTEMP)
  293. thermalManager.updatePID();
  294. #endif
  295. #if DISABLED(NO_VOLUMETRICS)
  296. planner.calculate_volumetric_multipliers();
  297. #else
  298. for (uint8_t i = COUNT(planner.e_factor); i--;)
  299. planner.refresh_e_factor(i);
  300. #endif
  301. // Software endstops depend on home_offset
  302. LOOP_XYZ(i) {
  303. update_workspace_offset((AxisEnum)i);
  304. update_software_endstops((AxisEnum)i);
  305. }
  306. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  307. set_z_fade_height(new_z_fade_height, false); // false = no report
  308. #endif
  309. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  310. refresh_bed_level();
  311. #endif
  312. #if HAS_MOTOR_CURRENT_PWM
  313. stepper.refresh_motor_power();
  314. #endif
  315. #if ENABLED(FWRETRACT)
  316. fwretract.refresh_autoretract();
  317. #endif
  318. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  319. planner.recalculate_max_e_jerk();
  320. #endif
  321. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  322. // and init stepper.count[], planner.position[] with current_position
  323. planner.refresh_positioning();
  324. // Various factors can change the current position
  325. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  326. report_current_position();
  327. }
  328. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  329. #include "printcounter.h"
  330. static_assert(
  331. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  332. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  333. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  334. );
  335. #endif
  336. #if ENABLED(SD_FIRMWARE_UPDATE)
  337. #if ENABLED(EEPROM_SETTINGS)
  338. static_assert(
  339. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  340. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  341. );
  342. #endif
  343. bool MarlinSettings::sd_update_status() {
  344. uint8_t val;
  345. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  346. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  347. }
  348. bool MarlinSettings::set_sd_update_status(const bool enable) {
  349. if (enable != sd_update_status())
  350. persistentStore.write_data(
  351. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  352. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  353. );
  354. return true;
  355. }
  356. #endif // SD_FIRMWARE_UPDATE
  357. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  358. #include "../core/debug_out.h"
  359. #if ENABLED(EEPROM_SETTINGS)
  360. #define WORD_PADDED_EEPROM ENABLED(__STM32F1__, FLASH_EEPROM_EMULATION)
  361. #if WORD_PADDED_EEPROM && ENABLED(DEBUG_EEPROM_READWRITE)
  362. #define UPDATE_TEST_INDEX(VAR) (text_index += sizeof(VAR))
  363. #else
  364. #define UPDATE_TEST_INDEX(VAR) NOOP
  365. #endif
  366. #if WORD_PADDED_EEPROM
  367. #define EEPROM_SKIP(VAR) do{ eeprom_index += sizeof(VAR) + (sizeof(VAR) & 1); UPDATE_TEST_INDEX(sizeof(VAR)); }while(0)
  368. #else
  369. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  370. #endif
  371. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
  372. #define EEPROM_FINISH() persistentStore.access_finish()
  373. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); UPDATE_TEST_INDEX(VAR); }while(0)
  374. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); UPDATE_TEST_INDEX(VAR); }while(0)
  375. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); UPDATE_TEST_INDEX(VAR); }while(0)
  376. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  377. #if ENABLED(DEBUG_EEPROM_READWRITE)
  378. #if WORD_PADDED_EEPROM
  379. int test_index;
  380. #else
  381. #define test_index eeprom_index
  382. #endif
  383. #define _FIELD_TEST(FIELD) \
  384. EEPROM_ASSERT( \
  385. eeprom_error || test_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  386. "Field " STRINGIFY(FIELD) " mismatch." \
  387. )
  388. #else
  389. #define _FIELD_TEST(FIELD) NOOP
  390. #endif
  391. const char version[4] = EEPROM_VERSION;
  392. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  393. bool MarlinSettings::size_error(const uint16_t size) {
  394. if (size != datasize()) {
  395. DEBUG_ERROR_MSG("EEPROM datasize error.");
  396. return true;
  397. }
  398. return false;
  399. }
  400. /**
  401. * M500 - Store Configuration
  402. */
  403. bool MarlinSettings::save() {
  404. float dummy = 0;
  405. char ver[4] = "ERR";
  406. uint16_t working_crc = 0;
  407. EEPROM_START();
  408. eeprom_error = false;
  409. #if ENABLED(FLASH_EEPROM_EMULATION)
  410. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  411. #else
  412. EEPROM_WRITE(ver); // invalidate data first
  413. #endif
  414. EEPROM_SKIP(working_crc); // Skip the checksum slot
  415. working_crc = 0; // clear before first "real data"
  416. _FIELD_TEST(esteppers);
  417. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  418. EEPROM_WRITE(esteppers);
  419. //
  420. // Planner Motion
  421. //
  422. {
  423. EEPROM_WRITE(planner.settings);
  424. #if HAS_CLASSIC_JERK
  425. EEPROM_WRITE(planner.max_jerk);
  426. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  427. dummy = float(DEFAULT_EJERK);
  428. EEPROM_WRITE(dummy);
  429. #endif
  430. #else
  431. const float planner_max_jerk[XYZE] = { float(DEFAULT_EJERK) };
  432. EEPROM_WRITE(planner_max_jerk);
  433. #endif
  434. #if ENABLED(JUNCTION_DEVIATION)
  435. EEPROM_WRITE(planner.junction_deviation_mm);
  436. #else
  437. dummy = 0.02f;
  438. EEPROM_WRITE(dummy);
  439. #endif
  440. }
  441. //
  442. // Home Offset
  443. //
  444. {
  445. _FIELD_TEST(home_offset);
  446. #if HAS_SCARA_OFFSET
  447. EEPROM_WRITE(scara_home_offset);
  448. #else
  449. #if !HAS_HOME_OFFSET
  450. const float home_offset[XYZ] = { 0 };
  451. #endif
  452. EEPROM_WRITE(home_offset);
  453. #endif
  454. #if HAS_HOTEND_OFFSET
  455. // Skip hotend 0 which must be 0
  456. for (uint8_t e = 1; e < HOTENDS; e++)
  457. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  458. #endif
  459. }
  460. //
  461. // Filament Runout Sensor
  462. //
  463. {
  464. #if HAS_FILAMENT_SENSOR
  465. const bool &runout_sensor_enabled = runout.enabled;
  466. #else
  467. const bool runout_sensor_enabled = false;
  468. #endif
  469. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  470. const float &runout_distance_mm = runout.runout_distance();
  471. #else
  472. const float runout_distance_mm = 0;
  473. #endif
  474. _FIELD_TEST(runout_sensor_enabled);
  475. EEPROM_WRITE(runout_sensor_enabled);
  476. EEPROM_WRITE(runout_distance_mm);
  477. }
  478. //
  479. // Global Leveling
  480. //
  481. {
  482. const float zfh = (
  483. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  484. planner.z_fade_height
  485. #else
  486. 10.0
  487. #endif
  488. );
  489. EEPROM_WRITE(zfh);
  490. }
  491. //
  492. // Mesh Bed Leveling
  493. //
  494. {
  495. #if ENABLED(MESH_BED_LEVELING)
  496. // Compile time test that sizeof(mbl.z_values) is as expected
  497. static_assert(
  498. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  499. "MBL Z array is the wrong size."
  500. );
  501. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  502. EEPROM_WRITE(mbl.z_offset);
  503. EEPROM_WRITE(mesh_num_x);
  504. EEPROM_WRITE(mesh_num_y);
  505. EEPROM_WRITE(mbl.z_values);
  506. #else // For disabled MBL write a default mesh
  507. dummy = 0;
  508. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  509. EEPROM_WRITE(dummy); // z_offset
  510. EEPROM_WRITE(mesh_num_x);
  511. EEPROM_WRITE(mesh_num_y);
  512. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  513. #endif
  514. }
  515. //
  516. // Probe Z Offset
  517. //
  518. {
  519. _FIELD_TEST(zprobe_zoffset);
  520. #if !HAS_BED_PROBE
  521. const float zprobe_zoffset = 0;
  522. #endif
  523. EEPROM_WRITE(zprobe_zoffset);
  524. }
  525. //
  526. // Planar Bed Leveling matrix
  527. //
  528. {
  529. #if ABL_PLANAR
  530. EEPROM_WRITE(planner.bed_level_matrix);
  531. #else
  532. dummy = 0;
  533. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  534. #endif
  535. }
  536. //
  537. // Bilinear Auto Bed Leveling
  538. //
  539. {
  540. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  541. // Compile time test that sizeof(z_values) is as expected
  542. static_assert(
  543. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  544. "Bilinear Z array is the wrong size."
  545. );
  546. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  547. EEPROM_WRITE(grid_max_x); // 1 byte
  548. EEPROM_WRITE(grid_max_y); // 1 byte
  549. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  550. EEPROM_WRITE(bilinear_start); // 2 ints
  551. EEPROM_WRITE(z_values); // 9-256 floats
  552. #else
  553. // For disabled Bilinear Grid write an empty 3x3 grid
  554. const uint8_t grid_max_x = 3, grid_max_y = 3;
  555. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  556. dummy = 0;
  557. EEPROM_WRITE(grid_max_x);
  558. EEPROM_WRITE(grid_max_y);
  559. EEPROM_WRITE(bilinear_grid_spacing);
  560. EEPROM_WRITE(bilinear_start);
  561. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  562. #endif
  563. }
  564. //
  565. // Unified Bed Leveling
  566. //
  567. {
  568. _FIELD_TEST(planner_leveling_active);
  569. #if ENABLED(AUTO_BED_LEVELING_UBL)
  570. EEPROM_WRITE(planner.leveling_active);
  571. EEPROM_WRITE(ubl.storage_slot);
  572. #else
  573. const bool ubl_active = false;
  574. const int8_t storage_slot = -1;
  575. EEPROM_WRITE(ubl_active);
  576. EEPROM_WRITE(storage_slot);
  577. #endif // AUTO_BED_LEVELING_UBL
  578. }
  579. //
  580. // Servo Angles
  581. //
  582. {
  583. _FIELD_TEST(servo_angles);
  584. #if !HAS_SERVO_ANGLES
  585. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  586. #endif
  587. EEPROM_WRITE(servo_angles);
  588. }
  589. //
  590. // DELTA Geometry or Dual Endstops offsets
  591. //
  592. {
  593. #if ENABLED(DELTA)
  594. _FIELD_TEST(delta_height);
  595. EEPROM_WRITE(delta_height); // 1 float
  596. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  597. EEPROM_WRITE(delta_radius); // 1 float
  598. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  599. EEPROM_WRITE(delta_segments_per_second); // 1 float
  600. EEPROM_WRITE(delta_calibration_radius); // 1 float
  601. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  602. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  603. _FIELD_TEST(x2_endstop_adj);
  604. // Write dual endstops in X, Y, Z order. Unused = 0.0
  605. dummy = 0;
  606. #if ENABLED(X_DUAL_ENDSTOPS)
  607. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  608. #else
  609. EEPROM_WRITE(dummy);
  610. #endif
  611. #if ENABLED(Y_DUAL_ENDSTOPS)
  612. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  613. #else
  614. EEPROM_WRITE(dummy);
  615. #endif
  616. #if Z_MULTI_ENDSTOPS
  617. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  618. #else
  619. EEPROM_WRITE(dummy);
  620. #endif
  621. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  622. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  623. #else
  624. EEPROM_WRITE(dummy);
  625. #endif
  626. #endif
  627. }
  628. //
  629. // LCD Preheat settings
  630. //
  631. {
  632. _FIELD_TEST(ui_preheat_hotend_temp);
  633. #if HAS_LCD_MENU
  634. const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  635. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  636. const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  637. #else
