My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

ubl_G29.cpp 75KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "ubl.h"
  25. #include "Marlin.h"
  26. #include "hex_print_routines.h"
  27. #include "configuration_store.h"
  28. #include "ultralcd.h"
  29. #include "stepper.h"
  30. #include <math.h>
  31. #include "least_squares_fit.h"
  32. #define UBL_G29_P31
  33. extern float destination[XYZE], current_position[XYZE];
  34. void lcd_return_to_status();
  35. bool lcd_clicked();
  36. void lcd_implementation_clear();
  37. void lcd_mesh_edit_setup(float initial);
  38. float lcd_mesh_edit();
  39. void lcd_z_offset_edit_setup(float);
  40. float lcd_z_offset_edit();
  41. extern float meshedit_done;
  42. extern long babysteps_done;
  43. extern float code_value_float();
  44. extern uint8_t code_value_byte();
  45. extern bool code_value_bool();
  46. extern bool code_has_value();
  47. extern float probe_pt(float x, float y, bool, int);
  48. extern bool set_probe_deployed(bool);
  49. void smart_fill_mesh();
  50. void smart_fill_wlsf(float);
  51. float measure_business_card_thickness(float &in_height);
  52. void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  53. bool ProbeStay = true;
  54. #define SIZE_OF_LITTLE_RAISE 1
  55. #define BIG_RAISE_NOT_NEEDED 0
  56. extern void lcd_status_screen();
  57. typedef void (*screenFunc_t)();
  58. extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
  59. /**
  60. * G29: Unified Bed Leveling by Roxy
  61. *
  62. * Parameters understood by this leveling system:
  63. *
  64. * A Activate Activate the Unified Bed Leveling system.
  65. *
  66. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
  67. * G29 P2 B. The mode of G29 P2 allows you to use a business card or recipe card
  68. * as a shim that the nozzle will pinch as it is lowered. The idea is that you
  69. * can easily feel the nozzle getting to the same height by the amount of resistance
  70. * the business card exhibits to movement. You should try to achieve the same amount
  71. * of resistance on each probed point to facilitate accurate and repeatable measurements.
  72. * You should be very careful not to drive the nozzle into the business card with a
  73. * lot of force as it is very possible to cause damage to your printer if your are
  74. * careless. If you use the B option with G29 P2 B you can omit the numeric value
  75. * on first use to measure the business card's thickness. Subsequent usage of 'B'
  76. * will apply the previously-measured thickness as the default.
  77. * Note: A non-compressible Spark Gap feeler gauge is recommended over a Business Card.
  78. *
  79. * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
  80. * further refine the behaviour of several other commands. Issuing a G29 P1 C will
  81. * continue the generation of a partially constructed Mesh without invalidating what has
  82. * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
  83. * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
  84. * it indicates to use the current location instead of defaulting to the center of the print bed.
  85. *
  86. * D Disable Disable the Unified Bed Leveling system.
  87. *
  88. * E Stow_probe Stow the probe after each sampled point.
  89. *
  90. * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
  91. * specified height, no correction is applied and natural printer kenimatics take over. If no
  92. * number is specified for the command, 10mm is assumed to be reasonable.
  93. *
  94. * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
  95. * default is 5mm.
  96. *
  97. * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
  98. * the X and Y parameter are used. If no number is specified, only the closest Mesh
  99. * point to the location is invalidated. The 'T' parameter is also available to produce
  100. * a map after the operation. This command is useful to invalidate a portion of the
  101. * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
  102. * attempting to invalidate an isolated bad point in the mesh, the 'T' option will indicate
  103. * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
  104. * the bed and use this feature to select the center of the area (or cell) you want to
  105. * invalidate.
  106. *
  107. * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  108. * Not specifying a grid size will invoke the 3-Point leveling function.
  109. *
  110. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  111. * command literally performs a diff between two Meshes.
  112. *
  113. * L Load Load Mesh from the previously activated location in the EEPROM.
  114. *
  115. * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
  116. * for subsequent Load and Store operations.
  117. *
  118. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  119. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  120. * each additional Phase that processes it.
  121. *
  122. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  123. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  124. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  125. * a subsequent G or T leveling operation for backward compatibility.
  126. *
  127. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  128. * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. On
  129. * Cartesian printers, points within the X_PROBE_OFFSET_FROM_EXTRUDER and Y_PROBE_OFFSET_FROM_EXTRUDER
  130. * area cannot be automatically probed. For Delta printers the area in which DELTA_PROBEABLE_RADIUS
  131. * and DELTA_PRINTABLE_RADIUS do not overlap will not be automatically probed.
  132. *
  133. * These points will be handled in Phase 2 and Phase 3. If the Phase 1 command is given the
  134. * C (Continue) parameter it does not invalidate the Mesh prior to automatically
  135. * probing needed locations. This allows you to invalidate portions of the Mesh but still
  136. * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
  137. * parameter can be given to prioritize where the command should be trying to measure points.
  138. * If the X and Y parameters are not specified the current probe position is used.
  139. * P1 accepts a 'T' (Topology) parameter so you can observe mesh generation.
  140. * P1 also watches for the LCD Panel Encoder Switch to be held down, and will suspend
  141. * generation of the Mesh in that case. (Note: This check is only done between probe points,
  142. * so you must press and hold the switch until the Phase 1 command detects it.)
  143. *
  144. * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
  145. * parameter to control the height between Mesh points. The default height for movement
  146. * between Mesh points is 5mm. A smaller number can be used to make this part of the
  147. * calibration less time consuming. You will be running the nozzle down until it just barely
  148. * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
  149. * Use caution and move slowly. It is possible to damage your printer if you are careless.
  150. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
  151. * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
  152. *
  153. * The H parameter can be set negative if your Mesh dips in a large area. You can press
  154. * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
  155. * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
  156. * area you are manually probing. Note that the command tries to start you in a corner
  157. * of the bed where movement will be predictable. You can force the location to be used in
  158. * the distance calculations by using the X and Y parameters. You may find it is helpful to
  159. * print out a Mesh Map (G29 T) to understand where the mesh is invalidated and where
  160. * the nozzle will need to move in order to complete the command. The C parameter is
  161. * available on the Phase 2 command also and indicates the search for points to measure should
  162. * be done based on the current location of the nozzle.
  163. *
  164. * A B parameter is also available for this command and described up above. It places the
  165. * manual probe subsystem into Business Card mode where the thickness of a business card is
  166. * measured and then used to accurately set the nozzle height in all manual probing for the
  167. * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
  168. * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
  169. * better results if you use a flexible Shim that does not compress very much. That makes it
  170. * easier for you to get the nozzle to press with similar amounts of force against the shim so you
  171. * can get accurate measurements. As you are starting to touch the nozzle against the shim try
  172. * to get it to grasp the shim with the same force as when you measured the thickness of the
  173. * shim at the start of the command.
  174. *
  175. * Phase 2 allows the T (Map) parameter to be specified. This helps the user see the progression
  176. * of the Mesh being built.
  177. *
  178. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
  179. * user can go down. If the user specifies the value using the C parameter, the closest invalid
  180. * mesh points to the nozzle will be filled. The user can specify a repeat count using the R
  181. * parameter with the C version of the command.
