My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 189KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. /**
  56. * Look here for descriptions of G-codes:
  57. * - http://linuxcnc.org/handbook/gcode/g-code.html
  58. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  59. *
  60. * Help us document these G-codes online:
  61. * - http://reprap.org/wiki/G-code
  62. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  63. */
  64. /**
  65. * Implemented Codes
  66. * -------------------
  67. *
  68. * "G" Codes
  69. *
  70. * G0 -> G1
  71. * G1 - Coordinated Movement X Y Z E
  72. * G2 - CW ARC
  73. * G3 - CCW ARC
  74. * G4 - Dwell S<seconds> or P<milliseconds>
  75. * G10 - retract filament according to settings of M207
  76. * G11 - retract recover filament according to settings of M208
  77. * G28 - Home one or more axes
  78. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  79. * G30 - Single Z Probe, probes bed at current XY location.
  80. * G31 - Dock sled (Z_PROBE_SLED only)
  81. * G32 - Undock sled (Z_PROBE_SLED only)
  82. * G90 - Use Absolute Coordinates
  83. * G91 - Use Relative Coordinates
  84. * G92 - Set current position to coordinates given
  85. *
  86. * "M" Codes
  87. *
  88. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  89. * M1 - Same as M0
  90. * M17 - Enable/Power all stepper motors
  91. * M18 - Disable all stepper motors; same as M84
  92. * M20 - List SD card
  93. * M21 - Init SD card
  94. * M22 - Release SD card
  95. * M23 - Select SD file (M23 filename.g)
  96. * M24 - Start/resume SD print
  97. * M25 - Pause SD print
  98. * M26 - Set SD position in bytes (M26 S12345)
  99. * M27 - Report SD print status
  100. * M28 - Start SD write (M28 filename.g)
  101. * M29 - Stop SD write
  102. * M30 - Delete file from SD (M30 filename.g)
  103. * M31 - Output time since last M109 or SD card start to serial
  104. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  105. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  106. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  107. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  108. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  109. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  110. * M80 - Turn on Power Supply
  111. * M81 - Turn off Power Supply
  112. * M82 - Set E codes absolute (default)
  113. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  114. * M84 - Disable steppers until next move,
  115. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  116. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  117. * M92 - Set axis_steps_per_unit - same syntax as G92
  118. * M104 - Set extruder target temp
  119. * M105 - Read current temp
  120. * M106 - Fan on
  121. * M107 - Fan off
  122. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  123. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  124. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  125. * M112 - Emergency stop
  126. * M114 - Output current position to serial port
  127. * M115 - Capabilities string
  128. * M117 - display message
  129. * M119 - Output Endstop status to serial port
  130. * M120 - Enable endstop detection
  131. * M121 - Disable endstop detection
  132. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. * M140 - Set bed target temp
  137. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  141. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  145. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. * M206 - Set additional homing offset
  147. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. * M220 - Set speed factor override percentage: S<factor in percent>
  152. * M221 - Set extrude factor override percentage: S<factor in percent>
  153. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  154. * M240 - Trigger a camera to take a photograph
  155. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  157. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. * M301 - Set PID parameters P I and D
  159. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. * M304 - Set bed PID parameters P I and D
  162. * M380 - Activate solenoid on active extruder
  163. * M381 - Disable all solenoids
  164. * M400 - Finish all moves
  165. * M401 - Lower z-probe if present
  166. * M402 - Raise z-probe if present
  167. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. * M406 - Turn off Filament Sensor extrusion control
  170. * M407 - Display measured filament diameter
  171. * M500 - Store parameters in EEPROM
  172. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  173. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  174. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  175. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  176. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  177. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  178. * M666 - Set delta endstop adjustment
  179. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  180. * M907 - Set digital trimpot motor current using axis codes.
  181. * M908 - Control digital trimpot directly.
  182. * M350 - Set microstepping mode.
  183. * M351 - Toggle MS1 MS2 pins directly.
  184. *
  185. * ************ SCARA Specific - This can change to suit future G-code regulations
  186. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  187. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  188. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  189. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  190. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  191. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  192. * ************* SCARA End ***************
  193. *
  194. * M928 - Start SD logging (M928 filename.g) - ended by M29
  195. * M999 - Restart after being stopped by error
  196. */
  197. #ifdef SDSUPPORT
  198. CardReader card;
  199. #endif
  200. bool Running = true;
  201. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  202. float current_position[NUM_AXIS] = { 0.0 };
  203. static float destination[NUM_AXIS] = { 0.0 };
  204. bool axis_known_position[3] = { false };
  205. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  206. static int cmd_queue_index_r = 0;
  207. static int cmd_queue_index_w = 0;
  208. static int commands_in_queue = 0;
  209. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  210. float homing_feedrate[] = HOMING_FEEDRATE;
  211. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  212. int feedrate_multiplier = 100; //100->1 200->2
  213. int saved_feedrate_multiplier;
  214. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  215. bool volumetric_enabled = false;
  216. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  217. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  218. float home_offset[3] = { 0 };
  219. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  220. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  221. uint8_t active_extruder = 0;
  222. int fanSpeed = 0;
  223. bool cancel_heatup = false;
  224. const char errormagic[] PROGMEM = "Error:";
  225. const char echomagic[] PROGMEM = "echo:";
  226. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  227. static float offset[3] = { 0 };
  228. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  229. static char serial_char;
  230. static int serial_count = 0;
  231. static boolean comment_mode = false;
  232. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  233. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  234. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  235. // Inactivity shutdown
  236. millis_t previous_cmd_ms = 0;
  237. static millis_t max_inactive_time = 0;
  238. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  239. millis_t print_job_start_ms = 0; ///< Print job start time
  240. millis_t print_job_stop_ms = 0; ///< Print job stop time
  241. static uint8_t target_extruder;
  242. bool no_wait_for_cooling = true;
  243. bool target_direction;
  244. #ifdef ENABLE_AUTO_BED_LEVELING
  245. int xy_travel_speed = XY_TRAVEL_SPEED;
  246. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  247. #endif
  248. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  249. float z_endstop_adj = 0;
  250. #endif
  251. // Extruder offsets
  252. #if EXTRUDERS > 1
  253. #ifndef EXTRUDER_OFFSET_X
  254. #define EXTRUDER_OFFSET_X { 0 }
  255. #endif
  256. #ifndef EXTRUDER_OFFSET_Y
  257. #define EXTRUDER_OFFSET_Y { 0 }
  258. #endif
  259. float extruder_offset[][EXTRUDERS] = {
  260. EXTRUDER_OFFSET_X,
  261. EXTRUDER_OFFSET_Y
  262. #ifdef DUAL_X_CARRIAGE
  263. , { 0 } // supports offsets in XYZ plane
  264. #endif
  265. };
  266. #endif
  267. #ifdef SERVO_ENDSTOPS
  268. int servo_endstops[] = SERVO_ENDSTOPS;
  269. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  270. #endif
  271. #ifdef BARICUDA
  272. int ValvePressure = 0;
  273. int EtoPPressure = 0;
  274. #endif
  275. #ifdef FWRETRACT
  276. bool autoretract_enabled = false;
  277. bool retracted[EXTRUDERS] = { false };
  278. bool retracted_swap[EXTRUDERS] = { false };
  279. float retract_length = RETRACT_LENGTH;
  280. float retract_length_swap = RETRACT_LENGTH_SWAP;
  281. float retract_feedrate = RETRACT_FEEDRATE;
  282. float retract_zlift = RETRACT_ZLIFT;
  283. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  284. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  285. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  286. #endif // FWRETRACT
  287. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  288. bool powersupply =
  289. #ifdef PS_DEFAULT_OFF
  290. false
  291. #else
  292. true
  293. #endif
  294. ;
  295. #endif
  296. #ifdef DELTA
  297. float delta[3] = { 0 };
  298. #define SIN_60 0.8660254037844386
  299. #define COS_60 0.5
  300. float endstop_adj[3] = { 0 };
  301. // these are the default values, can be overriden with M665
  302. float delta_radius = DELTA_RADIUS;
  303. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  304. float delta_tower1_y = -COS_60 * delta_radius;
  305. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  306. float delta_tower2_y = -COS_60 * delta_radius;
  307. float delta_tower3_x = 0; // back middle tower
  308. float delta_tower3_y = delta_radius;
  309. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  310. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  311. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  312. #ifdef ENABLE_AUTO_BED_LEVELING
  313. int delta_grid_spacing[2] = { 0, 0 };
  314. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  315. #endif
  316. #else
  317. static bool home_all_axis = true;
  318. #endif
  319. #ifdef SCARA
  320. static float delta[3] = { 0 };
  321. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  322. #endif
  323. #ifdef FILAMENT_SENSOR
  324. //Variables for Filament Sensor input
  325. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  326. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  327. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  328. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  329. int delay_index1 = 0; //index into ring buffer
  330. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  331. float delay_dist = 0; //delay distance counter
  332. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  333. #endif
  334. #ifdef FILAMENT_RUNOUT_SENSOR
  335. static bool filrunoutEnqueued = false;
  336. #endif
  337. #ifdef SDSUPPORT
  338. static bool fromsd[BUFSIZE];
  339. #endif
  340. #if NUM_SERVOS > 0
  341. Servo servo[NUM_SERVOS];
  342. #endif
  343. #ifdef CHDK
  344. unsigned long chdkHigh = 0;
  345. boolean chdkActive = false;
  346. #endif
  347. //===========================================================================
  348. //================================ Functions ================================
  349. //===========================================================================
  350. void get_arc_coordinates();
  351. bool setTargetedHotend(int code);
  352. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  353. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  354. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  355. #ifdef PREVENT_DANGEROUS_EXTRUDE
  356. float extrude_min_temp = EXTRUDE_MINTEMP;
  357. #endif
  358. #ifdef SDSUPPORT
  359. #include "SdFatUtil.h"
  360. int freeMemory() { return SdFatUtil::FreeRam(); }
  361. #else
  362. extern "C" {
  363. extern unsigned int __bss_end;
  364. extern unsigned int __heap_start;
  365. extern void *__brkval;
  366. int freeMemory() {
  367. int free_memory;
  368. if ((int)__brkval == 0)
  369. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  370. else
  371. free_memory = ((int)&free_memory) - ((int)__brkval);
  372. return free_memory;
  373. }
  374. }
  375. #endif //!SDSUPPORT
  376. /**
  377. * Inject the next command from the command queue, when possible
  378. * Return false only if no command was pending
  379. */
  380. static bool drain_queued_commands_P() {
  381. if (!queued_commands_P) return false;
  382. // Get the next 30 chars from the sequence of gcodes to run
  383. char cmd[30];
  384. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  385. cmd[sizeof(cmd) - 1] = '\0';
  386. // Look for the end of line, or the end of sequence
  387. size_t i = 0;
  388. char c;
  389. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  390. cmd[i] = '\0';
  391. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  392. if (c)
  393. queued_commands_P += i + 1; // move to next command
  394. else
  395. queued_commands_P = NULL; // will have no more commands in the sequence
  396. }
  397. return true;
  398. }
  399. /**
  400. * Record one or many commands to run from program memory.
  401. * Aborts the current queue, if any.
  402. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  403. */
  404. void enqueuecommands_P(const char* pgcode) {
  405. queued_commands_P = pgcode;
  406. drain_queued_commands_P(); // first command executed asap (when possible)
  407. }
  408. /**
  409. * Copy a command directly into the main command buffer, from RAM.
  410. *
  411. * This is done in a non-safe way and needs a rework someday.
  412. * Returns false if it doesn't add any command
  413. */
  414. bool enqueuecommand(const char *cmd) {
  415. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  416. // This is dangerous if a mixing of serial and this happens
  417. char *command = command_queue[cmd_queue_index_w];
  418. strcpy(command, cmd);
  419. SERIAL_ECHO_START;
  420. SERIAL_ECHOPGM(MSG_Enqueueing);
  421. SERIAL_ECHO(command);
  422. SERIAL_ECHOLNPGM("\"");
  423. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  424. commands_in_queue++;
  425. return true;
  426. }
  427. void setup_killpin() {
  428. #if HAS_KILL
  429. SET_INPUT(KILL_PIN);
  430. WRITE(KILL_PIN, HIGH);
  431. #endif
  432. }
  433. void setup_filrunoutpin() {
  434. #if HAS_FILRUNOUT
  435. pinMode(FILRUNOUT_PIN, INPUT);
  436. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  437. WRITE(FILLRUNOUT_PIN, HIGH);
  438. #endif
  439. #endif
  440. }
  441. // Set home pin
  442. void setup_homepin(void) {
  443. #if HAS_HOME
  444. SET_INPUT(HOME_PIN);
  445. WRITE(HOME_PIN, HIGH);
  446. #endif
  447. }
  448. void setup_photpin() {
  449. #if HAS_PHOTOGRAPH
  450. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  451. #endif
  452. }
  453. void setup_powerhold() {
  454. #if HAS_SUICIDE
  455. OUT_WRITE(SUICIDE_PIN, HIGH);
  456. #endif
  457. #if HAS_POWER_SWITCH
  458. #ifdef PS_DEFAULT_OFF
  459. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  460. #else
  461. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  462. #endif
  463. #endif
  464. }
  465. void suicide() {
  466. #if HAS_SUICIDE
  467. OUT_WRITE(SUICIDE_PIN, LOW);
  468. #endif
  469. }
  470. void servo_init() {
  471. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  472. servo[0].attach(SERVO0_PIN);
  473. #endif
  474. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  475. servo[1].attach(SERVO1_PIN);
  476. #endif
  477. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  478. servo[2].attach(SERVO2_PIN);
  479. #endif
  480. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  481. servo[3].attach(SERVO3_PIN);
  482. #endif
  483. // Set position of Servo Endstops that are defined
  484. #ifdef SERVO_ENDSTOPS
  485. for (int i = 0; i < 3; i++)
  486. if (servo_endstops[i] >= 0)
  487. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  488. #endif
  489. #if SERVO_LEVELING
  490. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  491. servo[servo_endstops[Z_AXIS]].detach();
  492. #endif
  493. }
  494. /**
  495. * Marlin entry-point: Set up before the program loop
  496. * - Set up the kill pin, filament runout, power hold
  497. * - Start the serial port
  498. * - Print startup messages and diagnostics
  499. * - Get EEPROM or default settings
  500. * - Initialize managers for:
  501. * • temperature
  502. * • planner
  503. * • watchdog
  504. * • stepper
  505. * • photo pin
  506. * • servos
  507. * • LCD controller
  508. * • Digipot I2C
  509. * • Z probe sled
  510. * • status LEDs
  511. */
  512. void setup() {
  513. setup_killpin();
  514. setup_filrunoutpin();
  515. setup_powerhold();
  516. MYSERIAL.begin(BAUDRATE);
  517. SERIAL_PROTOCOLLNPGM("start");
  518. SERIAL_ECHO_START;
  519. // Check startup - does nothing if bootloader sets MCUSR to 0
  520. byte mcu = MCUSR;
  521. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  522. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  523. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  524. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  525. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  526. MCUSR = 0;
  527. SERIAL_ECHOPGM(MSG_MARLIN);
  528. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  529. #ifdef STRING_VERSION_CONFIG_H
  530. #ifdef STRING_CONFIG_H_AUTHOR
  531. SERIAL_ECHO_START;
  532. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  533. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  534. SERIAL_ECHOPGM(MSG_AUTHOR);
  535. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  536. SERIAL_ECHOPGM("Compiled: ");
  537. SERIAL_ECHOLNPGM(__DATE__);
  538. #endif // STRING_CONFIG_H_AUTHOR
  539. #endif // STRING_VERSION_CONFIG_H
  540. SERIAL_ECHO_START;
  541. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  542. SERIAL_ECHO(freeMemory());
  543. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  544. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  545. #ifdef SDSUPPORT
  546. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  547. #endif
  548. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  549. Config_RetrieveSettings();
  550. tp_init(); // Initialize temperature loop
  551. plan_init(); // Initialize planner;
  552. watchdog_init();
  553. st_init(); // Initialize stepper, this enables interrupts!
