My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 209KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #ifdef MESH_BED_LEVELING
  37. #include "mesh_bed_leveling.h"
  38. #endif
  39. #include "ultralcd.h"
  40. #include "planner.h"
  41. #include "stepper.h"
  42. #include "temperature.h"
  43. #include "cardreader.h"
  44. #include "watchdog.h"
  45. #include "configuration_store.h"
  46. #include "language.h"
  47. #include "pins_arduino.h"
  48. #include "math.h"
  49. #include "buzzer.h"
  50. #ifdef BLINKM
  51. #include "blinkm.h"
  52. #include "Wire.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "servo.h"
  56. #endif
  57. #if HAS_DIGIPOTSS
  58. #include <SPI.h>
  59. #endif
  60. /**
  61. * Look here for descriptions of G-codes:
  62. * - http://linuxcnc.org/handbook/gcode/g-code.html
  63. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  64. *
  65. * Help us document these G-codes online:
  66. * - http://www.marlinfirmware.org/index.php/G-Code
  67. * - http://reprap.org/wiki/G-code
  68. *
  69. * -----------------
  70. * Implemented Codes
  71. * -----------------
  72. *
  73. * "G" Codes
  74. *
  75. * G0 -> G1
  76. * G1 - Coordinated Movement X Y Z E
  77. * G2 - CW ARC
  78. * G3 - CCW ARC
  79. * G4 - Dwell S<seconds> or P<milliseconds>
  80. * G10 - retract filament according to settings of M207
  81. * G11 - retract recover filament according to settings of M208
  82. * G28 - Home one or more axes
  83. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. * G30 - Single Z Probe, probes bed at current XY location.
  85. * G31 - Dock sled (Z_PROBE_SLED only)
  86. * G32 - Undock sled (Z_PROBE_SLED only)
  87. * G90 - Use Absolute Coordinates
  88. * G91 - Use Relative Coordinates
  89. * G92 - Set current position to coordinates given
  90. *
  91. * "M" Codes
  92. *
  93. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. * M1 - Same as M0
  95. * M17 - Enable/Power all stepper motors
  96. * M18 - Disable all stepper motors; same as M84
  97. * M20 - List SD card
  98. * M21 - Init SD card
  99. * M22 - Release SD card
  100. * M23 - Select SD file (M23 filename.g)
  101. * M24 - Start/resume SD print
  102. * M25 - Pause SD print
  103. * M26 - Set SD position in bytes (M26 S12345)
  104. * M27 - Report SD print status
  105. * M28 - Start SD write (M28 filename.g)
  106. * M29 - Stop SD write
  107. * M30 - Delete file from SD (M30 filename.g)
  108. * M31 - Output time since last M109 or SD card start to serial
  109. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. * M33 - Get the longname version of a path
  114. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  115. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  116. * M80 - Turn on Power Supply
  117. * M81 - Turn off Power Supply
  118. * M82 - Set E codes absolute (default)
  119. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  120. * M84 - Disable steppers until next move,
  121. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  122. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  123. * M92 - Set axis_steps_per_unit - same syntax as G92
  124. * M104 - Set extruder target temp
  125. * M105 - Read current temp
  126. * M106 - Fan on
  127. * M107 - Fan off
  128. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  129. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  130. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  131. * M110 - Set the current line number
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - Display a message on the controller screen
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower z-probe if present
  175. * M402 - Raise z-probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging Only)
  209. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  210. * M928 - Start SD logging (M928 filename.g) - ended by M29
  211. * M999 - Restart after being stopped by error
  212. *
  213. * "T" Codes
  214. *
  215. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  216. *
  217. */
  218. #ifdef M100_FREE_MEMORY_WATCHER
  219. void gcode_M100();
  220. #endif
  221. #ifdef SDSUPPORT
  222. CardReader card;
  223. #endif
  224. bool Running = true;
  225. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  226. static float feedrate = 1500.0, saved_feedrate;
  227. float current_position[NUM_AXIS] = { 0.0 };
  228. static float destination[NUM_AXIS] = { 0.0 };
  229. bool axis_known_position[3] = { false };
  230. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  231. static char *current_command, *current_command_args;
  232. static int cmd_queue_index_r = 0;
  233. static int cmd_queue_index_w = 0;
  234. static int commands_in_queue = 0;
  235. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  236. const float homing_feedrate[] = HOMING_FEEDRATE;
  237. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  238. int feedrate_multiplier = 100; //100->1 200->2
  239. int saved_feedrate_multiplier;
  240. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  241. bool volumetric_enabled = false;
  242. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  243. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  244. float home_offset[3] = { 0 };
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. uint8_t active_extruder = 0;
  248. int fanSpeed = 0;
  249. bool cancel_heatup = false;
  250. const char errormagic[] PROGMEM = "Error:";
  251. const char echomagic[] PROGMEM = "echo:";
  252. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  253. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  254. static char serial_char;
  255. static int serial_count = 0;
  256. static boolean comment_mode = false;
  257. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  258. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  259. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  260. // Inactivity shutdown
  261. millis_t previous_cmd_ms = 0;
  262. static millis_t max_inactive_time = 0;
  263. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  264. millis_t print_job_start_ms = 0; ///< Print job start time
  265. millis_t print_job_stop_ms = 0; ///< Print job stop time
  266. static uint8_t target_extruder;
  267. bool no_wait_for_cooling = true;
  268. bool target_direction;
  269. #ifdef ENABLE_AUTO_BED_LEVELING
  270. int xy_travel_speed = XY_TRAVEL_SPEED;
  271. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  272. #endif
  273. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  274. float z_endstop_adj = 0;
  275. #endif
  276. // Extruder offsets
  277. #if EXTRUDERS > 1
  278. #ifndef EXTRUDER_OFFSET_X
  279. #define EXTRUDER_OFFSET_X { 0 }
  280. #endif
  281. #ifndef EXTRUDER_OFFSET_Y
  282. #define EXTRUDER_OFFSET_Y { 0 }
  283. #endif
  284. float extruder_offset[][EXTRUDERS] = {
  285. EXTRUDER_OFFSET_X,
  286. EXTRUDER_OFFSET_Y
  287. #ifdef DUAL_X_CARRIAGE
  288. , { 0 } // supports offsets in XYZ plane
  289. #endif
  290. };
  291. #endif
  292. #ifdef SERVO_ENDSTOPS
  293. const int servo_endstops[] = SERVO_ENDSTOPS;
  294. const int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  295. #endif
  296. #ifdef BARICUDA
  297. int ValvePressure = 0;
  298. int EtoPPressure = 0;
  299. #endif
  300. #ifdef FWRETRACT
  301. bool autoretract_enabled = false;
  302. bool retracted[EXTRUDERS] = { false };
  303. bool retracted_swap[EXTRUDERS] = { false };
  304. float retract_length = RETRACT_LENGTH;
  305. float retract_length_swap = RETRACT_LENGTH_SWAP;
  306. float retract_feedrate = RETRACT_FEEDRATE;
  307. float retract_zlift = RETRACT_ZLIFT;
  308. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  309. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  310. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  311. #endif // FWRETRACT
  312. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  313. bool powersupply =
  314. #ifdef PS_DEFAULT_OFF
  315. false
  316. #else
  317. true
  318. #endif
  319. ;
  320. #endif
  321. #ifdef DELTA
  322. float delta[3] = { 0 };
  323. #define SIN_60 0.8660254037844386
  324. #define COS_60 0.5
  325. float endstop_adj[3] = { 0 };
  326. // these are the default values, can be overriden with M665
  327. float delta_radius = DELTA_RADIUS;
  328. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  329. float delta_tower1_y = -COS_60 * delta_radius;
  330. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  331. float delta_tower2_y = -COS_60 * delta_radius;
  332. float delta_tower3_x = 0; // back middle tower
  333. float delta_tower3_y = delta_radius;
  334. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  335. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  336. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  337. #ifdef ENABLE_AUTO_BED_LEVELING
  338. int delta_grid_spacing[2] = { 0, 0 };
  339. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  340. #endif
  341. #else
  342. static bool home_all_axis = true;
  343. #endif
  344. #ifdef SCARA
  345. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  346. static float delta[3] = { 0 };
  347. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  348. #endif
  349. #ifdef FILAMENT_SENSOR
  350. //Variables for Filament Sensor input
  351. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  352. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  353. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  354. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  355. int delay_index1 = 0; //index into ring buffer
  356. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  357. float delay_dist = 0; //delay distance counter
  358. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  359. #endif
  360. #ifdef FILAMENT_RUNOUT_SENSOR
  361. static bool filrunoutEnqueued = false;
  362. #endif
  363. #ifdef SDSUPPORT
  364. static bool fromsd[BUFSIZE];
  365. #endif
  366. #if NUM_SERVOS > 0
  367. Servo servo[NUM_SERVOS];
  368. #endif
  369. #ifdef CHDK
  370. unsigned long chdkHigh = 0;
  371. boolean chdkActive = false;
  372. #endif
  373. //===========================================================================
  374. //================================ Functions ================================
  375. //===========================================================================
  376. void process_next_command();
  377. void plan_arc(float target[NUM_AXIS], float *offset, uint8_t clockwise);
  378. bool setTargetedHotend(int code);
  379. void serial_echopair_P(const char *s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  380. void serial_echopair_P(const char *s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  381. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  382. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  383. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  384. #ifdef PREVENT_DANGEROUS_EXTRUDE
  385. float extrude_min_temp = EXTRUDE_MINTEMP;
  386. #endif
  387. #ifdef SDSUPPORT
  388. #include "SdFatUtil.h"
  389. int freeMemory() { return SdFatUtil::FreeRam(); }
  390. #else
  391. extern "C" {
  392. extern unsigned int __bss_end;
  393. extern unsigned int __heap_start;
  394. extern void *__brkval;
  395. int freeMemory() {
  396. int free_memory;
  397. if ((int)__brkval == 0)
  398. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  399. else
  400. free_memory = ((int)&free_memory) - ((int)__brkval);
  401. return free_memory;
  402. }
  403. }
  404. #endif //!SDSUPPORT
  405. /**
  406. * Inject the next command from the command queue, when possible
  407. * Return false only if no command was pending
  408. */
  409. static bool drain_queued_commands_P() {
  410. if (!queued_commands_P) return false;
  411. // Get the next 30 chars from the sequence of gcodes to run
  412. char cmd[30];
  413. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  414. cmd[sizeof(cmd) - 1] = '\0';
  415. // Look for the end of line, or the end of sequence
  416. size_t i = 0;
  417. char c;
  418. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  419. cmd[i] = '\0';
  420. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  421. if (c)
  422. queued_commands_P += i + 1; // move to next command
  423. else
  424. queued_commands_P = NULL; // will have no more commands in the sequence
  425. }
  426. return true;
  427. }
  428. /**
  429. * Record one or many commands to run from program memory.
  430. * Aborts the current queue, if any.
  431. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  432. */
  433. void enqueuecommands_P(const char* pgcode) {
  434. queued_commands_P = pgcode;
  435. drain_queued_commands_P(); // first command executed asap (when possible)
  436. }
  437. /**
  438. * Copy a command directly into the main command buffer, from RAM.
  439. *
  440. * This is done in a non-safe way and needs a rework someday.
  441. * Returns false if it doesn't add any command
  442. */
  443. bool enqueuecommand(const char *cmd) {
  444. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  445. // This is dangerous if a mixing of serial and this happens
  446. char *command = command_queue[cmd_queue_index_w];
  447. strcpy(command, cmd);
  448. SERIAL_ECHO_START;
  449. SERIAL_ECHOPGM(MSG_Enqueueing);
  450. SERIAL_ECHO(command);
  451. SERIAL_ECHOLNPGM("\"");
  452. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  453. commands_in_queue++;
  454. return true;
  455. }
  456. void setup_killpin() {
  457. #if HAS_KILL
  458. SET_INPUT(KILL_PIN);
  459. WRITE(KILL_PIN, HIGH);
  460. #endif
  461. }
  462. void setup_filrunoutpin() {
  463. #if HAS_FILRUNOUT
  464. pinMode(FILRUNOUT_PIN, INPUT);
  465. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  466. WRITE(FILRUNOUT_PIN, HIGH);
  467. #endif
  468. #endif
  469. }
  470. // Set home pin
  471. void setup_homepin(void) {
  472. #if HAS_HOME
  473. SET_INPUT(HOME_PIN);
  474. WRITE(HOME_PIN, HIGH);
  475. #endif
  476. }
  477. void setup_photpin() {
  478. #if HAS_PHOTOGRAPH
  479. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  480. #endif
  481. }
  482. void setup_powerhold() {
  483. #if HAS_SUICIDE
  484. OUT_WRITE(SUICIDE_PIN, HIGH);
  485. #endif
  486. #if HAS_POWER_SWITCH
  487. #ifdef PS_DEFAULT_OFF
  488. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  489. #else
  490. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  491. #endif
  492. #endif
  493. }
  494. void suicide() {
  495. #if HAS_SUICIDE
  496. OUT_WRITE(SUICIDE_PIN, LOW);
  497. #endif
  498. }
  499. void servo_init() {
  500. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  501. servo[0].attach(SERVO0_PIN);
  502. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  503. #endif
  504. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  505. servo[1].attach(SERVO1_PIN);
  506. servo[1].detach();
  507. #endif
  508. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  509. servo[2].attach(SERVO2_PIN);
  510. servo[2].detach();
  511. #endif
  512. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  513. servo[3].attach(SERVO3_PIN);
  514. servo[3].detach();
  515. #endif
  516. // Set position of Servo Endstops that are defined
  517. #ifdef SERVO_ENDSTOPS
  518. for (int i = 0; i < 3; i++)
  519. if (servo_endstops[i] >= 0)
  520. servo[servo_endstops[i]].move(servo_endstop_angles[i * 2 + 1]);
  521. #endif
  522. }
  523. /**
  524. * Stepper Reset (RigidBoard, et.al.)
  525. */
  526. #if HAS_STEPPER_RESET
  527. void disableStepperDrivers() {
  528. pinMode(STEPPER_RESET_PIN, OUTPUT);
  529. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  530. }
  531. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  532. #endif
  533. /**
  534. * Marlin entry-point: Set up before the program loop
  535. * - Set up the kill pin, filament runout, power hold
  536. * - Start the serial port
  537. * - Print startup messages and diagnostics
  538. * - Get EEPROM or default settings
  539. * - Initialize managers for:
  540. * • temperature
  541. * • planner
  542. * • watchdog
  543. * • stepper
  544. * • photo pin
  545. * • servos
  546. * • LCD controller
  547. * • Digipot I2C
  548. * • Z probe sled
  549. * • status LEDs
  550. */
  551. void setup() {
  552. setup_killpin();
  553. setup_filrunoutpin();
  554. setup_powerhold();
  555. #if HAS_STEPPER_RESET
  556. disableStepperDrivers();
  557. #endif
  558. MYSERIAL.begin(BAUDRATE);
  559. SERIAL_PROTOCOLLNPGM("start");
  560. SERIAL_ECHO_START;
  561. // Check startup - does nothing if bootloader sets MCUSR to 0
  562. byte mcu = MCUSR;
  563. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  564. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  565. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  566. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  567. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  568. MCUSR = 0;
  569. SERIAL_ECHOPGM(MSG_MARLIN);
  570. SERIAL_ECHOLNPGM(" " BUILD_VERSION);
  571. #ifdef STRING_DISTRIBUTION_DATE
  572. #ifdef STRING_CONFIG_H_AUTHOR
  573. SERIAL_ECHO_START;
  574. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  575. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  576. SERIAL_ECHOPGM(MSG_AUTHOR);
  577. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  578. SERIAL_ECHOPGM("Compiled: ");
  579. SERIAL_ECHOLNPGM(__DATE__);
  580. #endif // STRING_CONFIG_H_AUTHOR
  581. #endif // STRING_DISTRIBUTION_DATE
  582. SERIAL_ECHO_START;
  583. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  584. SERIAL_ECHO(freeMemory());
  585. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  586. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  587. #ifdef SDSUPPORT
  588. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  589. #endif
  590. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  591. Config_RetrieveSettings();
  592. lcd_init();
  593. _delay_ms(1000); // wait 1sec to display the splash screen
  594. tp_init(); // Initialize temperature loop
  595. plan_init(); // Initialize planner;
  596. watchdog_init();
  597. st_init(); // Initialize stepper, this enables interrupts!
  598. setup_photpin();
  599. servo_init();
  600. #if HAS_CONTROLLERFAN
  601. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  602. #endif
  603. #if HAS_STEPPER_RESET
  604. enableStepperDrivers();
  605. #endif
  606. #ifdef DIGIPOT_I2C
  607. digipot_i2c_init();
  608. #endif
  609. #ifdef Z_PROBE_SLED
  610. pinMode(SLED_PIN, OUTPUT);
  611. digitalWrite(SLED_PIN, LOW); // turn it off
  612. #endif // Z_PROBE_SLED
  613. setup_homepin();
  614. #ifdef STAT_LED_RED
  615. pinMode(STAT_LED_RED, OUTPUT);
  616. digitalWrite(STAT_LED_RED, LOW); // turn it off
  617. #endif
  618. #ifdef STAT_LED_BLUE
  619. pinMode(STAT_LED_BLUE, OUTPUT);
  620. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  621. #endif
  622. }
  623. /**
  624. * The main Marlin program loop
  625. *
  626. * - Save or log commands to SD
  627. * - Process available commands (if not saving)
  628. * - Call heater manager
  629. * - Call inactivity manager
  630. * - Call endstop manager
  631. * - Call LCD update
  632. */
  633. void loop() {
  634. if (commands_in_queue < BUFSIZE - 1) get_command();
  635. #ifdef SDSUPPORT
  636. card.checkautostart(false);
  637. #endif
  638. if (commands_in_queue) {
  639. #ifdef SDSUPPORT
  640. if (card.saving) {
  641. char *command = command_queue[cmd_queue_index_r];
  642. if (strstr_P(command, PSTR("M29"))) {
  643. // M29 closes the file
  644. card.closefile();
  645. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  646. }
  647. else {
  648. // Write the string from the read buffer to SD
  649. card.write_command(command);
  650. if (card.logging)
  651. process_next_command(); // The card is saving because it's logging
  652. else
  653. SERIAL_PROTOCOLLNPGM(MSG_OK);
  654. }
  655. }
  656. else
  657. process_next_command();
  658. #else
  659. process_next_command();
  660. #endif // SDSUPPORT
  661. commands_in_queue--;
  662. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  663. }
  664. checkHitEndstops();
  665. idle();
  666. }
  667. void gcode_line_error(const char *err, bool doFlush=true) {
  668. SERIAL_ERROR_START;
  669. serialprintPGM(err);
  670. SERIAL_ERRORLN(gcode_LastN);
  671. //Serial.println(gcode_N);
  672. if (doFlush) FlushSerialRequestResend();
  673. serial_count = 0;
  674. }
  675. /**
  676. * Add to the circular command queue the next command from:
  677. * - The command-injection queue (queued_commands_P)
  678. * - The active serial input (usually USB)
  679. * - The SD card file being actively printed
  680. */
  681. void get_command() {
  682. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  683. #ifdef NO_TIMEOUTS
  684. static millis_t last_command_time = 0;
  685. millis_t ms = millis();
  686. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  687. SERIAL_ECHOLNPGM(MSG_WAIT);
  688. last_command_time = ms;
  689. }
  690. #endif
  691. //
  692. // Loop while serial characters are incoming and the queue is not full
  693. //
  694. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  695. #ifdef NO_TIMEOUTS
  696. last_command_time = ms;
  697. #endif
  698. serial_char = MYSERIAL.read();
  699. //
  700. // If the character ends the line, or the line is full...