  182. *
  183. * A second version of the fill command is available if no C constant is specified. Not
  184. * specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
  185. * from the edges of the mesh inward looking for invalid mesh points. It will look at the next
  186. * several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
  187. * upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
  188. * If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that
  189. * puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
  190. * usually safe way to populate the unprobed regions of your mesh so you can continue to the G26
  191. * Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified
  192. * numbers. You should use some scrutiny and caution.
  193. *
  194. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existence of
  195. * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
  196. * (More work and details on doing this later!)
  197. * The System will search for the closest Mesh Point to the nozzle. It will move the
  198. * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
  199. * so it is just barely touching the bed. When the user clicks the control, the System
  200. * will lock in that height for that point in the Mesh Compensation System.
  201. *
  202. * Phase 4 has several additional parameters that the user may find helpful. Phase 4
  203. * can be started at a specific location by specifying an X and Y parameter. Phase 4
  204. * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
  205. * parameter. If the Repetition count is not specified, it is assumed the user wishes
  206. * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
  207. * The command can be terminated early (or after the area of interest has been edited) by
  208. * pressing and holding the encoder wheel until the system recognizes the exit request.
  209. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
  210. *
  211. * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
  212. * information left on the printer's bed from the G26 command it is very straight forward
  213. * and easy to fine tune the Mesh. One concept that is important to remember and that
  214. * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
  215. * If you have too little clearance and not much plastic was extruded in an area, you want to
  216. * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
  217. * RAISE the Mesh Point at that location.
  218. *
  219. *
  220. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  221. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  222. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  223. * execute a G29 P6 C <mean height>.
  224. *
  225. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  226. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  227. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  228. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  229. * 0.000 at the Z Home location.
  230. *
  231. * Q Test Load specified Test Pattern to assist in checking correct operation of system. This
  232. * command is not anticipated to be of much value to the typical user. It is intended
  233. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  234. *
  235. * R # Repeat Repeat this command the specified number of times. If no number is specified the
  236. * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
  237. *
  238. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  239. * current state of the Unified Bed Leveling system in the EEPROM.
  240. *
  241. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  242. * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
  243. * extend to a limit related to the available EEPROM storage.
  244. *
  245. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
  246. * at a later date. The GCode output can be saved and later replayed by the host software
  247. * to reconstruct the current mesh on another machine.
  248. *
  249. * T Topology Display the Mesh Map Topology.
  250. * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
  251. * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
  252. * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
  253. * is suitable to paste into a spreadsheet for a 3D graph of the mesh.
  254. *
  255. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  256. * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
  257. * when the entire bed doesn't need to be probed because it will be adjusted.
  258. *
  259. * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
  260. *
  261. * W What? Display valuable Unified Bed Leveling System data.
  262. *
  263. * X # X Location for this command
  264. *
  265. * Y # Y Location for this command
  266. *
  267. *
  268. * Release Notes:
  269. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  270. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  271. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  272. * respectively.)
  273. *
  274. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  275. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  276. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  277. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  278. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  279. * perform a small print and check out your settings quicker. You do not need to populate the
  280. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  281. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  282. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  283. *
  284. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  285. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  286. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  287. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  288. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  289. * this is going to be helpful to the users!)
  290. *
  291. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  292. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
  293. * we now have the functionality and features of all three systems combined.
  294. */
  295. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
  296. static int g29_verbose_level, phase_value, repetition_cnt,
  297. storage_slot = 0, map_type, grid_size;
  298. static bool repeat_flag, c_flag, x_flag, y_flag;
  299. static float x_pos, y_pos, card_thickness = 0.0, ubl_constant = 0.0;
  300. extern void lcd_setstatus(const char* message, const bool persist);
  301. extern void lcd_setstatuspgm(const char* message, const uint8_t level);
  302. void _O0 gcode_G29() {
  303. if (!settings.calc_num_meshes()) {
  304. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  305. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  306. return;
  307. }
  308. // Check for commands that require the printer to be homed.
  309. if (axis_unhomed_error()) {
  310. if (code_seen('J'))
  311. home_all_axes();
  312. else if (code_seen('P')) {
  313. if (code_has_value()) {
  314. const int p_val = code_value_int();
  315. if (p_val == 1 || p_val == 2 || p_val == 4)
  316. home_all_axes();
  317. }
  318. }
  319. }
  320. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  321. // Invalidate Mesh Points. This command is a little bit asymetrical because
  322. // it directly specifies the repetition count and does not use the 'R' parameter.
  323. if (code_seen('I')) {
  324. uint8_t cnt = 0;
  325. repetition_cnt = code_has_value() ? code_value_int() : 1;
  326. while (repetition_cnt--) {
  327. if (cnt > 20) { cnt = 0; idle(); }
  328. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  329. if (location.x_index < 0) {
  330. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  331. break; // No more invalid Mesh Points to populate
  332. }
  333. ubl.z_values[location.x_index][location.y_index] = NAN;
  334. cnt++;
  335. }
  336. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  337. }
  338. if (code_seen('Q')) {
  339. const int test_pattern = code_has_value() ? code_value_int() : -99;
  340. if (!WITHIN(test_pattern, -1, 2)) {
  341. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
  342. return;
  343. }
  344. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  345. switch (test_pattern) {
  346. case -1:
  347. g29_eeprom_dump();
  348. break;
  349. case 0:
  350. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  351. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  352. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
  353. p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
  354. ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
  355. }
  356. }
  357. break;
  358. case 1:
  359. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  360. ubl.z_values[x][x] += 9.999;
  361. ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  362. }
  363. break;
  364. case 2:
  365. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  366. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  367. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  368. ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
  369. break;
  370. }
  371. }
  372. if (code_seen('J')) {
  373. if (grid_size) { // if not 0 it is a normal n x n grid being probed
  374. ubl.save_ubl_active_state_and_disable();
  375. ubl.tilt_mesh_based_on_probed_grid(code_seen('T'));
  376. ubl.restore_ubl_active_state_and_leave();
  377. }
  378. else { // grid_size == 0 : A 3-Point leveling has been requested
  379. float z3, z2, z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level);
  380. if (!isnan(z1)) {
  381. z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level);
  382. if (!isnan(z2))
  383. z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
  384. }
  385. if (isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
  386. SERIAL_ERROR_START;
  387. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  388. goto LEAVE;
  389. }
  390. // Adjust z1, z2, z3 by the Mesh Height at these points. Just because they're non-zero
  391. // doesn't mean the Mesh is tilted! (Compensate each probe point by what the Mesh says
  392. // its height is.)
  393. ubl.save_ubl_active_state_and_disable();
  394. z1 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
  395. z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
  396. z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
  397. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  398. ubl.tilt_mesh_based_on_3pts(z1, z2, z3);
  399. ubl.restore_ubl_active_state_and_leave();
  400. }
  401. }
  402. if (code_seen('P')) {
  403. if (WITHIN(phase_value, 0, 1) && ubl.state.storage_slot == -1) {
  404. ubl.state.storage_slot = 0;
  405. SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
  406. }
  407. switch (phase_value) {
  408. case 0:
  409. //
  410. // Zero Mesh Data
  411. //
  412. ubl.reset();
  413. SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
  414. break;
  415. case 1:
  416. //
  417. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  418. //
  419. if (!code_seen('C')) {
  420. ubl.invalidate();
  421. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
  422. }
  423. if (g29_verbose_level > 1) {
  424. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos);
  425. SERIAL_PROTOCOLCHAR(',');
  426. SERIAL_PROTOCOL(y_pos);
  427. SERIAL_PROTOCOLLNPGM(").\n");
  428. }
  429. ubl.probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  430. code_seen('T'), code_seen('E'), code_seen('U'));
  431. break;
  432. case 2: {
  433. //
  434. // Manually Probe Mesh in areas that can't be reached by the probe
  435. //
  436. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
  437. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  438. if (!x_flag && !y_flag) {
  439. /**
  440. * Use a good default location for the path.
