My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 204KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  37. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  38. #ifdef MESH_BED_LEVELING
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #include "ultralcd.h"
  42. #include "planner.h"
  43. #include "stepper.h"
  44. #include "temperature.h"
  45. #include "cardreader.h"
  46. #include "watchdog.h"
  47. #include "configuration_store.h"
  48. #include "language.h"
  49. #include "pins_arduino.h"
  50. #include "math.h"
  51. #ifdef BLINKM
  52. #include "blinkm.h"
  53. #include "Wire.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "servo.h"
  57. #endif
  58. #if HAS_DIGIPOTSS
  59. #include <SPI.h>
  60. #endif
  61. /**
  62. * Look here for descriptions of G-codes:
  63. * - http://linuxcnc.org/handbook/gcode/g-code.html
  64. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  65. *
  66. * Help us document these G-codes online:
  67. * - http://www.marlinfirmware.org/index.php/G-Code
  68. * - http://reprap.org/wiki/G-code
  69. *
  70. * -----------------
  71. * Implemented Codes
  72. * -----------------
  73. *
  74. * "G" Codes
  75. *
  76. * G0 -> G1
  77. * G1 - Coordinated Movement X Y Z E
  78. * G2 - CW ARC
  79. * G3 - CCW ARC
  80. * G4 - Dwell S<seconds> or P<milliseconds>
  81. * G10 - retract filament according to settings of M207
  82. * G11 - retract recover filament according to settings of M208
  83. * G28 - Home one or more axes
  84. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  85. * G30 - Single Z Probe, probes bed at current XY location.
  86. * G31 - Dock sled (Z_PROBE_SLED only)
  87. * G32 - Undock sled (Z_PROBE_SLED only)
  88. * G90 - Use Absolute Coordinates
  89. * G91 - Use Relative Coordinates
  90. * G92 - Set current position to coordinates given
  91. *
  92. * "M" Codes
  93. *
  94. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  95. * M1 - Same as M0
  96. * M17 - Enable/Power all stepper motors
  97. * M18 - Disable all stepper motors; same as M84
  98. * M20 - List SD card
  99. * M21 - Init SD card
  100. * M22 - Release SD card
  101. * M23 - Select SD file (M23 filename.g)
  102. * M24 - Start/resume SD print
  103. * M25 - Pause SD print
  104. * M26 - Set SD position in bytes (M26 S12345)
  105. * M27 - Report SD print status
  106. * M28 - Start SD write (M28 filename.g)
  107. * M29 - Stop SD write
  108. * M30 - Delete file from SD (M30 filename.g)
  109. * M31 - Output time since last M109 or SD card start to serial
  110. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  111. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  112. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  113. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  114. * M33 - Get the longname version of a path
  115. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  116. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  117. * M80 - Turn on Power Supply
  118. * M81 - Turn off Power Supply
  119. * M82 - Set E codes absolute (default)
  120. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  121. * M84 - Disable steppers until next move,
  122. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  123. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  124. * M92 - Set axis_steps_per_unit - same syntax as G92
  125. * M104 - Set extruder target temp
  126. * M105 - Read current temp
  127. * M106 - Fan on
  128. * M107 - Fan off
  129. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  130. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  131. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - Display a message on the controller screen
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower z-probe if present
  175. * M402 - Raise z-probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  209. * M928 - Start SD logging (M928 filename.g) - ended by M29
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  215. *
  216. */
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. bool Running = true;
  221. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  222. static float feedrate = 1500.0, saved_feedrate;
  223. float current_position[NUM_AXIS] = { 0.0 };
  224. static float destination[NUM_AXIS] = { 0.0 };
  225. bool axis_known_position[3] = { false };
  226. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  227. static char *current_command, *current_command_args;
