My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

ubl_G29.cpp 75KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "ubl.h"
  25. #include "Marlin.h"
  26. #include "hex_print_routines.h"
  27. #include "configuration_store.h"
  28. #include "ultralcd.h"
  29. #include "stepper.h"
  30. #include "planner.h"
  31. #include "gcode.h"
  32. #include <math.h>
  33. #include "least_squares_fit.h"
  34. #define UBL_G29_P31
  35. extern float destination[XYZE], current_position[XYZE];
  36. #if ENABLED(NEWPANEL)
  37. void lcd_return_to_status();
  38. void lcd_mesh_edit_setup(float initial);
  39. float lcd_mesh_edit();
  40. void lcd_z_offset_edit_setup(float);
  41. #if ENABLED(DOGLCD)
  42. extern void _lcd_ubl_output_map_lcd();
  43. #endif
  44. float lcd_z_offset_edit();
  45. #endif
  46. extern float meshedit_done;
  47. extern long babysteps_done;
  48. extern float probe_pt(const float &x, const float &y, bool, int);
  49. extern bool set_probe_deployed(bool);
  50. extern void set_bed_leveling_enabled(bool);
  51. extern bool ubl_lcd_map_control;
  52. typedef void (*screenFunc_t)();
  53. extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
  54. #define SIZE_OF_LITTLE_RAISE 1
  55. #define BIG_RAISE_NOT_NEEDED 0
  56. int unified_bed_leveling::g29_verbose_level,
  57. unified_bed_leveling::g29_phase_value,
  58. unified_bed_leveling::g29_repetition_cnt,
  59. unified_bed_leveling::g29_storage_slot = 0,
  60. unified_bed_leveling::g29_map_type,
  61. unified_bed_leveling::g29_grid_size;
  62. bool unified_bed_leveling::g29_c_flag,
  63. unified_bed_leveling::g29_x_flag,
  64. unified_bed_leveling::g29_y_flag;
  65. float unified_bed_leveling::g29_x_pos,
  66. unified_bed_leveling::g29_y_pos,
  67. unified_bed_leveling::g29_card_thickness = 0.0,
  68. unified_bed_leveling::g29_constant = 0.0;
  69. /**
  70. * G29: Unified Bed Leveling by Roxy
  71. *
  72. * Parameters understood by this leveling system:
  73. *
  74. * A Activate Activate the Unified Bed Leveling system.
  75. *
  76. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2.
  77. * Note: A non-compressible Spark Gap feeler gauge is recommended over a business card.
  78. * In this mode of G29 P2, a business or index card is used as a shim that the nozzle can
  79. * grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the
  80. * same resistance is felt in the shim. You can omit the numerical value on first invocation
  81. * of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously-
  82. * measured thickness by default.
  83. *
  84. * C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating
  85. * previous measurements.
  86. *
  87. * C Constant G29 P2 C specifies a Constant and tells the Manual Probe subsystem to use the current
  88. * location in its search for the closest unmeasured Mesh Point.
  89. *
  90. * G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value.
  91. *
  92. * C Current G29 Z C uses the Current location (instead of bed center or nearest edge).
  93. *
  94. * D Disable Disable the Unified Bed Leveling system.
  95. *
  96. * E Stow_probe Stow the probe after each sampled point.
  97. *
  98. * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
  99. * specified height, no correction is applied and natural printer kenimatics take over. If no
  100. * number is specified for the command, 10mm is assumed to be reasonable.
  101. *
  102. * H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed.
  103. * If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES.
  104. *
  105. * H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle.
  106. * If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used.
  107. *
  108. * I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted,
  109. * the nozzle location is used. If no 'I' value is given, only the point nearest to the location
  110. * is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a
  111. * portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate
  112. * an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You
  113. * can move the nozzle around and use this feature to select the center of the area (or cell) to
  114. * invalidate.
  115. *
  116. * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  117. * Not specifying a grid size will invoke the 3-Point leveling function.
  118. *
  119. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  120. * command literally performs a diff between two Meshes.
  121. *
  122. * L Load Load Mesh from the previously activated location in the EEPROM.
  123. *
  124. * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
  125. * for subsequent Load and Store operations.
  126. *
  127. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  128. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  129. * each additional Phase that processes it.
  130. *
  131. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  132. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  133. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  134. * a subsequent G or T leveling operation for backward compatibility.
  135. *
  136. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  137. * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. On
  138. * Cartesian printers, points within the X_PROBE_OFFSET_FROM_EXTRUDER and Y_PROBE_OFFSET_FROM_EXTRUDER
  139. * area cannot be automatically probed. For Delta printers the area in which DELTA_PROBEABLE_RADIUS
  140. * and DELTA_PRINTABLE_RADIUS do not overlap will not be automatically probed.
  141. *
  142. * Unreachable points will be handled in Phase 2 and Phase 3.
  143. *
  144. * Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you
  145. * to invalidate parts of the Mesh but still use Automatic Probing.
  146. *
  147. * The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current
  148. * probe position is used.
  149. *
  150. * Use 'T' (Topology) to generate a report of mesh generation.
  151. *
  152. * P1 will suspend Mesh generation if the controller button is held down. Note that you may need
  153. * to press and hold the switch for several seconds if moves are underway.
  154. *
  155. * P2 Phase 2 Probe unreachable points.
  156. *
  157. * Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used.
  158. * Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the
  159. * nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer!
  160. * (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.)
  161. *
  162. * The 'H' value can be negative if the Mesh dips in a large area. Press and hold the
  163. * controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2"
  164. * with an 'H' parameter more suitable for the area you're manually probing. Note that the command
  165. * tries to start in a corner of the bed where movement will be predictable. Override the distance
  166. * calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where
  167. * the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to
  168. * indicate that the search should be based on the current position.
  169. *
  170. * The 'B' parameter for this command is described above. It places the manual probe subsystem into
  171. * Business Card mode where the thickness of a business card is measured and then used to accurately
  172. * set the nozzle height in all manual probing for the duration of the command. A Business card can
  173. * be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it
  174. * easier to produce similar amounts of force and get more accurate measurements. Google if you're
  175. * not sure how to use a shim.
  176. *
  177. * The 'T' (Map) parameter helps track Mesh building progress.
  178. *
  179. * NOTE: P2 requires an LCD controller!
  180. *
  181. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to
  182. * go down:
  183. *
  184. * - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled,
  185. * and a repeat count can then also be specified with 'R'.
  186. *
  187. * - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for
  188. * invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped
  189. * upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's
  190. * replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy
  191. * and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation
  192. * Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution.
  193. *
  194. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of
  195. * an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using
  196. * G42 and M421. See the UBL documentation for further details.
  197. *
  198. * Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing
  199. * of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable
  200. * adhesion.
  201. *
  202. * P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height
  203. * by the given 'H' offset (or default Z_CLEARANCE_BETWEEN_PROBES), and waits while the controller is
  204. * used to adjust the nozzle height. On click the displayed height is saved in the mesh.
  205. *
  206. * Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with
  207. * the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be
  208. * terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button.
  209. *
  210. * The general form is G29 P4 [R points] [X position] [Y position]
  211. *
  212. * The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the
  213. * command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim,
  214. * and on click the height minus the shim thickness will be saved in the mesh.
  215. *
  216. * !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!!
  217. *
  218. * NOTE: P4 is not available unless you have LCD support enabled!