  441. * The flipped > and < operators in these comparisons is intentional.
  442. * It should cause the probed points to follow a nice path on Cartesian printers.
  443. * It may make sense to have Delta printers default to the center of the bed.
  444. * Until that is decided, this can be forced with the X and Y parameters.
  445. */
  446. #if IS_KINEMATIC
  447. x_pos = X_HOME_POS;
  448. y_pos = Y_HOME_POS;
  449. #else // cartesian
  450. x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
  451. y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
  452. #endif
  453. }
  454. if (code_seen('C')) {
  455. x_pos = current_position[X_AXIS];
  456. y_pos = current_position[Y_AXIS];
  457. }
  458. float height = Z_CLEARANCE_BETWEEN_PROBES;
  459. if (code_seen('B')) {
  460. card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
  461. if (fabs(card_thickness) > 1.5) {
  462. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
  463. return;
  464. }
  465. }
  466. if (code_seen('H') && code_has_value()) height = code_value_float();
  467. if (!position_is_reachable_xy(x_pos, y_pos)) {
  468. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  469. return;
  470. }
  471. manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('T'));
  472. SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
  473. } break;
  474. case 3: {
  475. /**
  476. * Populate invalid mesh areas. Proceed with caution.
  477. * Two choices are available:
  478. * - Specify a constant with the 'C' parameter.
  479. * - Allow 'G29 P3' to choose a 'reasonable' constant.
  480. */
  481. if (c_flag) {
  482. if (repetition_cnt >= GRID_MAX_POINTS) {
  483. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) {
  484. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
  485. ubl.z_values[x][y] = ubl_constant;
  486. }
  487. }
  488. }
  489. else {
  490. while (repetition_cnt--) { // this only populates reachable mesh points near
  491. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  492. if (location.x_index < 0) break; // No more reachable invalid Mesh Points to populate
  493. ubl.z_values[location.x_index][location.y_index] = ubl_constant;
  494. }
  495. }
  496. } else {
  497. const float cvf = code_value_float();
  498. switch( (int)truncf( cvf * 10.0 ) - 30 ) { // 3.1 -> 1
  499. #if ENABLED(UBL_G29_P31)
  500. case 1: {
  501. // P3.1 use least squares fit to fill missing mesh values
  502. // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
  503. // P3.11 10X weighting for nearest grid points versus farthest grid points
  504. // P3.12 100X distance weighting
  505. // P3.13 1000X distance weighting, approaches simple average of nearest points
  506. const float weight_power = (cvf - 3.10) * 100.0; // 3.12345 -> 2.345
  507. const float weight_factor = weight_power ? pow( 10.0, weight_power ) : 0;
  508. smart_fill_wlsf( weight_factor );
  509. }
  510. break;
  511. #endif
  512. case 0: // P3 or P3.0
  513. default: // and anything P3.x that's not P3.1
  514. smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
  515. break;
  516. }
  517. }
  518. break;
  519. }
  520. case 4:
  521. //
  522. // Fine Tune (i.e., Edit) the Mesh
  523. //
  524. fine_tune_mesh(x_pos, y_pos, code_seen('T'));
  525. break;
  526. case 5: ubl.find_mean_mesh_height(); break;
  527. case 6: ubl.shift_mesh_height(); break;
  528. }
  529. }
  530. //
  531. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  532. // good to have the extra information. Soon... we prune this to just a few items
  533. //
  534. if (code_seen('W')) ubl.g29_what_command();
  535. //
  536. // When we are fully debugged, this may go away. But there are some valid
  537. // use cases for the users. So we can wait and see what to do with it.
  538. //
  539. if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  540. g29_compare_current_mesh_to_stored_mesh();
  541. //
  542. // Load a Mesh from the EEPROM
  543. //
  544. if (code_seen('L')) { // Load Current Mesh Data
  545. storage_slot = code_has_value() ? code_value_int() : ubl.state.storage_slot;
  546. int16_t a = settings.calc_num_meshes();
  547. if (!a) {
  548. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  549. return;
  550. }
  551. if (!WITHIN(storage_slot, 0, a - 1)) {
  552. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  553. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  554. return;
  555. }
  556. settings.load_mesh(storage_slot);
  557. ubl.state.storage_slot = storage_slot;
  558. SERIAL_PROTOCOLLNPGM("Done.");
  559. }
  560. //
  561. // Store a Mesh in the EEPROM
  562. //
  563. if (code_seen('S')) { // Store (or Save) Current Mesh Data
  564. storage_slot = code_has_value() ? code_value_int() : ubl.state.storage_slot;
  565. if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  566. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  567. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  568. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  569. if (!isnan(ubl.z_values[x][y])) {
  570. SERIAL_ECHOPAIR("M421 I ", x);
  571. SERIAL_ECHOPAIR(" J ", y);
  572. SERIAL_ECHOPGM(" Z ");
  573. SERIAL_ECHO_F(ubl.z_values[x][y], 6);
  574. SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x])));
  575. SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y])));
  576. SERIAL_EOL;
  577. }
  578. return;
  579. }
  580. int16_t a = settings.calc_num_meshes();
  581. if (!a) {
  582. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  583. goto LEAVE;
  584. }
  585. if (!WITHIN(storage_slot, 0, a - 1)) {
  586. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  587. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  588. goto LEAVE;
  589. }
  590. settings.store_mesh(storage_slot);
  591. ubl.state.storage_slot = storage_slot;
  592. SERIAL_PROTOCOLLNPGM("Done.");
  593. }
  594. if (code_seen('T'))
  595. ubl.display_map(code_has_value() ? code_value_int() : 0);
  596. /*
  597. * This code may not be needed... Prepare for its removal...
  598. *
  599. if (code_seen('Z')) {
  600. if (code_has_value())
  601. ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
  602. else {
  603. ubl.save_ubl_active_state_and_disable();
  604. //float measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
  605. ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware
  606. float measured_z = 1.5;
  607. do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
  608. // The user is not going to be locking in a new Z-Offset very often so
  609. // it won't be that painful to spin the Encoder Wheel for 1.5mm
  610. lcd_implementation_clear();
  611. lcd_z_offset_edit_setup(measured_z);
  612. KEEPALIVE_STATE(PAUSED_FOR_USER);
  613. do {
  614. measured_z = lcd_z_offset_edit();
  615. idle();
  616. do_blocking_move_to_z(measured_z);
  617. } while (!ubl_lcd_clicked());
  618. ubl.has_control_of_lcd_panel = true; // There is a race condition for the encoder click.