  701. //
  702. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  703. // end of line == end of comment
  704. comment_mode = false;
  705. if (!serial_count) return; // empty lines just exit
  706. char *command = command_queue[cmd_queue_index_w];
  707. command[serial_count] = 0; // terminate string
  708. // this item in the queue is not from sd
  709. #ifdef SDSUPPORT
  710. fromsd[cmd_queue_index_w] = false;
  711. #endif
  712. char *npos = strchr(command, 'N');
  713. char *apos = strchr(command, '*');
  714. if (npos) {
  715. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  716. if (M110) {
  717. char *n2pos = strchr(command + 4, 'N');
  718. if (n2pos) npos = n2pos;
  719. }
  720. gcode_N = strtol(npos + 1, NULL, 10);
  721. if (gcode_N != gcode_LastN + 1 && !M110) {
  722. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  723. return;
  724. }
  725. if (apos) {
  726. byte checksum = 0, count = 0;
  727. while (command[count] != '*') checksum ^= command[count++];
  728. if (strtol(apos + 1, NULL, 10) != checksum) {
  729. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  730. return;
  731. }
  732. // if no errors, continue parsing
  733. }
  734. else if (npos == command) {
  735. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  736. return;
  737. }
  738. gcode_LastN = gcode_N;
  739. // if no errors, continue parsing
  740. }
  741. else if (apos) { // No '*' without 'N'
  742. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  743. return;
  744. }
  745. // Movement commands alert when stopped
  746. if (IsStopped()) {
  747. char *gpos = strchr(command, 'G');
  748. if (gpos) {
  749. int codenum = strtol(gpos + 1, NULL, 10);
  750. switch (codenum) {
  751. case 0:
  752. case 1:
  753. case 2:
  754. case 3:
  755. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  756. LCD_MESSAGEPGM(MSG_STOPPED);
  757. break;
  758. }
  759. }
  760. }
  761. // If command was e-stop process now
  762. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  763. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  764. commands_in_queue += 1;
  765. serial_count = 0; //clear buffer
  766. }
  767. else if (serial_char == '\\') { // Handle escapes
  768. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  769. // if we have one more character, copy it over
  770. serial_char = MYSERIAL.read();
  771. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  772. }
  773. // otherwise do nothing
  774. }
  775. else { // its not a newline, carriage return or escape char
  776. if (serial_char == ';') comment_mode = true;
  777. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  778. }
  779. }
  780. #ifdef SDSUPPORT
  781. if (!card.sdprinting || serial_count) return;
  782. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  783. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  784. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  785. static bool stop_buffering = false;
  786. if (commands_in_queue == 0) stop_buffering = false;
  787. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  788. int16_t n = card.get();
  789. serial_char = (char)n;
  790. if (serial_char == '\n' || serial_char == '\r' ||
  791. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  792. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  793. ) {
  794. if (card.eof()) {
  795. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  796. print_job_stop_ms = millis();
  797. char time[30];
  798. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  799. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  800. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  801. SERIAL_ECHO_START;
  802. SERIAL_ECHOLN(time);
  803. lcd_setstatus(time, true);
  804. card.printingHasFinished();
  805. card.checkautostart(true);
  806. }
  807. if (serial_char == '#') stop_buffering = true;
  808. if (!serial_count) {
  809. comment_mode = false; //for new command
  810. return; //if empty line
  811. }
  812. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  813. // if (!comment_mode) {
  814. fromsd[cmd_queue_index_w] = true;
  815. commands_in_queue += 1;
  816. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  817. // }
  818. comment_mode = false; //for new command
  819. serial_count = 0; //clear buffer
  820. }
  821. else {
  822. if (serial_char == ';') comment_mode = true;
  823. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  824. }
  825. }
  826. #endif // SDSUPPORT
  827. }
  828. bool code_has_value() {
  829. int i = 1;
  830. char c = seen_pointer[i];
  831. if (c == '-' || c == '+') c = seen_pointer[++i];
  832. if (c == '.') c = seen_pointer[++i];
  833. return (c >= '0' && c <= '9');
  834. }
  835. float code_value() {
  836. float ret;
  837. char *e = strchr(seen_pointer, 'E');
  838. if (e) {
  839. *e = 0;
  840. ret = strtod(seen_pointer+1, NULL);
  841. *e = 'E';
  842. }
  843. else
  844. ret = strtod(seen_pointer+1, NULL);
  845. return ret;
  846. }
  847. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  848. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  849. bool code_seen(char code) {
  850. seen_pointer = strchr(current_command_args, code);
  851. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  852. }
  853. #define DEFINE_PGM_READ_ANY(type, reader) \
  854. static inline type pgm_read_any(const type *p) \
  855. { return pgm_read_##reader##_near(p); }
  856. DEFINE_PGM_READ_ANY(float, float);
  857. DEFINE_PGM_READ_ANY(signed char, byte);
  858. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  859. static const PROGMEM type array##_P[3] = \
  860. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  861. static inline type array(int axis) \
  862. { return pgm_read_any(&array##_P[axis]); }
  863. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  864. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  865. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  866. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  867. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  868. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  869. #ifdef DUAL_X_CARRIAGE
  870. #define DXC_FULL_CONTROL_MODE 0
  871. #define DXC_AUTO_PARK_MODE 1
  872. #define DXC_DUPLICATION_MODE 2
  873. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  874. static float x_home_pos(int extruder) {
  875. if (extruder == 0)
  876. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  877. else
  878. // In dual carriage mode the extruder offset provides an override of the
  879. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  880. // This allow soft recalibration of the second extruder offset position without firmware reflash
  881. // (through the M218 command).
  882. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  883. }
  884. static int x_home_dir(int extruder) {
  885. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  886. }
  887. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  888. static bool active_extruder_parked = false; // used in mode 1 & 2
  889. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  890. static millis_t delayed_move_time = 0; // used in mode 1
  891. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  892. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  893. bool extruder_duplication_enabled = false; // used in mode 2
  894. #endif //DUAL_X_CARRIAGE
  895. static void set_axis_is_at_home(AxisEnum axis) {
  896. #ifdef DUAL_X_CARRIAGE
  897. if (axis == X_AXIS) {
  898. if (active_extruder != 0) {
  899. current_position[X_AXIS] = x_home_pos(active_extruder);
  900. min_pos[X_AXIS] = X2_MIN_POS;
  901. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  902. return;
  903. }
  904. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  905. float xoff = home_offset[X_AXIS];
  906. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  907. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  908. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  909. return;
  910. }
  911. }
  912. #endif
  913. #ifdef SCARA
  914. if (axis == X_AXIS || axis == Y_AXIS) {
  915. float homeposition[3];
  916. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  917. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  918. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  919. // Works out real Homeposition angles using inverse kinematics,
  920. // and calculates homing offset using forward kinematics
  921. calculate_delta(homeposition);
  922. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  923. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  924. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  925. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  926. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  927. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  928. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  929. calculate_SCARA_forward_Transform(delta);
  930. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  931. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  932. current_position[axis] = delta[axis];
  933. // SCARA home positions are based on configuration since the actual limits are determined by the
  934. // inverse kinematic transform.
  935. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  936. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  937. }
  938. else
  939. #endif
  940. {
  941. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  942. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  943. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  944. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  945. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  946. #endif
  947. }
  948. }
  949. /**
  950. * Some planner shorthand inline functions
  951. */
  952. inline void set_homing_bump_feedrate(AxisEnum axis) {
  953. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  954. int hbd = homing_bump_divisor[axis];
  955. if (hbd < 1) {
  956. hbd = 10;
  957. SERIAL_ECHO_START;
  958. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  959. }
  960. feedrate = homing_feedrate[axis] / hbd;
  961. }
  962. inline void line_to_current_position() {
  963. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  964. }
  965. inline void line_to_z(float zPosition) {
  966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  967. }
  968. inline void line_to_destination(float mm_m) {
  969. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  970. }
  971. inline void line_to_destination() {
  972. line_to_destination(feedrate);
  973. }
  974. inline void sync_plan_position() {
  975. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  976. }
  977. #if defined(DELTA) || defined(SCARA)
  978. inline void sync_plan_position_delta() {
  979. calculate_delta(current_position);
  980. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  981. }
  982. #endif
  983. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  984. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  985. static void setup_for_endstop_move() {
  986. saved_feedrate = feedrate;
  987. saved_feedrate_multiplier = feedrate_multiplier;
  988. feedrate_multiplier = 100;
  989. refresh_cmd_timeout();
  990. enable_endstops(true);
  991. }
  992. #ifdef ENABLE_AUTO_BED_LEVELING
  993. #ifdef DELTA
  994. /**
  995. * Calculate delta, start a line, and set current_position to destination
  996. */
  997. void prepare_move_raw() {
  998. refresh_cmd_timeout();
  999. calculate_delta(destination);
  1000. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  1001. set_current_to_destination();
  1002. }
  1003. #endif
  1004. #ifdef AUTO_BED_LEVELING_GRID
  1005. #ifndef DELTA
  1006. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  1007. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1008. planeNormal.debug("planeNormal");
  1009. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1010. //bedLevel.debug("bedLevel");
  1011. //plan_bed_level_matrix.debug("bed level before");
  1012. //vector_3 uncorrected_position = plan_get_position_mm();
  1013. //uncorrected_position.debug("position before");
  1014. vector_3 corrected_position = plan_get_position();
  1015. //corrected_position.debug("position after");
  1016. current_position[X_AXIS] = corrected_position.x;
  1017. current_position[Y_AXIS] = corrected_position.y;
  1018. current_position[Z_AXIS] = corrected_position.z;
  1019. sync_plan_position();
  1020. }
  1021. #endif // !DELTA
  1022. #else // !AUTO_BED_LEVELING_GRID
  1023. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1024. plan_bed_level_matrix.set_to_identity();
  1025. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1026. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1027. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1028. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1029. if (planeNormal.z < 0) {
  1030. planeNormal.x = -planeNormal.x;
  1031. planeNormal.y = -planeNormal.y;
  1032. planeNormal.z = -planeNormal.z;
  1033. }
  1034. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1035. vector_3 corrected_position = plan_get_position();
  1036. current_position[X_AXIS] = corrected_position.x;
  1037. current_position[Y_AXIS] = corrected_position.y;
  1038. current_position[Z_AXIS] = corrected_position.z;
  1039. sync_plan_position();
  1040. }
  1041. #endif // !AUTO_BED_LEVELING_GRID
  1042. static void run_z_probe() {
  1043. #ifdef DELTA
  1044. float start_z = current_position[Z_AXIS];
  1045. long start_steps = st_get_position(Z_AXIS);
  1046. // move down slowly until you find the bed
  1047. feedrate = homing_feedrate[Z_AXIS] / 4;
  1048. destination[Z_AXIS] = -10;
  1049. prepare_move_raw(); // this will also set_current_to_destination
  1050. st_synchronize();
  1051. endstops_hit_on_purpose(); // clear endstop hit flags
  1052. // we have to let the planner know where we are right now as it is not where we said to go.
  1053. long stop_steps = st_get_position(Z_AXIS);
  1054. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1055. current_position[Z_AXIS] = mm;
  1056. sync_plan_position_delta();
  1057. #else // !DELTA
  1058. plan_bed_level_matrix.set_to_identity();
  1059. feedrate = homing_feedrate[Z_AXIS];
  1060. // Move down until the probe (or endstop?) is triggered
  1061. float zPosition = -(Z_MAX_LENGTH + 10);
  1062. line_to_z(zPosition);
  1063. st_synchronize();
  1064. // Tell the planner where we ended up - Get this from the stepper handler
  1065. zPosition = st_get_position_mm(Z_AXIS);
  1066. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1067. // move up the retract distance
  1068. zPosition += home_bump_mm(Z_AXIS);
  1069. line_to_z(zPosition);
  1070. st_synchronize();
  1071. endstops_hit_on_purpose(); // clear endstop hit flags
  1072. // move back down slowly to find bed
  1073. set_homing_bump_feedrate(Z_AXIS);
  1074. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1075. line_to_z(zPosition);
  1076. st_synchronize();
  1077. endstops_hit_on_purpose(); // clear endstop hit flags
  1078. // Get the current stepper position after bumping an endstop
  1079. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1080. sync_plan_position();
  1081. #endif // !DELTA
  1082. }
  1083. /**
  1084. * Plan a move to (X, Y, Z) and set the current_position
  1085. * The final current_position may not be the one that was requested
  1086. */
  1087. static void do_blocking_move_to(float x, float y, float z) {
  1088. float oldFeedRate = feedrate;
  1089. #ifdef DELTA
  1090. feedrate = XY_TRAVEL_SPEED;
  1091. destination[X_AXIS] = x;
  1092. destination[Y_AXIS] = y;
  1093. destination[Z_AXIS] = z;
  1094. prepare_move_raw(); // this will also set_current_to_destination
  1095. st_synchronize();
  1096. #else
  1097. feedrate = homing_feedrate[Z_AXIS];
  1098. current_position[Z_AXIS] = z;
  1099. line_to_current_position();
  1100. st_synchronize();
  1101. feedrate = xy_travel_speed;
  1102. current_position[X_AXIS] = x;
  1103. current_position[Y_AXIS] = y;
  1104. line_to_current_position();
  1105. st_synchronize();
  1106. #endif
  1107. feedrate = oldFeedRate;
  1108. }
  1109. inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
  1110. inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
  1111. inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
  1112. static void clean_up_after_endstop_move() {
  1113. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1114. enable_endstops(false);
  1115. #endif
  1116. feedrate = saved_feedrate;
  1117. feedrate_multiplier = saved_feedrate_multiplier;
  1118. refresh_cmd_timeout();
  1119. }
  1120. static void deploy_z_probe() {
  1121. #ifdef SERVO_ENDSTOPS
  1122. // Engage Z Servo endstop if enabled
  1123. if (servo_endstops[Z_AXIS] >= 0) servo[servo_endstops[Z_AXIS]].move(servo_endstop_angles[Z_AXIS * 2]);
  1124. #elif defined(Z_PROBE_ALLEN_KEY)
  1125. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1126. // If endstop is already false, the probe is deployed
  1127. #ifdef Z_PROBE_ENDSTOP
  1128. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1129. if (z_probe_endstop)
  1130. #else
  1131. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1132. if (z_min_endstop)
  1133. #endif
  1134. {
  1135. // Move to the start position to initiate deployment
  1136. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1137. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1138. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1139. prepare_move_raw(); // this will also set_current_to_destination
  1140. // Move to engage deployment
  1141. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
  1142. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1143. }
  1144. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
  1145. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1146. }
  1147. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
  1148. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1149. }
  1150. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
  1151. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1152. }
  1153. prepare_move_raw();
  1154. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1155. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1156. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1157. }
  1158. // Move to trigger deployment
  1159. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1160. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1161. }
  1162. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
  1163. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1164. }
  1165. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
  1166. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1167. }
  1168. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
  1169. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1170. }
  1171. prepare_move_raw();
  1172. #endif
  1173. }
  1174. // Partially Home X,Y for safety
  1175. destination[X_AXIS] = destination[X_AXIS]*0.75;
  1176. destination[Y_AXIS] = destination[Y_AXIS]*0.75;
  1177. prepare_move_raw(); // this will also set_current_to_destination
  1178. st_synchronize();
  1179. #ifdef Z_PROBE_ENDSTOP
  1180. z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1181. if (z_probe_endstop)
  1182. #else
  1183. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1184. if (z_min_endstop)
  1185. #endif
  1186. {
  1187. if (IsRunning()) {
  1188. SERIAL_ERROR_START;
  1189. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1190. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1191. }
  1192. Stop();
  1193. }
  1194. #endif // Z_PROBE_ALLEN_KEY
  1195. }
  1196. static void stow_z_probe(bool doRaise=true) {
  1197. #ifdef SERVO_ENDSTOPS
  1198. // Retract Z Servo endstop if enabled
  1199. if (servo_endstops[Z_AXIS] >= 0) {
  1200. #if Z_RAISE_AFTER_PROBING > 0
  1201. if (doRaise) {
  1202. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1203. st_synchronize();
  1204. }
  1205. #endif
  1206. // Change the Z servo angle
  1207. servo[servo_endstops[Z_AXIS]].move(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1208. }
  1209. #elif defined(Z_PROBE_ALLEN_KEY)
  1210. // Move up for safety
  1211. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1212. #if Z_RAISE_AFTER_PROBING > 0
  1213. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1214. prepare_move_raw(); // this will also set_current_to_destination
  1215. #endif
  1216. // Move to the start position to initiate retraction
  1217. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1218. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1219. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1220. prepare_move_raw();
  1221. // Move the nozzle down to push the probe into retracted position
  1222. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
  1223. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1224. }
  1225. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
  1226. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1227. }
  1228. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
  1229. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1230. }
  1231. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1232. prepare_move_raw();
  1233. // Move up for safety
  1234. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
  1235. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1236. }
  1237. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
  1238. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1239. }
  1240. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
  1241. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1242. }
  1243. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1244. prepare_move_raw();
  1245. // Home XY for safety
  1246. feedrate = homing_feedrate[X_AXIS]/2;
  1247. destination[X_AXIS] = 0;
  1248. destination[Y_AXIS] = 0;
  1249. prepare_move_raw(); // this will also set_current_to_destination
  1250. st_synchronize();
  1251. #ifdef Z_PROBE_ENDSTOP
  1252. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1253. if (!z_probe_endstop)
  1254. #else
  1255. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1256. if (!z_min_endstop)
  1257. #endif
  1258. {
  1259. if (IsRunning()) {
  1260. SERIAL_ERROR_START;
  1261. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1262. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1263. }
  1264. Stop();
  1265. }
  1266. #endif // Z_PROBE_ALLEN_KEY
  1267. }
  1268. enum ProbeAction {
  1269. ProbeStay = 0,
  1270. ProbeDeploy = BIT(0),
  1271. ProbeStow = BIT(1),
  1272. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1273. };
  1274. // Probe bed height at position (x,y), returns the measured z value
  1275. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1276. // Move Z up to the z_before height, then move the probe to the given XY
  1277. do_blocking_move_to_z(z_before); // this also updates current_position
  1278. do_blocking_move_to_xy(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER); // this also updates current_position
  1279. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1280. if (probe_action & ProbeDeploy) deploy_z_probe();
  1281. #endif
  1282. run_z_probe();
  1283. float measured_z = current_position[Z_AXIS];
  1284. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1285. if (probe_action & ProbeStow) stow_z_probe();
  1286. #endif
  1287. if (verbose_level > 2) {
  1288. SERIAL_PROTOCOLPGM("Bed X: ");
  1289. SERIAL_PROTOCOL_F(x, 3);
  1290. SERIAL_PROTOCOLPGM(" Y: ");
  1291. SERIAL_PROTOCOL_F(y, 3);
  1292. SERIAL_PROTOCOLPGM(" Z: ");
  1293. SERIAL_PROTOCOL_F(measured_z, 3);
  1294. SERIAL_EOL;
  1295. }
  1296. return measured_z;
  1297. }
  1298. #ifdef DELTA
  1299. /**
  1300. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1301. */
  1302. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1303. if (bed_level[x][y] != 0.0) {
  1304. return; // Don't overwrite good values.
  1305. }
  1306. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1307. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1308. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1309. float median = c; // Median is robust (ignores outliers).
  1310. if (a < b) {
  1311. if (b < c) median = b;
  1312. if (c < a) median = a;
  1313. } else { // b <= a
  1314. if (c < b) median = b;
  1315. if (a < c) median = a;
  1316. }
  1317. bed_level[x][y] = median;
  1318. }
  1319. // Fill in the unprobed points (corners of circular print surface)
  1320. // using linear extrapolation, away from the center.
  1321. static void extrapolate_unprobed_bed_level() {
  1322. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1323. for (int y = 0; y <= half; y++) {
  1324. for (int x = 0; x <= half; x++) {
  1325. if (x + y < 3) continue;
  1326. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1327. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1328. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1329. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1330. }
  1331. }
  1332. }
  1333. // Print calibration results for plotting or manual frame adjustment.
  1334. static void print_bed_level() {
  1335. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1336. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1337. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1338. SERIAL_PROTOCOLCHAR(' ');
  1339. }
  1340. SERIAL_EOL;
  1341. }
  1342. }
  1343. // Reset calibration results to zero.
  1344. void reset_bed_level() {
  1345. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1346. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1347. bed_level[x][y] = 0.0;
  1348. }
  1349. }
  1350. }
  1351. #endif // DELTA
  1352. #endif // ENABLE_AUTO_BED_LEVELING
  1353. #ifdef Z_PROBE_SLED
  1354. #ifndef SLED_DOCKING_OFFSET
  1355. #define SLED_DOCKING_OFFSET 0
  1356. #endif
  1357. /**
  1358. * Method to dock/undock a sled designed by Charles Bell.
  1359. *
  1360. * dock[in] If true, move to MAX_X and engage the electromagnet
  1361. * offset[in] The additional distance to move to adjust docking location
  1362. */
  1363. static void dock_sled(bool dock, int offset=0) {
  1364. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1365. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1366. SERIAL_ECHO_START;
  1367. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1368. return;
  1369. }
  1370. float oldXpos = current_position[X_AXIS]; // save x position
  1371. if (dock) {
  1372. #if Z_RAISE_AFTER_PROBING > 0
  1373. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // raise Z
  1374. #endif
  1375. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
  1376. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1377. } else {
  1378. float z_loc = current_position[Z_AXIS];
  1379. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1380. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1381. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1382. }
  1383. do_blocking_move_to_x(oldXpos); // return to position before docking
  1384. }
  1385. #endif // Z_PROBE_SLED
  1386. /**
  1387. * Home an individual axis
  1388. */
  1389. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1390. static void homeaxis(AxisEnum axis) {
  1391. #define HOMEAXIS_DO(LETTER) \
  1392. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1393. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1394. int axis_home_dir =
  1395. #ifdef DUAL_X_CARRIAGE
  1396. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1397. #endif
  1398. home_dir(axis);
  1399. // Set the axis position as setup for the move
  1400. current_position[axis] = 0;
  1401. sync_plan_position();
  1402. #ifdef Z_PROBE_SLED
  1403. // Get Probe
  1404. if (axis == Z_AXIS) {
  1405. if (axis_home_dir < 0) dock_sled(false);
  1406. }
  1407. #endif
  1408. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1409. // Deploy a probe if there is one, and homing towards the bed
  1410. if (axis == Z_AXIS) {
  1411. if (axis_home_dir < 0) deploy_z_probe();
  1412. }
  1413. #endif
  1414. #ifdef SERVO_ENDSTOPS
  1415. if (axis != Z_AXIS) {
  1416. // Engage Servo endstop if enabled
  1417. if (servo_endstops[axis] >= 0)
  1418. servo[servo_endstops[axis]].move(servo_endstop_angles[axis * 2]);
  1419. }
  1420. #endif
  1421. // Set a flag for Z motor locking
  1422. #ifdef Z_DUAL_ENDSTOPS
  1423. if (axis == Z_AXIS) In_Homing_Process(true);
  1424. #endif
  1425. // Move towards the endstop until an endstop is triggered
  1426. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1427. feedrate = homing_feedrate[axis];
  1428. line_to_destination();
  1429. st_synchronize();
  1430. // Set the axis position as setup for the move
  1431. current_position[axis] = 0;
  1432. sync_plan_position();
  1433. enable_endstops(false); // Disable endstops while moving away
  1434. // Move away from the endstop by the axis HOME_BUMP_MM
  1435. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1436. line_to_destination();
  1437. st_synchronize();
  1438. enable_endstops(true); // Enable endstops for next homing move
  1439. // Slow down the feedrate for the next move
  1440. set_homing_bump_feedrate(axis);
  1441. // Move slowly towards the endstop until triggered
  1442. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1443. line_to_destination();
  1444. st_synchronize();
  1445. #ifdef Z_DUAL_ENDSTOPS
  1446. if (axis == Z_AXIS) {
  1447. float adj = fabs(z_endstop_adj);
  1448. bool lockZ1;
  1449. if (axis_home_dir > 0) {
  1450. adj = -adj;
  1451. lockZ1 = (z_endstop_adj > 0);
  1452. }
  1453. else
  1454. lockZ1 = (z_endstop_adj < 0);
  1455. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1456. sync_plan_position();
  1457. // Move to the adjusted endstop height
  1458. feedrate = homing_feedrate[axis];
  1459. destination[Z_AXIS] = adj;
  1460. line_to_destination();
  1461. st_synchronize();
  1462. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1463. In_Homing_Process(false);
  1464. } // Z_AXIS
  1465. #endif
  1466. #ifdef DELTA
  1467. // retrace by the amount specified in endstop_adj
  1468. if (endstop_adj[axis] * axis_home_dir < 0) {
  1469. enable_endstops(false); // Disable endstops while moving away
  1470. sync_plan_position();
  1471. destination[axis] = endstop_adj[axis];
  1472. line_to_destination();
  1473. st_synchronize();
  1474. enable_endstops(true); // Enable endstops for next homing move
  1475. }
  1476. #endif
  1477. // Set the axis position to its home position (plus home offsets)
  1478. set_axis_is_at_home(axis);
  1479. sync_plan_position();
  1480. destination[axis] = current_position[axis];
  1481. feedrate = 0.0;
  1482. endstops_hit_on_purpose(); // clear endstop hit flags
  1483. axis_known_position[axis] = true;
  1484. #ifdef Z_PROBE_SLED
  1485. // bring probe back
  1486. if (axis == Z_AXIS) {
  1487. if (axis_home_dir < 0) dock_sled(true);
  1488. }
  1489. #endif
  1490. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1491. // Deploy a probe if there is one, and homing towards the bed
  1492. if (axis == Z_AXIS) {
  1493. if (axis_home_dir < 0) stow_z_probe();
  1494. }
  1495. else
  1496. #endif
  1497. {
  1498. #ifdef SERVO_ENDSTOPS
  1499. // Retract Servo endstop if enabled
  1500. if (servo_endstops[axis] >= 0)
  1501. servo[servo_endstops[axis]].move(servo_endstop_angles[axis * 2 + 1]);
  1502. #endif
  1503. }
  1504. }
  1505. }
  1506. #ifdef FWRETRACT
  1507. void retract(bool retracting, bool swapping=false) {
  1508. if (retracting == retracted[active_extruder]) return;
  1509. float oldFeedrate = feedrate;
  1510. set_destination_to_current();
  1511. if (retracting) {
  1512. feedrate = retract_feedrate * 60;
  1513. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1514. plan_set_e_position(current_position[E_AXIS]);
  1515. prepare_move();
  1516. if (retract_zlift > 0.01) {
  1517. current_position[Z_AXIS] -= retract_zlift;
  1518. #ifdef DELTA
  1519. sync_plan_position_delta();
  1520. #else
  1521. sync_plan_position();
  1522. #endif
  1523. prepare_move();
  1524. }
  1525. }
  1526. else {
  1527. if (retract_zlift > 0.01) {
  1528. current_position[Z_AXIS] += retract_zlift;
  1529. #ifdef DELTA
  1530. sync_plan_position_delta();
  1531. #else
  1532. sync_plan_position();
  1533. #endif
  1534. //prepare_move();
  1535. }
  1536. feedrate = retract_recover_feedrate * 60;
  1537. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1538. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1539. plan_set_e_position(current_position[E_AXIS]);
  1540. prepare_move();
  1541. }
  1542. feedrate = oldFeedrate;
  1543. retracted[active_extruder] = retracting;
  1544. } // retract()
  1545. #endif // FWRETRACT
  1546. /**
  1547. *
  1548. * G-Code Handler functions
  1549. *
  1550. */
  1551. /**
  1552. * Set XYZE destination and feedrate from the current GCode command
  1553. *
  1554. * - Set destination from included axis codes
  1555. * - Set to current for missing axis codes
  1556. * - Set the feedrate, if included
  1557. */
  1558. void gcode_get_destination() {
  1559. for (int i = 0; i < NUM_AXIS; i++) {
  1560. if (code_seen(axis_codes[i]))
  1561. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1562. else
  1563. destination[i] = current_position[i];
  1564. }
  1565. if (code_seen('F')) {
  1566. float next_feedrate = code_value();
  1567. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1568. }
  1569. }
  1570. void unknown_command_error() {
  1571. SERIAL_ECHO_START;
  1572. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1573. SERIAL_ECHO(current_command);
  1574. SERIAL_ECHOPGM("\"\n");
  1575. }
  1576. /**
  1577. * G0, G1: Coordinated movement of X Y Z E axes
  1578. */
  1579. inline void gcode_G0_G1() {
  1580. if (IsRunning()) {
  1581. gcode_get_destination(); // For X Y Z E F
  1582. #ifdef FWRETRACT
  1583. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1584. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1585. // Is this move an attempt to retract or recover?
