My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 149KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  114. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  115. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  117. // M140 - Set bed target temp
  118. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  119. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  120. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  121. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  122. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  123. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  124. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  125. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  126. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  127. // M206 - set additional homing offset
  128. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  129. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  130. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  131. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  132. // M220 S<factor in percent>- set speed factor override percentage
  133. // M221 S<factor in percent>- set extrude factor override percentage
  134. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  135. // M240 - Trigger a camera to take a photograph
  136. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  137. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  138. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  139. // M301 - Set PID parameters P I and D
  140. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  141. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  142. // M304 - Set bed PID parameters P I and D
  143. // M400 - Finish all moves
  144. // M401 - Lower z-probe if present
  145. // M402 - Raise z-probe if present
  146. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  147. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  148. // M406 - Turn off Filament Sensor extrusion control
  149. // M407 - Displays measured filament diameter
  150. // M500 - stores parameters in EEPROM
  151. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  152. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  153. // M503 - print the current settings (from memory not from EEPROM)
  154. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  155. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  156. // M665 - set delta configurations
  157. // M666 - set delta endstop adjustment
  158. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  159. // M907 - Set digital trimpot motor current using axis codes.
  160. // M908 - Control digital trimpot directly.
  161. // M350 - Set microstepping mode.
  162. // M351 - Toggle MS1 MS2 pins directly.
  163. // ************ SCARA Specific - This can change to suit future G-code regulations
  164. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  165. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  166. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  167. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  168. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  169. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  170. //************* SCARA End ***************
  171. // M928 - Start SD logging (M928 filename.g) - ended by M29
  172. // M999 - Restart after being stopped by error
  173. //Stepper Movement Variables
  174. //===========================================================================
  175. //=============================imported variables============================
  176. //===========================================================================
  177. //===========================================================================
  178. //=============================public variables=============================
  179. //===========================================================================
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  185. int feedmultiply=100; //100->1 200->2
  186. int saved_feedmultiply;
  187. int extrudemultiply=100; //100->1 200->2
  188. int extruder_multiply[EXTRUDERS] = {100
  189. #if EXTRUDERS > 1
  190. , 100
  191. #if EXTRUDERS > 2
  192. , 100
  193. #endif
  194. #endif
  195. };
  196. float volumetric_multiplier[EXTRUDERS] = {1.0
  197. #if EXTRUDERS > 1
  198. , 1.0
  199. #if EXTRUDERS > 2
  200. , 1.0
  201. #endif
  202. #endif
  203. };
  204. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  205. float add_homing[3]={0,0,0};
  206. #ifdef DELTA
  207. float endstop_adj[3]={0,0,0};
  208. #endif
  209. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  210. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  211. bool axis_known_position[3] = {false, false, false};
  212. float zprobe_zoffset;
  213. // Extruder offset
  214. #if EXTRUDERS > 1
  215. #ifndef DUAL_X_CARRIAGE
  216. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  217. #else
  218. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  219. #endif
  220. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  221. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  222. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  223. #endif
  224. };
  225. #endif
  226. uint8_t active_extruder = 0;
  227. int fanSpeed=0;
  228. #ifdef SERVO_ENDSTOPS
  229. int servo_endstops[] = SERVO_ENDSTOPS;
  230. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  231. #endif
  232. #ifdef BARICUDA
  233. int ValvePressure=0;
  234. int EtoPPressure=0;
  235. #endif
  236. #ifdef FWRETRACT
  237. bool autoretract_enabled=false;
  238. bool retracted[EXTRUDERS]={false
  239. #if EXTRUDERS > 1
  240. , false
  241. #if EXTRUDERS > 2
  242. , false
  243. #endif
  244. #endif
  245. };
  246. bool retracted_swap[EXTRUDERS]={false
  247. #if EXTRUDERS > 1
  248. , false
  249. #if EXTRUDERS > 2
  250. , false
  251. #endif
  252. #endif
  253. };
  254. float retract_length = RETRACT_LENGTH;
  255. float retract_length_swap = RETRACT_LENGTH_SWAP;
  256. float retract_feedrate = RETRACT_FEEDRATE;
  257. float retract_zlift = RETRACT_ZLIFT;
  258. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  259. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  260. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  261. #endif
  262. #ifdef ULTIPANEL
  263. #ifdef PS_DEFAULT_OFF
  264. bool powersupply = false;
  265. #else
  266. bool powersupply = true;
  267. #endif
  268. #endif
  269. #ifdef DELTA
  270. float delta[3] = {0.0, 0.0, 0.0};
  271. #define SIN_60 0.8660254037844386
  272. #define COS_60 0.5
  273. // these are the default values, can be overriden with M665
  274. float delta_radius= DELTA_RADIUS;
  275. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  276. float delta_tower1_y= -COS_60*delta_radius;
  277. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  278. float delta_tower2_y= -COS_60*delta_radius;
  279. float delta_tower3_x= 0.0; // back middle tower
  280. float delta_tower3_y= delta_radius;
  281. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  282. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  283. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  284. #endif
  285. #ifdef SCARA // Build size scaling
  286. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  287. #endif
  288. bool cancel_heatup = false ;
  289. #ifdef FILAMENT_SENSOR
  290. //Variables for Filament Sensor input
  291. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  292. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  293. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  294. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  295. int delay_index1=0; //index into ring buffer
  296. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  297. float delay_dist=0; //delay distance counter
  298. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  299. #endif
  300. //===========================================================================
  301. //=============================Private Variables=============================
  302. //===========================================================================
  303. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  304. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  305. #ifndef DELTA
  306. static float delta[3] = {0.0, 0.0, 0.0};
  307. #endif
  308. static float offset[3] = {0.0, 0.0, 0.0};
  309. static bool home_all_axis = true;
  310. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  311. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  312. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  313. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  314. static bool fromsd[BUFSIZE];
  315. static int bufindr = 0;
  316. static int bufindw = 0;
  317. static int buflen = 0;
  318. //static int i = 0;
  319. static char serial_char;
  320. static int serial_count = 0;
  321. static boolean comment_mode = false;
  322. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  323. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  324. //static float tt = 0;
  325. //static float bt = 0;
  326. //Inactivity shutdown variables
  327. static unsigned long previous_millis_cmd = 0;
  328. static unsigned long max_inactive_time = 0;
  329. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  330. unsigned long starttime=0;
  331. unsigned long stoptime=0;
  332. static uint8_t tmp_extruder;
  333. bool Stopped=false;
  334. #if NUM_SERVOS > 0
  335. Servo servos[NUM_SERVOS];
  336. #endif
  337. bool CooldownNoWait = true;
  338. bool target_direction;
  339. //Insert variables if CHDK is defined
  340. #ifdef CHDK
  341. unsigned long chdkHigh = 0;
  342. boolean chdkActive = false;
  343. #endif
  344. //===========================================================================
  345. //=============================Routines======================================
  346. //===========================================================================
  347. void get_arc_coordinates();
  348. bool setTargetedHotend(int code);
  349. void serial_echopair_P(const char *s_P, float v)
  350. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  351. void serial_echopair_P(const char *s_P, double v)
  352. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  353. void serial_echopair_P(const char *s_P, unsigned long v)
  354. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  355. #ifdef SDSUPPORT
  356. #include "SdFatUtil.h"
  357. int freeMemory() { return SdFatUtil::FreeRam(); }
  358. #else
  359. extern "C" {
  360. extern unsigned int __bss_end;
  361. extern unsigned int __heap_start;
  362. extern void *__brkval;
  363. int freeMemory() {
  364. int free_memory;
  365. if ((int)__brkval == 0)
  366. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  367. else
  368. free_memory = ((int)&free_memory) - ((int)__brkval);
  369. return free_memory;
  370. }
  371. }
  372. #endif //!SDSUPPORT
  373. //adds an command to the main command buffer
  374. //thats really done in a non-safe way.
  375. //needs overworking someday
  376. void enquecommand(const char *cmd)
  377. {
  378. if(buflen < BUFSIZE)
  379. {
  380. //this is dangerous if a mixing of serial and this happens
  381. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  382. SERIAL_ECHO_START;
  383. SERIAL_ECHOPGM("enqueing \"");
  384. SERIAL_ECHO(cmdbuffer[bufindw]);
  385. SERIAL_ECHOLNPGM("\"");
  386. bufindw= (bufindw + 1)%BUFSIZE;
  387. buflen += 1;
  388. }
  389. }
  390. void enquecommand_P(const char *cmd)
  391. {
  392. if(buflen < BUFSIZE)
  393. {
  394. //this is dangerous if a mixing of serial and this happens
  395. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  396. SERIAL_ECHO_START;
  397. SERIAL_ECHOPGM("enqueing \"");
  398. SERIAL_ECHO(cmdbuffer[bufindw]);
  399. SERIAL_ECHOLNPGM("\"");
  400. bufindw= (bufindw + 1)%BUFSIZE;
  401. buflen += 1;
  402. }
  403. }
  404. void setup_killpin()
  405. {
  406. #if defined(KILL_PIN) && KILL_PIN > -1
  407. pinMode(KILL_PIN,INPUT);
  408. WRITE(KILL_PIN,HIGH);
  409. #endif
  410. }
  411. void setup_photpin()
  412. {
  413. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  414. SET_OUTPUT(PHOTOGRAPH_PIN);
  415. WRITE(PHOTOGRAPH_PIN, LOW);
  416. #endif
  417. }
  418. void setup_powerhold()
  419. {
  420. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  421. SET_OUTPUT(SUICIDE_PIN);
  422. WRITE(SUICIDE_PIN, HIGH);
  423. #endif
  424. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  425. SET_OUTPUT(PS_ON_PIN);
  426. #if defined(PS_DEFAULT_OFF)
  427. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  428. #else
  429. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  430. #endif
  431. #endif
  432. }
  433. void suicide()
  434. {
  435. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  436. SET_OUTPUT(SUICIDE_PIN);
  437. WRITE(SUICIDE_PIN, LOW);
  438. #endif
  439. }
  440. void servo_init()
  441. {
  442. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  443. servos[0].attach(SERVO0_PIN);
  444. #endif
  445. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  446. servos[1].attach(SERVO1_PIN);
  447. #endif
  448. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  449. servos[2].attach(SERVO2_PIN);
  450. #endif
  451. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  452. servos[3].attach(SERVO3_PIN);
  453. #endif
  454. #if (NUM_SERVOS >= 5)
  455. #error "TODO: enter initalisation code for more servos"
  456. #endif
  457. // Set position of Servo Endstops that are defined
  458. #ifdef SERVO_ENDSTOPS
  459. for(int8_t i = 0; i < 3; i++)
  460. {
  461. if(servo_endstops[i] > -1) {
  462. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  463. }
  464. }
  465. #endif
  466. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  467. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  468. servos[servo_endstops[Z_AXIS]].detach();
  469. #endif
  470. }
  471. void setup()
  472. {
  473. setup_killpin();
  474. setup_powerhold();
  475. MYSERIAL.begin(BAUDRATE);
  476. SERIAL_PROTOCOLLNPGM("start");
  477. SERIAL_ECHO_START;
  478. // Check startup - does nothing if bootloader sets MCUSR to 0
  479. byte mcu = MCUSR;
  480. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  481. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  482. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  483. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  484. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  485. MCUSR=0;
  486. SERIAL_ECHOPGM(MSG_MARLIN);
  487. SERIAL_ECHOLNPGM(VERSION_STRING);
  488. #ifdef STRING_VERSION_CONFIG_H
  489. #ifdef STRING_CONFIG_H_AUTHOR
  490. SERIAL_ECHO_START;
  491. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  492. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  493. SERIAL_ECHOPGM(MSG_AUTHOR);
  494. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  495. SERIAL_ECHOPGM("Compiled: ");
  496. SERIAL_ECHOLNPGM(__DATE__);
  497. #endif
  498. #endif
  499. SERIAL_ECHO_START;
  500. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  501. SERIAL_ECHO(freeMemory());
  502. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  503. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  504. for(int8_t i = 0; i < BUFSIZE; i++)
  505. {
  506. fromsd[i] = false;
  507. }
  508. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  509. Config_RetrieveSettings();
  510. tp_init(); // Initialize temperature loop
  511. plan_init(); // Initialize planner;
  512. watchdog_init();
  513. st_init(); // Initialize stepper, this enables interrupts!