  619. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  620. // or here. So, until we are done looking for a long encoder press,
  621. // we need to take control of the panel
  622. KEEPALIVE_STATE(IN_HANDLER);
  623. lcd_return_to_status();
  624. const millis_t nxt = millis() + 1500UL;
  625. while (ubl_lcd_clicked()) { // debounce and watch for abort
  626. idle();
  627. if (ELAPSED(millis(), nxt)) {
  628. SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
  629. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  630. LCD_MESSAGEPGM("Z-Offset Stopped"); // TODO: Make translatable string
  631. ubl.restore_ubl_active_state_and_leave();
  632. goto LEAVE;
  633. }
  634. }
  635. ubl.has_control_of_lcd_panel = false;
  636. safe_delay(20); // We don't want any switch noise.
  637. ubl.state.z_offset = measured_z;
  638. lcd_implementation_clear();
  639. ubl.restore_ubl_active_state_and_leave();
  640. }
  641. }
  642. */
  643. LEAVE:
  644. lcd_reset_alert_level();
  645. LCD_MESSAGEPGM("");
  646. lcd_quick_feedback();
  647. ubl.has_control_of_lcd_panel = false;
  648. }
  649. void unified_bed_leveling::find_mean_mesh_height() {
  650. float sum = 0.0;
  651. int n = 0;
  652. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  653. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  654. if (!isnan(ubl.z_values[x][y])) {
  655. sum += ubl.z_values[x][y];
  656. n++;
  657. }
  658. const float mean = sum / n;
  659. //
  660. // Sum the squares of difference from mean
  661. //
  662. float sum_of_diff_squared = 0.0;
  663. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  664. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  665. if (!isnan(ubl.z_values[x][y]))
  666. sum_of_diff_squared += sq(ubl.z_values[x][y] - mean);
  667. SERIAL_ECHOLNPAIR("# of samples: ", n);
  668. SERIAL_ECHOPGM("Mean Mesh Height: ");
  669. SERIAL_ECHO_F(mean, 6);
  670. SERIAL_EOL;
  671. const float sigma = sqrt(sum_of_diff_squared / (n + 1));
  672. SERIAL_ECHOPGM("Standard Deviation: ");
  673. SERIAL_ECHO_F(sigma, 6);
  674. SERIAL_EOL;
  675. if (c_flag)
  676. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  677. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  678. if (!isnan(ubl.z_values[x][y]))
  679. ubl.z_values[x][y] -= mean + ubl_constant;
  680. }
  681. void unified_bed_leveling::shift_mesh_height() {
  682. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  683. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  684. if (!isnan(ubl.z_values[x][y]))
  685. ubl.z_values[x][y] += ubl_constant;
  686. }
  687. /**
  688. * Probe all invalidated locations of the mesh that can be reached by the probe.
  689. * This attempts to fill in locations closest to the nozzle's start location first.
  690. */
  691. void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool close_or_far) {
  692. mesh_index_pair location;
  693. ubl.has_control_of_lcd_panel = true;
  694. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  695. DEPLOY_PROBE();
  696. uint16_t max_iterations = GRID_MAX_POINTS;
  697. do {
  698. if (ubl_lcd_clicked()) {
  699. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  700. lcd_quick_feedback();
  701. STOW_PROBE();
  702. while (ubl_lcd_clicked()) idle();
  703. ubl.has_control_of_lcd_panel = false;
  704. ubl.restore_ubl_active_state_and_leave();
  705. safe_delay(50); // Debounce the Encoder wheel
  706. return;
  707. }
  708. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, close_or_far);
  709. if (location.x_index >= 0) { // mesh point found and is reachable by probe
  710. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  711. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  712. const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); // TODO: Needs error handling
  713. ubl.z_values[location.x_index][location.y_index] = measured_z;
  714. }
  715. if (do_ubl_mesh_map) ubl.display_map(map_type);
  716. } while (location.x_index >= 0 && --max_iterations);
  717. STOW_PROBE();
  718. ubl.restore_ubl_active_state_and_leave();
  719. do_blocking_move_to_xy(
  720. constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
  721. constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
  722. );
  723. }
  724. void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
  725. matrix_3x3 rotation;
  726. vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
  727. (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
  728. (z1 - z2) ),
  729. v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
  730. (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
  731. (z3 - z2) ),
  732. normal = vector_3::cross(v1, v2);
  733. normal = normal.get_normal();
  734. /**
  735. * This vector is normal to the tilted plane.
  736. * However, we don't know its direction. We need it to point up. So if
  737. * Z is negative, we need to invert the sign of all components of the vector
  738. */
  739. if (normal.z < 0.0) {
  740. normal.x = -normal.x;
  741. normal.y = -normal.y;
  742. normal.z = -normal.z;
  743. }
  744. rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
  745. if (g29_verbose_level > 2) {
  746. SERIAL_ECHOPGM("bed plane normal = [");
  747. SERIAL_PROTOCOL_F(normal.x, 7);
  748. SERIAL_PROTOCOLCHAR(',');
  749. SERIAL_PROTOCOL_F(normal.y, 7);
  750. SERIAL_PROTOCOLCHAR(',');
  751. SERIAL_PROTOCOL_F(normal.z, 7);
  752. SERIAL_ECHOLNPGM("]");
  753. rotation.debug(PSTR("rotation matrix:"));
  754. }
  755. //
  756. // All of 3 of these points should give us the same d constant
  757. //
  758. float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
  759. d = t + normal.z * z1;
  760. if (g29_verbose_level>2) {
  761. SERIAL_ECHOPGM("D constant: ");
  762. SERIAL_PROTOCOL_F(d, 7);
  763. SERIAL_ECHOLNPGM(" ");
  764. }
  765. #if ENABLED(DEBUG_LEVELING_FEATURE)
  766. if (DEBUGGING(LEVELING)) {
  767. SERIAL_ECHOPGM("d from 1st point: ");
  768. SERIAL_ECHO_F(d, 6);
  769. SERIAL_EOL;
  770. t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
  771. d = t + normal.z * z2;
  772. SERIAL_ECHOPGM("d from 2nd point: ");
  773. SERIAL_ECHO_F(d, 6);
  774. SERIAL_EOL;
  775. t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
  776. d = t + normal.z * z3;
  777. SERIAL_ECHOPGM("d from 3rd point: ");
  778. SERIAL_ECHO_F(d, 6);
  779. SERIAL_EOL;
  780. }
  781. #endif
  782. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  783. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  784. float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
  785. y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
  786. z_tmp = ubl.z_values[i][j];
  787. #if ENABLED(DEBUG_LEVELING_FEATURE)
  788. if (DEBUGGING(LEVELING)) {
  789. SERIAL_ECHOPGM("before rotation = [");
  790. SERIAL_PROTOCOL_F(x_tmp, 7);
  791. SERIAL_PROTOCOLCHAR(',');
  792. SERIAL_PROTOCOL_F(y_tmp, 7);
  793. SERIAL_PROTOCOLCHAR(',');
  794. SERIAL_PROTOCOL_F(z_tmp, 7);
  795. SERIAL_ECHOPGM("] ---> ");
  796. safe_delay(20);
  797. }
  798. #endif
  799. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  800. #if ENABLED(DEBUG_LEVELING_FEATURE)
  801. if (DEBUGGING(LEVELING)) {
  802. SERIAL_ECHOPGM("after rotation = [");
  803. SERIAL_PROTOCOL_F(x_tmp, 7);
  804. SERIAL_PROTOCOLCHAR(',');
  805. SERIAL_PROTOCOL_F(y_tmp, 7);
  806. SERIAL_PROTOCOLCHAR(',');
  807. SERIAL_PROTOCOL_F(z_tmp, 7);
  808. SERIAL_ECHOLNPGM("]");
  809. safe_delay(55);
  810. }
  811. #endif
  812. ubl.z_values[i][j] += z_tmp - d;
  813. }
  814. }
  815. }
  816. float use_encoder_wheel_to_measure_point() {
  817. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  818. delay(50); // debounce
  819. KEEPALIVE_STATE(PAUSED_FOR_USER);
  820. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  821. idle();
  822. if (ubl.encoder_diff) {