  1586. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1587. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1588. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1589. retract(!retracted[active_extruder]);
  1590. return;
  1591. }
  1592. }
  1593. #endif //FWRETRACT
  1594. prepare_move();
  1595. }
  1596. }
  1597. /**
  1598. * G2: Clockwise Arc
  1599. * G3: Counterclockwise Arc
  1600. */
  1601. inline void gcode_G2_G3(bool clockwise) {
  1602. if (IsRunning()) {
  1603. #ifdef SF_ARC_FIX
  1604. bool relative_mode_backup = relative_mode;
  1605. relative_mode = true;
  1606. #endif
  1607. gcode_get_destination();
  1608. #ifdef SF_ARC_FIX
  1609. relative_mode = relative_mode_backup;
  1610. #endif
  1611. // Center of arc as offset from current_position
  1612. float arc_offset[2] = {
  1613. code_seen('I') ? code_value() : 0,
  1614. code_seen('J') ? code_value() : 0
  1615. };
  1616. // Send an arc to the planner
  1617. plan_arc(destination, arc_offset, clockwise);
  1618. refresh_cmd_timeout();
  1619. }
  1620. }
  1621. /**
  1622. * G4: Dwell S<seconds> or P<milliseconds>
  1623. */
  1624. inline void gcode_G4() {
  1625. millis_t codenum = 0;
  1626. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1627. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1628. st_synchronize();
  1629. refresh_cmd_timeout();
  1630. codenum += previous_cmd_ms; // keep track of when we started waiting
  1631. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1632. while (millis() < codenum) idle();
  1633. }
  1634. #ifdef FWRETRACT
  1635. /**
  1636. * G10 - Retract filament according to settings of M207
  1637. * G11 - Recover filament according to settings of M208
  1638. */
  1639. inline void gcode_G10_G11(bool doRetract=false) {
  1640. #if EXTRUDERS > 1
  1641. if (doRetract) {
  1642. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1643. }
  1644. #endif
  1645. retract(doRetract
  1646. #if EXTRUDERS > 1
  1647. , retracted_swap[active_extruder]
  1648. #endif
  1649. );
  1650. }
  1651. #endif //FWRETRACT
  1652. /**
  1653. * G28: Home all axes according to settings
  1654. *
  1655. * Parameters
  1656. *
  1657. * None Home to all axes with no parameters.
  1658. * With QUICK_HOME enabled XY will home together, then Z.
  1659. *
  1660. * Cartesian parameters
  1661. *
  1662. * X Home to the X endstop
  1663. * Y Home to the Y endstop
  1664. * Z Home to the Z endstop
  1665. *
  1666. */
  1667. inline void gcode_G28() {
  1668. // Wait for planner moves to finish!
  1669. st_synchronize();
  1670. // For auto bed leveling, clear the level matrix
  1671. #ifdef ENABLE_AUTO_BED_LEVELING
  1672. plan_bed_level_matrix.set_to_identity();
  1673. #ifdef DELTA
  1674. reset_bed_level();
  1675. #endif
  1676. #endif
  1677. // For manual bed leveling deactivate the matrix temporarily
  1678. #ifdef MESH_BED_LEVELING
  1679. uint8_t mbl_was_active = mbl.active;
  1680. mbl.active = 0;
  1681. #endif
  1682. setup_for_endstop_move();
  1683. set_destination_to_current();
  1684. feedrate = 0.0;
  1685. #ifdef DELTA
  1686. // A delta can only safely home all axis at the same time
  1687. // all axis have to home at the same time
  1688. // Pretend the current position is 0,0,0
  1689. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1690. sync_plan_position();
  1691. // Move all carriages up together until the first endstop is hit.
  1692. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1693. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1694. line_to_destination();
  1695. st_synchronize();
  1696. endstops_hit_on_purpose(); // clear endstop hit flags
  1697. // Destination reached
  1698. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1699. // take care of back off and rehome now we are all at the top
  1700. HOMEAXIS(X);
  1701. HOMEAXIS(Y);
  1702. HOMEAXIS(Z);
  1703. sync_plan_position_delta();
  1704. #else // NOT DELTA
  1705. bool homeX = code_seen(axis_codes[X_AXIS]),
  1706. homeY = code_seen(axis_codes[Y_AXIS]),
  1707. homeZ = code_seen(axis_codes[Z_AXIS]);
  1708. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1709. if (home_all_axis || homeZ) {
  1710. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1711. HOMEAXIS(Z);
  1712. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1713. // Raise Z before homing any other axes
  1714. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1715. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1716. feedrate = max_feedrate[Z_AXIS] * 60;
  1717. line_to_destination();
  1718. st_synchronize();
  1719. #endif
  1720. } // home_all_axis || homeZ
  1721. #ifdef QUICK_HOME
  1722. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1723. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1724. #ifdef DUAL_X_CARRIAGE
  1725. int x_axis_home_dir = x_home_dir(active_extruder);
  1726. extruder_duplication_enabled = false;
  1727. #else
  1728. int x_axis_home_dir = home_dir(X_AXIS);
  1729. #endif
  1730. sync_plan_position();
  1731. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1732. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1733. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1734. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1735. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1736. line_to_destination();
  1737. st_synchronize();
  1738. set_axis_is_at_home(X_AXIS);
  1739. set_axis_is_at_home(Y_AXIS);
  1740. sync_plan_position();
  1741. destination[X_AXIS] = current_position[X_AXIS];
  1742. destination[Y_AXIS] = current_position[Y_AXIS];
  1743. line_to_destination();
  1744. feedrate = 0.0;
  1745. st_synchronize();
  1746. endstops_hit_on_purpose(); // clear endstop hit flags
  1747. current_position[X_AXIS] = destination[X_AXIS];
  1748. current_position[Y_AXIS] = destination[Y_AXIS];
  1749. #ifndef SCARA
  1750. current_position[Z_AXIS] = destination[Z_AXIS];
  1751. #endif
  1752. }
  1753. #endif // QUICK_HOME
  1754. #ifdef HOME_Y_BEFORE_X
  1755. // Home Y
  1756. if (home_all_axis || homeY) HOMEAXIS(Y);
  1757. #endif
  1758. // Home X
  1759. if (home_all_axis || homeX) {
  1760. #ifdef DUAL_X_CARRIAGE
  1761. int tmp_extruder = active_extruder;
  1762. extruder_duplication_enabled = false;
  1763. active_extruder = !active_extruder;
  1764. HOMEAXIS(X);
  1765. inactive_extruder_x_pos = current_position[X_AXIS];
  1766. active_extruder = tmp_extruder;
  1767. HOMEAXIS(X);
  1768. // reset state used by the different modes
  1769. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1770. delayed_move_time = 0;
  1771. active_extruder_parked = true;
  1772. #else
  1773. HOMEAXIS(X);
  1774. #endif
  1775. }
  1776. #ifndef HOME_Y_BEFORE_X
  1777. // Home Y
  1778. if (home_all_axis || homeY) HOMEAXIS(Y);
  1779. #endif
  1780. // Home Z last if homing towards the bed
  1781. #if Z_HOME_DIR < 0
  1782. if (home_all_axis || homeZ) {
  1783. #ifdef Z_SAFE_HOMING
  1784. if (home_all_axis) {
  1785. current_position[Z_AXIS] = 0;
  1786. sync_plan_position();
  1787. //
  1788. // Set the probe (or just the nozzle) destination to the safe homing point
  1789. //
  1790. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1791. // then this may not work as expected.
  1792. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1793. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1794. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1795. feedrate = XY_TRAVEL_SPEED;
  1796. // This could potentially move X, Y, Z all together
  1797. line_to_destination();
  1798. st_synchronize();
  1799. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1800. current_position[X_AXIS] = destination[X_AXIS];
  1801. current_position[Y_AXIS] = destination[Y_AXIS];
  1802. // Home the Z axis
  1803. HOMEAXIS(Z);
  1804. }
  1805. else if (homeZ) { // Don't need to Home Z twice
  1806. // Let's see if X and Y are homed
  1807. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1808. // Make sure the probe is within the physical limits
  1809. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1810. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1811. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1812. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1813. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1814. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1815. // Set the plan current position to X, Y, 0
  1816. current_position[Z_AXIS] = 0;
  1817. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1818. // Set Z destination away from bed and raise the axis
  1819. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1820. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1821. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1822. line_to_destination();
  1823. st_synchronize();
  1824. // Home the Z axis
  1825. HOMEAXIS(Z);
  1826. }
  1827. else {
  1828. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1829. SERIAL_ECHO_START;
  1830. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1831. }
  1832. }
  1833. else {
  1834. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1835. SERIAL_ECHO_START;
  1836. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1837. }
  1838. } // !home_all_axes && homeZ
  1839. #else // !Z_SAFE_HOMING
  1840. HOMEAXIS(Z);
  1841. #endif // !Z_SAFE_HOMING
  1842. } // home_all_axis || homeZ
  1843. #endif // Z_HOME_DIR < 0
  1844. sync_plan_position();
  1845. #endif // else DELTA
  1846. #ifdef SCARA
  1847. sync_plan_position_delta();
  1848. #endif
  1849. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1850. enable_endstops(false);
  1851. #endif
  1852. // For manual leveling move back to 0,0
  1853. #ifdef MESH_BED_LEVELING
  1854. if (mbl_was_active) {
  1855. current_position[X_AXIS] = mbl.get_x(0);
  1856. current_position[Y_AXIS] = mbl.get_y(0);
  1857. set_destination_to_current();
  1858. feedrate = homing_feedrate[X_AXIS];
  1859. line_to_destination();
  1860. st_synchronize();
  1861. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1862. sync_plan_position();
  1863. mbl.active = 1;
  1864. }
  1865. #endif
  1866. feedrate = saved_feedrate;
  1867. feedrate_multiplier = saved_feedrate_multiplier;
  1868. refresh_cmd_timeout();
  1869. endstops_hit_on_purpose(); // clear endstop hit flags
  1870. }
  1871. #ifdef MESH_BED_LEVELING
  1872. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1873. /**
  1874. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1875. * mesh to compensate for variable bed height
  1876. *
  1877. * Parameters With MESH_BED_LEVELING:
  1878. *
  1879. * S0 Produce a mesh report
  1880. * S1 Start probing mesh points
  1881. * S2 Probe the next mesh point
  1882. * S3 Xn Yn Zn.nn Manually modify a single point
  1883. *
  1884. * The S0 report the points as below
  1885. *
  1886. * +----> X-axis
  1887. * |
  1888. * |
  1889. * v Y-axis
  1890. *
  1891. */
  1892. inline void gcode_G29() {
  1893. static int probe_point = -1;
  1894. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  1895. if (state < 0 || state > 3) {
  1896. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1897. return;
  1898. }
  1899. int ix, iy;
  1900. float z;
  1901. switch(state) {
  1902. case MeshReport:
  1903. if (mbl.active) {
  1904. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1905. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1906. SERIAL_PROTOCOLCHAR(',');
  1907. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1908. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1909. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1910. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1911. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1912. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1913. SERIAL_PROTOCOLPGM(" ");
  1914. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1915. }
  1916. SERIAL_EOL;
  1917. }
  1918. }
  1919. else
  1920. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1921. break;
  1922. case MeshStart:
  1923. mbl.reset();
  1924. probe_point = 0;
  1925. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1926. break;
  1927. case MeshNext:
  1928. if (probe_point < 0) {
  1929. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1930. return;
  1931. }
  1932. if (probe_point == 0) {
  1933. // Set Z to a positive value before recording the first Z.
  1934. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1935. sync_plan_position();
  1936. }
  1937. else {
  1938. // For others, save the Z of the previous point, then raise Z again.
  1939. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1940. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1941. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1942. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1943. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1944. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1945. st_synchronize();
  1946. }
  1947. // Is there another point to sample? Move there.
  1948. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1949. ix = probe_point % MESH_NUM_X_POINTS;
  1950. iy = probe_point / MESH_NUM_X_POINTS;
  1951. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1952. current_position[X_AXIS] = mbl.get_x(ix);
  1953. current_position[Y_AXIS] = mbl.get_y(iy);
  1954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1955. st_synchronize();
  1956. probe_point++;
  1957. }
  1958. else {
  1959. // After recording the last point, activate the mbl and home
  1960. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1961. probe_point = -1;
  1962. mbl.active = 1;
  1963. enqueuecommands_P(PSTR("G28"));
  1964. }
  1965. break;
  1966. case MeshSet:
  1967. if (code_seen('X')) {
  1968. ix = code_value_long()-1;
  1969. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1970. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1971. return;
  1972. }
  1973. } else {
  1974. SERIAL_PROTOCOLPGM("X not entered.\n");
  1975. return;
  1976. }
  1977. if (code_seen('Y')) {
  1978. iy = code_value_long()-1;
  1979. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1980. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1981. return;
  1982. }
  1983. } else {
  1984. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1985. return;
  1986. }
  1987. if (code_seen('Z')) {
  1988. z = code_value();
  1989. } else {
  1990. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1991. return;
  1992. }
  1993. mbl.z_values[iy][ix] = z;
  1994. } // switch(state)
  1995. }
  1996. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1997. void out_of_range_error(const char *p_edge) {
  1998. SERIAL_PROTOCOLPGM("?Probe ");
  1999. serialprintPGM(p_edge);
  2000. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2001. }
  2002. /**
  2003. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2004. * Will fail if the printer has not been homed with G28.
  2005. *
  2006. * Enhanced G29 Auto Bed Leveling Probe Routine
  2007. *
  2008. * Parameters With AUTO_BED_LEVELING_GRID:
  2009. *
  2010. * P Set the size of the grid that will be probed (P x P points).
  2011. * Not supported by non-linear delta printer bed leveling.
  2012. * Example: "G29 P4"
  2013. *
  2014. * S Set the XY travel speed between probe points (in mm/min)
  2015. *
  2016. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2017. * or clean the rotation Matrix. Useful to check the topology
  2018. * after a first run of G29.
  2019. *
  2020. * V Set the verbose level (0-4). Example: "G29 V3"
  2021. *
  2022. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2023. * This is useful for manual bed leveling and finding flaws in the bed (to
  2024. * assist with part placement).
  2025. * Not supported by non-linear delta printer bed leveling.
  2026. *
  2027. * F Set the Front limit of the probing grid
  2028. * B Set the Back limit of the probing grid
  2029. * L Set the Left limit of the probing grid
  2030. * R Set the Right limit of the probing grid
  2031. *
  2032. * Global Parameters:
  2033. *
  2034. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2035. * Include "E" to engage/disengage the probe for each sample.
  2036. * There's no extra effect if you have a fixed probe.
  2037. * Usage: "G29 E" or "G29 e"
  2038. *
  2039. */
  2040. inline void gcode_G29() {
  2041. // Don't allow auto-leveling without homing first
  2042. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2043. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2044. SERIAL_ECHO_START;
  2045. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2046. return;
  2047. }
  2048. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2049. if (verbose_level < 0 || verbose_level > 4) {
  2050. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2051. return;
  2052. }
  2053. bool dryrun = code_seen('D'),
  2054. deploy_probe_for_each_reading = code_seen('E');
  2055. #ifdef AUTO_BED_LEVELING_GRID
  2056. #ifndef DELTA
  2057. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2058. #endif
  2059. if (verbose_level > 0) {
  2060. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2061. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2062. }
  2063. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2064. #ifndef DELTA
  2065. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2066. if (auto_bed_leveling_grid_points < 2) {
  2067. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2068. return;
  2069. }
  2070. #endif
  2071. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2072. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2073. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2074. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2075. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2076. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2077. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2078. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2079. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2080. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2081. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2082. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2083. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2084. if (left_out || right_out || front_out || back_out) {
  2085. if (left_out) {
  2086. out_of_range_error(PSTR("(L)eft"));
  2087. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2088. }
  2089. if (right_out) {
  2090. out_of_range_error(PSTR("(R)ight"));
  2091. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2092. }
  2093. if (front_out) {
  2094. out_of_range_error(PSTR("(F)ront"));
  2095. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2096. }
  2097. if (back_out) {
  2098. out_of_range_error(PSTR("(B)ack"));
  2099. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2100. }
  2101. return;
  2102. }
  2103. #endif // AUTO_BED_LEVELING_GRID
  2104. #ifdef Z_PROBE_SLED
  2105. dock_sled(false); // engage (un-dock) the probe
  2106. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2107. deploy_z_probe();
  2108. #endif
  2109. st_synchronize();
  2110. if (!dryrun) {
  2111. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2112. plan_bed_level_matrix.set_to_identity();
  2113. #ifdef DELTA
  2114. reset_bed_level();
  2115. #else //!DELTA
  2116. //vector_3 corrected_position = plan_get_position_mm();
  2117. //corrected_position.debug("position before G29");
  2118. vector_3 uncorrected_position = plan_get_position();
  2119. //uncorrected_position.debug("position during G29");
  2120. current_position[X_AXIS] = uncorrected_position.x;
  2121. current_position[Y_AXIS] = uncorrected_position.y;
  2122. current_position[Z_AXIS] = uncorrected_position.z;
  2123. sync_plan_position();
  2124. #endif // !DELTA
  2125. }
  2126. setup_for_endstop_move();
  2127. feedrate = homing_feedrate[Z_AXIS];
  2128. #ifdef AUTO_BED_LEVELING_GRID
  2129. // probe at the points of a lattice grid
  2130. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2131. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2132. #ifdef DELTA
  2133. delta_grid_spacing[0] = xGridSpacing;
  2134. delta_grid_spacing[1] = yGridSpacing;
  2135. float z_offset = zprobe_zoffset;
  2136. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2137. #else // !DELTA
  2138. // solve the plane equation ax + by + d = z
  2139. // A is the matrix with rows [x y 1] for all the probed points
  2140. // B is the vector of the Z positions
  2141. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2142. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2143. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2144. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2145. eqnBVector[abl2], // "B" vector of Z points
  2146. mean = 0.0;
  2147. #endif // !DELTA
  2148. int probePointCounter = 0;
  2149. bool zig = true;
  2150. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2151. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2152. int xStart, xStop, xInc;
  2153. if (zig) {
  2154. xStart = 0;
  2155. xStop = auto_bed_leveling_grid_points;
  2156. xInc = 1;
  2157. }
  2158. else {
  2159. xStart = auto_bed_leveling_grid_points - 1;
  2160. xStop = -1;
  2161. xInc = -1;
  2162. }
  2163. #ifndef DELTA
  2164. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2165. // This gets the probe points in more readable order.