  638. constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  639. ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  640. constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  641. #endif
  642. EEPROM_WRITE(ui_preheat_hotend_temp);
  643. EEPROM_WRITE(ui_preheat_bed_temp);
  644. EEPROM_WRITE(ui_preheat_fan_speed);
  645. }
  646. //
  647. // PIDTEMP
  648. //
  649. {
  650. _FIELD_TEST(hotendPID);
  651. HOTEND_LOOP() {
  652. PIDC_t pidc = {
  653. PID_PARAM(Kp, e), PID_PARAM(Ki, e), PID_PARAM(Kd, e), PID_PARAM(Kc, e)
  654. };
  655. EEPROM_WRITE(pidc);
  656. }
  657. _FIELD_TEST(lpq_len);
  658. #if ENABLED(PID_EXTRUSION_SCALING)
  659. EEPROM_WRITE(thermalManager.lpq_len);
  660. #else
  661. const int16_t lpq_len = 20;
  662. EEPROM_WRITE(lpq_len);
  663. #endif
  664. }
  665. //
  666. // PIDTEMPBED
  667. //
  668. {
  669. _FIELD_TEST(bedPID);
  670. #if DISABLED(PIDTEMPBED)
  671. const PID_t bed_pid = { DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE };
  672. EEPROM_WRITE(bed_pid);
  673. #else
  674. EEPROM_WRITE(thermalManager.temp_bed.pid);
  675. #endif
  676. }
  677. //
  678. // User-defined Thermistors
  679. //
  680. #if HAS_USER_THERMISTORS
  681. {
  682. _FIELD_TEST(user_thermistor);
  683. EEPROM_WRITE(thermalManager.user_thermistor);
  684. }
  685. #endif
  686. //
  687. // LCD Contrast
  688. //
  689. {
  690. _FIELD_TEST(lcd_contrast);
  691. const int16_t lcd_contrast =
  692. #if HAS_LCD_CONTRAST
  693. ui.contrast
  694. #else
  695. 32
  696. #endif
  697. ;
  698. EEPROM_WRITE(lcd_contrast);
  699. }
  700. //
  701. // Power-Loss Recovery
  702. //
  703. {
  704. _FIELD_TEST(recovery_enabled);
  705. const bool recovery_enabled =
  706. #if ENABLED(POWER_LOSS_RECOVERY)
  707. recovery.enabled
  708. #else
  709. true
  710. #endif
  711. ;
  712. EEPROM_WRITE(recovery_enabled);
  713. }
  714. //
  715. // Firmware Retraction
  716. //
  717. {
  718. _FIELD_TEST(fwretract_settings);
  719. #if ENABLED(FWRETRACT)
  720. EEPROM_WRITE(fwretract.settings);
  721. #else
  722. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  723. EEPROM_WRITE(autoretract_defaults);
  724. #endif
  725. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  726. EEPROM_WRITE(fwretract.autoretract_enabled);
  727. #else
  728. const bool autoretract_enabled = false;
  729. EEPROM_WRITE(autoretract_enabled);
  730. #endif
  731. }
  732. //
  733. // Volumetric & Filament Size
  734. //
  735. {
  736. _FIELD_TEST(parser_volumetric_enabled);
  737. #if DISABLED(NO_VOLUMETRICS)
  738. EEPROM_WRITE(parser.volumetric_enabled);
  739. EEPROM_WRITE(planner.filament_size);
  740. #else
  741. const bool volumetric_enabled = false;
  742. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  743. EEPROM_WRITE(volumetric_enabled);
  744. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  745. #endif
  746. }
  747. //
  748. // TMC Configuration
  749. //
  750. {
  751. _FIELD_TEST(tmc_stepper_current);
  752. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  753. #if HAS_TRINAMIC
  754. #if AXIS_IS_TMC(X)
  755. tmc_stepper_current.X = stepperX.getMilliamps();
  756. #endif
  757. #if AXIS_IS_TMC(Y)
  758. tmc_stepper_current.Y = stepperY.getMilliamps();
  759. #endif
  760. #if AXIS_IS_TMC(Z)
  761. tmc_stepper_current.Z = stepperZ.getMilliamps();
  762. #endif
  763. #if AXIS_IS_TMC(X2)
  764. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  765. #endif
  766. #if AXIS_IS_TMC(Y2)
  767. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  768. #endif
  769. #if AXIS_IS_TMC(Z2)
  770. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  771. #endif
  772. #if AXIS_IS_TMC(Z3)
  773. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  774. #endif
  775. #if MAX_EXTRUDERS
  776. #if AXIS_IS_TMC(E0)
  777. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  778. #endif
  779. #if MAX_EXTRUDERS > 1
  780. #if AXIS_IS_TMC(E1)
  781. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  782. #endif
  783. #if MAX_EXTRUDERS > 2
  784. #if AXIS_IS_TMC(E2)
  785. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  786. #endif
  787. #if MAX_EXTRUDERS > 3
  788. #if AXIS_IS_TMC(E3)
  789. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  790. #endif
  791. #if MAX_EXTRUDERS > 4
  792. #if AXIS_IS_TMC(E4)
  793. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  794. #endif
  795. #if MAX_EXTRUDERS > 5
  796. #if AXIS_IS_TMC(E5)
  797. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  798. #endif
  799. #endif // MAX_EXTRUDERS > 5
  800. #endif // MAX_EXTRUDERS > 4
  801. #endif // MAX_EXTRUDERS > 3
  802. #endif // MAX_EXTRUDERS > 2
  803. #endif // MAX_EXTRUDERS > 1
  804. #endif // MAX_EXTRUDERS
  805. #endif
  806. EEPROM_WRITE(tmc_stepper_current);
  807. }
  808. //
  809. // TMC Hybrid Threshold, and placeholder values
  810. //
  811. {
  812. _FIELD_TEST(tmc_hybrid_threshold);
  813. #if ENABLED(HYBRID_THRESHOLD)
  814. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  815. #if AXIS_HAS_STEALTHCHOP(X)
  816. tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X);
  817. #endif
  818. #if AXIS_HAS_STEALTHCHOP(Y)
  819. tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y);
  820. #endif
  821. #if AXIS_HAS_STEALTHCHOP(Z)
  822. tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z);
  823. #endif
  824. #if AXIS_HAS_STEALTHCHOP(X2)
  825. tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2);
  826. #endif
  827. #if AXIS_HAS_STEALTHCHOP(Y2)
  828. tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2);
  829. #endif
  830. #if AXIS_HAS_STEALTHCHOP(Z2)
  831. tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2);
  832. #endif
  833. #if AXIS_HAS_STEALTHCHOP(Z3)
  834. tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3);
  835. #endif
  836. #if MAX_EXTRUDERS
  837. #if AXIS_HAS_STEALTHCHOP(E0)
  838. tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0);
  839. #endif
  840. #if MAX_EXTRUDERS > 1
  841. #if AXIS_HAS_STEALTHCHOP(E1)
  842. tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1);
  843. #endif
  844. #if MAX_EXTRUDERS > 2
  845. #if AXIS_HAS_STEALTHCHOP(E2)
  846. tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2);
  847. #endif
  848. #if MAX_EXTRUDERS > 3
  849. #if AXIS_HAS_STEALTHCHOP(E3)
  850. tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3);
  851. #endif
  852. #if MAX_EXTRUDERS > 4
  853. #if AXIS_HAS_STEALTHCHOP(E4)
  854. tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4);
  855. #endif
  856. #if MAX_EXTRUDERS > 5
  857. #if AXIS_HAS_STEALTHCHOP(E5)
  858. tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5);
  859. #endif
  860. #endif // MAX_EXTRUDERS > 5
  861. #endif // MAX_EXTRUDERS > 4
  862. #endif // MAX_EXTRUDERS > 3
  863. #endif // MAX_EXTRUDERS > 2
  864. #endif // MAX_EXTRUDERS > 1
  865. #endif // MAX_EXTRUDERS
  866. #else
  867. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  868. .X = 100, .Y = 100, .Z = 3,
  869. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
  870. .E0 = 30, .E1 = 30, .E2 = 30,
  871. .E3 = 30, .E4 = 30, .E5 = 30
  872. };
  873. #endif
  874. EEPROM_WRITE(tmc_hybrid_threshold);
  875. }
  876. //
  877. // TMC StallGuard threshold
  878. //
  879. {
  880. tmc_sgt_t tmc_sgt = { 0, 0, 0 };
  881. #if USE_SENSORLESS
  882. #if X_SENSORLESS
  883. tmc_sgt.X = stepperX.sgt();
  884. #endif
  885. #if Y_SENSORLESS
  886. tmc_sgt.Y = stepperY.sgt();
  887. #endif
  888. #if Z_SENSORLESS
  889. tmc_sgt.Z = stepperZ.sgt();
  890. #endif
  891. #endif
  892. EEPROM_WRITE(tmc_sgt);
  893. }
  894. //
  895. // TMC stepping mode
  896. //
  897. {
  898. _FIELD_TEST(tmc_stealth_enabled);
  899. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  900. #if HAS_STEALTHCHOP
  901. #if AXIS_HAS_STEALTHCHOP(X)
  902. tmc_stealth_enabled.X = stepperX.get_stealthChop_status();
  903. #endif
  904. #if AXIS_HAS_STEALTHCHOP(Y)
  905. tmc_stealth_enabled.Y = stepperY.get_stealthChop_status();
  906. #endif
  907. #if AXIS_HAS_STEALTHCHOP(Z)
  908. tmc_stealth_enabled.Z = stepperZ.get_stealthChop_status();
  909. #endif
  910. #if AXIS_HAS_STEALTHCHOP(X2)
  911. tmc_stealth_enabled.X2 = stepperX2.get_stealthChop_status();
  912. #endif
  913. #if AXIS_HAS_STEALTHCHOP(Y2)
  914. tmc_stealth_enabled.Y2 = stepperY2.get_stealthChop_status();
  915. #endif
  916. #if AXIS_HAS_STEALTHCHOP(Z2)
  917. tmc_stealth_enabled.Z2 = stepperZ2.get_stealthChop_status();
  918. #endif
  919. #if AXIS_HAS_STEALTHCHOP(Z3)
  920. tmc_stealth_enabled.Z3 = stepperZ3.get_stealthChop_status();
  921. #endif
  922. #if MAX_EXTRUDERS
  923. #if AXIS_HAS_STEALTHCHOP(E0)
  924. tmc_stealth_enabled.E0 = stepperE0.get_stealthChop_status();
  925. #endif
  926. #if MAX_EXTRUDERS > 1
  927. #if AXIS_HAS_STEALTHCHOP(E1)
  928. tmc_stealth_enabled.E1 = stepperE1.get_stealthChop_status();
  929. #endif
  930. #if MAX_EXTRUDERS > 2
  931. #if AXIS_HAS_STEALTHCHOP(E2)
  932. tmc_stealth_enabled.E2 = stepperE2.get_stealthChop_status();
  933. #endif
  934. #if MAX_EXTRUDERS > 3
  935. #if AXIS_HAS_STEALTHCHOP(E3)
  936. tmc_stealth_enabled.E3 = stepperE3.get_stealthChop_status();
  937. #endif
  938. #if MAX_EXTRUDERS > 4
  939. #if AXIS_HAS_STEALTHCHOP(E4)
  940. tmc_stealth_enabled.E4 = stepperE4.get_stealthChop_status();
  941. #endif
  942. #if MAX_EXTRUDERS > 5
  943. #if AXIS_HAS_STEALTHCHOP(E5)
  944. tmc_stealth_enabled.E5 = stepperE5.get_stealthChop_status();
  945. #endif
  946. #endif // MAX_EXTRUDERS > 5
  947. #endif // MAX_EXTRUDERS > 4
  948. #endif // MAX_EXTRUDERS > 3
  949. #endif // MAX_EXTRUDERS > 2
  950. #endif // MAX_EXTRUDERS > 1
  951. #endif // MAX_EXTRUDERS
  952. #endif
  953. EEPROM_WRITE(tmc_stealth_enabled);
  954. }
  955. //
  956. // Linear Advance
  957. //
  958. {
  959. _FIELD_TEST(planner_extruder_advance_K);
  960. #if ENABLED(LIN_ADVANCE)
  961. EEPROM_WRITE(planner.extruder_advance_K);
  962. #else
  963. dummy = 0;
  964. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  965. #endif
  966. }
  967. //
  968. // Motor Current PWM
  969. //
  970. {
  971. _FIELD_TEST(motor_current_setting);
  972. #if HAS_MOTOR_CURRENT_PWM
  973. EEPROM_WRITE(stepper.motor_current_setting);
  974. #else
  975. const uint32_t dummyui32[XYZ] = { 0 };
  976. EEPROM_WRITE(dummyui32);
  977. #endif
  978. }
  979. //
  980. // CNC Coordinate Systems
  981. //
  982. _FIELD_TEST(coordinate_system);
  983. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  984. EEPROM_WRITE(gcode.coordinate_system);
  985. #else
  986. const float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ] = { { 0 } };
  987. EEPROM_WRITE(coordinate_system);
  988. #endif
  989. //
  990. // Skew correction factors
  991. //
  992. _FIELD_TEST(planner_skew_factor);
  993. EEPROM_WRITE(planner.skew_factor);
  994. //
  995. // Advanced Pause filament load & unload lengths
  996. //
  997. {
  998. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  999. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1000. #endif
  1001. _FIELD_TEST(fc_settings);
  1002. EEPROM_WRITE(fc_settings);
  1003. }
  1004. //
  1005. // Multiple Extruders
  1006. //
  1007. #if EXTRUDERS > 1
  1008. _FIELD_TEST(toolchange_settings);
  1009. EEPROM_WRITE(toolchange_settings);
  1010. #endif
  1011. //
  1012. // Backlash Compensation