  823. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
  824. ubl.encoder_diff = 0;
  825. }
  826. }
  827. KEEPALIVE_STATE(IN_HANDLER);
  828. return current_position[Z_AXIS];
  829. }
  830. static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
  831. float measure_business_card_thickness(float &in_height) {
  832. ubl.has_control_of_lcd_panel = true;
  833. ubl.save_ubl_active_state_and_disable(); // Disable bed level correction for probing
  834. do_blocking_move_to_z(in_height);
  835. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  836. //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
  837. stepper.synchronize();
  838. SERIAL_PROTOCOLPGM("Place shim under nozzle");
  839. LCD_MESSAGEPGM("Place shim & measure"); // TODO: Make translatable string
  840. lcd_goto_screen(lcd_status_screen);
  841. echo_and_take_a_measurement();
  842. const float z1 = use_encoder_wheel_to_measure_point();
  843. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  844. stepper.synchronize();
  845. SERIAL_PROTOCOLPGM("Remove shim");
  846. LCD_MESSAGEPGM("Remove & measure bed"); // TODO: Make translatable string
  847. echo_and_take_a_measurement();
  848. const float z2 = use_encoder_wheel_to_measure_point();
  849. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
  850. const float thickness = abs(z1 - z2);
  851. if (g29_verbose_level > 1) {
  852. SERIAL_PROTOCOLPGM("Business Card is ");
  853. SERIAL_PROTOCOL_F(thickness, 4);
  854. SERIAL_PROTOCOLLNPGM("mm thick.");
  855. }
  856. in_height = current_position[Z_AXIS]; // do manual probing at lower height
  857. ubl.has_control_of_lcd_panel = false;
  858. ubl.restore_ubl_active_state_and_leave();
  859. return thickness;
  860. }
  861. void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
  862. ubl.has_control_of_lcd_panel = true;
  863. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  864. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  865. do_blocking_move_to_xy(lx, ly);
  866. lcd_goto_screen(lcd_status_screen);
  867. mesh_index_pair location;
  868. do {
  869. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
  870. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  871. if (location.x_index < 0 && location.y_index < 0) continue;
  872. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  873. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]),
  874. xProbe = LOGICAL_X_POSITION(rawx),
  875. yProbe = LOGICAL_Y_POSITION(rawy);
  876. if (!position_is_reachable_raw_xy(rawx, rawy)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
  877. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  878. LCD_MESSAGEPGM("Moving to next"); // TODO: Make translatable string
  879. do_blocking_move_to_xy(xProbe, yProbe);
  880. do_blocking_move_to_z(z_clearance);
  881. KEEPALIVE_STATE(PAUSED_FOR_USER);
  882. ubl.has_control_of_lcd_panel = true;
  883. if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
  884. if (code_seen('B'))
  885. LCD_MESSAGEPGM("Place shim & measure"); // TODO: Make translatable string
  886. else
  887. LCD_MESSAGEPGM("Measure"); // TODO: Make translatable string
  888. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  889. delay(50); // debounce
  890. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  891. idle();
  892. if (ubl.encoder_diff) {
  893. do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
  894. ubl.encoder_diff = 0;
  895. }
  896. }
  897. // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
  898. // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
  899. // should be redone and compressed.
  900. const millis_t nxt = millis() + 1500L;
  901. while (ubl_lcd_clicked()) { // debounce and watch for abort
  902. idle();
  903. if (ELAPSED(millis(), nxt)) {
  904. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  905. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  906. lcd_quick_feedback();
  907. while (ubl_lcd_clicked()) idle();
  908. ubl.has_control_of_lcd_panel = false;
  909. KEEPALIVE_STATE(IN_HANDLER);
  910. ubl.restore_ubl_active_state_and_leave();
  911. return;
  912. }
  913. }
  914. ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
  915. if (g29_verbose_level > 2) {
  916. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  917. SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
  918. SERIAL_EOL;
  919. }
  920. } while (location.x_index >= 0 && location.y_index >= 0);
  921. if (do_ubl_mesh_map) ubl.display_map(map_type);
  922. ubl.restore_ubl_active_state_and_leave();
  923. KEEPALIVE_STATE(IN_HANDLER);
  924. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  925. do_blocking_move_to_xy(lx, ly);
  926. }
  927. bool g29_parameter_parsing() {
  928. bool err_flag = false;
  929. LCD_MESSAGEPGM("Doing G29 UBL!"); // TODO: Make translatable string
  930. lcd_quick_feedback();
  931. ubl_constant = 0.0;
  932. repetition_cnt = 0;
  933. x_flag = code_seen('X') && code_has_value();
  934. x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
  935. y_flag = code_seen('Y') && code_has_value();
  936. y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
  937. repeat_flag = code_seen('R');
  938. if (repeat_flag) {
  939. repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS;
  940. NOMORE(repetition_cnt, GRID_MAX_POINTS);
  941. if (repetition_cnt < 1) {
  942. SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
  943. return UBL_ERR;
  944. }
  945. }
  946. g29_verbose_level = code_seen('V') ? code_value_int() : 0;
  947. if (!WITHIN(g29_verbose_level, 0, 4)) {
  948. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
  949. err_flag = true;
  950. }
  951. if (code_seen('P')) {
  952. phase_value = code_value_int();
  953. if (!WITHIN(phase_value, 0, 6)) {
  954. SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
  955. err_flag = true;
  956. }
  957. }
  958. if (code_seen('J')) {
  959. grid_size = code_has_value() ? code_value_int() : 0;
  960. if (grid_size!=0 && !WITHIN(grid_size, 2, 9)) {
  961. SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
  962. err_flag = true;
  963. }
  964. }
  965. if (x_flag != y_flag) {
  966. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  967. err_flag = true;
  968. }
  969. if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
  970. SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
  971. err_flag = true;
  972. }
  973. if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
  974. SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
  975. err_flag = true;
  976. }
  977. if (err_flag) return UBL_ERR;
  978. // Activate or deactivate UBL
  979. if (code_seen('A')) {
  980. if (code_seen('D')) {
  981. SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
  982. return UBL_ERR;
  983. }
  984. ubl.state.active = true;
  985. ubl.report_state();
  986. }
  987. else if (code_seen('D')) {
  988. ubl.state.active = false;
  989. ubl.report_state();
  990. }
  991. // Set global 'C' flag and its value
  992. if ((c_flag = code_seen('C')))
  993. ubl_constant = code_value_float();
  994. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  995. if (code_seen('F') && code_has_value()) {
  996. const float fh = code_value_float();
  997. if (!WITHIN(fh, 0.0, 100.0)) {
  998. SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
  999. return UBL_ERR;
  1000. }
  1001. set_z_fade_height(fh);
  1002. }
  1003. #endif
  1004. map_type = code_seen('T') && code_has_value() ? code_value_int() : 0;
  1005. if (!WITHIN(map_type, 0, 1)) {
  1006. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  1007. return UBL_ERR;
  1008. }
  1009. return UBL_OK;
  1010. }
  1011. static int ubl_state_at_invocation = 0,
  1012. ubl_state_recursion_chk = 0;
  1013. void unified_bed_leveling::save_ubl_active_state_and_disable() {