  2166. if (!do_topography_map) zig = !zig;
  2167. #else
  2168. zig = !zig;
  2169. #endif
  2170. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2171. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2172. // raise extruder
  2173. float measured_z,
  2174. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2175. #ifdef DELTA
  2176. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2177. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2178. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2179. #endif //DELTA
  2180. ProbeAction act;
  2181. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2182. act = ProbeDeployAndStow;
  2183. else if (yCount == 0 && xCount == xStart)
  2184. act = ProbeDeploy;
  2185. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2186. act = ProbeStow;
  2187. else
  2188. act = ProbeStay;
  2189. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2190. #ifndef DELTA
  2191. mean += measured_z;
  2192. eqnBVector[probePointCounter] = measured_z;
  2193. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2194. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2195. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2196. #else
  2197. bed_level[xCount][yCount] = measured_z + z_offset;
  2198. #endif
  2199. probePointCounter++;
  2200. idle();
  2201. } //xProbe
  2202. } //yProbe
  2203. clean_up_after_endstop_move();
  2204. #ifdef DELTA
  2205. if (!dryrun) extrapolate_unprobed_bed_level();
  2206. print_bed_level();
  2207. #else // !DELTA
  2208. // solve lsq problem
  2209. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2210. mean /= abl2;
  2211. if (verbose_level) {
  2212. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2213. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2214. SERIAL_PROTOCOLPGM(" b: ");
  2215. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2216. SERIAL_PROTOCOLPGM(" d: ");
  2217. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2218. SERIAL_EOL;
  2219. if (verbose_level > 2) {
  2220. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2221. SERIAL_PROTOCOL_F(mean, 8);
  2222. SERIAL_EOL;
  2223. }
  2224. }
  2225. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2226. free(plane_equation_coefficients);
  2227. // Show the Topography map if enabled
  2228. if (do_topography_map) {
  2229. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2230. SERIAL_PROTOCOLPGM("+-----------+\n");
  2231. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2232. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2233. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2234. SERIAL_PROTOCOLPGM("+-----------+\n");
  2235. float min_diff = 999;
  2236. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2237. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2238. int ind = yy * auto_bed_leveling_grid_points + xx;
  2239. float diff = eqnBVector[ind] - mean;
  2240. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2241. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2242. z_tmp = 0;
  2243. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2244. if (eqnBVector[ind] - z_tmp < min_diff)
  2245. min_diff = eqnBVector[ind] - z_tmp;
  2246. if (diff >= 0.0)
  2247. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2248. else
  2249. SERIAL_PROTOCOLCHAR(' ');
  2250. SERIAL_PROTOCOL_F(diff, 5);
  2251. } // xx
  2252. SERIAL_EOL;
  2253. } // yy
  2254. SERIAL_EOL;
  2255. if (verbose_level > 3) {
  2256. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2257. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2258. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2259. int ind = yy * auto_bed_leveling_grid_points + xx;
  2260. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2261. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2262. z_tmp = 0;
  2263. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2264. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2265. if (diff >= 0.0)
  2266. SERIAL_PROTOCOLPGM(" +");
  2267. // Include + for column alignment
  2268. else
  2269. SERIAL_PROTOCOLCHAR(' ');
  2270. SERIAL_PROTOCOL_F(diff, 5);
  2271. } // xx
  2272. SERIAL_EOL;
  2273. } // yy
  2274. SERIAL_EOL;
  2275. }
  2276. } //do_topography_map
  2277. #endif //!DELTA
  2278. #else // !AUTO_BED_LEVELING_GRID
  2279. // Actions for each probe
  2280. ProbeAction p1, p2, p3;
  2281. if (deploy_probe_for_each_reading)
  2282. p1 = p2 = p3 = ProbeDeployAndStow;
  2283. else
  2284. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2285. // Probe at 3 arbitrary points
  2286. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2287. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2288. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2289. clean_up_after_endstop_move();
  2290. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2291. #endif // !AUTO_BED_LEVELING_GRID
  2292. #ifndef DELTA
  2293. if (verbose_level > 0)
  2294. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2295. if (!dryrun) {
  2296. // Correct the Z height difference from z-probe position and hotend tip position.
  2297. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2298. // When the bed is uneven, this height must be corrected.
  2299. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2300. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2301. z_tmp = current_position[Z_AXIS],
  2302. real_z = st_get_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2303. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2304. // Get the current Z position and send it to the planner.
  2305. //
  2306. // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
  2307. //
  2308. // >> zprobe_zoffset : Z distance from nozzle to probe (set by default, M851, EEPROM, or Menu)
  2309. //
  2310. // >> Z_RAISE_AFTER_PROBING : The distance the probe will have lifted after the last probe
  2311. //
  2312. // >> Should home_offset[Z_AXIS] be included?
  2313. //
  2314. // Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
  2315. // If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
  2316. // then perhaps it should not be included here. The purpose of home_offset[] is to
  2317. // adjust for inaccurate endstops, not for reasonably accurate probes. If it were
  2318. // added here, it could be seen as a compensating factor for the Z probe.
  2319. //
  2320. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2321. #if ENABLED(SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2322. + Z_RAISE_AFTER_PROBING
  2323. #endif
  2324. ;
  2325. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The probe determines Z=0, not "Z home"
  2326. sync_plan_position();
  2327. }
  2328. #endif // !DELTA
  2329. #ifdef Z_PROBE_SLED
  2330. dock_sled(true); // dock the probe
  2331. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2332. stow_z_probe();
  2333. #endif
  2334. #ifdef Z_PROBE_END_SCRIPT
  2335. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2336. st_synchronize();
  2337. #endif
  2338. }
  2339. #ifndef Z_PROBE_SLED
  2340. inline void gcode_G30() {
  2341. deploy_z_probe(); // Engage Z Servo endstop if available
  2342. st_synchronize();
  2343. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2344. setup_for_endstop_move();
  2345. feedrate = homing_feedrate[Z_AXIS];
  2346. run_z_probe();
  2347. SERIAL_PROTOCOLPGM("Bed X: ");
  2348. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2349. SERIAL_PROTOCOLPGM(" Y: ");
  2350. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2351. SERIAL_PROTOCOLPGM(" Z: ");
  2352. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2353. SERIAL_EOL;
  2354. clean_up_after_endstop_move();
  2355. stow_z_probe(); // Retract Z Servo endstop if available
  2356. }
  2357. #endif //!Z_PROBE_SLED
  2358. #endif //ENABLE_AUTO_BED_LEVELING
  2359. /**
  2360. * G92: Set current position to given X Y Z E
  2361. */
  2362. inline void gcode_G92() {
  2363. if (!code_seen(axis_codes[E_AXIS]))
  2364. st_synchronize();
  2365. bool didXYZ = false;
  2366. for (int i = 0; i < NUM_AXIS; i++) {
  2367. if (code_seen(axis_codes[i])) {
  2368. float v = current_position[i] = code_value();
  2369. if (i == E_AXIS)
  2370. plan_set_e_position(v);
  2371. else
  2372. didXYZ = true;
  2373. }
  2374. }
  2375. if (didXYZ) {
  2376. #if defined(DELTA) || defined(SCARA)
  2377. sync_plan_position_delta();
  2378. #else
  2379. sync_plan_position();
  2380. #endif
  2381. }
  2382. }
  2383. #ifdef ULTIPANEL
  2384. /**
  2385. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2386. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2387. */
  2388. inline void gcode_M0_M1() {
  2389. char *args = current_command_args;
  2390. millis_t codenum = 0;
  2391. bool hasP = false, hasS = false;
  2392. if (code_seen('P')) {
  2393. codenum = code_value_short(); // milliseconds to wait
  2394. hasP = codenum > 0;
  2395. }
  2396. if (code_seen('S')) {
  2397. codenum = code_value() * 1000; // seconds to wait
  2398. hasS = codenum > 0;
  2399. }
  2400. if (!hasP && !hasS && *args != '\0')
  2401. lcd_setstatus(args, true);
  2402. else {
  2403. LCD_MESSAGEPGM(MSG_USERWAIT);
  2404. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2405. dontExpireStatus();
  2406. #endif
  2407. }
  2408. lcd_ignore_click();
  2409. st_synchronize();
  2410. refresh_cmd_timeout();
  2411. if (codenum > 0) {
  2412. codenum += previous_cmd_ms; // wait until this time for a click
  2413. while (millis() < codenum && !lcd_clicked()) idle();
  2414. lcd_ignore_click(false);
  2415. }
  2416. else {
  2417. if (!lcd_detected()) return;
  2418. while (!lcd_clicked()) idle();
  2419. }
  2420. if (IS_SD_PRINTING)
  2421. LCD_MESSAGEPGM(MSG_RESUMING);
  2422. else
  2423. LCD_MESSAGEPGM(WELCOME_MSG);
  2424. }
  2425. #endif // ULTIPANEL
  2426. /**
  2427. * M17: Enable power on all stepper motors
  2428. */
  2429. inline void gcode_M17() {
  2430. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2431. enable_all_steppers();
  2432. }
  2433. #ifdef SDSUPPORT
  2434. /**
  2435. * M20: List SD card to serial output
  2436. */
  2437. inline void gcode_M20() {
  2438. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2439. card.ls();
  2440. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2441. }
  2442. /**
  2443. * M21: Init SD Card
  2444. */
  2445. inline void gcode_M21() {
  2446. card.initsd();
  2447. }
  2448. /**
  2449. * M22: Release SD Card
  2450. */
  2451. inline void gcode_M22() {
  2452. card.release();
  2453. }
  2454. /**
  2455. * M23: Select a file
  2456. */
  2457. inline void gcode_M23() {
  2458. card.openFile(current_command_args, true);
  2459. }
  2460. /**
  2461. * M24: Start SD Print
  2462. */
  2463. inline void gcode_M24() {
  2464. card.startFileprint();
  2465. print_job_start_ms = millis();
  2466. }
  2467. /**
  2468. * M25: Pause SD Print
  2469. */
  2470. inline void gcode_M25() {
  2471. card.pauseSDPrint();
  2472. }
  2473. /**
  2474. * M26: Set SD Card file index
  2475. */
  2476. inline void gcode_M26() {
  2477. if (card.cardOK && code_seen('S'))
  2478. card.setIndex(code_value_short());
  2479. }
  2480. /**
  2481. * M27: Get SD Card status
  2482. */
  2483. inline void gcode_M27() {
  2484. card.getStatus();
  2485. }
  2486. /**
  2487. * M28: Start SD Write
  2488. */
  2489. inline void gcode_M28() {
  2490. card.openFile(current_command_args, false);
  2491. }
  2492. /**
  2493. * M29: Stop SD Write
  2494. * Processed in write to file routine above
  2495. */
  2496. inline void gcode_M29() {
  2497. // card.saving = false;
  2498. }
  2499. /**
  2500. * M30 <filename>: Delete SD Card file
  2501. */
  2502. inline void gcode_M30() {
  2503. if (card.cardOK) {
  2504. card.closefile();
  2505. card.removeFile(current_command_args);
  2506. }
  2507. }
  2508. #endif
  2509. /**
  2510. * M31: Get the time since the start of SD Print (or last M109)
  2511. */
  2512. inline void gcode_M31() {
  2513. print_job_stop_ms = millis();
  2514. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2515. int min = t / 60, sec = t % 60;
  2516. char time[30];
  2517. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2518. SERIAL_ECHO_START;
  2519. SERIAL_ECHOLN(time);
  2520. lcd_setstatus(time);
  2521. autotempShutdown();
  2522. }
  2523. #ifdef SDSUPPORT
  2524. /**
  2525. * M32: Select file and start SD Print
  2526. */
  2527. inline void gcode_M32() {
  2528. if (card.sdprinting)
  2529. st_synchronize();
  2530. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2531. if (!namestartpos)
  2532. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2533. else
  2534. namestartpos++; //to skip the '!'
  2535. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2536. if (card.cardOK) {
  2537. card.openFile(namestartpos, true, !call_procedure);
  2538. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2539. card.setIndex(code_value_short());
  2540. card.startFileprint();
  2541. if (!call_procedure)
  2542. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2543. }
  2544. }
  2545. #ifdef LONG_FILENAME_HOST_SUPPORT
  2546. /**
  2547. * M33: Get the long full path of a file or folder
  2548. *
  2549. * Parameters:
  2550. * <dospath> Case-insensitive DOS-style path to a file or folder
  2551. *
  2552. * Example:
  2553. * M33 miscel~1/armchair/armcha~1.gco
  2554. *
  2555. * Output:
  2556. * /Miscellaneous/Armchair/Armchair.gcode
  2557. */
  2558. inline void gcode_M33() {
  2559. card.printLongPath(current_command_args);
  2560. }
  2561. #endif
  2562. /**
  2563. * M928: Start SD Write
  2564. */
  2565. inline void gcode_M928() {
  2566. card.openLogFile(current_command_args);
  2567. }
  2568. #endif // SDSUPPORT
  2569. /**
  2570. * M42: Change pin status via GCode
  2571. */
  2572. inline void gcode_M42() {
  2573. if (code_seen('S')) {
  2574. int pin_status = code_value_short(),
  2575. pin_number = LED_PIN;
  2576. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2577. pin_number = code_value_short();
  2578. for (int8_t i = 0; i < COUNT(sensitive_pins); i++) {
  2579. if (sensitive_pins[i] == pin_number) {
  2580. pin_number = -1;
  2581. break;
  2582. }
  2583. }
  2584. #if HAS_FAN
  2585. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2586. #endif
  2587. if (pin_number > -1) {
  2588. pinMode(pin_number, OUTPUT);
  2589. digitalWrite(pin_number, pin_status);
  2590. analogWrite(pin_number, pin_status);
  2591. }
  2592. } // code_seen('S')
  2593. }
  2594. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2595. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2596. #ifdef Z_PROBE_ENDSTOP
  2597. #if !HAS_Z_PROBE
  2598. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2599. #endif
  2600. #elif !HAS_Z_MIN
  2601. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2602. #endif
  2603. /**
  2604. * M48: Z-Probe repeatability measurement function.
  2605. *
  2606. * Usage:
  2607. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2608. * P = Number of sampled points (4-50, default 10)
  2609. * X = Sample X position
  2610. * Y = Sample Y position
  2611. * V = Verbose level (0-4, default=1)
  2612. * E = Engage probe for each reading
  2613. * L = Number of legs of movement before probe
  2614. *
  2615. * This function assumes the bed has been homed. Specifically, that a G28 command
  2616. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2617. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2618. * regenerated.
  2619. */
  2620. inline void gcode_M48() {
  2621. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2622. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2623. if (code_seen('V')) {
  2624. verbose_level = code_value_short();
  2625. if (verbose_level < 0 || verbose_level > 4 ) {
  2626. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2627. return;
  2628. }
  2629. }
  2630. if (verbose_level > 0)
  2631. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2632. if (code_seen('P')) {
  2633. n_samples = code_value_short();
  2634. if (n_samples < 4 || n_samples > 50) {
  2635. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2636. return;
  2637. }
  2638. }
  2639. double X_current = st_get_position_mm(X_AXIS),
  2640. Y_current = st_get_position_mm(Y_AXIS),
  2641. Z_current = st_get_position_mm(Z_AXIS),
  2642. E_current = st_get_position_mm(E_AXIS),
  2643. X_probe_location = X_current, Y_probe_location = Y_current,
  2644. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2645. bool deploy_probe_for_each_reading = code_seen('E');
  2646. if (code_seen('X')) {
  2647. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2648. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2649. out_of_range_error(PSTR("X"));
  2650. return;
  2651. }
  2652. }
  2653. if (code_seen('Y')) {
  2654. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2655. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2656. out_of_range_error(PSTR("Y"));
  2657. return;
  2658. }
  2659. }
  2660. if (code_seen('L')) {
  2661. n_legs = code_value_short();
  2662. if (n_legs == 1) n_legs = 2;
  2663. if (n_legs < 0 || n_legs > 15) {
  2664. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2665. return;
  2666. }
  2667. }
  2668. //
  2669. // Do all the preliminary setup work. First raise the probe.
  2670. //
  2671. st_synchronize();
  2672. plan_bed_level_matrix.set_to_identity();
  2673. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2674. st_synchronize();
  2675. //
  2676. // Now get everything to the specified probe point So we can safely do a probe to
  2677. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2678. // use that as a starting point for each probe.
  2679. //
  2680. if (verbose_level > 2)
  2681. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2682. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2683. E_current,
  2684. homing_feedrate[X_AXIS]/60,
  2685. active_extruder);
  2686. st_synchronize();
  2687. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2688. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2689. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2690. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2691. //
  2692. // OK, do the initial probe to get us close to the bed.