  514. setup_photpin();
  515. servo_init();
  516. lcd_init();
  517. _delay_ms(1000); // wait 1sec to display the splash screen
  518. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  519. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  520. #endif
  521. #ifdef DIGIPOT_I2C
  522. digipot_i2c_init();
  523. #endif
  524. #ifdef Z_PROBE_SLED
  525. pinMode(SERVO0_PIN, OUTPUT);
  526. digitalWrite(SERVO0_PIN, LOW); // turn it off
  527. #endif // Z_PROBE_SLED
  528. }
  529. void loop()
  530. {
  531. if(buflen < (BUFSIZE-1))
  532. get_command();
  533. #ifdef SDSUPPORT
  534. card.checkautostart(false);
  535. #endif
  536. if(buflen)
  537. {
  538. #ifdef SDSUPPORT
  539. if(card.saving)
  540. {
  541. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  542. {
  543. card.write_command(cmdbuffer[bufindr]);
  544. if(card.logging)
  545. {
  546. process_commands();
  547. }
  548. else
  549. {
  550. SERIAL_PROTOCOLLNPGM(MSG_OK);
  551. }
  552. }
  553. else
  554. {
  555. card.closefile();
  556. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  557. }
  558. }
  559. else
  560. {
  561. process_commands();
  562. }
  563. #else
  564. process_commands();
  565. #endif //SDSUPPORT
  566. buflen = (buflen-1);
  567. bufindr = (bufindr + 1)%BUFSIZE;
  568. }
  569. //check heater every n milliseconds
  570. manage_heater();
  571. manage_inactivity();
  572. checkHitEndstops();
  573. lcd_update();
  574. }
  575. void get_command()
  576. {
  577. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  578. serial_char = MYSERIAL.read();
  579. if(serial_char == '\n' ||
  580. serial_char == '\r' ||
  581. (serial_char == ':' && comment_mode == false) ||
  582. serial_count >= (MAX_CMD_SIZE - 1) )
  583. {
  584. if(!serial_count) { //if empty line
  585. comment_mode = false; //for new command
  586. return;
  587. }
  588. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  589. if(!comment_mode){
  590. comment_mode = false; //for new command
  591. fromsd[bufindw] = false;
  592. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  593. {
  594. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  595. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  596. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  597. SERIAL_ERROR_START;
  598. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  599. SERIAL_ERRORLN(gcode_LastN);
  600. //Serial.println(gcode_N);
  601. FlushSerialRequestResend();
  602. serial_count = 0;
  603. return;
  604. }
  605. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  606. {
  607. byte checksum = 0;
  608. byte count = 0;
  609. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  610. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  611. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  612. SERIAL_ERROR_START;
  613. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  614. SERIAL_ERRORLN(gcode_LastN);
  615. FlushSerialRequestResend();
  616. serial_count = 0;
  617. return;
  618. }
  619. //if no errors, continue parsing
  620. }
  621. else
  622. {
  623. SERIAL_ERROR_START;
  624. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  625. SERIAL_ERRORLN(gcode_LastN);
  626. FlushSerialRequestResend();
  627. serial_count = 0;
  628. return;
  629. }
  630. gcode_LastN = gcode_N;
  631. //if no errors, continue parsing
  632. }
  633. else // if we don't receive 'N' but still see '*'
  634. {
  635. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  636. {
  637. SERIAL_ERROR_START;
  638. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  639. SERIAL_ERRORLN(gcode_LastN);
  640. serial_count = 0;
  641. return;
  642. }
  643. }
  644. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  645. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  646. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  647. case 0:
  648. case 1:
  649. case 2:
  650. case 3:
  651. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  652. #ifdef SDSUPPORT
  653. if(card.saving)
  654. break;
  655. #endif //SDSUPPORT
  656. SERIAL_PROTOCOLLNPGM(MSG_OK);
  657. }
  658. else {
  659. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  660. LCD_MESSAGEPGM(MSG_STOPPED);
  661. }
  662. break;
  663. default:
  664. break;
  665. }
  666. }
  667. //If command was e-stop process now
  668. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  669. kill();
  670. bufindw = (bufindw + 1)%BUFSIZE;
  671. buflen += 1;
  672. }
  673. serial_count = 0; //clear buffer
  674. }
  675. else
  676. {
  677. if(serial_char == ';') comment_mode = true;
  678. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  679. }
  680. }
  681. #ifdef SDSUPPORT
  682. if(!card.sdprinting || serial_count!=0){
  683. return;
  684. }
  685. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  686. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  687. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  688. static bool stop_buffering=false;
  689. if(buflen==0) stop_buffering=false;
  690. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  691. int16_t n=card.get();
  692. serial_char = (char)n;
  693. if(serial_char == '\n' ||
  694. serial_char == '\r' ||
  695. (serial_char == '#' && comment_mode == false) ||
  696. (serial_char == ':' && comment_mode == false) ||
  697. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  698. {
  699. if(card.eof()){
  700. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  701. stoptime=millis();
  702. char time[30];
  703. unsigned long t=(stoptime-starttime)/1000;
  704. int hours, minutes;
  705. minutes=(t/60)%60;
  706. hours=t/60/60;
  707. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  708. SERIAL_ECHO_START;
  709. SERIAL_ECHOLN(time);
  710. lcd_setstatus(time);
  711. card.printingHasFinished();
  712. card.checkautostart(true);
  713. }
  714. if(serial_char=='#')
  715. stop_buffering=true;
  716. if(!serial_count)
  717. {
  718. comment_mode = false; //for new command
  719. return; //if empty line
  720. }
  721. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  722. // if(!comment_mode){
  723. fromsd[bufindw] = true;
  724. buflen += 1;
  725. bufindw = (bufindw + 1)%BUFSIZE;
  726. // }
  727. comment_mode = false; //for new command
  728. serial_count = 0; //clear buffer
  729. }
  730. else
  731. {
  732. if(serial_char == ';') comment_mode = true;
  733. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  734. }
  735. }
  736. #endif //SDSUPPORT
  737. }
  738. float code_value()
  739. {
  740. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  741. }
  742. long code_value_long()
  743. {
  744. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  745. }
  746. bool code_seen(char code)
  747. {
  748. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  749. return (strchr_pointer != NULL); //Return True if a character was found
  750. }
  751. #define DEFINE_PGM_READ_ANY(type, reader) \
  752. static inline type pgm_read_any(const type *p) \
  753. { return pgm_read_##reader##_near(p); }
  754. DEFINE_PGM_READ_ANY(float, float);
  755. DEFINE_PGM_READ_ANY(signed char, byte);
  756. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  757. static const PROGMEM type array##_P[3] = \
  758. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  759. static inline type array(int axis) \
  760. { return pgm_read_any(&array##_P[axis]); }
  761. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  762. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  763. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  764. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  765. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  766. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  767. #ifdef DUAL_X_CARRIAGE
  768. #if EXTRUDERS == 1 || defined(COREXY) \
  769. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  770. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  771. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  772. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  773. #endif
  774. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  775. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  776. #endif
  777. #define DXC_FULL_CONTROL_MODE 0
  778. #define DXC_AUTO_PARK_MODE 1
  779. #define DXC_DUPLICATION_MODE 2
  780. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  781. static float x_home_pos(int extruder) {
  782. if (extruder == 0)
  783. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  784. else
  785. // In dual carriage mode the extruder offset provides an override of the
  786. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  787. // This allow soft recalibration of the second extruder offset position without firmware reflash
  788. // (through the M218 command).
  789. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  790. }
  791. static int x_home_dir(int extruder) {
  792. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  793. }
  794. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  795. static bool active_extruder_parked = false; // used in mode 1 & 2
  796. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  797. static unsigned long delayed_move_time = 0; // used in mode 1
  798. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  799. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  800. bool extruder_duplication_enabled = false; // used in mode 2
  801. #endif //DUAL_X_CARRIAGE
  802. static void axis_is_at_home(int axis) {
  803. #ifdef DUAL_X_CARRIAGE
  804. if (axis == X_AXIS) {
  805. if (active_extruder != 0) {
  806. current_position[X_AXIS] = x_home_pos(active_extruder);
  807. min_pos[X_AXIS] = X2_MIN_POS;
  808. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  809. return;
  810. }
  811. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  812. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  813. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  814. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  815. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  816. return;
  817. }
  818. }
  819. #endif
  820. #ifdef SCARA
  821. float homeposition[3];
  822. char i;
  823. if (axis < 2)
  824. {
  825. for (i=0; i<3; i++)
  826. {
  827. homeposition[i] = base_home_pos(i);
  828. }
  829. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  830. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  831. // Works out real Homeposition angles using inverse kinematics,
  832. // and calculates homing offset using forward kinematics
  833. calculate_delta(homeposition);
  834. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  835. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  836. for (i=0; i<2; i++)
  837. {
  838. delta[i] -= add_homing[i];
  839. }
  840. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  841. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  842. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  843. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  844. calculate_SCARA_forward_Transform(delta);
  845. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  846. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  847. current_position[axis] = delta[axis];
  848. // SCARA home positions are based on configuration since the actual limits are determined by the
  849. // inverse kinematic transform.
  850. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  851. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  852. }
  853. else
  854. {
  855. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  856. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  857. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  858. }
  859. #else
  860. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  861. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  862. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  863. #endif
  864. }
  865. #ifdef ENABLE_AUTO_BED_LEVELING
  866. #ifdef AUTO_BED_LEVELING_GRID
  867. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  868. {
  869. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  870. planeNormal.debug("planeNormal");
  871. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  872. //bedLevel.debug("bedLevel");
  873. //plan_bed_level_matrix.debug("bed level before");
  874. //vector_3 uncorrected_position = plan_get_position_mm();
  875. //uncorrected_position.debug("position before");
  876. vector_3 corrected_position = plan_get_position();
  877. // corrected_position.debug("position after");
  878. current_position[X_AXIS] = corrected_position.x;
  879. current_position[Y_AXIS] = corrected_position.y;
  880. current_position[Z_AXIS] = corrected_position.z;
  881. // put the bed at 0 so we don't go below it.
  882. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  883. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  884. }
  885. #else // not AUTO_BED_LEVELING_GRID
  886. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  887. plan_bed_level_matrix.set_to_identity();
  888. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  889. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  890. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  891. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  892. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  893. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  894. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  895. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  896. vector_3 corrected_position = plan_get_position();
  897. current_position[X_AXIS] = corrected_position.x;
  898. current_position[Y_AXIS] = corrected_position.y;
  899. current_position[Z_AXIS] = corrected_position.z;
  900. // put the bed at 0 so we don't go below it.
  901. current_position[Z_AXIS] = zprobe_zoffset;
  902. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  903. }
  904. #endif // AUTO_BED_LEVELING_GRID
  905. static void run_z_probe() {
  906. plan_bed_level_matrix.set_to_identity();
  907. feedrate = homing_feedrate[Z_AXIS];
  908. // move down until you find the bed
  909. float zPosition = -10;
  910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  911. st_synchronize();
  912. // we have to let the planner know where we are right now as it is not where we said to go.
  913. zPosition = st_get_position_mm(Z_AXIS);
  914. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  915. // move up the retract distance
  916. zPosition += home_retract_mm(Z_AXIS);
  917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  918. st_synchronize();
  919. // move back down slowly to find bed
  920. feedrate = homing_feedrate[Z_AXIS]/4;
  921. zPosition -= home_retract_mm(Z_AXIS) * 2;
  922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  923. st_synchronize();
  924. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  925. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  926. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  927. }
  928. static void do_blocking_move_to(float x, float y, float z) {
  929. float oldFeedRate = feedrate;
  930. feedrate = XY_TRAVEL_SPEED;
  931. current_position[X_AXIS] = x;
  932. current_position[Y_AXIS] = y;
  933. current_position[Z_AXIS] = z;
  934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  935. st_synchronize();
  936. feedrate = oldFeedRate;
  937. }
  938. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  939. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  940. }
  941. static void setup_for_endstop_move() {
  942. saved_feedrate = feedrate;
  943. saved_feedmultiply = feedmultiply;
  944. feedmultiply = 100;
  945. previous_millis_cmd = millis();
  946. enable_endstops(true);
  947. }
  948. static void clean_up_after_endstop_move() {
  949. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  950. enable_endstops(false);
  951. #endif
  952. feedrate = saved_feedrate;
  953. feedmultiply = saved_feedmultiply;
  954. previous_millis_cmd = millis();
  955. }
  956. static void engage_z_probe() {
  957. // Engage Z Servo endstop if enabled
  958. #ifdef SERVO_ENDSTOPS
  959. if (servo_endstops[Z_AXIS] > -1) {
  960. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  961. servos[servo_endstops[Z_AXIS]].attach(0);
  962. #endif
  963. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  964. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  965. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  966. servos[servo_endstops[Z_AXIS]].detach();
  967. #endif
  968. }
  969. #endif
  970. }
  971. static void retract_z_probe() {
  972. // Retract Z Servo endstop if enabled
  973. #ifdef SERVO_ENDSTOPS
  974. if (servo_endstops[Z_AXIS] > -1) {
  975. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  976. servos[servo_endstops[Z_AXIS]].attach(0);
  977. #endif
  978. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  979. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  980. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  981. servos[servo_endstops[Z_AXIS]].detach();
  982. #endif
  983. }
  984. #endif
  985. }
  986. /// Probe bed height at position (x,y), returns the measured z value
  987. static float probe_pt(float x, float y, float z_before) {
  988. // move to right place
  989. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  990. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  991. #ifndef Z_PROBE_SLED
  992. engage_z_probe(); // Engage Z Servo endstop if available
  993. #endif // Z_PROBE_SLED
  994. run_z_probe();
  995. float measured_z = current_position[Z_AXIS];
  996. #ifndef Z_PROBE_SLED
  997. retract_z_probe();
  998. #endif // Z_PROBE_SLED
  999. SERIAL_PROTOCOLPGM(MSG_BED);
  1000. SERIAL_PROTOCOLPGM(" x: ");
  1001. SERIAL_PROTOCOL(x);
  1002. SERIAL_PROTOCOLPGM(" y: ");
  1003. SERIAL_PROTOCOL(y);
  1004. SERIAL_PROTOCOLPGM(" z: ");
  1005. SERIAL_PROTOCOL(measured_z);
  1006. SERIAL_PROTOCOLPGM("\n");
  1007. return measured_z;
  1008. }
  1009. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1010. static void homeaxis(int axis) {
  1011. #define HOMEAXIS_DO(LETTER) \
  1012. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1013. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1014. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1015. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1016. 0) {
  1017. int axis_home_dir = home_dir(axis);
  1018. #ifdef DUAL_X_CARRIAGE
  1019. if (axis == X_AXIS)
  1020. axis_home_dir = x_home_dir(active_extruder);
  1021. #endif
  1022. current_position[axis] = 0;
  1023. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1024. #ifndef Z_PROBE_SLED
  1025. // Engage Servo endstop if enabled
  1026. #ifdef SERVO_ENDSTOPS
  1027. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1028. if (axis==Z_AXIS) {
  1029. engage_z_probe();
  1030. }
  1031. else
  1032. #endif
  1033. if (servo_endstops[axis] > -1) {
  1034. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1035. }
  1036. #endif
  1037. #endif // Z_PROBE_SLED
  1038. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1039. feedrate = homing_feedrate[axis];
  1040. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1041. st_synchronize();
  1042. current_position[axis] = 0;
  1043. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1044. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1045. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1046. st_synchronize();
  1047. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1048. #ifdef DELTA
  1049. feedrate = homing_feedrate[axis]/10;
  1050. #else
  1051. feedrate = homing_feedrate[axis]/2 ;
  1052. #endif
  1053. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1054. st_synchronize();
  1055. #ifdef DELTA
  1056. // retrace by the amount specified in endstop_adj
  1057. if (endstop_adj[axis] * axis_home_dir < 0) {
  1058. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1059. destination[axis] = endstop_adj[axis];
  1060. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1061. st_synchronize();
  1062. }
  1063. #endif
  1064. axis_is_at_home(axis);
  1065. destination[axis] = current_position[axis];
  1066. feedrate = 0.0;
  1067. endstops_hit_on_purpose();
  1068. axis_known_position[axis] = true;
  1069. // Retract Servo endstop if enabled
  1070. #ifdef SERVO_ENDSTOPS
  1071. if (servo_endstops[axis] > -1) {
  1072. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1073. }
  1074. #endif
  1075. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1076. #ifndef Z_PROBE_SLED
  1077. if (axis==Z_AXIS) retract_z_probe();
  1078. #endif
  1079. #endif
  1080. }
  1081. }
  1082. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1083. void refresh_cmd_timeout(void)
  1084. {
  1085. previous_millis_cmd = millis();
  1086. }
  1087. #ifdef FWRETRACT
  1088. void retract(bool retracting, bool swapretract = false) {
  1089. if(retracting && !retracted[active_extruder]) {
  1090. destination[X_AXIS]=current_position[X_AXIS];
  1091. destination[Y_AXIS]=current_position[Y_AXIS];
  1092. destination[Z_AXIS]=current_position[Z_AXIS];
  1093. destination[E_AXIS]=current_position[E_AXIS];
  1094. if (swapretract) {
  1095. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1096. } else {
  1097. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1098. }
  1099. plan_set_e_position(current_position[E_AXIS]);
  1100. float oldFeedrate = feedrate;
  1101. feedrate=retract_feedrate*60;
  1102. retracted[active_extruder]=true;
  1103. prepare_move();
  1104. current_position[Z_AXIS]-=retract_zlift;
  1105. #ifdef DELTA
  1106. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1107. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1108. #else
  1109. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1110. #endif
  1111. prepare_move();
  1112. feedrate = oldFeedrate;
  1113. } else if(!retracting && retracted[active_extruder]) {
  1114. destination[X_AXIS]=current_position[X_AXIS];
  1115. destination[Y_AXIS]=current_position[Y_AXIS];
  1116. destination[Z_AXIS]=current_position[Z_AXIS];
  1117. destination[E_AXIS]=current_position[E_AXIS];
  1118. current_position[Z_AXIS]+=retract_zlift;
  1119. #ifdef DELTA
  1120. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1121. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1122. #else
  1123. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1124. #endif
  1125. //prepare_move();
  1126. if (swapretract) {
  1127. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1128. } else {
  1129. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1130. }
  1131. plan_set_e_position(current_position[E_AXIS]);
  1132. float oldFeedrate = feedrate;
  1133. feedrate=retract_recover_feedrate*60;
  1134. retracted[active_extruder]=false;
  1135. prepare_move();
  1136. feedrate = oldFeedrate;
  1137. }
  1138. } //retract
  1139. #endif //FWRETRACT
  1140. #ifdef Z_PROBE_SLED
  1141. //
  1142. // Method to dock/undock a sled designed by Charles Bell.