  1013. //
  1014. {
  1015. #if ENABLED(BACKLASH_COMPENSATION)
  1016. const float (&backlash_distance_mm)[XYZ] = backlash.distance_mm;
  1017. const uint8_t &backlash_correction = backlash.correction;
  1018. #else
  1019. const float backlash_distance_mm[XYZ] = { 0 };
  1020. const uint8_t backlash_correction = 0;
  1021. #endif
  1022. #ifdef BACKLASH_SMOOTHING_MM
  1023. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1024. #else
  1025. const float backlash_smoothing_mm = 3;
  1026. #endif
  1027. _FIELD_TEST(backlash_distance_mm);
  1028. EEPROM_WRITE(backlash_distance_mm[X_AXIS]);
  1029. EEPROM_WRITE(backlash_distance_mm[Y_AXIS]);
  1030. EEPROM_WRITE(backlash_distance_mm[Z_AXIS]);
  1031. EEPROM_WRITE(backlash_correction);
  1032. EEPROM_WRITE(backlash_smoothing_mm);
  1033. }
  1034. //
  1035. // Extensible UI User Data
  1036. //
  1037. #if ENABLED(EXTENSIBLE_UI)
  1038. {
  1039. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1040. ExtUI::onStoreSettings(extui_data);
  1041. _FIELD_TEST(extui_data);
  1042. EEPROM_WRITE(extui_data);
  1043. }
  1044. #endif
  1045. //
  1046. // Validate CRC and Data Size
  1047. //
  1048. if (!eeprom_error) {
  1049. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1050. final_crc = working_crc;
  1051. // Write the EEPROM header
  1052. eeprom_index = EEPROM_OFFSET;
  1053. EEPROM_WRITE(version);
  1054. EEPROM_WRITE(final_crc);
  1055. // Report storage size
  1056. DEBUG_ECHO_START();
  1057. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1058. eeprom_error |= size_error(eeprom_size);
  1059. }
  1060. EEPROM_FINISH();
  1061. //
  1062. // UBL Mesh
  1063. //
  1064. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1065. if (ubl.storage_slot >= 0)
  1066. store_mesh(ubl.storage_slot);
  1067. #endif
  1068. #if ENABLED(EXTENSIBLE_UI)
  1069. ExtUI::onConfigurationStoreWritten(!eeprom_error);
  1070. #endif
  1071. return !eeprom_error;
  1072. }
  1073. /**
  1074. * M501 - Retrieve Configuration
  1075. */
  1076. bool MarlinSettings::_load() {
  1077. uint16_t working_crc = 0;
  1078. EEPROM_START();
  1079. char stored_ver[4];
  1080. EEPROM_READ_ALWAYS(stored_ver);
  1081. uint16_t stored_crc;
  1082. EEPROM_READ_ALWAYS(stored_crc);
  1083. // Version has to match or defaults are used
  1084. if (strncmp(version, stored_ver, 3) != 0) {
  1085. if (stored_ver[3] != '\0') {
  1086. stored_ver[0] = '?';
  1087. stored_ver[1] = '\0';
  1088. }
  1089. DEBUG_ECHO_START();
  1090. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1091. eeprom_error = true;
  1092. }
  1093. else {
  1094. float dummy = 0;
  1095. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1096. _FIELD_TEST(esteppers);
  1097. // Number of esteppers may change
  1098. uint8_t esteppers;
  1099. EEPROM_READ_ALWAYS(esteppers);
  1100. //
  1101. // Planner Motion
  1102. //
  1103. {
  1104. // Get only the number of E stepper parameters previously stored
  1105. // Any steppers added later are set to their defaults
  1106. const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
  1107. const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
  1108. uint32_t tmp1[XYZ + esteppers];
  1109. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1110. EEPROM_READ(planner.settings.min_segment_time_us);
  1111. float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
  1112. EEPROM_READ(tmp2); // axis_steps_per_mm
  1113. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1114. if (!validating) LOOP_XYZE_N(i) {
  1115. const bool in = (i < esteppers + XYZ);
  1116. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
  1117. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
  1118. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
  1119. }
  1120. EEPROM_READ(planner.settings.acceleration);
  1121. EEPROM_READ(planner.settings.retract_acceleration);
  1122. EEPROM_READ(planner.settings.travel_acceleration);
  1123. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1124. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1125. #if HAS_CLASSIC_JERK
  1126. EEPROM_READ(planner.max_jerk);
  1127. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  1128. EEPROM_READ(dummy);
  1129. #endif
  1130. #else
  1131. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  1132. #endif
  1133. #if ENABLED(JUNCTION_DEVIATION)
  1134. EEPROM_READ(planner.junction_deviation_mm);
  1135. #else
  1136. EEPROM_READ(dummy);
  1137. #endif
  1138. }
  1139. //
  1140. // Home Offset (M206 / M665)
  1141. //
  1142. {
  1143. _FIELD_TEST(home_offset);
  1144. #if HAS_SCARA_OFFSET
  1145. EEPROM_READ(scara_home_offset);
  1146. #else
  1147. #if !HAS_HOME_OFFSET
  1148. float home_offset[XYZ];
  1149. #endif
  1150. EEPROM_READ(home_offset);
  1151. #endif
  1152. }
  1153. //
  1154. // Hotend Offsets, if any
  1155. //
  1156. {
  1157. #if HAS_HOTEND_OFFSET
  1158. // Skip hotend 0 which must be 0
  1159. for (uint8_t e = 1; e < HOTENDS; e++)
  1160. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  1161. #endif
  1162. }
  1163. //
  1164. // Filament Runout Sensor
  1165. //
  1166. {
  1167. #if HAS_FILAMENT_SENSOR
  1168. bool &runout_sensor_enabled = runout.enabled;
  1169. #else
  1170. bool runout_sensor_enabled;
  1171. #endif
  1172. _FIELD_TEST(runout_sensor_enabled);
  1173. EEPROM_READ(runout_sensor_enabled);
  1174. float runout_distance_mm;
  1175. EEPROM_READ(runout_distance_mm);
  1176. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  1177. runout.set_runout_distance(runout_distance_mm);
  1178. #endif
  1179. }
  1180. //
  1181. // Global Leveling
  1182. //
  1183. {
  1184. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1185. EEPROM_READ(new_z_fade_height);
  1186. #else
  1187. EEPROM_READ(dummy);
  1188. #endif
  1189. }
  1190. //
  1191. // Mesh (Manual) Bed Leveling
  1192. //
  1193. {
  1194. uint8_t mesh_num_x, mesh_num_y;
  1195. EEPROM_READ(dummy);
  1196. EEPROM_READ_ALWAYS(mesh_num_x);
  1197. EEPROM_READ_ALWAYS(mesh_num_y);
  1198. #if ENABLED(MESH_BED_LEVELING)
  1199. if (!validating) mbl.z_offset = dummy;
  1200. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1201. // EEPROM data fits the current mesh
  1202. EEPROM_READ(mbl.z_values);
  1203. }
  1204. else {
  1205. // EEPROM data is stale
  1206. if (!validating) mbl.reset();
  1207. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1208. }
  1209. #else
  1210. // MBL is disabled - skip the stored data
  1211. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1212. #endif // MESH_BED_LEVELING
  1213. }
  1214. //
  1215. // Probe Z Offset
  1216. //
  1217. {
  1218. _FIELD_TEST(zprobe_zoffset);
  1219. #if !HAS_BED_PROBE
  1220. float zprobe_zoffset;
  1221. #endif
  1222. EEPROM_READ(zprobe_zoffset);
  1223. }
  1224. //
  1225. // Planar Bed Leveling matrix
  1226. //
  1227. {
  1228. #if ABL_PLANAR
  1229. EEPROM_READ(planner.bed_level_matrix);
  1230. #else
  1231. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  1232. #endif
  1233. }
  1234. //
  1235. // Bilinear Auto Bed Leveling
  1236. //
  1237. {
  1238. uint8_t grid_max_x, grid_max_y;
  1239. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1240. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1241. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1242. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1243. if (!validating) set_bed_leveling_enabled(false);
  1244. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1245. EEPROM_READ(bilinear_start); // 2 ints
  1246. EEPROM_READ(z_values); // 9 to 256 floats
  1247. }
  1248. else // EEPROM data is stale
  1249. #endif // AUTO_BED_LEVELING_BILINEAR
  1250. {
  1251. // Skip past disabled (or stale) Bilinear Grid data
  1252. int bgs[2], bs[2];
  1253. EEPROM_READ(bgs);
  1254. EEPROM_READ(bs);
  1255. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1256. }
  1257. }
  1258. //
  1259. // Unified Bed Leveling active state
  1260. //
  1261. {
  1262. _FIELD_TEST(planner_leveling_active);
  1263. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1264. EEPROM_READ(planner.leveling_active);
  1265. EEPROM_READ(ubl.storage_slot);
  1266. #else
  1267. bool planner_leveling_active;
  1268. uint8_t ubl_storage_slot;
  1269. EEPROM_READ(planner_leveling_active);
  1270. EEPROM_READ(ubl_storage_slot);
  1271. #endif
  1272. }
  1273. //
  1274. // SERVO_ANGLES
  1275. //
  1276. {
  1277. _FIELD_TEST(servo_angles);
  1278. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1279. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1280. #else
  1281. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1282. #endif
  1283. EEPROM_READ(servo_angles_arr);
  1284. }
  1285. //
  1286. // DELTA Geometry or Dual Endstops offsets
  1287. //
  1288. {
  1289. #if ENABLED(DELTA)
  1290. _FIELD_TEST(delta_height);
  1291. EEPROM_READ(delta_height); // 1 float
  1292. EEPROM_READ(delta_endstop_adj); // 3 floats
  1293. EEPROM_READ(delta_radius); // 1 float
  1294. EEPROM_READ(delta_diagonal_rod); // 1 float
  1295. EEPROM_READ(delta_segments_per_second); // 1 float
  1296. EEPROM_READ(delta_calibration_radius); // 1 float
  1297. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1298. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1299. _FIELD_TEST(x2_endstop_adj);
  1300. #if ENABLED(X_DUAL_ENDSTOPS)
  1301. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1302. #else
  1303. EEPROM_READ(dummy);
  1304. #endif
  1305. #if ENABLED(Y_DUAL_ENDSTOPS)
  1306. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1307. #else
  1308. EEPROM_READ(dummy);
  1309. #endif
  1310. #if Z_MULTI_ENDSTOPS
  1311. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1312. #else
  1313. EEPROM_READ(dummy);
  1314. #endif
  1315. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1316. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1317. #else
  1318. EEPROM_READ(dummy);
  1319. #endif
  1320. #endif
  1321. }
  1322. //
  1323. // LCD Preheat settings
  1324. //
  1325. {
  1326. _FIELD_TEST(ui_preheat_hotend_temp);
  1327. #if HAS_LCD_MENU
  1328. int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  1329. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  1330. uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  1331. #else
  1332. int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2];
  1333. uint8_t ui_preheat_fan_speed[2];
  1334. #endif
  1335. EEPROM_READ(ui_preheat_hotend_temp); // 2 floats
  1336. EEPROM_READ(ui_preheat_bed_temp); // 2 floats
  1337. EEPROM_READ(ui_preheat_fan_speed); // 2 floats
  1338. }
  1339. //
  1340. // Hotend PID
  1341. //
  1342. {
  1343. HOTEND_LOOP() {
  1344. PIDC_t pidc;
  1345. EEPROM_READ(pidc);
  1346. #if ENABLED(PIDTEMP)
  1347. if (!validating && pidc.Kp != DUMMY_PID_VALUE) {
  1348. // No need to scale PID values since EEPROM values are scaled
  1349. PID_PARAM(Kp, e) = pidc.Kp;
  1350. PID_PARAM(Ki, e) = pidc.Ki;
  1351. PID_PARAM(Kd, e) = pidc.Kd;
  1352. #if ENABLED(PID_EXTRUSION_SCALING)
  1353. PID_PARAM(Kc, e) = pidc.Kc;
  1354. #endif
  1355. }
  1356. #endif
  1357. }
  1358. }
  1359. //
  1360. // PID Extrusion Scaling
  1361. //
  1362. {
  1363. _FIELD_TEST(lpq_len);
  1364. #if ENABLED(PID_EXTRUSION_SCALING)
  1365. EEPROM_READ(thermalManager.lpq_len);
  1366. #else
  1367. int16_t lpq_len;
  1368. EEPROM_READ(lpq_len);
  1369. #endif
  1370. }
  1371. //