  2693. // Then retrace the right amount and use that in subsequent probes
  2694. //
  2695. deploy_z_probe();
  2696. setup_for_endstop_move();
  2697. run_z_probe();
  2698. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2699. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2700. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2701. E_current,
  2702. homing_feedrate[X_AXIS]/60,
  2703. active_extruder);
  2704. st_synchronize();
  2705. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2706. if (deploy_probe_for_each_reading) stow_z_probe();
  2707. for (uint8_t n=0; n < n_samples; n++) {
  2708. // Make sure we are at the probe location
  2709. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2710. if (n_legs) {
  2711. millis_t ms = millis();
  2712. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2713. theta = RADIANS(ms % 360L);
  2714. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2715. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2716. //SERIAL_ECHOPAIR(" theta: ",theta);
  2717. //SERIAL_ECHOPAIR(" direction: ",dir);
  2718. //SERIAL_EOL;
  2719. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2720. ms = millis();
  2721. theta += RADIANS(dir * (ms % 20L));
  2722. radius += (ms % 10L) - 5L;
  2723. if (radius < 0.0) radius = -radius;
  2724. X_current = X_probe_location + cos(theta) * radius;
  2725. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2726. Y_current = Y_probe_location + sin(theta) * radius;
  2727. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2728. if (verbose_level > 3) {
  2729. SERIAL_ECHOPAIR("x: ", X_current);
  2730. SERIAL_ECHOPAIR("y: ", Y_current);
  2731. SERIAL_EOL;
  2732. }
  2733. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2734. } // n_legs loop
  2735. // Go back to the probe location
  2736. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2737. } // n_legs
  2738. if (deploy_probe_for_each_reading) {
  2739. deploy_z_probe();
  2740. delay(1000);
  2741. }
  2742. setup_for_endstop_move();
  2743. run_z_probe();
  2744. sample_set[n] = current_position[Z_AXIS];
  2745. //
  2746. // Get the current mean for the data points we have so far
  2747. //
  2748. sum = 0.0;
  2749. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2750. mean = sum / (n + 1);
  2751. //
  2752. // Now, use that mean to calculate the standard deviation for the
  2753. // data points we have so far
  2754. //
  2755. sum = 0.0;
  2756. for (uint8_t j = 0; j <= n; j++) {
  2757. float ss = sample_set[j] - mean;
  2758. sum += ss * ss;
  2759. }
  2760. sigma = sqrt(sum / (n + 1));
  2761. if (verbose_level > 1) {
  2762. SERIAL_PROTOCOL(n+1);
  2763. SERIAL_PROTOCOLPGM(" of ");
  2764. SERIAL_PROTOCOL((int)n_samples);
  2765. SERIAL_PROTOCOLPGM(" z: ");
  2766. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2767. if (verbose_level > 2) {
  2768. SERIAL_PROTOCOLPGM(" mean: ");
  2769. SERIAL_PROTOCOL_F(mean,6);
  2770. SERIAL_PROTOCOLPGM(" sigma: ");
  2771. SERIAL_PROTOCOL_F(sigma,6);
  2772. }
  2773. }
  2774. if (verbose_level > 0) SERIAL_EOL;
  2775. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2776. st_synchronize();
  2777. // Stow between
  2778. if (deploy_probe_for_each_reading) {
  2779. stow_z_probe();
  2780. delay(1000);
  2781. }
  2782. }
  2783. // Stow after
  2784. if (!deploy_probe_for_each_reading) {
  2785. stow_z_probe();
  2786. delay(1000);
  2787. }
  2788. clean_up_after_endstop_move();
  2789. if (verbose_level > 0) {
  2790. SERIAL_PROTOCOLPGM("Mean: ");
  2791. SERIAL_PROTOCOL_F(mean, 6);
  2792. SERIAL_EOL;
  2793. }
  2794. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2795. SERIAL_PROTOCOL_F(sigma, 6);
  2796. SERIAL_EOL; SERIAL_EOL;
  2797. }
  2798. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2799. /**
  2800. * M104: Set hot end temperature
  2801. */
  2802. inline void gcode_M104() {
  2803. if (setTargetedHotend(104)) return;
  2804. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2805. if (code_seen('S')) {
  2806. float temp = code_value();
  2807. setTargetHotend(temp, target_extruder);
  2808. #ifdef DUAL_X_CARRIAGE
  2809. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2810. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2811. #endif
  2812. }
  2813. }
  2814. /**
  2815. * M105: Read hot end and bed temperature
  2816. */
  2817. inline void gcode_M105() {
  2818. if (setTargetedHotend(105)) return;
  2819. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2820. SERIAL_PROTOCOLPGM(MSG_OK);
  2821. #if HAS_TEMP_0 || defined(HEATER_0_USES_MAX6675)
  2822. SERIAL_PROTOCOLPGM(" T:");
  2823. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2824. SERIAL_PROTOCOLPGM(" /");
  2825. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2826. #endif
  2827. #if HAS_TEMP_BED
  2828. SERIAL_PROTOCOLPGM(" B:");
  2829. SERIAL_PROTOCOL_F(degBed(), 1);
  2830. SERIAL_PROTOCOLPGM(" /");
  2831. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2832. #endif
  2833. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2834. SERIAL_PROTOCOLPGM(" T");
  2835. SERIAL_PROTOCOL(e);
  2836. SERIAL_PROTOCOLCHAR(':');
  2837. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2838. SERIAL_PROTOCOLPGM(" /");
  2839. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2840. }
  2841. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2842. SERIAL_ERROR_START;
  2843. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2844. #endif
  2845. SERIAL_PROTOCOLPGM(" @:");
  2846. #ifdef EXTRUDER_WATTS
  2847. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2848. SERIAL_PROTOCOLCHAR('W');
  2849. #else
  2850. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2851. #endif
  2852. SERIAL_PROTOCOLPGM(" B@:");
  2853. #ifdef BED_WATTS
  2854. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2855. SERIAL_PROTOCOLCHAR('W');
  2856. #else
  2857. SERIAL_PROTOCOL(getHeaterPower(-1));
  2858. #endif
  2859. #ifdef SHOW_TEMP_ADC_VALUES
  2860. #if HAS_TEMP_BED
  2861. SERIAL_PROTOCOLPGM(" ADC B:");
  2862. SERIAL_PROTOCOL_F(degBed(),1);
  2863. SERIAL_PROTOCOLPGM("C->");
  2864. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2865. #endif
  2866. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2867. SERIAL_PROTOCOLPGM(" T");
  2868. SERIAL_PROTOCOL(cur_extruder);
  2869. SERIAL_PROTOCOLCHAR(':');
  2870. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2871. SERIAL_PROTOCOLPGM("C->");
  2872. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2873. }
  2874. #endif
  2875. SERIAL_EOL;
  2876. }
  2877. #if HAS_FAN
  2878. /**
  2879. * M106: Set Fan Speed
  2880. */
  2881. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2882. /**
  2883. * M107: Fan Off
  2884. */
  2885. inline void gcode_M107() { fanSpeed = 0; }
  2886. #endif // HAS_FAN
  2887. /**
  2888. * M109: Wait for extruder(s) to reach temperature
  2889. */
  2890. inline void gcode_M109() {
  2891. if (setTargetedHotend(109)) return;
  2892. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2893. LCD_MESSAGEPGM(MSG_HEATING);
  2894. no_wait_for_cooling = code_seen('S');
  2895. if (no_wait_for_cooling || code_seen('R')) {
  2896. float temp = code_value();
  2897. setTargetHotend(temp, target_extruder);
  2898. #ifdef DUAL_X_CARRIAGE
  2899. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2900. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2901. #endif
  2902. }
  2903. #ifdef AUTOTEMP
  2904. autotemp_enabled = code_seen('F');
  2905. if (autotemp_enabled) autotemp_factor = code_value();
  2906. if (code_seen('S')) autotemp_min = code_value();
  2907. if (code_seen('B')) autotemp_max = code_value();
  2908. #endif
  2909. millis_t temp_ms = millis();
  2910. /* See if we are heating up or cooling down */
  2911. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2912. cancel_heatup = false;
  2913. #ifdef TEMP_RESIDENCY_TIME
  2914. long residency_start_ms = -1;
  2915. /* continue to loop until we have reached the target temp
  2916. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2917. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2918. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2919. #else
  2920. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2921. #endif //TEMP_RESIDENCY_TIME
  2922. { // while loop
  2923. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2924. SERIAL_PROTOCOLPGM("T:");
  2925. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2926. SERIAL_PROTOCOLPGM(" E:");
  2927. SERIAL_PROTOCOL((int)target_extruder);
  2928. #ifdef TEMP_RESIDENCY_TIME
  2929. SERIAL_PROTOCOLPGM(" W:");
  2930. if (residency_start_ms > -1) {
  2931. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2932. SERIAL_PROTOCOLLN(temp_ms);
  2933. }
  2934. else {
  2935. SERIAL_PROTOCOLLNPGM("?");
  2936. }
  2937. #else
  2938. SERIAL_EOL;
  2939. #endif
  2940. temp_ms = millis();
  2941. }
  2942. idle();
  2943. #ifdef TEMP_RESIDENCY_TIME
  2944. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2945. // or when current temp falls outside the hysteresis after target temp was reached
  2946. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2947. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2948. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2949. {
  2950. residency_start_ms = millis();
  2951. }
  2952. #endif //TEMP_RESIDENCY_TIME
  2953. }
  2954. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2955. refresh_cmd_timeout();
  2956. print_job_start_ms = previous_cmd_ms;
  2957. }
  2958. #if HAS_TEMP_BED
  2959. /**
  2960. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2961. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2962. */
  2963. inline void gcode_M190() {
  2964. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2965. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2966. no_wait_for_cooling = code_seen('S');
  2967. if (no_wait_for_cooling || code_seen('R'))
  2968. setTargetBed(code_value());
  2969. millis_t temp_ms = millis();
  2970. cancel_heatup = false;
  2971. target_direction = isHeatingBed(); // true if heating, false if cooling
  2972. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2973. millis_t ms = millis();
  2974. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2975. temp_ms = ms;
  2976. float tt = degHotend(active_extruder);
  2977. SERIAL_PROTOCOLPGM("T:");
  2978. SERIAL_PROTOCOL(tt);
  2979. SERIAL_PROTOCOLPGM(" E:");
  2980. SERIAL_PROTOCOL((int)active_extruder);
  2981. SERIAL_PROTOCOLPGM(" B:");
  2982. SERIAL_PROTOCOL_F(degBed(), 1);
  2983. SERIAL_EOL;
  2984. }
  2985. idle();
  2986. }
  2987. LCD_MESSAGEPGM(MSG_BED_DONE);
  2988. refresh_cmd_timeout();
  2989. }
  2990. #endif // HAS_TEMP_BED
  2991. /**
  2992. * M111: Set the debug level
  2993. */
  2994. inline void gcode_M111() {
  2995. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
  2996. if (marlin_debug_flags & DEBUG_ECHO) {
  2997. SERIAL_ECHO_START;
  2998. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  2999. }
  3000. // FOR MOMENT NOT ACTIVE
  3001. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3002. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3003. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3004. SERIAL_ECHO_START;
  3005. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3006. disable_all_heaters();
  3007. }
  3008. }
  3009. /**
  3010. * M112: Emergency Stop
  3011. */
  3012. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3013. #ifdef BARICUDA
  3014. #if HAS_HEATER_1
  3015. /**
  3016. * M126: Heater 1 valve open
  3017. */
  3018. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3019. /**
  3020. * M127: Heater 1 valve close
  3021. */
  3022. inline void gcode_M127() { ValvePressure = 0; }
  3023. #endif
  3024. #if HAS_HEATER_2
  3025. /**
  3026. * M128: Heater 2 valve open
  3027. */
  3028. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3029. /**
  3030. * M129: Heater 2 valve close
  3031. */
  3032. inline void gcode_M129() { EtoPPressure = 0; }
  3033. #endif
  3034. #endif //BARICUDA
  3035. /**
  3036. * M140: Set bed temperature
  3037. */
  3038. inline void gcode_M140() {
  3039. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3040. if (code_seen('S')) setTargetBed(code_value());
  3041. }
  3042. #ifdef ULTIPANEL
  3043. /**
  3044. * M145: Set the heatup state for a material in the LCD menu
  3045. * S<material> (0=PLA, 1=ABS)
  3046. * H<hotend temp>
  3047. * B<bed temp>
  3048. * F<fan speed>
  3049. */
  3050. inline void gcode_M145() {
  3051. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3052. if (material < 0 || material > 1) {
  3053. SERIAL_ERROR_START;
  3054. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3055. }
  3056. else {
  3057. int v;
  3058. switch (material) {
  3059. case 0:
  3060. if (code_seen('H')) {
  3061. v = code_value_short();
  3062. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3063. }
  3064. if (code_seen('F')) {
  3065. v = code_value_short();
  3066. plaPreheatFanSpeed = constrain(v, 0, 255);
  3067. }
  3068. #if TEMP_SENSOR_BED != 0
  3069. if (code_seen('B')) {
  3070. v = code_value_short();
  3071. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3072. }
  3073. #endif
  3074. break;
  3075. case 1:
  3076. if (code_seen('H')) {
  3077. v = code_value_short();
  3078. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3079. }
  3080. if (code_seen('F')) {
  3081. v = code_value_short();
  3082. absPreheatFanSpeed = constrain(v, 0, 255);
  3083. }
  3084. #if TEMP_SENSOR_BED != 0
  3085. if (code_seen('B')) {
  3086. v = code_value_short();
  3087. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3088. }
  3089. #endif
  3090. break;
  3091. }
  3092. }
  3093. }
  3094. #endif
  3095. #if HAS_POWER_SWITCH
  3096. /**
  3097. * M80: Turn on Power Supply
  3098. */
  3099. inline void gcode_M80() {
  3100. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3101. // If you have a switch on suicide pin, this is useful
  3102. // if you want to start another print with suicide feature after
  3103. // a print without suicide...
  3104. #if HAS_SUICIDE
  3105. OUT_WRITE(SUICIDE_PIN, HIGH);
  3106. #endif
  3107. #ifdef ULTIPANEL
  3108. powersupply = true;
  3109. LCD_MESSAGEPGM(WELCOME_MSG);
  3110. lcd_update();
  3111. #endif
  3112. }
  3113. #endif // HAS_POWER_SWITCH
  3114. /**
  3115. * M81: Turn off Power, including Power Supply, if there is one.
  3116. *
  3117. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3118. */
  3119. inline void gcode_M81() {
  3120. disable_all_heaters();
  3121. finishAndDisableSteppers();
  3122. fanSpeed = 0;
  3123. delay(1000); // Wait 1 second before switching off
  3124. #if HAS_SUICIDE
  3125. st_synchronize();
  3126. suicide();
  3127. #elif HAS_POWER_SWITCH
  3128. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3129. #endif
  3130. #ifdef ULTIPANEL
  3131. #if HAS_POWER_SWITCH
  3132. powersupply = false;
  3133. #endif
  3134. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3135. lcd_update();
  3136. #endif
  3137. }
  3138. /**
  3139. * M82: Set E codes absolute (default)
  3140. */
  3141. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3142. /**
  3143. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3144. */
  3145. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3146. /**
  3147. * M18, M84: Disable all stepper motors
  3148. */
  3149. inline void gcode_M18_M84() {
  3150. if (code_seen('S')) {
  3151. stepper_inactive_time = code_value() * 1000;
  3152. }
  3153. else {
  3154. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3155. if (all_axis) {
  3156. finishAndDisableSteppers();
  3157. }
  3158. else {
  3159. st_synchronize();
  3160. if (code_seen('X')) disable_x();
  3161. if (code_seen('Y')) disable_y();
  3162. if (code_seen('Z')) disable_z();
  3163. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3164. if (code_seen('E')) {
  3165. disable_e0();
  3166. disable_e1();
  3167. disable_e2();
  3168. disable_e3();
  3169. }
  3170. #endif
  3171. }
  3172. }
  3173. }
  3174. /**
  3175. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3176. */
  3177. inline void gcode_M85() {
  3178. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3179. }
  3180. /**
  3181. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3182. * (Follows the same syntax as G92)
  3183. */
  3184. inline void gcode_M92() {
  3185. for(int8_t i=0; i < NUM_AXIS; i++) {
  3186. if (code_seen(axis_codes[i])) {
  3187. if (i == E_AXIS) {
  3188. float value = code_value();
  3189. if (value < 20.0) {
  3190. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3191. max_e_jerk *= factor;
  3192. max_feedrate[i] *= factor;
  3193. axis_steps_per_sqr_second[i] *= factor;
  3194. }
  3195. axis_steps_per_unit[i] = value;
  3196. }
  3197. else {
  3198. axis_steps_per_unit[i] = code_value();
  3199. }
  3200. }
  3201. }
  3202. }
  3203. /**
  3204. * M114: Output current position to serial port
  3205. */
  3206. inline void gcode_M114() {
  3207. SERIAL_PROTOCOLPGM("X:");
  3208. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3209. SERIAL_PROTOCOLPGM(" Y:");
  3210. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3211. SERIAL_PROTOCOLPGM(" Z:");
  3212. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3213. SERIAL_PROTOCOLPGM(" E:");
  3214. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3215. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3216. SERIAL_PROTOCOL(st_get_position_mm(X_AXIS));
  3217. SERIAL_PROTOCOLPGM(" Y:");
  3218. SERIAL_PROTOCOL(st_get_position_mm(Y_AXIS));
  3219. SERIAL_PROTOCOLPGM(" Z:");
  3220. SERIAL_PROTOCOL(st_get_position_mm(Z_AXIS));
  3221. SERIAL_EOL;
  3222. #ifdef SCARA
  3223. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3224. SERIAL_PROTOCOL(delta[X_AXIS]);
  3225. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3226. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3227. SERIAL_EOL;
  3228. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3229. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3230. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3231. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3232. SERIAL_EOL;
  3233. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3234. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3235. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3236. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3237. SERIAL_EOL; SERIAL_EOL;
  3238. #endif
  3239. }
  3240. /**
  3241. * M115: Capabilities string
  3242. */
  3243. inline void gcode_M115() {
  3244. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3245. }
  3246. /**
  3247. * M117: Set LCD Status Message
  3248. */
  3249. inline void gcode_M117() {
  3250. lcd_setstatus(current_command_args);
  3251. }
  3252. /**
  3253. * M119: Output endstop states to serial output
  3254. */
  3255. inline void gcode_M119() {
  3256. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3257. #if HAS_X_MIN
  3258. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3259. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3260. #endif
  3261. #if HAS_X_MAX
  3262. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3263. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3264. #endif
  3265. #if HAS_Y_MIN
  3266. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3267. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3268. #endif
  3269. #if HAS_Y_MAX
  3270. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3271. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3272. #endif
  3273. #if HAS_Z_MIN
  3274. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3275. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3276. #endif
  3277. #if HAS_Z_MAX
  3278. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3279. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3280. #endif
  3281. #if HAS_Z2_MAX
  3282. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3283. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3284. #endif
  3285. #if HAS_Z_PROBE
  3286. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3287. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3288. #endif
  3289. }
  3290. /**
  3291. * M120: Enable endstops
  3292. */
  3293. inline void gcode_M120() { enable_endstops(true); }
  3294. /**
  3295. * M121: Disable endstops
  3296. */
  3297. inline void gcode_M121() { enable_endstops(false); }
  3298. #ifdef BLINKM
  3299. /**
  3300. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3301. */
  3302. inline void gcode_M150() {
  3303. SendColors(
  3304. code_seen('R') ? (byte)code_value_short() : 0,
  3305. code_seen('U') ? (byte)code_value_short() : 0,
  3306. code_seen('B') ? (byte)code_value_short() : 0
  3307. );
  3308. }
  3309. #endif // BLINKM
  3310. /**
  3311. * M200: Set filament diameter and set E axis units to cubic millimeters
  3312. *
  3313. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3314. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3315. */
  3316. inline void gcode_M200() {
  3317. if (setTargetedHotend(200)) return;
  3318. if (code_seen('D')) {
  3319. float diameter = code_value();
  3320. // setting any extruder filament size disables volumetric on the assumption that
  3321. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3322. // for all extruders
  3323. volumetric_enabled = (diameter != 0.0);
  3324. if (volumetric_enabled) {
  3325. filament_size[target_extruder] = diameter;
  3326. // make sure all extruders have some sane value for the filament size
  3327. for (int i=0; i<EXTRUDERS; i++)
  3328. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3329. }
  3330. }
  3331. else {
  3332. //reserved for setting filament diameter via UFID or filament measuring device
  3333. return;
  3334. }
  3335. calculate_volumetric_multipliers();
  3336. }
  3337. /**
  3338. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3339. */
  3340. inline void gcode_M201() {
  3341. for (int8_t i=0; i < NUM_AXIS; i++) {
  3342. if (code_seen(axis_codes[i])) {
  3343. max_acceleration_units_per_sq_second[i] = code_value();
  3344. }
  3345. }
  3346. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3347. reset_acceleration_rates();
  3348. }
  3349. #if 0 // Not used for Sprinter/grbl gen6
  3350. inline void gcode_M202() {
  3351. for(int8_t i=0; i < NUM_AXIS; i++) {
  3352. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3353. }
  3354. }
  3355. #endif
  3356. /**
  3357. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3358. */
  3359. inline void gcode_M203() {
  3360. for (int8_t i=0; i < NUM_AXIS; i++) {
  3361. if (code_seen(axis_codes[i])) {
  3362. max_feedrate[i] = code_value();
  3363. }
  3364. }
  3365. }
  3366. /**
  3367. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3368. *
  3369. * P = Printing moves
  3370. * R = Retract only (no X, Y, Z) moves
  3371. * T = Travel (non printing) moves
  3372. *
  3373. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3374. */
  3375. inline void gcode_M204() {
  3376. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3377. travel_acceleration = acceleration = code_value();
  3378. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3379. SERIAL_EOL;
  3380. }
  3381. if (code_seen('P')) {
  3382. acceleration = code_value();
  3383. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3384. SERIAL_EOL;
  3385. }
  3386. if (code_seen('R')) {
  3387. retract_acceleration = code_value();
  3388. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3389. SERIAL_EOL;
  3390. }
  3391. if (code_seen('T')) {
  3392. travel_acceleration = code_value();
  3393. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3394. SERIAL_EOL;
  3395. }
  3396. }
  3397. /**
  3398. * M205: Set Advanced Settings
  3399. *
  3400. * S = Min Feed Rate (mm/s)
  3401. * T = Min Travel Feed Rate (mm/s)
  3402. * B = Min Segment Time (µs)
  3403. * X = Max XY Jerk (mm/s/s)
  3404. * Z = Max Z Jerk (mm/s/s)
  3405. * E = Max E Jerk (mm/s/s)
  3406. */
  3407. inline void gcode_M205() {
  3408. if (code_seen('S')) minimumfeedrate = code_value();
  3409. if (code_seen('T')) mintravelfeedrate = code_value();
  3410. if (code_seen('B')) minsegmenttime = code_value();
  3411. if (code_seen('X')) max_xy_jerk = code_value();
  3412. if (code_seen('Z')) max_z_jerk = code_value();
  3413. if (code_seen('E')) max_e_jerk = code_value();
  3414. }
  3415. /**
  3416. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3417. */
  3418. inline void gcode_M206() {
  3419. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3420. if (code_seen(axis_codes[i])) {
  3421. home_offset[i] = code_value();
  3422. }
  3423. }
  3424. #ifdef SCARA
  3425. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3426. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3427. #endif
  3428. }
  3429. #ifdef DELTA
  3430. /**
  3431. * M665: Set delta configurations
  3432. *
  3433. * L = diagonal rod
  3434. * R = delta radius
  3435. * S = segments per second
  3436. */
  3437. inline void gcode_M665() {
  3438. if (code_seen('L')) delta_diagonal_rod = code_value();
  3439. if (code_seen('R')) delta_radius = code_value();
  3440. if (code_seen('S')) delta_segments_per_second = code_value();
  3441. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3442. }
  3443. /**
  3444. * M666: Set delta endstop adjustment
  3445. */
  3446. inline void gcode_M666() {
  3447. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3448. if (code_seen(axis_codes[i])) {
  3449. endstop_adj[i] = code_value();
  3450. }
  3451. }
  3452. }
  3453. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3454. /**
  3455. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3456. */
  3457. inline void gcode_M666() {
  3458. if (code_seen('Z')) z_endstop_adj = code_value();
  3459. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3460. SERIAL_EOL;
  3461. }
  3462. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3463. #ifdef FWRETRACT
  3464. /**
  3465. * M207: Set firmware retraction values
  3466. *
  3467. * S[+mm] retract_length
  3468. * W[+mm] retract_length_swap (multi-extruder)
  3469. * F[mm/min] retract_feedrate
  3470. * Z[mm] retract_zlift
  3471. */
  3472. inline void gcode_M207() {
  3473. if (code_seen('S')) retract_length = code_value();
  3474. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3475. if (code_seen('Z')) retract_zlift = code_value();
  3476. #if EXTRUDERS > 1
  3477. if (code_seen('W')) retract_length_swap = code_value();
  3478. #endif
  3479. }
  3480. /**
  3481. * M208: Set firmware un-retraction values
  3482. *
  3483. * S[+mm] retract_recover_length (in addition to M207 S*)
  3484. * W[+mm] retract_recover_length_swap (multi-extruder)
  3485. * F[mm/min] retract_recover_feedrate
  3486. */
  3487. inline void gcode_M208() {