  228. static int cmd_queue_index_r = 0;
  229. static int cmd_queue_index_w = 0;
  230. static int commands_in_queue = 0;
  231. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  232. float homing_feedrate[] = HOMING_FEEDRATE;
  233. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  234. int feedrate_multiplier = 100; //100->1 200->2
  235. int saved_feedrate_multiplier;
  236. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  237. bool volumetric_enabled = false;
  238. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  239. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  240. float home_offset[3] = { 0 };
  241. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  242. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  243. uint8_t active_extruder = 0;
  244. int fanSpeed = 0;
  245. bool cancel_heatup = false;
  246. const char errormagic[] PROGMEM = "Error:";
  247. const char echomagic[] PROGMEM = "echo:";
  248. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  249. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  250. static char serial_char;
  251. static int serial_count = 0;
  252. static boolean comment_mode = false;
  253. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  254. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  255. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  256. // Inactivity shutdown
  257. millis_t previous_cmd_ms = 0;
  258. static millis_t max_inactive_time = 0;
  259. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  260. millis_t print_job_start_ms = 0; ///< Print job start time
  261. millis_t print_job_stop_ms = 0; ///< Print job stop time
  262. static uint8_t target_extruder;
  263. bool no_wait_for_cooling = true;
  264. bool target_direction;
  265. #ifdef ENABLE_AUTO_BED_LEVELING
  266. int xy_travel_speed = XY_TRAVEL_SPEED;
  267. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  268. #endif
  269. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  270. float z_endstop_adj = 0;
  271. #endif
  272. // Extruder offsets
  273. #if EXTRUDERS > 1
  274. #ifndef EXTRUDER_OFFSET_X
  275. #define EXTRUDER_OFFSET_X { 0 }
  276. #endif
  277. #ifndef EXTRUDER_OFFSET_Y
  278. #define EXTRUDER_OFFSET_Y { 0 }
  279. #endif
  280. float extruder_offset[][EXTRUDERS] = {
  281. EXTRUDER_OFFSET_X,
  282. EXTRUDER_OFFSET_Y
  283. #ifdef DUAL_X_CARRIAGE
  284. , { 0 } // supports offsets in XYZ plane
  285. #endif
  286. };
  287. #endif
  288. #ifdef SERVO_ENDSTOPS
  289. int servo_endstops[] = SERVO_ENDSTOPS;
  290. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  291. #endif
  292. #ifdef BARICUDA
  293. int ValvePressure = 0;
  294. int EtoPPressure = 0;
  295. #endif
  296. #ifdef FWRETRACT
  297. bool autoretract_enabled = false;
  298. bool retracted[EXTRUDERS] = { false };
  299. bool retracted_swap[EXTRUDERS] = { false };
  300. float retract_length = RETRACT_LENGTH;
  301. float retract_length_swap = RETRACT_LENGTH_SWAP;
  302. float retract_feedrate = RETRACT_FEEDRATE;
  303. float retract_zlift = RETRACT_ZLIFT;
  304. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  305. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  306. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  307. #endif // FWRETRACT
  308. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  309. bool powersupply =
  310. #ifdef PS_DEFAULT_OFF
  311. false
  312. #else
  313. true
  314. #endif
  315. ;
  316. #endif
  317. #ifdef DELTA
  318. float delta[3] = { 0 };
  319. #define SIN_60 0.8660254037844386
  320. #define COS_60 0.5
  321. float endstop_adj[3] = { 0 };
  322. // these are the default values, can be overriden with M665
  323. float delta_radius = DELTA_RADIUS;
  324. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  325. float delta_tower1_y = -COS_60 * delta_radius;
  326. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  327. float delta_tower2_y = -COS_60 * delta_radius;
  328. float delta_tower3_x = 0; // back middle tower
  329. float delta_tower3_y = delta_radius;
  330. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  331. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  332. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  333. #ifdef ENABLE_AUTO_BED_LEVELING
  334. int delta_grid_spacing[2] = { 0, 0 };
  335. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  336. #endif
  337. #else
  338. static bool home_all_axis = true;
  339. #endif
  340. #ifdef SCARA
