My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 121KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  106. // M114 - Output current position to serial port
  107. // M115 - Capabilities string
  108. // M117 - display message
  109. // M119 - Output Endstop status to serial port
  110. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  111. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  112. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  114. // M140 - Set bed target temp
  115. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  116. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  117. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  118. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  119. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  120. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  121. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  122. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  123. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  124. // M206 - set additional homing offset
  125. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  126. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  127. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  128. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  129. // M220 S<factor in percent>- set speed factor override percentage
  130. // M221 S<factor in percent>- set extrude factor override percentage
  131. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  132. // M240 - Trigger a camera to take a photograph
  133. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  134. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  135. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  136. // M301 - Set PID parameters P I and D
  137. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  138. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  139. // M304 - Set bed PID parameters P I and D
  140. // M400 - Finish all moves
  141. // M401 - Lower z-probe if present
  142. // M402 - Raise z-probe if present
  143. // M500 - stores parameters in EEPROM
  144. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  145. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  146. // M503 - print the current settings (from memory not from EEPROM)
  147. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  148. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  149. // M665 - set delta configurations
  150. // M666 - set delta endstop adjustment
  151. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  152. // M907 - Set digital trimpot motor current using axis codes.
  153. // M908 - Control digital trimpot directly.
  154. // M350 - Set microstepping mode.
  155. // M351 - Toggle MS1 MS2 pins directly.
  156. // M928 - Start SD logging (M928 filename.g) - ended by M29
  157. // M999 - Restart after being stopped by error
  158. //Stepper Movement Variables
  159. //===========================================================================
  160. //=============================imported variables============================
  161. //===========================================================================
  162. //===========================================================================
  163. //=============================public variables=============================
  164. //===========================================================================
  165. #ifdef SDSUPPORT
  166. CardReader card;
  167. #endif
  168. float homing_feedrate[] = HOMING_FEEDRATE;
  169. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  170. int feedmultiply=100; //100->1 200->2
  171. int saved_feedmultiply;
  172. int extrudemultiply=100; //100->1 200->2
  173. int extruder_multiply[EXTRUDERS] = {100
  174. #if EXTRUDERS > 1
  175. , 100
  176. #if EXTRUDERS > 2
  177. , 100
  178. #endif
  179. #endif
  180. };
  181. float volumetric_multiplier[EXTRUDERS] = {1.0
  182. #if EXTRUDERS > 1
  183. , 1.0
  184. #if EXTRUDERS > 2
  185. , 1.0
  186. #endif
  187. #endif
  188. };
  189. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  190. float add_homeing[3]={0,0,0};
  191. #ifdef DELTA
  192. float endstop_adj[3]={0,0,0};
  193. #endif
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. float zprobe_zoffset;
  198. // Extruder offset
  199. #if EXTRUDERS > 1
  200. #ifndef DUAL_X_CARRIAGE
  201. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  202. #else
  203. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  204. #endif
  205. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  206. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  207. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  208. #endif
  209. };
  210. #endif
  211. uint8_t active_extruder = 0;
  212. int fanSpeed=0;
  213. #ifdef SERVO_ENDSTOPS
  214. int servo_endstops[] = SERVO_ENDSTOPS;
  215. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  216. #endif
  217. #ifdef BARICUDA
  218. int ValvePressure=0;
  219. int EtoPPressure=0;
  220. #endif
  221. #ifdef FWRETRACT
  222. bool autoretract_enabled=false;
  223. bool retracted=false;
  224. float retract_length = RETRACT_LENGTH;
  225. float retract_feedrate = RETRACT_FEEDRATE;
  226. float retract_zlift = RETRACT_ZLIFT;
  227. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  228. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  229. #endif
  230. #ifdef ULTIPANEL
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. #endif
  237. #ifdef DELTA
  238. float delta[3] = {0.0, 0.0, 0.0};
  239. #define SIN_60 0.8660254037844386
  240. #define COS_60 0.5
  241. // these are the default values, can be overriden with M665
  242. float delta_radius= DELTA_RADIUS;
  243. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  244. float delta_tower1_y= -COS_60*delta_radius;
  245. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  246. float delta_tower2_y= -COS_60*delta_radius;
  247. float delta_tower3_x= 0.0; // back middle tower
  248. float delta_tower3_y= delta_radius;
  249. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  250. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  251. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  252. #endif
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. static float offset[3] = {0.0, 0.0, 0.0};
  259. static bool home_all_axis = true;
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  262. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  263. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  264. static bool fromsd[BUFSIZE];
  265. static int bufindr = 0;
  266. static int bufindw = 0;
  267. static int buflen = 0;
  268. //static int i = 0;
  269. static char serial_char;
  270. static int serial_count = 0;
  271. static boolean comment_mode = false;
  272. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  273. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  274. //static float tt = 0;
  275. //static float bt = 0;
  276. //Inactivity shutdown variables
  277. static unsigned long previous_millis_cmd = 0;
  278. static unsigned long max_inactive_time = 0;
  279. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  280. unsigned long starttime=0;
  281. unsigned long stoptime=0;
  282. static uint8_t tmp_extruder;
  283. bool Stopped=false;
  284. #if NUM_SERVOS > 0
  285. Servo servos[NUM_SERVOS];
  286. #endif
  287. bool CooldownNoWait = true;
  288. bool target_direction;
  289. //Insert variables if CHDK is defined
  290. #ifdef CHDK
  291. unsigned long chdkHigh = 0;
  292. boolean chdkActive = false;
  293. #endif
  294. //===========================================================================
  295. //=============================Routines======================================
  296. //===========================================================================
  297. void get_arc_coordinates();
  298. bool setTargetedHotend(int code);
  299. void serial_echopair_P(const char *s_P, float v)
  300. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  301. void serial_echopair_P(const char *s_P, double v)
  302. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  303. void serial_echopair_P(const char *s_P, unsigned long v)
  304. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  305. extern "C"{
  306. extern unsigned int __bss_end;
  307. extern unsigned int __heap_start;
  308. extern void *__brkval;
  309. int freeMemory() {
  310. int free_memory;
  311. if((int)__brkval == 0)
  312. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  313. else
  314. free_memory = ((int)&free_memory) - ((int)__brkval);
  315. return free_memory;
  316. }
  317. }
  318. //adds an command to the main command buffer
  319. //thats really done in a non-safe way.
  320. //needs overworking someday
  321. void enquecommand(const char *cmd)
  322. {
  323. if(buflen < BUFSIZE)
  324. {
  325. //this is dangerous if a mixing of serial and this happens
  326. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  327. SERIAL_ECHO_START;
  328. SERIAL_ECHOPGM("enqueing \"");
  329. SERIAL_ECHO(cmdbuffer[bufindw]);
  330. SERIAL_ECHOLNPGM("\"");
  331. bufindw= (bufindw + 1)%BUFSIZE;
  332. buflen += 1;
  333. }
  334. }
  335. void enquecommand_P(const char *cmd)
  336. {
  337. if(buflen < BUFSIZE)
  338. {
  339. //this is dangerous if a mixing of serial and this happens
  340. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  341. SERIAL_ECHO_START;
  342. SERIAL_ECHOPGM("enqueing \"");
  343. SERIAL_ECHO(cmdbuffer[bufindw]);
  344. SERIAL_ECHOLNPGM("\"");
  345. bufindw= (bufindw + 1)%BUFSIZE;
  346. buflen += 1;
  347. }
  348. }
  349. void setup_killpin()
  350. {
  351. #if defined(KILL_PIN) && KILL_PIN > -1
  352. pinMode(KILL_PIN,INPUT);
  353. WRITE(KILL_PIN,HIGH);
  354. #endif
  355. }
  356. void setup_photpin()
  357. {
  358. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  359. SET_OUTPUT(PHOTOGRAPH_PIN);
  360. WRITE(PHOTOGRAPH_PIN, LOW);
  361. #endif
  362. }
  363. void setup_powerhold()
  364. {
  365. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  366. SET_OUTPUT(SUICIDE_PIN);
  367. WRITE(SUICIDE_PIN, HIGH);
  368. #endif
  369. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  370. SET_OUTPUT(PS_ON_PIN);
  371. #if defined(PS_DEFAULT_OFF)
  372. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  373. #else
  374. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  375. #endif
  376. #endif
  377. }
  378. void suicide()
  379. {
  380. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  381. SET_OUTPUT(SUICIDE_PIN);
  382. WRITE(SUICIDE_PIN, LOW);
  383. #endif
  384. }
  385. void servo_init()
  386. {
  387. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  388. servos[0].attach(SERVO0_PIN);
  389. #endif
  390. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  391. servos[1].attach(SERVO1_PIN);
  392. #endif
  393. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  394. servos[2].attach(SERVO2_PIN);
  395. #endif
  396. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  397. servos[3].attach(SERVO3_PIN);
  398. #endif
  399. #if (NUM_SERVOS >= 5)
  400. #error "TODO: enter initalisation code for more servos"
  401. #endif
  402. // Set position of Servo Endstops that are defined
  403. #ifdef SERVO_ENDSTOPS
  404. for(int8_t i = 0; i < 3; i++)
  405. {
  406. if(servo_endstops[i] > -1) {
  407. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  408. }
  409. }
  410. #endif
  411. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  412. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  413. servos[servo_endstops[Z_AXIS]].detach();
  414. #endif
  415. }
  416. void setup()
  417. {
  418. setup_killpin();
  419. setup_powerhold();
  420. MYSERIAL.begin(BAUDRATE);
  421. SERIAL_PROTOCOLLNPGM("start");
  422. SERIAL_ECHO_START;
  423. // Check startup - does nothing if bootloader sets MCUSR to 0
  424. byte mcu = MCUSR;
  425. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  426. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  427. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  428. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  429. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  430. MCUSR=0;
  431. SERIAL_ECHOPGM(MSG_MARLIN);
  432. SERIAL_ECHOLNPGM(VERSION_STRING);
  433. #ifdef STRING_VERSION_CONFIG_H
  434. #ifdef STRING_CONFIG_H_AUTHOR
  435. SERIAL_ECHO_START;
  436. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  437. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  438. SERIAL_ECHOPGM(MSG_AUTHOR);
  439. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  440. SERIAL_ECHOPGM("Compiled: ");
  441. SERIAL_ECHOLNPGM(__DATE__);
  442. #endif
  443. #endif
  444. SERIAL_ECHO_START;
  445. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  446. SERIAL_ECHO(freeMemory());
  447. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  448. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  449. for(int8_t i = 0; i < BUFSIZE; i++)
  450. {
  451. fromsd[i] = false;
  452. }
  453. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  454. Config_RetrieveSettings();
  455. tp_init(); // Initialize temperature loop
  456. plan_init(); // Initialize planner;
  457. watchdog_init();
  458. st_init(); // Initialize stepper, this enables interrupts!
