My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 119KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M665 - set delta configurations
  149. // M666 - set delta endstop adjustemnt
  150. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  151. // M907 - Set digital trimpot motor current using axis codes.
  152. // M908 - Control digital trimpot directly.
  153. // M350 - Set microstepping mode.
  154. // M351 - Toggle MS1 MS2 pins directly.
  155. // M928 - Start SD logging (M928 filename.g) - ended by M29
  156. // M999 - Restart after being stopped by error
  157. //Stepper Movement Variables
  158. //===========================================================================
  159. //=============================imported variables============================
  160. //===========================================================================
  161. //===========================================================================
  162. //=============================public variables=============================
  163. //===========================================================================
  164. #ifdef SDSUPPORT
  165. CardReader card;
  166. #endif
  167. float homing_feedrate[] = HOMING_FEEDRATE;
  168. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  169. int feedmultiply=100; //100->1 200->2
  170. int saved_feedmultiply;
  171. int extrudemultiply=100; //100->1 200->2
  172. float volumetric_multiplier[EXTRUDERS] = {1.0
  173. #if EXTRUDERS > 1
  174. , 1.0
  175. #if EXTRUDERS > 2
  176. , 1.0
  177. #endif
  178. #endif
  179. };
  180. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  181. float add_homeing[3]={0,0,0};
  182. #ifdef DELTA
  183. float endstop_adj[3]={0,0,0};
  184. #endif
  185. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  186. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  187. bool axis_known_position[3] = {false, false, false};
  188. float zprobe_zoffset;
  189. // Extruder offset
  190. #if EXTRUDERS > 1
  191. #ifndef DUAL_X_CARRIAGE
  192. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  193. #else
  194. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  195. #endif
  196. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  197. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  198. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  199. #endif
  200. };
  201. #endif
  202. uint8_t active_extruder = 0;
  203. int fanSpeed=0;
  204. #ifdef SERVO_ENDSTOPS
  205. int servo_endstops[] = SERVO_ENDSTOPS;
  206. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  207. #endif
  208. #ifdef BARICUDA
  209. int ValvePressure=0;
  210. int EtoPPressure=0;
  211. #endif
  212. #ifdef FWRETRACT
  213. bool autoretract_enabled=true;
  214. bool retracted=false;
  215. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  216. float retract_recover_length=0, retract_recover_feedrate=8*60;
  217. #endif
  218. #ifdef ULTIPANEL
  219. #ifdef PS_DEFAULT_OFF
  220. bool powersupply = false;
  221. #else
  222. bool powersupply = true;
  223. #endif
  224. #endif
  225. #ifdef DELTA
  226. float delta[3] = {0.0, 0.0, 0.0};
  227. #define SIN_60 0.8660254037844386
  228. #define COS_60 0.5
  229. // these are the default values, can be overriden with M665
  230. float delta_radius= DELTA_RADIUS;
  231. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  232. float delta_tower1_y= -COS_60*delta_radius;
  233. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  234. float delta_tower2_y= -COS_60*delta_radius;
  235. float delta_tower3_x= 0.0; // back middle tower
  236. float delta_tower3_y= delta_radius;
  237. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  238. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  239. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  240. #endif
  241. //===========================================================================
  242. //=============================private variables=============================
  243. //===========================================================================
  244. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  245. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  246. static float offset[3] = {0.0, 0.0, 0.0};
  247. static bool home_all_axis = true;
  248. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  249. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  250. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  251. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  252. static bool fromsd[BUFSIZE];
  253. static int bufindr = 0;
  254. static int bufindw = 0;
  255. static int buflen = 0;
  256. //static int i = 0;
  257. static char serial_char;
  258. static int serial_count = 0;
  259. static boolean comment_mode = false;
  260. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  261. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  262. //static float tt = 0;
  263. //static float bt = 0;
  264. //Inactivity shutdown variables
  265. static unsigned long previous_millis_cmd = 0;
  266. static unsigned long max_inactive_time = 0;
  267. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  268. unsigned long starttime=0;
  269. unsigned long stoptime=0;
  270. static uint8_t tmp_extruder;
  271. bool Stopped=false;
  272. #if NUM_SERVOS > 0
  273. Servo servos[NUM_SERVOS];
  274. #endif
  275. bool CooldownNoWait = true;
  276. bool target_direction;
  277. //===========================================================================
  278. //=============================ROUTINES=============================
  279. //===========================================================================
  280. void get_arc_coordinates();
  281. bool setTargetedHotend(int code);
  282. void serial_echopair_P(const char *s_P, float v)
  283. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  284. void serial_echopair_P(const char *s_P, double v)
  285. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  286. void serial_echopair_P(const char *s_P, unsigned long v)
  287. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  288. extern "C"{
  289. extern unsigned int __bss_end;
  290. extern unsigned int __heap_start;
  291. extern void *__brkval;
  292. int freeMemory() {
  293. int free_memory;
  294. if((int)__brkval == 0)
  295. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  296. else
  297. free_memory = ((int)&free_memory) - ((int)__brkval);
  298. return free_memory;
  299. }
  300. }
  301. //adds an command to the main command buffer
  302. //thats really done in a non-safe way.
  303. //needs overworking someday
  304. void enquecommand(const char *cmd)
  305. {
  306. if(buflen < BUFSIZE)
  307. {
  308. //this is dangerous if a mixing of serial and this happsens
  309. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  310. SERIAL_ECHO_START;
  311. SERIAL_ECHOPGM("enqueing \"");
  312. SERIAL_ECHO(cmdbuffer[bufindw]);
  313. SERIAL_ECHOLNPGM("\"");
  314. bufindw= (bufindw + 1)%BUFSIZE;
  315. buflen += 1;
  316. }
  317. }
  318. void enquecommand_P(const char *cmd)
  319. {
  320. if(buflen < BUFSIZE)
  321. {
  322. //this is dangerous if a mixing of serial and this happsens
  323. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  324. SERIAL_ECHO_START;
  325. SERIAL_ECHOPGM("enqueing \"");
  326. SERIAL_ECHO(cmdbuffer[bufindw]);
  327. SERIAL_ECHOLNPGM("\"");
  328. bufindw= (bufindw + 1)%BUFSIZE;
  329. buflen += 1;
  330. }
  331. }
  332. void setup_killpin()
  333. {
  334. #if defined(KILL_PIN) && KILL_PIN > -1
  335. pinMode(KILL_PIN,INPUT);
  336. WRITE(KILL_PIN,HIGH);
  337. #endif
  338. }
  339. void setup_photpin()
  340. {
  341. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  342. SET_OUTPUT(PHOTOGRAPH_PIN);
  343. WRITE(PHOTOGRAPH_PIN, LOW);
  344. #endif
  345. }
  346. void setup_powerhold()
  347. {
  348. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  349. SET_OUTPUT(SUICIDE_PIN);
  350. WRITE(SUICIDE_PIN, HIGH);
  351. #endif
  352. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  353. SET_OUTPUT(PS_ON_PIN);
  354. #if defined(PS_DEFAULT_OFF)
  355. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  356. #else
  357. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  358. #endif
  359. #endif
  360. }
  361. void suicide()
  362. {
  363. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  364. SET_OUTPUT(SUICIDE_PIN);
  365. WRITE(SUICIDE_PIN, LOW);
  366. #endif
  367. }
  368. void servo_init()
  369. {
  370. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  371. servos[0].attach(SERVO0_PIN);
  372. #endif
  373. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  374. servos[1].attach(SERVO1_PIN);
  375. #endif
  376. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  377. servos[2].attach(SERVO2_PIN);
  378. #endif
  379. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  380. servos[3].attach(SERVO3_PIN);
  381. #endif
  382. #if (NUM_SERVOS >= 5)
  383. #error "TODO: enter initalisation code for more servos"
  384. #endif
  385. // Set position of Servo Endstops that are defined
  386. #ifdef SERVO_ENDSTOPS
  387. for(int8_t i = 0; i < 3; i++)
  388. {
  389. if(servo_endstops[i] > -1) {
  390. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  391. }
  392. }
  393. #endif
  394. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  395. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  396. servos[servo_endstops[Z_AXIS]].detach();
  397. #endif
  398. }
  399. void setup()
  400. {
  401. setup_killpin();
  402. setup_powerhold();
  403. MYSERIAL.begin(BAUDRATE);
  404. SERIAL_PROTOCOLLNPGM("start");
  405. SERIAL_ECHO_START;
  406. // Check startup - does nothing if bootloader sets MCUSR to 0
  407. byte mcu = MCUSR;
  408. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  409. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  410. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  411. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  412. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  413. MCUSR=0;
  414. SERIAL_ECHOPGM(MSG_MARLIN);
  415. SERIAL_ECHOLNPGM(VERSION_STRING);
  416. #ifdef STRING_VERSION_CONFIG_H
  417. #ifdef STRING_CONFIG_H_AUTHOR
  418. SERIAL_ECHO_START;
  419. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  420. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  421. SERIAL_ECHOPGM(MSG_AUTHOR);
  422. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  423. SERIAL_ECHOPGM("Compiled: ");
  424. SERIAL_ECHOLNPGM(__DATE__);
  425. #endif
  426. #endif
  427. SERIAL_ECHO_START;
  428. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  429. SERIAL_ECHO(freeMemory());
  430. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  431. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  432. for(int8_t i = 0; i < BUFSIZE; i++)
  433. {
  434. fromsd[i] = false;
  435. }
  436. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  437. Config_RetrieveSettings();
  438. tp_init(); // Initialize temperature loop
  439. plan_init(); // Initialize planner;
  440. watchdog_init();
  441. st_init(); // Initialize stepper, this enables interrupts!