  3488. if (code_seen('S')) retract_recover_length = code_value();
  3489. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3490. #if EXTRUDERS > 1
  3491. if (code_seen('W')) retract_recover_length_swap = code_value();
  3492. #endif
  3493. }
  3494. /**
  3495. * M209: Enable automatic retract (M209 S1)
  3496. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3497. */
  3498. inline void gcode_M209() {
  3499. if (code_seen('S')) {
  3500. int t = code_value_short();
  3501. switch(t) {
  3502. case 0:
  3503. autoretract_enabled = false;
  3504. break;
  3505. case 1:
  3506. autoretract_enabled = true;
  3507. break;
  3508. default:
  3509. unknown_command_error();
  3510. return;
  3511. }
  3512. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3513. }
  3514. }
  3515. #endif // FWRETRACT
  3516. #if EXTRUDERS > 1
  3517. /**
  3518. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3519. */
  3520. inline void gcode_M218() {
  3521. if (setTargetedHotend(218)) return;
  3522. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3523. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3524. #ifdef DUAL_X_CARRIAGE
  3525. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3526. #endif
  3527. SERIAL_ECHO_START;
  3528. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3529. for (int e = 0; e < EXTRUDERS; e++) {
  3530. SERIAL_CHAR(' ');
  3531. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3532. SERIAL_CHAR(',');
  3533. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3534. #ifdef DUAL_X_CARRIAGE
  3535. SERIAL_CHAR(',');
  3536. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3537. #endif
  3538. }
  3539. SERIAL_EOL;
  3540. }
  3541. #endif // EXTRUDERS > 1
  3542. /**
  3543. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3544. */
  3545. inline void gcode_M220() {
  3546. if (code_seen('S')) feedrate_multiplier = code_value();
  3547. }
  3548. /**
  3549. * M221: Set extrusion percentage (M221 T0 S95)
  3550. */
  3551. inline void gcode_M221() {
  3552. if (code_seen('S')) {
  3553. int sval = code_value();
  3554. if (code_seen('T')) {
  3555. if (setTargetedHotend(221)) return;
  3556. extruder_multiplier[target_extruder] = sval;
  3557. }
  3558. else {
  3559. extruder_multiplier[active_extruder] = sval;
  3560. }
  3561. }
  3562. }
  3563. /**
  3564. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3565. */
  3566. inline void gcode_M226() {
  3567. if (code_seen('P')) {
  3568. int pin_number = code_value();
  3569. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3570. if (pin_state >= -1 && pin_state <= 1) {
  3571. for (int8_t i = 0; i < COUNT(sensitive_pins); i++) {
  3572. if (sensitive_pins[i] == pin_number) {
  3573. pin_number = -1;
  3574. break;
  3575. }
  3576. }
  3577. if (pin_number > -1) {
  3578. int target = LOW;
  3579. st_synchronize();
  3580. pinMode(pin_number, INPUT);
  3581. switch(pin_state){
  3582. case 1:
  3583. target = HIGH;
  3584. break;
  3585. case 0:
  3586. target = LOW;
  3587. break;
  3588. case -1:
  3589. target = !digitalRead(pin_number);
  3590. break;
  3591. }
  3592. while (digitalRead(pin_number) != target) idle();
  3593. } // pin_number > -1
  3594. } // pin_state -1 0 1
  3595. } // code_seen('P')
  3596. }
  3597. #if NUM_SERVOS > 0
  3598. /**
  3599. * M280: Get or set servo position. P<index> S<angle>
  3600. */
  3601. inline void gcode_M280() {
  3602. int servo_index = code_seen('P') ? code_value_short() : -1;
  3603. int servo_position = 0;
  3604. if (code_seen('S')) {
  3605. servo_position = code_value_short();
  3606. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  3607. servo[servo_index].move(servo_position);
  3608. else {
  3609. SERIAL_ECHO_START;
  3610. SERIAL_ECHO("Servo ");
  3611. SERIAL_ECHO(servo_index);
  3612. SERIAL_ECHOLN(" out of range");
  3613. }
  3614. }
  3615. else if (servo_index >= 0) {
  3616. SERIAL_PROTOCOL(MSG_OK);
  3617. SERIAL_PROTOCOL(" Servo ");
  3618. SERIAL_PROTOCOL(servo_index);
  3619. SERIAL_PROTOCOL(": ");
  3620. SERIAL_PROTOCOL(servo[servo_index].read());
  3621. SERIAL_EOL;
  3622. }
  3623. }
  3624. #endif // NUM_SERVOS > 0
  3625. #if HAS_BUZZER
  3626. /**
  3627. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3628. */
  3629. inline void gcode_M300() {
  3630. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3631. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3632. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3633. buzz(beepP, beepS);
  3634. }
  3635. #endif // HAS_BUZZER
  3636. #ifdef PIDTEMP
  3637. /**
  3638. * M301: Set PID parameters P I D (and optionally C)
  3639. */
  3640. inline void gcode_M301() {
  3641. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3642. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3643. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3644. if (e < EXTRUDERS) { // catch bad input value
  3645. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3646. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3647. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3648. #ifdef PID_ADD_EXTRUSION_RATE
  3649. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3650. #endif
  3651. updatePID();
  3652. SERIAL_PROTOCOL(MSG_OK);
  3653. #ifdef PID_PARAMS_PER_EXTRUDER
  3654. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3655. SERIAL_PROTOCOL(e);
  3656. #endif // PID_PARAMS_PER_EXTRUDER
  3657. SERIAL_PROTOCOL(" p:");
  3658. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3659. SERIAL_PROTOCOL(" i:");
  3660. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3661. SERIAL_PROTOCOL(" d:");
  3662. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3663. #ifdef PID_ADD_EXTRUSION_RATE
  3664. SERIAL_PROTOCOL(" c:");
  3665. //Kc does not have scaling applied above, or in resetting defaults
  3666. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3667. #endif
  3668. SERIAL_EOL;
  3669. }
  3670. else {
  3671. SERIAL_ECHO_START;
  3672. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3673. }
  3674. }
  3675. #endif // PIDTEMP
  3676. #ifdef PIDTEMPBED
  3677. inline void gcode_M304() {
  3678. if (code_seen('P')) bedKp = code_value();
  3679. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3680. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3681. updatePID();
  3682. SERIAL_PROTOCOL(MSG_OK);
  3683. SERIAL_PROTOCOL(" p:");
  3684. SERIAL_PROTOCOL(bedKp);
  3685. SERIAL_PROTOCOL(" i:");
  3686. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3687. SERIAL_PROTOCOL(" d:");
  3688. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3689. SERIAL_EOL;
  3690. }
  3691. #endif // PIDTEMPBED
  3692. #if defined(CHDK) || HAS_PHOTOGRAPH
  3693. /**
  3694. * M240: Trigger a camera by emulating a Canon RC-1
  3695. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3696. */
  3697. inline void gcode_M240() {
  3698. #ifdef CHDK
  3699. OUT_WRITE(CHDK, HIGH);
  3700. chdkHigh = millis();
  3701. chdkActive = true;
  3702. #elif HAS_PHOTOGRAPH
  3703. const uint8_t NUM_PULSES = 16;
  3704. const float PULSE_LENGTH = 0.01524;
  3705. for (int i = 0; i < NUM_PULSES; i++) {
  3706. WRITE(PHOTOGRAPH_PIN, HIGH);
  3707. _delay_ms(PULSE_LENGTH);
  3708. WRITE(PHOTOGRAPH_PIN, LOW);
  3709. _delay_ms(PULSE_LENGTH);
  3710. }
  3711. delay(7.33);
  3712. for (int i = 0; i < NUM_PULSES; i++) {
  3713. WRITE(PHOTOGRAPH_PIN, HIGH);
  3714. _delay_ms(PULSE_LENGTH);
  3715. WRITE(PHOTOGRAPH_PIN, LOW);
  3716. _delay_ms(PULSE_LENGTH);
  3717. }
  3718. #endif // !CHDK && HAS_PHOTOGRAPH
  3719. }
  3720. #endif // CHDK || PHOTOGRAPH_PIN
  3721. #ifdef HAS_LCD_CONTRAST
  3722. /**
  3723. * M250: Read and optionally set the LCD contrast
  3724. */
  3725. inline void gcode_M250() {
  3726. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3727. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3728. SERIAL_PROTOCOL(lcd_contrast);
  3729. SERIAL_EOL;
  3730. }
  3731. #endif // HAS_LCD_CONTRAST
  3732. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3733. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3734. /**
  3735. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3736. */
  3737. inline void gcode_M302() {
  3738. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3739. }
  3740. #endif // PREVENT_DANGEROUS_EXTRUDE
  3741. /**
  3742. * M303: PID relay autotune
  3743. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3744. * E<extruder> (-1 for the bed)
  3745. * C<cycles>
  3746. */
  3747. inline void gcode_M303() {
  3748. int e = code_seen('E') ? code_value_short() : 0;
  3749. int c = code_seen('C') ? code_value_short() : 5;
  3750. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3751. PID_autotune(temp, e, c);
  3752. }
  3753. #ifdef SCARA
  3754. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3755. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3756. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3757. if (IsRunning()) {
  3758. //gcode_get_destination(); // For X Y Z E F
  3759. delta[X_AXIS] = delta_x;
  3760. delta[Y_AXIS] = delta_y;
  3761. calculate_SCARA_forward_Transform(delta);
  3762. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3763. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3764. prepare_move();
  3765. //ok_to_send();
  3766. return true;
  3767. }
  3768. return false;
  3769. }
  3770. /**
  3771. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3772. */
  3773. inline bool gcode_M360() {
  3774. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3775. return SCARA_move_to_cal(0, 120);
  3776. }
  3777. /**
  3778. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3779. */
  3780. inline bool gcode_M361() {
  3781. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3782. return SCARA_move_to_cal(90, 130);
  3783. }
  3784. /**
  3785. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3786. */
  3787. inline bool gcode_M362() {
  3788. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3789. return SCARA_move_to_cal(60, 180);
  3790. }
  3791. /**
  3792. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3793. */
  3794. inline bool gcode_M363() {
  3795. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3796. return SCARA_move_to_cal(50, 90);
  3797. }
  3798. /**
  3799. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3800. */
  3801. inline bool gcode_M364() {
  3802. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3803. return SCARA_move_to_cal(45, 135);
  3804. }
  3805. /**
  3806. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3807. */
  3808. inline void gcode_M365() {
  3809. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3810. if (code_seen(axis_codes[i])) {
  3811. axis_scaling[i] = code_value();
  3812. }
  3813. }
  3814. }
  3815. #endif // SCARA
  3816. #ifdef EXT_SOLENOID
  3817. void enable_solenoid(uint8_t num) {
  3818. switch(num) {
  3819. case 0:
  3820. OUT_WRITE(SOL0_PIN, HIGH);
  3821. break;
  3822. #if HAS_SOLENOID_1
  3823. case 1:
  3824. OUT_WRITE(SOL1_PIN, HIGH);
  3825. break;
  3826. #endif
  3827. #if HAS_SOLENOID_2
  3828. case 2:
  3829. OUT_WRITE(SOL2_PIN, HIGH);
  3830. break;
  3831. #endif
  3832. #if HAS_SOLENOID_3
  3833. case 3:
  3834. OUT_WRITE(SOL3_PIN, HIGH);
  3835. break;
  3836. #endif
  3837. default:
  3838. SERIAL_ECHO_START;
  3839. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3840. break;
  3841. }
  3842. }
  3843. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3844. void disable_all_solenoids() {
  3845. OUT_WRITE(SOL0_PIN, LOW);
  3846. OUT_WRITE(SOL1_PIN, LOW);
  3847. OUT_WRITE(SOL2_PIN, LOW);
  3848. OUT_WRITE(SOL3_PIN, LOW);
  3849. }
  3850. /**
  3851. * M380: Enable solenoid on the active extruder
  3852. */
  3853. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3854. /**
  3855. * M381: Disable all solenoids
  3856. */
  3857. inline void gcode_M381() { disable_all_solenoids(); }
  3858. #endif // EXT_SOLENOID
  3859. /**
  3860. * M400: Finish all moves
  3861. */
  3862. inline void gcode_M400() { st_synchronize(); }
  3863. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3864. #ifdef SERVO_ENDSTOPS
  3865. void raise_z_for_servo() {
  3866. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3867. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
  3868. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  3869. }
  3870. #endif
  3871. /**
  3872. * M401: Engage Z Servo endstop if available
  3873. */
  3874. inline void gcode_M401() {
  3875. #ifdef SERVO_ENDSTOPS
  3876. raise_z_for_servo();
  3877. #endif
  3878. deploy_z_probe();
  3879. }
  3880. /**
  3881. * M402: Retract Z Servo endstop if enabled
  3882. */
  3883. inline void gcode_M402() {
  3884. #ifdef SERVO_ENDSTOPS
  3885. raise_z_for_servo();
  3886. #endif
  3887. stow_z_probe(false);
  3888. }
  3889. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3890. #ifdef FILAMENT_SENSOR
  3891. /**
  3892. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3893. */
  3894. inline void gcode_M404() {
  3895. #if HAS_FILWIDTH
  3896. if (code_seen('W')) {
  3897. filament_width_nominal = code_value();
  3898. }
  3899. else {
  3900. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3901. SERIAL_PROTOCOLLN(filament_width_nominal);
  3902. }
  3903. #endif
  3904. }
  3905. /**
  3906. * M405: Turn on filament sensor for control
  3907. */
  3908. inline void gcode_M405() {
  3909. if (code_seen('D')) meas_delay_cm = code_value();
  3910. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3911. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3912. int temp_ratio = widthFil_to_size_ratio();
  3913. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3914. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3915. delay_index1 = delay_index2 = 0;
  3916. }
  3917. filament_sensor = true;
  3918. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3919. //SERIAL_PROTOCOL(filament_width_meas);
  3920. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3921. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  3922. }
  3923. /**
  3924. * M406: Turn off filament sensor for control
  3925. */
  3926. inline void gcode_M406() { filament_sensor = false; }
  3927. /**
  3928. * M407: Get measured filament diameter on serial output
  3929. */
  3930. inline void gcode_M407() {
  3931. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3932. SERIAL_PROTOCOLLN(filament_width_meas);
  3933. }
  3934. #endif // FILAMENT_SENSOR
  3935. /**
  3936. * M410: Quickstop - Abort all planned moves
  3937. *
  3938. * This will stop the carriages mid-move, so most likely they
  3939. * will be out of sync with the stepper position after this.
  3940. */
  3941. inline void gcode_M410() { quickStop(); }
  3942. #ifdef MESH_BED_LEVELING
  3943. /**
  3944. * M420: Enable/Disable Mesh Bed Leveling
  3945. */
  3946. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3947. /**
  3948. * M421: Set a single Mesh Bed Leveling Z coordinate
  3949. */
  3950. inline void gcode_M421() {
  3951. float x, y, z;
  3952. bool err = false, hasX, hasY, hasZ;
  3953. if ((hasX = code_seen('X'))) x = code_value();
  3954. if ((hasY = code_seen('Y'))) y = code_value();
  3955. if ((hasZ = code_seen('Z'))) z = code_value();
  3956. if (!hasX || !hasY || !hasZ) {
  3957. SERIAL_ERROR_START;
  3958. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3959. err = true;
  3960. }
  3961. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3962. SERIAL_ERROR_START;
  3963. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3964. err = true;
  3965. }
  3966. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3967. }
  3968. #endif
  3969. /**
  3970. * M428: Set home_offset based on the distance between the
  3971. * current_position and the nearest "reference point."
  3972. * If an axis is past center its endstop position
  3973. * is the reference-point. Otherwise it uses 0. This allows
  3974. * the Z offset to be set near the bed when using a max endstop.
  3975. *
  3976. * M428 can't be used more than 2cm away from 0 or an endstop.
  3977. *
  3978. * Use M206 to set these values directly.
  3979. */
  3980. inline void gcode_M428() {
  3981. bool err = false;
  3982. float new_offs[3], new_pos[3];
  3983. memcpy(new_pos, current_position, sizeof(new_pos));
  3984. memcpy(new_offs, home_offset, sizeof(new_offs));
  3985. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3986. if (axis_known_position[i]) {
  3987. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3988. diff = new_pos[i] - base;
  3989. if (diff > -20 && diff < 20) {
  3990. new_offs[i] -= diff;
  3991. new_pos[i] = base;
  3992. }
  3993. else {
  3994. SERIAL_ERROR_START;
  3995. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  3996. LCD_ALERTMESSAGEPGM("Err: Too far!");
  3997. #if HAS_BUZZER
  3998. enqueuecommands_P(PSTR("M300 S40 P200"));
  3999. #endif
  4000. err = true;
  4001. break;
  4002. }
  4003. }
  4004. }
  4005. if (!err) {
  4006. memcpy(current_position, new_pos, sizeof(new_pos));
  4007. memcpy(home_offset, new_offs, sizeof(new_offs));
  4008. sync_plan_position();
  4009. LCD_ALERTMESSAGEPGM("Offset applied.");
  4010. #if HAS_BUZZER
  4011. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4012. #endif
  4013. }
  4014. }
  4015. /**
  4016. * M500: Store settings in EEPROM
  4017. */
  4018. inline void gcode_M500() {
  4019. Config_StoreSettings();
  4020. }
  4021. /**
  4022. * M501: Read settings from EEPROM
  4023. */
  4024. inline void gcode_M501() {
  4025. Config_RetrieveSettings();
  4026. }
  4027. /**
  4028. * M502: Revert to default settings
  4029. */
  4030. inline void gcode_M502() {
  4031. Config_ResetDefault();
  4032. }
  4033. /**
  4034. * M503: print settings currently in memory
  4035. */
  4036. inline void gcode_M503() {
  4037. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4038. }
  4039. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4040. /**
  4041. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4042. */
  4043. inline void gcode_M540() {
  4044. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4045. }
  4046. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4047. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4048. inline void gcode_SET_Z_PROBE_OFFSET() {
  4049. float value;
  4050. if (code_seen('Z')) {
  4051. value = code_value();
  4052. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4053. zprobe_zoffset = value;
  4054. SERIAL_ECHO_START;
  4055. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4056. SERIAL_EOL;
  4057. }
  4058. else {
  4059. SERIAL_ECHO_START;
  4060. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4061. SERIAL_ECHOPGM(MSG_Z_MIN);
  4062. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4063. SERIAL_ECHOPGM(MSG_Z_MAX);
  4064. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4065. SERIAL_EOL;
  4066. }
  4067. }
  4068. else {
  4069. SERIAL_ECHO_START;
  4070. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " : ");
  4071. SERIAL_ECHO(zprobe_zoffset);
  4072. SERIAL_EOL;
  4073. }
  4074. }
  4075. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4076. #ifdef FILAMENTCHANGEENABLE
  4077. /**
  4078. * M600: Pause for filament change
  4079. *
  4080. * E[distance] - Retract the filament this far (negative value)
  4081. * Z[distance] - Move the Z axis by this distance
  4082. * X[position] - Move to this X position, with Y
  4083. * Y[position] - Move to this Y position, with X
  4084. * L[distance] - Retract distance for removal (manual reload)
  4085. *
  4086. * Default values are used for omitted arguments.
  4087. *
  4088. */
  4089. inline void gcode_M600() {
  4090. if (degHotend(active_extruder) < extrude_min_temp) {
  4091. SERIAL_ERROR_START;
  4092. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4093. return;
  4094. }
  4095. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4096. for (int i=0; i<NUM_AXIS; i++)
  4097. lastpos[i] = destination[i] = current_position[i];
  4098. #ifdef DELTA
  4099. #define RUNPLAN calculate_delta(destination); \
  4100. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4101. #else
  4102. #define RUNPLAN line_to_destination();
  4103. #endif
  4104. //retract by E
  4105. if (code_seen('E')) destination[E_AXIS] += code_value();
  4106. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4107. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4108. #endif
  4109. RUNPLAN;
  4110. //lift Z
  4111. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4112. #ifdef FILAMENTCHANGE_ZADD
  4113. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4114. #endif
  4115. RUNPLAN;
  4116. //move xy
  4117. if (code_seen('X')) destination[X_AXIS] = code_value();
  4118. #ifdef FILAMENTCHANGE_XPOS
  4119. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4120. #endif
  4121. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4122. #ifdef FILAMENTCHANGE_YPOS
  4123. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4124. #endif
  4125. RUNPLAN;
  4126. if (code_seen('L')) destination[E_AXIS] += code_value();
  4127. #ifdef FILAMENTCHANGE_FINALRETRACT
  4128. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4129. #endif
  4130. RUNPLAN;
  4131. //finish moves
  4132. st_synchronize();
  4133. //disable extruder steppers so filament can be removed
  4134. disable_e0();
  4135. disable_e1();
  4136. disable_e2();
  4137. disable_e3();
  4138. delay(100);
  4139. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4140. millis_t next_tick = 0;
  4141. while (!lcd_clicked()) {
  4142. #ifndef AUTO_FILAMENT_CHANGE
  4143. millis_t ms = millis();
  4144. if (ms >= next_tick) {
  4145. lcd_quick_feedback();
  4146. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4147. }
  4148. manage_heater();
  4149. manage_inactivity(true);
  4150. lcd_update();
  4151. #else
  4152. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4153. destination[E_AXIS] = current_position[E_AXIS];
  4154. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4155. st_synchronize();
  4156. #endif
  4157. } // while(!lcd_clicked)
  4158. lcd_quick_feedback(); // click sound feedback
  4159. #ifdef AUTO_FILAMENT_CHANGE
  4160. current_position[E_AXIS] = 0;
  4161. st_synchronize();
  4162. #endif
  4163. //return to normal
  4164. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4165. #ifdef FILAMENTCHANGE_FINALRETRACT
  4166. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4167. #endif
  4168. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4169. plan_set_e_position(current_position[E_AXIS]);
  4170. RUNPLAN; //should do nothing
  4171. lcd_reset_alert_level();
  4172. #ifdef DELTA
  4173. // Move XYZ to starting position, then E
  4174. calculate_delta(lastpos);
  4175. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4176. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4177. #else
  4178. // Move XY to starting position, then Z, then E
  4179. destination[X_AXIS] = lastpos[X_AXIS];
  4180. destination[Y_AXIS] = lastpos[Y_AXIS];
  4181. line_to_destination();
  4182. destination[Z_AXIS] = lastpos[Z_AXIS];
  4183. line_to_destination();
  4184. destination[E_AXIS] = lastpos[E_AXIS];
  4185. line_to_destination();
  4186. #endif
  4187. #ifdef FILAMENT_RUNOUT_SENSOR
  4188. filrunoutEnqueued = false;
  4189. #endif
  4190. }
  4191. #endif // FILAMENTCHANGEENABLE
  4192. #ifdef DUAL_X_CARRIAGE
  4193. /**
  4194. * M605: Set dual x-carriage movement mode
  4195. *
  4196. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4197. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4198. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4199. * millimeters x-offset and an optional differential hotend temperature of
  4200. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4201. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4202. *
  4203. * Note: the X axis should be homed after changing dual x-carriage mode.
  4204. */
  4205. inline void gcode_M605() {
  4206. st_synchronize();
  4207. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4208. switch(dual_x_carriage_mode) {
  4209. case DXC_DUPLICATION_MODE:
  4210. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4211. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4212. SERIAL_ECHO_START;
  4213. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4214. SERIAL_CHAR(' ');
  4215. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4216. SERIAL_CHAR(',');
  4217. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4218. SERIAL_CHAR(' ');
  4219. SERIAL_ECHO(duplicate_extruder_x_offset);
  4220. SERIAL_CHAR(',');
  4221. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4222. break;
  4223. case DXC_FULL_CONTROL_MODE:
  4224. case DXC_AUTO_PARK_MODE:
  4225. break;
  4226. default:
  4227. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4228. break;
  4229. }
  4230. active_extruder_parked = false;
  4231. extruder_duplication_enabled = false;
  4232. delayed_move_time = 0;
  4233. }
  4234. #endif // DUAL_X_CARRIAGE
  4235. /**
  4236. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4237. */
  4238. inline void gcode_M907() {
  4239. #if HAS_DIGIPOTSS
  4240. for (int i=0;i<NUM_AXIS;i++)
  4241. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4242. if (code_seen('B')) digipot_current(4, code_value());
  4243. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4244. #endif
  4245. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4246. if (code_seen('X')) digipot_current(0, code_value());
  4247. #endif
  4248. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4249. if (code_seen('Z')) digipot_current(1, code_value());
  4250. #endif
  4251. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4252. if (code_seen('E')) digipot_current(2, code_value());
  4253. #endif
  4254. #ifdef DIGIPOT_I2C
  4255. // this one uses actual amps in floating point
  4256. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4257. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4258. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4259. #endif
  4260. }
  4261. #if HAS_DIGIPOTSS
  4262. /**
  4263. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4264. */
  4265. inline void gcode_M908() {
  4266. digitalPotWrite(
  4267. code_seen('P') ? code_value() : 0,
  4268. code_seen('S') ? code_value() : 0
  4269. );
  4270. }
  4271. #endif // HAS_DIGIPOTSS
  4272. #if HAS_MICROSTEPS
  4273. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4274. inline void gcode_M350() {
  4275. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4276. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4277. if(code_seen('B')) microstep_mode(4,code_value());
  4278. microstep_readings();
  4279. }
  4280. /**
  4281. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4282. * S# determines MS1 or MS2, X# sets the pin high/low.