  459. setup_photpin();
  460. servo_init();
  461. lcd_init();
  462. _delay_ms(1000); // wait 1sec to display the splash screen
  463. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  464. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  465. #endif
  466. #ifdef DIGIPOT_I2C
  467. digipot_i2c_init();
  468. #endif
  469. }
  470. void loop()
  471. {
  472. if(buflen < (BUFSIZE-1))
  473. get_command();
  474. #ifdef SDSUPPORT
  475. card.checkautostart(false);
  476. #endif
  477. if(buflen)
  478. {
  479. #ifdef SDSUPPORT
  480. if(card.saving)
  481. {
  482. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  483. {
  484. card.write_command(cmdbuffer[bufindr]);
  485. if(card.logging)
  486. {
  487. process_commands();
  488. }
  489. else
  490. {
  491. SERIAL_PROTOCOLLNPGM(MSG_OK);
  492. }
  493. }
  494. else
  495. {
  496. card.closefile();
  497. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  498. }
  499. }
  500. else
  501. {
  502. process_commands();
  503. }
  504. #else
  505. process_commands();
  506. #endif //SDSUPPORT
  507. buflen = (buflen-1);
  508. bufindr = (bufindr + 1)%BUFSIZE;
  509. }
  510. //check heater every n milliseconds
  511. manage_heater();
  512. manage_inactivity();
  513. checkHitEndstops();
  514. lcd_update();
  515. }
  516. void get_command()
  517. {
  518. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  519. serial_char = MYSERIAL.read();
  520. if(serial_char == '\n' ||
  521. serial_char == '\r' ||
  522. (serial_char == ':' && comment_mode == false) ||
  523. serial_count >= (MAX_CMD_SIZE - 1) )
  524. {
  525. if(!serial_count) { //if empty line
  526. comment_mode = false; //for new command
  527. return;
  528. }
  529. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  530. if(!comment_mode){
  531. comment_mode = false; //for new command
  532. fromsd[bufindw] = false;
  533. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  534. {
  535. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  536. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  537. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  538. SERIAL_ERROR_START;
  539. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  540. SERIAL_ERRORLN(gcode_LastN);
  541. //Serial.println(gcode_N);
  542. FlushSerialRequestResend();
  543. serial_count = 0;
  544. return;
  545. }
  546. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  547. {
  548. byte checksum = 0;
  549. byte count = 0;
  550. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  551. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  552. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  553. SERIAL_ERROR_START;
  554. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  555. SERIAL_ERRORLN(gcode_LastN);
  556. FlushSerialRequestResend();
  557. serial_count = 0;
  558. return;
  559. }
  560. //if no errors, continue parsing
  561. }
  562. else
  563. {
  564. SERIAL_ERROR_START;
  565. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  566. SERIAL_ERRORLN(gcode_LastN);
  567. FlushSerialRequestResend();
  568. serial_count = 0;
  569. return;
  570. }
  571. gcode_LastN = gcode_N;
  572. //if no errors, continue parsing
  573. }
  574. else // if we don't receive 'N' but still see '*'
  575. {
  576. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  577. {
  578. SERIAL_ERROR_START;
  579. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  580. SERIAL_ERRORLN(gcode_LastN);
  581. serial_count = 0;
  582. return;
  583. }
  584. }
  585. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  586. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  587. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  588. case 0:
  589. case 1:
  590. case 2:
  591. case 3:
  592. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  593. #ifdef SDSUPPORT
  594. if(card.saving)
  595. break;
  596. #endif //SDSUPPORT
  597. SERIAL_PROTOCOLLNPGM(MSG_OK);
  598. }
  599. else {
  600. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  601. LCD_MESSAGEPGM(MSG_STOPPED);
  602. }
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. //If command was e-stop process now
  609. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  610. kill();
  611. bufindw = (bufindw + 1)%BUFSIZE;
  612. buflen += 1;
  613. }
  614. serial_count = 0; //clear buffer
  615. }
  616. else
  617. {
  618. if(serial_char == ';') comment_mode = true;
  619. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  620. }
  621. }
  622. #ifdef SDSUPPORT
  623. if(!card.sdprinting || serial_count!=0){
  624. return;
  625. }
  626. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  627. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  628. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  629. static bool stop_buffering=false;
  630. if(buflen==0) stop_buffering=false;
  631. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  632. int16_t n=card.get();
  633. serial_char = (char)n;
  634. if(serial_char == '\n' ||
  635. serial_char == '\r' ||
  636. (serial_char == '#' && comment_mode == false) ||
  637. (serial_char == ':' && comment_mode == false) ||
  638. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  639. {
  640. if(card.eof()){
  641. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  642. stoptime=millis();
  643. char time[30];
  644. unsigned long t=(stoptime-starttime)/1000;
  645. int hours, minutes;
  646. minutes=(t/60)%60;
  647. hours=t/60/60;
  648. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  649. SERIAL_ECHO_START;
  650. SERIAL_ECHOLN(time);
  651. lcd_setstatus(time);
  652. card.printingHasFinished();
  653. card.checkautostart(true);
  654. }
  655. if(serial_char=='#')
  656. stop_buffering=true;
  657. if(!serial_count)
  658. {
  659. comment_mode = false; //for new command
  660. return; //if empty line
  661. }
  662. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  663. // if(!comment_mode){
  664. fromsd[bufindw] = true;
  665. buflen += 1;
  666. bufindw = (bufindw + 1)%BUFSIZE;
  667. // }
  668. comment_mode = false; //for new command
  669. serial_count = 0; //clear buffer
  670. }
  671. else
  672. {
  673. if(serial_char == ';') comment_mode = true;
  674. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  675. }
  676. }
  677. #endif //SDSUPPORT
  678. }
  679. float code_value()
  680. {
  681. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  682. }
  683. long code_value_long()
  684. {
  685. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  686. }
  687. bool code_seen(char code)
  688. {
  689. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  690. return (strchr_pointer != NULL); //Return True if a character was found
  691. }
  692. #define DEFINE_PGM_READ_ANY(type, reader) \
  693. static inline type pgm_read_any(const type *p) \
  694. { return pgm_read_##reader##_near(p); }
  695. DEFINE_PGM_READ_ANY(float, float);
  696. DEFINE_PGM_READ_ANY(signed char, byte);
  697. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  698. static const PROGMEM type array##_P[3] = \
  699. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  700. static inline type array(int axis) \
  701. { return pgm_read_any(&array##_P[axis]); }
  702. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  703. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  704. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  705. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  706. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  707. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  708. #ifdef DUAL_X_CARRIAGE
  709. #if EXTRUDERS == 1 || defined(COREXY) \
  710. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  711. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  712. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  713. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  714. #endif
  715. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  716. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  717. #endif
  718. #define DXC_FULL_CONTROL_MODE 0
  719. #define DXC_AUTO_PARK_MODE 1
  720. #define DXC_DUPLICATION_MODE 2
  721. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  722. static float x_home_pos(int extruder) {
  723. if (extruder == 0)
  724. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  725. else
  726. // In dual carriage mode the extruder offset provides an override of the
  727. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  728. // This allow soft recalibration of the second extruder offset position without firmware reflash
  729. // (through the M218 command).
  730. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  731. }
  732. static int x_home_dir(int extruder) {
  733. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  734. }
  735. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  736. static bool active_extruder_parked = false; // used in mode 1 & 2
  737. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  738. static unsigned long delayed_move_time = 0; // used in mode 1
  739. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  740. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  741. bool extruder_duplication_enabled = false; // used in mode 2
  742. #endif //DUAL_X_CARRIAGE
  743. static void axis_is_at_home(int axis) {
  744. #ifdef DUAL_X_CARRIAGE
  745. if (axis == X_AXIS) {
  746. if (active_extruder != 0) {
  747. current_position[X_AXIS] = x_home_pos(active_extruder);
  748. min_pos[X_AXIS] = X2_MIN_POS;
  749. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  750. return;
  751. }
  752. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  753. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  754. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  755. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  756. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  757. return;
  758. }
  759. }
  760. #endif
  761. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  762. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  763. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  764. }
  765. #ifdef ENABLE_AUTO_BED_LEVELING
  766. #ifdef AUTO_BED_LEVELING_GRID
  767. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  768. {
  769. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  770. planeNormal.debug("planeNormal");
  771. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  772. //bedLevel.debug("bedLevel");
  773. //plan_bed_level_matrix.debug("bed level before");
  774. //vector_3 uncorrected_position = plan_get_position_mm();
  775. //uncorrected_position.debug("position before");
  776. vector_3 corrected_position = plan_get_position();
  777. // corrected_position.debug("position after");
  778. current_position[X_AXIS] = corrected_position.x;
  779. current_position[Y_AXIS] = corrected_position.y;
  780. current_position[Z_AXIS] = corrected_position.z;
  781. // but the bed at 0 so we don't go below it.
  782. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  783. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  784. }
  785. #else // not AUTO_BED_LEVELING_GRID
  786. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  787. plan_bed_level_matrix.set_to_identity();
  788. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  789. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  790. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  791. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  792. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  793. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  794. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  795. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  796. vector_3 corrected_position = plan_get_position();
  797. current_position[X_AXIS] = corrected_position.x;
  798. current_position[Y_AXIS] = corrected_position.y;
  799. current_position[Z_AXIS] = corrected_position.z;
  800. // put the bed at 0 so we don't go below it.
  801. current_position[Z_AXIS] = zprobe_zoffset;
  802. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  803. }
  804. #endif // AUTO_BED_LEVELING_GRID
  805. static void run_z_probe() {
  806. plan_bed_level_matrix.set_to_identity();
  807. feedrate = homing_feedrate[Z_AXIS];
  808. // move down until you find the bed
  809. float zPosition = -10;
  810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  811. st_synchronize();
  812. // we have to let the planner know where we are right now as it is not where we said to go.
  813. zPosition = st_get_position_mm(Z_AXIS);
  814. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  815. // move up the retract distance
  816. zPosition += home_retract_mm(Z_AXIS);
  817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  818. st_synchronize();
  819. // move back down slowly to find bed
  820. feedrate = homing_feedrate[Z_AXIS]/4;
  821. zPosition -= home_retract_mm(Z_AXIS) * 2;
  822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  823. st_synchronize();
  824. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  825. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  827. }
  828. static void do_blocking_move_to(float x, float y, float z) {
  829. float oldFeedRate = feedrate;
  830. feedrate = XY_TRAVEL_SPEED;
  831. current_position[X_AXIS] = x;
  832. current_position[Y_AXIS] = y;
  833. current_position[Z_AXIS] = z;
  834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  835. st_synchronize();
  836. feedrate = oldFeedRate;
  837. }
  838. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  839. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  840. }
  841. static void setup_for_endstop_move() {
  842. saved_feedrate = feedrate;
  843. saved_feedmultiply = feedmultiply;
  844. feedmultiply = 100;
  845. previous_millis_cmd = millis();
  846. enable_endstops(true);
  847. }
  848. static void clean_up_after_endstop_move() {
  849. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  850. enable_endstops(false);
  851. #endif
  852. feedrate = saved_feedrate;
  853. feedmultiply = saved_feedmultiply;
  854. previous_millis_cmd = millis();
  855. }
  856. static void engage_z_probe() {
  857. // Engage Z Servo endstop if enabled
  858. #ifdef SERVO_ENDSTOPS
  859. if (servo_endstops[Z_AXIS] > -1) {
  860. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  861. servos[servo_endstops[Z_AXIS]].attach(0);
  862. #endif
  863. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  864. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  865. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  866. servos[servo_endstops[Z_AXIS]].detach();
  867. #endif
  868. }
  869. #endif
  870. }
  871. static void retract_z_probe() {
  872. // Retract Z Servo endstop if enabled
  873. #ifdef SERVO_ENDSTOPS
  874. if (servo_endstops[Z_AXIS] > -1) {
  875. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  876. servos[servo_endstops[Z_AXIS]].attach(0);
  877. #endif
  878. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  879. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  880. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  881. servos[servo_endstops[Z_AXIS]].detach();
  882. #endif
  883. }
  884. #endif
  885. }
  886. /// Probe bed height at position (x,y), returns the measured z value
  887. static float probe_pt(float x, float y, float z_before) {
  888. // move to right place
  889. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  890. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  891. engage_z_probe(); // Engage Z Servo endstop if available
  892. run_z_probe();
  893. float measured_z = current_position[Z_AXIS];
  894. retract_z_probe();
  895. SERIAL_PROTOCOLPGM(MSG_BED);
  896. SERIAL_PROTOCOLPGM(" x: ");
  897. SERIAL_PROTOCOL(x);
  898. SERIAL_PROTOCOLPGM(" y: ");
  899. SERIAL_PROTOCOL(y);
  900. SERIAL_PROTOCOLPGM(" z: ");
  901. SERIAL_PROTOCOL(measured_z);
  902. SERIAL_PROTOCOLPGM("\n");
  903. return measured_z;
  904. }
  905. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  906. static void homeaxis(int axis) {
  907. #define HOMEAXIS_DO(LETTER) \
  908. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  909. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  910. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  911. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  912. 0) {
  913. int axis_home_dir = home_dir(axis);
  914. #ifdef DUAL_X_CARRIAGE
  915. if (axis == X_AXIS)
  916. axis_home_dir = x_home_dir(active_extruder);
  917. #endif
  918. current_position[axis] = 0;
  919. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  920. // Engage Servo endstop if enabled
  921. #ifdef SERVO_ENDSTOPS
  922. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  923. if (axis==Z_AXIS) {