  442. setup_photpin();
  443. servo_init();
  444. lcd_init();
  445. _delay_ms(1000); // wait 1sec to display the splash screen
  446. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  447. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  448. #endif
  449. #ifdef DIGIPOT_I2C
  450. digipot_i2c_init();
  451. #endif
  452. }
  453. void loop()
  454. {
  455. if(buflen < (BUFSIZE-1))
  456. get_command();
  457. #ifdef SDSUPPORT
  458. card.checkautostart(false);
  459. #endif
  460. if(buflen)
  461. {
  462. #ifdef SDSUPPORT
  463. if(card.saving)
  464. {
  465. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  466. {
  467. card.write_command(cmdbuffer[bufindr]);
  468. if(card.logging)
  469. {
  470. process_commands();
  471. }
  472. else
  473. {
  474. SERIAL_PROTOCOLLNPGM(MSG_OK);
  475. }
  476. }
  477. else
  478. {
  479. card.closefile();
  480. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  481. }
  482. }
  483. else
  484. {
  485. process_commands();
  486. }
  487. #else
  488. process_commands();
  489. #endif //SDSUPPORT
  490. buflen = (buflen-1);
  491. bufindr = (bufindr + 1)%BUFSIZE;
  492. }
  493. //check heater every n milliseconds
  494. manage_heater();
  495. manage_inactivity();
  496. checkHitEndstops();
  497. lcd_update();
  498. }
  499. void get_command()
  500. {
  501. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  502. serial_char = MYSERIAL.read();
  503. if(serial_char == '\n' ||
  504. serial_char == '\r' ||
  505. (serial_char == ':' && comment_mode == false) ||
  506. serial_count >= (MAX_CMD_SIZE - 1) )
  507. {
  508. if(!serial_count) { //if empty line
  509. comment_mode = false; //for new command
  510. return;
  511. }
  512. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  513. if(!comment_mode){
  514. comment_mode = false; //for new command
  515. fromsd[bufindw] = false;
  516. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  517. {
  518. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  519. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  520. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  521. SERIAL_ERROR_START;
  522. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  523. SERIAL_ERRORLN(gcode_LastN);
  524. //Serial.println(gcode_N);
  525. FlushSerialRequestResend();
  526. serial_count = 0;
  527. return;
  528. }
  529. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  530. {
  531. byte checksum = 0;
  532. byte count = 0;
  533. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  534. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  535. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  536. SERIAL_ERROR_START;
  537. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  538. SERIAL_ERRORLN(gcode_LastN);
  539. FlushSerialRequestResend();
  540. serial_count = 0;
  541. return;
  542. }
  543. //if no errors, continue parsing
  544. }
  545. else
  546. {
  547. SERIAL_ERROR_START;
  548. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  549. SERIAL_ERRORLN(gcode_LastN);
  550. FlushSerialRequestResend();
  551. serial_count = 0;
  552. return;
  553. }
  554. gcode_LastN = gcode_N;
  555. //if no errors, continue parsing
  556. }
  557. else // if we don't receive 'N' but still see '*'
  558. {
  559. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  560. {
  561. SERIAL_ERROR_START;
  562. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  563. SERIAL_ERRORLN(gcode_LastN);
  564. serial_count = 0;
  565. return;
  566. }
  567. }
  568. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  569. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  570. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  571. case 0:
  572. case 1:
  573. case 2:
  574. case 3:
  575. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  576. #ifdef SDSUPPORT
  577. if(card.saving)
  578. break;
  579. #endif //SDSUPPORT
  580. SERIAL_PROTOCOLLNPGM(MSG_OK);
  581. }
  582. else {
  583. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  584. LCD_MESSAGEPGM(MSG_STOPPED);
  585. }
  586. break;
  587. default:
  588. break;
  589. }
  590. }
  591. bufindw = (bufindw + 1)%BUFSIZE;
  592. buflen += 1;
  593. }
  594. serial_count = 0; //clear buffer
  595. }
  596. else
  597. {
  598. if(serial_char == ';') comment_mode = true;
  599. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  600. }
  601. }
  602. #ifdef SDSUPPORT
  603. if(!card.sdprinting || serial_count!=0){
  604. return;
  605. }
  606. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  607. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  608. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  609. static bool stop_buffering=false;
  610. if(buflen==0) stop_buffering=false;
  611. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  612. int16_t n=card.get();
  613. serial_char = (char)n;
  614. if(serial_char == '\n' ||
  615. serial_char == '\r' ||
  616. (serial_char == '#' && comment_mode == false) ||
  617. (serial_char == ':' && comment_mode == false) ||
  618. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  619. {
  620. if(card.eof()){
  621. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  622. stoptime=millis();
  623. char time[30];
  624. unsigned long t=(stoptime-starttime)/1000;
  625. int hours, minutes;
  626. minutes=(t/60)%60;
  627. hours=t/60/60;
  628. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  629. SERIAL_ECHO_START;
  630. SERIAL_ECHOLN(time);
  631. lcd_setstatus(time);
  632. card.printingHasFinished();
  633. card.checkautostart(true);
  634. }
  635. if(serial_char=='#')
  636. stop_buffering=true;
  637. if(!serial_count)
  638. {
  639. comment_mode = false; //for new command
  640. return; //if empty line
  641. }
  642. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  643. // if(!comment_mode){
  644. fromsd[bufindw] = true;
  645. buflen += 1;
  646. bufindw = (bufindw + 1)%BUFSIZE;
  647. // }
  648. comment_mode = false; //for new command
  649. serial_count = 0; //clear buffer
  650. }
  651. else
  652. {
  653. if(serial_char == ';') comment_mode = true;
  654. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  655. }
  656. }
  657. #endif //SDSUPPORT
  658. }
  659. float code_value()
  660. {
  661. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  662. }
  663. long code_value_long()
  664. {
  665. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  666. }
  667. bool code_seen(char code)
  668. {
  669. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  670. return (strchr_pointer != NULL); //Return True if a character was found
  671. }
  672. #define DEFINE_PGM_READ_ANY(type, reader) \
  673. static inline type pgm_read_any(const type *p) \
  674. { return pgm_read_##reader##_near(p); }
  675. DEFINE_PGM_READ_ANY(float, float);
  676. DEFINE_PGM_READ_ANY(signed char, byte);
  677. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  678. static const PROGMEM type array##_P[3] = \
  679. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  680. static inline type array(int axis) \
  681. { return pgm_read_any(&array##_P[axis]); }
  682. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  683. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  684. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  685. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  686. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  687. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  688. #ifdef DUAL_X_CARRIAGE
  689. #if EXTRUDERS == 1 || defined(COREXY) \
  690. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  691. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  692. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  693. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  694. #endif
  695. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  696. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  697. #endif
  698. #define DXC_FULL_CONTROL_MODE 0
  699. #define DXC_AUTO_PARK_MODE 1
  700. #define DXC_DUPLICATION_MODE 2
  701. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  702. static float x_home_pos(int extruder) {
  703. if (extruder == 0)
  704. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  705. else
  706. // In dual carriage mode the extruder offset provides an override of the
  707. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  708. // This allow soft recalibration of the second extruder offset position without firmware reflash
  709. // (through the M218 command).
  710. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  711. }
  712. static int x_home_dir(int extruder) {
  713. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  714. }
  715. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  716. static bool active_extruder_parked = false; // used in mode 1 & 2
  717. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  718. static unsigned long delayed_move_time = 0; // used in mode 1
  719. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  720. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  721. bool extruder_duplication_enabled = false; // used in mode 2
  722. #endif //DUAL_X_CARRIAGE
  723. static void axis_is_at_home(int axis) {
  724. #ifdef DUAL_X_CARRIAGE
  725. if (axis == X_AXIS) {
  726. if (active_extruder != 0) {
  727. current_position[X_AXIS] = x_home_pos(active_extruder);
  728. min_pos[X_AXIS] = X2_MIN_POS;
  729. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  730. return;
  731. }
  732. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  733. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  734. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  735. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  736. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  737. return;
  738. }
  739. }
  740. #endif
  741. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  742. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  743. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  744. }
  745. #ifdef ENABLE_AUTO_BED_LEVELING
  746. #ifdef ACCURATE_BED_LEVELING
  747. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  748. {
  749. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  750. planeNormal.debug("planeNormal");
  751. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  752. //bedLevel.debug("bedLevel");
  753. //plan_bed_level_matrix.debug("bed level before");
  754. //vector_3 uncorrected_position = plan_get_position_mm();
  755. //uncorrected_position.debug("position before");
  756. vector_3 corrected_position = plan_get_position();
  757. // corrected_position.debug("position after");
  758. current_position[X_AXIS] = corrected_position.x;
  759. current_position[Y_AXIS] = corrected_position.y;
  760. current_position[Z_AXIS] = corrected_position.z;
  761. // but the bed at 0 so we don't go below it.
  762. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  764. }
  765. #else
  766. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  767. plan_bed_level_matrix.set_to_identity();
  768. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  769. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  770. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  771. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  772. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  773. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  774. //planeNormal.debug("planeNormal");
  775. //yPositive.debug("yPositive");
  776. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  777. //bedLevel.debug("bedLevel");
  778. //plan_bed_level_matrix.debug("bed level before");
  779. //vector_3 uncorrected_position = plan_get_position_mm();
  780. //uncorrected_position.debug("position before");
  781. // and set our bed level equation to do the right thing
  782. //plan_bed_level_matrix.debug("bed level after");
  783. vector_3 corrected_position = plan_get_position();
  784. //corrected_position.debug("position after");
  785. current_position[X_AXIS] = corrected_position.x;
  786. current_position[Y_AXIS] = corrected_position.y;
  787. current_position[Z_AXIS] = corrected_position.z;
  788. // but the bed at 0 so we don't go below it.
  789. current_position[Z_AXIS] = zprobe_zoffset;
  790. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  791. }
  792. #endif // ACCURATE_BED_LEVELING
  793. static void run_z_probe() {
  794. plan_bed_level_matrix.set_to_identity();
  795. feedrate = homing_feedrate[Z_AXIS];
  796. // move down until you find the bed
  797. float zPosition = -10;
  798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  799. st_synchronize();
  800. // we have to let the planner know where we are right now as it is not where we said to go.
  801. zPosition = st_get_position_mm(Z_AXIS);
  802. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  803. // move up the retract distance
  804. zPosition += home_retract_mm(Z_AXIS);
  805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  806. st_synchronize();
  807. // move back down slowly to find bed
  808. feedrate = homing_feedrate[Z_AXIS]/4;
  809. zPosition -= home_retract_mm(Z_AXIS) * 2;
  810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  811. st_synchronize();
  812. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  813. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  814. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  815. }
  816. static void do_blocking_move_to(float x, float y, float z) {
  817. float oldFeedRate = feedrate;
  818. feedrate = XY_TRAVEL_SPEED;
  819. current_position[X_AXIS] = x;
  820. current_position[Y_AXIS] = y;
  821. current_position[Z_AXIS] = z;
  822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  823. st_synchronize();
  824. feedrate = oldFeedRate;
  825. }
  826. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  827. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  828. }
  829. static void setup_for_endstop_move() {
  830. saved_feedrate = feedrate;
  831. saved_feedmultiply = feedmultiply;
  832. feedmultiply = 100;
  833. previous_millis_cmd = millis();
  834. enable_endstops(true);
  835. }
  836. static void clean_up_after_endstop_move() {
  837. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  838. enable_endstops(false);
  839. #endif
  840. feedrate = saved_feedrate;
  841. feedmultiply = saved_feedmultiply;
  842. previous_millis_cmd = millis();
  843. }
  844. static void engage_z_probe() {
  845. // Engage Z Servo endstop if enabled
  846. #ifdef SERVO_ENDSTOPS
  847. if (servo_endstops[Z_AXIS] > -1) {
  848. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  849. servos[servo_endstops[Z_AXIS]].attach(0);
  850. #endif
  851. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  852. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  853. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  854. servos[servo_endstops[Z_AXIS]].detach();
  855. #endif
  856. }
  857. #endif
  858. }
  859. static void retract_z_probe() {
  860. // Retract Z Servo endstop if enabled
  861. #ifdef SERVO_ENDSTOPS
  862. if (servo_endstops[Z_AXIS] > -1) {
  863. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  864. servos[servo_endstops[Z_AXIS]].attach(0);
  865. #endif
  866. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  867. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  868. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  869. servos[servo_endstops[Z_AXIS]].detach();
  870. #endif
  871. }
  872. #endif
  873. }
  874. /// Probe bed height at position (x,y), returns the measured z value
  875. static float probe_pt(float x, float y, float z_before) {
  876. // move to right place
  877. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  878. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  879. engage_z_probe(); // Engage Z Servo endstop if available
  880. run_z_probe();
  881. float measured_z = current_position[Z_AXIS];
  882. retract_z_probe();
  883. SERIAL_PROTOCOLPGM(MSG_BED);
  884. SERIAL_PROTOCOLPGM(" x: ");
  885. SERIAL_PROTOCOL(x);
  886. SERIAL_PROTOCOLPGM(" y: ");
  887. SERIAL_PROTOCOL(y);
  888. SERIAL_PROTOCOLPGM(" z: ");
  889. SERIAL_PROTOCOL(measured_z);
  890. SERIAL_PROTOCOLPGM("\n");