  554. setup_photpin();
  555. servo_init();
  556. lcd_init();
  557. _delay_ms(1000); // wait 1sec to display the splash screen
  558. #if HAS_CONTROLLERFAN
  559. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  560. #endif
  561. #ifdef DIGIPOT_I2C
  562. digipot_i2c_init();
  563. #endif
  564. #ifdef Z_PROBE_SLED
  565. pinMode(SERVO0_PIN, OUTPUT);
  566. digitalWrite(SERVO0_PIN, LOW); // turn it off
  567. #endif // Z_PROBE_SLED
  568. setup_homepin();
  569. #ifdef STAT_LED_RED
  570. pinMode(STAT_LED_RED, OUTPUT);
  571. digitalWrite(STAT_LED_RED, LOW); // turn it off
  572. #endif
  573. #ifdef STAT_LED_BLUE
  574. pinMode(STAT_LED_BLUE, OUTPUT);
  575. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  576. #endif
  577. }
  578. /**
  579. * The main Marlin program loop
  580. *
  581. * - Save or log commands to SD
  582. * - Process available commands (if not saving)
  583. * - Call heater manager
  584. * - Call inactivity manager
  585. * - Call endstop manager
  586. * - Call LCD update
  587. */
  588. void loop() {
  589. if (commands_in_queue < BUFSIZE - 1) get_command();
  590. #ifdef SDSUPPORT
  591. card.checkautostart(false);
  592. #endif
  593. if (commands_in_queue) {
  594. #ifdef SDSUPPORT
  595. if (card.saving) {
  596. char *command = command_queue[cmd_queue_index_r];
  597. if (strstr_P(command, PSTR("M29"))) {
  598. // M29 closes the file
  599. card.closefile();
  600. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  601. }
  602. else {
  603. // Write the string from the read buffer to SD
  604. card.write_command(command);
  605. if (card.logging)
  606. process_commands(); // The card is saving because it's logging
  607. else
  608. SERIAL_PROTOCOLLNPGM(MSG_OK);
  609. }
  610. }
  611. else
  612. process_commands();
  613. #else
  614. process_commands();
  615. #endif // SDSUPPORT
  616. commands_in_queue--;
  617. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  618. }
  619. // Check heater every n milliseconds
  620. manage_heater();
  621. manage_inactivity();
  622. checkHitEndstops();
  623. lcd_update();
  624. }
  625. /**
  626. * Add to the circular command queue the next command from:
  627. * - The command-injection queue (queued_commands_P)
  628. * - The active serial input (usually USB)
  629. * - The SD card file being actively printed
  630. */
  631. void get_command() {
  632. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  633. #ifdef NO_TIMEOUTS
  634. static millis_t last_command_time = 0;
  635. millis_t ms = millis();
  636. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > 1000) {
  637. SERIAL_ECHOLNPGM(MSG_WAIT);
  638. last_command_time = ms;
  639. }
  640. #endif
  641. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  642. #ifdef NO_TIMEOUTS
  643. last_command_time = ms;
  644. #endif
  645. serial_char = MYSERIAL.read();
  646. if (serial_char == '\n' || serial_char == '\r' ||
  647. serial_count >= (MAX_CMD_SIZE - 1)
  648. ) {
  649. // end of line == end of comment
  650. comment_mode = false;
  651. if (!serial_count) return; // shortcut for empty lines
  652. char *command = command_queue[cmd_queue_index_w];
  653. command[serial_count] = 0; // terminate string
  654. #ifdef SDSUPPORT
  655. fromsd[cmd_queue_index_w] = false;
  656. #endif
  657. if (strchr(command, 'N') != NULL) {
  658. strchr_pointer = strchr(command, 'N');
  659. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  660. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  661. SERIAL_ERROR_START;
  662. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  663. SERIAL_ERRORLN(gcode_LastN);
  664. //Serial.println(gcode_N);
  665. FlushSerialRequestResend();
  666. serial_count = 0;
  667. return;
  668. }
  669. if (strchr(command, '*') != NULL) {
  670. byte checksum = 0;
  671. byte count = 0;
  672. while (command[count] != '*') checksum ^= command[count++];
  673. strchr_pointer = strchr(command, '*');
  674. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. FlushSerialRequestResend();
  679. serial_count = 0;
  680. return;
  681. }
  682. //if no errors, continue parsing
  683. }
  684. else {
  685. SERIAL_ERROR_START;
  686. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  687. SERIAL_ERRORLN(gcode_LastN);
  688. FlushSerialRequestResend();
  689. serial_count = 0;
  690. return;
  691. }
  692. gcode_LastN = gcode_N;
  693. //if no errors, continue parsing
  694. }
  695. else { // if we don't receive 'N' but still see '*'
  696. if ((strchr(command, '*') != NULL)) {
  697. SERIAL_ERROR_START;
  698. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  699. SERIAL_ERRORLN(gcode_LastN);
  700. serial_count = 0;
  701. return;
  702. }
  703. }
  704. if (strchr(command, 'G') != NULL) {
  705. strchr_pointer = strchr(command, 'G');
  706. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  707. case 0:
  708. case 1:
  709. case 2:
  710. case 3:
  711. if (IsStopped()) {
  712. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  713. LCD_MESSAGEPGM(MSG_STOPPED);
  714. }
  715. break;
  716. default:
  717. break;
  718. }
  719. }
  720. // If command was e-stop process now
  721. if (strcmp(command, "M112") == 0) kill();
  722. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  723. commands_in_queue += 1;
  724. serial_count = 0; //clear buffer
  725. }
  726. else if (serial_char == '\\') { // Handle escapes
  727. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  728. // if we have one more character, copy it over
  729. serial_char = MYSERIAL.read();
  730. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  731. }
  732. // otherwise do nothing
  733. }
  734. else { // its not a newline, carriage return or escape char
  735. if (serial_char == ';') comment_mode = true;
  736. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  737. }
  738. }
  739. #ifdef SDSUPPORT
  740. if (!card.sdprinting || serial_count) return;
  741. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  742. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  743. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  744. static bool stop_buffering = false;
  745. if (commands_in_queue == 0) stop_buffering = false;
  746. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  747. int16_t n = card.get();
  748. serial_char = (char)n;
  749. if (serial_char == '\n' || serial_char == '\r' ||
  750. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  751. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  752. ) {
  753. if (card.eof()) {
  754. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  755. print_job_stop_ms = millis();
  756. char time[30];
  757. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  758. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  759. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  760. SERIAL_ECHO_START;
  761. SERIAL_ECHOLN(time);
  762. lcd_setstatus(time, true);
  763. card.printingHasFinished();
  764. card.checkautostart(true);
  765. }
  766. if (serial_char == '#') stop_buffering = true;
  767. if (!serial_count) {
  768. comment_mode = false; //for new command
  769. return; //if empty line
  770. }
  771. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  772. // if (!comment_mode) {
  773. fromsd[cmd_queue_index_w] = true;
  774. commands_in_queue += 1;
  775. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  776. // }
  777. comment_mode = false; //for new command
  778. serial_count = 0; //clear buffer
  779. }
  780. else {
  781. if (serial_char == ';') comment_mode = true;
  782. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  783. }
  784. }
  785. #endif // SDSUPPORT
  786. }
  787. bool code_has_value() {
  788. char c = strchr_pointer[1];
  789. return (c >= '0' && c <= '9') || c == '-' || c == '+' || c == '.';
  790. }
  791. float code_value() {
  792. float ret;
  793. char *e = strchr(strchr_pointer, 'E');
  794. if (e) {
  795. *e = 0;
  796. ret = strtod(strchr_pointer+1, NULL);
  797. *e = 'E';
  798. }
  799. else
  800. ret = strtod(strchr_pointer+1, NULL);
  801. return ret;
  802. }
  803. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  804. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  805. bool code_seen(char code) {
  806. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  807. return (strchr_pointer != NULL); //Return True if a character was found
  808. }
  809. #define DEFINE_PGM_READ_ANY(type, reader) \
  810. static inline type pgm_read_any(const type *p) \
  811. { return pgm_read_##reader##_near(p); }
  812. DEFINE_PGM_READ_ANY(float, float);
  813. DEFINE_PGM_READ_ANY(signed char, byte);
  814. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  815. static const PROGMEM type array##_P[3] = \
  816. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  817. static inline type array(int axis) \
  818. { return pgm_read_any(&array##_P[axis]); }
  819. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  820. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  821. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  822. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  823. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  824. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  825. #ifdef DUAL_X_CARRIAGE
  826. #define DXC_FULL_CONTROL_MODE 0
  827. #define DXC_AUTO_PARK_MODE 1
  828. #define DXC_DUPLICATION_MODE 2
  829. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  830. static float x_home_pos(int extruder) {
  831. if (extruder == 0)
  832. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  833. else
  834. // In dual carriage mode the extruder offset provides an override of the
  835. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  836. // This allow soft recalibration of the second extruder offset position without firmware reflash
  837. // (through the M218 command).
  838. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  839. }
  840. static int x_home_dir(int extruder) {
  841. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  842. }
  843. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  844. static bool active_extruder_parked = false; // used in mode 1 & 2
  845. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  846. static millis_t delayed_move_time = 0; // used in mode 1
  847. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  848. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  849. bool extruder_duplication_enabled = false; // used in mode 2
  850. #endif //DUAL_X_CARRIAGE
  851. static void axis_is_at_home(int axis) {
  852. #ifdef DUAL_X_CARRIAGE
  853. if (axis == X_AXIS) {
  854. if (active_extruder != 0) {
  855. current_position[X_AXIS] = x_home_pos(active_extruder);
  856. min_pos[X_AXIS] = X2_MIN_POS;
  857. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  858. return;
  859. }
  860. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  861. float xoff = home_offset[X_AXIS];
  862. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  863. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  864. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  865. return;
  866. }
  867. }
  868. #endif
  869. #ifdef SCARA
  870. float homeposition[3];
  871. if (axis < 2) {
  872. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  873. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  874. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  875. // Works out real Homeposition angles using inverse kinematics,
  876. // and calculates homing offset using forward kinematics
  877. calculate_delta(homeposition);
  878. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  879. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  880. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  881. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  882. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  883. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  884. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  885. calculate_SCARA_forward_Transform(delta);
  886. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  887. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  888. current_position[axis] = delta[axis];
  889. // SCARA home positions are based on configuration since the actual limits are determined by the
  890. // inverse kinematic transform.
  891. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  892. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  893. }
  894. else {
  895. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  896. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  897. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  898. }
  899. #else
  900. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  901. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  902. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  903. #endif
  904. }
  905. /**
  906. * Some planner shorthand inline functions
  907. */
  908. inline void set_homing_bump_feedrate(AxisEnum axis) {
  909. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  910. if (homing_bump_divisor[axis] >= 1)
  911. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  912. else {
  913. feedrate = homing_feedrate[axis] / 10;
  914. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  915. }
  916. }
  917. inline void line_to_current_position() {
  918. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  919. }
  920. inline void line_to_z(float zPosition) {
  921. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  922. }
  923. inline void line_to_destination(float mm_m) {
  924. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  925. }
  926. inline void line_to_destination() {
  927. line_to_destination(feedrate);
  928. }
  929. inline void sync_plan_position() {
  930. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  931. }
  932. #if defined(DELTA) || defined(SCARA)
  933. inline void sync_plan_position_delta() {
  934. calculate_delta(current_position);
  935. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  936. }
  937. #endif
  938. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  939. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  940. #ifdef ENABLE_AUTO_BED_LEVELING
  941. #ifdef DELTA
  942. /**
  943. * Calculate delta, start a line, and set current_position to destination
  944. */
  945. void prepare_move_raw() {
  946. refresh_cmd_timeout();
  947. calculate_delta(destination);
  948. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  949. set_current_to_destination();
  950. }
  951. #endif
  952. #ifdef AUTO_BED_LEVELING_GRID
  953. #ifndef DELTA
  954. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  955. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  956. planeNormal.debug("planeNormal");
  957. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  958. //bedLevel.debug("bedLevel");
  959. //plan_bed_level_matrix.debug("bed level before");
  960. //vector_3 uncorrected_position = plan_get_position_mm();
  961. //uncorrected_position.debug("position before");
  962. vector_3 corrected_position = plan_get_position();
  963. //corrected_position.debug("position after");
  964. current_position[X_AXIS] = corrected_position.x;
  965. current_position[Y_AXIS] = corrected_position.y;
  966. current_position[Z_AXIS] = corrected_position.z;
  967. sync_plan_position();
  968. }
  969. #endif // !DELTA
  970. #else // !AUTO_BED_LEVELING_GRID
  971. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  972. plan_bed_level_matrix.set_to_identity();
  973. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  974. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  975. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  976. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  977. if (planeNormal.z < 0) {
  978. planeNormal.x = -planeNormal.x;
  979. planeNormal.y = -planeNormal.y;
  980. planeNormal.z = -planeNormal.z;
  981. }
  982. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  983. vector_3 corrected_position = plan_get_position();
  984. current_position[X_AXIS] = corrected_position.x;
  985. current_position[Y_AXIS] = corrected_position.y;
  986. current_position[Z_AXIS] = corrected_position.z;
  987. sync_plan_position();
  988. }
  989. #endif // !AUTO_BED_LEVELING_GRID
  990. static void run_z_probe() {
  991. #ifdef DELTA
  992. float start_z = current_position[Z_AXIS];
  993. long start_steps = st_get_position(Z_AXIS);
  994. // move down slowly until you find the bed
  995. feedrate = homing_feedrate[Z_AXIS] / 4;
  996. destination[Z_AXIS] = -10;
  997. prepare_move_raw(); // this will also set_current_to_destination
  998. st_synchronize();
  999. endstops_hit_on_purpose(); // clear endstop hit flags
  1000. // we have to let the planner know where we are right now as it is not where we said to go.
  1001. long stop_steps = st_get_position(Z_AXIS);
  1002. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1003. current_position[Z_AXIS] = mm;
  1004. sync_plan_position_delta();
  1005. #else // !DELTA
  1006. plan_bed_level_matrix.set_to_identity();
  1007. feedrate = homing_feedrate[Z_AXIS];
  1008. // move down until you find the bed
  1009. float zPosition = -10;
  1010. line_to_z(zPosition);
  1011. st_synchronize();
  1012. // we have to let the planner know where we are right now as it is not where we said to go.
  1013. zPosition = st_get_position_mm(Z_AXIS);
  1014. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1015. // move up the retract distance
  1016. zPosition += home_bump_mm(Z_AXIS);
  1017. line_to_z(zPosition);
  1018. st_synchronize();
  1019. endstops_hit_on_purpose(); // clear endstop hit flags
  1020. // move back down slowly to find bed
  1021. set_homing_bump_feedrate(Z_AXIS);
  1022. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1023. line_to_z(zPosition);
  1024. st_synchronize();
  1025. endstops_hit_on_purpose(); // clear endstop hit flags
  1026. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1027. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1028. sync_plan_position();
  1029. #endif // !DELTA
  1030. }
  1031. /**
  1032. * Plan a move to (X, Y, Z) and set the current_position
  1033. * The final current_position may not be the one that was requested
  1034. */
  1035. static void do_blocking_move_to(float x, float y, float z) {
  1036. float oldFeedRate = feedrate;
  1037. #ifdef DELTA
  1038. feedrate = XY_TRAVEL_SPEED;
  1039. destination[X_AXIS] = x;
  1040. destination[Y_AXIS] = y;
  1041. destination[Z_AXIS] = z;
  1042. prepare_move_raw(); // this will also set_current_to_destination
  1043. st_synchronize();
  1044. #else
  1045. feedrate = homing_feedrate[Z_AXIS];
  1046. current_position[Z_AXIS] = z;
  1047. line_to_current_position();
  1048. st_synchronize();
  1049. feedrate = xy_travel_speed;
  1050. current_position[X_AXIS] = x;
  1051. current_position[Y_AXIS] = y;
  1052. line_to_current_position();
  1053. st_synchronize();
  1054. #endif
  1055. feedrate = oldFeedRate;
  1056. }
  1057. static void setup_for_endstop_move() {
  1058. saved_feedrate = feedrate;
  1059. saved_feedrate_multiplier = feedrate_multiplier;
  1060. feedrate_multiplier = 100;
  1061. refresh_cmd_timeout();
  1062. enable_endstops(true);
  1063. }
  1064. static void clean_up_after_endstop_move() {
  1065. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1066. enable_endstops(false);
  1067. #endif
  1068. feedrate = saved_feedrate;
  1069. feedrate_multiplier = saved_feedrate_multiplier;
  1070. refresh_cmd_timeout();
  1071. }
  1072. static void deploy_z_probe() {
  1073. #ifdef SERVO_ENDSTOPS
  1074. // Engage Z Servo endstop if enabled
  1075. if (servo_endstops[Z_AXIS] >= 0) {
  1076. #if SERVO_LEVELING
  1077. servo[servo_endstops[Z_AXIS]].attach(0);
  1078. #endif
  1079. servo[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1080. #if SERVO_LEVELING
  1081. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1082. servo[servo_endstops[Z_AXIS]].detach();
  1083. #endif
  1084. }
  1085. #elif defined(Z_PROBE_ALLEN_KEY)
  1086. feedrate = homing_feedrate[X_AXIS];
  1087. // Move to the start position to initiate deployment
  1088. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1089. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1090. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1091. prepare_move_raw(); // this will also set_current_to_destination
  1092. // Home X to touch the belt
  1093. feedrate = homing_feedrate[X_AXIS]/10;
  1094. destination[X_AXIS] = 0;
  1095. prepare_move_raw(); // this will also set_current_to_destination
  1096. // Home Y for safety
  1097. feedrate = homing_feedrate[X_AXIS]/2;
  1098. destination[Y_AXIS] = 0;
  1099. prepare_move_raw(); // this will also set_current_to_destination
  1100. st_synchronize();
  1101. #ifdef Z_PROBE_ENDSTOP
  1102. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1103. if (z_probe_endstop)
  1104. #else
  1105. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1106. if (z_min_endstop)
  1107. #endif
  1108. {
  1109. if (IsRunning()) {
  1110. SERIAL_ERROR_START;
  1111. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1112. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1113. }
  1114. Stop();
  1115. }
  1116. #endif // Z_PROBE_ALLEN_KEY
  1117. }
  1118. static void stow_z_probe() {
  1119. #ifdef SERVO_ENDSTOPS
  1120. // Retract Z Servo endstop if enabled
  1121. if (servo_endstops[Z_AXIS] >= 0) {
  1122. #if Z_RAISE_AFTER_PROBING > 0
  1123. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1124. st_synchronize();
  1125. #endif
  1126. #if SERVO_LEVELING
  1127. servo[servo_endstops[Z_AXIS]].attach(0);
  1128. #endif
  1129. servo[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1130. #if SERVO_LEVELING
  1131. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1132. servo[servo_endstops[Z_AXIS]].detach();
  1133. #endif
  1134. }
  1135. #elif defined(Z_PROBE_ALLEN_KEY)
  1136. // Move up for safety
  1137. feedrate = homing_feedrate[X_AXIS];
  1138. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1139. prepare_move_raw(); // this will also set_current_to_destination
  1140. // Move to the start position to initiate retraction
  1141. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1142. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1143. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1144. prepare_move_raw(); // this will also set_current_to_destination
  1145. // Move the nozzle down to push the probe into retracted position
  1146. feedrate = homing_feedrate[Z_AXIS]/10;
  1147. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1148. prepare_move_raw(); // this will also set_current_to_destination
  1149. // Move up for safety
  1150. feedrate = homing_feedrate[Z_AXIS]/2;
  1151. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1152. prepare_move_raw(); // this will also set_current_to_destination
  1153. // Home XY for safety
  1154. feedrate = homing_feedrate[X_AXIS]/2;
  1155. destination[X_AXIS] = 0;
  1156. destination[Y_AXIS] = 0;
  1157. prepare_move_raw(); // this will also set_current_to_destination
  1158. st_synchronize();
  1159. #ifdef Z_PROBE_ENDSTOP
  1160. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1161. if (!z_probe_endstop)
  1162. #else
  1163. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1164. if (!z_min_endstop)
  1165. #endif
  1166. {
  1167. if (IsRunning()) {
  1168. SERIAL_ERROR_START;
  1169. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1170. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1171. }
  1172. Stop();
  1173. }
  1174. #endif
  1175. }
  1176. enum ProbeAction {
  1177. ProbeStay = 0,
  1178. ProbeDeploy = BIT(0),
  1179. ProbeStow = BIT(1),
  1180. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1181. };
  1182. // Probe bed height at position (x,y), returns the measured z value
  1183. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1184. // move to right place
  1185. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1186. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1187. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1188. if (retract_action & ProbeDeploy) deploy_z_probe();
  1189. #endif
  1190. run_z_probe();
  1191. float measured_z = current_position[Z_AXIS];
  1192. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1193. if (retract_action == ProbeStay) {
  1194. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1195. st_synchronize();
  1196. }
  1197. #endif
  1198. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1199. if (retract_action & ProbeStow) stow_z_probe();
  1200. #endif
  1201. if (verbose_level > 2) {
  1202. SERIAL_PROTOCOLPGM("Bed");
  1203. SERIAL_PROTOCOLPGM(" X: ");
  1204. SERIAL_PROTOCOL_F(x, 3);
  1205. SERIAL_PROTOCOLPGM(" Y: ");
  1206. SERIAL_PROTOCOL_F(y, 3);
  1207. SERIAL_PROTOCOLPGM(" Z: ");
  1208. SERIAL_PROTOCOL_F(measured_z, 3);
  1209. SERIAL_EOL;
  1210. }
  1211. return measured_z;
  1212. }
  1213. #ifdef DELTA
  1214. /**
  1215. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1216. */
  1217. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1218. if (bed_level[x][y] != 0.0) {
  1219. return; // Don't overwrite good values.
  1220. }
  1221. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1222. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1223. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1224. float median = c; // Median is robust (ignores outliers).
  1225. if (a < b) {
  1226. if (b < c) median = b;
  1227. if (c < a) median = a;
  1228. } else { // b <= a
  1229. if (c < b) median = b;
  1230. if (a < c) median = a;
  1231. }
  1232. bed_level[x][y] = median;
  1233. }
  1234. // Fill in the unprobed points (corners of circular print surface)
  1235. // using linear extrapolation, away from the center.
  1236. static void extrapolate_unprobed_bed_level() {
  1237. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1238. for (int y = 0; y <= half; y++) {
  1239. for (int x = 0; x <= half; x++) {
  1240. if (x + y < 3) continue;
  1241. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1242. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1243. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1244. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1245. }
  1246. }
  1247. }
  1248. // Print calibration results for plotting or manual frame adjustment.
  1249. static void print_bed_level() {
  1250. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1251. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1252. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1253. SERIAL_PROTOCOLCHAR(' ');
  1254. }
  1255. SERIAL_EOL;
  1256. }
  1257. }
  1258. // Reset calibration results to zero.