  1143. //
  1144. // dock[in] If true, move to MAX_X and engage the electromagnet
  1145. // offset[in] The additional distance to move to adjust docking location
  1146. //
  1147. static void dock_sled(bool dock, int offset=0) {
  1148. int z_loc;
  1149. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1150. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1151. SERIAL_ECHO_START;
  1152. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1153. return;
  1154. }
  1155. if (dock) {
  1156. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1157. current_position[Y_AXIS],
  1158. current_position[Z_AXIS]);
  1159. // turn off magnet
  1160. digitalWrite(SERVO0_PIN, LOW);
  1161. } else {
  1162. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1163. z_loc = Z_RAISE_BEFORE_PROBING;
  1164. else
  1165. z_loc = current_position[Z_AXIS];
  1166. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1167. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1168. // turn on magnet
  1169. digitalWrite(SERVO0_PIN, HIGH);
  1170. }
  1171. }
  1172. #endif
  1173. void process_commands()
  1174. {
  1175. unsigned long codenum; //throw away variable
  1176. char *starpos = NULL;
  1177. #ifdef ENABLE_AUTO_BED_LEVELING
  1178. float x_tmp, y_tmp, z_tmp, real_z;
  1179. #endif
  1180. if(code_seen('G'))
  1181. {
  1182. switch((int)code_value())
  1183. {
  1184. case 0: // G0 -> G1
  1185. case 1: // G1
  1186. if(Stopped == false) {
  1187. get_coordinates(); // For X Y Z E F
  1188. #ifdef FWRETRACT
  1189. if(autoretract_enabled)
  1190. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1191. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1192. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1193. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1194. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1195. retract(!retracted);
  1196. return;
  1197. }
  1198. }
  1199. #endif //FWRETRACT
  1200. prepare_move();
  1201. //ClearToSend();
  1202. return;
  1203. }
  1204. break;
  1205. #ifndef SCARA //disable arc support
  1206. case 2: // G2 - CW ARC
  1207. if(Stopped == false) {
  1208. get_arc_coordinates();
  1209. prepare_arc_move(true);
  1210. return;
  1211. }
  1212. break;
  1213. case 3: // G3 - CCW ARC
  1214. if(Stopped == false) {
  1215. get_arc_coordinates();
  1216. prepare_arc_move(false);
  1217. return;
  1218. }
  1219. break;
  1220. #endif
  1221. case 4: // G4 dwell
  1222. LCD_MESSAGEPGM(MSG_DWELL);
  1223. codenum = 0;
  1224. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1225. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1226. st_synchronize();
  1227. codenum += millis(); // keep track of when we started waiting
  1228. previous_millis_cmd = millis();
  1229. while(millis() < codenum) {
  1230. manage_heater();
  1231. manage_inactivity();
  1232. lcd_update();
  1233. }
  1234. break;
  1235. #ifdef FWRETRACT
  1236. case 10: // G10 retract
  1237. #if EXTRUDERS > 1
  1238. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1239. retract(true,retracted_swap[active_extruder]);
  1240. #else
  1241. retract(true);
  1242. #endif
  1243. break;
  1244. case 11: // G11 retract_recover
  1245. #if EXTRUDERS > 1
  1246. retract(false,retracted_swap[active_extruder]);
  1247. #else
  1248. retract(false);
  1249. #endif
  1250. break;
  1251. #endif //FWRETRACT
  1252. case 28: //G28 Home all Axis one at a time
  1253. #ifdef ENABLE_AUTO_BED_LEVELING
  1254. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1255. #endif //ENABLE_AUTO_BED_LEVELING
  1256. saved_feedrate = feedrate;
  1257. saved_feedmultiply = feedmultiply;
  1258. feedmultiply = 100;
  1259. previous_millis_cmd = millis();
  1260. enable_endstops(true);
  1261. for(int8_t i=0; i < NUM_AXIS; i++) {
  1262. destination[i] = current_position[i];
  1263. }
  1264. feedrate = 0.0;
  1265. #ifdef DELTA
  1266. // A delta can only safely home all axis at the same time
  1267. // all axis have to home at the same time
  1268. // Move all carriages up together until the first endstop is hit.
  1269. current_position[X_AXIS] = 0;
  1270. current_position[Y_AXIS] = 0;
  1271. current_position[Z_AXIS] = 0;
  1272. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1273. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1274. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1275. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1276. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1277. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1278. st_synchronize();
  1279. endstops_hit_on_purpose();
  1280. current_position[X_AXIS] = destination[X_AXIS];
  1281. current_position[Y_AXIS] = destination[Y_AXIS];
  1282. current_position[Z_AXIS] = destination[Z_AXIS];
  1283. // take care of back off and rehome now we are all at the top
  1284. HOMEAXIS(X);
  1285. HOMEAXIS(Y);
  1286. HOMEAXIS(Z);
  1287. calculate_delta(current_position);
  1288. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1289. #else // NOT DELTA
  1290. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1291. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1292. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1293. HOMEAXIS(Z);
  1294. }
  1295. #endif
  1296. #ifdef QUICK_HOME
  1297. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1298. {
  1299. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1300. #ifndef DUAL_X_CARRIAGE
  1301. int x_axis_home_dir = home_dir(X_AXIS);
  1302. #else
  1303. int x_axis_home_dir = x_home_dir(active_extruder);
  1304. extruder_duplication_enabled = false;
  1305. #endif
  1306. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1307. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1308. feedrate = homing_feedrate[X_AXIS];
  1309. if(homing_feedrate[Y_AXIS]<feedrate)
  1310. feedrate = homing_feedrate[Y_AXIS];
  1311. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1312. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1313. } else {
  1314. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1315. }
  1316. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1317. st_synchronize();
  1318. axis_is_at_home(X_AXIS);
  1319. axis_is_at_home(Y_AXIS);
  1320. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1321. destination[X_AXIS] = current_position[X_AXIS];
  1322. destination[Y_AXIS] = current_position[Y_AXIS];
  1323. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1324. feedrate = 0.0;
  1325. st_synchronize();
  1326. endstops_hit_on_purpose();
  1327. current_position[X_AXIS] = destination[X_AXIS];
  1328. current_position[Y_AXIS] = destination[Y_AXIS];
  1329. #ifndef SCARA
  1330. current_position[Z_AXIS] = destination[Z_AXIS];
  1331. #endif
  1332. }
  1333. #endif
  1334. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1335. {
  1336. #ifdef DUAL_X_CARRIAGE
  1337. int tmp_extruder = active_extruder;
  1338. extruder_duplication_enabled = false;
  1339. active_extruder = !active_extruder;
  1340. HOMEAXIS(X);
  1341. inactive_extruder_x_pos = current_position[X_AXIS];
  1342. active_extruder = tmp_extruder;
  1343. HOMEAXIS(X);
  1344. // reset state used by the different modes
  1345. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1346. delayed_move_time = 0;
  1347. active_extruder_parked = true;
  1348. #else
  1349. HOMEAXIS(X);
  1350. #endif
  1351. }
  1352. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1353. HOMEAXIS(Y);
  1354. }
  1355. if(code_seen(axis_codes[X_AXIS]))
  1356. {
  1357. if(code_value_long() != 0) {
  1358. #ifdef SCARA
  1359. current_position[X_AXIS]=code_value();
  1360. #else
  1361. current_position[X_AXIS]=code_value()+add_homing[0];
  1362. #endif
  1363. }
  1364. }
  1365. if(code_seen(axis_codes[Y_AXIS])) {
  1366. if(code_value_long() != 0) {
  1367. #ifdef SCARA
  1368. current_position[Y_AXIS]=code_value();
  1369. #else
  1370. current_position[Y_AXIS]=code_value()+add_homing[1];
  1371. #endif
  1372. }
  1373. }
  1374. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1375. #ifndef Z_SAFE_HOMING
  1376. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1377. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1378. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1379. feedrate = max_feedrate[Z_AXIS];
  1380. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1381. st_synchronize();
  1382. #endif
  1383. HOMEAXIS(Z);
  1384. }
  1385. #else // Z Safe mode activated.
  1386. if(home_all_axis) {
  1387. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1388. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1389. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1390. feedrate = XY_TRAVEL_SPEED;
  1391. current_position[Z_AXIS] = 0;
  1392. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1393. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1394. st_synchronize();
  1395. current_position[X_AXIS] = destination[X_AXIS];
  1396. current_position[Y_AXIS] = destination[Y_AXIS];
  1397. HOMEAXIS(Z);
  1398. }
  1399. // Let's see if X and Y are homed and probe is inside bed area.
  1400. if(code_seen(axis_codes[Z_AXIS])) {
  1401. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1402. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1403. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1404. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1405. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1406. current_position[Z_AXIS] = 0;
  1407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1408. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1409. feedrate = max_feedrate[Z_AXIS];
  1410. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1411. st_synchronize();
  1412. HOMEAXIS(Z);
  1413. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1414. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1415. SERIAL_ECHO_START;
  1416. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1417. } else {
  1418. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1419. SERIAL_ECHO_START;
  1420. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1421. }
  1422. }
  1423. #endif
  1424. #endif
  1425. if(code_seen(axis_codes[Z_AXIS])) {
  1426. if(code_value_long() != 0) {
  1427. current_position[Z_AXIS]=code_value()+add_homing[2];
  1428. }
  1429. }
  1430. #ifdef ENABLE_AUTO_BED_LEVELING
  1431. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1432. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1433. }
  1434. #endif
  1435. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1436. #endif // else DELTA
  1437. #ifdef SCARA
  1438. calculate_delta(current_position);
  1439. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1440. #endif SCARA
  1441. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1442. enable_endstops(false);
  1443. #endif
  1444. feedrate = saved_feedrate;
  1445. feedmultiply = saved_feedmultiply;
  1446. previous_millis_cmd = millis();
  1447. endstops_hit_on_purpose();
  1448. break;
  1449. #ifdef ENABLE_AUTO_BED_LEVELING
  1450. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1451. {
  1452. #if Z_MIN_PIN == -1
  1453. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1454. #endif
  1455. // Prevent user from running a G29 without first homing in X and Y
  1456. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1457. {
  1458. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1459. SERIAL_ECHO_START;
  1460. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1461. break; // abort G29, since we don't know where we are
  1462. }
  1463. #ifdef Z_PROBE_SLED
  1464. dock_sled(false);
  1465. #endif // Z_PROBE_SLED
  1466. st_synchronize();
  1467. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1468. //vector_3 corrected_position = plan_get_position_mm();
  1469. //corrected_position.debug("position before G29");
  1470. plan_bed_level_matrix.set_to_identity();
  1471. vector_3 uncorrected_position = plan_get_position();
  1472. //uncorrected_position.debug("position durring G29");
  1473. current_position[X_AXIS] = uncorrected_position.x;
  1474. current_position[Y_AXIS] = uncorrected_position.y;
  1475. current_position[Z_AXIS] = uncorrected_position.z;
  1476. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1477. setup_for_endstop_move();
  1478. feedrate = homing_feedrate[Z_AXIS];
  1479. #ifdef AUTO_BED_LEVELING_GRID
  1480. // probe at the points of a lattice grid
  1481. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1482. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1483. // solve the plane equation ax + by + d = z
  1484. // A is the matrix with rows [x y 1] for all the probed points
  1485. // B is the vector of the Z positions
  1486. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1487. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1488. // "A" matrix of the linear system of equations
  1489. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1490. // "B" vector of Z points
  1491. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1492. int probePointCounter = 0;
  1493. bool zig = true;
  1494. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1495. {
  1496. int xProbe, xInc;
  1497. if (zig)
  1498. {
  1499. xProbe = LEFT_PROBE_BED_POSITION;
  1500. //xEnd = RIGHT_PROBE_BED_POSITION;
  1501. xInc = xGridSpacing;
  1502. zig = false;
  1503. } else // zag
  1504. {
  1505. xProbe = RIGHT_PROBE_BED_POSITION;
  1506. //xEnd = LEFT_PROBE_BED_POSITION;
  1507. xInc = -xGridSpacing;
  1508. zig = true;
  1509. }
  1510. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1511. {
  1512. float z_before;
  1513. if (probePointCounter == 0)
  1514. {
  1515. // raise before probing
  1516. z_before = Z_RAISE_BEFORE_PROBING;
  1517. } else
  1518. {
  1519. // raise extruder
  1520. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1521. }
  1522. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1523. eqnBVector[probePointCounter] = measured_z;
  1524. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1525. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1526. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1527. probePointCounter++;
  1528. xProbe += xInc;
  1529. }
  1530. }
  1531. clean_up_after_endstop_move();
  1532. // solve lsq problem
  1533. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1534. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1535. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1536. SERIAL_PROTOCOLPGM(" b: ");
  1537. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1538. SERIAL_PROTOCOLPGM(" d: ");
  1539. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1540. set_bed_level_equation_lsq(plane_equation_coefficients);
  1541. free(plane_equation_coefficients);
  1542. #else // AUTO_BED_LEVELING_GRID not defined
  1543. // Probe at 3 arbitrary points
  1544. // probe 1
  1545. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1546. // probe 2
  1547. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1548. // probe 3
  1549. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1550. clean_up_after_endstop_move();
  1551. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1552. #endif // AUTO_BED_LEVELING_GRID
  1553. st_synchronize();
  1554. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1555. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1556. // When the bed is uneven, this height must be corrected.