  341. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  342. static float delta[3] = { 0 };
  343. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1 = 0; //index into ring buffer
  352. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist = 0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. #ifdef FILAMENT_RUNOUT_SENSOR
  357. static bool filrunoutEnqueued = false;
  358. #endif
  359. #ifdef SDSUPPORT
  360. static bool fromsd[BUFSIZE];
  361. #endif
  362. #if NUM_SERVOS > 0
  363. Servo servo[NUM_SERVOS];
  364. #endif
  365. #ifdef CHDK
  366. unsigned long chdkHigh = 0;
  367. boolean chdkActive = false;
  368. #endif
  369. //===========================================================================
  370. //================================ Functions ================================
  371. //===========================================================================
  372. void process_next_command();
  373. bool setTargetedHotend(int code);
  374. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  376. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. #ifdef PREVENT_DANGEROUS_EXTRUDE
  378. float extrude_min_temp = EXTRUDE_MINTEMP;
  379. #endif
  380. #ifdef SDSUPPORT
  381. #include "SdFatUtil.h"
  382. int freeMemory() { return SdFatUtil::FreeRam(); }
  383. #else
  384. extern "C" {
  385. extern unsigned int __bss_end;
  386. extern unsigned int __heap_start;
  387. extern void *__brkval;
  388. int freeMemory() {
  389. int free_memory;
  390. if ((int)__brkval == 0)
  391. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  392. else
  393. free_memory = ((int)&free_memory) - ((int)__brkval);
  394. return free_memory;
  395. }
  396. }
  397. #endif //!SDSUPPORT
  398. /**
  399. * Inject the next command from the command queue, when possible
  400. * Return false only if no command was pending
  401. */
  402. static bool drain_queued_commands_P() {
  403. if (!queued_commands_P) return false;
  404. // Get the next 30 chars from the sequence of gcodes to run
  405. char cmd[30];
  406. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  407. cmd[sizeof(cmd) - 1] = '\0';
  408. // Look for the end of line, or the end of sequence
  409. size_t i = 0;
  410. char c;
  411. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  412. cmd[i] = '\0';
  413. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  414. if (c)
  415. queued_commands_P += i + 1; // move to next command
  416. else
  417. queued_commands_P = NULL; // will have no more commands in the sequence
  418. }
  419. return true;
  420. }
  421. /**
  422. * Record one or many commands to run from program memory.
  423. * Aborts the current queue, if any.
  424. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  425. */
  426. void enqueuecommands_P(const char* pgcode) {
  427. queued_commands_P = pgcode;
  428. drain_queued_commands_P(); // first command executed asap (when possible)
  429. }
  430. /**
  431. * Copy a command directly into the main command buffer, from RAM.
  432. *
  433. * This is done in a non-safe way and needs a rework someday.
  434. * Returns false if it doesn't add any command
  435. */
  436. bool enqueuecommand(const char *cmd) {
  437. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  438. // This is dangerous if a mixing of serial and this happens
  439. char *command = command_queue[cmd_queue_index_w];
  440. strcpy(command, cmd);
  441. SERIAL_ECHO_START;
  442. SERIAL_ECHOPGM(MSG_Enqueueing);
  443. SERIAL_ECHO(command);
  444. SERIAL_ECHOLNPGM("\"");
  445. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  446. commands_in_queue++;
  447. return true;
  448. }
  449. void setup_killpin() {
  450. #if HAS_KILL
  451. SET_INPUT(KILL_PIN);
  452. WRITE(KILL_PIN, HIGH);
  453. #endif
  454. }
  455. void setup_filrunoutpin() {
  456. #if HAS_FILRUNOUT
  457. pinMode(FILRUNOUT_PIN, INPUT);
  458. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  459. WRITE(FILRUNOUT_PIN, HIGH);
  460. #endif
  461. #endif
  462. }
  463. // Set home pin
  464. void setup_homepin(void) {
  465. #if HAS_HOME
  466. SET_INPUT(HOME_PIN);
  467. WRITE(HOME_PIN, HIGH);
  468. #endif
  469. }
  470. void setup_photpin() {
  471. #if HAS_PHOTOGRAPH
  472. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  473. #endif
  474. }
  475. void setup_powerhold() {
  476. #if HAS_SUICIDE
  477. OUT_WRITE(SUICIDE_PIN, HIGH);
  478. #endif
  479. #if HAS_POWER_SWITCH