  1259. void reset_bed_level() {
  1260. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1261. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1262. bed_level[x][y] = 0.0;
  1263. }
  1264. }
  1265. }
  1266. #endif // DELTA
  1267. #endif // ENABLE_AUTO_BED_LEVELING
  1268. /**
  1269. * Home an individual axis
  1270. */
  1271. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1272. static void homeaxis(AxisEnum axis) {
  1273. #define HOMEAXIS_DO(LETTER) \
  1274. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1275. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1276. int axis_home_dir;
  1277. #ifdef DUAL_X_CARRIAGE
  1278. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1279. #else
  1280. axis_home_dir = home_dir(axis);
  1281. #endif
  1282. // Set the axis position as setup for the move
  1283. current_position[axis] = 0;
  1284. sync_plan_position();
  1285. // Engage Servo endstop if enabled
  1286. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1287. #if SERVO_LEVELING
  1288. if (axis == Z_AXIS) deploy_z_probe(); else
  1289. #endif
  1290. {
  1291. if (servo_endstops[axis] > -1)
  1292. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1293. }
  1294. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1295. #ifdef Z_DUAL_ENDSTOPS
  1296. if (axis == Z_AXIS) In_Homing_Process(true);
  1297. #endif
  1298. // Move towards the endstop until an endstop is triggered
  1299. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1300. feedrate = homing_feedrate[axis];
  1301. line_to_destination();
  1302. st_synchronize();
  1303. // Set the axis position as setup for the move
  1304. current_position[axis] = 0;
  1305. sync_plan_position();
  1306. // Move away from the endstop by the axis HOME_BUMP_MM
  1307. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1308. line_to_destination();
  1309. st_synchronize();
  1310. // Slow down the feedrate for the next move
  1311. set_homing_bump_feedrate(axis);
  1312. // Move slowly towards the endstop until triggered
  1313. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1314. line_to_destination();
  1315. st_synchronize();
  1316. #ifdef Z_DUAL_ENDSTOPS
  1317. if (axis == Z_AXIS) {
  1318. float adj = fabs(z_endstop_adj);
  1319. bool lockZ1;
  1320. if (axis_home_dir > 0) {
  1321. adj = -adj;
  1322. lockZ1 = (z_endstop_adj > 0);
  1323. }
  1324. else
  1325. lockZ1 = (z_endstop_adj < 0);
  1326. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1327. sync_plan_position();
  1328. // Move to the adjusted endstop height
  1329. feedrate = homing_feedrate[axis];
  1330. destination[Z_AXIS] = adj;
  1331. line_to_destination();
  1332. st_synchronize();
  1333. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1334. In_Homing_Process(false);
  1335. } // Z_AXIS
  1336. #endif
  1337. #ifdef DELTA
  1338. // retrace by the amount specified in endstop_adj
  1339. if (endstop_adj[axis] * axis_home_dir < 0) {
  1340. sync_plan_position();
  1341. destination[axis] = endstop_adj[axis];
  1342. line_to_destination();
  1343. st_synchronize();
  1344. }
  1345. #endif
  1346. // Set the axis position to its home position (plus home offsets)
  1347. axis_is_at_home(axis);
  1348. destination[axis] = current_position[axis];
  1349. feedrate = 0.0;
  1350. endstops_hit_on_purpose(); // clear endstop hit flags
  1351. axis_known_position[axis] = true;
  1352. // Retract Servo endstop if enabled
  1353. #ifdef SERVO_ENDSTOPS
  1354. if (servo_endstops[axis] > -1)
  1355. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1356. #endif
  1357. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1358. if (axis == Z_AXIS) stow_z_probe();
  1359. #endif
  1360. }
  1361. }
  1362. #ifdef FWRETRACT
  1363. void retract(bool retracting, bool swapretract = false) {
  1364. if (retracting == retracted[active_extruder]) return;
  1365. float oldFeedrate = feedrate;
  1366. set_destination_to_current();
  1367. if (retracting) {
  1368. feedrate = retract_feedrate * 60;
  1369. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1370. plan_set_e_position(current_position[E_AXIS]);
  1371. prepare_move();
  1372. if (retract_zlift > 0.01) {
  1373. current_position[Z_AXIS] -= retract_zlift;
  1374. #ifdef DELTA
  1375. sync_plan_position_delta();
  1376. #else
  1377. sync_plan_position();
  1378. #endif
  1379. prepare_move();
  1380. }
  1381. }
  1382. else {
  1383. if (retract_zlift > 0.01) {
  1384. current_position[Z_AXIS] += retract_zlift;
  1385. #ifdef DELTA
  1386. sync_plan_position_delta();
  1387. #else
  1388. sync_plan_position();
  1389. #endif
  1390. //prepare_move();
  1391. }
  1392. feedrate = retract_recover_feedrate * 60;
  1393. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1394. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1395. plan_set_e_position(current_position[E_AXIS]);
  1396. prepare_move();
  1397. }
  1398. feedrate = oldFeedrate;
  1399. retracted[active_extruder] = retracting;
  1400. } // retract()
  1401. #endif // FWRETRACT
  1402. #ifdef Z_PROBE_SLED
  1403. #ifndef SLED_DOCKING_OFFSET
  1404. #define SLED_DOCKING_OFFSET 0
  1405. #endif
  1406. /**
  1407. * Method to dock/undock a sled designed by Charles Bell.
  1408. *
  1409. * dock[in] If true, move to MAX_X and engage the electromagnet
  1410. * offset[in] The additional distance to move to adjust docking location
  1411. */
  1412. static void dock_sled(bool dock, int offset=0) {
  1413. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1414. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1415. SERIAL_ECHO_START;
  1416. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1417. return;
  1418. }
  1419. if (dock) {
  1420. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
  1421. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1422. } else {
  1423. float z_loc = current_position[Z_AXIS];
  1424. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1425. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
  1426. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1427. }
  1428. }
  1429. #endif // Z_PROBE_SLED
  1430. /**
  1431. *
  1432. * G-Code Handler functions
  1433. *
  1434. */
  1435. /**
  1436. * G0, G1: Coordinated movement of X Y Z E axes
  1437. */
  1438. inline void gcode_G0_G1() {
  1439. if (IsRunning()) {
  1440. get_coordinates(); // For X Y Z E F
  1441. #ifdef FWRETRACT
  1442. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1443. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1444. // Is this move an attempt to retract or recover?
  1445. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1446. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1447. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1448. retract(!retracted[active_extruder]);
  1449. return;
  1450. }
  1451. }
  1452. #endif //FWRETRACT
  1453. prepare_move();
  1454. //ClearToSend();
  1455. }
  1456. }
  1457. /**
  1458. * G2: Clockwise Arc
  1459. * G3: Counterclockwise Arc
  1460. */
  1461. inline void gcode_G2_G3(bool clockwise) {
  1462. if (IsRunning()) {
  1463. get_arc_coordinates();
  1464. prepare_arc_move(clockwise);
  1465. }
  1466. }
  1467. /**
  1468. * G4: Dwell S<seconds> or P<milliseconds>
  1469. */
  1470. inline void gcode_G4() {
  1471. millis_t codenum = 0;
  1472. LCD_MESSAGEPGM(MSG_DWELL);
  1473. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1474. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1475. st_synchronize();
  1476. refresh_cmd_timeout();
  1477. codenum += previous_cmd_ms; // keep track of when we started waiting
  1478. while (millis() < codenum) {
  1479. manage_heater();
  1480. manage_inactivity();
  1481. lcd_update();
  1482. }
  1483. }
  1484. #ifdef FWRETRACT
  1485. /**
  1486. * G10 - Retract filament according to settings of M207
  1487. * G11 - Recover filament according to settings of M208
  1488. */
  1489. inline void gcode_G10_G11(bool doRetract=false) {
  1490. #if EXTRUDERS > 1
  1491. if (doRetract) {
  1492. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1493. }
  1494. #endif
  1495. retract(doRetract
  1496. #if EXTRUDERS > 1
  1497. , retracted_swap[active_extruder]
  1498. #endif
  1499. );
  1500. }
  1501. #endif //FWRETRACT
  1502. /**
  1503. * G28: Home all axes according to settings
  1504. *
  1505. * Parameters
  1506. *
  1507. * None Home to all axes with no parameters.
  1508. * With QUICK_HOME enabled XY will home together, then Z.
  1509. *
  1510. * Cartesian parameters
  1511. *
  1512. * X Home to the X endstop
  1513. * Y Home to the Y endstop
  1514. * Z Home to the Z endstop
  1515. *
  1516. * If numbers are included with XYZ set the position as with G92
  1517. * Currently adds the home_offset, which may be wrong and removed soon.
  1518. *
  1519. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1520. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1521. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1522. */
  1523. inline void gcode_G28() {
  1524. // For auto bed leveling, clear the level matrix
  1525. #ifdef ENABLE_AUTO_BED_LEVELING
  1526. plan_bed_level_matrix.set_to_identity();
  1527. #ifdef DELTA
  1528. reset_bed_level();
  1529. #endif
  1530. #endif
  1531. // For manual bed leveling deactivate the matrix temporarily
  1532. #ifdef MESH_BED_LEVELING
  1533. uint8_t mbl_was_active = mbl.active;
  1534. mbl.active = 0;
  1535. #endif
  1536. saved_feedrate = feedrate;
  1537. saved_feedrate_multiplier = feedrate_multiplier;
  1538. feedrate_multiplier = 100;
  1539. refresh_cmd_timeout();
  1540. enable_endstops(true);
  1541. set_destination_to_current();
  1542. feedrate = 0.0;
  1543. #ifdef DELTA
  1544. // A delta can only safely home all axis at the same time
  1545. // all axis have to home at the same time
  1546. // Pretend the current position is 0,0,0
  1547. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1548. sync_plan_position();
  1549. // Move all carriages up together until the first endstop is hit.
  1550. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1551. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1552. line_to_destination();
  1553. st_synchronize();
  1554. endstops_hit_on_purpose(); // clear endstop hit flags
  1555. // Destination reached
  1556. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1557. // take care of back off and rehome now we are all at the top
  1558. HOMEAXIS(X);
  1559. HOMEAXIS(Y);
  1560. HOMEAXIS(Z);
  1561. sync_plan_position_delta();
  1562. #else // NOT DELTA
  1563. bool homeX = code_seen(axis_codes[X_AXIS]),
  1564. homeY = code_seen(axis_codes[Y_AXIS]),
  1565. homeZ = code_seen(axis_codes[Z_AXIS]);
  1566. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1567. if (home_all_axis || homeZ) {
  1568. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1569. HOMEAXIS(Z);
  1570. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1571. // Raise Z before homing any other axes
  1572. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1573. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1574. feedrate = max_feedrate[Z_AXIS] * 60;
  1575. line_to_destination();
  1576. st_synchronize();
  1577. #endif
  1578. } // home_all_axis || homeZ
  1579. #ifdef QUICK_HOME
  1580. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1581. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1582. #ifdef DUAL_X_CARRIAGE
  1583. int x_axis_home_dir = x_home_dir(active_extruder);
  1584. extruder_duplication_enabled = false;
  1585. #else
  1586. int x_axis_home_dir = home_dir(X_AXIS);
  1587. #endif
  1588. sync_plan_position();
  1589. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1590. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1591. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1592. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1593. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1594. line_to_destination();
  1595. st_synchronize();
  1596. axis_is_at_home(X_AXIS);
  1597. axis_is_at_home(Y_AXIS);
  1598. sync_plan_position();
  1599. destination[X_AXIS] = current_position[X_AXIS];
  1600. destination[Y_AXIS] = current_position[Y_AXIS];
  1601. line_to_destination();
  1602. feedrate = 0.0;
  1603. st_synchronize();
  1604. endstops_hit_on_purpose(); // clear endstop hit flags
  1605. current_position[X_AXIS] = destination[X_AXIS];
  1606. current_position[Y_AXIS] = destination[Y_AXIS];
  1607. #ifndef SCARA
  1608. current_position[Z_AXIS] = destination[Z_AXIS];
  1609. #endif
  1610. }
  1611. #endif // QUICK_HOME
  1612. // Home X
  1613. if (home_all_axis || homeX) {
  1614. #ifdef DUAL_X_CARRIAGE
  1615. int tmp_extruder = active_extruder;
  1616. extruder_duplication_enabled = false;
  1617. active_extruder = !active_extruder;
  1618. HOMEAXIS(X);
  1619. inactive_extruder_x_pos = current_position[X_AXIS];
  1620. active_extruder = tmp_extruder;
  1621. HOMEAXIS(X);
  1622. // reset state used by the different modes
  1623. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1624. delayed_move_time = 0;
  1625. active_extruder_parked = true;
  1626. #else
  1627. HOMEAXIS(X);
  1628. #endif
  1629. }
  1630. // Home Y
  1631. if (home_all_axis || homeY) HOMEAXIS(Y);
  1632. // Set the X position, if included
  1633. if (code_seen(axis_codes[X_AXIS]) && code_has_value())
  1634. current_position[X_AXIS] = code_value();
  1635. // Set the Y position, if included
  1636. if (code_seen(axis_codes[Y_AXIS]) && code_has_value())
  1637. current_position[Y_AXIS] = code_value();
  1638. // Home Z last if homing towards the bed
  1639. #if Z_HOME_DIR < 0
  1640. if (home_all_axis || homeZ) {
  1641. #ifdef Z_SAFE_HOMING
  1642. if (home_all_axis) {
  1643. current_position[Z_AXIS] = 0;
  1644. sync_plan_position();
  1645. //
  1646. // Set the probe (or just the nozzle) destination to the safe homing point
  1647. //
  1648. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1649. // then this may not work as expected.
  1650. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1651. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1652. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1653. feedrate = XY_TRAVEL_SPEED;
  1654. // This could potentially move X, Y, Z all together
  1655. line_to_destination();
  1656. st_synchronize();
  1657. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1658. current_position[X_AXIS] = destination[X_AXIS];
  1659. current_position[Y_AXIS] = destination[Y_AXIS];
  1660. // Home the Z axis
  1661. HOMEAXIS(Z);
  1662. }
  1663. else if (homeZ) { // Don't need to Home Z twice
  1664. // Let's see if X and Y are homed
  1665. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1666. // Make sure the probe is within the physical limits
  1667. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1668. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1669. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1670. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1671. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1672. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1673. // Set the plan current position to X, Y, 0
  1674. current_position[Z_AXIS] = 0;
  1675. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1676. // Set Z destination away from bed and raise the axis
  1677. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1678. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1679. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1680. line_to_destination();
  1681. st_synchronize();
  1682. // Home the Z axis
  1683. HOMEAXIS(Z);
  1684. }
  1685. else {
  1686. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1687. SERIAL_ECHO_START;
  1688. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1689. }
  1690. }
  1691. else {
  1692. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1693. SERIAL_ECHO_START;
  1694. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1695. }
  1696. } // !home_all_axes && homeZ
  1697. #else // !Z_SAFE_HOMING
  1698. HOMEAXIS(Z);
  1699. #endif // !Z_SAFE_HOMING
  1700. } // home_all_axis || homeZ
  1701. #endif // Z_HOME_DIR < 0
  1702. // Set the Z position, if included
  1703. if (code_seen(axis_codes[Z_AXIS]) && code_has_value())
  1704. current_position[Z_AXIS] = code_value();
  1705. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1706. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1707. #endif
  1708. sync_plan_position();
  1709. #endif // else DELTA
  1710. #ifdef SCARA
  1711. sync_plan_position_delta();
  1712. #endif
  1713. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1714. enable_endstops(false);
  1715. #endif
  1716. // For manual leveling move back to 0,0
  1717. #ifdef MESH_BED_LEVELING
  1718. if (mbl_was_active) {
  1719. current_position[X_AXIS] = mbl.get_x(0);
  1720. current_position[Y_AXIS] = mbl.get_y(0);
  1721. set_destination_to_current();
  1722. feedrate = homing_feedrate[X_AXIS];
  1723. line_to_destination();
  1724. st_synchronize();
  1725. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1726. sync_plan_position();
  1727. mbl.active = 1;
  1728. }
  1729. #endif
  1730. feedrate = saved_feedrate;
  1731. feedrate_multiplier = saved_feedrate_multiplier;
  1732. refresh_cmd_timeout();
  1733. endstops_hit_on_purpose(); // clear endstop hit flags
  1734. }
  1735. #ifdef MESH_BED_LEVELING
  1736. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1737. /**
  1738. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1739. * mesh to compensate for variable bed height
  1740. *
  1741. * Parameters With MESH_BED_LEVELING:
  1742. *
  1743. * S0 Produce a mesh report
  1744. * S1 Start probing mesh points
  1745. * S2 Probe the next mesh point
  1746. * S3 Xn Yn Zn.nn Manually modify a single point
  1747. *
  1748. * The S0 report the points as below
  1749. *
  1750. * +----> X-axis
  1751. * |
  1752. * |
  1753. * v Y-axis
  1754. *
  1755. */
  1756. inline void gcode_G29() {
  1757. static int probe_point = -1;
  1758. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1759. if (state < 0 || state > 3) {
  1760. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1761. return;
  1762. }
  1763. int ix, iy;
  1764. float z;
  1765. switch(state) {
  1766. case MeshReport:
  1767. if (mbl.active) {
  1768. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1769. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1770. SERIAL_PROTOCOLCHAR(',');
  1771. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1772. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1773. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1774. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1775. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1776. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1777. SERIAL_PROTOCOLPGM(" ");
  1778. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1779. }
  1780. SERIAL_EOL;
  1781. }
  1782. }
  1783. else
  1784. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1785. break;
  1786. case MeshStart:
  1787. mbl.reset();
  1788. probe_point = 0;
  1789. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1790. break;
  1791. case MeshNext:
  1792. if (probe_point < 0) {
  1793. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1794. return;
  1795. }
  1796. if (probe_point == 0) {
  1797. // Set Z to a positive value before recording the first Z.
  1798. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1799. sync_plan_position();
  1800. }
  1801. else {
  1802. // For others, save the Z of the previous point, then raise Z again.
  1803. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1804. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1805. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1806. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1807. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1809. st_synchronize();
  1810. }
  1811. // Is there another point to sample? Move there.
  1812. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1813. ix = probe_point % MESH_NUM_X_POINTS;
  1814. iy = probe_point / MESH_NUM_X_POINTS;
  1815. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1816. current_position[X_AXIS] = mbl.get_x(ix);
  1817. current_position[Y_AXIS] = mbl.get_y(iy);
  1818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1819. st_synchronize();
  1820. probe_point++;
  1821. }
  1822. else {
  1823. // After recording the last point, activate the mbl and home
  1824. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1825. probe_point = -1;
  1826. mbl.active = 1;
  1827. enqueuecommands_P(PSTR("G28"));
  1828. }
  1829. break;
  1830. case MeshSet:
  1831. if (code_seen('X') || code_seen('x')) {
  1832. ix = code_value_long()-1;
  1833. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1834. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1835. return;
  1836. }
  1837. } else {
  1838. SERIAL_PROTOCOLPGM("X not entered.\n");
  1839. return;
  1840. }
  1841. if (code_seen('Y') || code_seen('y')) {
  1842. iy = code_value_long()-1;
  1843. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1844. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1845. return;
  1846. }
  1847. } else {
  1848. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1849. return;
  1850. }
  1851. if (code_seen('Z') || code_seen('z')) {
  1852. z = code_value();
  1853. } else {
  1854. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1855. return;
  1856. }
  1857. mbl.z_values[iy][ix] = z;
  1858. } // switch(state)
  1859. }
  1860. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1861. /**
  1862. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1863. * Will fail if the printer has not been homed with G28.
  1864. *
  1865. * Enhanced G29 Auto Bed Leveling Probe Routine
  1866. *
  1867. * Parameters With AUTO_BED_LEVELING_GRID:
  1868. *
  1869. * P Set the size of the grid that will be probed (P x P points).
  1870. * Not supported by non-linear delta printer bed leveling.
  1871. * Example: "G29 P4"
  1872. *
  1873. * S Set the XY travel speed between probe points (in mm/min)
  1874. *
  1875. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1876. * or clean the rotation Matrix. Useful to check the topology
  1877. * after a first run of G29.
  1878. *
  1879. * V Set the verbose level (0-4). Example: "G29 V3"
  1880. *
  1881. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1882. * This is useful for manual bed leveling and finding flaws in the bed (to
  1883. * assist with part placement).
  1884. * Not supported by non-linear delta printer bed leveling.
  1885. *
  1886. * F Set the Front limit of the probing grid
  1887. * B Set the Back limit of the probing grid
  1888. * L Set the Left limit of the probing grid
  1889. * R Set the Right limit of the probing grid
  1890. *
  1891. * Global Parameters:
  1892. *
  1893. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1894. * Include "E" to engage/disengage the probe for each sample.
  1895. * There's no extra effect if you have a fixed probe.