  891. return measured_z;
  892. }
  893. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  894. static void homeaxis(int axis) {
  895. #define HOMEAXIS_DO(LETTER) \
  896. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  897. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  898. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  899. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  900. 0) {
  901. int axis_home_dir = home_dir(axis);
  902. #ifdef DUAL_X_CARRIAGE
  903. if (axis == X_AXIS)
  904. axis_home_dir = x_home_dir(active_extruder);
  905. #endif
  906. current_position[axis] = 0;
  907. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  908. // Engage Servo endstop if enabled
  909. #ifdef SERVO_ENDSTOPS
  910. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  911. if (axis==Z_AXIS) {
  912. engage_z_probe();
  913. }
  914. else
  915. #endif
  916. if (servo_endstops[axis] > -1) {
  917. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  918. }
  919. #endif
  920. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  921. feedrate = homing_feedrate[axis];
  922. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  923. st_synchronize();
  924. current_position[axis] = 0;
  925. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  926. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  927. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  928. st_synchronize();
  929. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  930. #ifdef DELTA
  931. feedrate = homing_feedrate[axis]/10;
  932. #else
  933. feedrate = homing_feedrate[axis]/2 ;
  934. #endif
  935. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  936. st_synchronize();
  937. #ifdef DELTA
  938. // retrace by the amount specified in endstop_adj
  939. if (endstop_adj[axis] * axis_home_dir < 0) {
  940. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  941. destination[axis] = endstop_adj[axis];
  942. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  943. st_synchronize();
  944. }
  945. #endif
  946. axis_is_at_home(axis);
  947. destination[axis] = current_position[axis];
  948. feedrate = 0.0;
  949. endstops_hit_on_purpose();
  950. axis_known_position[axis] = true;
  951. // Retract Servo endstop if enabled
  952. #ifdef SERVO_ENDSTOPS
  953. if (servo_endstops[axis] > -1) {
  954. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  955. }
  956. #endif
  957. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  958. if (axis==Z_AXIS) retract_z_probe();
  959. #endif
  960. }
  961. }
  962. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  963. void refresh_cmd_timeout(void)
  964. {
  965. previous_millis_cmd = millis();
  966. }
  967. void process_commands()
  968. {
  969. unsigned long codenum; //throw away variable
  970. char *starpos = NULL;
  971. #ifdef ENABLE_AUTO_BED_LEVELING
  972. float x_tmp, y_tmp, z_tmp, real_z;
  973. #endif
  974. if(code_seen('G'))
  975. {
  976. switch((int)code_value())
  977. {
  978. case 0: // G0 -> G1
  979. case 1: // G1
  980. if(Stopped == false) {
  981. get_coordinates(); // For X Y Z E F
  982. prepare_move();
  983. //ClearToSend();
  984. return;
  985. }
  986. //break;
  987. case 2: // G2 - CW ARC
  988. if(Stopped == false) {
  989. get_arc_coordinates();
  990. prepare_arc_move(true);
  991. return;
  992. }
  993. case 3: // G3 - CCW ARC
  994. if(Stopped == false) {
  995. get_arc_coordinates();
  996. prepare_arc_move(false);
  997. return;
  998. }
  999. case 4: // G4 dwell
  1000. LCD_MESSAGEPGM(MSG_DWELL);
  1001. codenum = 0;
  1002. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1003. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1004. st_synchronize();
  1005. codenum += millis(); // keep track of when we started waiting
  1006. previous_millis_cmd = millis();
  1007. while(millis() < codenum ){
  1008. manage_heater();
  1009. manage_inactivity();
  1010. lcd_update();
  1011. }
  1012. break;
  1013. #ifdef FWRETRACT
  1014. case 10: // G10 retract
  1015. if(!retracted)
  1016. {
  1017. destination[X_AXIS]=current_position[X_AXIS];
  1018. destination[Y_AXIS]=current_position[Y_AXIS];
  1019. destination[Z_AXIS]=current_position[Z_AXIS];
  1020. current_position[Z_AXIS]-=retract_zlift;
  1021. destination[E_AXIS]=current_position[E_AXIS];
  1022. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1023. plan_set_e_position(current_position[E_AXIS]);
  1024. float oldFeedrate = feedrate;
  1025. feedrate=retract_feedrate;
  1026. retracted=true;
  1027. prepare_move();
  1028. feedrate = oldFeedrate;
  1029. }
  1030. break;
  1031. case 11: // G11 retract_recover
  1032. if(retracted)
  1033. {
  1034. destination[X_AXIS]=current_position[X_AXIS];
  1035. destination[Y_AXIS]=current_position[Y_AXIS];
  1036. destination[Z_AXIS]=current_position[Z_AXIS];
  1037. current_position[Z_AXIS]+=retract_zlift;
  1038. destination[E_AXIS]=current_position[E_AXIS];
  1039. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1040. plan_set_e_position(current_position[E_AXIS]);
  1041. float oldFeedrate = feedrate;
  1042. feedrate=retract_recover_feedrate;
  1043. retracted=false;
  1044. prepare_move();
  1045. feedrate = oldFeedrate;
  1046. }
  1047. break;
  1048. #endif //FWRETRACT
  1049. case 28: //G28 Home all Axis one at a time
  1050. #ifdef ENABLE_AUTO_BED_LEVELING
  1051. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1052. #endif //ENABLE_AUTO_BED_LEVELING
  1053. saved_feedrate = feedrate;
  1054. saved_feedmultiply = feedmultiply;
  1055. feedmultiply = 100;
  1056. previous_millis_cmd = millis();
  1057. enable_endstops(true);
  1058. for(int8_t i=0; i < NUM_AXIS; i++) {
  1059. destination[i] = current_position[i];
  1060. }
  1061. feedrate = 0.0;
  1062. #ifdef DELTA
  1063. // A delta can only safely home all axis at the same time
  1064. // all axis have to home at the same time
  1065. // Move all carriages up together until the first endstop is hit.
  1066. current_position[X_AXIS] = 0;
  1067. current_position[Y_AXIS] = 0;
  1068. current_position[Z_AXIS] = 0;
  1069. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1070. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1071. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1072. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1073. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1074. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1075. st_synchronize();
  1076. endstops_hit_on_purpose();
  1077. current_position[X_AXIS] = destination[X_AXIS];
  1078. current_position[Y_AXIS] = destination[Y_AXIS];
  1079. current_position[Z_AXIS] = destination[Z_AXIS];
  1080. // take care of back off and rehome now we are all at the top
  1081. HOMEAXIS(X);
  1082. HOMEAXIS(Y);
  1083. HOMEAXIS(Z);
  1084. calculate_delta(current_position);
  1085. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1086. #else // NOT DELTA
  1087. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1088. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1089. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1090. HOMEAXIS(Z);
  1091. }
  1092. #endif
  1093. #ifdef QUICK_HOME
  1094. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1095. {
  1096. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1097. #ifndef DUAL_X_CARRIAGE
  1098. int x_axis_home_dir = home_dir(X_AXIS);
  1099. #else
  1100. int x_axis_home_dir = x_home_dir(active_extruder);
  1101. extruder_duplication_enabled = false;
  1102. #endif
  1103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1104. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1105. feedrate = homing_feedrate[X_AXIS];
  1106. if(homing_feedrate[Y_AXIS]<feedrate)
  1107. feedrate =homing_feedrate[Y_AXIS];
  1108. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1109. st_synchronize();
  1110. axis_is_at_home(X_AXIS);
  1111. axis_is_at_home(Y_AXIS);
  1112. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1113. destination[X_AXIS] = current_position[X_AXIS];
  1114. destination[Y_AXIS] = current_position[Y_AXIS];
  1115. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1116. feedrate = 0.0;
  1117. st_synchronize();
  1118. endstops_hit_on_purpose();
  1119. current_position[X_AXIS] = destination[X_AXIS];
  1120. current_position[Y_AXIS] = destination[Y_AXIS];
  1121. current_position[Z_AXIS] = destination[Z_AXIS];
  1122. }
  1123. #endif
  1124. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1125. {
  1126. #ifdef DUAL_X_CARRIAGE
  1127. int tmp_extruder = active_extruder;
  1128. extruder_duplication_enabled = false;
  1129. active_extruder = !active_extruder;
  1130. HOMEAXIS(X);
  1131. inactive_extruder_x_pos = current_position[X_AXIS];
  1132. active_extruder = tmp_extruder;
  1133. HOMEAXIS(X);
  1134. // reset state used by the different modes
  1135. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1136. delayed_move_time = 0;
  1137. active_extruder_parked = true;
  1138. #else
  1139. HOMEAXIS(X);
  1140. #endif
  1141. }
  1142. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1143. HOMEAXIS(Y);
  1144. }
  1145. if(code_seen(axis_codes[X_AXIS]))
  1146. {
  1147. if(code_value_long() != 0) {
  1148. current_position[X_AXIS]=code_value()+add_homeing[0];
  1149. }
  1150. }
  1151. if(code_seen(axis_codes[Y_AXIS])) {
  1152. if(code_value_long() != 0) {
  1153. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1154. }
  1155. }
  1156. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1157. #ifndef Z_SAFE_HOMING
  1158. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1159. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1160. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1161. feedrate = max_feedrate[Z_AXIS];
  1162. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1163. st_synchronize();
  1164. #endif
  1165. HOMEAXIS(Z);
  1166. }
  1167. #else // Z Safe mode activated.
  1168. if(home_all_axis) {
  1169. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1170. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1171. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1172. feedrate = XY_TRAVEL_SPEED;
  1173. current_position[Z_AXIS] = 0;
  1174. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1175. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1176. st_synchronize();
  1177. current_position[X_AXIS] = destination[X_AXIS];
  1178. current_position[Y_AXIS] = destination[Y_AXIS];
  1179. HOMEAXIS(Z);
  1180. }
  1181. // Let's see if X and Y are homed and probe is inside bed area.
  1182. if(code_seen(axis_codes[Z_AXIS])) {
  1183. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1184. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1185. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1186. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1187. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1188. current_position[Z_AXIS] = 0;
  1189. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1190. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1191. feedrate = max_feedrate[Z_AXIS];
  1192. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1193. st_synchronize();
  1194. HOMEAXIS(Z);
  1195. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1196. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1197. SERIAL_ECHO_START;
  1198. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1199. } else {
  1200. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1201. SERIAL_ECHO_START;
  1202. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1203. }
  1204. }
  1205. #endif
  1206. #endif
  1207. if(code_seen(axis_codes[Z_AXIS])) {
  1208. if(code_value_long() != 0) {
  1209. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1210. }
  1211. }
  1212. #ifdef ENABLE_AUTO_BED_LEVELING
  1213. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1214. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1215. }
  1216. #endif
  1217. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1218. #endif // else DELTA
  1219. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1220. enable_endstops(false);
  1221. #endif
  1222. feedrate = saved_feedrate;
  1223. feedmultiply = saved_feedmultiply;
  1224. previous_millis_cmd = millis();
  1225. endstops_hit_on_purpose();
  1226. break;
  1227. #ifdef ENABLE_AUTO_BED_LEVELING
  1228. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1229. {
  1230. #if Z_MIN_PIN == -1
  1231. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1232. #endif
  1233. st_synchronize();
  1234. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1235. //vector_3 corrected_position = plan_get_position_mm();
  1236. //corrected_position.debug("position before G29");
  1237. plan_bed_level_matrix.set_to_identity();
  1238. vector_3 uncorrected_position = plan_get_position();
  1239. //uncorrected_position.debug("position durring G29");
  1240. current_position[X_AXIS] = uncorrected_position.x;
  1241. current_position[Y_AXIS] = uncorrected_position.y;
  1242. current_position[Z_AXIS] = uncorrected_position.z;
  1243. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1244. setup_for_endstop_move();
  1245. feedrate = homing_feedrate[Z_AXIS];
  1246. #ifdef ACCURATE_BED_LEVELING
  1247. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1248. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1249. // solve the plane equation ax + by + d = z
  1250. // A is the matrix with rows [x y 1] for all the probed points
  1251. // B is the vector of the Z positions
  1252. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1253. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1254. // "A" matrix of the linear system of equations
  1255. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1256. // "B" vector of Z points
  1257. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1258. int probePointCounter = 0;
  1259. bool zig = true;
  1260. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1261. {
  1262. int xProbe, xInc;
  1263. if (zig)
  1264. {
  1265. xProbe = LEFT_PROBE_BED_POSITION;
  1266. //xEnd = RIGHT_PROBE_BED_POSITION;
  1267. xInc = xGridSpacing;
  1268. zig = false;
  1269. } else // zag
  1270. {
  1271. xProbe = RIGHT_PROBE_BED_POSITION;
  1272. //xEnd = LEFT_PROBE_BED_POSITION;
  1273. xInc = -xGridSpacing;
  1274. zig = true;
  1275. }
  1276. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1277. {
  1278. float z_before;
  1279. if (probePointCounter == 0)
  1280. {
  1281. // raise before probing
  1282. z_before = Z_RAISE_BEFORE_PROBING;
  1283. } else
  1284. {
  1285. // raise extruder
  1286. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1287. }
  1288. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1289. eqnBVector[probePointCounter] = measured_z;
  1290. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1291. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1292. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1293. probePointCounter++;
  1294. xProbe += xInc;
  1295. }
  1296. }
  1297. clean_up_after_endstop_move();
  1298. // solve lsq problem
  1299. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1300. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1301. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1302. SERIAL_PROTOCOLPGM(" b: ");
  1303. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1304. SERIAL_PROTOCOLPGM(" d: ");
  1305. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1306. set_bed_level_equation_lsq(plane_equation_coefficients);
  1307. free(plane_equation_coefficients);
  1308. #else // ACCURATE_BED_LEVELING not defined
  1309. // prob 1
  1310. float z_at_xLeft_yBack = probe_pt(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, Z_RAISE_BEFORE_PROBING);
  1311. // prob 2
  1312. float z_at_xLeft_yFront = probe_pt(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1313. // prob 3
  1314. float z_at_xRight_yFront = probe_pt(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1315. clean_up_after_endstop_move();
  1316. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1317. #endif // ACCURATE_BED_LEVELING
  1318. st_synchronize();
  1319. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1320. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1321. // When the bed is uneven, this height must be corrected.