  219. *
  220. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  221. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  222. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  223. * execute a G29 P6 C <mean height>.
  224. *
  225. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  226. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  227. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  228. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  229. * 0.000 at the Z Home location.
  230. *
  231. * Q Test Load specified Test Pattern to assist in checking correct operation of system. This
  232. * command is not anticipated to be of much value to the typical user. It is intended
  233. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  234. *
  235. * R # Repeat Repeat this command the specified number of times. If no number is specified the
  236. * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
  237. *
  238. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  239. * current state of the Unified Bed Leveling system in the EEPROM.
  240. *
  241. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  242. * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
  243. * extend to a limit related to the available EEPROM storage.
  244. *
  245. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
  246. * at a later date. The GCode output can be saved and later replayed by the host software
  247. * to reconstruct the current mesh on another machine.
  248. *
  249. * T Topology Display the Mesh Map Topology.
  250. * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
  251. * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
  252. * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
  253. * is suitable to paste into a spreadsheet for a 3D graph of the mesh.
  254. *
  255. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  256. * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
  257. * when the entire bed doesn't need to be probed because it will be adjusted.
  258. *
  259. * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
  260. *
  261. * W What? Display valuable Unified Bed Leveling System data.
  262. *
  263. * X # X Location for this command
  264. *
  265. * Y # Y Location for this command
  266. *
  267. *
  268. * Release Notes:
  269. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  270. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  271. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  272. * respectively.)
  273. *
  274. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  275. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  276. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  277. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  278. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  279. * perform a small print and check out your settings quicker. You do not need to populate the
  280. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  281. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  282. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  283. *
  284. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  285. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  286. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  287. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  288. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  289. * this is going to be helpful to the users!)
  290. *
  291. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  292. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
  293. * we now have the functionality and features of all three systems combined.
  294. */
  295. void unified_bed_leveling::G29() {
  296. if (!settings.calc_num_meshes()) {
  297. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  298. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  299. return;
  300. }
  301. // Check for commands that require the printer to be homed
  302. if (axis_unhomed_error()) {
  303. const int8_t p_val = parser.intval('P', -1);
  304. if (p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J'))
  305. home_all_axes();
  306. }
  307. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  308. // Invalidate Mesh Points. This command is a little bit asymmetrical because
  309. // it directly specifies the repetition count and does not use the 'R' parameter.
  310. if (parser.seen('I')) {
  311. uint8_t cnt = 0;
  312. g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1;
  313. if (g29_repetition_cnt >= GRID_MAX_POINTS) {
  314. set_all_mesh_points_to_value(NAN);
  315. }
  316. else {
  317. while (g29_repetition_cnt--) {
  318. if (cnt > 20) { cnt = 0; idle(); }
  319. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  320. if (location.x_index < 0) {
  321. // No more REACHABLE mesh points to invalidate, so we ASSUME the user
  322. // meant to invalidate the ENTIRE mesh, which cannot be done with
  323. // find_closest_mesh_point loop which only returns REACHABLE points.
  324. set_all_mesh_points_to_value(NAN);
  325. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  326. break; // No more invalid Mesh Points to populate
  327. }
  328. z_values[location.x_index][location.y_index] = NAN;
  329. cnt++;
  330. }
  331. }
  332. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  333. }
  334. if (parser.seen('Q')) {
  335. const int test_pattern = parser.has_value() ? parser.value_int() : -99;
  336. if (!WITHIN(test_pattern, -1, 2)) {
  337. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (-1 to 2)\n");
  338. return;
  339. }
  340. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  341. switch (test_pattern) {
  342. case -1:
  343. g29_eeprom_dump();
  344. break;
  345. case 0:
  346. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  347. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  348. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
  349. p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
  350. z_values[x][y] += 2.0 * HYPOT(p1, p2);
  351. }
  352. }
  353. break;
  354. case 1:
  355. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  356. z_values[x][x] += 9.999;
  357. z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  358. }
  359. break;
  360. case 2:
  361. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  362. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  363. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  364. z_values[x][y] += parser.seen('C') ? g29_constant : 9.99;
  365. break;
  366. }
  367. }
  368. if (parser.seen('J')) {
  369. if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed
  370. save_ubl_active_state_and_disable();
  371. tilt_mesh_based_on_probed_grid(parser.seen('T'));
  372. restore_ubl_active_state_and_leave();
  373. }
  374. else { // grid_size == 0 : A 3-Point leveling has been requested
  375. float z3, z2, z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level);
  376. if (!isnan(z1)) {
  377. z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level);
  378. if (!isnan(z2))
  379. z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
  380. }
  381. if (isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
  382. SERIAL_ERROR_START();
  383. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  384. goto LEAVE;
  385. }
  386. // Adjust z1, z2, z3 by the Mesh Height at these points. Just because they're non-zero
  387. // doesn't mean the Mesh is tilted! (Compensate each probe point by what the Mesh says
  388. // its height is.)
  389. save_ubl_active_state_and_disable();
  390. z1 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
  391. z2 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
  392. z3 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
  393. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  394. tilt_mesh_based_on_3pts(z1, z2, z3);
  395. restore_ubl_active_state_and_leave();
  396. }
  397. }
  398. if (parser.seen('P')) {
  399. if (WITHIN(g29_phase_value, 0, 1) && state.storage_slot == -1) {
  400. state.storage_slot = 0;
  401. SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
  402. }
  403. switch (g29_phase_value) {
  404. case 0:
  405. //
  406. // Zero Mesh Data
  407. //
  408. reset();
  409. SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
  410. break;
  411. case 1:
  412. //
  413. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  414. //
  415. if (!parser.seen('C')) {
  416. invalidate();
  417. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
  418. }
  419. if (g29_verbose_level > 1) {
  420. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos);
  421. SERIAL_PROTOCOLCHAR(',');
  422. SERIAL_PROTOCOL(g29_y_pos);
  423. SERIAL_PROTOCOLLNPGM(").\n");
  424. }
  425. probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  426. parser.seen('T'), parser.seen('E'), parser.seen('U'));
  427. break;
  428. case 2: {
  429. #if ENABLED(NEWPANEL)
  430. //
  431. // Manually Probe Mesh in areas that can't be reached by the probe
  432. //
  433. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
  434. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  435. if (!g29_x_flag && !g29_y_flag) {
  436. /**
  437. * Use a good default location for the path.
  438. * The flipped > and < operators in these comparisons is intentional.
  439. * It should cause the probed points to follow a nice path on Cartesian printers.
  440. * It may make sense to have Delta printers default to the center of the bed.
  441. * Until that is decided, this can be forced with the X and Y parameters.
  442. */
  443. #if IS_KINEMATIC
  444. g29_x_pos = X_HOME_POS;
  445. g29_y_pos = Y_HOME_POS;
  446. #else // cartesian
  447. g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
  448. g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
  449. #endif
  450. }
  451. if (parser.seen('C')) {
  452. g29_x_pos = current_position[X_AXIS];
  453. g29_y_pos = current_position[Y_AXIS];
  454. }
  455. if (parser.seen('B')) {
  456. g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(Z_CLEARANCE_BETWEEN_PROBES);
  457. if (FABS(g29_card_thickness) > 1.5) {
  458. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
  459. return;
  460. }
  461. }
  462. if (!position_is_reachable_xy(g29_x_pos, g29_y_pos)) {
  463. SERIAL_PROTOCOLLNPGM("XY outside printable radius.");
  464. return;
  465. }
  466. const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES);
  467. manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T'));
  468. SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
  469. #else
  470. SERIAL_PROTOCOLLNPGM("?P2 is only available when an LCD is present.");
  471. return;
  472. #endif
  473. } break;
  474. case 3: {
  475. /**
  476. * Populate invalid mesh areas. Proceed with caution.