  1896. * Usage: "G29 E" or "G29 e"
  1897. *
  1898. */
  1899. inline void gcode_G29() {
  1900. // Don't allow auto-leveling without homing first
  1901. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1902. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1903. SERIAL_ECHO_START;
  1904. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1905. return;
  1906. }
  1907. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1908. if (verbose_level < 0 || verbose_level > 4) {
  1909. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1910. return;
  1911. }
  1912. bool dryrun = code_seen('D') || code_seen('d'),
  1913. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1914. #ifdef AUTO_BED_LEVELING_GRID
  1915. #ifndef DELTA
  1916. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1917. #endif
  1918. if (verbose_level > 0) {
  1919. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1920. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1921. }
  1922. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1923. #ifndef DELTA
  1924. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1925. if (auto_bed_leveling_grid_points < 2) {
  1926. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1927. return;
  1928. }
  1929. #endif
  1930. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1931. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1932. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1933. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1934. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1935. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1936. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1937. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1938. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1939. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1940. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1941. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1942. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1943. if (left_out || right_out || front_out || back_out) {
  1944. if (left_out) {
  1945. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1946. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1947. }
  1948. if (right_out) {
  1949. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1950. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1951. }
  1952. if (front_out) {
  1953. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1954. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1955. }
  1956. if (back_out) {
  1957. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1958. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1959. }
  1960. return;
  1961. }
  1962. #endif // AUTO_BED_LEVELING_GRID
  1963. #ifdef Z_PROBE_SLED
  1964. dock_sled(false); // engage (un-dock) the probe
  1965. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1966. deploy_z_probe();
  1967. #endif
  1968. st_synchronize();
  1969. if (!dryrun) {
  1970. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1971. plan_bed_level_matrix.set_to_identity();
  1972. #ifdef DELTA
  1973. reset_bed_level();
  1974. #else //!DELTA
  1975. //vector_3 corrected_position = plan_get_position_mm();
  1976. //corrected_position.debug("position before G29");
  1977. vector_3 uncorrected_position = plan_get_position();
  1978. //uncorrected_position.debug("position during G29");
  1979. current_position[X_AXIS] = uncorrected_position.x;
  1980. current_position[Y_AXIS] = uncorrected_position.y;
  1981. current_position[Z_AXIS] = uncorrected_position.z;
  1982. sync_plan_position();
  1983. #endif // !DELTA
  1984. }
  1985. setup_for_endstop_move();
  1986. feedrate = homing_feedrate[Z_AXIS];
  1987. #ifdef AUTO_BED_LEVELING_GRID
  1988. // probe at the points of a lattice grid
  1989. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1990. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1991. #ifdef DELTA
  1992. delta_grid_spacing[0] = xGridSpacing;
  1993. delta_grid_spacing[1] = yGridSpacing;
  1994. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1995. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1996. #else // !DELTA
  1997. // solve the plane equation ax + by + d = z
  1998. // A is the matrix with rows [x y 1] for all the probed points
  1999. // B is the vector of the Z positions
  2000. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2001. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2002. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2003. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2004. eqnBVector[abl2], // "B" vector of Z points
  2005. mean = 0.0;
  2006. #endif // !DELTA
  2007. int probePointCounter = 0;
  2008. bool zig = true;
  2009. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2010. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2011. int xStart, xStop, xInc;
  2012. if (zig) {
  2013. xStart = 0;
  2014. xStop = auto_bed_leveling_grid_points;
  2015. xInc = 1;
  2016. }
  2017. else {
  2018. xStart = auto_bed_leveling_grid_points - 1;
  2019. xStop = -1;
  2020. xInc = -1;
  2021. }
  2022. #ifndef DELTA
  2023. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2024. // This gets the probe points in more readable order.
  2025. if (!do_topography_map) zig = !zig;
  2026. #endif
  2027. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2028. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2029. // raise extruder
  2030. float measured_z,
  2031. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2032. #ifdef DELTA
  2033. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2034. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2035. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2036. #endif //DELTA
  2037. ProbeAction act;
  2038. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2039. act = ProbeDeployAndStow;
  2040. else if (yCount == 0 && xCount == xStart)
  2041. act = ProbeDeploy;
  2042. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2043. act = ProbeStow;
  2044. else
  2045. act = ProbeStay;
  2046. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2047. #ifndef DELTA
  2048. mean += measured_z;
  2049. eqnBVector[probePointCounter] = measured_z;
  2050. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2051. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2052. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2053. #else
  2054. bed_level[xCount][yCount] = measured_z + z_offset;
  2055. #endif
  2056. probePointCounter++;
  2057. manage_heater();
  2058. manage_inactivity();
  2059. lcd_update();
  2060. } //xProbe
  2061. } //yProbe
  2062. clean_up_after_endstop_move();
  2063. #ifdef DELTA
  2064. if (!dryrun) extrapolate_unprobed_bed_level();
  2065. print_bed_level();
  2066. #else // !DELTA
  2067. // solve lsq problem
  2068. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2069. mean /= abl2;
  2070. if (verbose_level) {
  2071. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2072. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2073. SERIAL_PROTOCOLPGM(" b: ");
  2074. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2075. SERIAL_PROTOCOLPGM(" d: ");
  2076. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2077. SERIAL_EOL;
  2078. if (verbose_level > 2) {
  2079. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2080. SERIAL_PROTOCOL_F(mean, 8);
  2081. SERIAL_EOL;
  2082. }
  2083. }
  2084. // Show the Topography map if enabled
  2085. if (do_topography_map) {
  2086. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2087. SERIAL_PROTOCOLPGM("+-----------+\n");
  2088. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2089. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2090. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2091. SERIAL_PROTOCOLPGM("+-----------+\n");
  2092. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2093. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2094. int ind = yy * auto_bed_leveling_grid_points + xx;
  2095. float diff = eqnBVector[ind] - mean;
  2096. if (diff >= 0.0)
  2097. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2098. else
  2099. SERIAL_PROTOCOLCHAR(' ');
  2100. SERIAL_PROTOCOL_F(diff, 5);
  2101. } // xx
  2102. SERIAL_EOL;
  2103. } // yy
  2104. SERIAL_EOL;
  2105. } //do_topography_map
  2106. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2107. free(plane_equation_coefficients);
  2108. #endif //!DELTA
  2109. #else // !AUTO_BED_LEVELING_GRID
  2110. // Actions for each probe
  2111. ProbeAction p1, p2, p3;
  2112. if (deploy_probe_for_each_reading)
  2113. p1 = p2 = p3 = ProbeDeployAndStow;
  2114. else
  2115. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2116. // Probe at 3 arbitrary points
  2117. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2118. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2119. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2120. clean_up_after_endstop_move();
  2121. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2122. #endif // !AUTO_BED_LEVELING_GRID
  2123. #ifndef DELTA
  2124. if (verbose_level > 0)
  2125. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2126. if (!dryrun) {
  2127. // Correct the Z height difference from z-probe position and hotend tip position.
  2128. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2129. // When the bed is uneven, this height must be corrected.
  2130. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2131. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2132. z_tmp = current_position[Z_AXIS],
  2133. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2134. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2135. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2136. sync_plan_position();
  2137. }
  2138. #endif // !DELTA
  2139. #ifdef Z_PROBE_SLED
  2140. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2141. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2142. stow_z_probe();
  2143. #endif
  2144. #ifdef Z_PROBE_END_SCRIPT
  2145. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2146. st_synchronize();
  2147. #endif
  2148. }
  2149. #ifndef Z_PROBE_SLED
  2150. inline void gcode_G30() {
  2151. deploy_z_probe(); // Engage Z Servo endstop if available
  2152. st_synchronize();
  2153. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2154. setup_for_endstop_move();
  2155. feedrate = homing_feedrate[Z_AXIS];
  2156. run_z_probe();
  2157. SERIAL_PROTOCOLPGM("Bed");
  2158. SERIAL_PROTOCOLPGM(" X: ");
  2159. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2160. SERIAL_PROTOCOLPGM(" Y: ");
  2161. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2162. SERIAL_PROTOCOLPGM(" Z: ");
  2163. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2164. SERIAL_EOL;
  2165. clean_up_after_endstop_move();
  2166. stow_z_probe(); // Retract Z Servo endstop if available
  2167. }
  2168. #endif //!Z_PROBE_SLED
  2169. #endif //ENABLE_AUTO_BED_LEVELING
  2170. /**
  2171. * G92: Set current position to given X Y Z E
  2172. */
  2173. inline void gcode_G92() {
  2174. if (!code_seen(axis_codes[E_AXIS]))
  2175. st_synchronize();
  2176. bool didXYZ = false;
  2177. for (int i = 0; i < NUM_AXIS; i++) {
  2178. if (code_seen(axis_codes[i])) {
  2179. float v = current_position[i] = code_value();
  2180. if (i == E_AXIS)
  2181. plan_set_e_position(v);
  2182. else
  2183. didXYZ = true;
  2184. }
  2185. }
  2186. if (didXYZ) sync_plan_position();
  2187. }
  2188. #ifdef ULTIPANEL
  2189. /**
  2190. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2191. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2192. */
  2193. inline void gcode_M0_M1() {
  2194. char *src = strchr_pointer + 2;
  2195. millis_t codenum = 0;
  2196. bool hasP = false, hasS = false;
  2197. if (code_seen('P')) {
  2198. codenum = code_value_short(); // milliseconds to wait
  2199. hasP = codenum > 0;
  2200. }
  2201. if (code_seen('S')) {
  2202. codenum = code_value_short() * 1000UL; // seconds to wait
  2203. hasS = codenum > 0;
  2204. }
  2205. char* starpos = strchr(src, '*');
  2206. if (starpos != NULL) *(starpos) = '\0';
  2207. while (*src == ' ') ++src;
  2208. if (!hasP && !hasS && *src != '\0')
  2209. lcd_setstatus(src, true);
  2210. else {
  2211. LCD_MESSAGEPGM(MSG_USERWAIT);
  2212. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2213. dontExpireStatus();
  2214. #endif
  2215. }
  2216. lcd_ignore_click();
  2217. st_synchronize();
  2218. refresh_cmd_timeout();
  2219. if (codenum > 0) {
  2220. codenum += previous_cmd_ms; // keep track of when we started waiting
  2221. while(millis() < codenum && !lcd_clicked()) {
  2222. manage_heater();
  2223. manage_inactivity();
  2224. lcd_update();
  2225. }
  2226. lcd_ignore_click(false);
  2227. }
  2228. else {
  2229. if (!lcd_detected()) return;
  2230. while (!lcd_clicked()) {
  2231. manage_heater();
  2232. manage_inactivity();
  2233. lcd_update();
  2234. }
  2235. }
  2236. if (IS_SD_PRINTING)
  2237. LCD_MESSAGEPGM(MSG_RESUMING);
  2238. else
  2239. LCD_MESSAGEPGM(WELCOME_MSG);
  2240. }
  2241. #endif // ULTIPANEL
  2242. /**
  2243. * M17: Enable power on all stepper motors
  2244. */
  2245. inline void gcode_M17() {
  2246. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2247. enable_all_steppers();
  2248. }
  2249. #ifdef SDSUPPORT
  2250. /**
  2251. * M20: List SD card to serial output
  2252. */
  2253. inline void gcode_M20() {
  2254. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2255. card.ls();
  2256. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2257. }
  2258. /**
  2259. * M21: Init SD Card
  2260. */
  2261. inline void gcode_M21() {
  2262. card.initsd();
  2263. }
  2264. /**
  2265. * M22: Release SD Card
  2266. */
  2267. inline void gcode_M22() {
  2268. card.release();
  2269. }
  2270. /**
  2271. * M23: Select a file
  2272. */
  2273. inline void gcode_M23() {
  2274. char* codepos = strchr_pointer + 4;
  2275. char* starpos = strchr(codepos, '*');
  2276. if (starpos) *starpos = '\0';
  2277. card.openFile(codepos, true);
  2278. }
  2279. /**
  2280. * M24: Start SD Print
  2281. */
  2282. inline void gcode_M24() {
  2283. card.startFileprint();
  2284. print_job_start_ms = millis();
  2285. }
  2286. /**
  2287. * M25: Pause SD Print
  2288. */
  2289. inline void gcode_M25() {
  2290. card.pauseSDPrint();
  2291. }
  2292. /**
  2293. * M26: Set SD Card file index
  2294. */
  2295. inline void gcode_M26() {
  2296. if (card.cardOK && code_seen('S'))
  2297. card.setIndex(code_value_short());
  2298. }
  2299. /**
  2300. * M27: Get SD Card status
  2301. */
  2302. inline void gcode_M27() {
  2303. card.getStatus();
  2304. }
  2305. /**
  2306. * M28: Start SD Write
  2307. */
  2308. inline void gcode_M28() {
  2309. char* codepos = strchr_pointer + 4;
  2310. char* starpos = strchr(codepos, '*');
  2311. if (starpos) {
  2312. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2313. strchr_pointer = strchr(npos, ' ') + 1;
  2314. *(starpos) = '\0';
  2315. }
  2316. card.openFile(codepos, false);
  2317. }
  2318. /**
  2319. * M29: Stop SD Write
  2320. * Processed in write to file routine above
  2321. */
  2322. inline void gcode_M29() {
  2323. // card.saving = false;
  2324. }
  2325. /**
  2326. * M30 <filename>: Delete SD Card file
  2327. */
  2328. inline void gcode_M30() {
  2329. if (card.cardOK) {
  2330. card.closefile();
  2331. char* starpos = strchr(strchr_pointer + 4, '*');
  2332. if (starpos) {
  2333. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2334. strchr_pointer = strchr(npos, ' ') + 1;
  2335. *(starpos) = '\0';
  2336. }
  2337. card.removeFile(strchr_pointer + 4);
  2338. }
  2339. }
  2340. #endif
  2341. /**
  2342. * M31: Get the time since the start of SD Print (or last M109)
  2343. */
  2344. inline void gcode_M31() {
  2345. print_job_stop_ms = millis();
  2346. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2347. int min = t / 60, sec = t % 60;
  2348. char time[30];
  2349. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2350. SERIAL_ECHO_START;
  2351. SERIAL_ECHOLN(time);
  2352. lcd_setstatus(time);
  2353. autotempShutdown();
  2354. }
  2355. #ifdef SDSUPPORT
  2356. /**
  2357. * M32: Select file and start SD Print
  2358. */
  2359. inline void gcode_M32() {
  2360. if (card.sdprinting)
  2361. st_synchronize();
  2362. char* codepos = strchr_pointer + 4;
  2363. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2364. if (! namestartpos)
  2365. namestartpos = codepos; //default name position, 4 letters after the M
  2366. else
  2367. namestartpos++; //to skip the '!'
  2368. char* starpos = strchr(codepos, '*');
  2369. if (starpos) *(starpos) = '\0';
  2370. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2371. if (card.cardOK) {
  2372. card.openFile(namestartpos, true, !call_procedure);
  2373. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2374. card.setIndex(code_value_short());
  2375. card.startFileprint();
  2376. if (!call_procedure)
  2377. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2378. }
  2379. }
  2380. /**
  2381. * M928: Start SD Write
  2382. */
  2383. inline void gcode_M928() {
  2384. char* starpos = strchr(strchr_pointer + 5, '*');
  2385. if (starpos) {
  2386. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2387. strchr_pointer = strchr(npos, ' ') + 1;
  2388. *(starpos) = '\0';
  2389. }
  2390. card.openLogFile(strchr_pointer + 5);
  2391. }
  2392. #endif // SDSUPPORT
  2393. /**
  2394. * M42: Change pin status via GCode
  2395. */
  2396. inline void gcode_M42() {
  2397. if (code_seen('S')) {
  2398. int pin_status = code_value_short(),
  2399. pin_number = LED_PIN;
  2400. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2401. pin_number = code_value_short();
  2402. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2403. if (sensitive_pins[i] == pin_number) {
  2404. pin_number = -1;
  2405. break;
  2406. }
  2407. }
  2408. #if HAS_FAN
  2409. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2410. #endif
  2411. if (pin_number > -1) {
  2412. pinMode(pin_number, OUTPUT);
  2413. digitalWrite(pin_number, pin_status);
  2414. analogWrite(pin_number, pin_status);
  2415. }
  2416. } // code_seen('S')
  2417. }
  2418. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2419. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2420. #ifdef Z_PROBE_ENDSTOP
  2421. #if !HAS_Z_PROBE
  2422. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2423. #endif
  2424. #elif !HAS_Z_MIN
  2425. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2426. #endif
  2427. /**
  2428. * M48: Z-Probe repeatability measurement function.
  2429. *
  2430. * Usage:
  2431. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2432. * P = Number of sampled points (4-50, default 10)
  2433. * X = Sample X position
  2434. * Y = Sample Y position
  2435. * V = Verbose level (0-4, default=1)
  2436. * E = Engage probe for each reading
  2437. * L = Number of legs of movement before probe
  2438. *
  2439. * This function assumes the bed has been homed. Specifically, that a G28 command
  2440. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2441. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2442. * regenerated.
  2443. */
  2444. inline void gcode_M48() {
  2445. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2446. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2447. if (code_seen('V') || code_seen('v')) {
  2448. verbose_level = code_value_short();
  2449. if (verbose_level < 0 || verbose_level > 4 ) {
  2450. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2451. return;
  2452. }
  2453. }
  2454. if (verbose_level > 0)
  2455. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2456. if (code_seen('P') || code_seen('p')) {
  2457. n_samples = code_value_short();
  2458. if (n_samples < 4 || n_samples > 50) {
  2459. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2460. return;
  2461. }
  2462. }
  2463. double X_probe_location, Y_probe_location,
  2464. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2465. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2466. Z_current = st_get_position_mm(Z_AXIS),
  2467. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2468. ext_position = st_get_position_mm(E_AXIS);
  2469. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2470. if (code_seen('X') || code_seen('x')) {
  2471. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2472. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2473. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2474. return;
  2475. }
  2476. }
  2477. if (code_seen('Y') || code_seen('y')) {
  2478. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2479. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2480. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2481. return;
  2482. }
  2483. }
  2484. if (code_seen('L') || code_seen('l')) {
  2485. n_legs = code_value_short();
  2486. if (n_legs == 1) n_legs = 2;
  2487. if (n_legs < 0 || n_legs > 15) {
  2488. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2489. return;
  2490. }
  2491. }
  2492. //
  2493. // Do all the preliminary setup work. First raise the probe.
  2494. //
  2495. st_synchronize();
  2496. plan_bed_level_matrix.set_to_identity();
  2497. plan_buffer_line(X_current, Y_current, Z_start_location,
  2498. ext_position,
  2499. homing_feedrate[Z_AXIS] / 60,
  2500. active_extruder);
  2501. st_synchronize();
  2502. //
  2503. // Now get everything to the specified probe point So we can safely do a probe to
  2504. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2505. // use that as a starting point for each probe.
  2506. //
  2507. if (verbose_level > 2)
  2508. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2509. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2510. ext_position,
  2511. homing_feedrate[X_AXIS]/60,
  2512. active_extruder);
  2513. st_synchronize();
  2514. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2515. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2516. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2517. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2518. //
  2519. // OK, do the inital probe to get us close to the bed.