  1322. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1323. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1324. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1325. z_tmp = current_position[Z_AXIS];
  1326. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1327. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1328. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1329. }
  1330. break;
  1331. case 30: // G30 Single Z Probe
  1332. {
  1333. engage_z_probe(); // Engage Z Servo endstop if available
  1334. st_synchronize();
  1335. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1336. setup_for_endstop_move();
  1337. feedrate = homing_feedrate[Z_AXIS];
  1338. run_z_probe();
  1339. SERIAL_PROTOCOLPGM(MSG_BED);
  1340. SERIAL_PROTOCOLPGM(" X: ");
  1341. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1342. SERIAL_PROTOCOLPGM(" Y: ");
  1343. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1344. SERIAL_PROTOCOLPGM(" Z: ");
  1345. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1346. SERIAL_PROTOCOLPGM("\n");
  1347. clean_up_after_endstop_move();
  1348. retract_z_probe(); // Retract Z Servo endstop if available
  1349. }
  1350. break;
  1351. #endif // ENABLE_AUTO_BED_LEVELING
  1352. case 90: // G90
  1353. relative_mode = false;
  1354. break;
  1355. case 91: // G91
  1356. relative_mode = true;
  1357. break;
  1358. case 92: // G92
  1359. if(!code_seen(axis_codes[E_AXIS]))
  1360. st_synchronize();
  1361. for(int8_t i=0; i < NUM_AXIS; i++) {
  1362. if(code_seen(axis_codes[i])) {
  1363. if(i == E_AXIS) {
  1364. current_position[i] = code_value();
  1365. plan_set_e_position(current_position[E_AXIS]);
  1366. }
  1367. else {
  1368. current_position[i] = code_value()+add_homeing[i];
  1369. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1370. }
  1371. }
  1372. }
  1373. break;
  1374. }
  1375. }
  1376. else if(code_seen('M'))
  1377. {
  1378. switch( (int)code_value() )
  1379. {
  1380. #ifdef ULTIPANEL
  1381. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1382. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1383. {
  1384. LCD_MESSAGEPGM(MSG_USERWAIT);
  1385. codenum = 0;
  1386. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1387. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1388. st_synchronize();
  1389. previous_millis_cmd = millis();
  1390. if (codenum > 0){
  1391. codenum += millis(); // keep track of when we started waiting
  1392. while(millis() < codenum && !lcd_clicked()){
  1393. manage_heater();
  1394. manage_inactivity();
  1395. lcd_update();
  1396. }
  1397. }else{
  1398. while(!lcd_clicked()){
  1399. manage_heater();
  1400. manage_inactivity();
  1401. lcd_update();
  1402. }
  1403. }
  1404. LCD_MESSAGEPGM(MSG_RESUMING);
  1405. }
  1406. break;
  1407. #endif
  1408. case 17:
  1409. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1410. enable_x();
  1411. enable_y();
  1412. enable_z();
  1413. enable_e0();
  1414. enable_e1();
  1415. enable_e2();
  1416. break;
  1417. #ifdef SDSUPPORT
  1418. case 20: // M20 - list SD card
  1419. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1420. card.ls();
  1421. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1422. break;
  1423. case 21: // M21 - init SD card
  1424. card.initsd();
  1425. break;
  1426. case 22: //M22 - release SD card
  1427. card.release();
  1428. break;
  1429. case 23: //M23 - Select file
  1430. starpos = (strchr(strchr_pointer + 4,'*'));
  1431. if(starpos!=NULL)
  1432. *(starpos-1)='\0';
  1433. card.openFile(strchr_pointer + 4,true);
  1434. break;
  1435. case 24: //M24 - Start SD print
  1436. card.startFileprint();
  1437. starttime=millis();
  1438. break;
  1439. case 25: //M25 - Pause SD print
  1440. card.pauseSDPrint();
  1441. break;
  1442. case 26: //M26 - Set SD index
  1443. if(card.cardOK && code_seen('S')) {
  1444. card.setIndex(code_value_long());
  1445. }
  1446. break;
  1447. case 27: //M27 - Get SD status
  1448. card.getStatus();
  1449. break;
  1450. case 28: //M28 - Start SD write
  1451. starpos = (strchr(strchr_pointer + 4,'*'));
  1452. if(starpos != NULL){
  1453. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1454. strchr_pointer = strchr(npos,' ') + 1;
  1455. *(starpos-1) = '\0';
  1456. }
  1457. card.openFile(strchr_pointer+4,false);
  1458. break;
  1459. case 29: //M29 - Stop SD write
  1460. //processed in write to file routine above
  1461. //card,saving = false;
  1462. break;
  1463. case 30: //M30 <filename> Delete File
  1464. if (card.cardOK){
  1465. card.closefile();
  1466. starpos = (strchr(strchr_pointer + 4,'*'));
  1467. if(starpos != NULL){
  1468. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1469. strchr_pointer = strchr(npos,' ') + 1;
  1470. *(starpos-1) = '\0';
  1471. }
  1472. card.removeFile(strchr_pointer + 4);
  1473. }
  1474. break;
  1475. case 32: //M32 - Select file and start SD print
  1476. {
  1477. if(card.sdprinting) {
  1478. st_synchronize();
  1479. }
  1480. starpos = (strchr(strchr_pointer + 4,'*'));
  1481. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1482. if(namestartpos==NULL)
  1483. {
  1484. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1485. }
  1486. else
  1487. namestartpos++; //to skip the '!'
  1488. if(starpos!=NULL)
  1489. *(starpos-1)='\0';
  1490. bool call_procedure=(code_seen('P'));
  1491. if(strchr_pointer>namestartpos)
  1492. call_procedure=false; //false alert, 'P' found within filename
  1493. if( card.cardOK )
  1494. {
  1495. card.openFile(namestartpos,true,!call_procedure);
  1496. if(code_seen('S'))
  1497. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1498. card.setIndex(code_value_long());
  1499. card.startFileprint();
  1500. if(!call_procedure)
  1501. starttime=millis(); //procedure calls count as normal print time.
  1502. }
  1503. } break;
  1504. case 928: //M928 - Start SD write
  1505. starpos = (strchr(strchr_pointer + 5,'*'));
  1506. if(starpos != NULL){
  1507. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1508. strchr_pointer = strchr(npos,' ') + 1;
  1509. *(starpos-1) = '\0';
  1510. }
  1511. card.openLogFile(strchr_pointer+5);
  1512. break;
  1513. #endif //SDSUPPORT
  1514. case 31: //M31 take time since the start of the SD print or an M109 command
  1515. {
  1516. stoptime=millis();
  1517. char time[30];
  1518. unsigned long t=(stoptime-starttime)/1000;
  1519. int sec,min;
  1520. min=t/60;
  1521. sec=t%60;
  1522. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1523. SERIAL_ECHO_START;
  1524. SERIAL_ECHOLN(time);
  1525. lcd_setstatus(time);
  1526. autotempShutdown();
  1527. }
  1528. break;
  1529. case 42: //M42 -Change pin status via gcode
  1530. if (code_seen('S'))
  1531. {
  1532. int pin_status = code_value();
  1533. int pin_number = LED_PIN;
  1534. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1535. pin_number = code_value();
  1536. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1537. {
  1538. if (sensitive_pins[i] == pin_number)
  1539. {
  1540. pin_number = -1;
  1541. break;
  1542. }
  1543. }
  1544. #if defined(FAN_PIN) && FAN_PIN > -1
  1545. if (pin_number == FAN_PIN)
  1546. fanSpeed = pin_status;
  1547. #endif
  1548. if (pin_number > -1)
  1549. {
  1550. pinMode(pin_number, OUTPUT);
  1551. digitalWrite(pin_number, pin_status);
  1552. analogWrite(pin_number, pin_status);
  1553. }
  1554. }
  1555. break;
  1556. case 104: // M104
  1557. if(setTargetedHotend(104)){
  1558. break;
  1559. }
  1560. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1561. #ifdef DUAL_X_CARRIAGE
  1562. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1563. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1564. #endif
  1565. setWatch();
  1566. break;
  1567. case 140: // M140 set bed temp
  1568. if (code_seen('S')) setTargetBed(code_value());
  1569. break;
  1570. case 105 : // M105
  1571. if(setTargetedHotend(105)){
  1572. break;
  1573. }
  1574. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1575. SERIAL_PROTOCOLPGM("ok T:");
  1576. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1577. SERIAL_PROTOCOLPGM(" /");
  1578. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1579. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1580. SERIAL_PROTOCOLPGM(" B:");
  1581. SERIAL_PROTOCOL_F(degBed(),1);
  1582. SERIAL_PROTOCOLPGM(" /");
  1583. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1584. #endif //TEMP_BED_PIN
  1585. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1586. SERIAL_PROTOCOLPGM(" T");
  1587. SERIAL_PROTOCOL(cur_extruder);
  1588. SERIAL_PROTOCOLPGM(":");
  1589. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1590. SERIAL_PROTOCOLPGM(" /");
  1591. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1592. }
  1593. #else
  1594. SERIAL_ERROR_START;
  1595. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1596. #endif
  1597. SERIAL_PROTOCOLPGM(" @:");
  1598. #ifdef EXTRUDER_WATTS
  1599. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1600. SERIAL_PROTOCOLPGM("W");
  1601. #else
  1602. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1603. #endif
  1604. SERIAL_PROTOCOLPGM(" B@:");
  1605. #ifdef BED_WATTS
  1606. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1607. SERIAL_PROTOCOLPGM("W");
  1608. #else
  1609. SERIAL_PROTOCOL(getHeaterPower(-1));
  1610. #endif
  1611. #ifdef SHOW_TEMP_ADC_VALUES
  1612. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1613. SERIAL_PROTOCOLPGM(" ADC B:");
  1614. SERIAL_PROTOCOL_F(degBed(),1);
  1615. SERIAL_PROTOCOLPGM("C->");
  1616. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1617. #endif
  1618. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1619. SERIAL_PROTOCOLPGM(" T");
  1620. SERIAL_PROTOCOL(cur_extruder);
  1621. SERIAL_PROTOCOLPGM(":");
  1622. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1623. SERIAL_PROTOCOLPGM("C->");
  1624. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1625. }
  1626. #endif
  1627. SERIAL_PROTOCOLLN("");
  1628. return;
  1629. break;
  1630. case 109:
  1631. {// M109 - Wait for extruder heater to reach target.