  480. #ifdef PS_DEFAULT_OFF
  481. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  482. #else
  483. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  484. #endif
  485. #endif
  486. }
  487. void suicide() {
  488. #if HAS_SUICIDE
  489. OUT_WRITE(SUICIDE_PIN, LOW);
  490. #endif
  491. }
  492. void servo_init() {
  493. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  494. servo[0].attach(SERVO0_PIN);
  495. #endif
  496. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  497. servo[1].attach(SERVO1_PIN);
  498. #endif
  499. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  500. servo[2].attach(SERVO2_PIN);
  501. #endif
  502. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  503. servo[3].attach(SERVO3_PIN);
  504. #endif
  505. // Set position of Servo Endstops that are defined
  506. #ifdef SERVO_ENDSTOPS
  507. for (int i = 0; i < 3; i++)
  508. if (servo_endstops[i] >= 0)
  509. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  510. #endif
  511. #if SERVO_LEVELING
  512. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  513. servo[servo_endstops[Z_AXIS]].detach();
  514. #endif
  515. }
  516. /**
  517. * Marlin entry-point: Set up before the program loop
  518. * - Set up the kill pin, filament runout, power hold
  519. * - Start the serial port
  520. * - Print startup messages and diagnostics
  521. * - Get EEPROM or default settings
  522. * - Initialize managers for:
  523. * • temperature
  524. * • planner
  525. * • watchdog
  526. * • stepper
  527. * • photo pin
  528. * • servos
  529. * • LCD controller
  530. * • Digipot I2C
  531. * • Z probe sled
  532. * • status LEDs
  533. */
  534. void setup() {
  535. setup_killpin();
  536. setup_filrunoutpin();
  537. setup_powerhold();
  538. MYSERIAL.begin(BAUDRATE);
  539. SERIAL_PROTOCOLLNPGM("start");
  540. SERIAL_ECHO_START;
  541. // Check startup - does nothing if bootloader sets MCUSR to 0
  542. byte mcu = MCUSR;
  543. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  544. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  545. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  546. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  547. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  548. MCUSR = 0;
  549. SERIAL_ECHOPGM(MSG_MARLIN);
  550. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  551. #ifdef STRING_VERSION_CONFIG_H
  552. #ifdef STRING_CONFIG_H_AUTHOR
  553. SERIAL_ECHO_START;
  554. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  555. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  556. SERIAL_ECHOPGM(MSG_AUTHOR);
  557. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  558. SERIAL_ECHOPGM("Compiled: ");
  559. SERIAL_ECHOLNPGM(__DATE__);
  560. #endif // STRING_CONFIG_H_AUTHOR
  561. #endif // STRING_VERSION_CONFIG_H
  562. SERIAL_ECHO_START;
  563. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  564. SERIAL_ECHO(freeMemory());
  565. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  566. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  567. #ifdef SDSUPPORT
  568. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  569. #endif
  570. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  571. Config_RetrieveSettings();
  572. tp_init(); // Initialize temperature loop
  573. plan_init(); // Initialize planner;
  574. watchdog_init();
  575. st_init(); // Initialize stepper, this enables interrupts!
  576. setup_photpin();
  577. servo_init();
  578. lcd_init();
  579. _delay_ms(1000); // wait 1sec to display the splash screen
  580. #if HAS_CONTROLLERFAN
  581. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  582. #endif
  583. #ifdef DIGIPOT_I2C
  584. digipot_i2c_init();
  585. #endif
  586. #ifdef Z_PROBE_SLED
  587. pinMode(SLED_PIN, OUTPUT);
  588. digitalWrite(SLED_PIN, LOW); // turn it off
  589. #endif // Z_PROBE_SLED
  590. setup_homepin();
  591. #ifdef STAT_LED_RED
  592. pinMode(STAT_LED_RED, OUTPUT);
  593. digitalWrite(STAT_LED_RED, LOW); // turn it off
  594. #endif
  595. #ifdef STAT_LED_BLUE
  596. pinMode(STAT_LED_BLUE, OUTPUT);
  597. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  598. #endif
  599. }
  600. /**
  601. * The main Marlin program loop
  602. *
  603. * - Save or log commands to SD
  604. * - Process available commands (if not saving)
  605. * - Call heater manager
  606. * - Call inactivity manager
  607. * - Call endstop manager
  608. * - Call LCD update
  609. */