  2520. // Then retrace the right amount and use that in subsequent probes
  2521. //
  2522. deploy_z_probe();
  2523. setup_for_endstop_move();
  2524. run_z_probe();
  2525. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2526. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2527. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2528. ext_position,
  2529. homing_feedrate[X_AXIS]/60,
  2530. active_extruder);
  2531. st_synchronize();
  2532. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2533. if (deploy_probe_for_each_reading) stow_z_probe();
  2534. for (uint8_t n=0; n < n_samples; n++) {
  2535. // Make sure we are at the probe location
  2536. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2537. if (n_legs) {
  2538. millis_t ms = millis();
  2539. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2540. theta = RADIANS(ms % 360L);
  2541. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2542. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2543. //SERIAL_ECHOPAIR(" theta: ",theta);
  2544. //SERIAL_ECHOPAIR(" direction: ",dir);
  2545. //SERIAL_EOL;
  2546. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2547. ms = millis();
  2548. theta += RADIANS(dir * (ms % 20L));
  2549. radius += (ms % 10L) - 5L;
  2550. if (radius < 0.0) radius = -radius;
  2551. X_current = X_probe_location + cos(theta) * radius;
  2552. Y_current = Y_probe_location + sin(theta) * radius;
  2553. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2554. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2555. if (verbose_level > 3) {
  2556. SERIAL_ECHOPAIR("x: ", X_current);
  2557. SERIAL_ECHOPAIR("y: ", Y_current);
  2558. SERIAL_EOL;
  2559. }
  2560. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2561. } // n_legs loop
  2562. // Go back to the probe location
  2563. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2564. } // n_legs
  2565. if (deploy_probe_for_each_reading) {
  2566. deploy_z_probe();
  2567. delay(1000);
  2568. }
  2569. setup_for_endstop_move();
  2570. run_z_probe();
  2571. sample_set[n] = current_position[Z_AXIS];
  2572. //
  2573. // Get the current mean for the data points we have so far
  2574. //
  2575. sum = 0.0;
  2576. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2577. mean = sum / (n + 1);
  2578. //
  2579. // Now, use that mean to calculate the standard deviation for the
  2580. // data points we have so far
  2581. //
  2582. sum = 0.0;
  2583. for (uint8_t j = 0; j <= n; j++) {
  2584. float ss = sample_set[j] - mean;
  2585. sum += ss * ss;
  2586. }
  2587. sigma = sqrt(sum / (n + 1));
  2588. if (verbose_level > 1) {
  2589. SERIAL_PROTOCOL(n+1);
  2590. SERIAL_PROTOCOLPGM(" of ");
  2591. SERIAL_PROTOCOL(n_samples);
  2592. SERIAL_PROTOCOLPGM(" z: ");
  2593. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2594. if (verbose_level > 2) {
  2595. SERIAL_PROTOCOLPGM(" mean: ");
  2596. SERIAL_PROTOCOL_F(mean,6);
  2597. SERIAL_PROTOCOLPGM(" sigma: ");
  2598. SERIAL_PROTOCOL_F(sigma,6);
  2599. }
  2600. }
  2601. if (verbose_level > 0) SERIAL_EOL;
  2602. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2603. st_synchronize();
  2604. if (deploy_probe_for_each_reading) {
  2605. stow_z_probe();
  2606. delay(1000);
  2607. }
  2608. }
  2609. if (!deploy_probe_for_each_reading) {
  2610. stow_z_probe();
  2611. delay(1000);
  2612. }
  2613. clean_up_after_endstop_move();
  2614. // enable_endstops(true);
  2615. if (verbose_level > 0) {
  2616. SERIAL_PROTOCOLPGM("Mean: ");
  2617. SERIAL_PROTOCOL_F(mean, 6);
  2618. SERIAL_EOL;
  2619. }
  2620. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2621. SERIAL_PROTOCOL_F(sigma, 6);
  2622. SERIAL_EOL; SERIAL_EOL;
  2623. }
  2624. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2625. /**
  2626. * M104: Set hot end temperature
  2627. */
  2628. inline void gcode_M104() {
  2629. if (setTargetedHotend(104)) return;
  2630. if (code_seen('S')) {
  2631. float temp = code_value();
  2632. setTargetHotend(temp, target_extruder);
  2633. #ifdef DUAL_X_CARRIAGE
  2634. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2635. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2636. #endif
  2637. setWatch();
  2638. }
  2639. }
  2640. /**
  2641. * M105: Read hot end and bed temperature
  2642. */
  2643. inline void gcode_M105() {
  2644. if (setTargetedHotend(105)) return;
  2645. #if HAS_TEMP_0 || HAS_TEMP_BED
  2646. SERIAL_PROTOCOLPGM("ok");
  2647. #if HAS_TEMP_0
  2648. SERIAL_PROTOCOLPGM(" T:");
  2649. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2650. SERIAL_PROTOCOLPGM(" /");
  2651. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2652. #endif
  2653. #if HAS_TEMP_BED
  2654. SERIAL_PROTOCOLPGM(" B:");
  2655. SERIAL_PROTOCOL_F(degBed(), 1);
  2656. SERIAL_PROTOCOLPGM(" /");
  2657. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2658. #endif
  2659. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2660. SERIAL_PROTOCOLPGM(" T");
  2661. SERIAL_PROTOCOL(e);
  2662. SERIAL_PROTOCOLCHAR(':');
  2663. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2664. SERIAL_PROTOCOLPGM(" /");
  2665. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2666. }
  2667. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2668. SERIAL_ERROR_START;
  2669. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2670. #endif
  2671. SERIAL_PROTOCOLPGM(" @:");
  2672. #ifdef EXTRUDER_WATTS
  2673. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2674. SERIAL_PROTOCOLCHAR('W');
  2675. #else
  2676. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2677. #endif
  2678. SERIAL_PROTOCOLPGM(" B@:");
  2679. #ifdef BED_WATTS
  2680. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2681. SERIAL_PROTOCOLCHAR('W');
  2682. #else
  2683. SERIAL_PROTOCOL(getHeaterPower(-1));
  2684. #endif
  2685. #ifdef SHOW_TEMP_ADC_VALUES
  2686. #if HAS_TEMP_BED
  2687. SERIAL_PROTOCOLPGM(" ADC B:");
  2688. SERIAL_PROTOCOL_F(degBed(),1);
  2689. SERIAL_PROTOCOLPGM("C->");
  2690. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2691. #endif
  2692. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2693. SERIAL_PROTOCOLPGM(" T");
  2694. SERIAL_PROTOCOL(cur_extruder);
  2695. SERIAL_PROTOCOLCHAR(':');
  2696. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2697. SERIAL_PROTOCOLPGM("C->");
  2698. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2699. }
  2700. #endif
  2701. SERIAL_EOL;
  2702. }
  2703. #if HAS_FAN
  2704. /**
  2705. * M106: Set Fan Speed
  2706. */
  2707. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2708. /**
  2709. * M107: Fan Off
  2710. */
  2711. inline void gcode_M107() { fanSpeed = 0; }
  2712. #endif // HAS_FAN
  2713. /**
  2714. * M109: Wait for extruder(s) to reach temperature
  2715. */
  2716. inline void gcode_M109() {
  2717. if (setTargetedHotend(109)) return;
  2718. LCD_MESSAGEPGM(MSG_HEATING);
  2719. no_wait_for_cooling = code_seen('S');
  2720. if (no_wait_for_cooling || code_seen('R')) {
  2721. float temp = code_value();
  2722. setTargetHotend(temp, target_extruder);
  2723. #ifdef DUAL_X_CARRIAGE
  2724. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2725. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2726. #endif
  2727. }
  2728. #ifdef AUTOTEMP
  2729. autotemp_enabled = code_seen('F');
  2730. if (autotemp_enabled) autotemp_factor = code_value();
  2731. if (code_seen('S')) autotemp_min = code_value();
  2732. if (code_seen('B')) autotemp_max = code_value();
  2733. #endif
  2734. setWatch();
  2735. millis_t temp_ms = millis();
  2736. /* See if we are heating up or cooling down */
  2737. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2738. cancel_heatup = false;
  2739. #ifdef TEMP_RESIDENCY_TIME
  2740. long residency_start_ms = -1;
  2741. /* continue to loop until we have reached the target temp
  2742. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2743. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2744. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2745. #else
  2746. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2747. #endif //TEMP_RESIDENCY_TIME
  2748. { // while loop
  2749. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2750. SERIAL_PROTOCOLPGM("T:");
  2751. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2752. SERIAL_PROTOCOLPGM(" E:");
  2753. SERIAL_PROTOCOL((int)target_extruder);
  2754. #ifdef TEMP_RESIDENCY_TIME
  2755. SERIAL_PROTOCOLPGM(" W:");
  2756. if (residency_start_ms > -1) {
  2757. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2758. SERIAL_PROTOCOLLN(temp_ms);
  2759. }
  2760. else {
  2761. SERIAL_PROTOCOLLNPGM("?");
  2762. }
  2763. #else
  2764. SERIAL_EOL;
  2765. #endif
  2766. temp_ms = millis();
  2767. }
  2768. manage_heater();
  2769. manage_inactivity();
  2770. lcd_update();
  2771. #ifdef TEMP_RESIDENCY_TIME
  2772. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2773. // or when current temp falls outside the hysteresis after target temp was reached
  2774. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2775. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2776. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2777. {
  2778. residency_start_ms = millis();
  2779. }
  2780. #endif //TEMP_RESIDENCY_TIME
  2781. }
  2782. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2783. refresh_cmd_timeout();
  2784. print_job_start_ms = previous_cmd_ms;
  2785. }
  2786. #if HAS_TEMP_BED
  2787. /**
  2788. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2789. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2790. */
  2791. inline void gcode_M190() {
  2792. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2793. no_wait_for_cooling = code_seen('S');
  2794. if (no_wait_for_cooling || code_seen('R'))
  2795. setTargetBed(code_value());
  2796. millis_t temp_ms = millis();
  2797. cancel_heatup = false;
  2798. target_direction = isHeatingBed(); // true if heating, false if cooling
  2799. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2800. millis_t ms = millis();
  2801. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2802. temp_ms = ms;
  2803. float tt = degHotend(active_extruder);
  2804. SERIAL_PROTOCOLPGM("T:");
  2805. SERIAL_PROTOCOL(tt);
  2806. SERIAL_PROTOCOLPGM(" E:");
  2807. SERIAL_PROTOCOL((int)active_extruder);
  2808. SERIAL_PROTOCOLPGM(" B:");
  2809. SERIAL_PROTOCOL_F(degBed(), 1);
  2810. SERIAL_EOL;
  2811. }
  2812. manage_heater();
  2813. manage_inactivity();
  2814. lcd_update();
  2815. }
  2816. LCD_MESSAGEPGM(MSG_BED_DONE);
  2817. refresh_cmd_timeout();
  2818. }
  2819. #endif // HAS_TEMP_BED
  2820. /**
  2821. * M112: Emergency Stop
  2822. */
  2823. inline void gcode_M112() {
  2824. kill();
  2825. }
  2826. #ifdef BARICUDA
  2827. #if HAS_HEATER_1
  2828. /**
  2829. * M126: Heater 1 valve open
  2830. */
  2831. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2832. /**
  2833. * M127: Heater 1 valve close
  2834. */
  2835. inline void gcode_M127() { ValvePressure = 0; }
  2836. #endif
  2837. #if HAS_HEATER_2
  2838. /**
  2839. * M128: Heater 2 valve open
  2840. */
  2841. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2842. /**
  2843. * M129: Heater 2 valve close
  2844. */
  2845. inline void gcode_M129() { EtoPPressure = 0; }
  2846. #endif
  2847. #endif //BARICUDA
  2848. /**
  2849. * M140: Set bed temperature
  2850. */
  2851. inline void gcode_M140() {
  2852. if (code_seen('S')) setTargetBed(code_value());
  2853. }
  2854. #if HAS_POWER_SWITCH
  2855. /**
  2856. * M80: Turn on Power Supply
  2857. */
  2858. inline void gcode_M80() {
  2859. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2860. // If you have a switch on suicide pin, this is useful
  2861. // if you want to start another print with suicide feature after
  2862. // a print without suicide...
  2863. #if HAS_SUICIDE
  2864. OUT_WRITE(SUICIDE_PIN, HIGH);
  2865. #endif
  2866. #ifdef ULTIPANEL
  2867. powersupply = true;
  2868. LCD_MESSAGEPGM(WELCOME_MSG);
  2869. lcd_update();
  2870. #endif
  2871. }
  2872. #endif // HAS_POWER_SWITCH
  2873. /**
  2874. * M81: Turn off Power, including Power Supply, if there is one.
  2875. *
  2876. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2877. */
  2878. inline void gcode_M81() {
  2879. disable_all_heaters();
  2880. st_synchronize();
  2881. disable_e0();
  2882. disable_e1();
  2883. disable_e2();
  2884. disable_e3();
  2885. finishAndDisableSteppers();
  2886. fanSpeed = 0;
  2887. delay(1000); // Wait 1 second before switching off
  2888. #if HAS_SUICIDE
  2889. st_synchronize();
  2890. suicide();
  2891. #elif HAS_POWER_SWITCH
  2892. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2893. #endif
  2894. #ifdef ULTIPANEL
  2895. #if HAS_POWER_SWITCH
  2896. powersupply = false;
  2897. #endif
  2898. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2899. lcd_update();
  2900. #endif
  2901. }
  2902. /**
  2903. * M82: Set E codes absolute (default)
  2904. */
  2905. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2906. /**
  2907. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2908. */
  2909. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2910. /**
  2911. * M18, M84: Disable all stepper motors
  2912. */
  2913. inline void gcode_M18_M84() {
  2914. if (code_seen('S')) {
  2915. stepper_inactive_time = code_value() * 1000;
  2916. }
  2917. else {
  2918. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2919. if (all_axis) {
  2920. st_synchronize();
  2921. disable_e0();
  2922. disable_e1();
  2923. disable_e2();
  2924. disable_e3();
  2925. finishAndDisableSteppers();
  2926. }
  2927. else {
  2928. st_synchronize();
  2929. if (code_seen('X')) disable_x();
  2930. if (code_seen('Y')) disable_y();
  2931. if (code_seen('Z')) disable_z();
  2932. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2933. if (code_seen('E')) {
  2934. disable_e0();
  2935. disable_e1();
  2936. disable_e2();
  2937. disable_e3();
  2938. }
  2939. #endif
  2940. }
  2941. }
  2942. }
  2943. /**
  2944. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2945. */
  2946. inline void gcode_M85() {
  2947. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2948. }
  2949. /**
  2950. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2951. */
  2952. inline void gcode_M92() {
  2953. for(int8_t i=0; i < NUM_AXIS; i++) {
  2954. if (code_seen(axis_codes[i])) {
  2955. if (i == E_AXIS) {
  2956. float value = code_value();
  2957. if (value < 20.0) {
  2958. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2959. max_e_jerk *= factor;
  2960. max_feedrate[i] *= factor;
  2961. axis_steps_per_sqr_second[i] *= factor;
  2962. }
  2963. axis_steps_per_unit[i] = value;
  2964. }
  2965. else {
  2966. axis_steps_per_unit[i] = code_value();
  2967. }
  2968. }
  2969. }
  2970. }
  2971. /**
  2972. * M114: Output current position to serial port
  2973. */
  2974. inline void gcode_M114() {
  2975. SERIAL_PROTOCOLPGM("X:");
  2976. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2977. SERIAL_PROTOCOLPGM(" Y:");
  2978. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2979. SERIAL_PROTOCOLPGM(" Z:");
  2980. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2981. SERIAL_PROTOCOLPGM(" E:");
  2982. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2983. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2984. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2985. SERIAL_PROTOCOLPGM(" Y:");
  2986. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2987. SERIAL_PROTOCOLPGM(" Z:");
  2988. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2989. SERIAL_EOL;
  2990. #ifdef SCARA
  2991. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2992. SERIAL_PROTOCOL(delta[X_AXIS]);
  2993. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2994. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2995. SERIAL_EOL;
  2996. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2997. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2998. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2999. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3000. SERIAL_EOL;
  3001. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3002. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3003. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3004. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3005. SERIAL_EOL; SERIAL_EOL;
  3006. #endif
  3007. }
  3008. /**
  3009. * M115: Capabilities string
  3010. */
  3011. inline void gcode_M115() {
  3012. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3013. }
  3014. /**
  3015. * M117: Set LCD Status Message
  3016. */
  3017. inline void gcode_M117() {
  3018. char* codepos = strchr_pointer + 5;
  3019. char* starpos = strchr(codepos, '*');
  3020. if (starpos) *starpos = '\0';
  3021. lcd_setstatus(codepos);
  3022. }
  3023. /**
  3024. * M119: Output endstop states to serial output
  3025. */
  3026. inline void gcode_M119() {
  3027. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3028. #if HAS_X_MIN
  3029. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3030. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3031. #endif
  3032. #if HAS_X_MAX
  3033. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3034. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3035. #endif
  3036. #if HAS_Y_MIN
  3037. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3038. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3039. #endif
  3040. #if HAS_Y_MAX
  3041. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3042. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3043. #endif
  3044. #if HAS_Z_MIN
  3045. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3046. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3047. #endif
  3048. #if HAS_Z_MAX
  3049. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3050. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3051. #endif
  3052. #if HAS_Z2_MAX
  3053. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3054. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3055. #endif
  3056. #if HAS_Z_PROBE
  3057. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3058. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3059. #endif
  3060. }
  3061. /**
  3062. * M120: Enable endstops
  3063. */
  3064. inline void gcode_M120() { enable_endstops(false); }
  3065. /**
  3066. * M121: Disable endstops
  3067. */
  3068. inline void gcode_M121() { enable_endstops(true); }
  3069. #ifdef BLINKM
  3070. /**
  3071. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3072. */
  3073. inline void gcode_M150() {
  3074. SendColors(
  3075. code_seen('R') ? (byte)code_value_short() : 0,
  3076. code_seen('U') ? (byte)code_value_short() : 0,
  3077. code_seen('B') ? (byte)code_value_short() : 0
  3078. );
  3079. }
  3080. #endif // BLINKM
  3081. /**
  3082. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3083. * T<extruder>
  3084. * D<millimeters>
  3085. */
  3086. inline void gcode_M200() {
  3087. int tmp_extruder = active_extruder;
  3088. if (code_seen('T')) {
  3089. tmp_extruder = code_value_short();
  3090. if (tmp_extruder >= EXTRUDERS) {
  3091. SERIAL_ECHO_START;
  3092. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3093. return;
  3094. }
  3095. }
  3096. if (code_seen('D')) {
  3097. float diameter = code_value();
  3098. // setting any extruder filament size disables volumetric on the assumption that
  3099. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3100. // for all extruders
  3101. volumetric_enabled = (diameter != 0.0);
  3102. if (volumetric_enabled) {
  3103. filament_size[tmp_extruder] = diameter;
  3104. // make sure all extruders have some sane value for the filament size
  3105. for (int i=0; i<EXTRUDERS; i++)
  3106. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3107. }
  3108. }
  3109. else {
  3110. //reserved for setting filament diameter via UFID or filament measuring device
  3111. return;
  3112. }
  3113. calculate_volumetric_multipliers();
  3114. }
  3115. /**
  3116. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3117. */
  3118. inline void gcode_M201() {
  3119. for (int8_t i=0; i < NUM_AXIS; i++) {
  3120. if (code_seen(axis_codes[i])) {
  3121. max_acceleration_units_per_sq_second[i] = code_value();
  3122. }
  3123. }
  3124. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3125. reset_acceleration_rates();
  3126. }
  3127. #if 0 // Not used for Sprinter/grbl gen6
  3128. inline void gcode_M202() {
  3129. for(int8_t i=0; i < NUM_AXIS; i++) {
  3130. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3131. }
  3132. }
  3133. #endif
  3134. /**
  3135. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3136. */
  3137. inline void gcode_M203() {
  3138. for (int8_t i=0; i < NUM_AXIS; i++) {
  3139. if (code_seen(axis_codes[i])) {
  3140. max_feedrate[i] = code_value();
  3141. }
  3142. }
  3143. }
  3144. /**
  3145. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3146. *
  3147. * P = Printing moves
  3148. * R = Retract only (no X, Y, Z) moves
  3149. * T = Travel (non printing) moves
  3150. *
  3151. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3152. */
  3153. inline void gcode_M204() {
  3154. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3155. acceleration = code_value();
  3156. travel_acceleration = acceleration;
  3157. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3158. SERIAL_EOL;
  3159. }
  3160. if (code_seen('P')) {
  3161. acceleration = code_value();
  3162. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3163. SERIAL_EOL;
  3164. }
  3165. if (code_seen('R')) {
  3166. retract_acceleration = code_value();
  3167. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3168. SERIAL_EOL;
  3169. }
  3170. if (code_seen('T')) {
  3171. travel_acceleration = code_value();
  3172. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3173. SERIAL_EOL;
  3174. }
  3175. }
  3176. /**
  3177. * M205: Set Advanced Settings
  3178. *
  3179. * S = Min Feed Rate (mm/s)
  3180. * T = Min Travel Feed Rate (mm/s)
  3181. * B = Min Segment Time (µs)
  3182. * X = Max XY Jerk (mm/s/s)
  3183. * Z = Max Z Jerk (mm/s/s)
  3184. * E = Max E Jerk (mm/s/s)
  3185. */