  1014. ubl_state_recursion_chk++;
  1015. if (ubl_state_recursion_chk != 1) {
  1016. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  1017. LCD_MESSAGEPGM("save_UBL_active() error"); // TODO: Make translatable string
  1018. lcd_quick_feedback();
  1019. return;
  1020. }
  1021. ubl_state_at_invocation = ubl.state.active;
  1022. ubl.state.active = 0;
  1023. }
  1024. void unified_bed_leveling::restore_ubl_active_state_and_leave() {
  1025. if (--ubl_state_recursion_chk) {
  1026. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  1027. LCD_MESSAGEPGM("restore_UBL_active() error"); // TODO: Make translatable string
  1028. lcd_quick_feedback();
  1029. return;
  1030. }
  1031. ubl.state.active = ubl_state_at_invocation;
  1032. }
  1033. /**
  1034. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  1035. * good to have the extra information. Soon... we prune this to just a few items
  1036. */
  1037. void unified_bed_leveling::g29_what_command() {
  1038. report_state();
  1039. if (state.storage_slot == -1)
  1040. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  1041. else {
  1042. SERIAL_PROTOCOLPAIR("Mesh ", state.storage_slot);
  1043. SERIAL_PROTOCOLPGM(" Loaded.");
  1044. }
  1045. SERIAL_EOL;
  1046. safe_delay(50);
  1047. SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
  1048. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1049. SERIAL_PROTOCOL("planner.z_fade_height : ");
  1050. SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
  1051. SERIAL_EOL;
  1052. #endif
  1053. #if HAS_BED_PROBE
  1054. SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
  1055. SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
  1056. SERIAL_EOL;
  1057. #endif
  1058. SERIAL_ECHOLNPAIR("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X) "=", UBL_MESH_MIN_X);
  1059. SERIAL_ECHOLNPAIR("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y) "=", UBL_MESH_MIN_Y);
  1060. safe_delay(25);
  1061. SERIAL_ECHOLNPAIR("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X) "=", UBL_MESH_MAX_X);
  1062. SERIAL_ECHOLNPAIR("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y) "=", UBL_MESH_MAX_Y);
  1063. safe_delay(25);
  1064. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1065. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1066. safe_delay(25);
  1067. SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
  1068. SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
  1069. safe_delay(25);
  1070. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1071. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1072. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&mesh_index_to_xpos[i])), 3);
  1073. SERIAL_PROTOCOLPGM(" ");
  1074. safe_delay(25);
  1075. }
  1076. SERIAL_EOL;
  1077. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1078. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  1079. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&mesh_index_to_ypos[i])), 3);
  1080. SERIAL_PROTOCOLPGM(" ");
  1081. safe_delay(25);
  1082. }
  1083. SERIAL_EOL;
  1084. #if HAS_KILL
  1085. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  1086. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  1087. #endif
  1088. SERIAL_EOL;
  1089. safe_delay(50);
  1090. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  1091. SERIAL_EOL;
  1092. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  1093. SERIAL_EOL;
  1094. safe_delay(50);
  1095. SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.get_start_of_meshes()));
  1096. SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.get_end_of_meshes()));
  1097. safe_delay(50);
  1098. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  1099. SERIAL_EOL;
  1100. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
  1101. SERIAL_EOL;
  1102. safe_delay(25);
  1103. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.get_end_of_meshes() - settings.get_start_of_meshes())));
  1104. safe_delay(50);
  1105. SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());
  1106. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1107. safe_delay(25);
  1108. if (!sanity_check()) {
  1109. echo_name();
  1110. SERIAL_PROTOCOLLNPGM(" sanity checks passed.");
  1111. }
  1112. }
  1113. /**
  1114. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1115. * right now, it is good to have the extra information. Soon... we prune this.
  1116. */
  1117. void g29_eeprom_dump() {
  1118. unsigned char cccc;
  1119. uint16_t kkkk;
  1120. SERIAL_ECHO_START;
  1121. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1122. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1123. if (!(i & 0x3)) idle();
  1124. print_hex_word(i);
  1125. SERIAL_ECHOPGM(": ");
  1126. for (uint16_t j = 0; j < 16; j++) {
  1127. kkkk = i + j;
  1128. eeprom_read_block(&cccc, (void *)kkkk, 1);
  1129. print_hex_byte(cccc);
  1130. SERIAL_ECHO(' ');
  1131. }
  1132. SERIAL_EOL;
  1133. }
  1134. SERIAL_EOL;
  1135. }
  1136. /**
  1137. * When we are fully debugged, this may go away. But there are some valid
  1138. * use cases for the users. So we can wait and see what to do with it.
  1139. */
  1140. void g29_compare_current_mesh_to_stored_mesh() {
  1141. int16_t a = settings.calc_num_meshes();
  1142. if (!a) {
  1143. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  1144. return;
  1145. }
  1146. if (!code_has_value()) {
  1147. SERIAL_PROTOCOLLNPGM("?Storage slot # required.");
  1148. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1149. return;
  1150. }
  1151. storage_slot = code_value_int();
  1152. if (!WITHIN(storage_slot, 0, a - 1)) {
  1153. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  1154. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1155. return;
  1156. }
  1157. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1158. settings.load_mesh(storage_slot, &tmp_z_values);
  1159. SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", storage_slot);
  1160. SERIAL_PROTOCOLLNPGM(" from current mesh.");
  1161. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1162. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1163. ubl.z_values[x][y] -= tmp_z_values[x][y];
  1164. }
  1165. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
  1166. mesh_index_pair out_mesh;
  1167. out_mesh.x_index = out_mesh.y_index = -1;
  1168. // Get our reference position. Either the nozzle or probe location.
  1169. const float px = RAW_X_POSITION(lx) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1170. py = RAW_Y_POSITION(ly) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1171. float best_so_far = far_flag ? -99999.99 : 99999.99;
  1172. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1173. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1174. if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
  1175. || (type == REAL && !isnan(ubl.z_values[i][j]))
  1176. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1177. ) {
  1178. // We only get here if we found a Mesh Point of the specified type
  1179. float raw_x = RAW_CURRENT_POSITION(X), raw_y = RAW_CURRENT_POSITION(Y);
  1180. const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
  1181. my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
  1182. // If using the probe as the reference there are some unreachable locations.
  1183. // Also for round beds, there are grid points outside the bed the nozzle can't reach.
  1184. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1185. if (probe_as_reference ? !position_is_reachable_by_probe_raw_xy(mx, my) : !position_is_reachable_raw_xy(mx, my))
  1186. continue;
  1187. // Reachable. Check if it's the best_so_far location to the nozzle.
  1188. // Add in a weighting factor that considers the current location of the nozzle.