  924. engage_z_probe();
  925. }
  926. else
  927. #endif
  928. if (servo_endstops[axis] > -1) {
  929. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  930. }
  931. #endif
  932. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  933. feedrate = homing_feedrate[axis];
  934. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  935. st_synchronize();
  936. current_position[axis] = 0;
  937. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  938. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  939. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  940. st_synchronize();
  941. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  942. #ifdef DELTA
  943. feedrate = homing_feedrate[axis]/10;
  944. #else
  945. feedrate = homing_feedrate[axis]/2 ;
  946. #endif
  947. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  948. st_synchronize();
  949. #ifdef DELTA
  950. // retrace by the amount specified in endstop_adj
  951. if (endstop_adj[axis] * axis_home_dir < 0) {
  952. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  953. destination[axis] = endstop_adj[axis];
  954. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  955. st_synchronize();
  956. }
  957. #endif
  958. axis_is_at_home(axis);
  959. destination[axis] = current_position[axis];
  960. feedrate = 0.0;
  961. endstops_hit_on_purpose();
  962. axis_known_position[axis] = true;
  963. // Retract Servo endstop if enabled
  964. #ifdef SERVO_ENDSTOPS
  965. if (servo_endstops[axis] > -1) {
  966. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  967. }
  968. #endif
  969. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  970. if (axis==Z_AXIS) retract_z_probe();
  971. #endif
  972. }
  973. }
  974. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  975. void refresh_cmd_timeout(void)
  976. {
  977. previous_millis_cmd = millis();
  978. }
  979. #ifdef FWRETRACT
  980. void retract(bool retracting) {
  981. if(retracting && !retracted) {
  982. destination[X_AXIS]=current_position[X_AXIS];
  983. destination[Y_AXIS]=current_position[Y_AXIS];
  984. destination[Z_AXIS]=current_position[Z_AXIS];
  985. destination[E_AXIS]=current_position[E_AXIS];
  986. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  987. plan_set_e_position(current_position[E_AXIS]);
  988. float oldFeedrate = feedrate;
  989. feedrate=retract_feedrate*60;
  990. retracted=true;
  991. prepare_move();
  992. current_position[Z_AXIS]-=retract_zlift;
  993. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  994. prepare_move();
  995. feedrate = oldFeedrate;
  996. } else if(!retracting && retracted) {
  997. destination[X_AXIS]=current_position[X_AXIS];
  998. destination[Y_AXIS]=current_position[Y_AXIS];
  999. destination[Z_AXIS]=current_position[Z_AXIS];
  1000. destination[E_AXIS]=current_position[E_AXIS];
  1001. current_position[Z_AXIS]+=retract_zlift;
  1002. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1003. //prepare_move();
  1004. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1005. plan_set_e_position(current_position[E_AXIS]);
  1006. float oldFeedrate = feedrate;
  1007. feedrate=retract_recover_feedrate*60;
  1008. retracted=false;
  1009. prepare_move();
  1010. feedrate = oldFeedrate;
  1011. }
  1012. } //retract
  1013. #endif //FWRETRACT
  1014. void process_commands()
  1015. {
  1016. unsigned long codenum; //throw away variable
  1017. char *starpos = NULL;
  1018. #ifdef ENABLE_AUTO_BED_LEVELING
  1019. float x_tmp, y_tmp, z_tmp, real_z;
  1020. #endif
  1021. if(code_seen('G'))
  1022. {
  1023. switch((int)code_value())
  1024. {
  1025. case 0: // G0 -> G1
  1026. case 1: // G1
  1027. if(Stopped == false) {
  1028. get_coordinates(); // For X Y Z E F
  1029. #ifdef FWRETRACT
  1030. if(autoretract_enabled)
  1031. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1032. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1033. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1034. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1035. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1036. retract(!retracted);
  1037. return;
  1038. }
  1039. }
  1040. #endif //FWRETRACT
  1041. prepare_move();
  1042. //ClearToSend();
  1043. return;
  1044. }
  1045. break;
  1046. case 2: // G2 - CW ARC
  1047. if(Stopped == false) {
  1048. get_arc_coordinates();
  1049. prepare_arc_move(true);
  1050. return;
  1051. }
  1052. break;
  1053. case 3: // G3 - CCW ARC
  1054. if(Stopped == false) {
  1055. get_arc_coordinates();
  1056. prepare_arc_move(false);
  1057. return;
  1058. }
  1059. break;
  1060. case 4: // G4 dwell
  1061. LCD_MESSAGEPGM(MSG_DWELL);
  1062. codenum = 0;
  1063. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1064. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1065. st_synchronize();
  1066. codenum += millis(); // keep track of when we started waiting
  1067. previous_millis_cmd = millis();
  1068. while(millis() < codenum ){
  1069. manage_heater();
  1070. manage_inactivity();
  1071. lcd_update();
  1072. }
  1073. break;
  1074. #ifdef FWRETRACT
  1075. case 10: // G10 retract
  1076. retract(true);
  1077. break;
  1078. case 11: // G11 retract_recover
  1079. retract(false);
  1080. break;
  1081. #endif //FWRETRACT
  1082. case 28: //G28 Home all Axis one at a time
  1083. #ifdef ENABLE_AUTO_BED_LEVELING
  1084. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1085. #endif //ENABLE_AUTO_BED_LEVELING
  1086. saved_feedrate = feedrate;
  1087. saved_feedmultiply = feedmultiply;
  1088. feedmultiply = 100;
  1089. previous_millis_cmd = millis();
  1090. enable_endstops(true);
  1091. for(int8_t i=0; i < NUM_AXIS; i++) {
  1092. destination[i] = current_position[i];
  1093. }
  1094. feedrate = 0.0;
  1095. #ifdef DELTA
  1096. // A delta can only safely home all axis at the same time
  1097. // all axis have to home at the same time
  1098. // Move all carriages up together until the first endstop is hit.
  1099. current_position[X_AXIS] = 0;
  1100. current_position[Y_AXIS] = 0;
  1101. current_position[Z_AXIS] = 0;
  1102. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1103. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1104. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1105. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1106. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1107. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1108. st_synchronize();
  1109. endstops_hit_on_purpose();
  1110. current_position[X_AXIS] = destination[X_AXIS];
  1111. current_position[Y_AXIS] = destination[Y_AXIS];
  1112. current_position[Z_AXIS] = destination[Z_AXIS];
  1113. // take care of back off and rehome now we are all at the top
  1114. HOMEAXIS(X);
  1115. HOMEAXIS(Y);
  1116. HOMEAXIS(Z);
  1117. calculate_delta(current_position);
  1118. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1119. #else // NOT DELTA
  1120. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1121. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1122. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1123. HOMEAXIS(Z);
  1124. }
  1125. #endif
  1126. #ifdef QUICK_HOME
  1127. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1128. {
  1129. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1130. #ifndef DUAL_X_CARRIAGE
  1131. int x_axis_home_dir = home_dir(X_AXIS);
  1132. #else
  1133. int x_axis_home_dir = x_home_dir(active_extruder);
  1134. extruder_duplication_enabled = false;
  1135. #endif
  1136. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1137. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1138. feedrate = homing_feedrate[X_AXIS];
  1139. if(homing_feedrate[Y_AXIS]<feedrate)
  1140. feedrate = homing_feedrate[Y_AXIS];
  1141. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1142. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1143. } else {
  1144. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1145. }
  1146. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1147. st_synchronize();
  1148. axis_is_at_home(X_AXIS);
  1149. axis_is_at_home(Y_AXIS);
  1150. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1151. destination[X_AXIS] = current_position[X_AXIS];
  1152. destination[Y_AXIS] = current_position[Y_AXIS];
  1153. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1154. feedrate = 0.0;
  1155. st_synchronize();
  1156. endstops_hit_on_purpose();
  1157. current_position[X_AXIS] = destination[X_AXIS];
  1158. current_position[Y_AXIS] = destination[Y_AXIS];
  1159. current_position[Z_AXIS] = destination[Z_AXIS];
  1160. }
  1161. #endif
  1162. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1163. {
  1164. #ifdef DUAL_X_CARRIAGE
  1165. int tmp_extruder = active_extruder;
  1166. extruder_duplication_enabled = false;
  1167. active_extruder = !active_extruder;
  1168. HOMEAXIS(X);
  1169. inactive_extruder_x_pos = current_position[X_AXIS];
  1170. active_extruder = tmp_extruder;
  1171. HOMEAXIS(X);
  1172. // reset state used by the different modes
  1173. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1174. delayed_move_time = 0;
  1175. active_extruder_parked = true;
  1176. #else
  1177. HOMEAXIS(X);
  1178. #endif
  1179. }
  1180. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1181. HOMEAXIS(Y);
  1182. }
  1183. if(code_seen(axis_codes[X_AXIS]))
  1184. {
  1185. if(code_value_long() != 0) {
  1186. current_position[X_AXIS]=code_value()+add_homeing[0];
  1187. }
  1188. }
  1189. if(code_seen(axis_codes[Y_AXIS])) {
  1190. if(code_value_long() != 0) {
  1191. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1192. }
  1193. }
  1194. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1195. #ifndef Z_SAFE_HOMING
  1196. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1197. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1198. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1199. feedrate = max_feedrate[Z_AXIS];
  1200. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1201. st_synchronize();
  1202. #endif
  1203. HOMEAXIS(Z);
  1204. }
  1205. #else // Z Safe mode activated.
  1206. if(home_all_axis) {
  1207. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1208. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1209. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1210. feedrate = XY_TRAVEL_SPEED;
  1211. current_position[Z_AXIS] = 0;
  1212. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1213. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1214. st_synchronize();
  1215. current_position[X_AXIS] = destination[X_AXIS];
  1216. current_position[Y_AXIS] = destination[Y_AXIS];
  1217. HOMEAXIS(Z);
  1218. }
  1219. // Let's see if X and Y are homed and probe is inside bed area.
  1220. if(code_seen(axis_codes[Z_AXIS])) {
  1221. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1222. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1223. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1224. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1225. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1226. current_position[Z_AXIS] = 0;
  1227. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1228. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1229. feedrate = max_feedrate[Z_AXIS];
  1230. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1231. st_synchronize();
  1232. HOMEAXIS(Z);
  1233. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1234. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1235. SERIAL_ECHO_START;
  1236. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1237. } else {
  1238. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1239. SERIAL_ECHO_START;
  1240. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1241. }
  1242. }
  1243. #endif
  1244. #endif
  1245. if(code_seen(axis_codes[Z_AXIS])) {
  1246. if(code_value_long() != 0) {
  1247. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1248. }
  1249. }
  1250. #ifdef ENABLE_AUTO_BED_LEVELING
  1251. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1252. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1253. }
  1254. #endif
  1255. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1256. #endif // else DELTA
  1257. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1258. enable_endstops(false);
  1259. #endif
  1260. feedrate = saved_feedrate;
  1261. feedmultiply = saved_feedmultiply;
  1262. previous_millis_cmd = millis();
  1263. endstops_hit_on_purpose();
  1264. break;
  1265. #ifdef ENABLE_AUTO_BED_LEVELING
  1266. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1267. {
  1268. #if Z_MIN_PIN == -1
  1269. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1270. #endif
  1271. // Prevent user from running a G29 without first homing in X and Y
  1272. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1273. {
  1274. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1275. SERIAL_ECHO_START;
  1276. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1277. break; // abort G29, since we don't know where we are
  1278. }
  1279. st_synchronize();
  1280. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1281. //vector_3 corrected_position = plan_get_position_mm();
  1282. //corrected_position.debug("position before G29");
  1283. plan_bed_level_matrix.set_to_identity();
  1284. vector_3 uncorrected_position = plan_get_position();
  1285. //uncorrected_position.debug("position durring G29");
  1286. current_position[X_AXIS] = uncorrected_position.x;
  1287. current_position[Y_AXIS] = uncorrected_position.y;
  1288. current_position[Z_AXIS] = uncorrected_position.z;
  1289. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1290. setup_for_endstop_move();
  1291. feedrate = homing_feedrate[Z_AXIS];
  1292. #ifdef AUTO_BED_LEVELING_GRID
  1293. // probe at the points of a lattice grid
  1294. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1295. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1296. // solve the plane equation ax + by + d = z
  1297. // A is the matrix with rows [x y 1] for all the probed points
  1298. // B is the vector of the Z positions
  1299. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1300. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1301. // "A" matrix of the linear system of equations
  1302. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1303. // "B" vector of Z points
  1304. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1305. int probePointCounter = 0;
  1306. bool zig = true;
  1307. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1308. {
  1309. int xProbe, xInc;
  1310. if (zig)
  1311. {
  1312. xProbe = LEFT_PROBE_BED_POSITION;
  1313. //xEnd = RIGHT_PROBE_BED_POSITION;
  1314. xInc = xGridSpacing;
  1315. zig = false;
  1316. } else // zag
  1317. {
  1318. xProbe = RIGHT_PROBE_BED_POSITION;
  1319. //xEnd = LEFT_PROBE_BED_POSITION;
  1320. xInc = -xGridSpacing;
  1321. zig = true;
  1322. }
  1323. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1324. {
  1325. float z_before;
  1326. if (probePointCounter == 0)
  1327. {
  1328. // raise before probing
  1329. z_before = Z_RAISE_BEFORE_PROBING;
  1330. } else
  1331. {
  1332. // raise extruder
  1333. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1334. }
  1335. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1336. eqnBVector[probePointCounter] = measured_z;
  1337. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1338. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1339. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1340. probePointCounter++;
  1341. xProbe += xInc;
  1342. }
  1343. }
  1344. clean_up_after_endstop_move();
  1345. // solve lsq problem
  1346. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1347. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1348. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1349. SERIAL_PROTOCOLPGM(" b: ");
  1350. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1351. SERIAL_PROTOCOLPGM(" d: ");
  1352. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1353. set_bed_level_equation_lsq(plane_equation_coefficients);
  1354. free(plane_equation_coefficients);
  1355. #else // AUTO_BED_LEVELING_GRID not defined
  1356. // Probe at 3 arbitrary points
  1357. // probe 1
  1358. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1359. // probe 2
  1360. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1361. // probe 3
  1362. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1363. clean_up_after_endstop_move();
  1364. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1365. #endif // AUTO_BED_LEVELING_GRID
  1366. st_synchronize();
  1367. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1368. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1369. // When the bed is uneven, this height must be corrected.