  4283. */
  4284. inline void gcode_M351() {
  4285. if (code_seen('S')) switch(code_value_short()) {
  4286. case 1:
  4287. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4288. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4289. break;
  4290. case 2:
  4291. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4292. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4293. break;
  4294. }
  4295. microstep_readings();
  4296. }
  4297. #endif // HAS_MICROSTEPS
  4298. /**
  4299. * M999: Restart after being stopped
  4300. */
  4301. inline void gcode_M999() {
  4302. Running = true;
  4303. lcd_reset_alert_level();
  4304. gcode_LastN = Stopped_gcode_LastN;
  4305. FlushSerialRequestResend();
  4306. }
  4307. /**
  4308. * T0-T3: Switch tool, usually switching extruders
  4309. *
  4310. * F[mm/min] Set the movement feedrate
  4311. */
  4312. inline void gcode_T(uint8_t tmp_extruder) {
  4313. if (tmp_extruder >= EXTRUDERS) {
  4314. SERIAL_ECHO_START;
  4315. SERIAL_CHAR('T');
  4316. SERIAL_PROTOCOL_F(tmp_extruder,DEC);
  4317. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4318. }
  4319. else {
  4320. target_extruder = tmp_extruder;
  4321. #if EXTRUDERS > 1
  4322. bool make_move = false;
  4323. #endif
  4324. if (code_seen('F')) {
  4325. #if EXTRUDERS > 1
  4326. make_move = true;
  4327. #endif
  4328. float next_feedrate = code_value();
  4329. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4330. }
  4331. #if EXTRUDERS > 1
  4332. if (tmp_extruder != active_extruder) {
  4333. // Save current position to return to after applying extruder offset
  4334. set_destination_to_current();
  4335. #ifdef DUAL_X_CARRIAGE
  4336. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4337. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4338. // Park old head: 1) raise 2) move to park position 3) lower
  4339. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4340. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4341. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4342. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4343. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4344. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4345. st_synchronize();
  4346. }
  4347. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4348. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4349. extruder_offset[Y_AXIS][active_extruder] +
  4350. extruder_offset[Y_AXIS][tmp_extruder];
  4351. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4352. extruder_offset[Z_AXIS][active_extruder] +
  4353. extruder_offset[Z_AXIS][tmp_extruder];
  4354. active_extruder = tmp_extruder;
  4355. // This function resets the max/min values - the current position may be overwritten below.
  4356. set_axis_is_at_home(X_AXIS);
  4357. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4358. current_position[X_AXIS] = inactive_extruder_x_pos;
  4359. inactive_extruder_x_pos = destination[X_AXIS];
  4360. }
  4361. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4362. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4363. if (active_extruder == 0 || active_extruder_parked)
  4364. current_position[X_AXIS] = inactive_extruder_x_pos;
  4365. else
  4366. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4367. inactive_extruder_x_pos = destination[X_AXIS];
  4368. extruder_duplication_enabled = false;
  4369. }
  4370. else {
  4371. // record raised toolhead position for use by unpark
  4372. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4373. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4374. active_extruder_parked = true;
  4375. delayed_move_time = 0;
  4376. }
  4377. #else // !DUAL_X_CARRIAGE
  4378. // Offset extruder (only by XY)
  4379. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4380. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4381. // Set the new active extruder and position
  4382. active_extruder = tmp_extruder;
  4383. #endif // !DUAL_X_CARRIAGE
  4384. #ifdef DELTA
  4385. sync_plan_position_delta();
  4386. #else
  4387. sync_plan_position();
  4388. #endif
  4389. // Move to the old position if 'F' was in the parameters
  4390. if (make_move && IsRunning()) prepare_move();
  4391. }
  4392. #ifdef EXT_SOLENOID
  4393. st_synchronize();
  4394. disable_all_solenoids();
  4395. enable_solenoid_on_active_extruder();
  4396. #endif // EXT_SOLENOID
  4397. #endif // EXTRUDERS > 1
  4398. SERIAL_ECHO_START;
  4399. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4400. SERIAL_PROTOCOLLN((int)active_extruder);
  4401. }
  4402. }
  4403. /**
  4404. * Process a single command and dispatch it to its handler
  4405. * This is called from the main loop()
  4406. */
  4407. void process_next_command() {
  4408. current_command = command_queue[cmd_queue_index_r];
  4409. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4410. SERIAL_ECHO_START;
  4411. SERIAL_ECHOLN(current_command);
  4412. }
  4413. // Sanitize the current command:
  4414. // - Skip leading spaces
  4415. // - Bypass N[0-9][0-9]*[ ]*
  4416. // - Overwrite * with nul to mark the end
  4417. while (*current_command == ' ') ++current_command;
  4418. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  4419. current_command += 2; // skip N[-0-9]
  4420. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4421. while (*current_command == ' ') ++current_command; // skip [ ]*
  4422. }
  4423. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4424. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  4425. // Get the command code, which must be G, M, or T
  4426. char command_code = *current_command;
  4427. // The code must have a numeric value
  4428. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4429. int codenum; // define ahead of goto
  4430. // Bail early if there's no code
  4431. if (!code_is_good) goto ExitUnknownCommand;
  4432. // Args pointer optimizes code_seen, especially those taking XYZEF
  4433. // This wastes a little cpu on commands that expect no arguments.
  4434. current_command_args = current_command;
  4435. while (*current_command_args && *current_command_args != ' ') ++current_command_args;
  4436. while (*current_command_args == ' ') ++current_command_args;
  4437. // Interpret the code int
  4438. seen_pointer = current_command;
  4439. codenum = code_value_short();
  4440. // Handle a known G, M, or T
  4441. switch(command_code) {
  4442. case 'G': switch (codenum) {
  4443. // G0, G1
  4444. case 0:
  4445. case 1:
  4446. gcode_G0_G1();
  4447. break;
  4448. // G2, G3
  4449. #ifndef SCARA
  4450. case 2: // G2 - CW ARC
  4451. case 3: // G3 - CCW ARC
  4452. gcode_G2_G3(codenum == 2);
  4453. break;
  4454. #endif
  4455. // G4 Dwell
  4456. case 4:
  4457. gcode_G4();
  4458. break;
  4459. #ifdef FWRETRACT
  4460. case 10: // G10: retract
  4461. case 11: // G11: retract_recover
  4462. gcode_G10_G11(codenum == 10);
  4463. break;
  4464. #endif //FWRETRACT
  4465. case 28: // G28: Home all axes, one at a time
  4466. gcode_G28();
  4467. break;
  4468. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4469. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4470. gcode_G29();
  4471. break;
  4472. #endif
  4473. #ifdef ENABLE_AUTO_BED_LEVELING
  4474. #ifndef Z_PROBE_SLED
  4475. case 30: // G30 Single Z Probe
  4476. gcode_G30();
  4477. break;
  4478. #else // Z_PROBE_SLED
  4479. case 31: // G31: dock the sled
  4480. case 32: // G32: undock the sled
  4481. dock_sled(codenum == 31);
  4482. break;
  4483. #endif // Z_PROBE_SLED
  4484. #endif // ENABLE_AUTO_BED_LEVELING
  4485. case 90: // G90
  4486. relative_mode = false;
  4487. break;
  4488. case 91: // G91
  4489. relative_mode = true;
  4490. break;
  4491. case 92: // G92
  4492. gcode_G92();
  4493. break;
  4494. }
  4495. break;
  4496. case 'M': switch (codenum) {
  4497. #ifdef ULTIPANEL
  4498. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4499. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4500. gcode_M0_M1();
  4501. break;
  4502. #endif // ULTIPANEL
  4503. case 17:
  4504. gcode_M17();
  4505. break;
  4506. #ifdef SDSUPPORT
  4507. case 20: // M20 - list SD card
  4508. gcode_M20(); break;
  4509. case 21: // M21 - init SD card
  4510. gcode_M21(); break;
  4511. case 22: //M22 - release SD card
  4512. gcode_M22(); break;
  4513. case 23: //M23 - Select file
  4514. gcode_M23(); break;
  4515. case 24: //M24 - Start SD print
  4516. gcode_M24(); break;
  4517. case 25: //M25 - Pause SD print
  4518. gcode_M25(); break;
  4519. case 26: //M26 - Set SD index
  4520. gcode_M26(); break;
  4521. case 27: //M27 - Get SD status
  4522. gcode_M27(); break;
  4523. case 28: //M28 - Start SD write
  4524. gcode_M28(); break;
  4525. case 29: //M29 - Stop SD write
  4526. gcode_M29(); break;
  4527. case 30: //M30 <filename> Delete File
  4528. gcode_M30(); break;
  4529. case 32: //M32 - Select file and start SD print
  4530. gcode_M32(); break;
  4531. #ifdef LONG_FILENAME_HOST_SUPPORT
  4532. case 33: //M33 - Get the long full path to a file or folder
  4533. gcode_M33(); break;
  4534. #endif // LONG_FILENAME_HOST_SUPPORT
  4535. case 928: //M928 - Start SD write
  4536. gcode_M928(); break;
  4537. #endif //SDSUPPORT
  4538. case 31: //M31 take time since the start of the SD print or an M109 command
  4539. gcode_M31();
  4540. break;
  4541. case 42: //M42 -Change pin status via gcode
  4542. gcode_M42();
  4543. break;
  4544. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4545. case 48: // M48 Z-Probe repeatability
  4546. gcode_M48();
  4547. break;
  4548. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4549. #ifdef M100_FREE_MEMORY_WATCHER
  4550. case 100:
  4551. gcode_M100();
  4552. break;
  4553. #endif
  4554. case 104: // M104
  4555. gcode_M104();
  4556. break;
  4557. case 111: // M111: Set debug level
  4558. gcode_M111();
  4559. break;
  4560. case 112: // M112: Emergency Stop
  4561. gcode_M112();
  4562. break;
  4563. case 140: // M140: Set bed temp
  4564. gcode_M140();
  4565. break;
  4566. case 105: // M105: Read current temperature
  4567. gcode_M105();
  4568. return; // "ok" already printed
  4569. case 109: // M109: Wait for temperature
  4570. gcode_M109();
  4571. break;
  4572. #if HAS_TEMP_BED
  4573. case 190: // M190: Wait for bed heater to reach target
  4574. gcode_M190();
  4575. break;
  4576. #endif // HAS_TEMP_BED
  4577. #if HAS_FAN
  4578. case 106: // M106: Fan On
  4579. gcode_M106();
  4580. break;
  4581. case 107: // M107: Fan Off
  4582. gcode_M107();
  4583. break;
  4584. #endif // HAS_FAN
  4585. #ifdef BARICUDA
  4586. // PWM for HEATER_1_PIN
  4587. #if HAS_HEATER_1
  4588. case 126: // M126: valve open
  4589. gcode_M126();
  4590. break;
  4591. case 127: // M127: valve closed
  4592. gcode_M127();
  4593. break;
  4594. #endif // HAS_HEATER_1
  4595. // PWM for HEATER_2_PIN
  4596. #if HAS_HEATER_2
  4597. case 128: // M128: valve open
  4598. gcode_M128();
  4599. break;
  4600. case 129: // M129: valve closed
  4601. gcode_M129();
  4602. break;
  4603. #endif // HAS_HEATER_2
  4604. #endif // BARICUDA
  4605. #if HAS_POWER_SWITCH
  4606. case 80: // M80: Turn on Power Supply
  4607. gcode_M80();
  4608. break;
  4609. #endif // HAS_POWER_SWITCH
  4610. case 81: // M81: Turn off Power, including Power Supply, if possible
  4611. gcode_M81();
  4612. break;
  4613. case 82:
  4614. gcode_M82();
  4615. break;
  4616. case 83:
  4617. gcode_M83();
  4618. break;
  4619. case 18: // (for compatibility)
  4620. case 84: // M84
  4621. gcode_M18_M84();
  4622. break;
  4623. case 85: // M85
  4624. gcode_M85();
  4625. break;
  4626. case 92: // M92: Set the steps-per-unit for one or more axes
  4627. gcode_M92();
  4628. break;
  4629. case 115: // M115: Report capabilities
  4630. gcode_M115();
  4631. break;
  4632. case 117: // M117: Set LCD message text, if possible
  4633. gcode_M117();
  4634. break;
  4635. case 114: // M114: Report current position
  4636. gcode_M114();
  4637. break;
  4638. case 120: // M120: Enable endstops
  4639. gcode_M120();
  4640. break;
  4641. case 121: // M121: Disable endstops
  4642. gcode_M121();
  4643. break;
  4644. case 119: // M119: Report endstop states
  4645. gcode_M119();
  4646. break;
  4647. #ifdef ULTIPANEL
  4648. case 145: // M145: Set material heatup parameters
  4649. gcode_M145();
  4650. break;
  4651. #endif
  4652. #ifdef BLINKM
  4653. case 150: // M150
  4654. gcode_M150();
  4655. break;
  4656. #endif //BLINKM
  4657. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4658. gcode_M200();
  4659. break;
  4660. case 201: // M201
  4661. gcode_M201();
  4662. break;
  4663. #if 0 // Not used for Sprinter/grbl gen6
  4664. case 202: // M202
  4665. gcode_M202();
  4666. break;
  4667. #endif
  4668. case 203: // M203 max feedrate mm/sec
  4669. gcode_M203();
  4670. break;
  4671. case 204: // M204 acclereration S normal moves T filmanent only moves
  4672. gcode_M204();
  4673. break;
  4674. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4675. gcode_M205();
  4676. break;
  4677. case 206: // M206 additional homing offset
  4678. gcode_M206();
  4679. break;
  4680. #ifdef DELTA
  4681. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4682. gcode_M665();
  4683. break;
  4684. #endif
  4685. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4686. case 666: // M666 set delta / dual endstop adjustment
  4687. gcode_M666();
  4688. break;
  4689. #endif
  4690. #ifdef FWRETRACT
  4691. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4692. gcode_M207();
  4693. break;
  4694. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4695. gcode_M208();
  4696. break;
  4697. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4698. gcode_M209();
  4699. break;
  4700. #endif // FWRETRACT
  4701. #if EXTRUDERS > 1
  4702. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4703. gcode_M218();
  4704. break;
  4705. #endif
  4706. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4707. gcode_M220();
  4708. break;
  4709. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4710. gcode_M221();
  4711. break;
  4712. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4713. gcode_M226();
  4714. break;
  4715. #if NUM_SERVOS > 0
  4716. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4717. gcode_M280();
  4718. break;
  4719. #endif // NUM_SERVOS > 0
  4720. #if HAS_BUZZER
  4721. case 300: // M300 - Play beep tone
  4722. gcode_M300();
  4723. break;
  4724. #endif // HAS_BUZZER
  4725. #ifdef PIDTEMP
  4726. case 301: // M301
  4727. gcode_M301();
  4728. break;
  4729. #endif // PIDTEMP
  4730. #ifdef PIDTEMPBED
  4731. case 304: // M304
  4732. gcode_M304();
  4733. break;
  4734. #endif // PIDTEMPBED
  4735. #if defined(CHDK) || HAS_PHOTOGRAPH
  4736. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4737. gcode_M240();
  4738. break;
  4739. #endif // CHDK || PHOTOGRAPH_PIN
  4740. #ifdef HAS_LCD_CONTRAST
  4741. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4742. gcode_M250();
  4743. break;
  4744. #endif // HAS_LCD_CONTRAST
  4745. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4746. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4747. gcode_M302();
  4748. break;
  4749. #endif // PREVENT_DANGEROUS_EXTRUDE
  4750. case 303: // M303 PID autotune
  4751. gcode_M303();
  4752. break;
  4753. #ifdef SCARA
  4754. case 360: // M360 SCARA Theta pos1
  4755. if (gcode_M360()) return;
  4756. break;
  4757. case 361: // M361 SCARA Theta pos2
  4758. if (gcode_M361()) return;
  4759. break;
  4760. case 362: // M362 SCARA Psi pos1
  4761. if (gcode_M362()) return;
  4762. break;
  4763. case 363: // M363 SCARA Psi pos2
  4764. if (gcode_M363()) return;
  4765. break;
  4766. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4767. if (gcode_M364()) return;
  4768. break;
  4769. case 365: // M365 Set SCARA scaling for X Y Z
  4770. gcode_M365();
  4771. break;
  4772. #endif // SCARA
  4773. case 400: // M400 finish all moves
  4774. gcode_M400();
  4775. break;
  4776. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4777. case 401:
  4778. gcode_M401();
  4779. break;
  4780. case 402:
  4781. gcode_M402();
  4782. break;
  4783. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4784. #ifdef FILAMENT_SENSOR
  4785. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4786. gcode_M404();
  4787. break;
  4788. case 405: //M405 Turn on filament sensor for control
  4789. gcode_M405();
  4790. break;
  4791. case 406: //M406 Turn off filament sensor for control
  4792. gcode_M406();
  4793. break;
  4794. case 407: //M407 Display measured filament diameter
  4795. gcode_M407();
  4796. break;
  4797. #endif // FILAMENT_SENSOR
  4798. case 410: // M410 quickstop - Abort all the planned moves.
  4799. gcode_M410();
  4800. break;
  4801. #ifdef MESH_BED_LEVELING
  4802. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4803. gcode_M420();
  4804. break;
  4805. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4806. gcode_M421();
  4807. break;
  4808. #endif
  4809. case 428: // M428 Apply current_position to home_offset
  4810. gcode_M428();
  4811. break;
  4812. case 500: // M500 Store settings in EEPROM
  4813. gcode_M500();
  4814. break;
  4815. case 501: // M501 Read settings from EEPROM
  4816. gcode_M501();
  4817. break;
  4818. case 502: // M502 Revert to default settings
  4819. gcode_M502();
  4820. break;
  4821. case 503: // M503 print settings currently in memory
  4822. gcode_M503();
  4823. break;
  4824. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4825. case 540:
  4826. gcode_M540();
  4827. break;
  4828. #endif
  4829. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4830. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4831. gcode_SET_Z_PROBE_OFFSET();
  4832. break;
  4833. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4834. #ifdef FILAMENTCHANGEENABLE
  4835. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4836. gcode_M600();
  4837. break;
  4838. #endif // FILAMENTCHANGEENABLE
  4839. #ifdef DUAL_X_CARRIAGE
  4840. case 605:
  4841. gcode_M605();
  4842. break;
  4843. #endif // DUAL_X_CARRIAGE
  4844. case 907: // M907 Set digital trimpot motor current using axis codes.
  4845. gcode_M907();
  4846. break;
  4847. #if HAS_DIGIPOTSS
  4848. case 908: // M908 Control digital trimpot directly.
  4849. gcode_M908();
  4850. break;
  4851. #endif // HAS_DIGIPOTSS
  4852. #if HAS_MICROSTEPS
  4853. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4854. gcode_M350();
  4855. break;
  4856. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4857. gcode_M351();
  4858. break;
  4859. #endif // HAS_MICROSTEPS
  4860. case 999: // M999: Restart after being Stopped
  4861. gcode_M999();
  4862. break;
  4863. }
  4864. break;
  4865. case 'T':
  4866. gcode_T(codenum);
  4867. break;
  4868. default: code_is_good = false;
  4869. }
  4870. ExitUnknownCommand:
  4871. // Still unknown command? Throw an error
  4872. if (!code_is_good) unknown_command_error();
  4873. ok_to_send();
  4874. }
  4875. void FlushSerialRequestResend() {
  4876. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4877. MYSERIAL.flush();
  4878. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4879. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4880. ok_to_send();
  4881. }
  4882. void ok_to_send() {
  4883. refresh_cmd_timeout();
  4884. #ifdef SDSUPPORT
  4885. if (fromsd[cmd_queue_index_r]) return;
  4886. #endif
  4887. SERIAL_PROTOCOLPGM(MSG_OK);
  4888. #ifdef ADVANCED_OK
  4889. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4890. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4891. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4892. #endif
  4893. SERIAL_EOL;
  4894. }
  4895. void clamp_to_software_endstops(float target[3]) {
  4896. if (min_software_endstops) {
  4897. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4898. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4899. float negative_z_offset = 0;
  4900. #ifdef ENABLE_AUTO_BED_LEVELING
  4901. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  4902. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4903. #endif
  4904. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4905. }
  4906. if (max_software_endstops) {
  4907. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4908. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4909. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4910. }
  4911. }
  4912. #ifdef DELTA
  4913. void recalc_delta_settings(float radius, float diagonal_rod) {
  4914. delta_tower1_x = -SIN_60 * radius; // front left tower
  4915. delta_tower1_y = -COS_60 * radius;
  4916. delta_tower2_x = SIN_60 * radius; // front right tower
  4917. delta_tower2_y = -COS_60 * radius;
  4918. delta_tower3_x = 0.0; // back middle tower
  4919. delta_tower3_y = radius;
  4920. delta_diagonal_rod_2 = sq(diagonal_rod);
  4921. }
  4922. void calculate_delta(float cartesian[3]) {
  4923. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4924. - sq(delta_tower1_x-cartesian[X_AXIS])
  4925. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4926. ) + cartesian[Z_AXIS];
  4927. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4928. - sq(delta_tower2_x-cartesian[X_AXIS])
  4929. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4930. ) + cartesian[Z_AXIS];
  4931. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4932. - sq(delta_tower3_x-cartesian[X_AXIS])
  4933. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4934. ) + cartesian[Z_AXIS];
  4935. /*
  4936. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4937. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4938. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4939. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4940. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4941. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4942. */
  4943. }
  4944. #ifdef ENABLE_AUTO_BED_LEVELING
  4945. // Adjust print surface height by linear interpolation over the bed_level array.