  3186. inline void gcode_M205() {
  3187. if (code_seen('S')) minimumfeedrate = code_value();
  3188. if (code_seen('T')) mintravelfeedrate = code_value();
  3189. if (code_seen('B')) minsegmenttime = code_value();
  3190. if (code_seen('X')) max_xy_jerk = code_value();
  3191. if (code_seen('Z')) max_z_jerk = code_value();
  3192. if (code_seen('E')) max_e_jerk = code_value();
  3193. }
  3194. /**
  3195. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3196. */
  3197. inline void gcode_M206() {
  3198. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3199. if (code_seen(axis_codes[i])) {
  3200. home_offset[i] = code_value();
  3201. }
  3202. }
  3203. #ifdef SCARA
  3204. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3205. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3206. #endif
  3207. }
  3208. #ifdef DELTA
  3209. /**
  3210. * M665: Set delta configurations
  3211. *
  3212. * L = diagonal rod
  3213. * R = delta radius
  3214. * S = segments per second
  3215. */
  3216. inline void gcode_M665() {
  3217. if (code_seen('L')) delta_diagonal_rod = code_value();
  3218. if (code_seen('R')) delta_radius = code_value();
  3219. if (code_seen('S')) delta_segments_per_second = code_value();
  3220. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3221. }
  3222. /**
  3223. * M666: Set delta endstop adjustment
  3224. */
  3225. inline void gcode_M666() {
  3226. for (int8_t i = 0; i < 3; i++) {
  3227. if (code_seen(axis_codes[i])) {
  3228. endstop_adj[i] = code_value();
  3229. }
  3230. }
  3231. }
  3232. #elif defined(Z_DUAL_ENDSTOPS)
  3233. /**
  3234. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3235. */
  3236. inline void gcode_M666() {
  3237. if (code_seen('Z')) z_endstop_adj = code_value();
  3238. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3239. SERIAL_EOL;
  3240. }
  3241. #endif // DELTA
  3242. #ifdef FWRETRACT
  3243. /**
  3244. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3245. */
  3246. inline void gcode_M207() {
  3247. if (code_seen('S')) retract_length = code_value();
  3248. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3249. if (code_seen('Z')) retract_zlift = code_value();
  3250. }
  3251. /**
  3252. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3253. */
  3254. inline void gcode_M208() {
  3255. if (code_seen('S')) retract_recover_length = code_value();
  3256. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3257. }
  3258. /**
  3259. * M209: Enable automatic retract (M209 S1)
  3260. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3261. */
  3262. inline void gcode_M209() {
  3263. if (code_seen('S')) {
  3264. int t = code_value_short();
  3265. switch(t) {
  3266. case 0:
  3267. autoretract_enabled = false;
  3268. break;
  3269. case 1:
  3270. autoretract_enabled = true;
  3271. break;
  3272. default:
  3273. SERIAL_ECHO_START;
  3274. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3275. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3276. SERIAL_ECHOLNPGM("\"");
  3277. return;
  3278. }
  3279. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3280. }
  3281. }
  3282. #endif // FWRETRACT
  3283. #if EXTRUDERS > 1
  3284. /**
  3285. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3286. */
  3287. inline void gcode_M218() {
  3288. if (setTargetedHotend(218)) return;
  3289. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3290. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3291. #ifdef DUAL_X_CARRIAGE
  3292. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3293. #endif
  3294. SERIAL_ECHO_START;
  3295. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3296. for (int e = 0; e < EXTRUDERS; e++) {
  3297. SERIAL_CHAR(' ');
  3298. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3299. SERIAL_CHAR(',');
  3300. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3301. #ifdef DUAL_X_CARRIAGE
  3302. SERIAL_CHAR(',');
  3303. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3304. #endif
  3305. }
  3306. SERIAL_EOL;
  3307. }
  3308. #endif // EXTRUDERS > 1
  3309. /**
  3310. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3311. */
  3312. inline void gcode_M220() {
  3313. if (code_seen('S')) feedrate_multiplier = code_value();
  3314. }
  3315. /**
  3316. * M221: Set extrusion percentage (M221 T0 S95)
  3317. */
  3318. inline void gcode_M221() {
  3319. if (code_seen('S')) {
  3320. int sval = code_value();
  3321. if (code_seen('T')) {
  3322. if (setTargetedHotend(221)) return;
  3323. extruder_multiply[target_extruder] = sval;
  3324. }
  3325. else {
  3326. extruder_multiply[active_extruder] = sval;
  3327. }
  3328. }
  3329. }
  3330. /**
  3331. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3332. */
  3333. inline void gcode_M226() {
  3334. if (code_seen('P')) {
  3335. int pin_number = code_value();
  3336. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3337. if (pin_state >= -1 && pin_state <= 1) {
  3338. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3339. if (sensitive_pins[i] == pin_number) {
  3340. pin_number = -1;
  3341. break;
  3342. }
  3343. }
  3344. if (pin_number > -1) {
  3345. int target = LOW;
  3346. st_synchronize();
  3347. pinMode(pin_number, INPUT);
  3348. switch(pin_state){
  3349. case 1:
  3350. target = HIGH;
  3351. break;
  3352. case 0:
  3353. target = LOW;
  3354. break;
  3355. case -1:
  3356. target = !digitalRead(pin_number);
  3357. break;
  3358. }
  3359. while(digitalRead(pin_number) != target) {
  3360. manage_heater();
  3361. manage_inactivity();
  3362. lcd_update();
  3363. }
  3364. } // pin_number > -1
  3365. } // pin_state -1 0 1
  3366. } // code_seen('P')
  3367. }
  3368. #if NUM_SERVOS > 0
  3369. /**
  3370. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3371. */
  3372. inline void gcode_M280() {
  3373. int servo_index = code_seen('P') ? code_value() : -1;
  3374. int servo_position = 0;
  3375. if (code_seen('S')) {
  3376. servo_position = code_value();
  3377. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3378. #if SERVO_LEVELING
  3379. servo[servo_index].attach(0);
  3380. #endif
  3381. servo[servo_index].write(servo_position);
  3382. #if SERVO_LEVELING
  3383. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3384. servo[servo_index].detach();
  3385. #endif
  3386. }
  3387. else {
  3388. SERIAL_ECHO_START;
  3389. SERIAL_ECHO("Servo ");
  3390. SERIAL_ECHO(servo_index);
  3391. SERIAL_ECHOLN(" out of range");
  3392. }
  3393. }
  3394. else if (servo_index >= 0) {
  3395. SERIAL_PROTOCOL(MSG_OK);
  3396. SERIAL_PROTOCOL(" Servo ");
  3397. SERIAL_PROTOCOL(servo_index);
  3398. SERIAL_PROTOCOL(": ");
  3399. SERIAL_PROTOCOL(servo[servo_index].read());
  3400. SERIAL_EOL;
  3401. }
  3402. }
  3403. #endif // NUM_SERVOS > 0
  3404. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  3405. /**
  3406. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3407. */
  3408. inline void gcode_M300() {
  3409. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3410. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3411. if (beepS > 0) {
  3412. #if BEEPER > 0
  3413. tone(BEEPER, beepS);
  3414. delay(beepP);
  3415. noTone(BEEPER);
  3416. #elif defined(ULTRALCD)
  3417. lcd_buzz(beepS, beepP);
  3418. #elif defined(LCD_USE_I2C_BUZZER)
  3419. lcd_buzz(beepP, beepS);
  3420. #endif
  3421. }
  3422. else {
  3423. delay(beepP);
  3424. }
  3425. }
  3426. #endif // BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER
  3427. #ifdef PIDTEMP
  3428. /**
  3429. * M301: Set PID parameters P I D (and optionally C)
  3430. */
  3431. inline void gcode_M301() {
  3432. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3433. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3434. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3435. if (e < EXTRUDERS) { // catch bad input value
  3436. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3437. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3438. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3439. #ifdef PID_ADD_EXTRUSION_RATE
  3440. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3441. #endif
  3442. updatePID();
  3443. SERIAL_PROTOCOL(MSG_OK);
  3444. #ifdef PID_PARAMS_PER_EXTRUDER
  3445. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3446. SERIAL_PROTOCOL(e);
  3447. #endif // PID_PARAMS_PER_EXTRUDER
  3448. SERIAL_PROTOCOL(" p:");
  3449. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3450. SERIAL_PROTOCOL(" i:");
  3451. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3452. SERIAL_PROTOCOL(" d:");
  3453. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3454. #ifdef PID_ADD_EXTRUSION_RATE
  3455. SERIAL_PROTOCOL(" c:");
  3456. //Kc does not have scaling applied above, or in resetting defaults
  3457. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3458. #endif
  3459. SERIAL_EOL;
  3460. }
  3461. else {
  3462. SERIAL_ECHO_START;
  3463. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3464. }
  3465. }
  3466. #endif // PIDTEMP
  3467. #ifdef PIDTEMPBED
  3468. inline void gcode_M304() {
  3469. if (code_seen('P')) bedKp = code_value();
  3470. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3471. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3472. updatePID();
  3473. SERIAL_PROTOCOL(MSG_OK);
  3474. SERIAL_PROTOCOL(" p:");
  3475. SERIAL_PROTOCOL(bedKp);
  3476. SERIAL_PROTOCOL(" i:");
  3477. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3478. SERIAL_PROTOCOL(" d:");
  3479. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3480. SERIAL_EOL;
  3481. }
  3482. #endif // PIDTEMPBED
  3483. #if defined(CHDK) || HAS_PHOTOGRAPH
  3484. /**
  3485. * M240: Trigger a camera by emulating a Canon RC-1
  3486. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3487. */
  3488. inline void gcode_M240() {
  3489. #ifdef CHDK
  3490. OUT_WRITE(CHDK, HIGH);
  3491. chdkHigh = millis();
  3492. chdkActive = true;
  3493. #elif HAS_PHOTOGRAPH
  3494. const uint8_t NUM_PULSES = 16;
  3495. const float PULSE_LENGTH = 0.01524;
  3496. for (int i = 0; i < NUM_PULSES; i++) {
  3497. WRITE(PHOTOGRAPH_PIN, HIGH);
  3498. _delay_ms(PULSE_LENGTH);
  3499. WRITE(PHOTOGRAPH_PIN, LOW);
  3500. _delay_ms(PULSE_LENGTH);
  3501. }
  3502. delay(7.33);
  3503. for (int i = 0; i < NUM_PULSES; i++) {
  3504. WRITE(PHOTOGRAPH_PIN, HIGH);
  3505. _delay_ms(PULSE_LENGTH);
  3506. WRITE(PHOTOGRAPH_PIN, LOW);
  3507. _delay_ms(PULSE_LENGTH);
  3508. }
  3509. #endif // !CHDK && HAS_PHOTOGRAPH
  3510. }
  3511. #endif // CHDK || PHOTOGRAPH_PIN
  3512. #ifdef HAS_LCD_CONTRAST
  3513. /**
  3514. * M250: Read and optionally set the LCD contrast
  3515. */
  3516. inline void gcode_M250() {
  3517. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3518. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3519. SERIAL_PROTOCOL(lcd_contrast);
  3520. SERIAL_EOL;
  3521. }
  3522. #endif // HAS_LCD_CONTRAST
  3523. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3524. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3525. /**
  3526. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3527. */
  3528. inline void gcode_M302() {
  3529. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3530. }
  3531. #endif // PREVENT_DANGEROUS_EXTRUDE
  3532. /**
  3533. * M303: PID relay autotune
  3534. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3535. * E<extruder> (-1 for the bed)
  3536. * C<cycles>
  3537. */
  3538. inline void gcode_M303() {
  3539. int e = code_seen('E') ? code_value_short() : 0;
  3540. int c = code_seen('C') ? code_value_short() : 5;
  3541. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3542. PID_autotune(temp, e, c);
  3543. }
  3544. #ifdef SCARA
  3545. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3546. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3547. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3548. if (IsRunning()) {
  3549. //get_coordinates(); // For X Y Z E F
  3550. delta[X_AXIS] = delta_x;
  3551. delta[Y_AXIS] = delta_y;
  3552. calculate_SCARA_forward_Transform(delta);
  3553. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3554. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3555. prepare_move();
  3556. //ClearToSend();
  3557. return true;
  3558. }
  3559. return false;
  3560. }
  3561. /**
  3562. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3563. */
  3564. inline bool gcode_M360() {
  3565. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3566. return SCARA_move_to_cal(0, 120);
  3567. }
  3568. /**
  3569. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3570. */
  3571. inline bool gcode_M361() {
  3572. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3573. return SCARA_move_to_cal(90, 130);
  3574. }
  3575. /**
  3576. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3577. */
  3578. inline bool gcode_M362() {
  3579. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3580. return SCARA_move_to_cal(60, 180);
  3581. }
  3582. /**
  3583. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3584. */
  3585. inline bool gcode_M363() {
  3586. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3587. return SCARA_move_to_cal(50, 90);
  3588. }
  3589. /**
  3590. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3591. */
  3592. inline bool gcode_M364() {
  3593. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3594. return SCARA_move_to_cal(45, 135);
  3595. }
  3596. /**
  3597. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3598. */
  3599. inline void gcode_M365() {
  3600. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3601. if (code_seen(axis_codes[i])) {
  3602. axis_scaling[i] = code_value();
  3603. }
  3604. }
  3605. }
  3606. #endif // SCARA
  3607. #ifdef EXT_SOLENOID
  3608. void enable_solenoid(uint8_t num) {
  3609. switch(num) {
  3610. case 0:
  3611. OUT_WRITE(SOL0_PIN, HIGH);
  3612. break;
  3613. #if HAS_SOLENOID_1
  3614. case 1:
  3615. OUT_WRITE(SOL1_PIN, HIGH);
  3616. break;
  3617. #endif
  3618. #if HAS_SOLENOID_2
  3619. case 2:
  3620. OUT_WRITE(SOL2_PIN, HIGH);
  3621. break;
  3622. #endif
  3623. #if HAS_SOLENOID_3
  3624. case 3:
  3625. OUT_WRITE(SOL3_PIN, HIGH);
  3626. break;
  3627. #endif
  3628. default:
  3629. SERIAL_ECHO_START;
  3630. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3631. break;
  3632. }
  3633. }
  3634. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3635. void disable_all_solenoids() {
  3636. OUT_WRITE(SOL0_PIN, LOW);
  3637. OUT_WRITE(SOL1_PIN, LOW);
  3638. OUT_WRITE(SOL2_PIN, LOW);
  3639. OUT_WRITE(SOL3_PIN, LOW);
  3640. }
  3641. /**
  3642. * M380: Enable solenoid on the active extruder
  3643. */
  3644. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3645. /**
  3646. * M381: Disable all solenoids
  3647. */
  3648. inline void gcode_M381() { disable_all_solenoids(); }
  3649. #endif // EXT_SOLENOID
  3650. /**
  3651. * M400: Finish all moves
  3652. */
  3653. inline void gcode_M400() { st_synchronize(); }
  3654. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3655. /**
  3656. * M401: Engage Z Servo endstop if available
  3657. */
  3658. inline void gcode_M401() { deploy_z_probe(); }
  3659. /**
  3660. * M402: Retract Z Servo endstop if enabled
  3661. */
  3662. inline void gcode_M402() { stow_z_probe(); }
  3663. #endif
  3664. #ifdef FILAMENT_SENSOR
  3665. /**
  3666. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3667. */
  3668. inline void gcode_M404() {
  3669. #if HAS_FILWIDTH
  3670. if (code_seen('W')) {
  3671. filament_width_nominal = code_value();
  3672. }
  3673. else {
  3674. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3675. SERIAL_PROTOCOLLN(filament_width_nominal);
  3676. }
  3677. #endif
  3678. }
  3679. /**
  3680. * M405: Turn on filament sensor for control
  3681. */
  3682. inline void gcode_M405() {
  3683. if (code_seen('D')) meas_delay_cm = code_value();
  3684. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3685. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3686. int temp_ratio = widthFil_to_size_ratio();
  3687. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3688. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3689. delay_index1 = delay_index2 = 0;
  3690. }
  3691. filament_sensor = true;
  3692. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3693. //SERIAL_PROTOCOL(filament_width_meas);
  3694. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3695. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3696. }
  3697. /**
  3698. * M406: Turn off filament sensor for control
  3699. */
  3700. inline void gcode_M406() { filament_sensor = false; }
  3701. /**
  3702. * M407: Get measured filament diameter on serial output
  3703. */
  3704. inline void gcode_M407() {
  3705. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3706. SERIAL_PROTOCOLLN(filament_width_meas);
  3707. }
  3708. #endif // FILAMENT_SENSOR
  3709. /**
  3710. * M500: Store settings in EEPROM
  3711. */
  3712. inline void gcode_M500() {
  3713. Config_StoreSettings();
  3714. }
  3715. /**
  3716. * M501: Read settings from EEPROM
  3717. */
  3718. inline void gcode_M501() {
  3719. Config_RetrieveSettings();
  3720. }
  3721. /**
  3722. * M502: Revert to default settings
  3723. */
  3724. inline void gcode_M502() {
  3725. Config_ResetDefault();
  3726. }
  3727. /**
  3728. * M503: print settings currently in memory
  3729. */
  3730. inline void gcode_M503() {
  3731. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3732. }
  3733. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3734. /**
  3735. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3736. */
  3737. inline void gcode_M540() {
  3738. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3739. }
  3740. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3741. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3742. inline void gcode_SET_Z_PROBE_OFFSET() {
  3743. float value;
  3744. if (code_seen('Z')) {
  3745. value = code_value();
  3746. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3747. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3748. SERIAL_ECHO_START;
  3749. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3750. SERIAL_EOL;
  3751. }
  3752. else {
  3753. SERIAL_ECHO_START;
  3754. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3755. SERIAL_ECHOPGM(MSG_Z_MIN);
  3756. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3757. SERIAL_ECHOPGM(MSG_Z_MAX);
  3758. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3759. SERIAL_EOL;
  3760. }
  3761. }
  3762. else {
  3763. SERIAL_ECHO_START;
  3764. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3765. SERIAL_ECHO(-zprobe_zoffset);
  3766. SERIAL_EOL;
  3767. }
  3768. }
  3769. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3770. #ifdef FILAMENTCHANGEENABLE
  3771. /**
  3772. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3773. */
  3774. inline void gcode_M600() {
  3775. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3776. for (int i=0; i<NUM_AXIS; i++)
  3777. target[i] = lastpos[i] = current_position[i];
  3778. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3779. #ifdef DELTA
  3780. #define RUNPLAN calculate_delta(target); BASICPLAN
  3781. #else
  3782. #define RUNPLAN BASICPLAN
  3783. #endif
  3784. //retract by E
  3785. if (code_seen('E')) target[E_AXIS] += code_value();
  3786. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3787. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3788. #endif
  3789. RUNPLAN;
  3790. //lift Z
  3791. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3792. #ifdef FILAMENTCHANGE_ZADD
  3793. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3794. #endif
  3795. RUNPLAN;
  3796. //move xy
  3797. if (code_seen('X')) target[X_AXIS] = code_value();
  3798. #ifdef FILAMENTCHANGE_XPOS
  3799. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3800. #endif
  3801. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3802. #ifdef FILAMENTCHANGE_YPOS
  3803. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3804. #endif
  3805. RUNPLAN;
  3806. if (code_seen('L')) target[E_AXIS] += code_value();
  3807. #ifdef FILAMENTCHANGE_FINALRETRACT
  3808. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3809. #endif
  3810. RUNPLAN;
  3811. //finish moves
  3812. st_synchronize();
  3813. //disable extruder steppers so filament can be removed
  3814. disable_e0();
  3815. disable_e1();
  3816. disable_e2();
  3817. disable_e3();
  3818. delay(100);
  3819. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3820. uint8_t cnt = 0;
  3821. while (!lcd_clicked()) {
  3822. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  3823. manage_heater();
  3824. manage_inactivity(true);
  3825. lcd_update();
  3826. } // while(!lcd_clicked)
  3827. //return to normal
  3828. if (code_seen('L')) target[E_AXIS] -= code_value();
  3829. #ifdef FILAMENTCHANGE_FINALRETRACT
  3830. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3831. #endif
  3832. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3833. plan_set_e_position(current_position[E_AXIS]);
  3834. RUNPLAN; //should do nothing
  3835. lcd_reset_alert_level();
  3836. #ifdef DELTA
  3837. calculate_delta(lastpos);
  3838. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3839. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3840. #else
  3841. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3842. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3843. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3844. #endif
  3845. #ifdef FILAMENT_RUNOUT_SENSOR
  3846. filrunoutEnqueued = false;
  3847. #endif
  3848. }
  3849. #endif // FILAMENTCHANGEENABLE
  3850. #ifdef DUAL_X_CARRIAGE
  3851. /**
  3852. * M605: Set dual x-carriage movement mode
  3853. *
  3854. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3855. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3856. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3857. * millimeters x-offset and an optional differential hotend temperature of
  3858. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3859. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3860. *
  3861. * Note: the X axis should be homed after changing dual x-carriage mode.