  1557. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1558. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1559. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1560. z_tmp = current_position[Z_AXIS];
  1561. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1562. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1564. #ifdef Z_PROBE_SLED
  1565. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1566. #endif // Z_PROBE_SLED
  1567. }
  1568. break;
  1569. #ifndef Z_PROBE_SLED
  1570. case 30: // G30 Single Z Probe
  1571. {
  1572. engage_z_probe(); // Engage Z Servo endstop if available
  1573. st_synchronize();
  1574. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1575. setup_for_endstop_move();
  1576. feedrate = homing_feedrate[Z_AXIS];
  1577. run_z_probe();
  1578. SERIAL_PROTOCOLPGM(MSG_BED);
  1579. SERIAL_PROTOCOLPGM(" X: ");
  1580. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1581. SERIAL_PROTOCOLPGM(" Y: ");
  1582. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1583. SERIAL_PROTOCOLPGM(" Z: ");
  1584. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1585. SERIAL_PROTOCOLPGM("\n");
  1586. clean_up_after_endstop_move();
  1587. retract_z_probe(); // Retract Z Servo endstop if available
  1588. }
  1589. break;
  1590. #else
  1591. case 31: // dock the sled
  1592. dock_sled(true);
  1593. break;
  1594. case 32: // undock the sled
  1595. dock_sled(false);
  1596. break;
  1597. #endif // Z_PROBE_SLED
  1598. #endif // ENABLE_AUTO_BED_LEVELING
  1599. case 90: // G90
  1600. relative_mode = false;
  1601. break;
  1602. case 91: // G91
  1603. relative_mode = true;
  1604. break;
  1605. case 92: // G92
  1606. if(!code_seen(axis_codes[E_AXIS]))
  1607. st_synchronize();
  1608. for(int8_t i=0; i < NUM_AXIS; i++) {
  1609. if(code_seen(axis_codes[i])) {
  1610. if(i == E_AXIS) {
  1611. current_position[i] = code_value();
  1612. plan_set_e_position(current_position[E_AXIS]);
  1613. }
  1614. else {
  1615. #ifdef SCARA
  1616. if (i == X_AXIS || i == Y_AXIS) {
  1617. current_position[i] = code_value();
  1618. }
  1619. else {
  1620. current_position[i] = code_value()+add_homing[i];
  1621. }
  1622. #else
  1623. current_position[i] = code_value()+add_homing[i];
  1624. #endif
  1625. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1626. }
  1627. }
  1628. }
  1629. break;
  1630. }
  1631. }
  1632. else if(code_seen('M'))
  1633. {
  1634. switch( (int)code_value() )
  1635. {
  1636. #ifdef ULTIPANEL
  1637. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1638. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1639. {
  1640. char *src = strchr_pointer + 2;
  1641. codenum = 0;
  1642. bool hasP = false, hasS = false;
  1643. if (code_seen('P')) {
  1644. codenum = code_value(); // milliseconds to wait
  1645. hasP = codenum > 0;
  1646. }
  1647. if (code_seen('S')) {
  1648. codenum = code_value() * 1000; // seconds to wait
  1649. hasS = codenum > 0;
  1650. }
  1651. starpos = strchr(src, '*');
  1652. if (starpos != NULL) *(starpos) = '\0';
  1653. while (*src == ' ') ++src;
  1654. if (!hasP && !hasS && *src != '\0') {
  1655. lcd_setstatus(src);
  1656. } else {
  1657. LCD_MESSAGEPGM(MSG_USERWAIT);
  1658. }
  1659. lcd_ignore_click();
  1660. st_synchronize();
  1661. previous_millis_cmd = millis();
  1662. if (codenum > 0){
  1663. codenum += millis(); // keep track of when we started waiting
  1664. while(millis() < codenum && !lcd_clicked()){
  1665. manage_heater();
  1666. manage_inactivity();
  1667. lcd_update();
  1668. }
  1669. lcd_ignore_click(false);
  1670. }else{
  1671. while(!lcd_clicked()){
  1672. manage_heater();
  1673. manage_inactivity();
  1674. lcd_update();
  1675. }
  1676. }
  1677. if (IS_SD_PRINTING)
  1678. LCD_MESSAGEPGM(MSG_RESUMING);
  1679. else
  1680. LCD_MESSAGEPGM(WELCOME_MSG);
  1681. }
  1682. break;
  1683. #endif
  1684. case 17:
  1685. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1686. enable_x();
  1687. enable_y();
  1688. enable_z();
  1689. enable_e0();
  1690. enable_e1();
  1691. enable_e2();
  1692. break;
  1693. #ifdef SDSUPPORT
  1694. case 20: // M20 - list SD card
  1695. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1696. card.ls();
  1697. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1698. break;
  1699. case 21: // M21 - init SD card
  1700. card.initsd();
  1701. break;
  1702. case 22: //M22 - release SD card
  1703. card.release();
  1704. break;
  1705. case 23: //M23 - Select file
  1706. starpos = (strchr(strchr_pointer + 4,'*'));
  1707. if(starpos!=NULL)
  1708. *(starpos)='\0';
  1709. card.openFile(strchr_pointer + 4,true);
  1710. break;
  1711. case 24: //M24 - Start SD print
  1712. card.startFileprint();
  1713. starttime=millis();
  1714. break;
  1715. case 25: //M25 - Pause SD print
  1716. card.pauseSDPrint();
  1717. break;
  1718. case 26: //M26 - Set SD index
  1719. if(card.cardOK && code_seen('S')) {
  1720. card.setIndex(code_value_long());
  1721. }
  1722. break;
  1723. case 27: //M27 - Get SD status
  1724. card.getStatus();
  1725. break;
  1726. case 28: //M28 - Start SD write
  1727. starpos = (strchr(strchr_pointer + 4,'*'));
  1728. if(starpos != NULL){
  1729. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1730. strchr_pointer = strchr(npos,' ') + 1;
  1731. *(starpos) = '\0';
  1732. }
  1733. card.openFile(strchr_pointer+4,false);
  1734. break;
  1735. case 29: //M29 - Stop SD write
  1736. //processed in write to file routine above
  1737. //card,saving = false;
  1738. break;
  1739. case 30: //M30 <filename> Delete File
  1740. if (card.cardOK){
  1741. card.closefile();
  1742. starpos = (strchr(strchr_pointer + 4,'*'));
  1743. if(starpos != NULL){
  1744. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1745. strchr_pointer = strchr(npos,' ') + 1;
  1746. *(starpos) = '\0';
  1747. }
  1748. card.removeFile(strchr_pointer + 4);
  1749. }
  1750. break;
  1751. case 32: //M32 - Select file and start SD print
  1752. {
  1753. if(card.sdprinting) {
  1754. st_synchronize();
  1755. }
  1756. starpos = (strchr(strchr_pointer + 4,'*'));
  1757. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1758. if(namestartpos==NULL)
  1759. {
  1760. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1761. }
  1762. else
  1763. namestartpos++; //to skip the '!'
  1764. if(starpos!=NULL)
  1765. *(starpos)='\0';
  1766. bool call_procedure=(code_seen('P'));
  1767. if(strchr_pointer>namestartpos)
  1768. call_procedure=false; //false alert, 'P' found within filename
  1769. if( card.cardOK )
  1770. {
  1771. card.openFile(namestartpos,true,!call_procedure);
  1772. if(code_seen('S'))
  1773. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1774. card.setIndex(code_value_long());
  1775. card.startFileprint();
  1776. if(!call_procedure)
  1777. starttime=millis(); //procedure calls count as normal print time.
  1778. }
  1779. } break;
  1780. case 928: //M928 - Start SD write
  1781. starpos = (strchr(strchr_pointer + 5,'*'));
  1782. if(starpos != NULL){
  1783. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1784. strchr_pointer = strchr(npos,' ') + 1;
  1785. *(starpos) = '\0';
  1786. }
  1787. card.openLogFile(strchr_pointer+5);
  1788. break;
  1789. #endif //SDSUPPORT
  1790. case 31: //M31 take time since the start of the SD print or an M109 command
  1791. {
  1792. stoptime=millis();
  1793. char time[30];
  1794. unsigned long t=(stoptime-starttime)/1000;
  1795. int sec,min;
  1796. min=t/60;
  1797. sec=t%60;
  1798. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1799. SERIAL_ECHO_START;
  1800. SERIAL_ECHOLN(time);
  1801. lcd_setstatus(time);
  1802. autotempShutdown();
  1803. }
  1804. break;
  1805. case 42: //M42 -Change pin status via gcode
  1806. if (code_seen('S'))
  1807. {
  1808. int pin_status = code_value();
  1809. int pin_number = LED_PIN;
  1810. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1811. pin_number = code_value();
  1812. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1813. {
  1814. if (sensitive_pins[i] == pin_number)
  1815. {
  1816. pin_number = -1;
  1817. break;
  1818. }
  1819. }
  1820. #if defined(FAN_PIN) && FAN_PIN > -1
  1821. if (pin_number == FAN_PIN)
  1822. fanSpeed = pin_status;
  1823. #endif
  1824. if (pin_number > -1)
  1825. {
  1826. pinMode(pin_number, OUTPUT);
  1827. digitalWrite(pin_number, pin_status);
  1828. analogWrite(pin_number, pin_status);
  1829. }
  1830. }
  1831. break;
  1832. // M48 Z-Probe repeatability measurement function.
  1833. //
  1834. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1835. //
  1836. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1837. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1838. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1839. // regenerated.
  1840. //
  1841. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1842. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1843. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1844. //
  1845. #ifdef ENABLE_AUTO_BED_LEVELING
  1846. #ifdef Z_PROBE_REPEATABILITY_TEST
  1847. case 48: // M48 Z-Probe repeatability
  1848. {
  1849. #if Z_MIN_PIN == -1
  1850. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1851. #endif
  1852. double sum=0.0;
  1853. double mean=0.0;
  1854. double sigma=0.0;
  1855. double sample_set[50];
  1856. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1857. double X_current, Y_current, Z_current;
  1858. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1859. if (code_seen('V') || code_seen('v')) {
  1860. verbose_level = code_value();
  1861. if (verbose_level<0 || verbose_level>4 ) {
  1862. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1863. goto Sigma_Exit;
  1864. }
  1865. }
  1866. if (verbose_level > 0) {
  1867. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1868. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1869. }
  1870. if (code_seen('n')) {
  1871. n_samples = code_value();
  1872. if (n_samples<4 || n_samples>50 ) {
  1873. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1874. goto Sigma_Exit;
  1875. }
  1876. }
  1877. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1878. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1879. Z_current = st_get_position_mm(Z_AXIS);
  1880. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1881. ext_position = st_get_position_mm(E_AXIS);
  1882. if (code_seen('E') || code_seen('e') )
  1883. engage_probe_for_each_reading++;
  1884. if (code_seen('X') || code_seen('x') ) {
  1885. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1886. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1887. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1888. goto Sigma_Exit;
  1889. }
  1890. }
  1891. if (code_seen('Y') || code_seen('y') ) {
  1892. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1893. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1894. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1895. goto Sigma_Exit;
  1896. }
  1897. }
  1898. if (code_seen('L') || code_seen('l') ) {
  1899. n_legs = code_value();
  1900. if ( n_legs==1 )
  1901. n_legs = 2;
  1902. if ( n_legs<0 || n_legs>15 ) {
  1903. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1904. goto Sigma_Exit;
  1905. }
  1906. }
  1907. //
  1908. // Do all the preliminary setup work. First raise the probe.
  1909. //
  1910. st_synchronize();
  1911. plan_bed_level_matrix.set_to_identity();
  1912. plan_buffer_line( X_current, Y_current, Z_start_location,
  1913. ext_position,
  1914. homing_feedrate[Z_AXIS]/60,
  1915. active_extruder);
  1916. st_synchronize();
  1917. //
  1918. // Now get everything to the specified probe point So we can safely do a probe to
  1919. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1920. // use that as a starting point for each probe.
  1921. //
  1922. if (verbose_level > 2)
  1923. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1924. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1925. ext_position,
  1926. homing_feedrate[X_AXIS]/60,
  1927. active_extruder);
  1928. st_synchronize();
  1929. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1930. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1931. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1932. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1933. //
  1934. // OK, do the inital probe to get us close to the bed.
  1935. // Then retrace the right amount and use that in subsequent probes
  1936. //
  1937. engage_z_probe();
  1938. setup_for_endstop_move();
  1939. run_z_probe();
  1940. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1941. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1942. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1943. ext_position,
  1944. homing_feedrate[X_AXIS]/60,
  1945. active_extruder);
  1946. st_synchronize();
  1947. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1948. if (engage_probe_for_each_reading)
  1949. retract_z_probe();
  1950. for( n=0; n<n_samples; n++) {
  1951. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  1952. if ( n_legs) {
  1953. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  1954. int rotational_direction, l;
  1955. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  1956. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  1957. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  1958. //SERIAL_ECHOPAIR("starting radius: ",radius);
  1959. //SERIAL_ECHOPAIR(" theta: ",theta);
  1960. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  1961. //SERIAL_PROTOCOLLNPGM("");
  1962. for( l=0; l<n_legs-1; l++) {
  1963. if (rotational_direction==1)
  1964. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1965. else
  1966. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1967. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  1968. if ( radius<0.0 )
  1969. radius = -radius;
  1970. X_current = X_probe_location + cos(theta) * radius;
  1971. Y_current = Y_probe_location + sin(theta) * radius;
  1972. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  1973. X_current = X_MIN_POS;
  1974. if ( X_current>X_MAX_POS)
  1975. X_current = X_MAX_POS;
  1976. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  1977. Y_current = Y_MIN_POS;
  1978. if ( Y_current>Y_MAX_POS)
  1979. Y_current = Y_MAX_POS;
  1980. if (verbose_level>3 ) {
  1981. SERIAL_ECHOPAIR("x: ", X_current);
  1982. SERIAL_ECHOPAIR("y: ", Y_current);
  1983. SERIAL_PROTOCOLLNPGM("");
  1984. }
  1985. do_blocking_move_to( X_current, Y_current, Z_current );
  1986. }
  1987. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  1988. }
  1989. if (engage_probe_for_each_reading) {
  1990. engage_z_probe();
  1991. delay(1000);
  1992. }
  1993. setup_for_endstop_move();
  1994. run_z_probe();
  1995. sample_set[n] = current_position[Z_AXIS];
  1996. //
  1997. // Get the current mean for the data points we have so far
  1998. //
  1999. sum=0.0;
  2000. for( j=0; j<=n; j++) {
  2001. sum = sum + sample_set[j];
  2002. }
  2003. mean = sum / (double (n+1));
  2004. //
  2005. // Now, use that mean to calculate the standard deviation for the
  2006. // data points we have so far
  2007. //
  2008. sum=0.0;
  2009. for( j=0; j<=n; j++) {
  2010. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2011. }
  2012. sigma = sqrt( sum / (double (n+1)) );
  2013. if (verbose_level > 1) {
  2014. SERIAL_PROTOCOL(n+1);
  2015. SERIAL_PROTOCOL(" of ");
  2016. SERIAL_PROTOCOL(n_samples);
  2017. SERIAL_PROTOCOLPGM(" z: ");
  2018. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2019. }
  2020. if (verbose_level > 2) {
  2021. SERIAL_PROTOCOL(" mean: ");
  2022. SERIAL_PROTOCOL_F(mean,6);
  2023. SERIAL_PROTOCOL(" sigma: ");
  2024. SERIAL_PROTOCOL_F(sigma,6);
  2025. }
  2026. if (verbose_level > 0)
  2027. SERIAL_PROTOCOLPGM("\n");
  2028. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2029. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2030. st_synchronize();
  2031. if (engage_probe_for_each_reading) {
  2032. retract_z_probe();
  2033. delay(1000);
  2034. }
  2035. }
  2036. retract_z_probe();
  2037. delay(1000);
  2038. clean_up_after_endstop_move();
  2039. // enable_endstops(true);
  2040. if (verbose_level > 0) {
  2041. SERIAL_PROTOCOLPGM("Mean: ");
  2042. SERIAL_PROTOCOL_F(mean, 6);
  2043. SERIAL_PROTOCOLPGM("\n");
  2044. }
  2045. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2046. SERIAL_PROTOCOL_F(sigma, 6);
  2047. SERIAL_PROTOCOLPGM("\n\n");
  2048. Sigma_Exit:
  2049. break;
  2050. }
  2051. #endif // Z_PROBE_REPEATABILITY_TEST
  2052. #endif // ENABLE_AUTO_BED_LEVELING
  2053. case 104: // M104
  2054. if(setTargetedHotend(104)){
  2055. break;
  2056. }
  2057. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2058. #ifdef DUAL_X_CARRIAGE
  2059. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2060. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2061. #endif
  2062. setWatch();
  2063. break;
  2064. case 112: // M112 -Emergency Stop
  2065. kill();
  2066. break;
  2067. case 140: // M140 set bed temp
  2068. if (code_seen('S')) setTargetBed(code_value());
  2069. break;
  2070. case 105 : // M105
  2071. if(setTargetedHotend(105)){
  2072. break;
  2073. }
  2074. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2075. SERIAL_PROTOCOLPGM("ok T:");
  2076. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2077. SERIAL_PROTOCOLPGM(" /");
  2078. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2079. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2080. SERIAL_PROTOCOLPGM(" B:");
  2081. SERIAL_PROTOCOL_F(degBed(),1);
  2082. SERIAL_PROTOCOLPGM(" /");
  2083. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2084. #endif //TEMP_BED_PIN
  2085. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2086. SERIAL_PROTOCOLPGM(" T");
  2087. SERIAL_PROTOCOL(cur_extruder);
  2088. SERIAL_PROTOCOLPGM(":");
  2089. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2090. SERIAL_PROTOCOLPGM(" /");
  2091. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2092. }
  2093. #else
  2094. SERIAL_ERROR_START;
  2095. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2096. #endif
  2097. SERIAL_PROTOCOLPGM(" @:");
  2098. #ifdef EXTRUDER_WATTS
  2099. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2100. SERIAL_PROTOCOLPGM("W");
  2101. #else
  2102. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2103. #endif
  2104. SERIAL_PROTOCOLPGM(" B@:");
  2105. #ifdef BED_WATTS
  2106. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2107. SERIAL_PROTOCOLPGM("W");
  2108. #else
  2109. SERIAL_PROTOCOL(getHeaterPower(-1));
  2110. #endif
  2111. #ifdef SHOW_TEMP_ADC_VALUES
  2112. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2113. SERIAL_PROTOCOLPGM(" ADC B:");
  2114. SERIAL_PROTOCOL_F(degBed(),1);
  2115. SERIAL_PROTOCOLPGM("C->");
  2116. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2117. #endif
  2118. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2119. SERIAL_PROTOCOLPGM(" T");
  2120. SERIAL_PROTOCOL(cur_extruder);
  2121. SERIAL_PROTOCOLPGM(":");
  2122. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2123. SERIAL_PROTOCOLPGM("C->");
  2124. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2125. }
  2126. #endif
  2127. SERIAL_PROTOCOLLN("");
  2128. return;
  2129. break;
  2130. case 109:
  2131. {// M109 - Wait for extruder heater to reach target.