  1632. if(setTargetedHotend(109)){
  1633. break;
  1634. }
  1635. LCD_MESSAGEPGM(MSG_HEATING);
  1636. #ifdef AUTOTEMP
  1637. autotemp_enabled=false;
  1638. #endif
  1639. if (code_seen('S')) {
  1640. setTargetHotend(code_value(), tmp_extruder);
  1641. #ifdef DUAL_X_CARRIAGE
  1642. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1643. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1644. #endif
  1645. CooldownNoWait = true;
  1646. } else if (code_seen('R')) {
  1647. setTargetHotend(code_value(), tmp_extruder);
  1648. #ifdef DUAL_X_CARRIAGE
  1649. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1650. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1651. #endif
  1652. CooldownNoWait = false;
  1653. }
  1654. #ifdef AUTOTEMP
  1655. if (code_seen('S')) autotemp_min=code_value();
  1656. if (code_seen('B')) autotemp_max=code_value();
  1657. if (code_seen('F'))
  1658. {
  1659. autotemp_factor=code_value();
  1660. autotemp_enabled=true;
  1661. }
  1662. #endif
  1663. setWatch();
  1664. codenum = millis();
  1665. /* See if we are heating up or cooling down */
  1666. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1667. #ifdef TEMP_RESIDENCY_TIME
  1668. long residencyStart;
  1669. residencyStart = -1;
  1670. /* continue to loop until we have reached the target temp
  1671. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1672. while((residencyStart == -1) ||
  1673. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1674. #else
  1675. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1676. #endif //TEMP_RESIDENCY_TIME
  1677. if( (millis() - codenum) > 1000UL )
  1678. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1679. SERIAL_PROTOCOLPGM("T:");
  1680. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1681. SERIAL_PROTOCOLPGM(" E:");
  1682. SERIAL_PROTOCOL((int)tmp_extruder);
  1683. #ifdef TEMP_RESIDENCY_TIME
  1684. SERIAL_PROTOCOLPGM(" W:");
  1685. if(residencyStart > -1)
  1686. {
  1687. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1688. SERIAL_PROTOCOLLN( codenum );
  1689. }
  1690. else
  1691. {
  1692. SERIAL_PROTOCOLLN( "?" );
  1693. }
  1694. #else
  1695. SERIAL_PROTOCOLLN("");
  1696. #endif
  1697. codenum = millis();
  1698. }
  1699. manage_heater();
  1700. manage_inactivity();
  1701. lcd_update();
  1702. #ifdef TEMP_RESIDENCY_TIME
  1703. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1704. or when current temp falls outside the hysteresis after target temp was reached */
  1705. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1706. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1707. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1708. {
  1709. residencyStart = millis();
  1710. }
  1711. #endif //TEMP_RESIDENCY_TIME
  1712. }
  1713. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1714. starttime=millis();
  1715. previous_millis_cmd = millis();
  1716. }
  1717. break;
  1718. case 190: // M190 - Wait for bed heater to reach target.
  1719. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1720. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1721. if (code_seen('S')) {
  1722. setTargetBed(code_value());
  1723. CooldownNoWait = true;
  1724. } else if (code_seen('R')) {
  1725. setTargetBed(code_value());
  1726. CooldownNoWait = false;
  1727. }
  1728. codenum = millis();
  1729. target_direction = isHeatingBed(); // true if heating, false if cooling
  1730. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1731. {
  1732. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1733. {
  1734. float tt=degHotend(active_extruder);
  1735. SERIAL_PROTOCOLPGM("T:");
  1736. SERIAL_PROTOCOL(tt);
  1737. SERIAL_PROTOCOLPGM(" E:");
  1738. SERIAL_PROTOCOL((int)active_extruder);
  1739. SERIAL_PROTOCOLPGM(" B:");
  1740. SERIAL_PROTOCOL_F(degBed(),1);
  1741. SERIAL_PROTOCOLLN("");
  1742. codenum = millis();
  1743. }
  1744. manage_heater();
  1745. manage_inactivity();
  1746. lcd_update();
  1747. }
  1748. LCD_MESSAGEPGM(MSG_BED_DONE);
  1749. previous_millis_cmd = millis();
  1750. #endif
  1751. break;
  1752. #if defined(FAN_PIN) && FAN_PIN > -1
  1753. case 106: //M106 Fan On
  1754. if (code_seen('S')){
  1755. fanSpeed=constrain(code_value(),0,255);
  1756. }
  1757. else {
  1758. fanSpeed=255;
  1759. }
  1760. break;
  1761. case 107: //M107 Fan Off
  1762. fanSpeed = 0;
  1763. break;
  1764. #endif //FAN_PIN
  1765. #ifdef BARICUDA
  1766. // PWM for HEATER_1_PIN
  1767. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1768. case 126: //M126 valve open
  1769. if (code_seen('S')){
  1770. ValvePressure=constrain(code_value(),0,255);
  1771. }
  1772. else {
  1773. ValvePressure=255;
  1774. }
  1775. break;
  1776. case 127: //M127 valve closed
  1777. ValvePressure = 0;
  1778. break;
  1779. #endif //HEATER_1_PIN
  1780. // PWM for HEATER_2_PIN
  1781. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1782. case 128: //M128 valve open
  1783. if (code_seen('S')){
  1784. EtoPPressure=constrain(code_value(),0,255);
  1785. }
  1786. else {
  1787. EtoPPressure=255;
  1788. }
  1789. break;
  1790. case 129: //M129 valve closed
  1791. EtoPPressure = 0;
  1792. break;
  1793. #endif //HEATER_2_PIN
  1794. #endif
  1795. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1796. case 80: // M80 - Turn on Power Supply
  1797. SET_OUTPUT(PS_ON_PIN); //GND
  1798. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1799. // If you have a switch on suicide pin, this is useful
  1800. // if you want to start another print with suicide feature after
  1801. // a print without suicide...
  1802. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1803. SET_OUTPUT(SUICIDE_PIN);
  1804. WRITE(SUICIDE_PIN, HIGH);
  1805. #endif
  1806. #ifdef ULTIPANEL
  1807. powersupply = true;
  1808. LCD_MESSAGEPGM(WELCOME_MSG);
  1809. lcd_update();
  1810. #endif
  1811. break;
  1812. #endif
  1813. case 81: // M81 - Turn off Power Supply
  1814. disable_heater();
  1815. st_synchronize();
  1816. disable_e0();
  1817. disable_e1();
  1818. disable_e2();
  1819. finishAndDisableSteppers();
  1820. fanSpeed = 0;
  1821. delay(1000); // Wait a little before to switch off
  1822. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1823. st_synchronize();
  1824. suicide();
  1825. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1826. SET_OUTPUT(PS_ON_PIN);
  1827. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1828. #endif
  1829. #ifdef ULTIPANEL
  1830. powersupply = false;
  1831. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1832. lcd_update();
  1833. #endif
  1834. break;
  1835. case 82:
  1836. axis_relative_modes[3] = false;
  1837. break;
  1838. case 83:
  1839. axis_relative_modes[3] = true;
  1840. break;
  1841. case 18: //compatibility
  1842. case 84: // M84
  1843. if(code_seen('S')){
  1844. stepper_inactive_time = code_value() * 1000;
  1845. }
  1846. else
  1847. {
  1848. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1849. if(all_axis)
  1850. {
  1851. st_synchronize();
  1852. disable_e0();
  1853. disable_e1();
  1854. disable_e2();
  1855. finishAndDisableSteppers();
  1856. }
  1857. else
  1858. {
  1859. st_synchronize();
  1860. if(code_seen('X')) disable_x();
  1861. if(code_seen('Y')) disable_y();
  1862. if(code_seen('Z')) disable_z();
  1863. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1864. if(code_seen('E')) {
  1865. disable_e0();
  1866. disable_e1();
  1867. disable_e2();
  1868. }
  1869. #endif
  1870. }
  1871. }
  1872. break;
  1873. case 85: // M85
  1874. code_seen('S');
  1875. max_inactive_time = code_value() * 1000;
  1876. break;
  1877. case 92: // M92
  1878. for(int8_t i=0; i < NUM_AXIS; i++)
  1879. {
  1880. if(code_seen(axis_codes[i]))
  1881. {
  1882. if(i == 3) { // E
  1883. float value = code_value();
  1884. if(value < 20.0) {
  1885. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1886. max_e_jerk *= factor;
  1887. max_feedrate[i] *= factor;
  1888. axis_steps_per_sqr_second[i] *= factor;
  1889. }
  1890. axis_steps_per_unit[i] = value;
  1891. }
  1892. else {
  1893. axis_steps_per_unit[i] = code_value();
  1894. }
  1895. }
  1896. }
  1897. break;
  1898. case 115: // M115
  1899. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1900. break;
  1901. case 117: // M117 display message
  1902. starpos = (strchr(strchr_pointer + 5,'*'));
  1903. if(starpos!=NULL)
  1904. *(starpos-1)='\0';
  1905. lcd_setstatus(strchr_pointer + 5);
  1906. break;
  1907. case 114: // M114
  1908. SERIAL_PROTOCOLPGM("X:");
  1909. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1910. SERIAL_PROTOCOLPGM(" Y:");
  1911. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1912. SERIAL_PROTOCOLPGM(" Z:");
  1913. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1914. SERIAL_PROTOCOLPGM(" E:");
  1915. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1916. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1917. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1918. SERIAL_PROTOCOLPGM(" Y:");
  1919. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1920. SERIAL_PROTOCOLPGM(" Z:");
  1921. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1922. SERIAL_PROTOCOLLN("");
  1923. break;
  1924. case 120: // M120
  1925. enable_endstops(false) ;
  1926. break;
  1927. case 121: // M121
  1928. enable_endstops(true) ;
  1929. break;
  1930. case 119: // M119
  1931. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1932. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1933. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1934. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1935. #endif
  1936. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1937. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1938. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1939. #endif
  1940. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1941. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1942. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1943. #endif
  1944. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1945. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1946. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1947. #endif
  1948. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1949. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1950. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1951. #endif
  1952. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1953. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1954. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1955. #endif
  1956. break;
  1957. //TODO: update for all axis, use for loop
  1958. #ifdef BLINKM
  1959. case 150: // M150
  1960. {
  1961. byte red;
  1962. byte grn;
  1963. byte blu;
  1964. if(code_seen('R')) red = code_value();
  1965. if(code_seen('U')) grn = code_value();
  1966. if(code_seen('B')) blu = code_value();
  1967. SendColors(red,grn,blu);
  1968. }
  1969. break;
  1970. #endif //BLINKM
  1971. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  1972. {
  1973. float area = .0;
  1974. float radius = .0;
  1975. if(code_seen('D')) {
  1976. radius = (float)code_value() * .5;
  1977. if(radius == 0) {
  1978. area = 1;
  1979. } else {
  1980. area = M_PI * pow(radius, 2);
  1981. }
  1982. } else {
  1983. //reserved for setting filament diameter via UFID or filament measuring device
  1984. break;
  1985. }
  1986. tmp_extruder = active_extruder;
  1987. if(code_seen('T')) {
  1988. tmp_extruder = code_value();
  1989. if(tmp_extruder >= EXTRUDERS) {
  1990. SERIAL_ECHO_START;
  1991. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  1992. }
  1993. SERIAL_ECHOLN(tmp_extruder);
  1994. break;
  1995. }
  1996. volumetric_multiplier[tmp_extruder] = 1 / area;
  1997. }
  1998. break;
  1999. case 201: // M201
  2000. for(int8_t i=0; i < NUM_AXIS; i++)
  2001. {
  2002. if(code_seen(axis_codes[i]))
  2003. {
  2004. max_acceleration_units_per_sq_second[i] = code_value();
  2005. }
  2006. }
  2007. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2008. reset_acceleration_rates();
  2009. break;
  2010. #if 0 // Not used for Sprinter/grbl gen6
  2011. case 202: // M202
  2012. for(int8_t i=0; i < NUM_AXIS; i++) {
  2013. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2014. }
  2015. break;
  2016. #endif
  2017. case 203: // M203 max feedrate mm/sec
  2018. for(int8_t i=0; i < NUM_AXIS; i++) {
  2019. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2020. }
  2021. break;
  2022. case 204: // M204 acclereration S normal moves T filmanent only moves
  2023. {
  2024. if(code_seen('S')) acceleration = code_value() ;
  2025. if(code_seen('T')) retract_acceleration = code_value() ;
  2026. }
  2027. break;
  2028. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2029. {
  2030. if(code_seen('S')) minimumfeedrate = code_value();
  2031. if(code_seen('T')) mintravelfeedrate = code_value();
  2032. if(code_seen('B')) minsegmenttime = code_value() ;
  2033. if(code_seen('X')) max_xy_jerk = code_value() ;
  2034. if(code_seen('Z')) max_z_jerk = code_value() ;
  2035. if(code_seen('E')) max_e_jerk = code_value() ;
  2036. }
  2037. break;
  2038. case 206: // M206 additional homeing offset
  2039. for(int8_t i=0; i < 3; i++)
  2040. {
  2041. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2042. }
  2043. break;
  2044. #ifdef DELTA
  2045. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2046. if(code_seen('L')) {
  2047. delta_diagonal_rod= code_value();
  2048. }
  2049. if(code_seen('R')) {
  2050. delta_radius= code_value();
  2051. }
  2052. if(code_seen('S')) {
  2053. delta_segments_per_second= code_value();
  2054. }
  2055. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2056. break;