  477. * Two choices are available:
  478. * - Specify a constant with the 'C' parameter.
  479. * - Allow 'G29 P3' to choose a 'reasonable' constant.
  480. */
  481. if (g29_c_flag) {
  482. if (g29_repetition_cnt >= GRID_MAX_POINTS) {
  483. set_all_mesh_points_to_value(g29_constant);
  484. }
  485. else {
  486. while (g29_repetition_cnt--) { // this only populates reachable mesh points near
  487. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  488. if (location.x_index < 0) {
  489. // No more REACHABLE INVALID mesh points to populate, so we ASSUME
  490. // user meant to populate ALL INVALID mesh points to value
  491. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  492. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  493. if (isnan(z_values[x][y]))
  494. z_values[x][y] = g29_constant;
  495. break; // No more invalid Mesh Points to populate
  496. }
  497. z_values[location.x_index][location.y_index] = g29_constant;
  498. }
  499. }
  500. }
  501. else {
  502. const float cvf = parser.value_float();
  503. switch((int)truncf(cvf * 10.0) - 30) { // 3.1 -> 1
  504. #if ENABLED(UBL_G29_P31)
  505. case 1: {
  506. // P3.1 use least squares fit to fill missing mesh values
  507. // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
  508. // P3.11 10X weighting for nearest grid points versus farthest grid points
  509. // P3.12 100X distance weighting
  510. // P3.13 1000X distance weighting, approaches simple average of nearest points
  511. const float weight_power = (cvf - 3.10) * 100.0, // 3.12345 -> 2.345
  512. weight_factor = weight_power ? POW(10.0, weight_power) : 0;
  513. smart_fill_wlsf(weight_factor);
  514. }
  515. break;
  516. #endif
  517. case 0: // P3 or P3.0
  518. default: // and anything P3.x that's not P3.1
  519. smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
  520. break;
  521. }
  522. }
  523. break;
  524. }
  525. case 4: // Fine Tune (i.e., Edit) the Mesh
  526. #if ENABLED(NEWPANEL)
  527. fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T'));
  528. #else
  529. SERIAL_PROTOCOLLNPGM("?P4 is only available when an LCD is present.");
  530. return;
  531. #endif
  532. break;
  533. case 5: find_mean_mesh_height(); break;
  534. case 6: shift_mesh_height(); break;
  535. }
  536. }
  537. //
  538. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  539. // good to have the extra information. Soon... we prune this to just a few items
  540. //
  541. if (parser.seen('W')) g29_what_command();
  542. //
  543. // When we are fully debugged, this may go away. But there are some valid
  544. // use cases for the users. So we can wait and see what to do with it.
  545. //
  546. if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  547. g29_compare_current_mesh_to_stored_mesh();
  548. //
  549. // Load a Mesh from the EEPROM
  550. //
  551. if (parser.seen('L')) { // Load Current Mesh Data
  552. g29_storage_slot = parser.has_value() ? parser.value_int() : state.storage_slot;
  553. int16_t a = settings.calc_num_meshes();
  554. if (!a) {
  555. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  556. return;
  557. }
  558. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  559. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  560. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  561. return;
  562. }
  563. settings.load_mesh(g29_storage_slot);
  564. state.storage_slot = g29_storage_slot;
  565. SERIAL_PROTOCOLLNPGM("Done.");
  566. }
  567. //
  568. // Store a Mesh in the EEPROM
  569. //
  570. if (parser.seen('S')) { // Store (or Save) Current Mesh Data
  571. g29_storage_slot = parser.has_value() ? parser.value_int() : state.storage_slot;
  572. if (g29_storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  573. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  574. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  575. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  576. if (!isnan(z_values[x][y])) {
  577. SERIAL_ECHOPAIR("M421 I ", x);
  578. SERIAL_ECHOPAIR(" J ", y);
  579. SERIAL_ECHOPGM(" Z ");
  580. SERIAL_ECHO_F(z_values[x][y], 6);
  581. SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(mesh_index_to_xpos(x)));
  582. SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(mesh_index_to_ypos(y)));
  583. SERIAL_EOL();
  584. }
  585. return;
  586. }
  587. int16_t a = settings.calc_num_meshes();
  588. if (!a) {
  589. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  590. goto LEAVE;
  591. }
  592. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  593. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  594. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  595. goto LEAVE;
  596. }
  597. settings.store_mesh(g29_storage_slot);
  598. state.storage_slot = g29_storage_slot;
  599. SERIAL_PROTOCOLLNPGM("Done.");
  600. }
  601. if (parser.seen('T'))
  602. display_map(parser.has_value() ? parser.value_int() : 0);
  603. /**
  604. * This code may not be needed... Prepare for its removal...
  605. *
  606. */
  607. #if 0
  608. if (parser.seen('Z')) {
  609. if (parser.has_value())
  610. state.z_offset = parser.value_float(); // do the simple case. Just lock in the specified value
  611. else {
  612. save_ubl_active_state_and_disable();
  613. //float measured_z = probe_pt(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
  614. has_control_of_lcd_panel = true; // Grab the LCD Hardware
  615. float measured_z = 1.5;
  616. do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
  617. // The user is not going to be locking in a new Z-Offset very often so
  618. // it won't be that painful to spin the Encoder Wheel for 1.5mm
  619. lcd_refresh();
  620. lcd_z_offset_edit_setup(measured_z);
  621. KEEPALIVE_STATE(PAUSED_FOR_USER);
  622. do {
  623. measured_z = lcd_z_offset_edit();
  624. idle();
  625. do_blocking_move_to_z(measured_z);
  626. } while (!ubl_lcd_clicked());
  627. has_control_of_lcd_panel = true; // There is a race condition for the encoder click.
  628. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  629. // or here. So, until we are done looking for a long encoder press,
  630. // we need to take control of the panel
  631. KEEPALIVE_STATE(IN_HANDLER);
  632. lcd_return_to_status();
  633. const millis_t nxt = millis() + 1500UL;
  634. while (ubl_lcd_clicked()) { // debounce and watch for abort
  635. idle();
  636. if (ELAPSED(millis(), nxt)) {
  637. SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
  638. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  639. LCD_MESSAGEPGM(MSG_UBL_Z_OFFSET_STOPPED);
  640. restore_ubl_active_state_and_leave();
  641. goto LEAVE;
  642. }
  643. }
  644. has_control_of_lcd_panel = false;
  645. safe_delay(20); // We don't want any switch noise.