  2132. if(setTargetedHotend(109)){
  2133. break;
  2134. }
  2135. LCD_MESSAGEPGM(MSG_HEATING);
  2136. #ifdef AUTOTEMP
  2137. autotemp_enabled=false;
  2138. #endif
  2139. if (code_seen('S')) {
  2140. setTargetHotend(code_value(), tmp_extruder);
  2141. #ifdef DUAL_X_CARRIAGE
  2142. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2143. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2144. #endif
  2145. CooldownNoWait = true;
  2146. } else if (code_seen('R')) {
  2147. setTargetHotend(code_value(), tmp_extruder);
  2148. #ifdef DUAL_X_CARRIAGE
  2149. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2150. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2151. #endif
  2152. CooldownNoWait = false;
  2153. }
  2154. #ifdef AUTOTEMP
  2155. if (code_seen('S')) autotemp_min=code_value();
  2156. if (code_seen('B')) autotemp_max=code_value();
  2157. if (code_seen('F'))
  2158. {
  2159. autotemp_factor=code_value();
  2160. autotemp_enabled=true;
  2161. }
  2162. #endif
  2163. setWatch();
  2164. codenum = millis();
  2165. /* See if we are heating up or cooling down */
  2166. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2167. cancel_heatup = false;
  2168. #ifdef TEMP_RESIDENCY_TIME
  2169. long residencyStart;
  2170. residencyStart = -1;
  2171. /* continue to loop until we have reached the target temp
  2172. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2173. while((!cancel_heatup)&&((residencyStart == -1) ||
  2174. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2175. #else
  2176. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2177. #endif //TEMP_RESIDENCY_TIME
  2178. if( (millis() - codenum) > 1000UL )
  2179. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2180. SERIAL_PROTOCOLPGM("T:");
  2181. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2182. SERIAL_PROTOCOLPGM(" E:");
  2183. SERIAL_PROTOCOL((int)tmp_extruder);
  2184. #ifdef TEMP_RESIDENCY_TIME
  2185. SERIAL_PROTOCOLPGM(" W:");
  2186. if(residencyStart > -1)
  2187. {
  2188. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2189. SERIAL_PROTOCOLLN( codenum );
  2190. }
  2191. else
  2192. {
  2193. SERIAL_PROTOCOLLN( "?" );
  2194. }
  2195. #else
  2196. SERIAL_PROTOCOLLN("");
  2197. #endif
  2198. codenum = millis();
  2199. }
  2200. manage_heater();
  2201. manage_inactivity();
  2202. lcd_update();
  2203. #ifdef TEMP_RESIDENCY_TIME
  2204. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2205. or when current temp falls outside the hysteresis after target temp was reached */
  2206. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2207. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2208. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2209. {
  2210. residencyStart = millis();
  2211. }
  2212. #endif //TEMP_RESIDENCY_TIME
  2213. }
  2214. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2215. starttime=millis();
  2216. previous_millis_cmd = millis();
  2217. }
  2218. break;
  2219. case 190: // M190 - Wait for bed heater to reach target.
  2220. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2221. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2222. if (code_seen('S')) {
  2223. setTargetBed(code_value());
  2224. CooldownNoWait = true;
  2225. } else if (code_seen('R')) {
  2226. setTargetBed(code_value());
  2227. CooldownNoWait = false;
  2228. }
  2229. codenum = millis();
  2230. cancel_heatup = false;
  2231. target_direction = isHeatingBed(); // true if heating, false if cooling
  2232. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2233. {
  2234. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2235. {
  2236. float tt=degHotend(active_extruder);
  2237. SERIAL_PROTOCOLPGM("T:");
  2238. SERIAL_PROTOCOL(tt);
  2239. SERIAL_PROTOCOLPGM(" E:");
  2240. SERIAL_PROTOCOL((int)active_extruder);
  2241. SERIAL_PROTOCOLPGM(" B:");
  2242. SERIAL_PROTOCOL_F(degBed(),1);
  2243. SERIAL_PROTOCOLLN("");
  2244. codenum = millis();
  2245. }
  2246. manage_heater();
  2247. manage_inactivity();
  2248. lcd_update();
  2249. }
  2250. LCD_MESSAGEPGM(MSG_BED_DONE);
  2251. previous_millis_cmd = millis();
  2252. #endif
  2253. break;
  2254. #if defined(FAN_PIN) && FAN_PIN > -1
  2255. case 106: //M106 Fan On
  2256. if (code_seen('S')){
  2257. fanSpeed=constrain(code_value(),0,255);
  2258. }
  2259. else {
  2260. fanSpeed=255;
  2261. }
  2262. break;
  2263. case 107: //M107 Fan Off
  2264. fanSpeed = 0;
  2265. break;
  2266. #endif //FAN_PIN
  2267. #ifdef BARICUDA
  2268. // PWM for HEATER_1_PIN
  2269. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2270. case 126: //M126 valve open
  2271. if (code_seen('S')){
  2272. ValvePressure=constrain(code_value(),0,255);
  2273. }
  2274. else {
  2275. ValvePressure=255;
  2276. }
  2277. break;
  2278. case 127: //M127 valve closed
  2279. ValvePressure = 0;
  2280. break;
  2281. #endif //HEATER_1_PIN
  2282. // PWM for HEATER_2_PIN
  2283. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2284. case 128: //M128 valve open
  2285. if (code_seen('S')){
  2286. EtoPPressure=constrain(code_value(),0,255);
  2287. }
  2288. else {
  2289. EtoPPressure=255;
  2290. }
  2291. break;
  2292. case 129: //M129 valve closed
  2293. EtoPPressure = 0;
  2294. break;
  2295. #endif //HEATER_2_PIN
  2296. #endif
  2297. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2298. case 80: // M80 - Turn on Power Supply
  2299. SET_OUTPUT(PS_ON_PIN); //GND
  2300. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2301. // If you have a switch on suicide pin, this is useful
  2302. // if you want to start another print with suicide feature after
  2303. // a print without suicide...
  2304. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2305. SET_OUTPUT(SUICIDE_PIN);
  2306. WRITE(SUICIDE_PIN, HIGH);
  2307. #endif
  2308. #ifdef ULTIPANEL
  2309. powersupply = true;
  2310. LCD_MESSAGEPGM(WELCOME_MSG);
  2311. lcd_update();
  2312. #endif
  2313. break;
  2314. #endif
  2315. case 81: // M81 - Turn off Power Supply
  2316. disable_heater();
  2317. st_synchronize();
  2318. disable_e0();
  2319. disable_e1();
  2320. disable_e2();
  2321. finishAndDisableSteppers();
  2322. fanSpeed = 0;
  2323. delay(1000); // Wait a little before to switch off
  2324. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2325. st_synchronize();
  2326. suicide();
  2327. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2328. SET_OUTPUT(PS_ON_PIN);
  2329. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2330. #endif
  2331. #ifdef ULTIPANEL
  2332. powersupply = false;
  2333. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2334. lcd_update();
  2335. #endif
  2336. break;
  2337. case 82:
  2338. axis_relative_modes[3] = false;
  2339. break;
  2340. case 83:
  2341. axis_relative_modes[3] = true;
  2342. break;
  2343. case 18: //compatibility
  2344. case 84: // M84
  2345. if(code_seen('S')){
  2346. stepper_inactive_time = code_value() * 1000;
  2347. }
  2348. else
  2349. {
  2350. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2351. if(all_axis)
  2352. {
  2353. st_synchronize();
  2354. disable_e0();
  2355. disable_e1();
  2356. disable_e2();
  2357. finishAndDisableSteppers();
  2358. }
  2359. else
  2360. {
  2361. st_synchronize();
  2362. if(code_seen('X')) disable_x();
  2363. if(code_seen('Y')) disable_y();
  2364. if(code_seen('Z')) disable_z();
  2365. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2366. if(code_seen('E')) {
  2367. disable_e0();
  2368. disable_e1();
  2369. disable_e2();
  2370. }
  2371. #endif
  2372. }
  2373. }
  2374. break;
  2375. case 85: // M85
  2376. if(code_seen('S')) {
  2377. max_inactive_time = code_value() * 1000;
  2378. }
  2379. break;
  2380. case 92: // M92
  2381. for(int8_t i=0; i < NUM_AXIS; i++)
  2382. {
  2383. if(code_seen(axis_codes[i]))
  2384. {
  2385. if(i == 3) { // E
  2386. float value = code_value();
  2387. if(value < 20.0) {
  2388. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2389. max_e_jerk *= factor;
  2390. max_feedrate[i] *= factor;
  2391. axis_steps_per_sqr_second[i] *= factor;
  2392. }
  2393. axis_steps_per_unit[i] = value;
  2394. }
  2395. else {
  2396. axis_steps_per_unit[i] = code_value();
  2397. }
  2398. }
  2399. }
  2400. break;
  2401. case 115: // M115
  2402. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2403. break;
  2404. case 117: // M117 display message
  2405. starpos = (strchr(strchr_pointer + 5,'*'));
  2406. if(starpos!=NULL)
  2407. *(starpos)='\0';
  2408. lcd_setstatus(strchr_pointer + 5);
  2409. break;
  2410. case 114: // M114
  2411. SERIAL_PROTOCOLPGM("X:");
  2412. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2413. SERIAL_PROTOCOLPGM(" Y:");
  2414. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2415. SERIAL_PROTOCOLPGM(" Z:");
  2416. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2417. SERIAL_PROTOCOLPGM(" E:");
  2418. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2419. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2420. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2421. SERIAL_PROTOCOLPGM(" Y:");
  2422. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2423. SERIAL_PROTOCOLPGM(" Z:");
  2424. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2425. SERIAL_PROTOCOLLN("");
  2426. #ifdef SCARA
  2427. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2428. SERIAL_PROTOCOL(delta[X_AXIS]);
  2429. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2430. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2431. SERIAL_PROTOCOLLN("");
  2432. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2433. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[0]);
  2434. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2435. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[1]);
  2436. SERIAL_PROTOCOLLN("");
  2437. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2438. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2439. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2440. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2441. SERIAL_PROTOCOLLN("");
  2442. SERIAL_PROTOCOLLN("");
  2443. #endif
  2444. break;
  2445. case 120: // M120
  2446. enable_endstops(false) ;
  2447. break;
  2448. case 121: // M121
  2449. enable_endstops(true) ;
  2450. break;
  2451. case 119: // M119
  2452. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2453. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2454. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2455. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2456. #endif
  2457. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2458. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2459. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2460. #endif
  2461. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2462. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2463. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2464. #endif
  2465. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2466. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2467. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2468. #endif
  2469. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2470. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2471. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2472. #endif
  2473. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2474. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2475. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2476. #endif
  2477. break;
  2478. //TODO: update for all axis, use for loop
  2479. #ifdef BLINKM
  2480. case 150: // M150
  2481. {
  2482. byte red;
  2483. byte grn;
  2484. byte blu;
  2485. if(code_seen('R')) red = code_value();
  2486. if(code_seen('U')) grn = code_value();
  2487. if(code_seen('B')) blu = code_value();
  2488. SendColors(red,grn,blu);
  2489. }
  2490. break;
  2491. #endif //BLINKM
  2492. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2493. {
  2494. float area = .0;
  2495. float radius = .0;
  2496. if(code_seen('D')) {
  2497. radius = (float)code_value() * .5;
  2498. if(radius == 0) {
  2499. area = 1;
  2500. } else {
  2501. area = M_PI * pow(radius, 2);
  2502. }
  2503. } else {
  2504. //reserved for setting filament diameter via UFID or filament measuring device
  2505. break;
  2506. }
  2507. tmp_extruder = active_extruder;
  2508. if(code_seen('T')) {
  2509. tmp_extruder = code_value();
  2510. if(tmp_extruder >= EXTRUDERS) {
  2511. SERIAL_ECHO_START;
  2512. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2513. break;
  2514. }
  2515. }
  2516. volumetric_multiplier[tmp_extruder] = 1 / area;
  2517. }
  2518. break;
  2519. case 201: // M201
  2520. for(int8_t i=0; i < NUM_AXIS; i++)
  2521. {
  2522. if(code_seen(axis_codes[i]))
  2523. {
  2524. max_acceleration_units_per_sq_second[i] = code_value();
  2525. }
  2526. }
  2527. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2528. reset_acceleration_rates();
  2529. break;
  2530. #if 0 // Not used for Sprinter/grbl gen6
  2531. case 202: // M202
  2532. for(int8_t i=0; i < NUM_AXIS; i++) {
  2533. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2534. }
  2535. break;
  2536. #endif
  2537. case 203: // M203 max feedrate mm/sec
  2538. for(int8_t i=0; i < NUM_AXIS; i++) {
  2539. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2540. }
  2541. break;
  2542. case 204: // M204 acclereration S normal moves T filmanent only moves
  2543. {
  2544. if(code_seen('S')) acceleration = code_value() ;
  2545. if(code_seen('T')) retract_acceleration = code_value() ;
  2546. }
  2547. break;
  2548. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2549. {
  2550. if(code_seen('S')) minimumfeedrate = code_value();
  2551. if(code_seen('T')) mintravelfeedrate = code_value();
  2552. if(code_seen('B')) minsegmenttime = code_value() ;
  2553. if(code_seen('X')) max_xy_jerk = code_value() ;
  2554. if(code_seen('Z')) max_z_jerk = code_value() ;
  2555. if(code_seen('E')) max_e_jerk = code_value() ;
  2556. }
  2557. break;
  2558. case 206: // M206 additional homing offset
  2559. for(int8_t i=0; i < 3; i++)
  2560. {
  2561. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2562. }
  2563. #ifdef SCARA
  2564. if(code_seen('T')) // Theta
  2565. {
  2566. add_homing[0] = code_value() ;
  2567. }
  2568. if(code_seen('P')) // Psi
  2569. {
  2570. add_homing[1] = code_value() ;
  2571. }
  2572. #endif
  2573. break;
  2574. #ifdef DELTA