  2057. case 666: // M666 set delta endstop adjustemnt
  2058. for(int8_t i=0; i < 3; i++)
  2059. {
  2060. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2061. }
  2062. break;
  2063. #endif
  2064. #ifdef FWRETRACT
  2065. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2066. {
  2067. if(code_seen('S'))
  2068. {
  2069. retract_length = code_value() ;
  2070. }
  2071. if(code_seen('F'))
  2072. {
  2073. retract_feedrate = code_value() ;
  2074. }
  2075. if(code_seen('Z'))
  2076. {
  2077. retract_zlift = code_value() ;
  2078. }
  2079. }break;
  2080. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2081. {
  2082. if(code_seen('S'))
  2083. {
  2084. retract_recover_length = code_value() ;
  2085. }
  2086. if(code_seen('F'))
  2087. {
  2088. retract_recover_feedrate = code_value() ;
  2089. }
  2090. }break;
  2091. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2092. {
  2093. if(code_seen('S'))
  2094. {
  2095. int t= code_value() ;
  2096. switch(t)
  2097. {
  2098. case 0: autoretract_enabled=false;retracted=false;break;
  2099. case 1: autoretract_enabled=true;retracted=false;break;
  2100. default:
  2101. SERIAL_ECHO_START;
  2102. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2103. SERIAL_ECHO(cmdbuffer[bufindr]);
  2104. SERIAL_ECHOLNPGM("\"");
  2105. }
  2106. }
  2107. }break;
  2108. #endif // FWRETRACT
  2109. #if EXTRUDERS > 1
  2110. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2111. {
  2112. if(setTargetedHotend(218)){
  2113. break;
  2114. }
  2115. if(code_seen('X'))
  2116. {
  2117. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2118. }
  2119. if(code_seen('Y'))
  2120. {
  2121. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2122. }
  2123. #ifdef DUAL_X_CARRIAGE
  2124. if(code_seen('Z'))
  2125. {
  2126. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2127. }
  2128. #endif
  2129. SERIAL_ECHO_START;
  2130. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2131. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2132. {
  2133. SERIAL_ECHO(" ");
  2134. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2135. SERIAL_ECHO(",");
  2136. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2137. #ifdef DUAL_X_CARRIAGE
  2138. SERIAL_ECHO(",");
  2139. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2140. #endif
  2141. }
  2142. SERIAL_ECHOLN("");
  2143. }break;
  2144. #endif
  2145. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2146. {
  2147. if(code_seen('S'))
  2148. {
  2149. feedmultiply = code_value() ;
  2150. }
  2151. }
  2152. break;
  2153. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2154. {
  2155. if(code_seen('S'))
  2156. {
  2157. extrudemultiply = code_value() ;
  2158. }
  2159. }
  2160. break;
  2161. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2162. {
  2163. if(code_seen('P')){
  2164. int pin_number = code_value(); // pin number
  2165. int pin_state = -1; // required pin state - default is inverted
  2166. if(code_seen('S')) pin_state = code_value(); // required pin state
  2167. if(pin_state >= -1 && pin_state <= 1){
  2168. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2169. {
  2170. if (sensitive_pins[i] == pin_number)
  2171. {
  2172. pin_number = -1;
  2173. break;
  2174. }
  2175. }
  2176. if (pin_number > -1)
  2177. {
  2178. st_synchronize();
  2179. pinMode(pin_number, INPUT);
  2180. int target;
  2181. switch(pin_state){
  2182. case 1:
  2183. target = HIGH;
  2184. break;
  2185. case 0:
  2186. target = LOW;
  2187. break;
  2188. case -1:
  2189. target = !digitalRead(pin_number);
  2190. break;
  2191. }
  2192. while(digitalRead(pin_number) != target){
  2193. manage_heater();
  2194. manage_inactivity();
  2195. lcd_update();
  2196. }
  2197. }
  2198. }
  2199. }
  2200. }
  2201. break;
  2202. #if NUM_SERVOS > 0
  2203. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2204. {
  2205. int servo_index = -1;
  2206. int servo_position = 0;
  2207. if (code_seen('P'))
  2208. servo_index = code_value();
  2209. if (code_seen('S')) {
  2210. servo_position = code_value();
  2211. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2212. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2213. servos[servo_index].attach(0);
  2214. #endif
  2215. servos[servo_index].write(servo_position);
  2216. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2217. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2218. servos[servo_index].detach();
  2219. #endif
  2220. }
  2221. else {
  2222. SERIAL_ECHO_START;
  2223. SERIAL_ECHO("Servo ");
  2224. SERIAL_ECHO(servo_index);
  2225. SERIAL_ECHOLN(" out of range");
  2226. }
  2227. }
  2228. else if (servo_index >= 0) {
  2229. SERIAL_PROTOCOL(MSG_OK);
  2230. SERIAL_PROTOCOL(" Servo ");
  2231. SERIAL_PROTOCOL(servo_index);
  2232. SERIAL_PROTOCOL(": ");
  2233. SERIAL_PROTOCOL(servos[servo_index].read());
  2234. SERIAL_PROTOCOLLN("");
  2235. }
  2236. }
  2237. break;
  2238. #endif // NUM_SERVOS > 0
  2239. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2240. case 300: // M300
  2241. {
  2242. int beepS = code_seen('S') ? code_value() : 110;
  2243. int beepP = code_seen('P') ? code_value() : 1000;
  2244. if (beepS > 0)
  2245. {
  2246. #if BEEPER > 0
  2247. tone(BEEPER, beepS);
  2248. delay(beepP);
  2249. noTone(BEEPER);
  2250. #elif defined(ULTRALCD)
  2251. lcd_buzz(beepS, beepP);
  2252. #elif defined(LCD_USE_I2C_BUZZER)
  2253. lcd_buzz(beepP, beepS);
  2254. #endif
  2255. }
  2256. else
  2257. {
  2258. delay(beepP);
  2259. }
  2260. }
  2261. break;
  2262. #endif // M300
  2263. #ifdef PIDTEMP
  2264. case 301: // M301
  2265. {
  2266. if(code_seen('P')) Kp = code_value();
  2267. if(code_seen('I')) Ki = scalePID_i(code_value());
  2268. if(code_seen('D')) Kd = scalePID_d(code_value());
  2269. #ifdef PID_ADD_EXTRUSION_RATE
  2270. if(code_seen('C')) Kc = code_value();
  2271. #endif
  2272. updatePID();
  2273. SERIAL_PROTOCOL(MSG_OK);
  2274. SERIAL_PROTOCOL(" p:");
  2275. SERIAL_PROTOCOL(Kp);
  2276. SERIAL_PROTOCOL(" i:");
  2277. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2278. SERIAL_PROTOCOL(" d:");
  2279. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2280. #ifdef PID_ADD_EXTRUSION_RATE
  2281. SERIAL_PROTOCOL(" c:");
  2282. //Kc does not have scaling applied above, or in resetting defaults
  2283. SERIAL_PROTOCOL(Kc);
  2284. #endif
  2285. SERIAL_PROTOCOLLN("");
  2286. }
  2287. break;
  2288. #endif //PIDTEMP
  2289. #ifdef PIDTEMPBED
  2290. case 304: // M304
  2291. {
  2292. if(code_seen('P')) bedKp = code_value();
  2293. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2294. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2295. updatePID();
  2296. SERIAL_PROTOCOL(MSG_OK);
  2297. SERIAL_PROTOCOL(" p:");
  2298. SERIAL_PROTOCOL(bedKp);
  2299. SERIAL_PROTOCOL(" i:");
  2300. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2301. SERIAL_PROTOCOL(" d:");
  2302. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2303. SERIAL_PROTOCOLLN("");
  2304. }
  2305. break;
  2306. #endif //PIDTEMP
  2307. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2308. {
  2309. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2310. const uint8_t NUM_PULSES=16;
  2311. const float PULSE_LENGTH=0.01524;
  2312. for(int i=0; i < NUM_PULSES; i++) {
  2313. WRITE(PHOTOGRAPH_PIN, HIGH);
  2314. _delay_ms(PULSE_LENGTH);
  2315. WRITE(PHOTOGRAPH_PIN, LOW);
  2316. _delay_ms(PULSE_LENGTH);
  2317. }
  2318. delay(7.33);
  2319. for(int i=0; i < NUM_PULSES; i++) {
  2320. WRITE(PHOTOGRAPH_PIN, HIGH);
  2321. _delay_ms(PULSE_LENGTH);
  2322. WRITE(PHOTOGRAPH_PIN, LOW);
  2323. _delay_ms(PULSE_LENGTH);
  2324. }
  2325. #endif
  2326. }
  2327. break;
  2328. #ifdef DOGLCD
  2329. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2330. {
  2331. if (code_seen('C')) {
  2332. lcd_setcontrast( ((int)code_value())&63 );
  2333. }
  2334. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2335. SERIAL_PROTOCOL(lcd_contrast);
  2336. SERIAL_PROTOCOLLN("");
  2337. }
  2338. break;
  2339. #endif
  2340. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2341. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2342. {
  2343. float temp = .0;
  2344. if (code_seen('S')) temp=code_value();
  2345. set_extrude_min_temp(temp);
  2346. }
  2347. break;
  2348. #endif
  2349. case 303: // M303 PID autotune
  2350. {
  2351. float temp = 150.0;
  2352. int e=0;
  2353. int c=5;
  2354. if (code_seen('E')) e=code_value();
  2355. if (e<0)
  2356. temp=70;
  2357. if (code_seen('S')) temp=code_value();
  2358. if (code_seen('C')) c=code_value();
  2359. PID_autotune(temp, e, c);
  2360. }
  2361. break;
  2362. case 400: // M400 finish all moves
  2363. {
  2364. st_synchronize();
  2365. }
  2366. break;
  2367. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2368. case 401:
  2369. {
  2370. engage_z_probe(); // Engage Z Servo endstop if available
  2371. }
  2372. break;
  2373. case 402:
  2374. {
  2375. retract_z_probe(); // Retract Z Servo endstop if enabled
  2376. }
  2377. break;
  2378. #endif
  2379. case 500: // M500 Store settings in EEPROM
  2380. {
  2381. Config_StoreSettings();
  2382. }
  2383. break;
  2384. case 501: // M501 Read settings from EEPROM
  2385. {
  2386. Config_RetrieveSettings();
  2387. }
  2388. break;
  2389. case 502: // M502 Revert to default settings
  2390. {
  2391. Config_ResetDefault();
  2392. }
  2393. break;
  2394. case 503: // M503 print settings currently in memory
  2395. {
  2396. Config_PrintSettings();
  2397. }
  2398. break;
  2399. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2400. case 540:
  2401. {
  2402. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2403. }
  2404. break;
  2405. #endif
  2406. #ifdef FILAMENTCHANGEENABLE
  2407. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2408. {
  2409. float target[4];
  2410. float lastpos[4];
  2411. target[X_AXIS]=current_position[X_AXIS];
  2412. target[Y_AXIS]=current_position[Y_AXIS];
  2413. target[Z_AXIS]=current_position[Z_AXIS];
  2414. target[E_AXIS]=current_position[E_AXIS];
  2415. lastpos[X_AXIS]=current_position[X_AXIS];
  2416. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2417. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2418. lastpos[E_AXIS]=current_position[E_AXIS];
  2419. //retract by E
  2420. if(code_seen('E'))
  2421. {
  2422. target[E_AXIS]+= code_value();
  2423. }
  2424. else
  2425. {
  2426. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2427. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2428. #endif
  2429. }
  2430. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2431. //lift Z
  2432. if(code_seen('Z'))
  2433. {
  2434. target[Z_AXIS]+= code_value();
  2435. }
  2436. else
  2437. {
  2438. #ifdef FILAMENTCHANGE_ZADD
  2439. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2440. #endif
  2441. }
  2442. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2443. //move xy
  2444. if(code_seen('X'))
  2445. {
  2446. target[X_AXIS]+= code_value();
  2447. }
  2448. else
  2449. {
  2450. #ifdef FILAMENTCHANGE_XPOS
  2451. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2452. #endif
  2453. }
  2454. if(code_seen('Y'))
  2455. {
  2456. target[Y_AXIS]= code_value();
  2457. }
  2458. else
  2459. {
  2460. #ifdef FILAMENTCHANGE_YPOS
  2461. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2462. #endif
  2463. }
  2464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2465. if(code_seen('L'))
  2466. {
  2467. target[E_AXIS]+= code_value();
  2468. }
  2469. else
  2470. {
  2471. #ifdef FILAMENTCHANGE_FINALRETRACT
  2472. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2473. #endif
  2474. }
  2475. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2476. //finish moves
  2477. st_synchronize();
  2478. //disable extruder steppers so filament can be removed
  2479. disable_e0();
  2480. disable_e1();
  2481. disable_e2();
  2482. delay(100);
  2483. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2484. uint8_t cnt=0;
  2485. while(!lcd_clicked()){
  2486. cnt++;
  2487. manage_heater();
  2488. manage_inactivity();
  2489. lcd_update();
  2490. if(cnt==0)
  2491. {
  2492. #if BEEPER > 0
  2493. SET_OUTPUT(BEEPER);
  2494. WRITE(BEEPER,HIGH);
  2495. delay(3);
  2496. WRITE(BEEPER,LOW);
  2497. delay(3);
  2498. #else
  2499. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2500. lcd_buzz(1000/6,100);
  2501. #else
  2502. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2503. #endif
  2504. #endif
  2505. }
  2506. }
  2507. //return to normal
  2508. if(code_seen('L'))
  2509. {
  2510. target[E_AXIS]+= -code_value();
  2511. }
  2512. else
  2513. {
  2514. #ifdef FILAMENTCHANGE_FINALRETRACT
  2515. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2516. #endif
  2517. }
  2518. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2519. plan_set_e_position(current_position[E_AXIS]);
  2520. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2521. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2522. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2523. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2524. }
  2525. break;
  2526. #endif //FILAMENTCHANGEENABLE
  2527. #ifdef DUAL_X_CARRIAGE
  2528. case 605: // Set dual x-carriage movement mode:
  2529. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2530. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2531. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2532. // millimeters x-offset and an optional differential hotend temperature of
  2533. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2534. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2535. //
  2536. // Note: the X axis should be homed after changing dual x-carriage mode.