  610. void loop() {
  611. if (commands_in_queue < BUFSIZE - 1) get_command();
  612. #ifdef SDSUPPORT
  613. card.checkautostart(false);
  614. #endif
  615. if (commands_in_queue) {
  616. #ifdef SDSUPPORT
  617. if (card.saving) {
  618. char *command = command_queue[cmd_queue_index_r];
  619. if (strstr_P(command, PSTR("M29"))) {
  620. // M29 closes the file
  621. card.closefile();
  622. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  623. }
  624. else {
  625. // Write the string from the read buffer to SD
  626. card.write_command(command);
  627. if (card.logging)
  628. process_next_command(); // The card is saving because it's logging
  629. else
  630. SERIAL_PROTOCOLLNPGM(MSG_OK);
  631. }
  632. }
  633. else
  634. process_next_command();
  635. #else
  636. process_next_command();
  637. #endif // SDSUPPORT
  638. commands_in_queue--;
  639. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  640. }
  641. // Check heater every n milliseconds
  642. manage_heater();
  643. manage_inactivity();
  644. checkHitEndstops();
  645. lcd_update();
  646. }
  647. void gcode_line_error(const char *err, bool doFlush=true) {
  648. SERIAL_ERROR_START;
  649. serialprintPGM(err);
  650. SERIAL_ERRORLN(gcode_LastN);
  651. //Serial.println(gcode_N);
  652. if (doFlush) FlushSerialRequestResend();
  653. serial_count = 0;
  654. }
  655. /**
  656. * Add to the circular command queue the next command from:
  657. * - The command-injection queue (queued_commands_P)
  658. * - The active serial input (usually USB)
  659. * - The SD card file being actively printed
  660. */
  661. void get_command() {
  662. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  663. #ifdef NO_TIMEOUTS
  664. static millis_t last_command_time = 0;
  665. millis_t ms = millis();
  666. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  667. SERIAL_ECHOLNPGM(MSG_WAIT);
  668. last_command_time = ms;
  669. }
  670. #endif
  671. //
  672. // Loop while serial characters are incoming and the queue is not full
  673. //
  674. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  675. #ifdef NO_TIMEOUTS
  676. last_command_time = ms;
  677. #endif
  678. serial_char = MYSERIAL.read();
  679. //
  680. // If the character ends the line, or the line is full...
  681. //
  682. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  683. // end of line == end of comment
  684. comment_mode = false;
  685. if (!serial_count) return; // empty lines just exit
  686. char *command = command_queue[cmd_queue_index_w];
  687. command[serial_count] = 0; // terminate string
  688. // this item in the queue is not from sd
  689. #ifdef SDSUPPORT
  690. fromsd[cmd_queue_index_w] = false;
  691. #endif
  692. char *npos = strchr(command, 'N');
  693. char *apos = strchr(command, '*');
  694. if (npos) {
  695. gcode_N = strtol(npos + 1, NULL, 10);
  696. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  697. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  698. return;
  699. }
  700. if (apos) {
  701. byte checksum = 0, count = 0;
  702. while (command[count] != '*') checksum ^= command[count++];
  703. if (strtol(apos + 1, NULL, 10) != checksum) {
  704. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  705. return;
  706. }
  707. // if no errors, continue parsing
  708. }
  709. else {
  710. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  711. return;
  712. }
  713. gcode_LastN = gcode_N;
  714. // if no errors, continue parsing
  715. }
  716. else if (apos) { // No '*' without 'N'
  717. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  718. return;
  719. }
  720. // Movement commands alert when stopped
  721. if (IsStopped()) {
  722. char *gpos = strchr(command, 'G');
  723. if (gpos) {
  724. int codenum = strtol(gpos + 1, NULL, 10);
  725. switch (codenum) {
  726. case 0:
  727. case 1:
  728. case 2:
  729. case 3:
  730. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  731. LCD_MESSAGEPGM(MSG_STOPPED);
  732. break;
  733. }
  734. }
  735. }
  736. // If command was e-stop process now
  737. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  738. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  739. commands_in_queue += 1;
  740. serial_count = 0; //clear buffer
  741. }
  742. else if (serial_char == '\\') { // Handle escapes
  743. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  744. // if we have one more character, copy it over
  745. serial_char = MYSERIAL.read();