  2575. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2576. if(code_seen('L')) {
  2577. delta_diagonal_rod= code_value();
  2578. }
  2579. if(code_seen('R')) {
  2580. delta_radius= code_value();
  2581. }
  2582. if(code_seen('S')) {
  2583. delta_segments_per_second= code_value();
  2584. }
  2585. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2586. break;
  2587. case 666: // M666 set delta endstop adjustemnt
  2588. for(int8_t i=0; i < 3; i++)
  2589. {
  2590. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2591. }
  2592. break;
  2593. #endif
  2594. #ifdef FWRETRACT
  2595. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2596. {
  2597. if(code_seen('S'))
  2598. {
  2599. retract_length = code_value() ;
  2600. }
  2601. if(code_seen('F'))
  2602. {
  2603. retract_feedrate = code_value()/60 ;
  2604. }
  2605. if(code_seen('Z'))
  2606. {
  2607. retract_zlift = code_value() ;
  2608. }
  2609. }break;
  2610. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2611. {
  2612. if(code_seen('S'))
  2613. {
  2614. retract_recover_length = code_value() ;
  2615. }
  2616. if(code_seen('F'))
  2617. {
  2618. retract_recover_feedrate = code_value()/60 ;
  2619. }
  2620. }break;
  2621. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2622. {
  2623. if(code_seen('S'))
  2624. {
  2625. int t= code_value() ;
  2626. switch(t)
  2627. {
  2628. case 0:
  2629. {
  2630. autoretract_enabled=false;
  2631. retracted[0]=false;
  2632. #if EXTRUDERS > 1
  2633. retracted[1]=false;
  2634. #endif
  2635. #if EXTRUDERS > 2
  2636. retracted[2]=false;
  2637. #endif
  2638. }break;
  2639. case 1:
  2640. {
  2641. autoretract_enabled=true;
  2642. retracted[0]=false;
  2643. #if EXTRUDERS > 1
  2644. retracted[1]=false;
  2645. #endif
  2646. #if EXTRUDERS > 2
  2647. retracted[2]=false;
  2648. #endif
  2649. }break;
  2650. default:
  2651. SERIAL_ECHO_START;
  2652. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2653. SERIAL_ECHO(cmdbuffer[bufindr]);
  2654. SERIAL_ECHOLNPGM("\"");
  2655. }
  2656. }
  2657. }break;
  2658. #endif // FWRETRACT
  2659. #if EXTRUDERS > 1
  2660. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2661. {
  2662. if(setTargetedHotend(218)){
  2663. break;
  2664. }
  2665. if(code_seen('X'))
  2666. {
  2667. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2668. }
  2669. if(code_seen('Y'))
  2670. {
  2671. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2672. }
  2673. #ifdef DUAL_X_CARRIAGE
  2674. if(code_seen('Z'))
  2675. {
  2676. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2677. }
  2678. #endif
  2679. SERIAL_ECHO_START;
  2680. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2681. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2682. {
  2683. SERIAL_ECHO(" ");
  2684. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2685. SERIAL_ECHO(",");
  2686. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2687. #ifdef DUAL_X_CARRIAGE
  2688. SERIAL_ECHO(",");
  2689. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2690. #endif
  2691. }
  2692. SERIAL_ECHOLN("");
  2693. }break;
  2694. #endif
  2695. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2696. {
  2697. if(code_seen('S'))
  2698. {
  2699. feedmultiply = code_value() ;
  2700. }
  2701. }
  2702. break;
  2703. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2704. {
  2705. if(code_seen('S'))
  2706. {
  2707. int tmp_code = code_value();
  2708. if (code_seen('T'))
  2709. {
  2710. if(setTargetedHotend(221)){
  2711. break;
  2712. }
  2713. extruder_multiply[tmp_extruder] = tmp_code;
  2714. }
  2715. else
  2716. {
  2717. extrudemultiply = tmp_code ;
  2718. }
  2719. }
  2720. }
  2721. break;
  2722. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2723. {
  2724. if(code_seen('P')){
  2725. int pin_number = code_value(); // pin number
  2726. int pin_state = -1; // required pin state - default is inverted
  2727. if(code_seen('S')) pin_state = code_value(); // required pin state
  2728. if(pin_state >= -1 && pin_state <= 1){
  2729. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2730. {
  2731. if (sensitive_pins[i] == pin_number)
  2732. {
  2733. pin_number = -1;
  2734. break;
  2735. }
  2736. }
  2737. if (pin_number > -1)
  2738. {
  2739. st_synchronize();
  2740. pinMode(pin_number, INPUT);
  2741. int target;
  2742. switch(pin_state){
  2743. case 1:
  2744. target = HIGH;
  2745. break;
  2746. case 0:
  2747. target = LOW;
  2748. break;
  2749. case -1:
  2750. target = !digitalRead(pin_number);
  2751. break;
  2752. }
  2753. while(digitalRead(pin_number) != target){
  2754. manage_heater();
  2755. manage_inactivity();
  2756. lcd_update();
  2757. }
  2758. }
  2759. }
  2760. }
  2761. }
  2762. break;
  2763. #if NUM_SERVOS > 0
  2764. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2765. {
  2766. int servo_index = -1;
  2767. int servo_position = 0;
  2768. if (code_seen('P'))
  2769. servo_index = code_value();
  2770. if (code_seen('S')) {
  2771. servo_position = code_value();
  2772. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2773. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2774. servos[servo_index].attach(0);
  2775. #endif
  2776. servos[servo_index].write(servo_position);
  2777. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2778. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2779. servos[servo_index].detach();
  2780. #endif
  2781. }
  2782. else {
  2783. SERIAL_ECHO_START;
  2784. SERIAL_ECHO("Servo ");
  2785. SERIAL_ECHO(servo_index);
  2786. SERIAL_ECHOLN(" out of range");
  2787. }
  2788. }
  2789. else if (servo_index >= 0) {
  2790. SERIAL_PROTOCOL(MSG_OK);
  2791. SERIAL_PROTOCOL(" Servo ");
  2792. SERIAL_PROTOCOL(servo_index);
  2793. SERIAL_PROTOCOL(": ");
  2794. SERIAL_PROTOCOL(servos[servo_index].read());
  2795. SERIAL_PROTOCOLLN("");
  2796. }
  2797. }
  2798. break;
  2799. #endif // NUM_SERVOS > 0
  2800. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2801. case 300: // M300
  2802. {
  2803. int beepS = code_seen('S') ? code_value() : 110;
  2804. int beepP = code_seen('P') ? code_value() : 1000;
  2805. if (beepS > 0)
  2806. {
  2807. #if BEEPER > 0
  2808. tone(BEEPER, beepS);
  2809. delay(beepP);
  2810. noTone(BEEPER);
  2811. #elif defined(ULTRALCD)
  2812. lcd_buzz(beepS, beepP);
  2813. #elif defined(LCD_USE_I2C_BUZZER)
  2814. lcd_buzz(beepP, beepS);
  2815. #endif
  2816. }
  2817. else
  2818. {
  2819. delay(beepP);
  2820. }
  2821. }
  2822. break;
  2823. #endif // M300
  2824. #ifdef PIDTEMP
  2825. case 301: // M301
  2826. {
  2827. if(code_seen('P')) Kp = code_value();
  2828. if(code_seen('I')) Ki = scalePID_i(code_value());
  2829. if(code_seen('D')) Kd = scalePID_d(code_value());
  2830. #ifdef PID_ADD_EXTRUSION_RATE
  2831. if(code_seen('C')) Kc = code_value();
  2832. #endif
  2833. updatePID();
  2834. SERIAL_PROTOCOL(MSG_OK);
  2835. SERIAL_PROTOCOL(" p:");
  2836. SERIAL_PROTOCOL(Kp);
  2837. SERIAL_PROTOCOL(" i:");
  2838. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2839. SERIAL_PROTOCOL(" d:");
  2840. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2841. #ifdef PID_ADD_EXTRUSION_RATE
  2842. SERIAL_PROTOCOL(" c:");
  2843. //Kc does not have scaling applied above, or in resetting defaults
  2844. SERIAL_PROTOCOL(Kc);
  2845. #endif
  2846. SERIAL_PROTOCOLLN("");
  2847. }
  2848. break;
  2849. #endif //PIDTEMP
  2850. #ifdef PIDTEMPBED
  2851. case 304: // M304
  2852. {
  2853. if(code_seen('P')) bedKp = code_value();
  2854. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2855. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2856. updatePID();
  2857. SERIAL_PROTOCOL(MSG_OK);
  2858. SERIAL_PROTOCOL(" p:");
  2859. SERIAL_PROTOCOL(bedKp);
  2860. SERIAL_PROTOCOL(" i:");
  2861. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2862. SERIAL_PROTOCOL(" d:");
  2863. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2864. SERIAL_PROTOCOLLN("");
  2865. }
  2866. break;
  2867. #endif //PIDTEMP
  2868. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2869. {
  2870. #ifdef CHDK
  2871. SET_OUTPUT(CHDK);
  2872. WRITE(CHDK, HIGH);
  2873. chdkHigh = millis();
  2874. chdkActive = true;
  2875. #else
  2876. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2877. const uint8_t NUM_PULSES=16;
  2878. const float PULSE_LENGTH=0.01524;
  2879. for(int i=0; i < NUM_PULSES; i++) {
  2880. WRITE(PHOTOGRAPH_PIN, HIGH);
  2881. _delay_ms(PULSE_LENGTH);
  2882. WRITE(PHOTOGRAPH_PIN, LOW);
  2883. _delay_ms(PULSE_LENGTH);
  2884. }
  2885. delay(7.33);
  2886. for(int i=0; i < NUM_PULSES; i++) {
  2887. WRITE(PHOTOGRAPH_PIN, HIGH);
  2888. _delay_ms(PULSE_LENGTH);
  2889. WRITE(PHOTOGRAPH_PIN, LOW);
  2890. _delay_ms(PULSE_LENGTH);
  2891. }
  2892. #endif
  2893. #endif //chdk end if
  2894. }
  2895. break;
  2896. #ifdef DOGLCD
  2897. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2898. {
  2899. if (code_seen('C')) {
  2900. lcd_setcontrast( ((int)code_value())&63 );
  2901. }
  2902. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2903. SERIAL_PROTOCOL(lcd_contrast);
  2904. SERIAL_PROTOCOLLN("");
  2905. }
  2906. break;
  2907. #endif
  2908. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2909. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2910. {
  2911. float temp = .0;
  2912. if (code_seen('S')) temp=code_value();
  2913. set_extrude_min_temp(temp);
  2914. }
  2915. break;
  2916. #endif
  2917. case 303: // M303 PID autotune
  2918. {
  2919. float temp = 150.0;
  2920. int e=0;
  2921. int c=5;
  2922. if (code_seen('E')) e=code_value();
  2923. if (e<0)
  2924. temp=70;
  2925. if (code_seen('S')) temp=code_value();
  2926. if (code_seen('C')) c=code_value();
  2927. PID_autotune(temp, e, c);
  2928. }
  2929. break;
  2930. #ifdef SCARA
  2931. case 360: // M360 SCARA Theta pos1
  2932. SERIAL_ECHOLN(" Cal: Theta 0 ");
  2933. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2934. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2935. if(Stopped == false) {
  2936. //get_coordinates(); // For X Y Z E F
  2937. delta[0] = 0;
  2938. delta[1] = 120;
  2939. calculate_SCARA_forward_Transform(delta);
  2940. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2941. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2942. prepare_move();
  2943. //ClearToSend();
  2944. return;
  2945. }
  2946. break;
  2947. case 361: // SCARA Theta pos2
  2948. SERIAL_ECHOLN(" Cal: Theta 90 ");
  2949. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2950. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2951. if(Stopped == false) {
  2952. //get_coordinates(); // For X Y Z E F
  2953. delta[0] = 90;
  2954. delta[1] = 130;
  2955. calculate_SCARA_forward_Transform(delta);
  2956. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2957. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2958. prepare_move();
  2959. //ClearToSend();
  2960. return;
  2961. }
  2962. break;
  2963. case 362: // SCARA Psi pos1
  2964. SERIAL_ECHOLN(" Cal: Psi 0 ");
  2965. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2966. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2967. if(Stopped == false) {
  2968. //get_coordinates(); // For X Y Z E F
  2969. delta[0] = 60;
  2970. delta[1] = 180;
  2971. calculate_SCARA_forward_Transform(delta);
  2972. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2973. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2974. prepare_move();
  2975. //ClearToSend();
  2976. return;
  2977. }
  2978. break;
  2979. case 363: // SCARA Psi pos2
  2980. SERIAL_ECHOLN(" Cal: Psi 90 ");
  2981. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2982. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2983. if(Stopped == false) {
  2984. //get_coordinates(); // For X Y Z E F
  2985. delta[0] = 50;
  2986. delta[1] = 90;
  2987. calculate_SCARA_forward_Transform(delta);
  2988. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2989. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2990. prepare_move();
  2991. //ClearToSend();
  2992. return;
  2993. }
  2994. break;
  2995. case 364: // SCARA Psi pos3 (90 deg to Theta)
  2996. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  2997. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2998. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2999. if(Stopped == false) {
  3000. //get_coordinates(); // For X Y Z E F
  3001. delta[0] = 45;
  3002. delta[1] = 135;
  3003. calculate_SCARA_forward_Transform(delta);
  3004. destination[0] = delta[0]/axis_scaling[X_AXIS];
  3005. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  3006. prepare_move();
  3007. //ClearToSend();
  3008. return;
  3009. }
  3010. break;
  3011. case 365: // M364 Set SCARA scaling for X Y Z
  3012. for(int8_t i=0; i < 3; i++)
  3013. {
  3014. if(code_seen(axis_codes[i]))
  3015. {
  3016. axis_scaling[i] = code_value();
  3017. }
  3018. }
  3019. break;
  3020. #endif
  3021. case 400: // M400 finish all moves
  3022. {
  3023. st_synchronize();
  3024. }
  3025. break;
  3026. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3027. case 401:
  3028. {
  3029. engage_z_probe(); // Engage Z Servo endstop if available
  3030. }
  3031. break;
  3032. case 402:
  3033. {
  3034. retract_z_probe(); // Retract Z Servo endstop if enabled
  3035. }
  3036. break;
  3037. #endif
  3038. #ifdef FILAMENT_SENSOR
  3039. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3040. {
  3041. #if (FILWIDTH_PIN > -1)
  3042. if(code_seen('N')) filament_width_nominal=code_value();
  3043. else{
  3044. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3045. SERIAL_PROTOCOLLN(filament_width_nominal);
  3046. }
  3047. #endif
  3048. }
  3049. break;
  3050. case 405: //M405 Turn on filament sensor for control
  3051. {
  3052. if(code_seen('D')) meas_delay_cm=code_value();
  3053. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3054. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3055. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3056. {
  3057. int temp_ratio = widthFil_to_size_ratio();
  3058. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3059. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3060. }
  3061. delay_index1=0;
  3062. delay_index2=0;
  3063. }
  3064. filament_sensor = true ;
  3065. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3066. //SERIAL_PROTOCOL(filament_width_meas);
  3067. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3068. //SERIAL_PROTOCOL(extrudemultiply);
  3069. }
  3070. break;