  2537. {
  2538. st_synchronize();
  2539. if (code_seen('S'))
  2540. dual_x_carriage_mode = code_value();
  2541. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2542. {
  2543. if (code_seen('X'))
  2544. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2545. if (code_seen('R'))
  2546. duplicate_extruder_temp_offset = code_value();
  2547. SERIAL_ECHO_START;
  2548. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2549. SERIAL_ECHO(" ");
  2550. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2551. SERIAL_ECHO(",");
  2552. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2553. SERIAL_ECHO(" ");
  2554. SERIAL_ECHO(duplicate_extruder_x_offset);
  2555. SERIAL_ECHO(",");
  2556. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2557. }
  2558. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2559. {
  2560. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2561. }
  2562. active_extruder_parked = false;
  2563. extruder_duplication_enabled = false;
  2564. delayed_move_time = 0;
  2565. }
  2566. break;
  2567. #endif //DUAL_X_CARRIAGE
  2568. case 907: // M907 Set digital trimpot motor current using axis codes.
  2569. {
  2570. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2571. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2572. if(code_seen('B')) digipot_current(4,code_value());
  2573. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2574. #endif
  2575. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2576. if(code_seen('X')) digipot_current(0, code_value());
  2577. #endif
  2578. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2579. if(code_seen('Z')) digipot_current(1, code_value());
  2580. #endif
  2581. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2582. if(code_seen('E')) digipot_current(2, code_value());
  2583. #endif
  2584. #ifdef DIGIPOT_I2C
  2585. // this one uses actual amps in floating point
  2586. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2587. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2588. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2589. #endif
  2590. }
  2591. break;
  2592. case 908: // M908 Control digital trimpot directly.
  2593. {
  2594. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2595. uint8_t channel,current;
  2596. if(code_seen('P')) channel=code_value();
  2597. if(code_seen('S')) current=code_value();
  2598. digitalPotWrite(channel, current);
  2599. #endif
  2600. }
  2601. break;
  2602. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2603. {
  2604. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2605. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2606. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2607. if(code_seen('B')) microstep_mode(4,code_value());
  2608. microstep_readings();
  2609. #endif
  2610. }
  2611. break;
  2612. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2613. {
  2614. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2615. if(code_seen('S')) switch((int)code_value())
  2616. {
  2617. case 1:
  2618. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2619. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2620. break;
  2621. case 2:
  2622. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2623. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2624. break;
  2625. }
  2626. microstep_readings();
  2627. #endif
  2628. }
  2629. break;
  2630. case 999: // M999: Restart after being stopped
  2631. Stopped = false;
  2632. lcd_reset_alert_level();
  2633. gcode_LastN = Stopped_gcode_LastN;
  2634. FlushSerialRequestResend();
  2635. break;
  2636. }
  2637. }
  2638. else if(code_seen('T'))
  2639. {
  2640. tmp_extruder = code_value();
  2641. if(tmp_extruder >= EXTRUDERS) {
  2642. SERIAL_ECHO_START;
  2643. SERIAL_ECHO("T");
  2644. SERIAL_ECHO(tmp_extruder);
  2645. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2646. }
  2647. else {
  2648. boolean make_move = false;
  2649. if(code_seen('F')) {
  2650. make_move = true;
  2651. next_feedrate = code_value();
  2652. if(next_feedrate > 0.0) {
  2653. feedrate = next_feedrate;
  2654. }
  2655. }
  2656. #if EXTRUDERS > 1
  2657. if(tmp_extruder != active_extruder) {
  2658. // Save current position to return to after applying extruder offset
  2659. memcpy(destination, current_position, sizeof(destination));
  2660. #ifdef DUAL_X_CARRIAGE
  2661. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2662. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2663. {
  2664. // Park old head: 1) raise 2) move to park position 3) lower
  2665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2666. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2667. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2668. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2669. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2670. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2671. st_synchronize();
  2672. }
  2673. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2674. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2675. extruder_offset[Y_AXIS][active_extruder] +
  2676. extruder_offset[Y_AXIS][tmp_extruder];
  2677. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2678. extruder_offset[Z_AXIS][active_extruder] +
  2679. extruder_offset[Z_AXIS][tmp_extruder];
  2680. active_extruder = tmp_extruder;
  2681. // This function resets the max/min values - the current position may be overwritten below.
  2682. axis_is_at_home(X_AXIS);
  2683. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2684. {
  2685. current_position[X_AXIS] = inactive_extruder_x_pos;
  2686. inactive_extruder_x_pos = destination[X_AXIS];
  2687. }
  2688. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2689. {
  2690. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2691. if (active_extruder == 0 || active_extruder_parked)
  2692. current_position[X_AXIS] = inactive_extruder_x_pos;
  2693. else
  2694. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2695. inactive_extruder_x_pos = destination[X_AXIS];
  2696. extruder_duplication_enabled = false;
  2697. }
  2698. else
  2699. {
  2700. // record raised toolhead position for use by unpark
  2701. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2702. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2703. active_extruder_parked = true;
  2704. delayed_move_time = 0;
  2705. }
  2706. #else
  2707. // Offset extruder (only by XY)
  2708. int i;
  2709. for(i = 0; i < 2; i++) {
  2710. current_position[i] = current_position[i] -
  2711. extruder_offset[i][active_extruder] +
  2712. extruder_offset[i][tmp_extruder];
  2713. }
  2714. // Set the new active extruder and position
  2715. active_extruder = tmp_extruder;
  2716. #endif //else DUAL_X_CARRIAGE
  2717. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2718. // Move to the old position if 'F' was in the parameters
  2719. if(make_move && Stopped == false) {
  2720. prepare_move();
  2721. }
  2722. }
  2723. #endif
  2724. SERIAL_ECHO_START;
  2725. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2726. SERIAL_PROTOCOLLN((int)active_extruder);
  2727. }
  2728. }
  2729. else
  2730. {
  2731. SERIAL_ECHO_START;
  2732. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2733. SERIAL_ECHO(cmdbuffer[bufindr]);
  2734. SERIAL_ECHOLNPGM("\"");
  2735. }
  2736. ClearToSend();
  2737. }
  2738. void FlushSerialRequestResend()
  2739. {
  2740. //char cmdbuffer[bufindr][100]="Resend:";
  2741. MYSERIAL.flush();
  2742. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2743. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2744. ClearToSend();
  2745. }
  2746. void ClearToSend()
  2747. {
  2748. previous_millis_cmd = millis();
  2749. #ifdef SDSUPPORT
  2750. if(fromsd[bufindr])
  2751. return;
  2752. #endif //SDSUPPORT
  2753. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2754. }
  2755. void get_coordinates()
  2756. {
  2757. bool seen[4]={false,false,false,false};
  2758. for(int8_t i=0; i < NUM_AXIS; i++) {
  2759. if(code_seen(axis_codes[i]))
  2760. {
  2761. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2762. seen[i]=true;
  2763. }
  2764. else destination[i] = current_position[i]; //Are these else lines really needed?
