My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #ifndef UNIFIED_BED_LEVELING_H
  23. #define UNIFIED_BED_LEVELING_H
  24. #include "MarlinConfig.h"
  25. #if ENABLED(AUTO_BED_LEVELING_UBL)
  26. #include "Marlin.h"
  27. #include "planner.h"
  28. #include "math.h"
  29. #include "vector_3.h"
  30. #define UBL_VERSION "1.00"
  31. #define UBL_OK false
  32. #define UBL_ERR true
  33. #define USE_NOZZLE_AS_REFERENCE 0
  34. #define USE_PROBE_AS_REFERENCE 1
  35. typedef struct {
  36. int8_t x_index, y_index;
  37. float distance; // When populated, the distance from the search location
  38. } mesh_index_pair;
  39. // ubl.cpp
  40. void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
  41. void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  42. bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  43. // ubl_motion.cpp
  44. void debug_current_and_destination(const char * const title);
  45. void ubl_line_to_destination(const float&, uint8_t);
  46. // ubl_G29.cpp
  47. enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
  48. void dump(char * const str, const float &f);
  49. void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
  50. void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  51. float measure_business_card_thickness(const float&);
  52. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
  53. void shift_mesh_height();
  54. void fine_tune_mesh(const float&, const float&, const bool);
  55. bool g29_parameter_parsing();
  56. void g29_eeprom_dump();
  57. void g29_compare_current_mesh_to_stored_mesh();
  58. // External references
  59. char *ftostr43sign(const float&, char);
  60. bool ubl_lcd_clicked();
  61. void home_all_axes();
  62. void gcode_G26();
  63. void gcode_G29();
  64. extern uint8_t ubl_cnt;
  65. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  66. #if ENABLED(ULTRA_LCD)
  67. extern char lcd_status_message[];
  68. void lcd_quick_feedback();
  69. #endif
  70. #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
  71. #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
  72. typedef struct {
  73. bool active = false;
  74. float z_offset = 0.0;
  75. int8_t eeprom_storage_slot = -1;
  76. } ubl_state;
  77. class unified_bed_leveling {
  78. private:
  79. static float last_specified_z;
  80. public:
  81. void find_mean_mesh_height();
  82. void shift_mesh_height();
  83. void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
  84. void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
  85. void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
  86. void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map);
  87. void save_ubl_active_state_and_disable();
  88. void restore_ubl_active_state_and_leave();
  89. void g29_what_command();
  90. void g29_eeprom_dump() ;
  91. void g29_compare_current_mesh_to_stored_mesh();
  92. void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
  93. void smart_fill_mesh();
  94. void display_map(const int);
  95. void reset();
  96. void invalidate();
  97. void store_state();
  98. void load_state();
  99. void store_mesh(const int16_t);
  100. void load_mesh(const int16_t);
  101. bool sanity_check();
  102. static ubl_state state;
  103. static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  104. // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
  105. // until determinism prevails
  106. constexpr static float mesh_index_to_xpos[16] PROGMEM = {
  107. UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST),
  108. UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST),
  109. UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST),
  110. UBL_MESH_MIN_X + 6 * (MESH_X_DIST), UBL_MESH_MIN_X + 7 * (MESH_X_DIST),
  111. UBL_MESH_MIN_X + 8 * (MESH_X_DIST), UBL_MESH_MIN_X + 9 * (MESH_X_DIST),
  112. UBL_MESH_MIN_X + 10 * (MESH_X_DIST), UBL_MESH_MIN_X + 11 * (MESH_X_DIST),
  113. UBL_MESH_MIN_X + 12 * (MESH_X_DIST), UBL_MESH_MIN_X + 13 * (MESH_X_DIST),
  114. UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST)
  115. };
  116. constexpr static float mesh_index_to_ypos[16] PROGMEM = {
  117. UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST),
  118. UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST),
  119. UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST),
  120. UBL_MESH_MIN_Y + 6 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 7 * (MESH_Y_DIST),
  121. UBL_MESH_MIN_Y + 8 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 9 * (MESH_Y_DIST),
  122. UBL_MESH_MIN_Y + 10 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 11 * (MESH_Y_DIST),
  123. UBL_MESH_MIN_Y + 12 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 13 * (MESH_Y_DIST),
  124. UBL_MESH_MIN_Y + 14 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 15 * (MESH_Y_DIST)
  125. };
  126. static bool g26_debug_flag, has_control_of_lcd_panel;
  127. static int16_t eeprom_start; // Please do no change this to 8 bits in size
  128. // It needs to hold values bigger than this.
  129. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  130. unified_bed_leveling();
  131. FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  132. int8_t get_cell_index_x(const float &x) {
  133. const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  134. return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
  135. } // position. But with this defined this way, it is possible
  136. // to extrapolate off of this point even further out. Probably
  137. // that is OK because something else should be keeping that from
  138. // happening and should not be worried about at this level.
  139. int8_t get_cell_index_y(const float &y) {
  140. const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  141. return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  142. } // position. But with this defined this way, it is possible
  143. // to extrapolate off of this point even further out. Probably
  144. // that is OK because something else should be keeping that from
  145. // happening and should not be worried about at this level.