  3071. case 406: //M406 Turn off filament sensor for control
  3072. {
  3073. filament_sensor = false ;
  3074. }
  3075. break;
  3076. case 407: //M407 Display measured filament diameter
  3077. {
  3078. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3079. SERIAL_PROTOCOLLN(filament_width_meas);
  3080. }
  3081. break;
  3082. #endif
  3083. case 500: // M500 Store settings in EEPROM
  3084. {
  3085. Config_StoreSettings();
  3086. }
  3087. break;
  3088. case 501: // M501 Read settings from EEPROM
  3089. {
  3090. Config_RetrieveSettings();
  3091. }
  3092. break;
  3093. case 502: // M502 Revert to default settings
  3094. {
  3095. Config_ResetDefault();
  3096. }
  3097. break;
  3098. case 503: // M503 print settings currently in memory
  3099. {
  3100. Config_PrintSettings();
  3101. }
  3102. break;
  3103. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3104. case 540:
  3105. {
  3106. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3107. }
  3108. break;
  3109. #endif
  3110. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3111. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3112. {
  3113. float value;
  3114. if (code_seen('Z'))
  3115. {
  3116. value = code_value();
  3117. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3118. {
  3119. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3120. SERIAL_ECHO_START;
  3121. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3122. SERIAL_PROTOCOLLN("");
  3123. }
  3124. else
  3125. {
  3126. SERIAL_ECHO_START;
  3127. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3128. SERIAL_ECHOPGM(MSG_Z_MIN);
  3129. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3130. SERIAL_ECHOPGM(MSG_Z_MAX);
  3131. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3132. SERIAL_PROTOCOLLN("");
  3133. }
  3134. }
  3135. else
  3136. {
  3137. SERIAL_ECHO_START;
  3138. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3139. SERIAL_ECHO(-zprobe_zoffset);
  3140. SERIAL_PROTOCOLLN("");
  3141. }
  3142. break;
  3143. }
  3144. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3145. #ifdef FILAMENTCHANGEENABLE
  3146. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3147. {
  3148. float target[4];
  3149. float lastpos[4];
  3150. target[X_AXIS]=current_position[X_AXIS];
  3151. target[Y_AXIS]=current_position[Y_AXIS];
  3152. target[Z_AXIS]=current_position[Z_AXIS];
  3153. target[E_AXIS]=current_position[E_AXIS];
  3154. lastpos[X_AXIS]=current_position[X_AXIS];
  3155. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3156. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3157. lastpos[E_AXIS]=current_position[E_AXIS];
  3158. //retract by E
  3159. if(code_seen('E'))
  3160. {
  3161. target[E_AXIS]+= code_value();
  3162. }
  3163. else
  3164. {
  3165. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3166. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3167. #endif
  3168. }
  3169. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3170. //lift Z
  3171. if(code_seen('Z'))
  3172. {
  3173. target[Z_AXIS]+= code_value();
  3174. }
  3175. else
  3176. {
  3177. #ifdef FILAMENTCHANGE_ZADD
  3178. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3179. #endif
  3180. }
  3181. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3182. //move xy
  3183. if(code_seen('X'))
  3184. {
  3185. target[X_AXIS]+= code_value();
  3186. }
  3187. else
  3188. {
  3189. #ifdef FILAMENTCHANGE_XPOS
  3190. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3191. #endif
  3192. }
  3193. if(code_seen('Y'))
  3194. {
  3195. target[Y_AXIS]= code_value();
  3196. }
  3197. else
  3198. {
  3199. #ifdef FILAMENTCHANGE_YPOS
  3200. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3201. #endif
  3202. }
  3203. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3204. if(code_seen('L'))
  3205. {
  3206. target[E_AXIS]+= code_value();
  3207. }
  3208. else
  3209. {
  3210. #ifdef FILAMENTCHANGE_FINALRETRACT
  3211. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3212. #endif
  3213. }
  3214. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3215. //finish moves
  3216. st_synchronize();
  3217. //disable extruder steppers so filament can be removed
  3218. disable_e0();
  3219. disable_e1();
  3220. disable_e2();
  3221. delay(100);
  3222. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3223. uint8_t cnt=0;
  3224. while(!lcd_clicked()){
  3225. cnt++;
  3226. manage_heater();
  3227. manage_inactivity();
  3228. lcd_update();
  3229. if(cnt==0)
  3230. {
  3231. #if BEEPER > 0
  3232. SET_OUTPUT(BEEPER);
  3233. WRITE(BEEPER,HIGH);
  3234. delay(3);
  3235. WRITE(BEEPER,LOW);
  3236. delay(3);
  3237. #else
  3238. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3239. lcd_buzz(1000/6,100);
  3240. #else
  3241. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3242. #endif
  3243. #endif
  3244. }
  3245. }
  3246. //return to normal
  3247. if(code_seen('L'))
  3248. {
  3249. target[E_AXIS]+= -code_value();
  3250. }
  3251. else
  3252. {
  3253. #ifdef FILAMENTCHANGE_FINALRETRACT
  3254. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3255. #endif
  3256. }
  3257. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3258. plan_set_e_position(current_position[E_AXIS]);
  3259. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3260. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3261. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3262. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3263. }
  3264. break;
  3265. #endif //FILAMENTCHANGEENABLE
  3266. #ifdef DUAL_X_CARRIAGE
  3267. case 605: // Set dual x-carriage movement mode:
  3268. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3269. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3270. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3271. // millimeters x-offset and an optional differential hotend temperature of
  3272. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3273. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3274. //
  3275. // Note: the X axis should be homed after changing dual x-carriage mode.
  3276. {
  3277. st_synchronize();
  3278. if (code_seen('S'))
  3279. dual_x_carriage_mode = code_value();
  3280. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3281. {
  3282. if (code_seen('X'))
  3283. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3284. if (code_seen('R'))
  3285. duplicate_extruder_temp_offset = code_value();
  3286. SERIAL_ECHO_START;
  3287. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3288. SERIAL_ECHO(" ");
  3289. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3290. SERIAL_ECHO(",");
  3291. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3292. SERIAL_ECHO(" ");
  3293. SERIAL_ECHO(duplicate_extruder_x_offset);
  3294. SERIAL_ECHO(",");
  3295. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3296. }
  3297. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3298. {
  3299. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3300. }
  3301. active_extruder_parked = false;
  3302. extruder_duplication_enabled = false;
  3303. delayed_move_time = 0;
  3304. }
  3305. break;
  3306. #endif //DUAL_X_CARRIAGE
  3307. case 907: // M907 Set digital trimpot motor current using axis codes.
  3308. {
  3309. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3310. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3311. if(code_seen('B')) digipot_current(4,code_value());
  3312. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3313. #endif
  3314. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3315. if(code_seen('X')) digipot_current(0, code_value());
  3316. #endif
  3317. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3318. if(code_seen('Z')) digipot_current(1, code_value());
  3319. #endif
  3320. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3321. if(code_seen('E')) digipot_current(2, code_value());
  3322. #endif
  3323. #ifdef DIGIPOT_I2C
  3324. // this one uses actual amps in floating point
  3325. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3326. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3327. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3328. #endif
  3329. }
  3330. break;
  3331. case 908: // M908 Control digital trimpot directly.
  3332. {
  3333. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3334. uint8_t channel,current;
  3335. if(code_seen('P')) channel=code_value();
  3336. if(code_seen('S')) current=code_value();
  3337. digitalPotWrite(channel, current);
  3338. #endif
  3339. }
  3340. break;
  3341. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3342. {
  3343. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3344. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3345. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3346. if(code_seen('B')) microstep_mode(4,code_value());
  3347. microstep_readings();
  3348. #endif
  3349. }
  3350. break;
  3351. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3352. {
  3353. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3354. if(code_seen('S')) switch((int)code_value())
  3355. {
  3356. case 1:
  3357. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3358. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3359. break;
  3360. case 2:
  3361. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3362. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3363. break;
  3364. }
  3365. microstep_readings();
  3366. #endif
  3367. }
  3368. break;
  3369. case 999: // M999: Restart after being stopped
  3370. Stopped = false;
  3371. lcd_reset_alert_level();
  3372. gcode_LastN = Stopped_gcode_LastN;
  3373. FlushSerialRequestResend();
  3374. break;
  3375. }
  3376. }
  3377. else if(code_seen('T'))
  3378. {
  3379. tmp_extruder = code_value();
  3380. if(tmp_extruder >= EXTRUDERS) {
  3381. SERIAL_ECHO_START;
  3382. SERIAL_ECHO("T");
  3383. SERIAL_ECHO(tmp_extruder);
  3384. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3385. }
  3386. else {
  3387. boolean make_move = false;
  3388. if(code_seen('F')) {
  3389. make_move = true;
  3390. next_feedrate = code_value();
  3391. if(next_feedrate > 0.0) {
  3392. feedrate = next_feedrate;
  3393. }
  3394. }
  3395. #if EXTRUDERS > 1
  3396. if(tmp_extruder != active_extruder) {
  3397. // Save current position to return to after applying extruder offset
  3398. memcpy(destination, current_position, sizeof(destination));
  3399. #ifdef DUAL_X_CARRIAGE
  3400. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3401. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3402. {
  3403. // Park old head: 1) raise 2) move to park position 3) lower
  3404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3405. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3406. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3407. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3408. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3409. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3410. st_synchronize();
  3411. }
  3412. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3413. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3414. extruder_offset[Y_AXIS][active_extruder] +
  3415. extruder_offset[Y_AXIS][tmp_extruder];
  3416. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3417. extruder_offset[Z_AXIS][active_extruder] +
  3418. extruder_offset[Z_AXIS][tmp_extruder];
  3419. active_extruder = tmp_extruder;
  3420. // This function resets the max/min values - the current position may be overwritten below.
  3421. axis_is_at_home(X_AXIS);
  3422. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3423. {
  3424. current_position[X_AXIS] = inactive_extruder_x_pos;
  3425. inactive_extruder_x_pos = destination[X_AXIS];
  3426. }
  3427. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3428. {
  3429. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3430. if (active_extruder == 0 || active_extruder_parked)
  3431. current_position[X_AXIS] = inactive_extruder_x_pos;
  3432. else
  3433. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3434. inactive_extruder_x_pos = destination[X_AXIS];
  3435. extruder_duplication_enabled = false;
  3436. }
  3437. else
  3438. {
  3439. // record raised toolhead position for use by unpark
  3440. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3441. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3442. active_extruder_parked = true;
  3443. delayed_move_time = 0;
  3444. }
  3445. #else
  3446. // Offset extruder (only by XY)
  3447. int i;
  3448. for(i = 0; i < 2; i++) {
  3449. current_position[i] = current_position[i] -
  3450. extruder_offset[i][active_extruder] +
  3451. extruder_offset[i][tmp_extruder];
  3452. }
  3453. // Set the new active extruder and position
  3454. active_extruder = tmp_extruder;
  3455. #endif //else DUAL_X_CARRIAGE
  3456. #ifdef DELTA
  3457. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3458. //sent position to plan_set_position();
  3459. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3460. #else
  3461. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3462. #endif
  3463. // Move to the old position if 'F' was in the parameters
  3464. if(make_move && Stopped == false) {
  3465. prepare_move();
  3466. }
  3467. }
  3468. #endif
  3469. SERIAL_ECHO_START;
  3470. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3471. SERIAL_PROTOCOLLN((int)active_extruder);
  3472. }
  3473. }
  3474. else
  3475. {
  3476. SERIAL_ECHO_START;
  3477. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3478. SERIAL_ECHO(cmdbuffer[bufindr]);
  3479. SERIAL_ECHOLNPGM("\"");
  3480. }
  3481. ClearToSend();
  3482. }
  3483. void FlushSerialRequestResend()
  3484. {
  3485. //char cmdbuffer[bufindr][100]="Resend:";
  3486. MYSERIAL.flush();
  3487. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3488. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3489. ClearToSend();
  3490. }
  3491. void ClearToSend()
  3492. {
  3493. previous_millis_cmd = millis();
  3494. #ifdef SDSUPPORT
  3495. if(fromsd[bufindr])
  3496. return;
  3497. #endif //SDSUPPORT
  3498. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3499. }
  3500. void get_coordinates()
  3501. {
  3502. bool seen[4]={false,false,false,false};
  3503. for(int8_t i=0; i < NUM_AXIS; i++) {
  3504. if(code_seen(axis_codes[i]))
  3505. {
  3506. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3507. seen[i]=true;
  3508. }
  3509. else destination[i] = current_position[i]; //Are these else lines really needed?