  646. state.z_offset = measured_z;
  647. lcd_refresh();
  648. restore_ubl_active_state_and_leave();
  649. }
  650. }
  651. #endif
  652. LEAVE:
  653. #if ENABLED(NEWPANEL)
  654. lcd_reset_alert_level();
  655. LCD_MESSAGEPGM("");
  656. lcd_quick_feedback();
  657. has_control_of_lcd_panel = false;
  658. #endif
  659. return;
  660. }
  661. void unified_bed_leveling::find_mean_mesh_height() {
  662. float sum = 0.0;
  663. int n = 0;
  664. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  665. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  666. if (!isnan(z_values[x][y])) {
  667. sum += z_values[x][y];
  668. n++;
  669. }
  670. const float mean = sum / n;
  671. //
  672. // Sum the squares of difference from mean
  673. //
  674. float sum_of_diff_squared = 0.0;
  675. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  676. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  677. if (!isnan(z_values[x][y]))
  678. sum_of_diff_squared += sq(z_values[x][y] - mean);
  679. SERIAL_ECHOLNPAIR("# of samples: ", n);
  680. SERIAL_ECHOPGM("Mean Mesh Height: ");
  681. SERIAL_ECHO_F(mean, 6);
  682. SERIAL_EOL();
  683. const float sigma = SQRT(sum_of_diff_squared / (n + 1));
  684. SERIAL_ECHOPGM("Standard Deviation: ");
  685. SERIAL_ECHO_F(sigma, 6);
  686. SERIAL_EOL();
  687. if (g29_c_flag)
  688. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  689. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  690. if (!isnan(z_values[x][y]))
  691. z_values[x][y] -= mean + g29_constant;
  692. }
  693. void unified_bed_leveling::shift_mesh_height() {
  694. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  695. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  696. if (!isnan(z_values[x][y]))
  697. z_values[x][y] += g29_constant;
  698. }
  699. /**
  700. * Probe all invalidated locations of the mesh that can be reached by the probe.
  701. * This attempts to fill in locations closest to the nozzle's start location first.
  702. */
  703. void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool close_or_far) {
  704. mesh_index_pair location;
  705. has_control_of_lcd_panel = true;
  706. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  707. DEPLOY_PROBE();
  708. uint16_t max_iterations = GRID_MAX_POINTS;
  709. do {
  710. #if ENABLED(NEWPANEL)
  711. if (ubl_lcd_clicked()) {
  712. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  713. lcd_quick_feedback();
  714. STOW_PROBE();
  715. while (ubl_lcd_clicked()) idle();
  716. has_control_of_lcd_panel = false;
  717. restore_ubl_active_state_and_leave();
  718. safe_delay(50); // Debounce the Encoder wheel
  719. return;
  720. }
  721. #endif
  722. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, close_or_far);
  723. if (location.x_index >= 0) { // mesh point found and is reachable by probe
  724. const float rawx = mesh_index_to_xpos(location.x_index),
  725. rawy = mesh_index_to_ypos(location.y_index);
  726. const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); // TODO: Needs error handling
  727. z_values[location.x_index][location.y_index] = measured_z;
  728. }
  729. if (do_ubl_mesh_map) display_map(g29_map_type);
  730. } while (location.x_index >= 0 && --max_iterations);
  731. STOW_PROBE();
  732. restore_ubl_active_state_and_leave();
  733. do_blocking_move_to_xy(
  734. constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
  735. constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
  736. );
  737. }
  738. void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
  739. matrix_3x3 rotation;
  740. vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
  741. (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
  742. (z1 - z2) ),
  743. v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
  744. (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
  745. (z3 - z2) ),
  746. normal = vector_3::cross(v1, v2);
  747. normal = normal.get_normal();
  748. /**
  749. * This vector is normal to the tilted plane.
  750. * However, we don't know its direction. We need it to point up. So if
  751. * Z is negative, we need to invert the sign of all components of the vector
  752. */
  753. if (normal.z < 0.0) {
  754. normal.x = -normal.x;
  755. normal.y = -normal.y;
  756. normal.z = -normal.z;
  757. }
  758. rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
  759. if (g29_verbose_level > 2) {
  760. SERIAL_ECHOPGM("bed plane normal = [");
  761. SERIAL_PROTOCOL_F(normal.x, 7);
  762. SERIAL_PROTOCOLCHAR(',');
  763. SERIAL_PROTOCOL_F(normal.y, 7);
  764. SERIAL_PROTOCOLCHAR(',');
  765. SERIAL_PROTOCOL_F(normal.z, 7);
  766. SERIAL_ECHOLNPGM("]");
  767. rotation.debug(PSTR("rotation matrix:"));
  768. }
  769. //
  770. // All of 3 of these points should give us the same d constant
  771. //
  772. float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
  773. d = t + normal.z * z1;
  774. if (g29_verbose_level>2) {
  775. SERIAL_ECHOPGM("D constant: ");
  776. SERIAL_PROTOCOL_F(d, 7);
  777. SERIAL_ECHOLNPGM(" ");
  778. }
  779. #if ENABLED(DEBUG_LEVELING_FEATURE)
  780. if (DEBUGGING(LEVELING)) {
  781. SERIAL_ECHOPGM("d from 1st point: ");
  782. SERIAL_ECHO_F(d, 6);
  783. SERIAL_EOL();
  784. t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
  785. d = t + normal.z * z2;
  786. SERIAL_ECHOPGM("d from 2nd point: ");
  787. SERIAL_ECHO_F(d, 6);
  788. SERIAL_EOL();
  789. t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
  790. d = t + normal.z * z3;
  791. SERIAL_ECHOPGM("d from 3rd point: ");
  792. SERIAL_ECHO_F(d, 6);
  793. SERIAL_EOL();
  794. }
  795. #endif
  796. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  797. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  798. float x_tmp = mesh_index_to_xpos(i),
  799. y_tmp = mesh_index_to_ypos(j),
  800. z_tmp = z_values[i][j];
  801. #if ENABLED(DEBUG_LEVELING_FEATURE)
  802. if (DEBUGGING(LEVELING)) {
  803. SERIAL_ECHOPGM("before rotation = [");
  804. SERIAL_PROTOCOL_F(x_tmp, 7);
  805. SERIAL_PROTOCOLCHAR(',');
  806. SERIAL_PROTOCOL_F(y_tmp, 7);
  807. SERIAL_PROTOCOLCHAR(',');
  808. SERIAL_PROTOCOL_F(z_tmp, 7);
  809. SERIAL_ECHOPGM("] ---> ");
  810. safe_delay(20);
  811. }
  812. #endif
  813. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  814. #if ENABLED(DEBUG_LEVELING_FEATURE)
  815. if (DEBUGGING(LEVELING)) {
  816. SERIAL_ECHOPGM("after rotation = [");
  817. SERIAL_PROTOCOL_F(x_tmp, 7);
  818. SERIAL_PROTOCOLCHAR(',');
  819. SERIAL_PROTOCOL_F(y_tmp, 7);
  820. SERIAL_PROTOCOLCHAR(',');
  821. SERIAL_PROTOCOL_F(z_tmp, 7);
  822. SERIAL_ECHOLNPGM("]");
  823. safe_delay(55);
  824. }
  825. #endif
  826. z_values[i][j] += z_tmp - d;
  827. }
  828. }
  829. }
  830. #if ENABLED(NEWPANEL)
  831. float unified_bed_leveling::measure_point_with_encoder() {
  832. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  833. delay(50); // debounce
  834. KEEPALIVE_STATE(PAUSED_FOR_USER);
  835. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  836. idle();