  1189. float distance = HYPOT(px - mx, py - my);
  1190. /**
  1191. * If doing the far_flag action, we want to be as far as possible
  1192. * from the starting point and from any other probed points. We
  1193. * want the next point spread out and filling in any blank spaces
  1194. * in the mesh. So we add in some of the distance to every probed
  1195. * point we can find.
  1196. */
  1197. if (far_flag) {
  1198. for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
  1199. for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
  1200. if (i != k && j != l && !isnan(ubl.z_values[k][l])) {
  1201. //distance += pow((float) abs(i - k) * (MESH_X_DIST), 2) + pow((float) abs(j - l) * (MESH_Y_DIST), 2); // working here
  1202. distance += HYPOT(MESH_X_DIST, MESH_Y_DIST) / log(HYPOT((i - k) * (MESH_X_DIST) + .001, (j - l) * (MESH_Y_DIST)) + .001);
  1203. }
  1204. }
  1205. }
  1206. }
  1207. else
  1208. // factor in the distance from the current location for the normal case
  1209. // so the nozzle isn't running all over the bed.
  1210. distance += HYPOT(raw_x - mx, raw_y - my) * 0.1;
  1211. // if far_flag, look for farthest point
  1212. if (far_flag == (distance > best_so_far) && distance != best_so_far) {
  1213. best_so_far = distance; // We found a closer/farther location with
  1214. out_mesh.x_index = i; // the specified type of mesh value.
  1215. out_mesh.y_index = j;
  1216. out_mesh.distance = best_so_far;
  1217. }
  1218. }
  1219. } // for j
  1220. } // for i
  1221. return out_mesh;
  1222. }
  1223. void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
  1224. if (!code_seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
  1225. repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
  1226. mesh_index_pair location;
  1227. uint16_t not_done[16];
  1228. int32_t round_off;
  1229. if (!position_is_reachable_xy(lx, ly)) {
  1230. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  1231. return;
  1232. }
  1233. ubl.save_ubl_active_state_and_disable();
  1234. memset(not_done, 0xFF, sizeof(not_done));
  1235. LCD_MESSAGEPGM("Fine Tuning Mesh"); // TODO: Make translatable string
  1236. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1237. do_blocking_move_to_xy(lx, ly);
  1238. do {
  1239. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
  1240. if (location.x_index < 0) break; // stop when we can't find any more reachable points.
  1241. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1242. // different location the next time through the loop
  1243. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  1244. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  1245. if (!position_is_reachable_raw_xy(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
  1246. break;
  1247. float new_z = ubl.z_values[location.x_index][location.y_index];
  1248. if (isnan(new_z)) // if the mesh point is invalid, set it to 0.0 so it can be edited
  1249. new_z = 0.0;
  1250. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to where we are going to edit
  1251. do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
  1252. new_z = floor(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
  1253. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1254. ubl.has_control_of_lcd_panel = true;
  1255. if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
  1256. lcd_implementation_clear();
  1257. lcd_mesh_edit_setup(new_z);
  1258. do {
  1259. new_z = lcd_mesh_edit();
  1260. #ifdef UBL_MESH_EDIT_MOVES_Z
  1261. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES + new_z); // Move the nozzle as the point is edited
  1262. #endif
  1263. idle();
  1264. } while (!ubl_lcd_clicked());
  1265. lcd_return_to_status();
  1266. // The technique used here generates a race condition for the encoder click.
  1267. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
  1268. // Let's work on specifying a proper API for the LCD ASAP, OK?
  1269. ubl.has_control_of_lcd_panel = true;
  1270. // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
  1271. // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
  1272. // should be redone and compressed.
  1273. const millis_t nxt = millis() + 1500UL;
  1274. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1275. idle();
  1276. if (ELAPSED(millis(), nxt)) {
  1277. lcd_return_to_status();
  1278. //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
  1279. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1280. LCD_MESSAGEPGM("Mesh Editing Stopped"); // TODO: Make translatable string
  1281. while (ubl_lcd_clicked()) idle();
  1282. goto FINE_TUNE_EXIT;
  1283. }
  1284. }
  1285. safe_delay(20); // We don't want any switch noise.
  1286. ubl.z_values[location.x_index][location.y_index] = new_z;
  1287. lcd_implementation_clear();
  1288. } while (location.x_index >= 0 && --repetition_cnt > 0);
  1289. FINE_TUNE_EXIT:
  1290. ubl.has_control_of_lcd_panel = false;
  1291. KEEPALIVE_STATE(IN_HANDLER);
  1292. if (do_ubl_mesh_map) ubl.display_map(map_type);
  1293. ubl.restore_ubl_active_state_and_leave();
  1294. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1295. do_blocking_move_to_xy(lx, ly);
  1296. LCD_MESSAGEPGM("Done Editing Mesh"); // TODO: Make translatable string
  1297. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1298. }
  1299. /**
  1300. * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
  1301. * If an invalid location is found, use the next two points (if valid) to
  1302. * calculate a 'reasonable' value for the unprobed mesh point.
  1303. */
  1304. bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  1305. const int8_t x1 = x + xdir, x2 = x1 + xdir,
  1306. y1 = y + ydir, y2 = y1 + ydir;
  1307. // A NAN next to a pair of real values?
  1308. if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) {
  1309. if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2]) // Angled downward?
  1310. ubl.z_values[x][y] = ubl.z_values[x1][y1]; // Use nearest (maybe a little too high.)
  1311. else
  1312. ubl.z_values[x][y] = 2.0 * ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward...