  2765. }
  2766. if(code_seen('F')) {
  2767. next_feedrate = code_value();
  2768. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2769. }
  2770. #ifdef FWRETRACT
  2771. if(autoretract_enabled)
  2772. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2773. {
  2774. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2775. if(echange<-MIN_RETRACT) //retract
  2776. {
  2777. if(!retracted)
  2778. {
  2779. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2780. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2781. float correctede=-echange-retract_length;
  2782. //to generate the additional steps, not the destination is changed, but inversely the current position
  2783. current_position[E_AXIS]+=-correctede;
  2784. feedrate=retract_feedrate;
  2785. retracted=true;
  2786. }
  2787. }
  2788. else
  2789. if(echange>MIN_RETRACT) //retract_recover
  2790. {
  2791. if(retracted)
  2792. {
  2793. //current_position[Z_AXIS]+=-retract_zlift;
  2794. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2795. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2796. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2797. feedrate=retract_recover_feedrate;
  2798. retracted=false;
  2799. }
  2800. }
  2801. }
  2802. #endif //FWRETRACT
  2803. }
  2804. void get_arc_coordinates()
  2805. {
  2806. #ifdef SF_ARC_FIX
  2807. bool relative_mode_backup = relative_mode;
  2808. relative_mode = true;
  2809. #endif
  2810. get_coordinates();
  2811. #ifdef SF_ARC_FIX
  2812. relative_mode=relative_mode_backup;
  2813. #endif
  2814. if(code_seen('I')) {
  2815. offset[0] = code_value();
  2816. }
  2817. else {
  2818. offset[0] = 0.0;
  2819. }
  2820. if(code_seen('J')) {
  2821. offset[1] = code_value();
  2822. }
  2823. else {
  2824. offset[1] = 0.0;
  2825. }
  2826. }
  2827. void clamp_to_software_endstops(float target[3])
  2828. {
  2829. if (min_software_endstops) {
  2830. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2831. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2832. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2833. }
  2834. if (max_software_endstops) {
  2835. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2836. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2837. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2838. }
  2839. }
  2840. #ifdef DELTA
  2841. void recalc_delta_settings(float radius, float diagonal_rod)
  2842. {
  2843. delta_tower1_x= -SIN_60*radius; // front left tower
  2844. delta_tower1_y= -COS_60*radius;
  2845. delta_tower2_x= SIN_60*radius; // front right tower
  2846. delta_tower2_y= -COS_60*radius;
  2847. delta_tower3_x= 0.0; // back middle tower
  2848. delta_tower3_y= radius;
  2849. delta_diagonal_rod_2= sq(diagonal_rod);
  2850. }
  2851. void calculate_delta(float cartesian[3])
  2852. {
  2853. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  2854. - sq(delta_tower1_x-cartesian[X_AXIS])
  2855. - sq(delta_tower1_y-cartesian[Y_AXIS])
  2856. ) + cartesian[Z_AXIS];
  2857. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  2858. - sq(delta_tower2_x-cartesian[X_AXIS])
  2859. - sq(delta_tower2_y-cartesian[Y_AXIS])
  2860. ) + cartesian[Z_AXIS];
  2861. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  2862. - sq(delta_tower3_x-cartesian[X_AXIS])
  2863. - sq(delta_tower3_y-cartesian[Y_AXIS])
  2864. ) + cartesian[Z_AXIS];
  2865. /*
  2866. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2867. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2868. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2869. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2870. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2871. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2872. */
  2873. }
  2874. #endif
  2875. void prepare_move()
  2876. {
  2877. clamp_to_software_endstops(destination);
  2878. previous_millis_cmd = millis();
  2879. #ifdef DELTA
  2880. float difference[NUM_AXIS];
  2881. for (int8_t i=0; i < NUM_AXIS; i++) {
  2882. difference[i] = destination[i] - current_position[i];
  2883. }
  2884. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2885. sq(difference[Y_AXIS]) +
  2886. sq(difference[Z_AXIS]));
  2887. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2888. if (cartesian_mm < 0.000001) { return; }
  2889. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2890. int steps = max(1, int(delta_segments_per_second * seconds));
  2891. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2892. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2893. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2894. for (int s = 1; s <= steps; s++) {
  2895. float fraction = float(s) / float(steps);
  2896. for(int8_t i=0; i < NUM_AXIS; i++) {
  2897. destination[i] = current_position[i] + difference[i] * fraction;
  2898. }
  2899. calculate_delta(destination);
  2900. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2901. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2902. active_extruder);
  2903. }
  2904. #else
  2905. #ifdef DUAL_X_CARRIAGE
  2906. if (active_extruder_parked)
  2907. {
  2908. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2909. {
  2910. // move duplicate extruder into correct duplication position.
  2911. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2912. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2913. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2914. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2915. st_synchronize();
  2916. extruder_duplication_enabled = true;
  2917. active_extruder_parked = false;
  2918. }
  2919. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2920. {
  2921. if (current_position[E_AXIS] == destination[E_AXIS])
  2922. {
  2923. // this is a travel move - skit it but keep track of current position (so that it can later
  2924. // be used as start of first non-travel move)
  2925. if (delayed_move_time != 0xFFFFFFFFUL)
  2926. {
  2927. memcpy(current_position, destination, sizeof(current_position));
  2928. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2929. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2930. delayed_move_time = millis();
  2931. return;
  2932. }
  2933. }
  2934. delayed_move_time = 0;
  2935. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2936. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2938. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2939. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2940. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2941. active_extruder_parked = false;
  2942. }
  2943. }
  2944. #endif //DUAL_X_CARRIAGE
  2945. // Do not use feedmultiply for E or Z only moves
  2946. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2947. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2948. }
  2949. else {
  2950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2951. }
  2952. #endif //else DELTA
  2953. for(int8_t i=0; i < NUM_AXIS; i++) {
  2954. current_position[i] = destination[i];
  2955. }
  2956. }
  2957. void prepare_arc_move(char isclockwise) {
  2958. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2959. // Trace the arc
  2960. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2961. // As far as the parser is concerned, the position is now == target. In reality the
  2962. // motion control system might still be processing the action and the real tool position
  2963. // in any intermediate location.
  2964. for(int8_t i=0; i < NUM_AXIS; i++) {
  2965. current_position[i] = destination[i];
  2966. }
  2967. previous_millis_cmd = millis();
  2968. }
  2969. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2970. #if defined(FAN_PIN)
  2971. #if CONTROLLERFAN_PIN == FAN_PIN
  2972. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2973. #endif
  2974. #endif
  2975. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2976. unsigned long lastMotorCheck = 0;
  2977. void controllerFan()
  2978. {
  2979. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2980. {
  2981. lastMotorCheck = millis();
  2982. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2983. #if EXTRUDERS > 2
  2984. || !READ(E2_ENABLE_PIN)
  2985. #endif
  2986. #if EXTRUDER > 1
  2987. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2988. || !READ(X2_ENABLE_PIN)
  2989. #endif
  2990. || !READ(E1_ENABLE_PIN)
  2991. #endif
  2992. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2993. {
  2994. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2995. }
  2996. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2997. {
  2998. digitalWrite(CONTROLLERFAN_PIN, 0);
  2999. analogWrite(CONTROLLERFAN_PIN, 0);
  3000. }
  3001. else
  3002. {
  3003. // allows digital or PWM fan output to be used (see M42 handling)
  3004. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3005. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3006. }
  3007. }
  3008. }
  3009. #endif
  3010. #ifdef TEMP_STAT_LEDS
  3011. static bool blue_led = false;
  3012. static bool red_led = false;
  3013. static uint32_t stat_update = 0;
  3014. void handle_status_leds(void) {
  3015. float max_temp = 0.0;
  3016. if(millis() > stat_update) {
  3017. stat_update += 500; // Update every 0.5s
  3018. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3019. max_temp = max(max_temp, degHotend(cur_extruder));
  3020. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3021. }
  3022. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3023. max_temp = max(max_temp, degTargetBed());
  3024. max_temp = max(max_temp, degBed());
  3025. #endif
  3026. if((max_temp > 55.0) && (red_led == false)) {
  3027. digitalWrite(STAT_LED_RED, 1);
  3028. digitalWrite(STAT_LED_BLUE, 0);
  3029. red_led = true;
  3030. blue_led = false;
  3031. }
  3032. if((max_temp < 54.0) && (blue_led == false)) {
  3033. digitalWrite(STAT_LED_RED, 0);
  3034. digitalWrite(STAT_LED_BLUE, 1);
  3035. red_led = false;
  3036. blue_led = true;
  3037. }
  3038. }
  3039. }
  3040. #endif
  3041. void manage_inactivity()
  3042. {
  3043. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3044. if(max_inactive_time)
  3045. kill();
  3046. if(stepper_inactive_time) {
  3047. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3048. {
  3049. if(blocks_queued() == false) {
  3050. disable_x();
  3051. disable_y();
  3052. disable_z();
  3053. disable_e0();
  3054. disable_e1();
  3055. disable_e2();
  3056. }
  3057. }
  3058. }
  3059. #if defined(KILL_PIN) && KILL_PIN > -1
  3060. if( 0 == READ(KILL_PIN) )
  3061. kill();
  3062. #endif
  3063. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3064. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3065. #endif
  3066. #ifdef EXTRUDER_RUNOUT_PREVENT
  3067. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3068. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3069. {
  3070. bool oldstatus=READ(E0_ENABLE_PIN);
  3071. enable_e0();
  3072. float oldepos=current_position[E_AXIS];
  3073. float oldedes=destination[E_AXIS];
  3074. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3075. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3076. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3077. current_position[E_AXIS]=oldepos;
  3078. destination[E_AXIS]=oldedes;
  3079. plan_set_e_position(oldepos);
  3080. previous_millis_cmd=millis();
  3081. st_synchronize();
  3082. WRITE(E0_ENABLE_PIN,oldstatus);
  3083. }
  3084. #endif
  3085. #if defined(DUAL_X_CARRIAGE)
  3086. // handle delayed move timeout
  3087. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3088. {
  3089. // travel moves have been received so enact them
  3090. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3091. memcpy(destination,current_position,sizeof(destination));
  3092. prepare_move();
  3093. }
  3094. #endif
  3095. #ifdef TEMP_STAT_LEDS
  3096. handle_status_leds();
  3097. #endif
  3098. check_axes_activity();
  3099. }
  3100. void kill()
  3101. {
  3102. cli(); // Stop interrupts
  3103. disable_heater();
  3104. disable_x();
  3105. disable_y();
  3106. disable_z();
  3107. disable_e0();
  3108. disable_e1();
  3109. disable_e2();
  3110. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3111. pinMode(PS_ON_PIN,INPUT);
  3112. #endif
  3113. SERIAL_ERROR_START;
  3114. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3115. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3116. suicide();
  3117. while(1) { /* Intentionally left empty */ } // Wait for reset
  3118. }
  3119. void Stop()
  3120. {
  3121. disable_heater();
  3122. if(Stopped == false) {
  3123. Stopped = true;
  3124. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3125. SERIAL_ERROR_START;
  3126. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3127. LCD_MESSAGEPGM(MSG_STOPPED);
  3128. }
  3129. }
  3130. bool IsStopped() { return Stopped; };
  3131. #ifdef FAST_PWM_FAN
  3132. void setPwmFrequency(uint8_t pin, int val)
  3133. {
  3134. val &= 0x07;
  3135. switch(digitalPinToTimer(pin))
  3136. {
  3137. #if defined(TCCR0A)
  3138. case TIMER0A:
  3139. case TIMER0B:
  3140. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3141. // TCCR0B |= val;
  3142. break;
  3143. #endif
  3144. #if defined(TCCR1A)
  3145. case TIMER1A:
  3146. case TIMER1B:
  3147. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3148. // TCCR1B |= val;
  3149. break;
  3150. #endif
  3151. #if defined(TCCR2)
  3152. case TIMER2:
  3153. case TIMER2:
  3154. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3155. TCCR2 |= val;
  3156. break;
  3157. #endif
  3158. #if defined(TCCR2A)
  3159. case TIMER2A:
  3160. case TIMER2B:
  3161. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3162. TCCR2B |= val;
  3163. break;
  3164. #endif
  3165. #if defined(TCCR3A)
  3166. case TIMER3A:
  3167. case TIMER3B:
  3168. case TIMER3C:
  3169. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3170. TCCR3B |= val;
  3171. break;
  3172. #endif
  3173. #if defined(TCCR4A)
  3174. case TIMER4A:
  3175. case TIMER4B:
  3176. case TIMER4C:
  3177. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3178. TCCR4B |= val;
  3179. break;
  3180. #endif
  3181. #if defined(TCCR5A)
  3182. case TIMER5A:
  3183. case TIMER5B:
  3184. case TIMER5C:
  3185. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3186. TCCR5B |= val;
  3187. break;
  3188. #endif
  3189. }
  3190. }
  3191. #endif //FAST_PWM_FAN
  3192. bool setTargetedHotend(int code){
  3193. tmp_extruder = active_extruder;
  3194. if(code_seen('T')) {
  3195. tmp_extruder = code_value();
  3196. if(tmp_extruder >= EXTRUDERS) {
  3197. SERIAL_ECHO_START;
  3198. switch(code){
  3199. case 104:
  3200. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3201. break;
  3202. case 105:
  3203. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3204. break;
  3205. case 109:
  3206. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3207. break;
  3208. case 218:
  3209. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3210. break;
  3211. }
  3212. SERIAL_ECHOLN(tmp_extruder);
  3213. return true;
  3214. }
  3215. }
  3216. return false;
  3217. }