  1372. // Heated Bed PID
  1373. //
  1374. {
  1375. PID_t pid;
  1376. EEPROM_READ(pid);
  1377. #if ENABLED(PIDTEMPBED)
  1378. if (!validating && pid.Kp != DUMMY_PID_VALUE)
  1379. memcpy(&thermalManager.temp_bed.pid, &pid, sizeof(pid));
  1380. #endif
  1381. }
  1382. //
  1383. // User-defined Thermistors
  1384. //
  1385. #if HAS_USER_THERMISTORS
  1386. {
  1387. _FIELD_TEST(user_thermistor);
  1388. EEPROM_READ(thermalManager.user_thermistor);
  1389. }
  1390. #endif
  1391. //
  1392. // LCD Contrast
  1393. //
  1394. {
  1395. _FIELD_TEST(lcd_contrast);
  1396. int16_t lcd_contrast;
  1397. EEPROM_READ(lcd_contrast);
  1398. #if HAS_LCD_CONTRAST
  1399. ui.set_contrast(lcd_contrast);
  1400. #endif
  1401. }
  1402. //
  1403. // Power-Loss Recovery
  1404. //
  1405. {
  1406. _FIELD_TEST(recovery_enabled);
  1407. #if ENABLED(POWER_LOSS_RECOVERY)
  1408. EEPROM_READ(recovery.enabled);
  1409. #else
  1410. bool recovery_enabled;
  1411. EEPROM_READ(recovery_enabled);
  1412. #endif
  1413. }
  1414. //
  1415. // Firmware Retraction
  1416. //
  1417. {
  1418. _FIELD_TEST(fwretract_settings);
  1419. #if ENABLED(FWRETRACT)
  1420. EEPROM_READ(fwretract.settings);
  1421. #else
  1422. fwretract_settings_t fwretract_settings;
  1423. EEPROM_READ(fwretract_settings);
  1424. #endif
  1425. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1426. EEPROM_READ(fwretract.autoretract_enabled);
  1427. #else
  1428. bool autoretract_enabled;
  1429. EEPROM_READ(autoretract_enabled);
  1430. #endif
  1431. }
  1432. //
  1433. // Volumetric & Filament Size
  1434. //
  1435. {
  1436. struct {
  1437. bool volumetric_enabled;
  1438. float filament_size[EXTRUDERS];
  1439. } storage;
  1440. _FIELD_TEST(parser_volumetric_enabled);
  1441. EEPROM_READ(storage);
  1442. #if DISABLED(NO_VOLUMETRICS)
  1443. if (!validating) {
  1444. parser.volumetric_enabled = storage.volumetric_enabled;
  1445. COPY(planner.filament_size, storage.filament_size);
  1446. }
  1447. #endif
  1448. }
  1449. //
  1450. // TMC Stepper Settings
  1451. //
  1452. if (!validating) reset_stepper_drivers();
  1453. // TMC Stepper Current
  1454. {
  1455. _FIELD_TEST(tmc_stepper_current);
  1456. tmc_stepper_current_t currents;
  1457. EEPROM_READ(currents);
  1458. #if HAS_TRINAMIC
  1459. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1460. if (!validating) {
  1461. #if AXIS_IS_TMC(X)
  1462. SET_CURR(X);
  1463. #endif
  1464. #if AXIS_IS_TMC(Y)
  1465. SET_CURR(Y);
  1466. #endif
  1467. #if AXIS_IS_TMC(Z)
  1468. SET_CURR(Z);
  1469. #endif
  1470. #if AXIS_IS_TMC(X2)
  1471. SET_CURR(X2);
  1472. #endif
  1473. #if AXIS_IS_TMC(Y2)
  1474. SET_CURR(Y2);
  1475. #endif
  1476. #if AXIS_IS_TMC(Z2)
  1477. SET_CURR(Z2);
  1478. #endif
  1479. #if AXIS_IS_TMC(Z3)
  1480. SET_CURR(Z3);
  1481. #endif
  1482. #if AXIS_IS_TMC(E0)
  1483. SET_CURR(E0);
  1484. #endif
  1485. #if AXIS_IS_TMC(E1)
  1486. SET_CURR(E1);
  1487. #endif
  1488. #if AXIS_IS_TMC(E2)
  1489. SET_CURR(E2);
  1490. #endif
  1491. #if AXIS_IS_TMC(E3)
  1492. SET_CURR(E3);
  1493. #endif
  1494. #if AXIS_IS_TMC(E4)
  1495. SET_CURR(E4);
  1496. #endif
  1497. #if AXIS_IS_TMC(E5)
  1498. SET_CURR(E5);
  1499. #endif
  1500. }
  1501. #endif
  1502. }
  1503. // TMC Hybrid Threshold
  1504. {
  1505. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1506. _FIELD_TEST(tmc_hybrid_threshold);
  1507. EEPROM_READ(tmc_hybrid_threshold);
  1508. #if ENABLED(HYBRID_THRESHOLD)
  1509. #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.settings.axis_steps_per_mm[_AXIS(A)])
  1510. if (!validating) {
  1511. #if AXIS_HAS_STEALTHCHOP(X)
  1512. TMC_SET_PWMTHRS(X, X);
  1513. #endif
  1514. #if AXIS_HAS_STEALTHCHOP(Y)
  1515. TMC_SET_PWMTHRS(Y, Y);
  1516. #endif
  1517. #if AXIS_HAS_STEALTHCHOP(Z)
  1518. TMC_SET_PWMTHRS(Z, Z);
  1519. #endif
  1520. #if AXIS_HAS_STEALTHCHOP(X2)
  1521. TMC_SET_PWMTHRS(X, X2);
  1522. #endif
  1523. #if AXIS_HAS_STEALTHCHOP(Y2)
  1524. TMC_SET_PWMTHRS(Y, Y2);
  1525. #endif
  1526. #if AXIS_HAS_STEALTHCHOP(Z2)
  1527. TMC_SET_PWMTHRS(Z, Z2);
  1528. #endif
  1529. #if AXIS_HAS_STEALTHCHOP(Z3)
  1530. TMC_SET_PWMTHRS(Z, Z3);
  1531. #endif
  1532. #if AXIS_HAS_STEALTHCHOP(E0)
  1533. TMC_SET_PWMTHRS(E, E0);
  1534. #endif
  1535. #if AXIS_HAS_STEALTHCHOP(E1)
  1536. TMC_SET_PWMTHRS(E, E1);
  1537. #endif
  1538. #if AXIS_HAS_STEALTHCHOP(E2)
  1539. TMC_SET_PWMTHRS(E, E2);
  1540. #endif
  1541. #if AXIS_HAS_STEALTHCHOP(E3)
  1542. TMC_SET_PWMTHRS(E, E3);
  1543. #endif
  1544. #if AXIS_HAS_STEALTHCHOP(E4)
  1545. TMC_SET_PWMTHRS(E, E4);
  1546. #endif
  1547. #if AXIS_HAS_STEALTHCHOP(E5)
  1548. TMC_SET_PWMTHRS(E, E5);
  1549. #endif
  1550. }
  1551. #endif
  1552. }
  1553. //
  1554. // TMC StallGuard threshold.
  1555. // X and X2 use the same value
  1556. // Y and Y2 use the same value
  1557. // Z, Z2 and Z3 use the same value
  1558. //
  1559. {
  1560. tmc_sgt_t tmc_sgt;
  1561. _FIELD_TEST(tmc_sgt);
  1562. EEPROM_READ(tmc_sgt);
  1563. #if USE_SENSORLESS
  1564. if (!validating) {
  1565. #ifdef X_STALL_SENSITIVITY
  1566. #if AXIS_HAS_STALLGUARD(X)
  1567. stepperX.sgt(tmc_sgt.X);
  1568. #endif
  1569. #if AXIS_HAS_STALLGUARD(X2)
  1570. stepperX2.sgt(tmc_sgt.X);
  1571. #endif
  1572. #endif
  1573. #ifdef Y_STALL_SENSITIVITY
  1574. #if AXIS_HAS_STALLGUARD(Y)
  1575. stepperY.sgt(tmc_sgt.Y);
  1576. #endif
  1577. #if AXIS_HAS_STALLGUARD(Y2)
  1578. stepperY2.sgt(tmc_sgt.Y);
  1579. #endif
  1580. #endif
  1581. #ifdef Z_STALL_SENSITIVITY
  1582. #if AXIS_HAS_STALLGUARD(Z)
  1583. stepperZ.sgt(tmc_sgt.Z);
  1584. #endif
  1585. #if AXIS_HAS_STALLGUARD(Z2)
  1586. stepperZ2.sgt(tmc_sgt.Z);
  1587. #endif
  1588. #if AXIS_HAS_STALLGUARD(Z3)
  1589. stepperZ3.sgt(tmc_sgt.Z);
  1590. #endif
  1591. #endif
  1592. }
  1593. #endif
  1594. }
  1595. // TMC stepping mode
  1596. {
  1597. _FIELD_TEST(tmc_stealth_enabled);
  1598. tmc_stealth_enabled_t tmc_stealth_enabled;
  1599. EEPROM_READ(tmc_stealth_enabled);
  1600. #if HAS_TRINAMIC
  1601. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1602. if (!validating) {
  1603. #if AXIS_HAS_STEALTHCHOP(X)
  1604. SET_STEPPING_MODE(X);
  1605. #endif
  1606. #if AXIS_HAS_STEALTHCHOP(Y)
  1607. SET_STEPPING_MODE(Y);
  1608. #endif
  1609. #if AXIS_HAS_STEALTHCHOP(Z)
  1610. SET_STEPPING_MODE(Z);
  1611. #endif
  1612. #if AXIS_HAS_STEALTHCHOP(X2)
  1613. SET_STEPPING_MODE(X2);
  1614. #endif
  1615. #if AXIS_HAS_STEALTHCHOP(Y2)
  1616. SET_STEPPING_MODE(Y2);
  1617. #endif
  1618. #if AXIS_HAS_STEALTHCHOP(Z2)
  1619. SET_STEPPING_MODE(Z2);
  1620. #endif
  1621. #if AXIS_HAS_STEALTHCHOP(Z3)
  1622. SET_STEPPING_MODE(Z3);
  1623. #endif
  1624. #if AXIS_HAS_STEALTHCHOP(E0)
  1625. SET_STEPPING_MODE(E0);
  1626. #endif
  1627. #if AXIS_HAS_STEALTHCHOP(E1)
  1628. SET_STEPPING_MODE(E1);
  1629. #endif
  1630. #if AXIS_HAS_STEALTHCHOP(E2)
  1631. SET_STEPPING_MODE(E2);
  1632. #endif
  1633. #if AXIS_HAS_STEALTHCHOP(E3)
  1634. SET_STEPPING_MODE(E3);
  1635. #endif
  1636. #if AXIS_HAS_STEALTHCHOP(E4)
  1637. SET_STEPPING_MODE(E4);
  1638. #endif
  1639. #if AXIS_HAS_STEALTHCHOP(E5)
  1640. SET_STEPPING_MODE(E5);
  1641. #endif
  1642. }
  1643. #endif
  1644. }
  1645. //
  1646. // Linear Advance
  1647. //
  1648. {
  1649. float extruder_advance_K[EXTRUDERS];
  1650. _FIELD_TEST(planner_extruder_advance_K);
  1651. EEPROM_READ(extruder_advance_K);
  1652. #if ENABLED(LIN_ADVANCE)
  1653. if (!validating)
  1654. COPY(planner.extruder_advance_K, extruder_advance_K);
  1655. #endif
  1656. }
  1657. //
  1658. // Motor Current PWM
  1659. //
  1660. {
  1661. uint32_t motor_current_setting[3];
  1662. _FIELD_TEST(motor_current_setting);
  1663. EEPROM_READ(motor_current_setting);
  1664. #if HAS_MOTOR_CURRENT_PWM
  1665. if (!validating)
  1666. COPY(stepper.motor_current_setting, motor_current_setting);
  1667. #endif
  1668. }
  1669. //
  1670. // CNC Coordinate System
  1671. //
  1672. {
  1673. _FIELD_TEST(coordinate_system);
  1674. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1675. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1676. EEPROM_READ(gcode.coordinate_system);
  1677. #else
  1678. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  1679. EEPROM_READ(coordinate_system);
  1680. #endif
  1681. }
  1682. //
  1683. // Skew correction factors
  1684. //
  1685. {
  1686. skew_factor_t skew_factor;
  1687. _FIELD_TEST(planner_skew_factor);
  1688. EEPROM_READ(skew_factor);
  1689. #if ENABLED(SKEW_CORRECTION_GCODE)
  1690. if (!validating) {
  1691. planner.skew_factor.xy = skew_factor.xy;
  1692. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1693. planner.skew_factor.xz = skew_factor.xz;
  1694. planner.skew_factor.yz = skew_factor.yz;
  1695. #endif
  1696. }
  1697. #endif
  1698. }
  1699. //
  1700. // Advanced Pause filament load & unload lengths
  1701. //
  1702. {
  1703. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1704. fil_change_settings_t fc_settings[EXTRUDERS];
  1705. #endif
  1706. _FIELD_TEST(fc_settings);
  1707. EEPROM_READ(fc_settings);
  1708. }
  1709. //
  1710. // Tool-change settings
  1711. //
  1712. #if EXTRUDERS > 1
  1713. _FIELD_TEST(toolchange_settings);
  1714. EEPROM_READ(toolchange_settings);
  1715. #endif
  1716. //
  1717. // Backlash Compensation
  1718. //
  1719. {
  1720. #if ENABLED(BACKLASH_COMPENSATION)
  1721. float (&backlash_distance_mm)[XYZ] = backlash.distance_mm;
  1722. uint8_t &backlash_correction = backlash.correction;
  1723. #else
  1724. float backlash_distance_mm[XYZ];
  1725. uint8_t backlash_correction;
  1726. #endif
  1727. #ifdef BACKLASH_SMOOTHING_MM
  1728. float &backlash_smoothing_mm = backlash.smoothing_mm;
  1729. #else
  1730. float backlash_smoothing_mm;
  1731. #endif
  1732. _FIELD_TEST(backlash_distance_mm);
  1733. EEPROM_READ(backlash_distance_mm[X_AXIS]);
  1734. EEPROM_READ(backlash_distance_mm[Y_AXIS]);
  1735. EEPROM_READ(backlash_distance_mm[Z_AXIS]);
  1736. EEPROM_READ(backlash_correction);
  1737. EEPROM_READ(backlash_smoothing_mm);
  1738. }
  1739. //
  1740. // Extensible UI User Data
  1741. //
  1742. #if ENABLED(EXTENSIBLE_UI)
  1743. // This is a significant hardware change; don't reserve EEPROM space when not present
  1744. {
  1745. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1746. _FIELD_TEST(extui_data);
  1747. EEPROM_READ(extui_data);
  1748. if(!validating)
  1749. ExtUI::onLoadSettings(extui_data);
  1750. }
  1751. #endif
  1752. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1753. if (eeprom_error) {
  1754. DEBUG_ECHO_START();
  1755. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1756. }
  1757. else if (working_crc != stored_crc) {
  1758. eeprom_error = true;
  1759. DEBUG_ERROR_START();
  1760. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1761. }
  1762. else if (!validating) {
  1763. DEBUG_ECHO_START();
  1764. DEBUG_ECHO(version);
  1765. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1766. }
  1767. if (!validating && !eeprom_error) postprocess();
  1768. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1769. if (!validating) {
  1770. ubl.report_state();
  1771. if (!ubl.sanity_check()) {
  1772. SERIAL_EOL();
  1773. #if ENABLED(EEPROM_CHITCHAT)
  1774. ubl.echo_name();
  1775. DEBUG_ECHOLNPGM(" initialized.\n");
  1776. #endif
  1777. }
  1778. else {
  1779. eeprom_error = true;