  1370. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1371. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1372. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1373. z_tmp = current_position[Z_AXIS];
  1374. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1375. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1376. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1377. }
  1378. break;
  1379. case 30: // G30 Single Z Probe
  1380. {
  1381. engage_z_probe(); // Engage Z Servo endstop if available
  1382. st_synchronize();
  1383. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1384. setup_for_endstop_move();
  1385. feedrate = homing_feedrate[Z_AXIS];
  1386. run_z_probe();
  1387. SERIAL_PROTOCOLPGM(MSG_BED);
  1388. SERIAL_PROTOCOLPGM(" X: ");
  1389. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1390. SERIAL_PROTOCOLPGM(" Y: ");
  1391. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1392. SERIAL_PROTOCOLPGM(" Z: ");
  1393. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1394. SERIAL_PROTOCOLPGM("\n");
  1395. clean_up_after_endstop_move();
  1396. retract_z_probe(); // Retract Z Servo endstop if available
  1397. }
  1398. break;
  1399. #endif // ENABLE_AUTO_BED_LEVELING
  1400. case 90: // G90
  1401. relative_mode = false;
  1402. break;
  1403. case 91: // G91
  1404. relative_mode = true;
  1405. break;
  1406. case 92: // G92
  1407. if(!code_seen(axis_codes[E_AXIS]))
  1408. st_synchronize();
  1409. for(int8_t i=0; i < NUM_AXIS; i++) {
  1410. if(code_seen(axis_codes[i])) {
  1411. if(i == E_AXIS) {
  1412. current_position[i] = code_value();
  1413. plan_set_e_position(current_position[E_AXIS]);
  1414. }
  1415. else {
  1416. current_position[i] = code_value()+add_homeing[i];
  1417. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1418. }
  1419. }
  1420. }
  1421. break;
  1422. }
  1423. }
  1424. else if(code_seen('M'))
  1425. {
  1426. switch( (int)code_value() )
  1427. {
  1428. #ifdef ULTIPANEL
  1429. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1430. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1431. {
  1432. LCD_MESSAGEPGM(MSG_USERWAIT);
  1433. codenum = 0;
  1434. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1435. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1436. st_synchronize();
  1437. previous_millis_cmd = millis();
  1438. if (codenum > 0){
  1439. codenum += millis(); // keep track of when we started waiting
  1440. while(millis() < codenum && !lcd_clicked()){
  1441. manage_heater();
  1442. manage_inactivity();
  1443. lcd_update();
  1444. }
  1445. }else{
  1446. while(!lcd_clicked()){
  1447. manage_heater();
  1448. manage_inactivity();
  1449. lcd_update();
  1450. }
  1451. }
  1452. LCD_MESSAGEPGM(MSG_RESUMING);
  1453. }
  1454. break;
  1455. #endif
  1456. case 17:
  1457. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1458. enable_x();
  1459. enable_y();
  1460. enable_z();
  1461. enable_e0();
  1462. enable_e1();
  1463. enable_e2();
  1464. break;
  1465. #ifdef SDSUPPORT
  1466. case 20: // M20 - list SD card
  1467. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1468. card.ls();
  1469. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1470. break;
  1471. case 21: // M21 - init SD card
  1472. card.initsd();
  1473. break;
  1474. case 22: //M22 - release SD card
  1475. card.release();
  1476. break;
  1477. case 23: //M23 - Select file
  1478. starpos = (strchr(strchr_pointer + 4,'*'));
  1479. if(starpos!=NULL)
  1480. *(starpos-1)='\0';
  1481. card.openFile(strchr_pointer + 4,true);
  1482. break;
  1483. case 24: //M24 - Start SD print
  1484. card.startFileprint();
  1485. starttime=millis();
  1486. break;
  1487. case 25: //M25 - Pause SD print
  1488. card.pauseSDPrint();
  1489. break;
  1490. case 26: //M26 - Set SD index
  1491. if(card.cardOK && code_seen('S')) {
  1492. card.setIndex(code_value_long());
  1493. }
  1494. break;
  1495. case 27: //M27 - Get SD status
  1496. card.getStatus();
  1497. break;
  1498. case 28: //M28 - Start SD write
  1499. starpos = (strchr(strchr_pointer + 4,'*'));
  1500. if(starpos != NULL){
  1501. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1502. strchr_pointer = strchr(npos,' ') + 1;
  1503. *(starpos-1) = '\0';
  1504. }
  1505. card.openFile(strchr_pointer+4,false);
  1506. break;
  1507. case 29: //M29 - Stop SD write
  1508. //processed in write to file routine above
  1509. //card,saving = false;
  1510. break;
  1511. case 30: //M30 <filename> Delete File
  1512. if (card.cardOK){
  1513. card.closefile();
  1514. starpos = (strchr(strchr_pointer + 4,'*'));
  1515. if(starpos != NULL){
  1516. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1517. strchr_pointer = strchr(npos,' ') + 1;
  1518. *(starpos-1) = '\0';
  1519. }
  1520. card.removeFile(strchr_pointer + 4);
  1521. }
  1522. break;
  1523. case 32: //M32 - Select file and start SD print
  1524. {
  1525. if(card.sdprinting) {
  1526. st_synchronize();
  1527. }
  1528. starpos = (strchr(strchr_pointer + 4,'*'));
  1529. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1530. if(namestartpos==NULL)
  1531. {
  1532. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1533. }
  1534. else
  1535. namestartpos++; //to skip the '!'
  1536. if(starpos!=NULL)
  1537. *(starpos-1)='\0';
  1538. bool call_procedure=(code_seen('P'));
  1539. if(strchr_pointer>namestartpos)
  1540. call_procedure=false; //false alert, 'P' found within filename
  1541. if( card.cardOK )
  1542. {
  1543. card.openFile(namestartpos,true,!call_procedure);
  1544. if(code_seen('S'))
  1545. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1546. card.setIndex(code_value_long());
  1547. card.startFileprint();
  1548. if(!call_procedure)
  1549. starttime=millis(); //procedure calls count as normal print time.
  1550. }
  1551. } break;
  1552. case 928: //M928 - Start SD write
  1553. starpos = (strchr(strchr_pointer + 5,'*'));
  1554. if(starpos != NULL){
  1555. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1556. strchr_pointer = strchr(npos,' ') + 1;
  1557. *(starpos-1) = '\0';
  1558. }
  1559. card.openLogFile(strchr_pointer+5);
  1560. break;
  1561. #endif //SDSUPPORT
  1562. case 31: //M31 take time since the start of the SD print or an M109 command
  1563. {
  1564. stoptime=millis();
  1565. char time[30];
  1566. unsigned long t=(stoptime-starttime)/1000;
  1567. int sec,min;
  1568. min=t/60;
  1569. sec=t%60;
  1570. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1571. SERIAL_ECHO_START;
  1572. SERIAL_ECHOLN(time);
  1573. lcd_setstatus(time);
  1574. autotempShutdown();
  1575. }
  1576. break;
  1577. case 42: //M42 -Change pin status via gcode
  1578. if (code_seen('S'))
  1579. {
  1580. int pin_status = code_value();
  1581. int pin_number = LED_PIN;
  1582. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1583. pin_number = code_value();
  1584. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1585. {
  1586. if (sensitive_pins[i] == pin_number)
  1587. {
  1588. pin_number = -1;
  1589. break;
  1590. }
  1591. }
  1592. #if defined(FAN_PIN) && FAN_PIN > -1
  1593. if (pin_number == FAN_PIN)
  1594. fanSpeed = pin_status;
  1595. #endif
  1596. if (pin_number > -1)
  1597. {
  1598. pinMode(pin_number, OUTPUT);
  1599. digitalWrite(pin_number, pin_status);
  1600. analogWrite(pin_number, pin_status);
  1601. }
  1602. }
  1603. break;
  1604. case 104: // M104
  1605. if(setTargetedHotend(104)){
  1606. break;
  1607. }
  1608. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1609. #ifdef DUAL_X_CARRIAGE
  1610. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1611. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1612. #endif
  1613. setWatch();
  1614. break;
  1615. case 112: // M112 -Emergency Stop
  1616. kill();
  1617. break;
  1618. case 140: // M140 set bed temp
  1619. if (code_seen('S')) setTargetBed(code_value());
  1620. break;
  1621. case 105 : // M105
  1622. if(setTargetedHotend(105)){
  1623. break;
  1624. }
  1625. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1626. SERIAL_PROTOCOLPGM("ok T:");
  1627. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1628. SERIAL_PROTOCOLPGM(" /");
  1629. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1630. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1631. SERIAL_PROTOCOLPGM(" B:");
  1632. SERIAL_PROTOCOL_F(degBed(),1);
  1633. SERIAL_PROTOCOLPGM(" /");
  1634. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1635. #endif //TEMP_BED_PIN
  1636. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1637. SERIAL_PROTOCOLPGM(" T");
  1638. SERIAL_PROTOCOL(cur_extruder);
  1639. SERIAL_PROTOCOLPGM(":");
  1640. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1641. SERIAL_PROTOCOLPGM(" /");
  1642. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1643. }
  1644. #else
  1645. SERIAL_ERROR_START;
  1646. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1647. #endif
  1648. SERIAL_PROTOCOLPGM(" @:");
  1649. #ifdef EXTRUDER_WATTS
  1650. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1651. SERIAL_PROTOCOLPGM("W");
  1652. #else
  1653. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1654. #endif
  1655. SERIAL_PROTOCOLPGM(" B@:");
  1656. #ifdef BED_WATTS
  1657. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1658. SERIAL_PROTOCOLPGM("W");
  1659. #else
  1660. SERIAL_PROTOCOL(getHeaterPower(-1));
  1661. #endif
  1662. #ifdef SHOW_TEMP_ADC_VALUES
  1663. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1664. SERIAL_PROTOCOLPGM(" ADC B:");
  1665. SERIAL_PROTOCOL_F(degBed(),1);
  1666. SERIAL_PROTOCOLPGM("C->");
  1667. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1668. #endif
  1669. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1670. SERIAL_PROTOCOLPGM(" T");
  1671. SERIAL_PROTOCOL(cur_extruder);
  1672. SERIAL_PROTOCOLPGM(":");
  1673. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1674. SERIAL_PROTOCOLPGM("C->");
  1675. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1676. }
  1677. #endif
  1678. SERIAL_PROTOCOLLN("");
  1679. return;
  1680. break;
  1681. case 109:
  1682. {// M109 - Wait for extruder heater to reach target.