  3510. }
  3511. if(code_seen('F')) {
  3512. next_feedrate = code_value();
  3513. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3514. }
  3515. }
  3516. void get_arc_coordinates()
  3517. {
  3518. #ifdef SF_ARC_FIX
  3519. bool relative_mode_backup = relative_mode;
  3520. relative_mode = true;
  3521. #endif
  3522. get_coordinates();
  3523. #ifdef SF_ARC_FIX
  3524. relative_mode=relative_mode_backup;
  3525. #endif
  3526. if(code_seen('I')) {
  3527. offset[0] = code_value();
  3528. }
  3529. else {
  3530. offset[0] = 0.0;
  3531. }
  3532. if(code_seen('J')) {
  3533. offset[1] = code_value();
  3534. }
  3535. else {
  3536. offset[1] = 0.0;
  3537. }
  3538. }
  3539. void clamp_to_software_endstops(float target[3])
  3540. {
  3541. if (min_software_endstops) {
  3542. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3543. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3544. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  3545. }
  3546. if (max_software_endstops) {
  3547. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3548. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3549. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3550. }
  3551. }
  3552. #ifdef DELTA
  3553. void recalc_delta_settings(float radius, float diagonal_rod)
  3554. {
  3555. delta_tower1_x= -SIN_60*radius; // front left tower
  3556. delta_tower1_y= -COS_60*radius;
  3557. delta_tower2_x= SIN_60*radius; // front right tower
  3558. delta_tower2_y= -COS_60*radius;
  3559. delta_tower3_x= 0.0; // back middle tower
  3560. delta_tower3_y= radius;
  3561. delta_diagonal_rod_2= sq(diagonal_rod);
  3562. }
  3563. void calculate_delta(float cartesian[3])
  3564. {
  3565. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3566. - sq(delta_tower1_x-cartesian[X_AXIS])
  3567. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3568. ) + cartesian[Z_AXIS];
  3569. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3570. - sq(delta_tower2_x-cartesian[X_AXIS])
  3571. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3572. ) + cartesian[Z_AXIS];
  3573. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3574. - sq(delta_tower3_x-cartesian[X_AXIS])
  3575. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3576. ) + cartesian[Z_AXIS];
  3577. /*
  3578. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3579. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3580. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3581. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3582. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3583. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3584. */
  3585. }
  3586. #endif
  3587. void prepare_move()
  3588. {
  3589. clamp_to_software_endstops(destination);
  3590. previous_millis_cmd = millis();
  3591. #ifdef SCARA //for now same as delta-code
  3592. float difference[NUM_AXIS];
  3593. for (int8_t i=0; i < NUM_AXIS; i++) {
  3594. difference[i] = destination[i] - current_position[i];
  3595. }
  3596. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3597. sq(difference[Y_AXIS]) +
  3598. sq(difference[Z_AXIS]));
  3599. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3600. if (cartesian_mm < 0.000001) { return; }
  3601. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3602. int steps = max(1, int(scara_segments_per_second * seconds));
  3603. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3604. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3605. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3606. for (int s = 1; s <= steps; s++) {
  3607. float fraction = float(s) / float(steps);
  3608. for(int8_t i=0; i < NUM_AXIS; i++) {
  3609. destination[i] = current_position[i] + difference[i] * fraction;
  3610. }
  3611. calculate_delta(destination);
  3612. //SERIAL_ECHOPGM("destination[0]="); SERIAL_ECHOLN(destination[0]);
  3613. //SERIAL_ECHOPGM("destination[1]="); SERIAL_ECHOLN(destination[1]);
  3614. //SERIAL_ECHOPGM("destination[2]="); SERIAL_ECHOLN(destination[2]);
  3615. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3616. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3617. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3618. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3619. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3620. active_extruder);
  3621. }
  3622. #endif // SCARA
  3623. #ifdef DELTA
  3624. float difference[NUM_AXIS];
  3625. for (int8_t i=0; i < NUM_AXIS; i++) {
  3626. difference[i] = destination[i] - current_position[i];
  3627. }
  3628. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3629. sq(difference[Y_AXIS]) +
  3630. sq(difference[Z_AXIS]));
  3631. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3632. if (cartesian_mm < 0.000001) { return; }
  3633. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3634. int steps = max(1, int(delta_segments_per_second * seconds));
  3635. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3636. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3637. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3638. for (int s = 1; s <= steps; s++) {
  3639. float fraction = float(s) / float(steps);
  3640. for(int8_t i=0; i < NUM_AXIS; i++) {
  3641. destination[i] = current_position[i] + difference[i] * fraction;
  3642. }
  3643. calculate_delta(destination);
  3644. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3645. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3646. active_extruder);
  3647. }
  3648. #endif // DELTA
  3649. #ifdef DUAL_X_CARRIAGE
  3650. if (active_extruder_parked)
  3651. {
  3652. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3653. {
  3654. // move duplicate extruder into correct duplication position.
  3655. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3656. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3657. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3658. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3659. st_synchronize();
  3660. extruder_duplication_enabled = true;
  3661. active_extruder_parked = false;
  3662. }
  3663. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3664. {
  3665. if (current_position[E_AXIS] == destination[E_AXIS])
  3666. {
  3667. // this is a travel move - skit it but keep track of current position (so that it can later
  3668. // be used as start of first non-travel move)
  3669. if (delayed_move_time != 0xFFFFFFFFUL)
  3670. {
  3671. memcpy(current_position, destination, sizeof(current_position));
  3672. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3673. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3674. delayed_move_time = millis();
  3675. return;
  3676. }
  3677. }
  3678. delayed_move_time = 0;
  3679. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3680. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3682. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3684. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3685. active_extruder_parked = false;
  3686. }
  3687. }
  3688. #endif //DUAL_X_CARRIAGE
  3689. #if ! (defined DELTA || defined SCARA)
  3690. // Do not use feedmultiply for E or Z only moves
  3691. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3692. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3693. }
  3694. else {
  3695. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3696. }
  3697. #endif // !(DELTA || SCARA)
  3698. for(int8_t i=0; i < NUM_AXIS; i++) {
  3699. current_position[i] = destination[i];
  3700. }
  3701. }
  3702. void prepare_arc_move(char isclockwise) {
  3703. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3704. // Trace the arc
  3705. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3706. // As far as the parser is concerned, the position is now == target. In reality the
  3707. // motion control system might still be processing the action and the real tool position
  3708. // in any intermediate location.
  3709. for(int8_t i=0; i < NUM_AXIS; i++) {
  3710. current_position[i] = destination[i];
  3711. }
  3712. previous_millis_cmd = millis();
  3713. }
  3714. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3715. #if defined(FAN_PIN)
  3716. #if CONTROLLERFAN_PIN == FAN_PIN
  3717. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3718. #endif
  3719. #endif
  3720. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3721. unsigned long lastMotorCheck = 0;
  3722. void controllerFan()
  3723. {
  3724. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3725. {
  3726. lastMotorCheck = millis();
  3727. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3728. #if EXTRUDERS > 2
  3729. || !READ(E2_ENABLE_PIN)
  3730. #endif
  3731. #if EXTRUDER > 1
  3732. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3733. || !READ(X2_ENABLE_PIN)
  3734. #endif
  3735. || !READ(E1_ENABLE_PIN)
  3736. #endif
  3737. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3738. {
  3739. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3740. }
  3741. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3742. {
  3743. digitalWrite(CONTROLLERFAN_PIN, 0);
  3744. analogWrite(CONTROLLERFAN_PIN, 0);
  3745. }
  3746. else
  3747. {
  3748. // allows digital or PWM fan output to be used (see M42 handling)
  3749. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3750. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3751. }
  3752. }
  3753. }
  3754. #endif
  3755. #ifdef SCARA
  3756. void calculate_SCARA_forward_Transform(float f_scara[3])
  3757. {
  3758. // Perform forward kinematics, and place results in delta[3]
  3759. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3760. float x_sin, x_cos, y_sin, y_cos;
  3761. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3762. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3763. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3764. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3765. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3766. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3767. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3768. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3769. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3770. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3771. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3772. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3773. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3774. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3775. }
  3776. void calculate_delta(float cartesian[3]){
  3777. //reverse kinematics.
  3778. // Perform reversed kinematics, and place results in delta[3]
  3779. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3780. float SCARA_pos[2];
  3781. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3782. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3783. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3784. #if (Linkage_1 == Linkage_2)
  3785. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3786. #else
  3787. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3788. #endif
  3789. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3790. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3791. SCARA_K2 = Linkage_2 * SCARA_S2;
  3792. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3793. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3794. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3795. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3796. delta[Z_AXIS] = cartesian[Z_AXIS];
  3797. /*
  3798. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3799. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3800. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3801. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3802. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3803. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3804. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3805. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3806. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3807. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3808. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3809. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3810. SERIAL_ECHOLN(" ");*/
  3811. }
  3812. #endif
  3813. #ifdef TEMP_STAT_LEDS
  3814. static bool blue_led = false;
  3815. static bool red_led = false;
  3816. static uint32_t stat_update = 0;
  3817. void handle_status_leds(void) {
  3818. float max_temp = 0.0;
  3819. if(millis() > stat_update) {
  3820. stat_update += 500; // Update every 0.5s
  3821. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3822. max_temp = max(max_temp, degHotend(cur_extruder));
  3823. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3824. }
  3825. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3826. max_temp = max(max_temp, degTargetBed());
  3827. max_temp = max(max_temp, degBed());
  3828. #endif
  3829. if((max_temp > 55.0) && (red_led == false)) {
  3830. digitalWrite(STAT_LED_RED, 1);
  3831. digitalWrite(STAT_LED_BLUE, 0);
  3832. red_led = true;
  3833. blue_led = false;
  3834. }
  3835. if((max_temp < 54.0) && (blue_led == false)) {
  3836. digitalWrite(STAT_LED_RED, 0);
  3837. digitalWrite(STAT_LED_BLUE, 1);
  3838. red_led = false;
  3839. blue_led = true;
  3840. }
  3841. }
  3842. }
  3843. #endif
  3844. void manage_inactivity()
  3845. {
  3846. if(buflen < (BUFSIZE-1))
  3847. get_command();
  3848. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3849. if(max_inactive_time)
  3850. kill();
  3851. if(stepper_inactive_time) {
  3852. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3853. {
  3854. if(blocks_queued() == false) {
  3855. disable_x();
  3856. disable_y();
  3857. disable_z();
  3858. disable_e0();
  3859. disable_e1();
  3860. disable_e2();
  3861. }
  3862. }
  3863. }
  3864. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3865. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3866. {
  3867. chdkActive = false;
  3868. WRITE(CHDK, LOW);
  3869. }
  3870. #endif
  3871. #if defined(KILL_PIN) && KILL_PIN > -1
  3872. if( 0 == READ(KILL_PIN) )
  3873. kill();
  3874. #endif
  3875. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3876. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3877. #endif
  3878. #ifdef EXTRUDER_RUNOUT_PREVENT
  3879. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3880. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3881. {
  3882. bool oldstatus=READ(E0_ENABLE_PIN);
  3883. enable_e0();
  3884. float oldepos=current_position[E_AXIS];
  3885. float oldedes=destination[E_AXIS];
  3886. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3887. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3888. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3889. current_position[E_AXIS]=oldepos;
  3890. destination[E_AXIS]=oldedes;
  3891. plan_set_e_position(oldepos);
  3892. previous_millis_cmd=millis();
  3893. st_synchronize();
  3894. WRITE(E0_ENABLE_PIN,oldstatus);
  3895. }
  3896. #endif
  3897. #if defined(DUAL_X_CARRIAGE)
  3898. // handle delayed move timeout
  3899. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3900. {
  3901. // travel moves have been received so enact them
  3902. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3903. memcpy(destination,current_position,sizeof(destination));
  3904. prepare_move();
  3905. }
  3906. #endif
  3907. #ifdef TEMP_STAT_LEDS
  3908. handle_status_leds();
  3909. #endif
  3910. check_axes_activity();
  3911. }
  3912. void kill()
  3913. {
  3914. cli(); // Stop interrupts
  3915. disable_heater();
  3916. disable_x();
  3917. disable_y();
  3918. disable_z();
  3919. disable_e0();
  3920. disable_e1();
  3921. disable_e2();
  3922. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3923. pinMode(PS_ON_PIN,INPUT);
  3924. #endif
  3925. SERIAL_ERROR_START;
  3926. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3927. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3928. suicide();
  3929. while(1) { /* Intentionally left empty */ } // Wait for reset
  3930. }
  3931. void Stop()
  3932. {
  3933. disable_heater();
  3934. if(Stopped == false) {
  3935. Stopped = true;
  3936. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3937. SERIAL_ERROR_START;
  3938. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3939. LCD_MESSAGEPGM(MSG_STOPPED);
  3940. }
  3941. }
  3942. bool IsStopped() { return Stopped; };
  3943. #ifdef FAST_PWM_FAN
  3944. void setPwmFrequency(uint8_t pin, int val)
  3945. {
  3946. val &= 0x07;
  3947. switch(digitalPinToTimer(pin))
  3948. {
  3949. #if defined(TCCR0A)
  3950. case TIMER0A:
  3951. case TIMER0B:
  3952. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3953. // TCCR0B |= val;
  3954. break;
  3955. #endif
  3956. #if defined(TCCR1A)
  3957. case TIMER1A:
  3958. case TIMER1B:
  3959. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3960. // TCCR1B |= val;
  3961. break;
  3962. #endif
  3963. #if defined(TCCR2)
  3964. case TIMER2:
  3965. case TIMER2:
  3966. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3967. TCCR2 |= val;
  3968. break;
  3969. #endif
  3970. #if defined(TCCR2A)
  3971. case TIMER2A:
  3972. case TIMER2B:
  3973. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3974. TCCR2B |= val;
  3975. break;
  3976. #endif
  3977. #if defined(TCCR3A)
  3978. case TIMER3A:
  3979. case TIMER3B:
  3980. case TIMER3C:
  3981. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3982. TCCR3B |= val;
  3983. break;
  3984. #endif
  3985. #if defined(TCCR4A)
  3986. case TIMER4A:
  3987. case TIMER4B:
  3988. case TIMER4C:
  3989. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3990. TCCR4B |= val;
  3991. break;
  3992. #endif
  3993. #if defined(TCCR5A)
  3994. case TIMER5A:
  3995. case TIMER5B:
  3996. case TIMER5C:
  3997. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3998. TCCR5B |= val;
  3999. break;
  4000. #endif
  4001. }
  4002. }
  4003. #endif //FAST_PWM_FAN
  4004. bool setTargetedHotend(int code){
  4005. tmp_extruder = active_extruder;
  4006. if(code_seen('T')) {
  4007. tmp_extruder = code_value();
  4008. if(tmp_extruder >= EXTRUDERS) {
  4009. SERIAL_ECHO_START;
  4010. switch(code){
  4011. case 104:
  4012. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4013. break;
  4014. case 105:
  4015. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4016. break;
  4017. case 109:
  4018. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4019. break;
  4020. case 218:
  4021. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4022. break;
  4023. case 221:
  4024. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4025. break;
  4026. }
  4027. SERIAL_ECHOLN(tmp_extruder);
  4028. return true;
  4029. }
  4030. }
  4031. return false;
  4032. }