  1780. #if ENABLED(EEPROM_CHITCHAT)
  1781. DEBUG_ECHOPGM("?Can't enable ");
  1782. ubl.echo_name();
  1783. DEBUG_ECHOLNPGM(".");
  1784. #endif
  1785. ubl.reset();
  1786. }
  1787. if (ubl.storage_slot >= 0) {
  1788. load_mesh(ubl.storage_slot);
  1789. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  1790. }
  1791. else {
  1792. ubl.reset();
  1793. DEBUG_ECHOLNPGM("UBL System reset()");
  1794. }
  1795. }
  1796. #endif
  1797. }
  1798. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1799. if (!validating) report();
  1800. #endif
  1801. EEPROM_FINISH();
  1802. return !eeprom_error;
  1803. }
  1804. bool MarlinSettings::validate() {
  1805. validating = true;
  1806. const bool success = _load();
  1807. validating = false;
  1808. return success;
  1809. }
  1810. bool MarlinSettings::load() {
  1811. if (validate()) {
  1812. const bool success = _load();
  1813. #if ENABLED(EXTENSIBLE_UI)
  1814. ExtUI::onConfigurationStoreRead(success);
  1815. #endif
  1816. return success;
  1817. }
  1818. reset();
  1819. return true;
  1820. }
  1821. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1822. inline void ubl_invalid_slot(const int s) {
  1823. #if ENABLED(EEPROM_CHITCHAT)
  1824. DEBUG_ECHOLNPGM("?Invalid slot.");
  1825. DEBUG_ECHO(s);
  1826. DEBUG_ECHOLNPGM(" mesh slots available.");
  1827. #else
  1828. UNUSED(s);
  1829. #endif
  1830. }
  1831. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1832. // is a placeholder for the size of the MAT; the MAT will always
  1833. // live at the very end of the eeprom
  1834. uint16_t MarlinSettings::meshes_start_index() {
  1835. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1836. // or down a little bit without disrupting the mesh data
  1837. }
  1838. uint16_t MarlinSettings::calc_num_meshes() {
  1839. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1840. }
  1841. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1842. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1843. }
  1844. void MarlinSettings::store_mesh(const int8_t slot) {
  1845. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1846. const int16_t a = calc_num_meshes();
  1847. if (!WITHIN(slot, 0, a - 1)) {
  1848. ubl_invalid_slot(a);
  1849. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  1850. DEBUG_EOL();
  1851. return;
  1852. }
  1853. int pos = mesh_slot_offset(slot);
  1854. uint16_t crc = 0;
  1855. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1856. persistentStore.access_start();
  1857. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1858. persistentStore.access_finish();
  1859. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  1860. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  1861. #else
  1862. // Other mesh types
  1863. #endif
  1864. }
  1865. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  1866. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1867. const int16_t a = settings.calc_num_meshes();
  1868. if (!WITHIN(slot, 0, a - 1)) {
  1869. ubl_invalid_slot(a);
  1870. return;
  1871. }
  1872. int pos = mesh_slot_offset(slot);
  1873. uint16_t crc = 0;
  1874. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1875. persistentStore.access_start();
  1876. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1877. persistentStore.access_finish();
  1878. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  1879. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  1880. EEPROM_FINISH();
  1881. #else
  1882. // Other mesh types
  1883. #endif
  1884. }
  1885. //void MarlinSettings::delete_mesh() { return; }
  1886. //void MarlinSettings::defrag_meshes() { return; }
  1887. #endif // AUTO_BED_LEVELING_UBL
  1888. #else // !EEPROM_SETTINGS
  1889. bool MarlinSettings::save() {
  1890. DEBUG_ERROR_MSG("EEPROM disabled");
  1891. return false;
  1892. }
  1893. #endif // !EEPROM_SETTINGS
  1894. /**
  1895. * M502 - Reset Configuration
  1896. */
  1897. void MarlinSettings::reset() {
  1898. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1899. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1900. LOOP_XYZE_N(i) {
  1901. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&tmp1[ALIM(i, tmp1)]);
  1902. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[ALIM(i, tmp2)]);
  1903. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&tmp3[ALIM(i, tmp3)]);
  1904. }
  1905. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1906. planner.settings.acceleration = DEFAULT_ACCELERATION;
  1907. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1908. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1909. planner.settings.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1910. planner.settings.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1911. #if HAS_CLASSIC_JERK
  1912. #ifndef DEFAULT_XJERK
  1913. #define DEFAULT_XJERK 0
  1914. #endif
  1915. #ifndef DEFAULT_YJERK
  1916. #define DEFAULT_YJERK 0
  1917. #endif
  1918. #ifndef DEFAULT_ZJERK
  1919. #define DEFAULT_ZJERK 0
  1920. #endif
  1921. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1922. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1923. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1924. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1925. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1926. #endif
  1927. #endif
  1928. #if ENABLED(JUNCTION_DEVIATION)
  1929. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  1930. #endif
  1931. #if HAS_SCARA_OFFSET
  1932. ZERO(scara_home_offset);
  1933. #elif HAS_HOME_OFFSET
  1934. ZERO(home_offset);
  1935. #endif
  1936. #if HAS_HOTEND_OFFSET
  1937. reset_hotend_offsets();
  1938. #endif
  1939. //
  1940. // Filament Runout Sensor
  1941. //
  1942. #if HAS_FILAMENT_SENSOR
  1943. runout.enabled = true;
  1944. runout.reset();
  1945. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  1946. runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM);
  1947. #endif
  1948. #endif
  1949. //
  1950. // Tool-change Settings
  1951. //
  1952. #if EXTRUDERS > 1
  1953. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  1954. toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH;
  1955. toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED;
  1956. toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED;
  1957. #endif
  1958. #if ENABLED(TOOLCHANGE_PARK)
  1959. toolchange_settings.change_point = TOOLCHANGE_PARK_XY;
  1960. #endif
  1961. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  1962. #endif
  1963. #if ENABLED(BACKLASH_GCODE)
  1964. backlash.correction = (BACKLASH_CORRECTION) * 255;
  1965. #ifdef BACKLASH_DISTANCE_MM
  1966. constexpr float tmp[XYZ] = BACKLASH_DISTANCE_MM;
  1967. backlash.distance_mm[X_AXIS] = tmp[X_AXIS];
  1968. backlash.distance_mm[Y_AXIS] = tmp[Y_AXIS];
  1969. backlash.distance_mm[Z_AXIS] = tmp[Z_AXIS];
  1970. #endif
  1971. #ifdef BACKLASH_SMOOTHING_MM
  1972. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  1973. #endif
  1974. #endif
  1975. #if ENABLED(EXTENSIBLE_UI)
  1976. ExtUI::onFactoryReset();
  1977. #endif
  1978. //
  1979. // Magnetic Parking Extruder
  1980. //
  1981. #if ENABLED(MAGNETIC_PARKING_EXTRUDER)
  1982. mpe_settings_init();
  1983. #endif
  1984. //
  1985. // Global Leveling
  1986. //
  1987. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1988. new_z_fade_height = 0.0;
  1989. #endif
  1990. #if HAS_LEVELING
  1991. reset_bed_level();
  1992. #endif
  1993. #if HAS_BED_PROBE
  1994. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1995. #endif
  1996. //
  1997. // Servo Angles
  1998. //
  1999. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2000. COPY(servo_angles, base_servo_angles);
  2001. #endif
  2002. //
  2003. // Endstop Adjustments
  2004. //
  2005. #if ENABLED(DELTA)
  2006. const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  2007. delta_height = DELTA_HEIGHT;
  2008. COPY(delta_endstop_adj, adj);
  2009. delta_radius = DELTA_RADIUS;
  2010. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2011. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2012. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  2013. COPY(delta_tower_angle_trim, dta);
  2014. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  2015. #if ENABLED(X_DUAL_ENDSTOPS)
  2016. endstops.x2_endstop_adj = (
  2017. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  2018. X_DUAL_ENDSTOPS_ADJUSTMENT
  2019. #else
  2020. 0
  2021. #endif
  2022. );
  2023. #endif
  2024. #if ENABLED(Y_DUAL_ENDSTOPS)
  2025. endstops.y2_endstop_adj = (
  2026. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  2027. Y_DUAL_ENDSTOPS_ADJUSTMENT
  2028. #else
  2029. 0
  2030. #endif
  2031. );
  2032. #endif
  2033. #if ENABLED(Z_DUAL_ENDSTOPS)
  2034. endstops.z2_endstop_adj = (
  2035. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  2036. Z_DUAL_ENDSTOPS_ADJUSTMENT
  2037. #else
  2038. 0
  2039. #endif
  2040. );
  2041. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  2042. endstops.z2_endstop_adj = (
  2043. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  2044. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  2045. #else
  2046. 0
  2047. #endif
  2048. );
  2049. endstops.z3_endstop_adj = (
  2050. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  2051. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  2052. #else
  2053. 0
  2054. #endif
  2055. );
  2056. #endif
  2057. #endif
  2058. //
  2059. // Preheat parameters
  2060. //
  2061. #if HAS_LCD_MENU
  2062. ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  2063. ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  2064. ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  2065. ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  2066. ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  2067. ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  2068. #endif
  2069. //
  2070. // Hotend PID
  2071. //
  2072. #if ENABLED(PIDTEMP)
  2073. HOTEND_LOOP() {
  2074. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  2075. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  2076. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  2077. #if ENABLED(PID_EXTRUSION_SCALING)
  2078. PID_PARAM(Kc, e) = DEFAULT_Kc;
  2079. #endif
  2080. }
  2081. #endif
  2082. //
  2083. // PID Extrusion Scaling
  2084. //
  2085. #if ENABLED(PID_EXTRUSION_SCALING)
  2086. thermalManager.lpq_len = 20; // Default last-position-queue size
  2087. #endif
  2088. //
  2089. // Heated Bed PID
  2090. //
  2091. #if ENABLED(PIDTEMPBED)
  2092. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2093. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2094. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2095. #endif
  2096. //
  2097. // User-Defined Thermistors
  2098. //
  2099. #if HAS_USER_THERMISTORS
  2100. thermalManager.reset_user_thermistors();
  2101. #endif
  2102. //
  2103. // LCD Contrast
  2104. //
  2105. #if HAS_LCD_CONTRAST
  2106. ui.set_contrast(DEFAULT_LCD_CONTRAST);
  2107. #endif
  2108. //
  2109. // Power-Loss Recovery
  2110. //
  2111. #if ENABLED(POWER_LOSS_RECOVERY)
  2112. recovery.enable(true);
  2113. #endif
  2114. //
  2115. // Firmware Retraction
  2116. //
  2117. #if ENABLED(FWRETRACT)
  2118. fwretract.reset();
  2119. #endif
  2120. //
  2121. // Volumetric & Filament Size
  2122. //
  2123. #if DISABLED(NO_VOLUMETRICS)