  1683. if(setTargetedHotend(109)){
  1684. break;
  1685. }
  1686. LCD_MESSAGEPGM(MSG_HEATING);
  1687. #ifdef AUTOTEMP
  1688. autotemp_enabled=false;
  1689. #endif
  1690. if (code_seen('S')) {
  1691. setTargetHotend(code_value(), tmp_extruder);
  1692. #ifdef DUAL_X_CARRIAGE
  1693. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1694. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1695. #endif
  1696. CooldownNoWait = true;
  1697. } else if (code_seen('R')) {
  1698. setTargetHotend(code_value(), tmp_extruder);
  1699. #ifdef DUAL_X_CARRIAGE
  1700. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1701. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1702. #endif
  1703. CooldownNoWait = false;
  1704. }
  1705. #ifdef AUTOTEMP
  1706. if (code_seen('S')) autotemp_min=code_value();
  1707. if (code_seen('B')) autotemp_max=code_value();
  1708. if (code_seen('F'))
  1709. {
  1710. autotemp_factor=code_value();
  1711. autotemp_enabled=true;
  1712. }
  1713. #endif
  1714. setWatch();
  1715. codenum = millis();
  1716. /* See if we are heating up or cooling down */
  1717. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1718. #ifdef TEMP_RESIDENCY_TIME
  1719. long residencyStart;
  1720. residencyStart = -1;
  1721. /* continue to loop until we have reached the target temp
  1722. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1723. while((residencyStart == -1) ||
  1724. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1725. #else
  1726. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1727. #endif //TEMP_RESIDENCY_TIME
  1728. if( (millis() - codenum) > 1000UL )
  1729. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1730. SERIAL_PROTOCOLPGM("T:");
  1731. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1732. SERIAL_PROTOCOLPGM(" E:");
  1733. SERIAL_PROTOCOL((int)tmp_extruder);
  1734. #ifdef TEMP_RESIDENCY_TIME
  1735. SERIAL_PROTOCOLPGM(" W:");
  1736. if(residencyStart > -1)
  1737. {
  1738. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1739. SERIAL_PROTOCOLLN( codenum );
  1740. }
  1741. else
  1742. {
  1743. SERIAL_PROTOCOLLN( "?" );
  1744. }
  1745. #else
  1746. SERIAL_PROTOCOLLN("");
  1747. #endif
  1748. codenum = millis();
  1749. }
  1750. manage_heater();
  1751. manage_inactivity();
  1752. lcd_update();
  1753. #ifdef TEMP_RESIDENCY_TIME
  1754. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1755. or when current temp falls outside the hysteresis after target temp was reached */
  1756. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1757. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1758. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1759. {
  1760. residencyStart = millis();
  1761. }
  1762. #endif //TEMP_RESIDENCY_TIME
  1763. }
  1764. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1765. starttime=millis();
  1766. previous_millis_cmd = millis();
  1767. }
  1768. break;
  1769. case 190: // M190 - Wait for bed heater to reach target.
  1770. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1771. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1772. if (code_seen('S')) {
  1773. setTargetBed(code_value());
  1774. CooldownNoWait = true;
  1775. } else if (code_seen('R')) {
  1776. setTargetBed(code_value());
  1777. CooldownNoWait = false;
  1778. }
  1779. codenum = millis();
  1780. target_direction = isHeatingBed(); // true if heating, false if cooling
  1781. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1782. {
  1783. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1784. {
  1785. float tt=degHotend(active_extruder);
  1786. SERIAL_PROTOCOLPGM("T:");
  1787. SERIAL_PROTOCOL(tt);
  1788. SERIAL_PROTOCOLPGM(" E:");
  1789. SERIAL_PROTOCOL((int)active_extruder);
  1790. SERIAL_PROTOCOLPGM(" B:");
  1791. SERIAL_PROTOCOL_F(degBed(),1);
  1792. SERIAL_PROTOCOLLN("");
  1793. codenum = millis();
  1794. }
  1795. manage_heater();
  1796. manage_inactivity();
  1797. lcd_update();
  1798. }
  1799. LCD_MESSAGEPGM(MSG_BED_DONE);
  1800. previous_millis_cmd = millis();
  1801. #endif
  1802. break;
  1803. #if defined(FAN_PIN) && FAN_PIN > -1
  1804. case 106: //M106 Fan On
  1805. if (code_seen('S')){
  1806. fanSpeed=constrain(code_value(),0,255);
  1807. }
  1808. else {
  1809. fanSpeed=255;
  1810. }
  1811. break;
  1812. case 107: //M107 Fan Off
  1813. fanSpeed = 0;
  1814. break;
  1815. #endif //FAN_PIN
  1816. #ifdef BARICUDA
  1817. // PWM for HEATER_1_PIN
  1818. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1819. case 126: //M126 valve open
  1820. if (code_seen('S')){
  1821. ValvePressure=constrain(code_value(),0,255);
  1822. }
  1823. else {
  1824. ValvePressure=255;
  1825. }
  1826. break;
  1827. case 127: //M127 valve closed
  1828. ValvePressure = 0;
  1829. break;
  1830. #endif //HEATER_1_PIN
  1831. // PWM for HEATER_2_PIN
  1832. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1833. case 128: //M128 valve open
  1834. if (code_seen('S')){
  1835. EtoPPressure=constrain(code_value(),0,255);
  1836. }
  1837. else {
  1838. EtoPPressure=255;
  1839. }
  1840. break;
  1841. case 129: //M129 valve closed
  1842. EtoPPressure = 0;
  1843. break;
  1844. #endif //HEATER_2_PIN
  1845. #endif
  1846. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1847. case 80: // M80 - Turn on Power Supply
  1848. SET_OUTPUT(PS_ON_PIN); //GND
  1849. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1850. // If you have a switch on suicide pin, this is useful
  1851. // if you want to start another print with suicide feature after
  1852. // a print without suicide...
  1853. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1854. SET_OUTPUT(SUICIDE_PIN);
  1855. WRITE(SUICIDE_PIN, HIGH);
  1856. #endif
  1857. #ifdef ULTIPANEL
  1858. powersupply = true;
  1859. LCD_MESSAGEPGM(WELCOME_MSG);
  1860. lcd_update();
  1861. #endif
  1862. break;
  1863. #endif
  1864. case 81: // M81 - Turn off Power Supply
  1865. disable_heater();
  1866. st_synchronize();
  1867. disable_e0();
  1868. disable_e1();
  1869. disable_e2();
  1870. finishAndDisableSteppers();
  1871. fanSpeed = 0;
  1872. delay(1000); // Wait a little before to switch off
  1873. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1874. st_synchronize();
  1875. suicide();
  1876. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1877. SET_OUTPUT(PS_ON_PIN);
  1878. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1879. #endif
  1880. #ifdef ULTIPANEL
  1881. powersupply = false;
  1882. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1883. lcd_update();
  1884. #endif
  1885. break;
  1886. case 82:
  1887. axis_relative_modes[3] = false;
  1888. break;
  1889. case 83:
  1890. axis_relative_modes[3] = true;
  1891. break;
  1892. case 18: //compatibility
  1893. case 84: // M84
  1894. if(code_seen('S')){
  1895. stepper_inactive_time = code_value() * 1000;
  1896. }
  1897. else
  1898. {
  1899. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1900. if(all_axis)
  1901. {
  1902. st_synchronize();
  1903. disable_e0();
  1904. disable_e1();
  1905. disable_e2();
  1906. finishAndDisableSteppers();
  1907. }
  1908. else
  1909. {
  1910. st_synchronize();
  1911. if(code_seen('X')) disable_x();
  1912. if(code_seen('Y')) disable_y();
  1913. if(code_seen('Z')) disable_z();
  1914. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1915. if(code_seen('E')) {
  1916. disable_e0();
  1917. disable_e1();
  1918. disable_e2();
  1919. }
  1920. #endif
  1921. }
  1922. }
  1923. break;
  1924. case 85: // M85
  1925. if(code_seen('S')) {
  1926. max_inactive_time = code_value() * 1000;
  1927. }
  1928. break;
  1929. case 92: // M92
  1930. for(int8_t i=0; i < NUM_AXIS; i++)
  1931. {
  1932. if(code_seen(axis_codes[i]))
  1933. {
  1934. if(i == 3) { // E
  1935. float value = code_value();
  1936. if(value < 20.0) {
  1937. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1938. max_e_jerk *= factor;
  1939. max_feedrate[i] *= factor;
  1940. axis_steps_per_sqr_second[i] *= factor;
  1941. }
  1942. axis_steps_per_unit[i] = value;
  1943. }
  1944. else {
  1945. axis_steps_per_unit[i] = code_value();
  1946. }
  1947. }
  1948. }
  1949. break;
  1950. case 115: // M115
  1951. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1952. break;
  1953. case 117: // M117 display message
  1954. starpos = (strchr(strchr_pointer + 5,'*'));
  1955. if(starpos!=NULL)
  1956. *(starpos-1)='\0';
  1957. lcd_setstatus(strchr_pointer + 5);
  1958. break;
  1959. case 114: // M114
  1960. SERIAL_PROTOCOLPGM("X:");
  1961. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1962. SERIAL_PROTOCOLPGM(" Y:");
  1963. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1964. SERIAL_PROTOCOLPGM(" Z:");
  1965. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1966. SERIAL_PROTOCOLPGM(" E:");
  1967. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1968. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1969. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1970. SERIAL_PROTOCOLPGM(" Y:");
  1971. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1972. SERIAL_PROTOCOLPGM(" Z:");
  1973. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1974. SERIAL_PROTOCOLLN("");
  1975. break;
  1976. case 120: // M120
  1977. enable_endstops(false) ;
  1978. break;
  1979. case 121: // M121
  1980. enable_endstops(true) ;
  1981. break;
  1982. case 119: // M119
  1983. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1984. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1985. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1986. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1987. #endif
  1988. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1989. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1990. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1991. #endif
  1992. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1993. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1994. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1995. #endif
  1996. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1997. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1998. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1999. #endif
  2000. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2001. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2002. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2003. #endif
  2004. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2005. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2006. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2007. #endif
  2008. break;
  2009. //TODO: update for all axis, use for loop
  2010. #ifdef BLINKM
  2011. case 150: // M150
  2012. {
  2013. byte red;
  2014. byte grn;
  2015. byte blu;
  2016. if(code_seen('R')) red = code_value();
  2017. if(code_seen('U')) grn = code_value();
  2018. if(code_seen('B')) blu = code_value();
  2019. SendColors(red,grn,blu);
  2020. }
  2021. break;
  2022. #endif //BLINKM
  2023. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2024. {
  2025. float area = .0;
  2026. float radius = .0;
  2027. if(code_seen('D')) {
  2028. radius = (float)code_value() * .5;
  2029. if(radius == 0) {
  2030. area = 1;
  2031. } else {
  2032. area = M_PI * pow(radius, 2);
  2033. }
  2034. } else {
  2035. //reserved for setting filament diameter via UFID or filament measuring device
  2036. break;
  2037. }
  2038. tmp_extruder = active_extruder;
  2039. if(code_seen('T')) {
  2040. tmp_extruder = code_value();
  2041. if(tmp_extruder >= EXTRUDERS) {
  2042. SERIAL_ECHO_START;
  2043. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2044. break;
  2045. }
  2046. }
  2047. volumetric_multiplier[tmp_extruder] = 1 / area;
  2048. }
  2049. break;
  2050. case 201: // M201
  2051. for(int8_t i=0; i < NUM_AXIS; i++)
  2052. {
  2053. if(code_seen(axis_codes[i]))
  2054. {
  2055. max_acceleration_units_per_sq_second[i] = code_value();
  2056. }
  2057. }
  2058. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2059. reset_acceleration_rates();
  2060. break;
  2061. #if 0 // Not used for Sprinter/grbl gen6
  2062. case 202: // M202
  2063. for(int8_t i=0; i < NUM_AXIS; i++) {
  2064. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2065. }
  2066. break;
  2067. #endif
  2068. case 203: // M203 max feedrate mm/sec
  2069. for(int8_t i=0; i < NUM_AXIS; i++) {
  2070. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2071. }
  2072. break;