  3862. */
  3863. inline void gcode_M605() {
  3864. st_synchronize();
  3865. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3866. switch(dual_x_carriage_mode) {
  3867. case DXC_DUPLICATION_MODE:
  3868. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3869. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3870. SERIAL_ECHO_START;
  3871. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3872. SERIAL_CHAR(' ');
  3873. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3874. SERIAL_CHAR(',');
  3875. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3876. SERIAL_CHAR(' ');
  3877. SERIAL_ECHO(duplicate_extruder_x_offset);
  3878. SERIAL_CHAR(',');
  3879. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3880. break;
  3881. case DXC_FULL_CONTROL_MODE:
  3882. case DXC_AUTO_PARK_MODE:
  3883. break;
  3884. default:
  3885. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3886. break;
  3887. }
  3888. active_extruder_parked = false;
  3889. extruder_duplication_enabled = false;
  3890. delayed_move_time = 0;
  3891. }
  3892. #endif // DUAL_X_CARRIAGE
  3893. /**
  3894. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3895. */
  3896. inline void gcode_M907() {
  3897. #if HAS_DIGIPOTSS
  3898. for (int i=0;i<NUM_AXIS;i++)
  3899. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3900. if (code_seen('B')) digipot_current(4, code_value());
  3901. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3902. #endif
  3903. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3904. if (code_seen('X')) digipot_current(0, code_value());
  3905. #endif
  3906. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3907. if (code_seen('Z')) digipot_current(1, code_value());
  3908. #endif
  3909. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3910. if (code_seen('E')) digipot_current(2, code_value());
  3911. #endif
  3912. #ifdef DIGIPOT_I2C
  3913. // this one uses actual amps in floating point
  3914. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3915. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3916. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3917. #endif
  3918. }
  3919. #if HAS_DIGIPOTSS
  3920. /**
  3921. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3922. */
  3923. inline void gcode_M908() {
  3924. digitalPotWrite(
  3925. code_seen('P') ? code_value() : 0,
  3926. code_seen('S') ? code_value() : 0
  3927. );
  3928. }
  3929. #endif // HAS_DIGIPOTSS
  3930. #if HAS_MICROSTEPS
  3931. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3932. inline void gcode_M350() {
  3933. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3934. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3935. if(code_seen('B')) microstep_mode(4,code_value());
  3936. microstep_readings();
  3937. }
  3938. /**
  3939. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3940. * S# determines MS1 or MS2, X# sets the pin high/low.
  3941. */
  3942. inline void gcode_M351() {
  3943. if (code_seen('S')) switch(code_value_short()) {
  3944. case 1:
  3945. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3946. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3947. break;
  3948. case 2:
  3949. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3950. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3951. break;
  3952. }
  3953. microstep_readings();
  3954. }
  3955. #endif // HAS_MICROSTEPS
  3956. /**
  3957. * M999: Restart after being stopped
  3958. */
  3959. inline void gcode_M999() {
  3960. Running = true;
  3961. lcd_reset_alert_level();
  3962. gcode_LastN = Stopped_gcode_LastN;
  3963. FlushSerialRequestResend();
  3964. }
  3965. /**
  3966. * T0-T3: Switch tool, usually switching extruders
  3967. */
  3968. inline void gcode_T() {
  3969. int tmp_extruder = code_value();
  3970. if (tmp_extruder >= EXTRUDERS) {
  3971. SERIAL_ECHO_START;
  3972. SERIAL_CHAR('T');
  3973. SERIAL_ECHO(tmp_extruder);
  3974. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3975. }
  3976. else {
  3977. target_extruder = tmp_extruder;
  3978. #if EXTRUDERS > 1
  3979. bool make_move = false;
  3980. #endif
  3981. if (code_seen('F')) {
  3982. #if EXTRUDERS > 1
  3983. make_move = true;
  3984. #endif
  3985. next_feedrate = code_value();
  3986. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3987. }
  3988. #if EXTRUDERS > 1
  3989. if (tmp_extruder != active_extruder) {
  3990. // Save current position to return to after applying extruder offset
  3991. set_destination_to_current();
  3992. #ifdef DUAL_X_CARRIAGE
  3993. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  3994. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3995. // Park old head: 1) raise 2) move to park position 3) lower
  3996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3997. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3998. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3999. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4000. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4001. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4002. st_synchronize();
  4003. }
  4004. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4005. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4006. extruder_offset[Y_AXIS][active_extruder] +
  4007. extruder_offset[Y_AXIS][tmp_extruder];
  4008. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4009. extruder_offset[Z_AXIS][active_extruder] +
  4010. extruder_offset[Z_AXIS][tmp_extruder];
  4011. active_extruder = tmp_extruder;
  4012. // This function resets the max/min values - the current position may be overwritten below.
  4013. axis_is_at_home(X_AXIS);
  4014. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4015. current_position[X_AXIS] = inactive_extruder_x_pos;
  4016. inactive_extruder_x_pos = destination[X_AXIS];
  4017. }
  4018. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4019. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4020. if (active_extruder == 0 || active_extruder_parked)
  4021. current_position[X_AXIS] = inactive_extruder_x_pos;
  4022. else
  4023. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4024. inactive_extruder_x_pos = destination[X_AXIS];
  4025. extruder_duplication_enabled = false;
  4026. }
  4027. else {
  4028. // record raised toolhead position for use by unpark
  4029. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4030. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4031. active_extruder_parked = true;
  4032. delayed_move_time = 0;
  4033. }
  4034. #else // !DUAL_X_CARRIAGE
  4035. // Offset extruder (only by XY)
  4036. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4037. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4038. // Set the new active extruder and position
  4039. active_extruder = tmp_extruder;
  4040. #endif // !DUAL_X_CARRIAGE
  4041. #ifdef DELTA
  4042. sync_plan_position_delta();
  4043. #else
  4044. sync_plan_position();
  4045. #endif
  4046. // Move to the old position if 'F' was in the parameters
  4047. if (make_move && IsRunning()) prepare_move();
  4048. }
  4049. #ifdef EXT_SOLENOID
  4050. st_synchronize();
  4051. disable_all_solenoids();
  4052. enable_solenoid_on_active_extruder();
  4053. #endif // EXT_SOLENOID
  4054. #endif // EXTRUDERS > 1
  4055. SERIAL_ECHO_START;
  4056. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4057. SERIAL_PROTOCOLLN((int)active_extruder);
  4058. }
  4059. }
  4060. /**
  4061. * Process Commands and dispatch them to handlers
  4062. * This is called from the main loop()
  4063. */
  4064. void process_commands() {
  4065. if (code_seen('G')) {
  4066. int gCode = code_value_short();
  4067. switch(gCode) {
  4068. // G0, G1
  4069. case 0:
  4070. case 1:
  4071. gcode_G0_G1();
  4072. break;
  4073. // G2, G3
  4074. #ifndef SCARA
  4075. case 2: // G2 - CW ARC
  4076. case 3: // G3 - CCW ARC
  4077. gcode_G2_G3(gCode == 2);
  4078. break;
  4079. #endif
  4080. // G4 Dwell
  4081. case 4:
  4082. gcode_G4();
  4083. break;
  4084. #ifdef FWRETRACT
  4085. case 10: // G10: retract
  4086. case 11: // G11: retract_recover
  4087. gcode_G10_G11(gCode == 10);
  4088. break;
  4089. #endif //FWRETRACT
  4090. case 28: // G28: Home all axes, one at a time
  4091. gcode_G28();
  4092. break;
  4093. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4094. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4095. gcode_G29();
  4096. break;
  4097. #endif
  4098. #ifdef ENABLE_AUTO_BED_LEVELING
  4099. #ifndef Z_PROBE_SLED
  4100. case 30: // G30 Single Z Probe
  4101. gcode_G30();
  4102. break;
  4103. #else // Z_PROBE_SLED
  4104. case 31: // G31: dock the sled
  4105. case 32: // G32: undock the sled
  4106. dock_sled(gCode == 31);
  4107. break;
  4108. #endif // Z_PROBE_SLED
  4109. #endif // ENABLE_AUTO_BED_LEVELING
  4110. case 90: // G90
  4111. relative_mode = false;
  4112. break;
  4113. case 91: // G91
  4114. relative_mode = true;
  4115. break;
  4116. case 92: // G92
  4117. gcode_G92();
  4118. break;
  4119. }
  4120. }
  4121. else if (code_seen('M')) {
  4122. switch(code_value_short()) {
  4123. #ifdef ULTIPANEL
  4124. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4125. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4126. gcode_M0_M1();
  4127. break;
  4128. #endif // ULTIPANEL
  4129. case 17:
  4130. gcode_M17();
  4131. break;
  4132. #ifdef SDSUPPORT
  4133. case 20: // M20 - list SD card
  4134. gcode_M20(); break;
  4135. case 21: // M21 - init SD card
  4136. gcode_M21(); break;
  4137. case 22: //M22 - release SD card
  4138. gcode_M22(); break;
  4139. case 23: //M23 - Select file
  4140. gcode_M23(); break;
  4141. case 24: //M24 - Start SD print
  4142. gcode_M24(); break;
  4143. case 25: //M25 - Pause SD print
  4144. gcode_M25(); break;
  4145. case 26: //M26 - Set SD index
  4146. gcode_M26(); break;
  4147. case 27: //M27 - Get SD status
  4148. gcode_M27(); break;
  4149. case 28: //M28 - Start SD write
  4150. gcode_M28(); break;
  4151. case 29: //M29 - Stop SD write
  4152. gcode_M29(); break;
  4153. case 30: //M30 <filename> Delete File
  4154. gcode_M30(); break;
  4155. case 32: //M32 - Select file and start SD print
  4156. gcode_M32(); break;
  4157. case 928: //M928 - Start SD write
  4158. gcode_M928(); break;
  4159. #endif //SDSUPPORT
  4160. case 31: //M31 take time since the start of the SD print or an M109 command
  4161. gcode_M31();
  4162. break;
  4163. case 42: //M42 -Change pin status via gcode
  4164. gcode_M42();
  4165. break;
  4166. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4167. case 48: // M48 Z-Probe repeatability
  4168. gcode_M48();
  4169. break;
  4170. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4171. case 104: // M104
  4172. gcode_M104();
  4173. break;
  4174. case 112: // M112 Emergency Stop
  4175. gcode_M112();
  4176. break;
  4177. case 140: // M140 Set bed temp
  4178. gcode_M140();
  4179. break;
  4180. case 105: // M105 Read current temperature
  4181. gcode_M105();
  4182. return;
  4183. break;
  4184. case 109: // M109 Wait for temperature
  4185. gcode_M109();
  4186. break;
  4187. #if HAS_TEMP_BED
  4188. case 190: // M190 - Wait for bed heater to reach target.
  4189. gcode_M190();
  4190. break;
  4191. #endif // HAS_TEMP_BED
  4192. #if HAS_FAN
  4193. case 106: //M106 Fan On
  4194. gcode_M106();
  4195. break;
  4196. case 107: //M107 Fan Off
  4197. gcode_M107();
  4198. break;
  4199. #endif // HAS_FAN
  4200. #ifdef BARICUDA
  4201. // PWM for HEATER_1_PIN
  4202. #if HAS_HEATER_1
  4203. case 126: // M126 valve open
  4204. gcode_M126();
  4205. break;
  4206. case 127: // M127 valve closed
  4207. gcode_M127();
  4208. break;
  4209. #endif // HAS_HEATER_1
  4210. // PWM for HEATER_2_PIN
  4211. #if HAS_HEATER_2
  4212. case 128: // M128 valve open
  4213. gcode_M128();
  4214. break;
  4215. case 129: // M129 valve closed
  4216. gcode_M129();
  4217. break;
  4218. #endif // HAS_HEATER_2
  4219. #endif // BARICUDA
  4220. #if HAS_POWER_SWITCH
  4221. case 80: // M80 - Turn on Power Supply
  4222. gcode_M80();
  4223. break;
  4224. #endif // HAS_POWER_SWITCH
  4225. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4226. gcode_M81();
  4227. break;
  4228. case 82:
  4229. gcode_M82();
  4230. break;
  4231. case 83:
  4232. gcode_M83();
  4233. break;
  4234. case 18: //compatibility
  4235. case 84: // M84
  4236. gcode_M18_M84();
  4237. break;
  4238. case 85: // M85
  4239. gcode_M85();
  4240. break;
  4241. case 92: // M92
  4242. gcode_M92();
  4243. break;
  4244. case 115: // M115
  4245. gcode_M115();
  4246. break;
  4247. case 117: // M117 display message
  4248. gcode_M117();
  4249. break;
  4250. case 114: // M114
  4251. gcode_M114();
  4252. break;
  4253. case 120: // M120
  4254. gcode_M120();
  4255. break;
  4256. case 121: // M121
  4257. gcode_M121();
  4258. break;
  4259. case 119: // M119
  4260. gcode_M119();
  4261. break;
  4262. //TODO: update for all axis, use for loop
  4263. #ifdef BLINKM
  4264. case 150: // M150
  4265. gcode_M150();
  4266. break;
  4267. #endif //BLINKM
  4268. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4269. gcode_M200();
  4270. break;
  4271. case 201: // M201
  4272. gcode_M201();
  4273. break;
  4274. #if 0 // Not used for Sprinter/grbl gen6
  4275. case 202: // M202
  4276. gcode_M202();
  4277. break;
  4278. #endif
  4279. case 203: // M203 max feedrate mm/sec
  4280. gcode_M203();
  4281. break;
  4282. case 204: // M204 acclereration S normal moves T filmanent only moves
  4283. gcode_M204();
  4284. break;
  4285. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4286. gcode_M205();
  4287. break;
  4288. case 206: // M206 additional homing offset
  4289. gcode_M206();
  4290. break;
  4291. #ifdef DELTA
  4292. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4293. gcode_M665();
  4294. break;
  4295. #endif
  4296. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4297. case 666: // M666 set delta / dual endstop adjustment
  4298. gcode_M666();
  4299. break;
  4300. #endif
  4301. #ifdef FWRETRACT
  4302. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4303. gcode_M207();
  4304. break;
  4305. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4306. gcode_M208();
  4307. break;
  4308. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4309. gcode_M209();
  4310. break;
  4311. #endif // FWRETRACT
  4312. #if EXTRUDERS > 1
  4313. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4314. gcode_M218();
  4315. break;
  4316. #endif
  4317. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4318. gcode_M220();
  4319. break;
  4320. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4321. gcode_M221();
  4322. break;
  4323. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4324. gcode_M226();
  4325. break;
  4326. #if NUM_SERVOS > 0
  4327. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4328. gcode_M280();
  4329. break;
  4330. #endif // NUM_SERVOS > 0
  4331. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  4332. case 300: // M300 - Play beep tone
  4333. gcode_M300();
  4334. break;
  4335. #endif // BEEPER > 0 || ULTRALCD || LCD_USE_I2C_BUZZER
  4336. #ifdef PIDTEMP
  4337. case 301: // M301
  4338. gcode_M301();
  4339. break;
  4340. #endif // PIDTEMP
  4341. #ifdef PIDTEMPBED
  4342. case 304: // M304
  4343. gcode_M304();
  4344. break;
  4345. #endif // PIDTEMPBED
  4346. #if defined(CHDK) || HAS_PHOTOGRAPH
  4347. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4348. gcode_M240();
  4349. break;
  4350. #endif // CHDK || PHOTOGRAPH_PIN
  4351. #ifdef HAS_LCD_CONTRAST
  4352. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4353. gcode_M250();
  4354. break;
  4355. #endif // HAS_LCD_CONTRAST
  4356. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4357. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4358. gcode_M302();
  4359. break;
  4360. #endif // PREVENT_DANGEROUS_EXTRUDE
  4361. case 303: // M303 PID autotune
  4362. gcode_M303();
  4363. break;
  4364. #ifdef SCARA
  4365. case 360: // M360 SCARA Theta pos1
  4366. if (gcode_M360()) return;
  4367. break;
  4368. case 361: // M361 SCARA Theta pos2
  4369. if (gcode_M361()) return;
  4370. break;
  4371. case 362: // M362 SCARA Psi pos1
  4372. if (gcode_M362()) return;
  4373. break;
  4374. case 363: // M363 SCARA Psi pos2
  4375. if (gcode_M363()) return;
  4376. break;
  4377. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4378. if (gcode_M364()) return;
  4379. break;
  4380. case 365: // M365 Set SCARA scaling for X Y Z
  4381. gcode_M365();
  4382. break;
  4383. #endif // SCARA
  4384. case 400: // M400 finish all moves
  4385. gcode_M400();
  4386. break;
  4387. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4388. case 401:
  4389. gcode_M401();
  4390. break;
  4391. case 402:
  4392. gcode_M402();
  4393. break;
  4394. #endif
  4395. #ifdef FILAMENT_SENSOR
  4396. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4397. gcode_M404();
  4398. break;
  4399. case 405: //M405 Turn on filament sensor for control
  4400. gcode_M405();
  4401. break;
  4402. case 406: //M406 Turn off filament sensor for control
  4403. gcode_M406();
  4404. break;
  4405. case 407: //M407 Display measured filament diameter
  4406. gcode_M407();
  4407. break;
  4408. #endif // FILAMENT_SENSOR
  4409. case 500: // M500 Store settings in EEPROM
  4410. gcode_M500();
  4411. break;
  4412. case 501: // M501 Read settings from EEPROM
  4413. gcode_M501();
  4414. break;
  4415. case 502: // M502 Revert to default settings
  4416. gcode_M502();
  4417. break;
  4418. case 503: // M503 print settings currently in memory
  4419. gcode_M503();
  4420. break;
  4421. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4422. case 540:
  4423. gcode_M540();
  4424. break;
  4425. #endif
  4426. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4427. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4428. gcode_SET_Z_PROBE_OFFSET();
  4429. break;
  4430. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4431. #ifdef FILAMENTCHANGEENABLE
  4432. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4433. gcode_M600();
  4434. break;
  4435. #endif // FILAMENTCHANGEENABLE
  4436. #ifdef DUAL_X_CARRIAGE
  4437. case 605:
  4438. gcode_M605();
  4439. break;
  4440. #endif // DUAL_X_CARRIAGE
  4441. case 907: // M907 Set digital trimpot motor current using axis codes.
  4442. gcode_M907();
  4443. break;
  4444. #if HAS_DIGIPOTSS
  4445. case 908: // M908 Control digital trimpot directly.