  2124. parser.volumetric_enabled =
  2125. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  2126. true
  2127. #else
  2128. false
  2129. #endif
  2130. ;
  2131. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  2132. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2133. #endif
  2134. endstops.enable_globally(
  2135. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  2136. true
  2137. #else
  2138. false
  2139. #endif
  2140. );
  2141. reset_stepper_drivers();
  2142. //
  2143. // Linear Advance
  2144. //
  2145. #if ENABLED(LIN_ADVANCE)
  2146. LOOP_L_N(i, EXTRUDERS) {
  2147. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2148. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  2149. saved_extruder_advance_K[i] = LIN_ADVANCE_K;
  2150. #endif
  2151. }
  2152. #endif
  2153. //
  2154. // Motor Current PWM
  2155. //
  2156. #if HAS_MOTOR_CURRENT_PWM
  2157. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  2158. for (uint8_t q = 3; q--;)
  2159. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2160. #endif
  2161. //
  2162. // CNC Coordinate System
  2163. //
  2164. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  2165. (void)gcode.select_coordinate_system(-1); // Go back to machine space
  2166. #endif
  2167. //
  2168. // Skew Correction
  2169. //
  2170. #if ENABLED(SKEW_CORRECTION_GCODE)
  2171. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2172. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2173. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2174. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2175. #endif
  2176. #endif
  2177. //
  2178. // Advanced Pause filament load & unload lengths
  2179. //
  2180. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2181. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  2182. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2183. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2184. }
  2185. #endif
  2186. postprocess();
  2187. DEBUG_ECHO_START();
  2188. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2189. #if ENABLED(EXTENSIBLE_UI)
  2190. ExtUI::onFactoryReset();
  2191. #endif
  2192. }
  2193. #if DISABLED(DISABLE_M503)
  2194. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2195. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2196. #define CONFIG_ECHO_HEADING(STR) do{ if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); } }while(0)
  2197. #if HAS_TRINAMIC
  2198. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2199. #if HAS_STEALTHCHOP
  2200. void say_M569(const char * const etc=nullptr) {
  2201. SERIAL_ECHOPGM(" M569 S1");
  2202. if (etc) {
  2203. SERIAL_CHAR(' ');
  2204. serialprintPGM(etc);
  2205. SERIAL_EOL();
  2206. }
  2207. }
  2208. #endif
  2209. #if ENABLED(HYBRID_THRESHOLD)
  2210. inline void say_M913() { SERIAL_ECHOPGM(" M913"); }
  2211. #endif
  2212. #if USE_SENSORLESS
  2213. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2214. #endif
  2215. #endif
  2216. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2217. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2218. #endif
  2219. inline void say_units(const bool colon) {
  2220. serialprintPGM(
  2221. #if ENABLED(INCH_MODE_SUPPORT)
  2222. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2223. #endif
  2224. PSTR(" (mm)")
  2225. );
  2226. if (colon) SERIAL_ECHOLNPGM(":");
  2227. }
  2228. void report_M92(const bool echo=true, const int8_t e=-1);
  2229. /**
  2230. * M503 - Report current settings in RAM
  2231. *
  2232. * Unless specifically disabled, M503 is available even without EEPROM
  2233. */
  2234. void MarlinSettings::report(const bool forReplay) {
  2235. /**
  2236. * Announce current units, in case inches are being displayed
  2237. */
  2238. CONFIG_ECHO_START();
  2239. #if ENABLED(INCH_MODE_SUPPORT)
  2240. SERIAL_ECHOPGM(" G2");
  2241. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2242. SERIAL_ECHOPGM(" ;");
  2243. say_units(false);
  2244. #else
  2245. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2246. say_units(false);
  2247. #endif
  2248. SERIAL_EOL();
  2249. #if HAS_LCD_MENU
  2250. // Temperature units - for Ultipanel temperature options
  2251. CONFIG_ECHO_START();
  2252. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2253. SERIAL_ECHOPGM(" M149 ");
  2254. SERIAL_CHAR(parser.temp_units_code());
  2255. SERIAL_ECHOPGM(" ; Units in ");
  2256. serialprintPGM(parser.temp_units_name());
  2257. #else
  2258. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2259. #endif
  2260. #endif
  2261. SERIAL_EOL();
  2262. #if DISABLED(NO_VOLUMETRICS)
  2263. /**
  2264. * Volumetric extrusion M200
  2265. */
  2266. if (!forReplay) {
  2267. CONFIG_ECHO_START();
  2268. SERIAL_ECHOPGM("Filament settings:");
  2269. if (parser.volumetric_enabled)
  2270. SERIAL_EOL();
  2271. else
  2272. SERIAL_ECHOLNPGM(" Disabled");
  2273. }
  2274. CONFIG_ECHO_START();
  2275. SERIAL_ECHOLNPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
  2276. #if EXTRUDERS > 1
  2277. CONFIG_ECHO_START();
  2278. SERIAL_ECHOLNPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  2279. #if EXTRUDERS > 2
  2280. CONFIG_ECHO_START();
  2281. SERIAL_ECHOLNPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  2282. #if EXTRUDERS > 3
  2283. CONFIG_ECHO_START();
  2284. SERIAL_ECHOLNPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  2285. #if EXTRUDERS > 4
  2286. CONFIG_ECHO_START();
  2287. SERIAL_ECHOLNPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  2288. #if EXTRUDERS > 5
  2289. CONFIG_ECHO_START();
  2290. SERIAL_ECHOLNPAIR(" M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  2291. #endif // EXTRUDERS > 5
  2292. #endif // EXTRUDERS > 4
  2293. #endif // EXTRUDERS > 3
  2294. #endif // EXTRUDERS > 2
  2295. #endif // EXTRUDERS > 1
  2296. if (!parser.volumetric_enabled)
  2297. CONFIG_ECHO_MSG(" M200 D0");
  2298. #endif // !NO_VOLUMETRICS
  2299. CONFIG_ECHO_HEADING("Steps per unit:");
  2300. report_M92(!forReplay);
  2301. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2302. CONFIG_ECHO_START();
  2303. SERIAL_ECHOLNPAIR(
  2304. " M203 X", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2305. , " Y", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2306. , " Z", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2307. #if DISABLED(DISTINCT_E_FACTORS)
  2308. , " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2309. #endif
  2310. );
  2311. #if ENABLED(DISTINCT_E_FACTORS)
  2312. CONFIG_ECHO_START();
  2313. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2314. SERIAL_ECHOLNPAIR(
  2315. " M203 T", (int)i
  2316. , " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2317. );
  2318. }
  2319. #endif
  2320. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2321. CONFIG_ECHO_START();
  2322. SERIAL_ECHOLNPAIR(
  2323. " M201 X", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2324. , " Y", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2325. , " Z", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2326. #if DISABLED(DISTINCT_E_FACTORS)
  2327. , " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2328. #endif
  2329. );
  2330. #if ENABLED(DISTINCT_E_FACTORS)
  2331. CONFIG_ECHO_START();
  2332. for (uint8_t i = 0; i < E_STEPPERS; i++)
  2333. SERIAL_ECHOLNPAIR(
  2334. " M201 T", (int)i
  2335. , " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2336. );
  2337. #endif
  2338. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2339. CONFIG_ECHO_START();
  2340. SERIAL_ECHOLNPAIR(
  2341. " M204 P", LINEAR_UNIT(planner.settings.acceleration)
  2342. , " R", LINEAR_UNIT(planner.settings.retract_acceleration)
  2343. , " T", LINEAR_UNIT(planner.settings.travel_acceleration)
  2344. );
  2345. if (!forReplay) {
  2346. CONFIG_ECHO_START();
  2347. SERIAL_ECHOPGM("Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  2348. #if ENABLED(JUNCTION_DEVIATION)
  2349. SERIAL_ECHOPGM(" J<junc_dev>");
  2350. #endif
  2351. #if HAS_CLASSIC_JERK
  2352. SERIAL_ECHOPGM(" X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  2353. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2354. SERIAL_ECHOPGM(" E<max_e_jerk>");
  2355. #endif
  2356. #endif
  2357. SERIAL_EOL();
  2358. }
  2359. CONFIG_ECHO_START();
  2360. SERIAL_ECHOLNPAIR(
  2361. " M205 B", LINEAR_UNIT(planner.settings.min_segment_time_us)
  2362. , " S", LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2363. , " T", LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2364. #if ENABLED(JUNCTION_DEVIATION)
  2365. , " J", LINEAR_UNIT(planner.junction_deviation_mm)
  2366. #endif
  2367. #if HAS_CLASSIC_JERK
  2368. , " X", LINEAR_UNIT(planner.max_jerk[X_AXIS])
  2369. , " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS])
  2370. , " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS])
  2371. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2372. , " E", LINEAR_UNIT(planner.max_jerk[E_AXIS])
  2373. #endif
  2374. #endif
  2375. );
  2376. #if HAS_M206_COMMAND
  2377. CONFIG_ECHO_HEADING("Home offset:");
  2378. CONFIG_ECHO_START();
  2379. SERIAL_ECHOLNPAIR(" M206"
  2380. #if IS_CARTESIAN
  2381. " X", LINEAR_UNIT(home_offset[X_AXIS]),
  2382. " Y", LINEAR_UNIT(home_offset[Y_AXIS]),
  2383. #endif
  2384. " Z", LINEAR_UNIT(home_offset[Z_AXIS])
  2385. );
  2386. #endif
  2387. #if HAS_HOTEND_OFFSET
  2388. CONFIG_ECHO_HEADING("Hotend offsets:");
  2389. CONFIG_ECHO_START();
  2390. for (uint8_t e = 1; e < HOTENDS; e++) {
  2391. SERIAL_ECHOPAIR(
  2392. " M218 T", (int)e
  2393. , " X", LINEAR_UNIT(hotend_offset[X_AXIS][e])
  2394. , " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e])
  2395. );
  2396. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
  2397. }
  2398. #endif
  2399. #if HAS_FILAMENT_SENSOR
  2400. CONFIG_ECHO_HEADING("Filament Runout Sensor:");
  2401. CONFIG_ECHO_START();
  2402. SERIAL_ECHOLNPAIR(" M412 S", int(runout.enabled));
  2403. #endif
  2404. /**
  2405. * Bed Leveling
  2406. */
  2407. #if HAS_LEVELING
  2408. #if ENABLED(MESH_BED_LEVELING)
  2409. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2410. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2411. if (!forReplay) {
  2412. CONFIG_ECHO_START();
  2413. ubl.echo_name();
  2414. SERIAL_ECHOLNPGM(":");
  2415. }
  2416. #elif HAS_ABL_OR_UBL
  2417. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2418. #endif
  2419. CONFIG_ECHO_START();
  2420. SERIAL_ECHOLNPAIR(
  2421. " M420 S", planner.leveling_active ? 1 : 0
  2422. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2423. , " Z", LINEAR_UNIT(planner.z_fade_height)
  2424. #endif
  2425. );
  2426. #if ENABLED(MESH_BED_LEVELING)
  2427. if (leveling_is_valid()) {
  2428. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2429. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2430. CONFIG_ECHO_START();
  2431. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1, " Y", (int)py + 1);
  2432. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2433. }
  2434. }
  2435. }
  2436. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2437. if (!forReplay) {
  2438. SERIAL_EOL();
  2439. ubl.report_state();
  2440. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  2441. SERIAL_ECHOLNPAIR("EEPROM can hold ", calc_num_meshes(), " meshes.\n");
  2442. }
  2443. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2444. // solution needs to be found.