  2073. case 204: // M204 acclereration S normal moves T filmanent only moves
  2074. {
  2075. if(code_seen('S')) acceleration = code_value() ;
  2076. if(code_seen('T')) retract_acceleration = code_value() ;
  2077. }
  2078. break;
  2079. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2080. {
  2081. if(code_seen('S')) minimumfeedrate = code_value();
  2082. if(code_seen('T')) mintravelfeedrate = code_value();
  2083. if(code_seen('B')) minsegmenttime = code_value() ;
  2084. if(code_seen('X')) max_xy_jerk = code_value() ;
  2085. if(code_seen('Z')) max_z_jerk = code_value() ;
  2086. if(code_seen('E')) max_e_jerk = code_value() ;
  2087. }
  2088. break;
  2089. case 206: // M206 additional homeing offset
  2090. for(int8_t i=0; i < 3; i++)
  2091. {
  2092. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2093. }
  2094. break;
  2095. #ifdef DELTA
  2096. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2097. if(code_seen('L')) {
  2098. delta_diagonal_rod= code_value();
  2099. }
  2100. if(code_seen('R')) {
  2101. delta_radius= code_value();
  2102. }
  2103. if(code_seen('S')) {
  2104. delta_segments_per_second= code_value();
  2105. }
  2106. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2107. break;
  2108. case 666: // M666 set delta endstop adjustemnt
  2109. for(int8_t i=0; i < 3; i++)
  2110. {
  2111. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2112. }
  2113. break;
  2114. #endif
  2115. #ifdef FWRETRACT
  2116. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2117. {
  2118. if(code_seen('S'))
  2119. {
  2120. retract_length = code_value() ;
  2121. }
  2122. if(code_seen('F'))
  2123. {
  2124. retract_feedrate = code_value()/60 ;
  2125. }
  2126. if(code_seen('Z'))
  2127. {
  2128. retract_zlift = code_value() ;
  2129. }
  2130. }break;
  2131. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2132. {
  2133. if(code_seen('S'))
  2134. {
  2135. retract_recover_length = code_value() ;
  2136. }
  2137. if(code_seen('F'))
  2138. {
  2139. retract_recover_feedrate = code_value()/60 ;
  2140. }
  2141. }break;
  2142. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2143. {
  2144. if(code_seen('S'))
  2145. {
  2146. int t= code_value() ;
  2147. switch(t)
  2148. {
  2149. case 0: autoretract_enabled=false;retracted=false;break;
  2150. case 1: autoretract_enabled=true;retracted=false;break;
  2151. default:
  2152. SERIAL_ECHO_START;
  2153. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2154. SERIAL_ECHO(cmdbuffer[bufindr]);
  2155. SERIAL_ECHOLNPGM("\"");
  2156. }
  2157. }
  2158. }break;
  2159. #endif // FWRETRACT
  2160. #if EXTRUDERS > 1
  2161. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2162. {
  2163. if(setTargetedHotend(218)){
  2164. break;
  2165. }
  2166. if(code_seen('X'))
  2167. {
  2168. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2169. }
  2170. if(code_seen('Y'))
  2171. {
  2172. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2173. }
  2174. #ifdef DUAL_X_CARRIAGE
  2175. if(code_seen('Z'))
  2176. {
  2177. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2178. }
  2179. #endif
  2180. SERIAL_ECHO_START;
  2181. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2182. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2183. {
  2184. SERIAL_ECHO(" ");
  2185. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2186. SERIAL_ECHO(",");
  2187. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2188. #ifdef DUAL_X_CARRIAGE
  2189. SERIAL_ECHO(",");
  2190. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2191. #endif
  2192. }
  2193. SERIAL_ECHOLN("");
  2194. }break;
  2195. #endif
  2196. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2197. {
  2198. if(code_seen('S'))
  2199. {
  2200. feedmultiply = code_value() ;
  2201. }
  2202. }
  2203. break;
  2204. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2205. {
  2206. if(code_seen('S'))
  2207. {
  2208. int tmp_code = code_value();
  2209. if (code_seen('T'))
  2210. {
  2211. if(setTargetedHotend(221)){
  2212. break;
  2213. }
  2214. extruder_multiply[tmp_extruder] = tmp_code;
  2215. }
  2216. else
  2217. {
  2218. extrudemultiply = tmp_code ;
  2219. }
  2220. }
  2221. }
  2222. break;
  2223. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2224. {
  2225. if(code_seen('P')){
  2226. int pin_number = code_value(); // pin number
  2227. int pin_state = -1; // required pin state - default is inverted
  2228. if(code_seen('S')) pin_state = code_value(); // required pin state
  2229. if(pin_state >= -1 && pin_state <= 1){
  2230. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2231. {
  2232. if (sensitive_pins[i] == pin_number)
  2233. {
  2234. pin_number = -1;
  2235. break;
  2236. }
  2237. }
  2238. if (pin_number > -1)
  2239. {
  2240. st_synchronize();
  2241. pinMode(pin_number, INPUT);
  2242. int target;
  2243. switch(pin_state){
  2244. case 1:
  2245. target = HIGH;
  2246. break;
  2247. case 0:
  2248. target = LOW;
  2249. break;
  2250. case -1:
  2251. target = !digitalRead(pin_number);
  2252. break;
  2253. }
  2254. while(digitalRead(pin_number) != target){
  2255. manage_heater();
  2256. manage_inactivity();
  2257. lcd_update();
  2258. }
  2259. }
  2260. }
  2261. }
  2262. }
  2263. break;
  2264. #if NUM_SERVOS > 0
  2265. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2266. {
  2267. int servo_index = -1;
  2268. int servo_position = 0;
  2269. if (code_seen('P'))
  2270. servo_index = code_value();
  2271. if (code_seen('S')) {
  2272. servo_position = code_value();
  2273. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2274. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2275. servos[servo_index].attach(0);
  2276. #endif
  2277. servos[servo_index].write(servo_position);
  2278. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2279. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2280. servos[servo_index].detach();
  2281. #endif
  2282. }
  2283. else {
  2284. SERIAL_ECHO_START;
  2285. SERIAL_ECHO("Servo ");
  2286. SERIAL_ECHO(servo_index);
  2287. SERIAL_ECHOLN(" out of range");
  2288. }
  2289. }
  2290. else if (servo_index >= 0) {
  2291. SERIAL_PROTOCOL(MSG_OK);
  2292. SERIAL_PROTOCOL(" Servo ");
  2293. SERIAL_PROTOCOL(servo_index);
  2294. SERIAL_PROTOCOL(": ");
  2295. SERIAL_PROTOCOL(servos[servo_index].read());
  2296. SERIAL_PROTOCOLLN("");
  2297. }
  2298. }
  2299. break;
  2300. #endif // NUM_SERVOS > 0
  2301. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2302. case 300: // M300
  2303. {
  2304. int beepS = code_seen('S') ? code_value() : 110;
  2305. int beepP = code_seen('P') ? code_value() : 1000;
  2306. if (beepS > 0)
  2307. {
  2308. #if BEEPER > 0
  2309. tone(BEEPER, beepS);
  2310. delay(beepP);
  2311. noTone(BEEPER);
  2312. #elif defined(ULTRALCD)
  2313. lcd_buzz(beepS, beepP);
  2314. #elif defined(LCD_USE_I2C_BUZZER)
  2315. lcd_buzz(beepP, beepS);
  2316. #endif
  2317. }
  2318. else
  2319. {
  2320. delay(beepP);
  2321. }
  2322. }
  2323. break;
  2324. #endif // M300
  2325. #ifdef PIDTEMP
  2326. case 301: // M301
  2327. {
  2328. if(code_seen('P')) Kp = code_value();
  2329. if(code_seen('I')) Ki = scalePID_i(code_value());
  2330. if(code_seen('D')) Kd = scalePID_d(code_value());
  2331. #ifdef PID_ADD_EXTRUSION_RATE
  2332. if(code_seen('C')) Kc = code_value();
  2333. #endif
  2334. updatePID();
  2335. SERIAL_PROTOCOL(MSG_OK);
  2336. SERIAL_PROTOCOL(" p:");
  2337. SERIAL_PROTOCOL(Kp);
  2338. SERIAL_PROTOCOL(" i:");
  2339. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2340. SERIAL_PROTOCOL(" d:");
  2341. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2342. #ifdef PID_ADD_EXTRUSION_RATE
  2343. SERIAL_PROTOCOL(" c:");
  2344. //Kc does not have scaling applied above, or in resetting defaults
  2345. SERIAL_PROTOCOL(Kc);
  2346. #endif
  2347. SERIAL_PROTOCOLLN("");
  2348. }
  2349. break;
  2350. #endif //PIDTEMP
  2351. #ifdef PIDTEMPBED
  2352. case 304: // M304
  2353. {
  2354. if(code_seen('P')) bedKp = code_value();
  2355. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2356. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2357. updatePID();
  2358. SERIAL_PROTOCOL(MSG_OK);
  2359. SERIAL_PROTOCOL(" p:");
  2360. SERIAL_PROTOCOL(bedKp);
  2361. SERIAL_PROTOCOL(" i:");
  2362. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2363. SERIAL_PROTOCOL(" d:");
  2364. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2365. SERIAL_PROTOCOLLN("");
  2366. }
  2367. break;
  2368. #endif //PIDTEMP
  2369. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2370. {
  2371. #ifdef CHDK
  2372. SET_OUTPUT(CHDK);
  2373. WRITE(CHDK, HIGH);
  2374. chdkHigh = millis();
  2375. chdkActive = true;
  2376. #else
  2377. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2378. const uint8_t NUM_PULSES=16;
  2379. const float PULSE_LENGTH=0.01524;
  2380. for(int i=0; i < NUM_PULSES; i++) {
  2381. WRITE(PHOTOGRAPH_PIN, HIGH);
  2382. _delay_ms(PULSE_LENGTH);
  2383. WRITE(PHOTOGRAPH_PIN, LOW);
  2384. _delay_ms(PULSE_LENGTH);
  2385. }
  2386. delay(7.33);
  2387. for(int i=0; i < NUM_PULSES; i++) {
  2388. WRITE(PHOTOGRAPH_PIN, HIGH);
  2389. _delay_ms(PULSE_LENGTH);
  2390. WRITE(PHOTOGRAPH_PIN, LOW);
  2391. _delay_ms(PULSE_LENGTH);
  2392. }
  2393. #endif
  2394. #endif //chdk end if
  2395. }
  2396. break;
  2397. #ifdef DOGLCD
  2398. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2399. {
  2400. if (code_seen('C')) {
  2401. lcd_setcontrast( ((int)code_value())&63 );
  2402. }
  2403. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2404. SERIAL_PROTOCOL(lcd_contrast);
  2405. SERIAL_PROTOCOLLN("");
  2406. }
  2407. break;
  2408. #endif
  2409. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2410. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2411. {
  2412. float temp = .0;
  2413. if (code_seen('S')) temp=code_value();
  2414. set_extrude_min_temp(temp);
  2415. }
  2416. break;
  2417. #endif
  2418. case 303: // M303 PID autotune
  2419. {
  2420. float temp = 150.0;
  2421. int e=0;
  2422. int c=5;
  2423. if (code_seen('E')) e=code_value();
  2424. if (e<0)
  2425. temp=70;
  2426. if (code_seen('S')) temp=code_value();
  2427. if (code_seen('C')) c=code_value();
  2428. PID_autotune(temp, e, c);
  2429. }
  2430. break;
  2431. case 400: // M400 finish all moves
  2432. {
  2433. st_synchronize();
  2434. }
  2435. break;
  2436. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2437. case 401:
  2438. {
  2439. engage_z_probe(); // Engage Z Servo endstop if available
  2440. }
  2441. break;
  2442. case 402:
  2443. {
  2444. retract_z_probe(); // Retract Z Servo endstop if enabled
  2445. }
  2446. break;
  2447. #endif
  2448. case 500: // M500 Store settings in EEPROM
  2449. {
  2450. Config_StoreSettings();
  2451. }
  2452. break;
  2453. case 501: // M501 Read settings from EEPROM
  2454. {
  2455. Config_RetrieveSettings();
  2456. }
  2457. break;
  2458. case 502: // M502 Revert to default settings
  2459. {
  2460. Config_ResetDefault();
  2461. }
  2462. break;
  2463. case 503: // M503 print settings currently in memory
  2464. {
  2465. Config_PrintSettings();
  2466. }
  2467. break;
  2468. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2469. case 540:
  2470. {
  2471. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2472. }
  2473. break;
  2474. #endif
  2475. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2476. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  2477. {
  2478. float value;
  2479. if (code_seen('Z'))
  2480. {
  2481. value = code_value();
  2482. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  2483. {
  2484. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  2485. SERIAL_ECHO_START;
  2486. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  2487. SERIAL_PROTOCOLLN("");
  2488. }
  2489. else
  2490. {
  2491. SERIAL_ECHO_START;
  2492. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  2493. SERIAL_ECHOPGM(MSG_Z_MIN);
  2494. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  2495. SERIAL_ECHOPGM(MSG_Z_MAX);
  2496. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  2497. SERIAL_PROTOCOLLN("");
  2498. }
  2499. }
  2500. else
  2501. {
  2502. SERIAL_ECHO_START;
  2503. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  2504. SERIAL_ECHO(-zprobe_zoffset);
  2505. SERIAL_PROTOCOLLN("");
  2506. }
  2507. break;
  2508. }