  4446. gcode_M908();
  4447. break;
  4448. #endif // HAS_DIGIPOTSS
  4449. #if HAS_MICROSTEPS
  4450. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4451. gcode_M350();
  4452. break;
  4453. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4454. gcode_M351();
  4455. break;
  4456. #endif // HAS_MICROSTEPS
  4457. case 999: // M999: Restart after being Stopped
  4458. gcode_M999();
  4459. break;
  4460. }
  4461. }
  4462. else if (code_seen('T')) {
  4463. gcode_T();
  4464. }
  4465. else {
  4466. SERIAL_ECHO_START;
  4467. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4468. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4469. SERIAL_ECHOLNPGM("\"");
  4470. }
  4471. ClearToSend();
  4472. }
  4473. void FlushSerialRequestResend() {
  4474. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4475. MYSERIAL.flush();
  4476. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4477. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4478. ClearToSend();
  4479. }
  4480. void ClearToSend() {
  4481. refresh_cmd_timeout();
  4482. #ifdef SDSUPPORT
  4483. if (fromsd[cmd_queue_index_r]) return;
  4484. #endif
  4485. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4486. }
  4487. void get_coordinates() {
  4488. for (int i = 0; i < NUM_AXIS; i++) {
  4489. if (code_seen(axis_codes[i]))
  4490. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4491. else
  4492. destination[i] = current_position[i];
  4493. }
  4494. if (code_seen('F')) {
  4495. next_feedrate = code_value();
  4496. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4497. }
  4498. }
  4499. void get_arc_coordinates() {
  4500. #ifdef SF_ARC_FIX
  4501. bool relative_mode_backup = relative_mode;
  4502. relative_mode = true;
  4503. #endif
  4504. get_coordinates();
  4505. #ifdef SF_ARC_FIX
  4506. relative_mode = relative_mode_backup;
  4507. #endif
  4508. offset[0] = code_seen('I') ? code_value() : 0;
  4509. offset[1] = code_seen('J') ? code_value() : 0;
  4510. }
  4511. void clamp_to_software_endstops(float target[3]) {
  4512. if (min_software_endstops) {
  4513. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4514. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4515. float negative_z_offset = 0;
  4516. #ifdef ENABLE_AUTO_BED_LEVELING
  4517. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4518. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4519. #endif
  4520. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4521. }
  4522. if (max_software_endstops) {
  4523. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4524. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4525. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4526. }
  4527. }
  4528. #ifdef DELTA
  4529. void recalc_delta_settings(float radius, float diagonal_rod) {
  4530. delta_tower1_x = -SIN_60 * radius; // front left tower
  4531. delta_tower1_y = -COS_60 * radius;
  4532. delta_tower2_x = SIN_60 * radius; // front right tower
  4533. delta_tower2_y = -COS_60 * radius;
  4534. delta_tower3_x = 0.0; // back middle tower
  4535. delta_tower3_y = radius;
  4536. delta_diagonal_rod_2 = sq(diagonal_rod);
  4537. }
  4538. void calculate_delta(float cartesian[3]) {
  4539. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4540. - sq(delta_tower1_x-cartesian[X_AXIS])
  4541. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4542. ) + cartesian[Z_AXIS];
  4543. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4544. - sq(delta_tower2_x-cartesian[X_AXIS])
  4545. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4546. ) + cartesian[Z_AXIS];
  4547. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4548. - sq(delta_tower3_x-cartesian[X_AXIS])
  4549. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4550. ) + cartesian[Z_AXIS];
  4551. /*
  4552. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4553. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4554. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4555. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4556. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4557. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4558. */
  4559. }
  4560. #ifdef ENABLE_AUTO_BED_LEVELING
  4561. // Adjust print surface height by linear interpolation over the bed_level array.
  4562. void adjust_delta(float cartesian[3]) {
  4563. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4564. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4565. float h1 = 0.001 - half, h2 = half - 0.001,
  4566. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4567. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4568. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4569. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4570. z1 = bed_level[floor_x + half][floor_y + half],
  4571. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4572. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4573. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4574. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4575. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4576. offset = (1 - ratio_x) * left + ratio_x * right;
  4577. delta[X_AXIS] += offset;
  4578. delta[Y_AXIS] += offset;
  4579. delta[Z_AXIS] += offset;
  4580. /*
  4581. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4582. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4583. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4584. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4585. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4586. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4587. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4588. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4589. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4590. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4591. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4592. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4593. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4594. */
  4595. }
  4596. #endif // ENABLE_AUTO_BED_LEVELING
  4597. #endif // DELTA
  4598. #ifdef MESH_BED_LEVELING
  4599. #if !defined(MIN)
  4600. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4601. #endif // ! MIN
  4602. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4603. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4604. {
  4605. if (!mbl.active) {
  4606. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4607. set_current_to_destination();
  4608. return;
  4609. }
  4610. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4611. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4612. int ix = mbl.select_x_index(x);
  4613. int iy = mbl.select_y_index(y);
  4614. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4615. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4616. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4617. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4618. if (pix == ix && piy == iy) {
  4619. // Start and end on same mesh square
  4620. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4621. set_current_to_destination();
  4622. return;
  4623. }
  4624. float nx, ny, ne, normalized_dist;
  4625. if (ix > pix && (x_splits) & BIT(ix)) {
  4626. nx = mbl.get_x(ix);
  4627. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4628. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4629. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4630. x_splits ^= BIT(ix);
  4631. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4632. nx = mbl.get_x(pix);
  4633. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4634. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4635. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4636. x_splits ^= BIT(pix);
  4637. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4638. ny = mbl.get_y(iy);
  4639. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4640. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4641. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4642. y_splits ^= BIT(iy);
  4643. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4644. ny = mbl.get_y(piy);
  4645. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4646. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4647. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4648. y_splits ^= BIT(piy);
  4649. } else {
  4650. // Already split on a border
  4651. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4652. set_current_to_destination();
  4653. return;
  4654. }
  4655. // Do the split and look for more borders
  4656. destination[X_AXIS] = nx;
  4657. destination[Y_AXIS] = ny;
  4658. destination[E_AXIS] = ne;
  4659. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4660. destination[X_AXIS] = x;
  4661. destination[Y_AXIS] = y;
  4662. destination[E_AXIS] = e;
  4663. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4664. }
  4665. #endif // MESH_BED_LEVELING
  4666. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4667. inline float prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4668. float de = dest_e - curr_e;
  4669. if (de) {
  4670. if (degHotend(active_extruder) < extrude_min_temp) {
  4671. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4672. SERIAL_ECHO_START;
  4673. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4674. return 0;
  4675. }
  4676. #ifdef PREVENT_LENGTHY_EXTRUDE
  4677. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4678. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4679. SERIAL_ECHO_START;
  4680. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4681. return 0;
  4682. }
  4683. #endif
  4684. }
  4685. return de;
  4686. }
  4687. #endif // PREVENT_DANGEROUS_EXTRUDE
  4688. void prepare_move() {
  4689. clamp_to_software_endstops(destination);
  4690. refresh_cmd_timeout();
  4691. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4692. (void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4693. #endif
  4694. #ifdef SCARA //for now same as delta-code
  4695. float difference[NUM_AXIS];
  4696. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4697. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4698. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4699. if (cartesian_mm < 0.000001) { return; }
  4700. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4701. int steps = max(1, int(scara_segments_per_second * seconds));
  4702. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4703. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4704. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4705. for (int s = 1; s <= steps; s++) {
  4706. float fraction = float(s) / float(steps);
  4707. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4708. calculate_delta(destination);
  4709. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4710. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4711. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4712. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4713. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4714. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4715. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4716. }
  4717. #endif // SCARA
  4718. #ifdef DELTA
  4719. float difference[NUM_AXIS];
  4720. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4721. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4722. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4723. if (cartesian_mm < 0.000001) return;
  4724. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4725. int steps = max(1, int(delta_segments_per_second * seconds));
  4726. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4727. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4728. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4729. for (int s = 1; s <= steps; s++) {
  4730. float fraction = float(s) / float(steps);
  4731. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4732. calculate_delta(destination);
  4733. #ifdef ENABLE_AUTO_BED_LEVELING
  4734. adjust_delta(destination);
  4735. #endif
  4736. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4737. }
  4738. #endif // DELTA
  4739. #ifdef DUAL_X_CARRIAGE
  4740. if (active_extruder_parked) {
  4741. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4742. // move duplicate extruder into correct duplication position.
  4743. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4744. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4745. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4746. sync_plan_position();
  4747. st_synchronize();
  4748. extruder_duplication_enabled = true;
  4749. active_extruder_parked = false;
  4750. }
  4751. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4752. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4753. // This is a travel move (with no extrusion)
  4754. // Skip it, but keep track of the current position
  4755. // (so it can be used as the start of the next non-travel move)
  4756. if (delayed_move_time != 0xFFFFFFFFUL) {
  4757. set_current_to_destination();
  4758. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4759. delayed_move_time = millis();
  4760. return;
  4761. }
  4762. }
  4763. delayed_move_time = 0;
  4764. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4765. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4768. active_extruder_parked = false;
  4769. }
  4770. }
  4771. #endif // DUAL_X_CARRIAGE
  4772. #if !defined(DELTA) && !defined(SCARA)
  4773. // Do not use feedrate_multiplier for E or Z only moves
  4774. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4775. line_to_destination();
  4776. }
  4777. else {
  4778. #ifdef MESH_BED_LEVELING
  4779. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  4780. return;
  4781. #else
  4782. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  4783. #endif // MESH_BED_LEVELING
  4784. }
  4785. #endif // !(DELTA || SCARA)
  4786. set_current_to_destination();
  4787. }
  4788. void prepare_arc_move(char isclockwise) {
  4789. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4790. // Trace the arc
  4791. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
  4792. // As far as the parser is concerned, the position is now == target. In reality the
  4793. // motion control system might still be processing the action and the real tool position
  4794. // in any intermediate location.
  4795. set_current_to_destination();
  4796. refresh_cmd_timeout();
  4797. }
  4798. #if HAS_CONTROLLERFAN
  4799. millis_t lastMotor = 0; // Last time a motor was turned on
  4800. millis_t lastMotorCheck = 0; // Last time the state was checked
  4801. void controllerFan() {
  4802. millis_t ms = millis();
  4803. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4804. lastMotorCheck = ms;
  4805. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4806. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4807. #if EXTRUDERS > 1
  4808. || E1_ENABLE_READ == E_ENABLE_ON
  4809. #if HAS_X2_ENABLE
  4810. || X2_ENABLE_READ == X_ENABLE_ON
  4811. #endif
  4812. #if EXTRUDERS > 2
  4813. || E2_ENABLE_READ == E_ENABLE_ON
  4814. #if EXTRUDERS > 3
  4815. || E3_ENABLE_READ == E_ENABLE_ON
  4816. #endif
  4817. #endif
  4818. #endif
  4819. ) {
  4820. lastMotor = ms; //... set time to NOW so the fan will turn on
  4821. }
  4822. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4823. // allows digital or PWM fan output to be used (see M42 handling)
  4824. digitalWrite(CONTROLLERFAN_PIN, speed);
  4825. analogWrite(CONTROLLERFAN_PIN, speed);
  4826. }
  4827. }
  4828. #endif
  4829. #ifdef SCARA
  4830. void calculate_SCARA_forward_Transform(float f_scara[3])
  4831. {
  4832. // Perform forward kinematics, and place results in delta[3]
  4833. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4834. float x_sin, x_cos, y_sin, y_cos;
  4835. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4836. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4837. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4838. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4839. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4840. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4841. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4842. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4843. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4844. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4845. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4846. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4847. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4848. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4849. }
  4850. void calculate_delta(float cartesian[3]){
  4851. //reverse kinematics.
  4852. // Perform reversed kinematics, and place results in delta[3]
  4853. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4854. float SCARA_pos[2];
  4855. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4856. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4857. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4858. #if (Linkage_1 == Linkage_2)
  4859. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4860. #else
  4861. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4862. #endif
  4863. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4864. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4865. SCARA_K2 = Linkage_2 * SCARA_S2;
  4866. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4867. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4868. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4869. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4870. delta[Z_AXIS] = cartesian[Z_AXIS];
  4871. /*
  4872. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4873. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4874. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4875. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4876. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4877. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4878. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4879. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4880. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4881. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4882. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4883. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4884. SERIAL_ECHOLN(" ");*/
  4885. }
  4886. #endif
  4887. #ifdef TEMP_STAT_LEDS
  4888. static bool red_led = false;
  4889. static millis_t next_status_led_update_ms = 0;
  4890. void handle_status_leds(void) {
  4891. float max_temp = 0.0;
  4892. if (millis() > next_status_led_update_ms) {
  4893. next_status_led_update_ms += 500; // Update every 0.5s
  4894. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  4895. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  4896. #if HAS_TEMP_BED
  4897. max_temp = max(max(max_temp, degTargetBed()), degBed());
  4898. #endif
  4899. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  4900. if (new_led != red_led) {
  4901. red_led = new_led;
  4902. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  4903. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  4904. }
  4905. }
  4906. }
  4907. #endif
  4908. void enable_all_steppers() {
  4909. enable_x();
  4910. enable_y();
  4911. enable_z();
  4912. enable_e0();
  4913. enable_e1();
  4914. enable_e2();
  4915. enable_e3();
  4916. }
  4917. void disable_all_steppers() {
  4918. disable_x();
  4919. disable_y();
  4920. disable_z();
  4921. disable_e0();
  4922. disable_e1();
  4923. disable_e2();
  4924. disable_e3();
  4925. }
  4926. /**
  4927. * Manage several activities:
  4928. * - Check for Filament Runout
  4929. * - Keep the command buffer full
  4930. * - Check for maximum inactive time between commands
  4931. * - Check for maximum inactive time between stepper commands
  4932. * - Check if pin CHDK needs to go LOW
  4933. * - Check for KILL button held down
  4934. * - Check for HOME button held down
  4935. * - Check if cooling fan needs to be switched on
  4936. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  4937. */
  4938. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4939. #if HAS_FILRUNOUT
  4940. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4941. filrunout();
  4942. #endif
  4943. if (commands_in_queue < BUFSIZE - 1) get_command();
  4944. millis_t ms = millis();
  4945. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  4946. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  4947. && !ignore_stepper_queue && !blocks_queued())
  4948. disable_all_steppers();
  4949. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  4950. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4951. chdkActive = false;
  4952. WRITE(CHDK, LOW);
  4953. }
  4954. #endif
  4955. #if HAS_KILL
  4956. // Check if the kill button was pressed and wait just in case it was an accidental
  4957. // key kill key press
  4958. // -------------------------------------------------------------------------------
  4959. static int killCount = 0; // make the inactivity button a bit less responsive
  4960. const int KILL_DELAY = 750;
  4961. if (!READ(KILL_PIN))
  4962. killCount++;
  4963. else if (killCount > 0)
  4964. killCount--;
  4965. // Exceeded threshold and we can confirm that it was not accidental
  4966. // KILL the machine
  4967. // ----------------------------------------------------------------
  4968. if (killCount >= KILL_DELAY) kill();
  4969. #endif
  4970. #if HAS_HOME
  4971. // Check to see if we have to home, use poor man's debouncer
  4972. // ---------------------------------------------------------
  4973. static int homeDebounceCount = 0; // poor man's debouncing count
  4974. const int HOME_DEBOUNCE_DELAY = 750;
  4975. if (!READ(HOME_PIN)) {
  4976. if (!homeDebounceCount) {
  4977. enqueuecommands_P(PSTR("G28"));
  4978. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4979. }
  4980. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4981. homeDebounceCount++;
  4982. else
  4983. homeDebounceCount = 0;
  4984. }
  4985. #endif
  4986. #if HAS_CONTROLLERFAN
  4987. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  4988. #endif
  4989. #ifdef EXTRUDER_RUNOUT_PREVENT
  4990. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  4991. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4992. bool oldstatus;
  4993. switch(active_extruder) {
  4994. case 0:
  4995. oldstatus = E0_ENABLE_READ;
  4996. enable_e0();
  4997. break;
  4998. #if EXTRUDERS > 1
  4999. case 1:
  5000. oldstatus = E1_ENABLE_READ;
  5001. enable_e1();
  5002. break;
  5003. #if EXTRUDERS > 2
  5004. case 2:
  5005. oldstatus = E2_ENABLE_READ;
  5006. enable_e2();
  5007. break;
  5008. #if EXTRUDERS > 3
  5009. case 3:
  5010. oldstatus = E3_ENABLE_READ;
  5011. enable_e3();
  5012. break;
  5013. #endif
  5014. #endif
  5015. #endif
  5016. }
  5017. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5018. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5019. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5020. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5021. current_position[E_AXIS] = oldepos;
  5022. destination[E_AXIS] = oldedes;
  5023. plan_set_e_position(oldepos);
  5024. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5025. st_synchronize();
  5026. switch(active_extruder) {
  5027. case 0:
  5028. E0_ENABLE_WRITE(oldstatus);
  5029. break;
  5030. #if EXTRUDERS > 1
  5031. case 1:
  5032. E1_ENABLE_WRITE(oldstatus);
  5033. break;
  5034. #if EXTRUDERS > 2
  5035. case 2:
  5036. E2_ENABLE_WRITE(oldstatus);
  5037. break;
  5038. #if EXTRUDERS > 3
  5039. case 3:
  5040. E3_ENABLE_WRITE(oldstatus);
  5041. break;
  5042. #endif
  5043. #endif
  5044. #endif
  5045. }
  5046. }
  5047. #endif
  5048. #ifdef DUAL_X_CARRIAGE
  5049. // handle delayed move timeout
  5050. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5051. // travel moves have been received so enact them
  5052. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5053. set_destination_to_current();
  5054. prepare_move();
  5055. }
  5056. #endif
  5057. #ifdef TEMP_STAT_LEDS
  5058. handle_status_leds();
  5059. #endif
  5060. check_axes_activity();
  5061. }
  5062. void kill()
  5063. {
  5064. cli(); // Stop interrupts
  5065. disable_all_heaters();
  5066. disable_all_steppers();
  5067. #if HAS_POWER_SWITCH
  5068. pinMode(PS_ON_PIN, INPUT);
  5069. #endif
  5070. SERIAL_ERROR_START;
  5071. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5072. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5073. // FMC small patch to update the LCD before ending
  5074. sei(); // enable interrupts
  5075. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5076. cli(); // disable interrupts
  5077. suicide();
  5078. while(1) { /* Intentionally left empty */ } // Wait for reset
  5079. }
  5080. #ifdef FILAMENT_RUNOUT_SENSOR
  5081. void filrunout() {
  5082. if (!filrunoutEnqueued) {
  5083. filrunoutEnqueued = true;
  5084. enqueuecommand("M600");
  5085. }
  5086. }
  5087. #endif
  5088. void Stop() {
  5089. disable_all_heaters();
  5090. if (IsRunning()) {
  5091. Running = false;
  5092. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5093. SERIAL_ERROR_START;
  5094. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5095. LCD_MESSAGEPGM(MSG_STOPPED);
  5096. }
  5097. }
  5098. #ifdef FAST_PWM_FAN
  5099. void setPwmFrequency(uint8_t pin, int val)
  5100. {
  5101. val &= 0x07;
  5102. switch(digitalPinToTimer(pin))
  5103. {
  5104. #if defined(TCCR0A)
  5105. case TIMER0A:
  5106. case TIMER0B:
  5107. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5108. // TCCR0B |= val;
  5109. break;
  5110. #endif
  5111. #if defined(TCCR1A)
  5112. case TIMER1A:
  5113. case TIMER1B:
  5114. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5115. // TCCR1B |= val;
  5116. break;
  5117. #endif
  5118. #if defined(TCCR2)
  5119. case TIMER2:
  5120. case TIMER2:
  5121. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5122. TCCR2 |= val;
  5123. break;
  5124. #endif
  5125. #if defined(TCCR2A)
  5126. case TIMER2A:
  5127. case TIMER2B:
  5128. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5129. TCCR2B |= val;
  5130. break;
  5131. #endif
  5132. #if defined(TCCR3A)
  5133. case TIMER3A:
  5134. case TIMER3B:
  5135. case TIMER3C:
  5136. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5137. TCCR3B |= val;
  5138. break;
  5139. #endif
  5140. #if defined(TCCR4A)
  5141. case TIMER4A:
  5142. case TIMER4B:
  5143. case TIMER4C:
  5144. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5145. TCCR4B |= val;
  5146. break;
  5147. #endif
  5148. #if defined(TCCR5A)
  5149. case TIMER5A:
  5150. case TIMER5B:
  5151. case TIMER5C:
  5152. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5153. TCCR5B |= val;
  5154. break;
  5155. #endif
  5156. }
  5157. }
  5158. #endif //FAST_PWM_FAN
  5159. bool setTargetedHotend(int code){
  5160. target_extruder = active_extruder;
  5161. if (code_seen('T')) {
  5162. target_extruder = code_value_short();
  5163. if (target_extruder >= EXTRUDERS) {
  5164. SERIAL_ECHO_START;
  5165. switch(code){
  5166. case 104:
  5167. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5168. break;
  5169. case 105:
  5170. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5171. break;
  5172. case 109:
  5173. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5174. break;
  5175. case 218:
  5176. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5177. break;
  5178. case 221:
  5179. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5180. break;
  5181. }
  5182. SERIAL_ECHOLN(target_extruder);
  5183. return true;
  5184. }
  5185. }
  5186. return false;
  5187. }
  5188. float calculate_volumetric_multiplier(float diameter) {
  5189. if (!volumetric_enabled || diameter == 0) return 1.0;
  5190. float d2 = diameter * 0.5;
  5191. return 1.0 / (M_PI * d2 * d2);
  5192. }
  5193. void calculate_volumetric_multipliers() {
  5194. for (int i=0; i<EXTRUDERS; i++)
  5195. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5196. }