  2445. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2446. if (leveling_is_valid()) {
  2447. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2448. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2449. CONFIG_ECHO_START();
  2450. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2451. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(z_values[px][py]), 5);
  2452. }
  2453. }
  2454. }
  2455. #endif
  2456. #endif // HAS_LEVELING
  2457. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2458. CONFIG_ECHO_HEADING("Servo Angles:");
  2459. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2460. switch (i) {
  2461. #if ENABLED(SWITCHING_EXTRUDER)
  2462. case SWITCHING_EXTRUDER_SERVO_NR:
  2463. #if EXTRUDERS > 3
  2464. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2465. #endif
  2466. #elif ENABLED(SWITCHING_NOZZLE)
  2467. case SWITCHING_NOZZLE_SERVO_NR:
  2468. #elif (ENABLED(BLTOUCH) && defined(BLTOUCH_ANGLES)) || (defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR))
  2469. case Z_PROBE_SERVO_NR:
  2470. #endif
  2471. CONFIG_ECHO_START();
  2472. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2473. default: break;
  2474. }
  2475. }
  2476. #endif // EDITABLE_SERVO_ANGLES
  2477. #if HAS_SCARA_OFFSET
  2478. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2479. CONFIG_ECHO_START();
  2480. SERIAL_ECHOLNPAIR(
  2481. " M665 S", delta_segments_per_second
  2482. , " P", scara_home_offset[A_AXIS]
  2483. , " T", scara_home_offset[B_AXIS]
  2484. , " Z", LINEAR_UNIT(scara_home_offset[Z_AXIS])
  2485. );
  2486. #elif ENABLED(DELTA)
  2487. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2488. CONFIG_ECHO_START();
  2489. SERIAL_ECHOLNPAIR(
  2490. " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS])
  2491. , " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS])
  2492. , " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS])
  2493. );
  2494. CONFIG_ECHO_HEADING("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  2495. CONFIG_ECHO_START();
  2496. SERIAL_ECHOLNPAIR(
  2497. " M665 L", LINEAR_UNIT(delta_diagonal_rod)
  2498. , " R", LINEAR_UNIT(delta_radius)
  2499. , " H", LINEAR_UNIT(delta_height)
  2500. , " S", delta_segments_per_second
  2501. , " B", LINEAR_UNIT(delta_calibration_radius)
  2502. , " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS])
  2503. , " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS])
  2504. , " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS])
  2505. );
  2506. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  2507. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2508. CONFIG_ECHO_START();
  2509. SERIAL_ECHOPGM(" M666");
  2510. #if ENABLED(X_DUAL_ENDSTOPS)
  2511. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(endstops.x2_endstop_adj));
  2512. #endif
  2513. #if ENABLED(Y_DUAL_ENDSTOPS)
  2514. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstops.y2_endstop_adj));
  2515. #endif
  2516. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2517. SERIAL_ECHOLNPAIR("S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2518. CONFIG_ECHO_START();
  2519. SERIAL_ECHOPAIR(" M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2520. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2521. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2522. #endif
  2523. SERIAL_EOL();
  2524. #endif // [XYZ]_DUAL_ENDSTOPS
  2525. #if HAS_LCD_MENU
  2526. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2527. for (uint8_t i = 0; i < COUNT(ui.preheat_hotend_temp); i++) {
  2528. CONFIG_ECHO_START();
  2529. SERIAL_ECHOLNPAIR(
  2530. " M145 S", (int)i
  2531. , " H", TEMP_UNIT(ui.preheat_hotend_temp[i])
  2532. , " B", TEMP_UNIT(ui.preheat_bed_temp[i])
  2533. , " F", int(ui.preheat_fan_speed[i])
  2534. );
  2535. }
  2536. #endif
  2537. #if HAS_PID_HEATING
  2538. CONFIG_ECHO_HEADING("PID settings:");
  2539. #if ENABLED(PIDTEMP)
  2540. #if HOTENDS > 1
  2541. if (forReplay) {
  2542. HOTEND_LOOP() {
  2543. CONFIG_ECHO_START();
  2544. SERIAL_ECHOPAIR(
  2545. " M301 E", e
  2546. , " P", PID_PARAM(Kp, e)
  2547. , " I", unscalePID_i(PID_PARAM(Ki, e))
  2548. , " D", unscalePID_d(PID_PARAM(Kd, e))
  2549. );
  2550. #if ENABLED(PID_EXTRUSION_SCALING)
  2551. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  2552. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2553. #endif
  2554. SERIAL_EOL();
  2555. }
  2556. }
  2557. else
  2558. #endif // HOTENDS > 1
  2559. // !forReplay || HOTENDS == 1
  2560. {
  2561. CONFIG_ECHO_START();
  2562. SERIAL_ECHOLNPAIR(
  2563. " M301 P", PID_PARAM(Kp, 0) // for compatibility with hosts, only echo values for E0
  2564. , " I", unscalePID_i(PID_PARAM(Ki, 0))
  2565. , " D", unscalePID_d(PID_PARAM(Kd, 0))
  2566. #if ENABLED(PID_EXTRUSION_SCALING)
  2567. , " C", PID_PARAM(Kc, 0)
  2568. , " L", thermalManager.lpq_len
  2569. #endif
  2570. );
  2571. }
  2572. #endif // PIDTEMP
  2573. #if ENABLED(PIDTEMPBED)
  2574. CONFIG_ECHO_START();
  2575. SERIAL_ECHOLNPAIR(
  2576. " M304 P", thermalManager.temp_bed.pid.Kp
  2577. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2578. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2579. );
  2580. #endif
  2581. #endif // PIDTEMP || PIDTEMPBED
  2582. #if HAS_USER_THERMISTORS
  2583. CONFIG_ECHO_HEADING("User thermistors:");
  2584. for (uint8_t i = 0; i < USER_THERMISTORS; i++)
  2585. thermalManager.log_user_thermistor(i, true);
  2586. #endif
  2587. #if HAS_LCD_CONTRAST
  2588. CONFIG_ECHO_HEADING("LCD Contrast:");
  2589. CONFIG_ECHO_START();
  2590. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2591. #endif
  2592. #if ENABLED(POWER_LOSS_RECOVERY)
  2593. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2594. CONFIG_ECHO_START();
  2595. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2596. #endif
  2597. #if ENABLED(FWRETRACT)
  2598. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2599. CONFIG_ECHO_START();
  2600. SERIAL_ECHOLNPAIR(
  2601. " M207 S", LINEAR_UNIT(fwretract.settings.retract_length)
  2602. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2603. , " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_feedrate_mm_s))
  2604. , " Z", LINEAR_UNIT(fwretract.settings.retract_zraise)
  2605. );
  2606. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2607. CONFIG_ECHO_START();
  2608. SERIAL_ECHOLNPAIR(
  2609. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2610. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2611. , " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_recover_feedrate_mm_s))
  2612. );
  2613. #if ENABLED(FWRETRACT_AUTORETRACT)
  2614. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2615. CONFIG_ECHO_START();
  2616. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2617. #endif // FWRETRACT_AUTORETRACT
  2618. #endif // FWRETRACT
  2619. /**
  2620. * Probe Offset
  2621. */
  2622. #if HAS_BED_PROBE
  2623. if (!forReplay) {
  2624. CONFIG_ECHO_START();
  2625. SERIAL_ECHOPGM("Z-Probe Offset");
  2626. say_units(true);
  2627. }
  2628. CONFIG_ECHO_START();
  2629. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  2630. #endif
  2631. /**
  2632. * Bed Skew Correction
  2633. */
  2634. #if ENABLED(SKEW_CORRECTION_GCODE)
  2635. CONFIG_ECHO_HEADING("Skew Factor: ");
  2636. CONFIG_ECHO_START();
  2637. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2638. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2639. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2640. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2641. #else
  2642. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2643. #endif
  2644. #endif
  2645. #if HAS_TRINAMIC
  2646. /**
  2647. * TMC stepper driver current
  2648. */
  2649. CONFIG_ECHO_HEADING("Stepper driver current:");
  2650. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2651. say_M906(forReplay);
  2652. SERIAL_ECHOLNPAIR(
  2653. #if AXIS_IS_TMC(X)
  2654. " X", stepperX.getMilliamps(),
  2655. #endif
  2656. #if AXIS_IS_TMC(Y)
  2657. " Y", stepperY.getMilliamps(),
  2658. #endif
  2659. #if AXIS_IS_TMC(Z)
  2660. " Z", stepperZ.getMilliamps()
  2661. #endif
  2662. );
  2663. #endif
  2664. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2665. say_M906(forReplay);
  2666. SERIAL_ECHOPGM(" I1");
  2667. SERIAL_ECHOLNPAIR(
  2668. #if AXIS_IS_TMC(X2)
  2669. " X", stepperX2.getMilliamps(),
  2670. #endif
  2671. #if AXIS_IS_TMC(Y2)
  2672. " Y", stepperY2.getMilliamps(),
  2673. #endif
  2674. #if AXIS_IS_TMC(Z2)
  2675. " Z", stepperZ2.getMilliamps()
  2676. #endif
  2677. );
  2678. #endif
  2679. #if AXIS_IS_TMC(Z3)
  2680. say_M906(forReplay);
  2681. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2682. #endif
  2683. #if AXIS_IS_TMC(E0)
  2684. say_M906(forReplay);
  2685. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2686. #endif
  2687. #if AXIS_IS_TMC(E1)
  2688. say_M906(forReplay);
  2689. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2690. #endif
  2691. #if AXIS_IS_TMC(E2)
  2692. say_M906(forReplay);
  2693. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2694. #endif
  2695. #if AXIS_IS_TMC(E3)
  2696. say_M906(forReplay);