  2509. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2510. #ifdef FILAMENTCHANGEENABLE
  2511. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2512. {
  2513. float target[4];
  2514. float lastpos[4];
  2515. target[X_AXIS]=current_position[X_AXIS];
  2516. target[Y_AXIS]=current_position[Y_AXIS];
  2517. target[Z_AXIS]=current_position[Z_AXIS];
  2518. target[E_AXIS]=current_position[E_AXIS];
  2519. lastpos[X_AXIS]=current_position[X_AXIS];
  2520. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2521. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2522. lastpos[E_AXIS]=current_position[E_AXIS];
  2523. //retract by E
  2524. if(code_seen('E'))
  2525. {
  2526. target[E_AXIS]+= code_value();
  2527. }
  2528. else
  2529. {
  2530. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2531. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2532. #endif
  2533. }
  2534. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2535. //lift Z
  2536. if(code_seen('Z'))
  2537. {
  2538. target[Z_AXIS]+= code_value();
  2539. }
  2540. else
  2541. {
  2542. #ifdef FILAMENTCHANGE_ZADD
  2543. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2544. #endif
  2545. }
  2546. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2547. //move xy
  2548. if(code_seen('X'))
  2549. {
  2550. target[X_AXIS]+= code_value();
  2551. }
  2552. else
  2553. {
  2554. #ifdef FILAMENTCHANGE_XPOS
  2555. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2556. #endif
  2557. }
  2558. if(code_seen('Y'))
  2559. {
  2560. target[Y_AXIS]= code_value();
  2561. }
  2562. else
  2563. {
  2564. #ifdef FILAMENTCHANGE_YPOS
  2565. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2566. #endif
  2567. }
  2568. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2569. if(code_seen('L'))
  2570. {
  2571. target[E_AXIS]+= code_value();
  2572. }
  2573. else
  2574. {
  2575. #ifdef FILAMENTCHANGE_FINALRETRACT
  2576. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2577. #endif
  2578. }
  2579. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2580. //finish moves
  2581. st_synchronize();
  2582. //disable extruder steppers so filament can be removed
  2583. disable_e0();
  2584. disable_e1();
  2585. disable_e2();
  2586. delay(100);
  2587. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2588. uint8_t cnt=0;
  2589. while(!lcd_clicked()){
  2590. cnt++;
  2591. manage_heater();
  2592. manage_inactivity();
  2593. lcd_update();
  2594. if(cnt==0)
  2595. {
  2596. #if BEEPER > 0
  2597. SET_OUTPUT(BEEPER);
  2598. WRITE(BEEPER,HIGH);
  2599. delay(3);
  2600. WRITE(BEEPER,LOW);
  2601. delay(3);
  2602. #else
  2603. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2604. lcd_buzz(1000/6,100);
  2605. #else
  2606. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2607. #endif
  2608. #endif
  2609. }
  2610. }
  2611. //return to normal
  2612. if(code_seen('L'))
  2613. {
  2614. target[E_AXIS]+= -code_value();
  2615. }
  2616. else
  2617. {
  2618. #ifdef FILAMENTCHANGE_FINALRETRACT
  2619. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2620. #endif
  2621. }
  2622. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2623. plan_set_e_position(current_position[E_AXIS]);
  2624. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2625. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2626. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2627. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2628. }
  2629. break;
  2630. #endif //FILAMENTCHANGEENABLE
  2631. #ifdef DUAL_X_CARRIAGE
  2632. case 605: // Set dual x-carriage movement mode:
  2633. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2634. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2635. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2636. // millimeters x-offset and an optional differential hotend temperature of
  2637. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2638. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2639. //
  2640. // Note: the X axis should be homed after changing dual x-carriage mode.
  2641. {
  2642. st_synchronize();
  2643. if (code_seen('S'))
  2644. dual_x_carriage_mode = code_value();
  2645. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2646. {
  2647. if (code_seen('X'))
  2648. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2649. if (code_seen('R'))
  2650. duplicate_extruder_temp_offset = code_value();
  2651. SERIAL_ECHO_START;
  2652. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2653. SERIAL_ECHO(" ");
  2654. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2655. SERIAL_ECHO(",");
  2656. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2657. SERIAL_ECHO(" ");
  2658. SERIAL_ECHO(duplicate_extruder_x_offset);
  2659. SERIAL_ECHO(",");
  2660. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2661. }
  2662. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2663. {
  2664. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2665. }
  2666. active_extruder_parked = false;
  2667. extruder_duplication_enabled = false;
  2668. delayed_move_time = 0;
  2669. }
  2670. break;
  2671. #endif //DUAL_X_CARRIAGE
  2672. case 907: // M907 Set digital trimpot motor current using axis codes.
  2673. {
  2674. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2675. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2676. if(code_seen('B')) digipot_current(4,code_value());
  2677. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2678. #endif
  2679. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2680. if(code_seen('X')) digipot_current(0, code_value());
  2681. #endif
  2682. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2683. if(code_seen('Z')) digipot_current(1, code_value());
  2684. #endif
  2685. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2686. if(code_seen('E')) digipot_current(2, code_value());
  2687. #endif
  2688. #ifdef DIGIPOT_I2C
  2689. // this one uses actual amps in floating point
  2690. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2691. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2692. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2693. #endif
  2694. }
  2695. break;
  2696. case 908: // M908 Control digital trimpot directly.
  2697. {
  2698. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2699. uint8_t channel,current;
  2700. if(code_seen('P')) channel=code_value();
  2701. if(code_seen('S')) current=code_value();
  2702. digitalPotWrite(channel, current);
  2703. #endif
  2704. }
  2705. break;
  2706. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2707. {
  2708. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2709. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2710. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2711. if(code_seen('B')) microstep_mode(4,code_value());
  2712. microstep_readings();
  2713. #endif
  2714. }
  2715. break;
  2716. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2717. {
  2718. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2719. if(code_seen('S')) switch((int)code_value())
  2720. {
  2721. case 1:
  2722. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2723. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2724. break;
  2725. case 2:
  2726. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2727. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2728. break;
  2729. }
  2730. microstep_readings();
  2731. #endif
  2732. }
  2733. break;
  2734. case 999: // M999: Restart after being stopped
  2735. Stopped = false;
  2736. lcd_reset_alert_level();
  2737. gcode_LastN = Stopped_gcode_LastN;
  2738. FlushSerialRequestResend();
  2739. break;
  2740. }
  2741. }
  2742. else if(code_seen('T'))
  2743. {
  2744. tmp_extruder = code_value();
  2745. if(tmp_extruder >= EXTRUDERS) {
  2746. SERIAL_ECHO_START;
  2747. SERIAL_ECHO("T");
  2748. SERIAL_ECHO(tmp_extruder);
  2749. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2750. }
  2751. else {
  2752. boolean make_move = false;
  2753. if(code_seen('F')) {
  2754. make_move = true;
  2755. next_feedrate = code_value();
  2756. if(next_feedrate > 0.0) {
  2757. feedrate = next_feedrate;
  2758. }
  2759. }
  2760. #if EXTRUDERS > 1
  2761. if(tmp_extruder != active_extruder) {
  2762. // Save current position to return to after applying extruder offset
  2763. memcpy(destination, current_position, sizeof(destination));
  2764. #ifdef DUAL_X_CARRIAGE
  2765. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2766. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2767. {
  2768. // Park old head: 1) raise 2) move to park position 3) lower
  2769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2770. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2771. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2772. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2773. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2774. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2775. st_synchronize();
  2776. }
  2777. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2778. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2779. extruder_offset[Y_AXIS][active_extruder] +
  2780. extruder_offset[Y_AXIS][tmp_extruder];
  2781. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2782. extruder_offset[Z_AXIS][active_extruder] +
  2783. extruder_offset[Z_AXIS][tmp_extruder];
  2784. active_extruder = tmp_extruder;
  2785. // This function resets the max/min values - the current position may be overwritten below.
  2786. axis_is_at_home(X_AXIS);
  2787. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2788. {
  2789. current_position[X_AXIS] = inactive_extruder_x_pos;
  2790. inactive_extruder_x_pos = destination[X_AXIS];
  2791. }
  2792. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2793. {
  2794. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2795. if (active_extruder == 0 || active_extruder_parked)
  2796. current_position[X_AXIS] = inactive_extruder_x_pos;
  2797. else
  2798. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2799. inactive_extruder_x_pos = destination[X_AXIS];
  2800. extruder_duplication_enabled = false;
  2801. }
  2802. else
  2803. {
  2804. // record raised toolhead position for use by unpark
  2805. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2806. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2807. active_extruder_parked = true;
  2808. delayed_move_time = 0;
  2809. }
  2810. #else
  2811. // Offset extruder (only by XY)
  2812. int i;
  2813. for(i = 0; i < 2; i++) {
  2814. current_position[i] = current_position[i] -
  2815. extruder_offset[i][active_extruder] +
  2816. extruder_offset[i][tmp_extruder];
  2817. }
  2818. // Set the new active extruder and position
  2819. active_extruder = tmp_extruder;
  2820. #endif //else DUAL_X_CARRIAGE
  2821. #ifdef DELTA
  2822. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  2823. //sent position to plan_set_position();
  2824. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  2825. #else
  2826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2827. #endif
  2828. // Move to the old position if 'F' was in the parameters
  2829. if(make_move && Stopped == false) {
  2830. prepare_move();
  2831. }
  2832. }
  2833. #endif
  2834. SERIAL_ECHO_START;
  2835. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2836. SERIAL_PROTOCOLLN((int)active_extruder);
  2837. }
  2838. }
  2839. else
  2840. {
  2841. SERIAL_ECHO_START;
  2842. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2843. SERIAL_ECHO(cmdbuffer[bufindr]);
  2844. SERIAL_ECHOLNPGM("\"");
  2845. }
  2846. ClearToSend();
  2847. }
  2848. void FlushSerialRequestResend()
  2849. {
  2850. //char cmdbuffer[bufindr][100]="Resend:";
  2851. MYSERIAL.flush();
  2852. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2853. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2854. ClearToSend();
  2855. }
  2856. void ClearToSend()
  2857. {
  2858. previous_millis_cmd = millis();
  2859. #ifdef SDSUPPORT
  2860. if(fromsd[bufindr])
  2861. return;
  2862. #endif //SDSUPPORT
  2863. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2864. }
  2865. void get_coordinates()
  2866. {
  2867. bool seen[4]={false,false,false,false};
  2868. for(int8_t i=0; i < NUM_AXIS; i++) {
  2869. if(code_seen(axis_codes[i]))
  2870. {
  2871. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2872. seen[i]=true;
  2873. }
  2874. else destination[i] = current_position[i]; //Are these else lines really needed?