  4946. void adjust_delta(float cartesian[3]) {
  4947. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4948. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4949. float h1 = 0.001 - half, h2 = half - 0.001,
  4950. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4951. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4952. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4953. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4954. z1 = bed_level[floor_x + half][floor_y + half],
  4955. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4956. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4957. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4958. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4959. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4960. offset = (1 - ratio_x) * left + ratio_x * right;
  4961. delta[X_AXIS] += offset;
  4962. delta[Y_AXIS] += offset;
  4963. delta[Z_AXIS] += offset;
  4964. /*
  4965. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4966. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4967. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4968. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4969. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4970. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4971. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4972. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4973. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4974. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4975. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4976. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4977. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4978. */
  4979. }
  4980. #endif // ENABLE_AUTO_BED_LEVELING
  4981. #endif // DELTA
  4982. #ifdef MESH_BED_LEVELING
  4983. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4984. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4985. {
  4986. if (!mbl.active) {
  4987. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4988. set_current_to_destination();
  4989. return;
  4990. }
  4991. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4992. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4993. int ix = mbl.select_x_index(x);
  4994. int iy = mbl.select_y_index(y);
  4995. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4996. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4997. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4998. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4999. if (pix == ix && piy == iy) {
  5000. // Start and end on same mesh square
  5001. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5002. set_current_to_destination();
  5003. return;
  5004. }
  5005. float nx, ny, ne, normalized_dist;
  5006. if (ix > pix && (x_splits) & BIT(ix)) {
  5007. nx = mbl.get_x(ix);
  5008. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5009. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5010. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5011. x_splits ^= BIT(ix);
  5012. } else if (ix < pix && (x_splits) & BIT(pix)) {
  5013. nx = mbl.get_x(pix);
  5014. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5015. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5016. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5017. x_splits ^= BIT(pix);
  5018. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5019. ny = mbl.get_y(iy);
  5020. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5021. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5022. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5023. y_splits ^= BIT(iy);
  5024. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5025. ny = mbl.get_y(piy);
  5026. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5027. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5028. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5029. y_splits ^= BIT(piy);
  5030. } else {
  5031. // Already split on a border
  5032. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5033. set_current_to_destination();
  5034. return;
  5035. }
  5036. // Do the split and look for more borders
  5037. destination[X_AXIS] = nx;
  5038. destination[Y_AXIS] = ny;
  5039. destination[E_AXIS] = ne;
  5040. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5041. destination[X_AXIS] = x;
  5042. destination[Y_AXIS] = y;
  5043. destination[E_AXIS] = e;
  5044. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5045. }
  5046. #endif // MESH_BED_LEVELING
  5047. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5048. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5049. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5050. float de = dest_e - curr_e;
  5051. if (de) {
  5052. if (degHotend(active_extruder) < extrude_min_temp) {
  5053. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5054. SERIAL_ECHO_START;
  5055. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5056. }
  5057. #ifdef PREVENT_LENGTHY_EXTRUDE
  5058. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5059. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5060. SERIAL_ECHO_START;
  5061. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5062. }
  5063. #endif
  5064. }
  5065. }
  5066. #endif // PREVENT_DANGEROUS_EXTRUDE
  5067. #if defined(DELTA) || defined(SCARA)
  5068. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5069. float difference[NUM_AXIS];
  5070. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5071. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5072. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5073. if (cartesian_mm < 0.000001) return false;
  5074. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5075. int steps = max(1, int(delta_segments_per_second * seconds));
  5076. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5077. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5078. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5079. for (int s = 1; s <= steps; s++) {
  5080. float fraction = float(s) / float(steps);
  5081. for (int8_t i = 0; i < NUM_AXIS; i++)
  5082. target[i] = current_position[i] + difference[i] * fraction;
  5083. calculate_delta(target);
  5084. #ifdef ENABLE_AUTO_BED_LEVELING
  5085. adjust_delta(target);
  5086. #endif
  5087. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5088. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5089. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5090. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5091. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5092. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5093. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5094. }
  5095. return true;
  5096. }
  5097. #endif // DELTA || SCARA
  5098. #ifdef SCARA
  5099. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5100. #endif
  5101. #ifdef DUAL_X_CARRIAGE
  5102. inline bool prepare_move_dual_x_carriage() {
  5103. if (active_extruder_parked) {
  5104. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5105. // move duplicate extruder into correct duplication position.
  5106. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5107. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5108. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5109. sync_plan_position();
  5110. st_synchronize();
  5111. extruder_duplication_enabled = true;
  5112. active_extruder_parked = false;
  5113. }
  5114. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5115. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5116. // This is a travel move (with no extrusion)
  5117. // Skip it, but keep track of the current position
  5118. // (so it can be used as the start of the next non-travel move)
  5119. if (delayed_move_time != 0xFFFFFFFFUL) {
  5120. set_current_to_destination();
  5121. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5122. delayed_move_time = millis();
  5123. return false;
  5124. }
  5125. }
  5126. delayed_move_time = 0;
  5127. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5128. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5131. active_extruder_parked = false;
  5132. }
  5133. }
  5134. return true;
  5135. }
  5136. #endif // DUAL_X_CARRIAGE
  5137. #if !defined(DELTA) && !defined(SCARA)
  5138. inline bool prepare_move_cartesian() {
  5139. // Do not use feedrate_multiplier for E or Z only moves
  5140. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5141. line_to_destination();
  5142. }
  5143. else {
  5144. #ifdef MESH_BED_LEVELING
  5145. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5146. return false;
  5147. #else
  5148. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5149. #endif
  5150. }
  5151. return true;
  5152. }
  5153. #endif // !DELTA && !SCARA
  5154. /**
  5155. * Prepare a single move and get ready for the next one
  5156. *
  5157. * (This may call plan_buffer_line several times to put
  5158. * smaller moves into the planner for DELTA or SCARA.)
  5159. */
  5160. void prepare_move() {
  5161. clamp_to_software_endstops(destination);
  5162. refresh_cmd_timeout();
  5163. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5164. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5165. #endif
  5166. #ifdef SCARA
  5167. if (!prepare_move_scara(destination)) return;
  5168. #elif defined(DELTA)
  5169. if (!prepare_move_delta(destination)) return;
  5170. #endif
  5171. #ifdef DUAL_X_CARRIAGE
  5172. if (!prepare_move_dual_x_carriage()) return;
  5173. #endif
  5174. #if !defined(DELTA) && !defined(SCARA)
  5175. if (!prepare_move_cartesian()) return;
  5176. #endif
  5177. set_current_to_destination();
  5178. }
  5179. /**
  5180. * Plan an arc in 2 dimensions
  5181. *
  5182. * The arc is approximated by generating many small linear segments.
  5183. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5184. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5185. * larger segments will tend to be more efficient. Your slicer should have
  5186. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5187. */
  5188. void plan_arc(
  5189. float target[NUM_AXIS], // Destination position
  5190. float *offset, // Center of rotation relative to current_position
  5191. uint8_t clockwise // Clockwise?
  5192. ) {
  5193. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5194. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5195. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5196. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5197. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5198. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5199. r_axis1 = -offset[Y_AXIS],
  5200. rt_axis0 = target[X_AXIS] - center_axis0,
  5201. rt_axis1 = target[Y_AXIS] - center_axis1;
  5202. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5203. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  5204. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  5205. if (clockwise) { angular_travel -= RADIANS(360); }
  5206. // Make a circle if the angular rotation is 0
  5207. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5208. angular_travel += RADIANS(360);
  5209. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  5210. if (mm_of_travel < 0.001) { return; }
  5211. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  5212. if (segments == 0) segments = 1;
  5213. float theta_per_segment = angular_travel/segments;
  5214. float linear_per_segment = linear_travel/segments;
  5215. float extruder_per_segment = extruder_travel/segments;
  5216. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5217. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5218. r_T = [cos(phi) -sin(phi);
  5219. sin(phi) cos(phi] * r ;
  5220. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  5221. defined from the circle center to the initial position. Each line segment is formed by successive
  5222. vector rotations. This requires only two cos() and sin() computations to form the rotation
  5223. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  5224. all double numbers are single precision on the Arduino. (True double precision will not have
  5225. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  5226. tool precision in some cases. Therefore, arc path correction is implemented.
  5227. Small angle approximation may be used to reduce computation overhead further. This approximation
  5228. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  5229. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  5230. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  5231. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  5232. issue for CNC machines with the single precision Arduino calculations.
  5233. This approximation also allows plan_arc to immediately insert a line segment into the planner
  5234. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  5235. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  5236. This is important when there are successive arc motions.
  5237. */
  5238. // Vector rotation matrix values
  5239. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  5240. float sin_T = theta_per_segment;
  5241. float arc_target[NUM_AXIS];
  5242. float sin_Ti;
  5243. float cos_Ti;
  5244. float r_axisi;
  5245. uint16_t i;
  5246. int8_t count = 0;
  5247. // Initialize the linear axis
  5248. arc_target[Z_AXIS] = current_position[Z_AXIS];
  5249. // Initialize the extruder axis
  5250. arc_target[E_AXIS] = current_position[E_AXIS];
  5251. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  5252. for (i = 1; i < segments; i++) { // Increment (segments-1)
  5253. if (count < N_ARC_CORRECTION) {
  5254. // Apply vector rotation matrix to previous r_axis0 / 1
  5255. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  5256. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  5257. r_axis1 = r_axisi;
  5258. count++;
  5259. }
  5260. else {
  5261. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  5262. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  5263. cos_Ti = cos(i*theta_per_segment);
  5264. sin_Ti = sin(i*theta_per_segment);
  5265. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  5266. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  5267. count = 0;
  5268. }
  5269. // Update arc_target location
  5270. arc_target[X_AXIS] = center_axis0 + r_axis0;
  5271. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  5272. arc_target[Z_AXIS] += linear_per_segment;
  5273. arc_target[E_AXIS] += extruder_per_segment;
  5274. clamp_to_software_endstops(arc_target);
  5275. #if defined(DELTA) || defined(SCARA)
  5276. calculate_delta(arc_target);
  5277. #ifdef ENABLE_AUTO_BED_LEVELING
  5278. adjust_delta(arc_target);
  5279. #endif
  5280. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5281. #else
  5282. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5283. #endif
  5284. }
  5285. // Ensure last segment arrives at target location.
  5286. #if defined(DELTA) || defined(SCARA)
  5287. calculate_delta(target);
  5288. #ifdef ENABLE_AUTO_BED_LEVELING
  5289. adjust_delta(target);
  5290. #endif
  5291. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5292. #else
  5293. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5294. #endif
  5295. // As far as the parser is concerned, the position is now == target. In reality the
  5296. // motion control system might still be processing the action and the real tool position
  5297. // in any intermediate location.
  5298. set_current_to_destination();
  5299. }
  5300. #if HAS_CONTROLLERFAN
  5301. void controllerFan() {
  5302. static millis_t lastMotor = 0; // Last time a motor was turned on
  5303. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5304. millis_t ms = millis();
  5305. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5306. lastMotorCheck = ms;
  5307. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5308. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5309. #if EXTRUDERS > 1
  5310. || E1_ENABLE_READ == E_ENABLE_ON
  5311. #if HAS_X2_ENABLE
  5312. || X2_ENABLE_READ == X_ENABLE_ON
  5313. #endif
  5314. #if EXTRUDERS > 2
  5315. || E2_ENABLE_READ == E_ENABLE_ON
  5316. #if EXTRUDERS > 3
  5317. || E3_ENABLE_READ == E_ENABLE_ON
  5318. #endif
  5319. #endif
  5320. #endif
  5321. ) {
  5322. lastMotor = ms; //... set time to NOW so the fan will turn on
  5323. }
  5324. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5325. // allows digital or PWM fan output to be used (see M42 handling)
  5326. digitalWrite(CONTROLLERFAN_PIN, speed);
  5327. analogWrite(CONTROLLERFAN_PIN, speed);
  5328. }
  5329. }
  5330. #endif // HAS_CONTROLLERFAN
  5331. #ifdef SCARA
  5332. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5333. // Perform forward kinematics, and place results in delta[3]
  5334. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5335. float x_sin, x_cos, y_sin, y_cos;
  5336. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5337. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5338. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5339. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5340. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5341. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5342. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5343. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5344. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5345. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5346. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5347. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5348. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5349. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5350. }
  5351. void calculate_delta(float cartesian[3]){
  5352. //reverse kinematics.
  5353. // Perform reversed kinematics, and place results in delta[3]
  5354. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5355. float SCARA_pos[2];
  5356. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5357. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5358. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5359. #if (Linkage_1 == Linkage_2)
  5360. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5361. #else
  5362. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5363. #endif
  5364. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5365. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5366. SCARA_K2 = Linkage_2 * SCARA_S2;
  5367. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5368. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5369. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5370. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5371. delta[Z_AXIS] = cartesian[Z_AXIS];
  5372. /*
  5373. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5374. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5375. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5376. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5377. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5378. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5379. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5380. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5381. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5382. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5383. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5384. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5385. SERIAL_EOL;
  5386. */
  5387. }
  5388. #endif // SCARA
  5389. #ifdef TEMP_STAT_LEDS
  5390. static bool red_led = false;
  5391. static millis_t next_status_led_update_ms = 0;
  5392. void handle_status_leds(void) {
  5393. float max_temp = 0.0;
  5394. if (millis() > next_status_led_update_ms) {
  5395. next_status_led_update_ms += 500; // Update every 0.5s
  5396. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5397. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5398. #if HAS_TEMP_BED
  5399. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5400. #endif
  5401. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5402. if (new_led != red_led) {
  5403. red_led = new_led;
  5404. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5405. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5406. }
  5407. }
  5408. }
  5409. #endif
  5410. void enable_all_steppers() {
  5411. enable_x();
  5412. enable_y();
  5413. enable_z();
  5414. enable_e0();
  5415. enable_e1();
  5416. enable_e2();
  5417. enable_e3();
  5418. }
  5419. void disable_all_steppers() {
  5420. disable_x();
  5421. disable_y();
  5422. disable_z();
  5423. disable_e0();
  5424. disable_e1();
  5425. disable_e2();
  5426. disable_e3();
  5427. }
  5428. /**
  5429. * Standard idle routine keeps the machine alive
  5430. */
  5431. void idle() {
  5432. manage_heater();
  5433. manage_inactivity();
  5434. lcd_update();
  5435. }
  5436. /**
  5437. * Manage several activities:
  5438. * - Check for Filament Runout
  5439. * - Keep the command buffer full
  5440. * - Check for maximum inactive time between commands
  5441. * - Check for maximum inactive time between stepper commands
  5442. * - Check if pin CHDK needs to go LOW
  5443. * - Check for KILL button held down
  5444. * - Check for HOME button held down
  5445. * - Check if cooling fan needs to be switched on
  5446. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5447. */
  5448. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5449. #if HAS_FILRUNOUT
  5450. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5451. filrunout();
  5452. #endif
  5453. if (commands_in_queue < BUFSIZE - 1) get_command();
  5454. millis_t ms = millis();
  5455. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5456. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5457. && !ignore_stepper_queue && !blocks_queued()) {
  5458. #if DISABLE_X == true
  5459. disable_x();
  5460. #endif
  5461. #if DISABLE_Y == true
  5462. disable_y();
  5463. #endif
  5464. #if DISABLE_Z == true
  5465. disable_z();
  5466. #endif
  5467. #if DISABLE_E == true
  5468. disable_e0();
  5469. disable_e1();
  5470. disable_e2();
  5471. disable_e3();
  5472. #endif
  5473. }
  5474. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5475. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5476. chdkActive = false;
  5477. WRITE(CHDK, LOW);
  5478. }
  5479. #endif
  5480. #if HAS_KILL
  5481. // Check if the kill button was pressed and wait just in case it was an accidental
  5482. // key kill key press
  5483. // -------------------------------------------------------------------------------
  5484. static int killCount = 0; // make the inactivity button a bit less responsive
  5485. const int KILL_DELAY = 750;
  5486. if (!READ(KILL_PIN))
  5487. killCount++;
  5488. else if (killCount > 0)
  5489. killCount--;
  5490. // Exceeded threshold and we can confirm that it was not accidental
  5491. // KILL the machine
  5492. // ----------------------------------------------------------------
  5493. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5494. #endif
  5495. #if HAS_HOME
  5496. // Check to see if we have to home, use poor man's debouncer
  5497. // ---------------------------------------------------------
  5498. static int homeDebounceCount = 0; // poor man's debouncing count
  5499. const int HOME_DEBOUNCE_DELAY = 750;
  5500. if (!READ(HOME_PIN)) {
  5501. if (!homeDebounceCount) {
  5502. enqueuecommands_P(PSTR("G28"));
  5503. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5504. }
  5505. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5506. homeDebounceCount++;
  5507. else
  5508. homeDebounceCount = 0;
  5509. }
  5510. #endif
  5511. #if HAS_CONTROLLERFAN
  5512. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5513. #endif
  5514. #ifdef EXTRUDER_RUNOUT_PREVENT
  5515. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5516. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5517. bool oldstatus;
  5518. switch(active_extruder) {
  5519. case 0:
  5520. oldstatus = E0_ENABLE_READ;
  5521. enable_e0();
  5522. break;
  5523. #if EXTRUDERS > 1
  5524. case 1:
  5525. oldstatus = E1_ENABLE_READ;
  5526. enable_e1();
  5527. break;
  5528. #if EXTRUDERS > 2
  5529. case 2:
  5530. oldstatus = E2_ENABLE_READ;
  5531. enable_e2();
  5532. break;
  5533. #if EXTRUDERS > 3
  5534. case 3:
  5535. oldstatus = E3_ENABLE_READ;
  5536. enable_e3();
  5537. break;
  5538. #endif
  5539. #endif
  5540. #endif
  5541. }
  5542. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5543. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5544. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5545. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5546. current_position[E_AXIS] = oldepos;
  5547. destination[E_AXIS] = oldedes;
  5548. plan_set_e_position(oldepos);
  5549. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5550. st_synchronize();
  5551. switch(active_extruder) {
  5552. case 0:
  5553. E0_ENABLE_WRITE(oldstatus);
  5554. break;
  5555. #if EXTRUDERS > 1
  5556. case 1:
  5557. E1_ENABLE_WRITE(oldstatus);
  5558. break;
  5559. #if EXTRUDERS > 2
  5560. case 2:
  5561. E2_ENABLE_WRITE(oldstatus);
  5562. break;
  5563. #if EXTRUDERS > 3
  5564. case 3:
  5565. E3_ENABLE_WRITE(oldstatus);
  5566. break;
  5567. #endif
  5568. #endif
  5569. #endif
  5570. }
  5571. }
  5572. #endif
  5573. #ifdef DUAL_X_CARRIAGE
  5574. // handle delayed move timeout
  5575. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5576. // travel moves have been received so enact them
  5577. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5578. set_destination_to_current();
  5579. prepare_move();
  5580. }
  5581. #endif
  5582. #ifdef TEMP_STAT_LEDS
  5583. handle_status_leds();
  5584. #endif
  5585. check_axes_activity();
  5586. }
  5587. void kill(const char *lcd_msg) {
  5588. #ifdef ULTRA_LCD
  5589. lcd_setalertstatuspgm(lcd_msg);
  5590. #endif
  5591. cli(); // Stop interrupts
  5592. disable_all_heaters();
  5593. disable_all_steppers();
  5594. #if HAS_POWER_SWITCH
  5595. pinMode(PS_ON_PIN, INPUT);
  5596. #endif
  5597. SERIAL_ERROR_START;
  5598. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5599. // FMC small patch to update the LCD before ending
  5600. sei(); // enable interrupts
  5601. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5602. cli(); // disable interrupts
  5603. suicide();
  5604. while(1) { /* Intentionally left empty */ } // Wait for reset
  5605. }
  5606. #ifdef FILAMENT_RUNOUT_SENSOR
  5607. void filrunout() {
  5608. if (!filrunoutEnqueued) {
  5609. filrunoutEnqueued = true;
  5610. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5611. st_synchronize();
  5612. }
  5613. }
  5614. #endif // FILAMENT_RUNOUT_SENSOR
  5615. #ifdef FAST_PWM_FAN
  5616. void setPwmFrequency(uint8_t pin, int val) {
  5617. val &= 0x07;
  5618. switch (digitalPinToTimer(pin)) {
  5619. #if defined(TCCR0A)
  5620. case TIMER0A:
  5621. case TIMER0B:
  5622. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5623. // TCCR0B |= val;
  5624. break;
  5625. #endif
  5626. #if defined(TCCR1A)
  5627. case TIMER1A:
  5628. case TIMER1B:
  5629. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5630. // TCCR1B |= val;
  5631. break;
  5632. #endif
  5633. #if defined(TCCR2)
  5634. case TIMER2:
  5635. case TIMER2:
  5636. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5637. TCCR2 |= val;
  5638. break;
  5639. #endif
  5640. #if defined(TCCR2A)
  5641. case TIMER2A:
  5642. case TIMER2B:
  5643. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5644. TCCR2B |= val;
  5645. break;
  5646. #endif
  5647. #if defined(TCCR3A)
  5648. case TIMER3A:
  5649. case TIMER3B:
  5650. case TIMER3C:
  5651. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5652. TCCR3B |= val;
  5653. break;
  5654. #endif
  5655. #if defined(TCCR4A)
  5656. case TIMER4A:
  5657. case TIMER4B:
  5658. case TIMER4C:
  5659. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5660. TCCR4B |= val;
  5661. break;
  5662. #endif
  5663. #if defined(TCCR5A)
  5664. case TIMER5A:
  5665. case TIMER5B:
  5666. case TIMER5C:
  5667. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5668. TCCR5B |= val;
  5669. break;
  5670. #endif
  5671. }
  5672. }
  5673. #endif // FAST_PWM_FAN
  5674. void Stop() {
  5675. disable_all_heaters();
  5676. if (IsRunning()) {
  5677. Running = false;
  5678. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5679. SERIAL_ERROR_START;
  5680. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5681. LCD_MESSAGEPGM(MSG_STOPPED);
  5682. }
  5683. }
  5684. /**
  5685. * Set target_extruder from the T parameter or the active_extruder
  5686. *
  5687. * Returns TRUE if the target is invalid
  5688. */
  5689. bool setTargetedHotend(int code) {
  5690. target_extruder = active_extruder;
  5691. if (code_seen('T')) {
  5692. target_extruder = code_value_short();
  5693. if (target_extruder >= EXTRUDERS) {
  5694. SERIAL_ECHO_START;
  5695. SERIAL_CHAR('M');
  5696. SERIAL_ECHO(code);
  5697. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  5698. SERIAL_ECHOLN(target_extruder);
  5699. return true;
  5700. }
  5701. }
  5702. return false;
  5703. }
  5704. float calculate_volumetric_multiplier(float diameter) {
  5705. if (!volumetric_enabled || diameter == 0) return 1.0;
  5706. float d2 = diameter * 0.5;
  5707. return 1.0 / (M_PI * d2 * d2);
  5708. }
  5709. void calculate_volumetric_multipliers() {
  5710. for (int i=0; i<EXTRUDERS; i++)
  5711. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5712. }