  746. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  747. }
  748. // otherwise do nothing
  749. }
  750. else { // its not a newline, carriage return or escape char
  751. if (serial_char == ';') comment_mode = true;
  752. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  753. }
  754. }
  755. #ifdef SDSUPPORT
  756. if (!card.sdprinting || serial_count) return;
  757. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  758. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  759. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  760. static bool stop_buffering = false;
  761. if (commands_in_queue == 0) stop_buffering = false;
  762. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  763. int16_t n = card.get();
  764. serial_char = (char)n;
  765. if (serial_char == '\n' || serial_char == '\r' ||
  766. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  767. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  768. ) {
  769. if (card.eof()) {
  770. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  771. print_job_stop_ms = millis();
  772. char time[30];
  773. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  774. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  775. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  776. SERIAL_ECHO_START;
  777. SERIAL_ECHOLN(time);
  778. lcd_setstatus(time, true);
  779. card.printingHasFinished();
  780. card.checkautostart(true);
  781. }
  782. if (serial_char == '#') stop_buffering = true;
  783. if (!serial_count) {
  784. comment_mode = false; //for new command
  785. return; //if empty line
  786. }
  787. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  788. // if (!comment_mode) {
  789. fromsd[cmd_queue_index_w] = true;
  790. commands_in_queue += 1;
  791. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  792. // }
  793. comment_mode = false; //for new command
  794. serial_count = 0; //clear buffer
  795. }
  796. else {
  797. if (serial_char == ';') comment_mode = true;
  798. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  799. }
  800. }
  801. #endif // SDSUPPORT
  802. }
  803. bool code_has_value() {
  804. int i = 1;
  805. char c = seen_pointer[i];
  806. if (c == '-' || c == '+') c = seen_pointer[++i];
  807. if (c == '.') c = seen_pointer[++i];
  808. return (c >= '0' && c <= '9');
  809. }
  810. float code_value() {
  811. float ret;
  812. char *e = strchr(seen_pointer, 'E');
  813. if (e) {
  814. *e = 0;
  815. ret = strtod(seen_pointer+1, NULL);
  816. *e = 'E';
  817. }
  818. else
  819. ret = strtod(seen_pointer+1, NULL);
  820. return ret;
  821. }
  822. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  823. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  824. bool code_seen(char code) {
  825. seen_pointer = strchr(current_command_args, code); // +3 since "G0 " is the shortest prefix
  826. return (seen_pointer != NULL); //Return True if a character was found
  827. }
  828. #define DEFINE_PGM_READ_ANY(type, reader) \
  829. static inline type pgm_read_any(const type *p) \
  830. { return pgm_read_##reader##_near(p); }
  831. DEFINE_PGM_READ_ANY(float, float);
  832. DEFINE_PGM_READ_ANY(signed char, byte);
  833. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  834. static const PROGMEM type array##_P[3] = \
  835. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  836. static inline type array(int axis) \
  837. { return pgm_read_any(&array##_P[axis]); }
  838. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  839. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  840. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  841. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  842. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  843. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  844. #ifdef DUAL_X_CARRIAGE
  845. #define DXC_FULL_CONTROL_MODE 0
  846. #define DXC_AUTO_PARK_MODE 1
  847. #define DXC_DUPLICATION_MODE 2
  848. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  849. static float x_home_pos(int extruder) {
  850. if (extruder == 0)
  851. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  852. else
  853. // In dual carriage mode the extruder offset provides an override of the
  854. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  855. // This allow soft recalibration of the second extruder offset position without firmware reflash
  856. // (through the M218 command).