  146. int8_t find_closest_x_index(const float &x) {
  147. const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  148. return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
  149. }
  150. int8_t find_closest_y_index(const float &y) {
  151. const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  152. return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
  153. }
  154. /**
  155. * z2 --|
  156. * z0 | |
  157. * | | + (z2-z1)
  158. * z1 | | |
  159. * ---+-------------+--------+-- --|
  160. * a1 a0 a2
  161. * |<---delta_a---------->|
  162. *
  163. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  164. * find the expected Z Height at a position between two known Z-Height locations.
  165. *
  166. * It is fairly expensive with its 4 floating point additions and 2 floating point
  167. * multiplications.
  168. */
  169. FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  170. return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
  171. }
  172. /**
  173. * z_correction_for_x_on_horizontal_mesh_line is an optimization for
  174. * the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
  175. */
  176. inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
  177. if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
  178. serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
  179. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
  180. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  181. SERIAL_ECHOPAIR(",yi=", yi);
  182. SERIAL_CHAR(')');
  183. SERIAL_EOL;
  184. return NAN;
  185. }
  186. const float xratio = (RAW_X_POSITION(lx0) - pgm_read_float(&mesh_index_to_xpos[x1_i])) * (1.0 / (MESH_X_DIST)),
  187. z1 = z_values[x1_i][yi];
  188. return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
  189. }
  190. //
  191. // See comments above for z_correction_for_x_on_horizontal_mesh_line
  192. //
  193. inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
  194. if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
  195. serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
  196. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
  197. SERIAL_ECHOPAIR(", xi=", xi);
  198. SERIAL_ECHOPAIR(", y1_i=", y1_i);
  199. SERIAL_CHAR(')');
  200. SERIAL_EOL;
  201. return NAN;
  202. }
  203. const float yratio = (RAW_Y_POSITION(ly0) - pgm_read_float(&mesh_index_to_ypos[y1_i])) * (1.0 / (MESH_Y_DIST)),
  204. z1 = z_values[xi][y1_i];
  205. return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
  206. }
  207. /**
  208. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  209. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  210. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  211. * on the Y position within the cell.
  212. */
  213. float get_z_correction(const float &lx0, const float &ly0) {
  214. const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
  215. cy = get_cell_index_y(RAW_Y_POSITION(ly0));
  216. if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 1)) {
  217. SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
  218. SERIAL_ECHOPAIR(", ly0=", ly0);
  219. SERIAL_CHAR(')');
  220. SERIAL_EOL;
  221. #if ENABLED(ULTRA_LCD)
  222. strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
  223. lcd_quick_feedback();
  224. #endif
  225. return 0.0; // this used to return state.z_offset
  226. }
  227. const float z1 = calc_z0(RAW_X_POSITION(lx0),
  228. pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy],
  229. pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy]);
  230. const float z2 = calc_z0(RAW_X_POSITION(lx0),
  231. pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy + 1],
  232. pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy + 1]);
  233. float z0 = calc_z0(RAW_Y_POSITION(ly0),
  234. pgm_read_float(&mesh_index_to_ypos[cy]), z1,
  235. pgm_read_float(&mesh_index_to_ypos[cy + 1]), z2);
  236. #if ENABLED(DEBUG_LEVELING_FEATURE)
  237. if (DEBUGGING(MESH_ADJUST)) {
  238. SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
  239. SERIAL_CHAR(',');
  240. SERIAL_ECHO(ly0);
  241. SERIAL_ECHOPGM(") = ");
  242. SERIAL_ECHO_F(z0, 6);
  243. }
  244. #endif
  245. #if ENABLED(DEBUG_LEVELING_FEATURE)
  246. if (DEBUGGING(MESH_ADJUST)) {
  247. SERIAL_ECHOPGM(" >>>---> ");
  248. SERIAL_ECHO_F(z0, 6);
  249. SERIAL_EOL;
  250. }
  251. #endif
  252. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  253. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  254. // calculations. If our correction is NAN, we throw it out
  255. // because part of the Mesh is undefined and we don't have the
  256. // information we need to complete the height correction.
  257. #if ENABLED(DEBUG_LEVELING_FEATURE)
  258. if (DEBUGGING(MESH_ADJUST)) {
  259. SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0);
  260. SERIAL_CHAR(',');
  261. SERIAL_ECHO(ly0);
  262. SERIAL_CHAR(')');
  263. SERIAL_EOL;
  264. }
  265. #endif
  266. }
  267. return z0; // there used to be a +state.z_offset on this line
  268. }
  269. /**
  270. * This function sets the Z leveling fade factor based on the given Z height,
  271. * only re-calculating when necessary.
  272. *
  273. * Returns 1.0 if planner.z_fade_height is 0.0.
  274. * Returns 0.0 if Z is past the specified 'Fade Height'.
  275. */
  276. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  277. FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
  278. if (planner.z_fade_height == 0.0) return 1.0;
  279. static float fade_scaling_factor = 1.0;
  280. const float rz = RAW_Z_POSITION(lz);
  281. if (last_specified_z != rz) {
  282. last_specified_z = rz;
  283. fade_scaling_factor =
  284. rz < planner.z_fade_height
  285. ? 1.0 - (rz * planner.inverse_z_fade_height)
  286. : 0.0;
  287. }
  288. return fade_scaling_factor;
  289. }
  290. #endif
  291. }; // class unified_bed_leveling
  292. extern unified_bed_leveling ubl;
  293. #define UBL_LAST_EEPROM_INDEX E2END
  294. #endif // AUTO_BED_LEVELING_UBL
  295. #endif // UNIFIED_BED_LEVELING_H