  837. if (encoder_diff) {
  838. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff));
  839. encoder_diff = 0;
  840. }
  841. }
  842. KEEPALIVE_STATE(IN_HANDLER);
  843. return current_position[Z_AXIS];
  844. }
  845. static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
  846. float unified_bed_leveling::measure_business_card_thickness(float in_height) {
  847. has_control_of_lcd_panel = true;
  848. save_ubl_active_state_and_disable(); // Disable bed level correction for probing
  849. do_blocking_move_to_z(in_height);
  850. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  851. //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
  852. stepper.synchronize();
  853. SERIAL_PROTOCOLPGM("Place shim under nozzle");
  854. LCD_MESSAGEPGM(MSG_UBL_BC_INSERT);
  855. lcd_return_to_status();
  856. echo_and_take_a_measurement();
  857. const float z1 = measure_point_with_encoder();
  858. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  859. stepper.synchronize();
  860. SERIAL_PROTOCOLPGM("Remove shim");
  861. LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE);
  862. echo_and_take_a_measurement();
  863. const float z2 = measure_point_with_encoder();
  864. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
  865. const float thickness = abs(z1 - z2);
  866. if (g29_verbose_level > 1) {
  867. SERIAL_PROTOCOLPGM("Business Card is ");
  868. SERIAL_PROTOCOL_F(thickness, 4);
  869. SERIAL_PROTOCOLLNPGM("mm thick.");
  870. }
  871. in_height = current_position[Z_AXIS]; // do manual probing at lower height
  872. has_control_of_lcd_panel = false;
  873. restore_ubl_active_state_and_leave();
  874. return thickness;
  875. }
  876. void unified_bed_leveling::manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
  877. has_control_of_lcd_panel = true;
  878. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  879. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  880. do_blocking_move_to_xy(lx, ly);
  881. lcd_return_to_status();
  882. mesh_index_pair location;
  883. do {
  884. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
  885. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  886. if (location.x_index < 0 && location.y_index < 0) continue;
  887. const float rawx = mesh_index_to_xpos(location.x_index),
  888. rawy = mesh_index_to_ypos(location.y_index),
  889. xProbe = LOGICAL_X_POSITION(rawx),
  890. yProbe = LOGICAL_Y_POSITION(rawy);
  891. if (!position_is_reachable_raw_xy(rawx, rawy)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
  892. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  893. LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT);
  894. do_blocking_move_to_xy(xProbe, yProbe);
  895. do_blocking_move_to_z(z_clearance);
  896. KEEPALIVE_STATE(PAUSED_FOR_USER);
  897. has_control_of_lcd_panel = true;
  898. if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
  899. serialprintPGM(parser.seen('B') ? PSTR(MSG_UBL_BC_INSERT) : PSTR(MSG_UBL_BC_INSERT2));
  900. const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step
  901. //const float z_step = 1.0 / planner.axis_steps_per_mm[Z_AXIS]; // approx one step each click
  902. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  903. delay(50); // debounce
  904. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  905. idle();
  906. if (encoder_diff) {
  907. do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * z_step);
  908. encoder_diff = 0;
  909. }
  910. }
  911. // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
  912. // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
  913. // should be redone and compressed.
  914. const millis_t nxt = millis() + 1500L;
  915. while (ubl_lcd_clicked()) { // debounce and watch for abort
  916. idle();
  917. if (ELAPSED(millis(), nxt)) {
  918. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  919. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  920. #if ENABLED(NEWPANEL)
  921. lcd_quick_feedback();
  922. while (ubl_lcd_clicked()) idle();
  923. has_control_of_lcd_panel = false;
  924. #endif
  925. KEEPALIVE_STATE(IN_HANDLER);
  926. restore_ubl_active_state_and_leave();
  927. return;
  928. }
  929. }
  930. z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
  931. if (g29_verbose_level > 2) {
  932. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  933. SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
  934. SERIAL_EOL();
  935. }
  936. } while (location.x_index >= 0 && location.y_index >= 0);
  937. if (do_ubl_mesh_map) display_map(g29_map_type);
  938. restore_ubl_active_state_and_leave();
  939. KEEPALIVE_STATE(IN_HANDLER);
  940. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  941. do_blocking_move_to_xy(lx, ly);
  942. }
  943. #endif
  944. bool unified_bed_leveling::g29_parameter_parsing() {
  945. bool err_flag = false;
  946. #if ENABLED(NEWPANEL)
  947. LCD_MESSAGEPGM(MSG_UBL_DOING_G29);
  948. lcd_quick_feedback();
  949. #endif
  950. g29_constant = 0.0;
  951. g29_repetition_cnt = 0;
  952. g29_x_flag = parser.seenval('X');
  953. g29_x_pos = g29_x_flag ? parser.value_float() : current_position[X_AXIS];
  954. g29_y_flag = parser.seenval('Y');
  955. g29_y_pos = g29_y_flag ? parser.value_float() : current_position[Y_AXIS];
  956. if (parser.seen('R')) {
  957. g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
  958. NOMORE(g29_repetition_cnt, GRID_MAX_POINTS);
  959. if (g29_repetition_cnt < 1) {
  960. SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
  961. return UBL_ERR;
  962. }
  963. }
  964. g29_verbose_level = parser.seen('V') ? parser.value_int() : 0;
  965. if (!WITHIN(g29_verbose_level, 0, 4)) {
  966. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
  967. err_flag = true;
  968. }
  969. if (parser.seen('P')) {
  970. g29_phase_value = parser.value_int();
  971. if (!WITHIN(g29_phase_value, 0, 6)) {
  972. SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
  973. err_flag = true;
  974. }
  975. }
  976. if (parser.seen('J')) {
  977. g29_grid_size = parser.has_value() ? parser.value_int() : 0;
  978. if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) {
  979. SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
  980. err_flag = true;
  981. }
  982. }
  983. if (g29_x_flag != g29_y_flag) {
  984. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  985. err_flag = true;
  986. }
  987. if (!WITHIN(RAW_X_POSITION(g29_x_pos), X_MIN_POS, X_MAX_POS)) {
  988. SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
  989. err_flag = true;
  990. }
  991. if (!WITHIN(RAW_Y_POSITION(g29_y_pos), Y_MIN_POS, Y_MAX_POS)) {
  992. SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
  993. err_flag = true;
  994. }
  995. if (err_flag) return UBL_ERR;
  996. /**
  997. * Activate or deactivate UBL
  998. * Note: UBL's G29 restores the state set here when done.
  999. * Leveling is being enabled here with old data, possibly
  1000. * none. Error handling should disable for safety...