  2697. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2698. #endif
  2699. #if AXIS_IS_TMC(E4)
  2700. say_M906(forReplay);
  2701. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2702. #endif
  2703. #if AXIS_IS_TMC(E5)
  2704. say_M906(forReplay);
  2705. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2706. #endif
  2707. SERIAL_EOL();
  2708. /**
  2709. * TMC Hybrid Threshold
  2710. */
  2711. #if ENABLED(HYBRID_THRESHOLD)
  2712. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  2713. CONFIG_ECHO_START();
  2714. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2715. say_M913();
  2716. #endif
  2717. #if AXIS_HAS_STEALTHCHOP(X)
  2718. SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X));
  2719. #endif
  2720. #if AXIS_HAS_STEALTHCHOP(Y)
  2721. SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y));
  2722. #endif
  2723. #if AXIS_HAS_STEALTHCHOP(Z)
  2724. SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z));
  2725. #endif
  2726. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2727. SERIAL_EOL();
  2728. #endif
  2729. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2730. say_M913();
  2731. SERIAL_ECHOPGM(" I1");
  2732. #endif
  2733. #if AXIS_HAS_STEALTHCHOP(X2)
  2734. SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X2));
  2735. #endif
  2736. #if AXIS_HAS_STEALTHCHOP(Y2)
  2737. SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y2));
  2738. #endif
  2739. #if AXIS_HAS_STEALTHCHOP(Z2)
  2740. SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z2));
  2741. #endif
  2742. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2743. SERIAL_EOL();
  2744. #endif
  2745. #if AXIS_HAS_STEALTHCHOP(Z3)
  2746. say_M913();
  2747. SERIAL_ECHOLNPAIR(" I2 Z", TMC_GET_PWMTHRS(Z, Z3));
  2748. #endif
  2749. #if AXIS_HAS_STEALTHCHOP(E0)
  2750. say_M913();
  2751. SERIAL_ECHOLNPAIR(" T0 E", TMC_GET_PWMTHRS(E, E0));
  2752. #endif
  2753. #if AXIS_HAS_STEALTHCHOP(E1)
  2754. say_M913();
  2755. SERIAL_ECHOLNPAIR(" T1 E", TMC_GET_PWMTHRS(E, E1));
  2756. #endif
  2757. #if AXIS_HAS_STEALTHCHOP(E2)
  2758. say_M913();
  2759. SERIAL_ECHOLNPAIR(" T2 E", TMC_GET_PWMTHRS(E, E2));
  2760. #endif
  2761. #if AXIS_HAS_STEALTHCHOP(E3)
  2762. say_M913();
  2763. SERIAL_ECHOLNPAIR(" T3 E", TMC_GET_PWMTHRS(E, E3));
  2764. #endif
  2765. #if AXIS_HAS_STEALTHCHOP(E4)
  2766. say_M913();
  2767. SERIAL_ECHOLNPAIR(" T4 E", TMC_GET_PWMTHRS(E, E4));
  2768. #endif
  2769. #if AXIS_HAS_STEALTHCHOP(E5)
  2770. say_M913();
  2771. SERIAL_ECHOLNPAIR(" T5 E", TMC_GET_PWMTHRS(E, E5));
  2772. #endif
  2773. SERIAL_EOL();
  2774. #endif // HYBRID_THRESHOLD
  2775. /**
  2776. * TMC Sensorless homing thresholds
  2777. */
  2778. #if USE_SENSORLESS
  2779. CONFIG_ECHO_HEADING("TMC2130 StallGuard threshold:");
  2780. CONFIG_ECHO_START();
  2781. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2782. say_M914();
  2783. #if X_SENSORLESS
  2784. SERIAL_ECHOPAIR(" X", stepperX.sgt());
  2785. #endif
  2786. #if Y_SENSORLESS
  2787. SERIAL_ECHOPAIR(" Y", stepperY.sgt());
  2788. #endif
  2789. #if Z_SENSORLESS
  2790. SERIAL_ECHOPAIR(" Z", stepperZ.sgt());
  2791. #endif
  2792. SERIAL_EOL();
  2793. #endif
  2794. #define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
  2795. #define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
  2796. #define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
  2797. #define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
  2798. #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
  2799. say_M914();
  2800. SERIAL_ECHOPGM(" I1");
  2801. #if HAS_X2_SENSORLESS
  2802. SERIAL_ECHOPAIR(" X", stepperX2.sgt());
  2803. #endif
  2804. #if HAS_Y2_SENSORLESS
  2805. SERIAL_ECHOPAIR(" Y", stepperY2.sgt());
  2806. #endif
  2807. #if HAS_Z2_SENSORLESS
  2808. SERIAL_ECHOPAIR(" Z", stepperZ2.sgt());
  2809. #endif
  2810. SERIAL_EOL();
  2811. #endif
  2812. #if HAS_Z3_SENSORLESS
  2813. say_M914();
  2814. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.sgt());
  2815. #endif
  2816. #endif // USE_SENSORLESS
  2817. /**
  2818. * TMC stepping mode
  2819. */
  2820. #if HAS_STEALTHCHOP
  2821. CONFIG_ECHO_HEADING("Driver stepping mode:");
  2822. CONFIG_ECHO_START();
  2823. #if AXIS_HAS_STEALTHCHOP(X)
  2824. const bool chop_x = stepperX.get_stealthChop_status();
  2825. #else
  2826. constexpr bool chop_x = false;
  2827. #endif
  2828. #if AXIS_HAS_STEALTHCHOP(Y)
  2829. const bool chop_y = stepperY.get_stealthChop_status();
  2830. #else
  2831. constexpr bool chop_y = false;
  2832. #endif
  2833. #if AXIS_HAS_STEALTHCHOP(Z)
  2834. const bool chop_z = stepperZ.get_stealthChop_status();
  2835. #else
  2836. constexpr bool chop_z = false;
  2837. #endif
  2838. if (chop_x || chop_y || chop_z) say_M569();
  2839. if (chop_x) SERIAL_ECHOPGM(" X");
  2840. if (chop_y) SERIAL_ECHOPGM(" Y");
  2841. if (chop_z) SERIAL_ECHOPGM(" Z");
  2842. if (chop_x || chop_y || chop_z) SERIAL_EOL();
  2843. #if AXIS_HAS_STEALTHCHOP(X2)
  2844. const bool chop_x2 = stepperX2.get_stealthChop_status();
  2845. #else
  2846. constexpr bool chop_x2 = false;
  2847. #endif
  2848. #if AXIS_HAS_STEALTHCHOP(Y2)
  2849. const bool chop_y2 = stepperY2.get_stealthChop_status();
  2850. #else
  2851. constexpr bool chop_y2 = false;
  2852. #endif
  2853. #if AXIS_HAS_STEALTHCHOP(Z2)
  2854. const bool chop_z2 = stepperZ2.get_stealthChop_status();
  2855. #else
  2856. constexpr bool chop_z2 = false;
  2857. #endif
  2858. if (chop_x2 || chop_y2 || chop_z2) say_M569(PSTR("I1"));
  2859. if (chop_x2) SERIAL_ECHOPGM(" X");
  2860. if (chop_y2) SERIAL_ECHOPGM(" Y");
  2861. if (chop_z2) SERIAL_ECHOPGM(" Z");
  2862. if (chop_x2 || chop_y2 || chop_z2) SERIAL_EOL();
  2863. #if AXIS_HAS_STEALTHCHOP(Z3)
  2864. if (stepperZ3.get_stealthChop_status()) { say_M569(PSTR("I2 Z")); }
  2865. #endif
  2866. #if AXIS_HAS_STEALTHCHOP(E0)
  2867. if (stepperE0.get_stealthChop_status()) { say_M569(PSTR("T0 E")); }
  2868. #endif
  2869. #if AXIS_HAS_STEALTHCHOP(E1)
  2870. if (stepperE1.get_stealthChop_status()) { say_M569(PSTR("T1 E")); }
  2871. #endif
  2872. #if AXIS_HAS_STEALTHCHOP(E2)
  2873. if (stepperE2.get_stealthChop_status()) { say_M569(PSTR("T2 E")); }
  2874. #endif
  2875. #if AXIS_HAS_STEALTHCHOP(E3)
  2876. if (stepperE3.get_stealthChop_status()) { say_M569(PSTR("T3 E")); }
  2877. #endif
  2878. #if AXIS_HAS_STEALTHCHOP(E4)
  2879. if (stepperE4.get_stealthChop_status()) { say_M569(PSTR("T4 E")); }
  2880. #endif
  2881. #if AXIS_HAS_STEALTHCHOP(E5)
  2882. if (stepperE5.get_stealthChop_status()) { say_M569(PSTR("T5 E")); }
  2883. #endif
  2884. #endif // HAS_STEALTHCHOP
  2885. #endif // HAS_TRINAMIC
  2886. /**
  2887. * Linear Advance
  2888. */
  2889. #if ENABLED(LIN_ADVANCE)
  2890. CONFIG_ECHO_HEADING("Linear Advance:");
  2891. CONFIG_ECHO_START();
  2892. #if EXTRUDERS < 2
  2893. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  2894. #else
  2895. LOOP_L_N(i, EXTRUDERS)
  2896. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  2897. #endif
  2898. #endif
  2899. #if HAS_MOTOR_CURRENT_PWM
  2900. CONFIG_ECHO_HEADING("Stepper motor currents:");
  2901. CONFIG_ECHO_START();
  2902. SERIAL_ECHOLNPAIR(
  2903. " M907 X", stepper.motor_current_setting[0]
  2904. , " Z", stepper.motor_current_setting[1]
  2905. , " E", stepper.motor_current_setting[2]
  2906. );
  2907. #endif
  2908. /**
  2909. * Advanced Pause filament load & unload lengths
  2910. */
  2911. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2912. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  2913. #if EXTRUDERS == 1
  2914. say_M603(forReplay);
  2915. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2916. #else
  2917. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0)
  2918. _ECHO_603(0);
  2919. _ECHO_603(1);
  2920. #if EXTRUDERS > 2
  2921. _ECHO_603(2);
  2922. #if EXTRUDERS > 3
  2923. _ECHO_603(3);
  2924. #if EXTRUDERS > 4
  2925. _ECHO_603(4);
  2926. #if EXTRUDERS > 5
  2927. _ECHO_603(5);
  2928. #endif // EXTRUDERS > 5
  2929. #endif // EXTRUDERS > 4
  2930. #endif // EXTRUDERS > 3
  2931. #endif // EXTRUDERS > 2
  2932. #endif // EXTRUDERS == 1
  2933. #endif // ADVANCED_PAUSE_FEATURE
  2934. #if EXTRUDERS > 1
  2935. CONFIG_ECHO_HEADING("Tool-changing:");
  2936. CONFIG_ECHO_START();
  2937. M217_report(true);
  2938. #endif
  2939. #if ENABLED(BACKLASH_GCODE)
  2940. CONFIG_ECHO_HEADING("Backlash compensation:");
  2941. CONFIG_ECHO_START();
  2942. SERIAL_ECHOLNPAIR(
  2943. " M425 F", backlash.get_correction(),
  2944. " X", LINEAR_UNIT(backlash.distance_mm[X_AXIS]),
  2945. " Y", LINEAR_UNIT(backlash.distance_mm[Y_AXIS]),
  2946. " Z", LINEAR_UNIT(backlash.distance_mm[Z_AXIS])
  2947. #ifdef BACKLASH_SMOOTHING_MM
  2948. , " S", LINEAR_UNIT(backlash.smoothing_mm)
  2949. #endif
  2950. );
  2951. #endif
  2952. #if HAS_FILAMENT_SENSOR
  2953. CONFIG_ECHO_HEADING("Filament runout sensor:");
  2954. CONFIG_ECHO_START();
  2955. SERIAL_ECHOLNPAIR(
  2956. " M412 S", int(runout.enabled)
  2957. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  2958. , " D", LINEAR_UNIT(runout.runout_distance())
  2959. #endif
  2960. );
  2961. #endif
  2962. }
  2963. #endif // !DISABLE_M503
  2964. #pragma pack(pop)