  1313. return true;
  1314. }
  1315. return false;
  1316. }
  1317. typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
  1318. void smart_fill_mesh() {
  1319. const smart_fill_info info[] = {
  1320. { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
  1321. { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
  1322. { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
  1323. { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } // Right side of the mesh looking left
  1324. };
  1325. for (uint8_t i = 0; i < COUNT(info); ++i) {
  1326. const smart_fill_info &f = info[i];
  1327. if (f.yfirst) {
  1328. const int8_t dir = f.ex > f.sx ? 1 : -1;
  1329. for (uint8_t y = f.sy; y != f.ey; ++y)
  1330. for (uint8_t x = f.sx; x != f.ex; x += dir)
  1331. if (smart_fill_one(x, y, dir, 0)) break;
  1332. }
  1333. else {
  1334. const int8_t dir = f.ey > f.sy ? 1 : -1;
  1335. for (uint8_t x = f.sx; x != f.ex; ++x)
  1336. for (uint8_t y = f.sy; y != f.ey; y += dir)
  1337. if (smart_fill_one(x, y, 0, dir)) break;
  1338. }
  1339. }
  1340. }
  1341. void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
  1342. constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
  1343. x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
  1344. y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
  1345. y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
  1346. const float dx = float(x_max - x_min) / (grid_size - 1.0),
  1347. dy = float(y_max - y_min) / (grid_size - 1.0);
  1348. struct linear_fit_data lsf_results;
  1349. incremental_LSF_reset(&lsf_results);
  1350. bool zig_zag = false;
  1351. for (uint8_t ix = 0; ix < grid_size; ix++) {
  1352. const float x = float(x_min) + ix * dx;
  1353. for (int8_t iy = 0; iy < grid_size; iy++) {
  1354. const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy);
  1355. float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level); // TODO: Needs error handling
  1356. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1357. if (DEBUGGING(LEVELING)) {
  1358. SERIAL_CHAR('(');
  1359. SERIAL_PROTOCOL_F(x, 7);
  1360. SERIAL_CHAR(',');
  1361. SERIAL_PROTOCOL_F(y, 7);
  1362. SERIAL_ECHOPGM(") logical: ");
  1363. SERIAL_CHAR('(');
  1364. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
  1365. SERIAL_CHAR(',');
  1366. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
  1367. SERIAL_ECHOPGM(") measured: ");
  1368. SERIAL_PROTOCOL_F(measured_z, 7);
  1369. SERIAL_ECHOPGM(" correction: ");
  1370. SERIAL_PROTOCOL_F(get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
  1371. }
  1372. #endif
  1373. measured_z -= get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
  1374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1375. if (DEBUGGING(LEVELING)) {
  1376. SERIAL_ECHOPGM(" final >>>---> ");
  1377. SERIAL_PROTOCOL_F(measured_z, 7);
  1378. SERIAL_EOL;
  1379. }
  1380. #endif
  1381. incremental_LSF(&lsf_results, x, y, measured_z);
  1382. }
  1383. zig_zag ^= true;
  1384. }
  1385. if (finish_incremental_LSF(&lsf_results)) {
  1386. SERIAL_ECHOPGM("Could not complete LSF!");
  1387. return;
  1388. }
  1389. if (g29_verbose_level > 3) {
  1390. SERIAL_ECHOPGM("LSF Results A=");
  1391. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1392. SERIAL_ECHOPGM(" B=");
  1393. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1394. SERIAL_ECHOPGM(" D=");
  1395. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1396. SERIAL_EOL;
  1397. }
  1398. vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
  1399. if (g29_verbose_level > 2) {
  1400. SERIAL_ECHOPGM("bed plane normal = [");
  1401. SERIAL_PROTOCOL_F(normal.x, 7);
  1402. SERIAL_PROTOCOLCHAR(',');
  1403. SERIAL_PROTOCOL_F(normal.y, 7);
  1404. SERIAL_PROTOCOLCHAR(',');
  1405. SERIAL_PROTOCOL_F(normal.z, 7);
  1406. SERIAL_ECHOLNPGM("]");
  1407. }
  1408. matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
  1409. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1410. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1411. float x_tmp = pgm_read_float(&mesh_index_to_xpos[i]),
  1412. y_tmp = pgm_read_float(&mesh_index_to_ypos[j]),
  1413. z_tmp = z_values[i][j];
  1414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1415. if (DEBUGGING(LEVELING)) {
  1416. SERIAL_ECHOPGM("before rotation = [");
  1417. SERIAL_PROTOCOL_F(x_tmp, 7);
  1418. SERIAL_PROTOCOLCHAR(',');
  1419. SERIAL_PROTOCOL_F(y_tmp, 7);
  1420. SERIAL_PROTOCOLCHAR(',');
  1421. SERIAL_PROTOCOL_F(z_tmp, 7);
  1422. SERIAL_ECHOPGM("] ---> ");
  1423. safe_delay(20);
  1424. }
  1425. #endif
  1426. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  1427. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1428. if (DEBUGGING(LEVELING)) {
  1429. SERIAL_ECHOPGM("after rotation = [");
  1430. SERIAL_PROTOCOL_F(x_tmp, 7);
  1431. SERIAL_PROTOCOLCHAR(',');
  1432. SERIAL_PROTOCOL_F(y_tmp, 7);
  1433. SERIAL_PROTOCOLCHAR(',');
  1434. SERIAL_PROTOCOL_F(z_tmp, 7);
  1435. SERIAL_ECHOLNPGM("]");
  1436. safe_delay(55);
  1437. }
  1438. #endif
  1439. z_values[i][j] += z_tmp - lsf_results.D;
  1440. }
  1441. }
  1442. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1443. if (DEBUGGING(LEVELING)) {
  1444. rotation.debug(PSTR("rotation matrix:"));
  1445. SERIAL_ECHOPGM("LSF Results A=");
  1446. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1447. SERIAL_ECHOPGM(" B=");
  1448. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1449. SERIAL_ECHOPGM(" D=");
  1450. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1451. SERIAL_EOL;
  1452. safe_delay(55);
  1453. SERIAL_ECHOPGM("bed plane normal = [");
  1454. SERIAL_PROTOCOL_F(normal.x, 7);
  1455. SERIAL_PROTOCOLCHAR(',');
  1456. SERIAL_PROTOCOL_F(normal.y, 7);
  1457. SERIAL_PROTOCOLCHAR(',');
  1458. SERIAL_PROTOCOL_F(normal.z, 7);
  1459. SERIAL_ECHOPGM("]\n");
  1460. SERIAL_EOL;
  1461. }
  1462. #endif
  1463. }
  1464. #if ENABLED(UBL_G29_P31)
  1465. // Note: using optimize("O2") for this routine results in smaller
  1466. // codegen than default optimize("Os") on A2560.
  1467. void _O2 smart_fill_wlsf( float weight_factor ) {
  1468. // For each undefined mesh point, compute a distance-weighted least squares fit
  1469. // from all the originally populated mesh points, weighted toward the point
  1470. // being extrapolated so that nearby points will have greater influence on
  1471. // the point being extrapolated. Then extrapolate the mesh point from WLSF.
  1472. static_assert( GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big" );
  1473. uint16_t bitmap[GRID_MAX_POINTS_X] = {0};
  1474. struct linear_fit_data lsf_results;
  1475. SERIAL_ECHOPGM("Extrapolating mesh...");
  1476. const float weight_scaled = weight_factor * max(MESH_X_DIST, MESH_Y_DIST);
  1477. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
  1478. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
  1479. if ( !isnan( ubl.z_values[jx][jy] )) {
  1480. bitmap[jx] |= (uint16_t)1 << jy;
  1481. }
  1482. }
  1483. }
  1484. for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
  1485. const float px = pgm_read_float(&(ubl.mesh_index_to_xpos[ix]));
  1486. for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
  1487. const float py = pgm_read_float(&(ubl.mesh_index_to_ypos[iy]));
  1488. if ( isnan( ubl.z_values[ix][iy] )) {
  1489. // undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
  1490. incremental_LSF_reset(&lsf_results);
  1491. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
  1492. const float rx = pgm_read_float(&(ubl.mesh_index_to_xpos[jx]));
  1493. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
  1494. if ( bitmap[jx] & (uint16_t)1 << jy ) {
  1495. const float ry = pgm_read_float(&(ubl.mesh_index_to_ypos[jy]));
  1496. const float rz = ubl.z_values[jx][jy];
  1497. const float w = 1.0 + weight_scaled / HYPOT((rx - px),(ry - py));
  1498. incremental_WLSF(&lsf_results, rx, ry, rz, w);
  1499. }
  1500. }
  1501. }
  1502. if (finish_incremental_LSF(&lsf_results)) {
  1503. SERIAL_ECHOLNPGM("Insufficient data");
  1504. return;
  1505. }
  1506. const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
  1507. ubl.z_values[ix][iy] = ez;
  1508. idle(); // housekeeping
  1509. }
  1510. }
  1511. }
  1512. SERIAL_ECHOLNPGM("done");
  1513. }
  1514. #endif // UBL_G29_P31
  1515. #endif // AUTO_BED_LEVELING_UBL