  1001. */
  1002. if (parser.seen('A')) {
  1003. if (parser.seen('D')) {
  1004. SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
  1005. return UBL_ERR;
  1006. }
  1007. set_bed_leveling_enabled(true);
  1008. report_state();
  1009. }
  1010. else if (parser.seen('D')) {
  1011. set_bed_leveling_enabled(false);
  1012. report_state();
  1013. }
  1014. // Set global 'C' flag and its value
  1015. if ((g29_c_flag = parser.seen('C')))
  1016. g29_constant = parser.value_float();
  1017. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1018. if (parser.seenval('F')) {
  1019. const float fh = parser.value_float();
  1020. if (!WITHIN(fh, 0.0, 100.0)) {
  1021. SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
  1022. return UBL_ERR;
  1023. }
  1024. set_z_fade_height(fh);
  1025. }
  1026. #endif
  1027. g29_map_type = parser.intval('T');
  1028. if (!WITHIN(g29_map_type, 0, 2)) {
  1029. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  1030. return UBL_ERR;
  1031. }
  1032. return UBL_OK;
  1033. }
  1034. static int ubl_state_at_invocation = 0,
  1035. ubl_state_recursion_chk = 0;
  1036. void unified_bed_leveling::save_ubl_active_state_and_disable() {
  1037. ubl_state_recursion_chk++;
  1038. if (ubl_state_recursion_chk != 1) {
  1039. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  1040. #if ENABLED(NEWPANEL)
  1041. LCD_MESSAGEPGM(MSG_UBL_SAVE_ERROR);
  1042. lcd_quick_feedback();
  1043. #endif
  1044. return;
  1045. }
  1046. ubl_state_at_invocation = state.active;
  1047. set_bed_leveling_enabled(false);
  1048. }
  1049. void unified_bed_leveling::restore_ubl_active_state_and_leave() {
  1050. if (--ubl_state_recursion_chk) {
  1051. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  1052. #if ENABLED(NEWPANEL)
  1053. LCD_MESSAGEPGM(MSG_UBL_RESTORE_ERROR);
  1054. lcd_quick_feedback();
  1055. #endif
  1056. return;
  1057. }
  1058. set_bed_leveling_enabled(ubl_state_at_invocation);
  1059. }
  1060. /**
  1061. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  1062. * good to have the extra information. Soon... we prune this to just a few items
  1063. */
  1064. void unified_bed_leveling::g29_what_command() {
  1065. report_state();
  1066. if (state.storage_slot == -1)
  1067. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  1068. else {
  1069. SERIAL_PROTOCOLPAIR("Mesh ", state.storage_slot);
  1070. SERIAL_PROTOCOLPGM(" Loaded.");
  1071. }
  1072. SERIAL_EOL();
  1073. safe_delay(50);
  1074. SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
  1075. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1076. SERIAL_PROTOCOL("planner.z_fade_height : ");
  1077. SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
  1078. SERIAL_EOL();
  1079. #endif
  1080. #if HAS_BED_PROBE
  1081. SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
  1082. SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
  1083. SERIAL_EOL();
  1084. #endif
  1085. SERIAL_ECHOLNPAIR("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X) "=", UBL_MESH_MIN_X);
  1086. SERIAL_ECHOLNPAIR("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y) "=", UBL_MESH_MIN_Y);
  1087. safe_delay(25);
  1088. SERIAL_ECHOLNPAIR("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X) "=", UBL_MESH_MAX_X);
  1089. SERIAL_ECHOLNPAIR("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y) "=", UBL_MESH_MAX_Y);
  1090. safe_delay(25);
  1091. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1092. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1093. safe_delay(25);
  1094. SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
  1095. SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
  1096. safe_delay(25);
  1097. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1098. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1099. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3);
  1100. SERIAL_PROTOCOLPGM(" ");
  1101. safe_delay(25);
  1102. }
  1103. SERIAL_EOL();
  1104. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1105. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  1106. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3);
  1107. SERIAL_PROTOCOLPGM(" ");
  1108. safe_delay(25);
  1109. }
  1110. SERIAL_EOL();
  1111. #if HAS_KILL
  1112. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  1113. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  1114. #endif
  1115. SERIAL_EOL();
  1116. safe_delay(50);
  1117. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  1118. SERIAL_EOL();
  1119. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  1120. SERIAL_EOL();
  1121. safe_delay(50);
  1122. SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.get_start_of_meshes()));
  1123. SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.get_end_of_meshes()));
  1124. safe_delay(50);
  1125. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  1126. SERIAL_EOL();
  1127. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
  1128. SERIAL_EOL();
  1129. safe_delay(25);
  1130. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.get_end_of_meshes() - settings.get_start_of_meshes())));
  1131. safe_delay(50);
  1132. SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());
  1133. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1134. safe_delay(25);
  1135. if (!sanity_check()) {
  1136. echo_name();
  1137. SERIAL_PROTOCOLLNPGM(" sanity checks passed.");
  1138. }
  1139. }
  1140. /**
  1141. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1142. * right now, it is good to have the extra information. Soon... we prune this.
  1143. */
  1144. void unified_bed_leveling::g29_eeprom_dump() {
  1145. unsigned char cccc;
  1146. uint16_t kkkk;
  1147. SERIAL_ECHO_START();
  1148. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1149. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1150. if (!(i & 0x3)) idle();
  1151. print_hex_word(i);
  1152. SERIAL_ECHOPGM(": ");
  1153. for (uint16_t j = 0; j < 16; j++) {
  1154. kkkk = i + j;
  1155. eeprom_read_block(&cccc, (void *)kkkk, 1);
  1156. print_hex_byte(cccc);
  1157. SERIAL_ECHO(' ');
  1158. }
  1159. SERIAL_EOL();
  1160. }
  1161. SERIAL_EOL();
  1162. }
  1163. /**
  1164. * When we are fully debugged, this may go away. But there are some valid
  1165. * use cases for the users. So we can wait and see what to do with it.
  1166. */
  1167. void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
  1168. int16_t a = settings.calc_num_meshes();
  1169. if (!a) {
  1170. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  1171. return;
  1172. }
  1173. if (!parser.has_value()) {
  1174. SERIAL_PROTOCOLLNPGM("?Storage slot # required.");
  1175. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1176. return;
  1177. }
  1178. g29_storage_slot = parser.value_int();
  1179. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  1180. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  1181. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1182. return;
  1183. }
  1184. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1185. settings.load_mesh(g29_storage_slot, &tmp_z_values);
  1186. SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot);
  1187. SERIAL_PROTOCOLLNPGM(" from current mesh.");
  1188. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1189. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1190. z_values[x][y] -= tmp_z_values[x][y];
  1191. }
  1192. mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
  1193. mesh_index_pair out_mesh;
  1194. out_mesh.x_index = out_mesh.y_index = -1;
  1195. // Get our reference position. Either the nozzle or probe location.
  1196. const float px = RAW_X_POSITION(lx) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1197. py = RAW_Y_POSITION(ly) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1198. float best_so_far = far_flag ? -99999.99 : 99999.99;
  1199. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1200. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1201. if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
  1202. || (type == REAL && !isnan(z_values[i][j]))
  1203. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1204. ) {
  1205. // We only get here if we found a Mesh Point of the specified type
  1206. float raw_x = RAW_CURRENT_POSITION(X), raw_y = RAW_CURRENT_POSITION(Y);
  1207. const float mx = mesh_index_to_xpos(i),
  1208. my = mesh_index_to_ypos(j);
  1209. // If using the probe as the reference there are some unreachable locations.
  1210. // Also for round beds, there are grid points outside the bed the nozzle can't reach.
  1211. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1212. if (probe_as_reference ? !position_is_reachable_by_probe_raw_xy(mx, my) : !position_is_reachable_raw_xy(mx, my))
  1213. continue;
  1214. // Reachable. Check if it's the best_so_far location to the nozzle.
  1215. // Add in a weighting factor that considers the current location of the nozzle.
  1216. float distance = HYPOT(px - mx, py - my);
  1217. /**
  1218. * If doing the far_flag action, we want to be as far as possible
  1219. * from the starting point and from any other probed points. We
  1220. * want the next point spread out and filling in any blank spaces
  1221. * in the mesh. So we add in some of the distance to every probed
  1222. * point we can find.