  2875. }
  2876. if(code_seen('F')) {
  2877. next_feedrate = code_value();
  2878. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2879. }
  2880. }
  2881. void get_arc_coordinates()
  2882. {
  2883. #ifdef SF_ARC_FIX
  2884. bool relative_mode_backup = relative_mode;
  2885. relative_mode = true;
  2886. #endif
  2887. get_coordinates();
  2888. #ifdef SF_ARC_FIX
  2889. relative_mode=relative_mode_backup;
  2890. #endif
  2891. if(code_seen('I')) {
  2892. offset[0] = code_value();
  2893. }
  2894. else {
  2895. offset[0] = 0.0;
  2896. }
  2897. if(code_seen('J')) {
  2898. offset[1] = code_value();
  2899. }
  2900. else {
  2901. offset[1] = 0.0;
  2902. }
  2903. }
  2904. void clamp_to_software_endstops(float target[3])
  2905. {
  2906. if (min_software_endstops) {
  2907. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2908. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2909. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2910. }
  2911. if (max_software_endstops) {
  2912. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2913. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2914. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2915. }
  2916. }
  2917. #ifdef DELTA
  2918. void recalc_delta_settings(float radius, float diagonal_rod)
  2919. {
  2920. delta_tower1_x= -SIN_60*radius; // front left tower
  2921. delta_tower1_y= -COS_60*radius;
  2922. delta_tower2_x= SIN_60*radius; // front right tower
  2923. delta_tower2_y= -COS_60*radius;
  2924. delta_tower3_x= 0.0; // back middle tower
  2925. delta_tower3_y= radius;
  2926. delta_diagonal_rod_2= sq(diagonal_rod);
  2927. }
  2928. void calculate_delta(float cartesian[3])
  2929. {
  2930. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  2931. - sq(delta_tower1_x-cartesian[X_AXIS])
  2932. - sq(delta_tower1_y-cartesian[Y_AXIS])
  2933. ) + cartesian[Z_AXIS];
  2934. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  2935. - sq(delta_tower2_x-cartesian[X_AXIS])
  2936. - sq(delta_tower2_y-cartesian[Y_AXIS])
  2937. ) + cartesian[Z_AXIS];
  2938. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  2939. - sq(delta_tower3_x-cartesian[X_AXIS])
  2940. - sq(delta_tower3_y-cartesian[Y_AXIS])
  2941. ) + cartesian[Z_AXIS];
  2942. /*
  2943. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2944. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2945. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2946. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2947. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2948. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2949. */
  2950. }
  2951. #endif
  2952. void prepare_move()
  2953. {
  2954. clamp_to_software_endstops(destination);
  2955. previous_millis_cmd = millis();
  2956. #ifdef DELTA
  2957. float difference[NUM_AXIS];
  2958. for (int8_t i=0; i < NUM_AXIS; i++) {
  2959. difference[i] = destination[i] - current_position[i];
  2960. }
  2961. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2962. sq(difference[Y_AXIS]) +
  2963. sq(difference[Z_AXIS]));
  2964. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2965. if (cartesian_mm < 0.000001) { return; }
  2966. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2967. int steps = max(1, int(delta_segments_per_second * seconds));
  2968. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2969. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2970. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2971. for (int s = 1; s <= steps; s++) {
  2972. float fraction = float(s) / float(steps);
  2973. for(int8_t i=0; i < NUM_AXIS; i++) {
  2974. destination[i] = current_position[i] + difference[i] * fraction;
  2975. }
  2976. calculate_delta(destination);
  2977. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2978. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2979. active_extruder);
  2980. }
  2981. #else
  2982. #ifdef DUAL_X_CARRIAGE
  2983. if (active_extruder_parked)
  2984. {
  2985. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2986. {
  2987. // move duplicate extruder into correct duplication position.
  2988. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2989. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2990. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2991. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2992. st_synchronize();
  2993. extruder_duplication_enabled = true;
  2994. active_extruder_parked = false;
  2995. }
  2996. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2997. {
  2998. if (current_position[E_AXIS] == destination[E_AXIS])
  2999. {
  3000. // this is a travel move - skit it but keep track of current position (so that it can later
  3001. // be used as start of first non-travel move)
  3002. if (delayed_move_time != 0xFFFFFFFFUL)
  3003. {
  3004. memcpy(current_position, destination, sizeof(current_position));
  3005. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3006. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3007. delayed_move_time = millis();
  3008. return;
  3009. }
  3010. }
  3011. delayed_move_time = 0;
  3012. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3013. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3015. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3017. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3018. active_extruder_parked = false;
  3019. }
  3020. }
  3021. #endif //DUAL_X_CARRIAGE
  3022. // Do not use feedmultiply for E or Z only moves
  3023. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3024. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3025. }
  3026. else {
  3027. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3028. }
  3029. #endif //else DELTA
  3030. for(int8_t i=0; i < NUM_AXIS; i++) {
  3031. current_position[i] = destination[i];
  3032. }
  3033. }
  3034. void prepare_arc_move(char isclockwise) {
  3035. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3036. // Trace the arc
  3037. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3038. // As far as the parser is concerned, the position is now == target. In reality the
  3039. // motion control system might still be processing the action and the real tool position
  3040. // in any intermediate location.
  3041. for(int8_t i=0; i < NUM_AXIS; i++) {
  3042. current_position[i] = destination[i];
  3043. }
  3044. previous_millis_cmd = millis();
  3045. }
  3046. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3047. #if defined(FAN_PIN)
  3048. #if CONTROLLERFAN_PIN == FAN_PIN
  3049. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3050. #endif
  3051. #endif
  3052. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3053. unsigned long lastMotorCheck = 0;
  3054. void controllerFan()
  3055. {
  3056. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3057. {
  3058. lastMotorCheck = millis();
  3059. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3060. #if EXTRUDERS > 2
  3061. || !READ(E2_ENABLE_PIN)
  3062. #endif
  3063. #if EXTRUDER > 1
  3064. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3065. || !READ(X2_ENABLE_PIN)
  3066. #endif
  3067. || !READ(E1_ENABLE_PIN)
  3068. #endif
  3069. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3070. {
  3071. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3072. }
  3073. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3074. {
  3075. digitalWrite(CONTROLLERFAN_PIN, 0);
  3076. analogWrite(CONTROLLERFAN_PIN, 0);
  3077. }
  3078. else
  3079. {
  3080. // allows digital or PWM fan output to be used (see M42 handling)
  3081. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3082. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3083. }
  3084. }
  3085. }
  3086. #endif
  3087. #ifdef TEMP_STAT_LEDS
  3088. static bool blue_led = false;
  3089. static bool red_led = false;
  3090. static uint32_t stat_update = 0;
  3091. void handle_status_leds(void) {
  3092. float max_temp = 0.0;
  3093. if(millis() > stat_update) {
  3094. stat_update += 500; // Update every 0.5s
  3095. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3096. max_temp = max(max_temp, degHotend(cur_extruder));
  3097. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3098. }
  3099. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3100. max_temp = max(max_temp, degTargetBed());
  3101. max_temp = max(max_temp, degBed());
  3102. #endif
  3103. if((max_temp > 55.0) && (red_led == false)) {
  3104. digitalWrite(STAT_LED_RED, 1);
  3105. digitalWrite(STAT_LED_BLUE, 0);
  3106. red_led = true;
  3107. blue_led = false;
  3108. }
  3109. if((max_temp < 54.0) && (blue_led == false)) {
  3110. digitalWrite(STAT_LED_RED, 0);
  3111. digitalWrite(STAT_LED_BLUE, 1);
  3112. red_led = false;
  3113. blue_led = true;
  3114. }
  3115. }
  3116. }
  3117. #endif
  3118. void manage_inactivity()
  3119. {
  3120. if(buflen < (BUFSIZE-1))
  3121. get_command();
  3122. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3123. if(max_inactive_time)
  3124. kill();
  3125. if(stepper_inactive_time) {
  3126. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3127. {
  3128. if(blocks_queued() == false) {
  3129. disable_x();
  3130. disable_y();
  3131. disable_z();
  3132. disable_e0();
  3133. disable_e1();
  3134. disable_e2();
  3135. }
  3136. }
  3137. }
  3138. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3139. if (chdkActive)
  3140. {
  3141. chdkActive = false;
  3142. if (millis()-chdkHigh < CHDK_DELAY) return;
  3143. WRITE(CHDK, LOW);
  3144. }
  3145. #endif
  3146. #if defined(KILL_PIN) && KILL_PIN > -1
  3147. if( 0 == READ(KILL_PIN) )
  3148. kill();
  3149. #endif
  3150. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3151. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3152. #endif
  3153. #ifdef EXTRUDER_RUNOUT_PREVENT
  3154. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3155. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3156. {
  3157. bool oldstatus=READ(E0_ENABLE_PIN);
  3158. enable_e0();
  3159. float oldepos=current_position[E_AXIS];
  3160. float oldedes=destination[E_AXIS];
  3161. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3162. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3163. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3164. current_position[E_AXIS]=oldepos;
  3165. destination[E_AXIS]=oldedes;
  3166. plan_set_e_position(oldepos);
  3167. previous_millis_cmd=millis();
  3168. st_synchronize();
  3169. WRITE(E0_ENABLE_PIN,oldstatus);
  3170. }
  3171. #endif
  3172. #if defined(DUAL_X_CARRIAGE)
  3173. // handle delayed move timeout
  3174. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3175. {
  3176. // travel moves have been received so enact them
  3177. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3178. memcpy(destination,current_position,sizeof(destination));
  3179. prepare_move();
  3180. }
  3181. #endif
  3182. #ifdef TEMP_STAT_LEDS
  3183. handle_status_leds();
  3184. #endif
  3185. check_axes_activity();
  3186. }
  3187. void kill()
  3188. {
  3189. cli(); // Stop interrupts
  3190. disable_heater();
  3191. disable_x();
  3192. disable_y();
  3193. disable_z();
  3194. disable_e0();
  3195. disable_e1();
  3196. disable_e2();
  3197. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3198. pinMode(PS_ON_PIN,INPUT);
  3199. #endif
  3200. SERIAL_ERROR_START;
  3201. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3202. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3203. suicide();
  3204. while(1) { /* Intentionally left empty */ } // Wait for reset
  3205. }
  3206. void Stop()
  3207. {
  3208. disable_heater();
  3209. if(Stopped == false) {
  3210. Stopped = true;
  3211. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3212. SERIAL_ERROR_START;
  3213. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3214. LCD_MESSAGEPGM(MSG_STOPPED);
  3215. }
  3216. }
  3217. bool IsStopped() { return Stopped; };
  3218. #ifdef FAST_PWM_FAN
  3219. void setPwmFrequency(uint8_t pin, int val)
  3220. {
  3221. val &= 0x07;
  3222. switch(digitalPinToTimer(pin))
  3223. {
  3224. #if defined(TCCR0A)
  3225. case TIMER0A:
  3226. case TIMER0B:
  3227. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3228. // TCCR0B |= val;
  3229. break;
  3230. #endif
  3231. #if defined(TCCR1A)
  3232. case TIMER1A:
  3233. case TIMER1B:
  3234. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3235. // TCCR1B |= val;
  3236. break;
  3237. #endif
  3238. #if defined(TCCR2)
  3239. case TIMER2:
  3240. case TIMER2:
  3241. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3242. TCCR2 |= val;
  3243. break;
  3244. #endif
  3245. #if defined(TCCR2A)
  3246. case TIMER2A:
  3247. case TIMER2B:
  3248. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3249. TCCR2B |= val;
  3250. break;
  3251. #endif
  3252. #if defined(TCCR3A)
  3253. case TIMER3A:
  3254. case TIMER3B:
  3255. case TIMER3C:
  3256. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3257. TCCR3B |= val;
  3258. break;
  3259. #endif
  3260. #if defined(TCCR4A)
  3261. case TIMER4A:
  3262. case TIMER4B:
  3263. case TIMER4C:
  3264. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3265. TCCR4B |= val;
  3266. break;
  3267. #endif
  3268. #if defined(TCCR5A)
  3269. case TIMER5A:
  3270. case TIMER5B:
  3271. case TIMER5C:
  3272. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3273. TCCR5B |= val;
  3274. break;
  3275. #endif
  3276. }
  3277. }
  3278. #endif //FAST_PWM_FAN
  3279. bool setTargetedHotend(int code){
  3280. tmp_extruder = active_extruder;
  3281. if(code_seen('T')) {
  3282. tmp_extruder = code_value();
  3283. if(tmp_extruder >= EXTRUDERS) {
  3284. SERIAL_ECHO_START;
  3285. switch(code){
  3286. case 104:
  3287. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3288. break;
  3289. case 105:
  3290. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3291. break;
  3292. case 109:
  3293. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3294. break;
  3295. case 218:
  3296. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3297. break;
  3298. case 221:
  3299. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3300. break;
  3301. }
  3302. SERIAL_ECHOLN(tmp_extruder);
  3303. return true;
  3304. }
  3305. }
  3306. return false;
  3307. }