  1223. */
  1224. if (far_flag) {
  1225. for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
  1226. for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
  1227. if (i != k && j != l && !isnan(z_values[k][l])) {
  1228. //distance += pow((float) abs(i - k) * (MESH_X_DIST), 2) + pow((float) abs(j - l) * (MESH_Y_DIST), 2); // working here
  1229. distance += HYPOT(MESH_X_DIST, MESH_Y_DIST) / log(HYPOT((i - k) * (MESH_X_DIST) + .001, (j - l) * (MESH_Y_DIST)) + .001);
  1230. }
  1231. }
  1232. }
  1233. }
  1234. else
  1235. // factor in the distance from the current location for the normal case
  1236. // so the nozzle isn't running all over the bed.
  1237. distance += HYPOT(raw_x - mx, raw_y - my) * 0.1;
  1238. // if far_flag, look for farthest point
  1239. if (far_flag == (distance > best_so_far) && distance != best_so_far) {
  1240. best_so_far = distance; // We found a closer/farther location with
  1241. out_mesh.x_index = i; // the specified type of mesh value.
  1242. out_mesh.y_index = j;
  1243. out_mesh.distance = best_so_far;
  1244. }
  1245. }
  1246. } // for j
  1247. } // for i
  1248. return out_mesh;
  1249. }
  1250. #if ENABLED(NEWPANEL)
  1251. void unified_bed_leveling::fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
  1252. if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
  1253. g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
  1254. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1255. const bool is_offset = parser.seen('H');
  1256. const float h_offset = is_offset ? parser.value_linear_units() : Z_CLEARANCE_BETWEEN_PROBES;
  1257. if (is_offset && !WITHIN(h_offset, 0, 10)) {
  1258. SERIAL_PROTOCOLLNPGM("Offset out of bounds. (0 to 10mm)\n");
  1259. return;
  1260. }
  1261. #endif
  1262. mesh_index_pair location;
  1263. if (!position_is_reachable_xy(lx, ly)) {
  1264. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  1265. return;
  1266. }
  1267. save_ubl_active_state_and_disable();
  1268. LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH);
  1269. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1270. do_blocking_move_to_xy(lx, ly);
  1271. uint16_t not_done[16];
  1272. memset(not_done, 0xFF, sizeof(not_done));
  1273. do {
  1274. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
  1275. if (location.x_index < 0) break; // stop when we can't find any more reachable points.
  1276. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1277. // different location the next time through the loop
  1278. const float rawx = mesh_index_to_xpos(location.x_index),
  1279. rawy = mesh_index_to_ypos(location.y_index);
  1280. if (!position_is_reachable_raw_xy(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
  1281. break;
  1282. float new_z = z_values[location.x_index][location.y_index];
  1283. if (isnan(new_z)) // if the mesh point is invalid, set it to 0.0 so it can be edited
  1284. new_z = 0.0;
  1285. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to where we are going to edit
  1286. do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
  1287. new_z = FLOOR(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
  1288. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1289. has_control_of_lcd_panel = true;
  1290. if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted
  1291. lcd_refresh();
  1292. lcd_mesh_edit_setup(new_z);
  1293. do {
  1294. new_z = lcd_mesh_edit();
  1295. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1296. do_blocking_move_to_z(h_offset + new_z); // Move the nozzle as the point is edited
  1297. #endif
  1298. idle();
  1299. } while (!ubl_lcd_clicked());
  1300. lcd_return_to_status();
  1301. // The technique used here generates a race condition for the encoder click.
  1302. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
  1303. // Let's work on specifying a proper API for the LCD ASAP, OK?
  1304. has_control_of_lcd_panel = true;
  1305. // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
  1306. // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
  1307. // should be redone and compressed.
  1308. const millis_t nxt = millis() + 1500UL;
  1309. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1310. idle();
  1311. if (ELAPSED(millis(), nxt)) {
  1312. ubl_lcd_map_control = false;
  1313. lcd_return_to_status();
  1314. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1315. LCD_MESSAGEPGM(MSG_EDITING_STOPPED);
  1316. while (ubl_lcd_clicked()) idle();
  1317. goto FINE_TUNE_EXIT;
  1318. }
  1319. }
  1320. safe_delay(20); // We don't want any switch noise.
  1321. z_values[location.x_index][location.y_index] = new_z;
  1322. lcd_refresh();
  1323. } while (location.x_index >= 0 && --g29_repetition_cnt > 0);
  1324. FINE_TUNE_EXIT:
  1325. has_control_of_lcd_panel = false;
  1326. KEEPALIVE_STATE(IN_HANDLER);
  1327. if (do_ubl_mesh_map) display_map(g29_map_type);
  1328. restore_ubl_active_state_and_leave();
  1329. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1330. do_blocking_move_to_xy(lx, ly);
  1331. LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH);
  1332. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1333. if (ubl_lcd_map_control) {
  1334. #if ENABLED(DOGLCD)
  1335. lcd_goto_screen(_lcd_ubl_output_map_lcd);
  1336. #endif
  1337. }
  1338. else lcd_return_to_status();
  1339. }
  1340. #endif // NEWPANEL
  1341. /**
  1342. * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
  1343. * If an invalid location is found, use the next two points (if valid) to
  1344. * calculate a 'reasonable' value for the unprobed mesh point.
  1345. */
  1346. bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  1347. const int8_t x1 = x + xdir, x2 = x1 + xdir,
  1348. y1 = y + ydir, y2 = y1 + ydir;
  1349. // A NAN next to a pair of real values?
  1350. if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) {
  1351. if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward?
  1352. z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.)
  1353. else
  1354. z_values[x][y] = 2.0 * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
  1355. return true;
  1356. }
  1357. return false;
  1358. }
  1359. typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
  1360. void unified_bed_leveling::smart_fill_mesh() {
  1361. static const smart_fill_info
  1362. info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
  1363. info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
  1364. info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
  1365. info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
  1366. static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
  1367. // static const smart_fill_info info[] PROGMEM = {
  1368. // { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false } PROGMEM, // Bottom of the mesh looking up
  1369. // { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false } PROGMEM, // Top of the mesh looking down
  1370. // { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true } PROGMEM, // Left side of the mesh looking right
  1371. // { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } PROGMEM // Right side of the mesh looking left
  1372. // };
  1373. for (uint8_t i = 0; i < COUNT(info); ++i) {
  1374. const smart_fill_info *f = (smart_fill_info*)pgm_read_word(&info[i]);
  1375. const int8_t sx = pgm_read_word(&f->sx), sy = pgm_read_word(&f->sy),
  1376. ex = pgm_read_word(&f->ex), ey = pgm_read_word(&f->ey);
  1377. if (pgm_read_byte(&f->yfirst)) {
  1378. const int8_t dir = ex > sx ? 1 : -1;
  1379. for (uint8_t y = sy; y != ey; ++y)
  1380. for (uint8_t x = sx; x != ex; x += dir)
  1381. if (smart_fill_one(x, y, dir, 0)) break;
  1382. }
  1383. else {
  1384. const int8_t dir = ey > sy ? 1 : -1;
  1385. for (uint8_t x = sx; x != ex; ++x)
  1386. for (uint8_t y = sy; y != ey; y += dir)
  1387. if (smart_fill_one(x, y, 0, dir)) break;
  1388. }
  1389. }
  1390. }
  1391. void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
  1392. constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
  1393. x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
  1394. y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
  1395. y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
  1396. const float dx = float(x_max - x_min) / (g29_grid_size - 1.0),
  1397. dy = float(y_max - y_min) / (g29_grid_size - 1.0);
  1398. struct linear_fit_data lsf_results;
  1399. incremental_LSF_reset(&lsf_results);
  1400. bool zig_zag = false;
  1401. for (uint8_t ix = 0; ix < g29_grid_size; ix++) {
  1402. const float x = float(x_min) + ix * dx;
  1403. for (int8_t iy = 0; iy < g29_grid_size; iy++) {
  1404. const float y = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy);
  1405. float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), parser.seen('E'), g29_verbose_level); // TODO: Needs error handling
  1406. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1407. if (DEBUGGING(LEVELING)) {
  1408. SERIAL_CHAR('(');
  1409. SERIAL_PROTOCOL_F(x, 7);
  1410. SERIAL_CHAR(',');
  1411. SERIAL_PROTOCOL_F(y, 7);
  1412. SERIAL_ECHOPGM(") logical: ");
  1413. SERIAL_CHAR('(');
  1414. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
  1415. SERIAL_CHAR(',');
  1416. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
  1417. SERIAL_ECHOPGM(") measured: ");
  1418. SERIAL_PROTOCOL_F(measured_z, 7);
  1419. SERIAL_ECHOPGM(" correction: ");
  1420. SERIAL_PROTOCOL_F(get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
  1421. }
  1422. #endif
  1423. measured_z -= get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
  1424. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1425. if (DEBUGGING(LEVELING)) {
  1426. SERIAL_ECHOPGM(" final >>>---> ");
  1427. SERIAL_PROTOCOL_F(measured_z, 7);
  1428. SERIAL_EOL();
  1429. }
  1430. #endif
  1431. incremental_LSF(&lsf_results, x, y, measured_z);
  1432. }
  1433. zig_zag ^= true;
  1434. }
  1435. if (finish_incremental_LSF(&lsf_results)) {
  1436. SERIAL_ECHOPGM("Could not complete LSF!");
  1437. return;
  1438. }
  1439. if (g29_verbose_level > 3) {
  1440. SERIAL_ECHOPGM("LSF Results A=");
  1441. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1442. SERIAL_ECHOPGM(" B=");
  1443. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1444. SERIAL_ECHOPGM(" D=");
  1445. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1446. SERIAL_EOL();
  1447. }
  1448. vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
  1449. if (g29_verbose_level > 2) {
  1450. SERIAL_ECHOPGM("bed plane normal = [");
  1451. SERIAL_PROTOCOL_F(normal.x, 7);
  1452. SERIAL_PROTOCOLCHAR(',');
  1453. SERIAL_PROTOCOL_F(normal.y, 7);
  1454. SERIAL_PROTOCOLCHAR(',');
  1455. SERIAL_PROTOCOL_F(normal.z, 7);
  1456. SERIAL_ECHOLNPGM("]");
  1457. }
  1458. matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
  1459. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1460. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1461. float x_tmp = mesh_index_to_xpos(i),
  1462. y_tmp = mesh_index_to_ypos(j),
  1463. z_tmp = z_values[i][j];
  1464. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1465. if (DEBUGGING(LEVELING)) {
  1466. SERIAL_ECHOPGM("before rotation = [");
  1467. SERIAL_PROTOCOL_F(x_tmp, 7);
  1468. SERIAL_PROTOCOLCHAR(',');
  1469. SERIAL_PROTOCOL_F(y_tmp, 7);
  1470. SERIAL_PROTOCOLCHAR(',');
  1471. SERIAL_PROTOCOL_F(z_tmp, 7);
  1472. SERIAL_ECHOPGM("] ---> ");
  1473. safe_delay(20);
  1474. }
  1475. #endif
  1476. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  1477. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1478. if (DEBUGGING(LEVELING)) {
  1479. SERIAL_ECHOPGM("after rotation = [");
  1480. SERIAL_PROTOCOL_F(x_tmp, 7);
  1481. SERIAL_PROTOCOLCHAR(',');
  1482. SERIAL_PROTOCOL_F(y_tmp, 7);
  1483. SERIAL_PROTOCOLCHAR(',');
  1484. SERIAL_PROTOCOL_F(z_tmp, 7);
  1485. SERIAL_ECHOLNPGM("]");
  1486. safe_delay(55);
  1487. }
  1488. #endif
  1489. z_values[i][j] += z_tmp - lsf_results.D;
  1490. }
  1491. }
  1492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1493. if (DEBUGGING(LEVELING)) {
  1494. rotation.debug(PSTR("rotation matrix:"));
  1495. SERIAL_ECHOPGM("LSF Results A=");
  1496. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1497. SERIAL_ECHOPGM(" B=");
  1498. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1499. SERIAL_ECHOPGM(" D=");
  1500. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1501. SERIAL_EOL();
  1502. safe_delay(55);
  1503. SERIAL_ECHOPGM("bed plane normal = [");
  1504. SERIAL_PROTOCOL_F(normal.x, 7);
  1505. SERIAL_PROTOCOLCHAR(',');
  1506. SERIAL_PROTOCOL_F(normal.y, 7);
  1507. SERIAL_PROTOCOLCHAR(',');
  1508. SERIAL_PROTOCOL_F(normal.z, 7);
  1509. SERIAL_ECHOPGM("]\n");
  1510. SERIAL_EOL();
  1511. }
  1512. #endif
  1513. if (do_ubl_mesh_map) display_map(g29_map_type);
  1514. }
  1515. #if ENABLED(UBL_G29_P31)
  1516. void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
  1517. // For each undefined mesh point, compute a distance-weighted least squares fit
  1518. // from all the originally populated mesh points, weighted toward the point
  1519. // being extrapolated so that nearby points will have greater influence on
  1520. // the point being extrapolated. Then extrapolate the mesh point from WLSF.
  1521. static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big");
  1522. uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
  1523. struct linear_fit_data lsf_results;
  1524. SERIAL_ECHOPGM("Extrapolating mesh...");
  1525. const float weight_scaled = weight_factor * max(MESH_X_DIST, MESH_Y_DIST);
  1526. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++)
  1527. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++)
  1528. if (!isnan(z_values[jx][jy]))
  1529. SBI(bitmap[jx], jy);
  1530. for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
  1531. const float px = mesh_index_to_xpos(ix);
  1532. for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
  1533. const float py = mesh_index_to_ypos(iy);
  1534. if (isnan(z_values[ix][iy])) {
  1535. // undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
  1536. incremental_LSF_reset(&lsf_results);
  1537. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
  1538. const float rx = mesh_index_to_xpos(jx);
  1539. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
  1540. if (TEST(bitmap[jx], jy)) {
  1541. const float ry = mesh_index_to_ypos(jy),
  1542. rz = z_values[jx][jy],
  1543. w = 1.0 + weight_scaled / HYPOT((rx - px), (ry - py));
  1544. incremental_WLSF(&lsf_results, rx, ry, rz, w);
  1545. }
  1546. }
  1547. }
  1548. if (finish_incremental_LSF(&lsf_results)) {
  1549. SERIAL_ECHOLNPGM("Insufficient data");
  1550. return;
  1551. }
  1552. const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
  1553. z_values[ix][iy] = ez;
  1554. idle(); // housekeeping
  1555. }
  1556. }
  1557. }
  1558. SERIAL_ECHOLNPGM("done");
  1559. }
  1560. #endif // UBL_G29_P31
  1561. #endif // AUTO_BED_LEVELING_UBL