  857. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  858. }
  859. static int x_home_dir(int extruder) {
  860. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  861. }
  862. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  863. static bool active_extruder_parked = false; // used in mode 1 & 2
  864. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  865. static millis_t delayed_move_time = 0; // used in mode 1
  866. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  867. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  868. bool extruder_duplication_enabled = false; // used in mode 2
  869. #endif //DUAL_X_CARRIAGE
  870. static void axis_is_at_home(AxisEnum axis) {
  871. #ifdef DUAL_X_CARRIAGE
  872. if (axis == X_AXIS) {
  873. if (active_extruder != 0) {
  874. current_position[X_AXIS] = x_home_pos(active_extruder);
  875. min_pos[X_AXIS] = X2_MIN_POS;
  876. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  877. return;
  878. }
  879. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  880. float xoff = home_offset[X_AXIS];
  881. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  882. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  883. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  884. return;
  885. }
  886. }
  887. #endif
  888. #ifdef SCARA
  889. if (axis == X_AXIS || axis == Y_AXIS) {
  890. float homeposition[3];
  891. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  892. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  893. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  894. // Works out real Homeposition angles using inverse kinematics,
  895. // and calculates homing offset using forward kinematics
  896. calculate_delta(homeposition);
  897. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  898. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  899. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  900. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  901. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  902. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  903. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  904. calculate_SCARA_forward_Transform(delta);
  905. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  906. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  907. current_position[axis] = delta[axis];
  908. // SCARA home positions are based on configuration since the actual limits are determined by the
  909. // inverse kinematic transform.
  910. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  911. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  912. }
  913. else
  914. #endif
  915. {
  916. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  917. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  918. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  919. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  920. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  921. #endif
  922. }
  923. }
  924. /**
  925. * Some planner shorthand inline functions
  926. */
  927. inline void set_homing_bump_feedrate(AxisEnum axis) {
  928. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  929. if (homing_bump_divisor[axis] >= 1)
  930. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  931. else {
  932. feedrate = homing_feedrate[axis] / 10;
  933. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  934. }
  935. }
  936. inline void line_to_current_position() {
  937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  938. }
  939. inline void line_to_z(float zPosition) {
  940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  941. }
  942. inline void line_to_destination(float mm_m) {
  943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  944. }
  945. inline void line_to_destination() {
  946. line_to_destination(feedrate);
  947. }
  948. inline void sync_plan_position() {
  949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  950. }
  951. #if defined(DELTA) || defined(SCARA)
  952. inline void sync_plan_position_delta() {
  953. calculate_delta(current_position);
  954. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  955. }
  956. #endif
  957. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  958. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  959. static void setup_for_endstop_move() {
  960. saved_feedrate = feedrate;
  961. saved_feedrate_multiplier = feedrate_multiplier;
  962. feedrate_multiplier = 100;
  963. refresh_cmd_timeout();
  964. enable_endstops(true);
  965. }
  966. #ifdef ENABLE_AUTO_BED_LEVELING
  967. #ifdef DELTA
  968. /**
  969. * Calculate delta, start a line, and set current_position to destination
  970. */
  971. void prepare_move_raw() {
  972. refresh_cmd_timeout();
  973. calculate_delta(destination);
  974. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  975. set_current_to_destination();
  976. }
  977. #endif
  978. #ifdef AUTO_BED_LEVELING_GRID
  979. #ifndef DELTA
  980. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  981. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  982. planeNormal.debug("planeNormal");
  983. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  984. //bedLevel.debug("bedLevel");
  985. //plan_bed_level_matrix.debug("bed level before");
  986. //vector_3 uncorrected_position = plan_get_position_mm();
  987. //uncorrected_position.debug("position before");
  988. vector_3 corrected_position = plan_get_position();
  989. //corrected_position.debug("position after");
  990. current_position[X_AXIS] = corrected_position.x;
  991. current_position[Y_AXIS] = corrected_position.y;
  992. current_position[Z_AXIS] = corrected_position.z;
  993. sync_plan_position();
  994. }
  995. #endif // !DELTA
  996. #else // !AUTO_BED_LEVELING_GRID
  997. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  998. plan_bed_level_matrix.set_to_identity();
  999. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1000. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1001. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1002. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1003. if (planeNormal.z < 0) {
  1004. planeNormal.x = -planeNormal.x;
  1005. planeNormal.y = -planeNormal.y;
  1006. planeNormal.z = -planeNormal.z;
  1007. }
  1008. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1009. vector_3 corrected_position = plan_get_position();
  1010. current_position[X_AXIS] = corrected_position.x;
  1011. current_position[Y_AXIS] = corrected_position.y;
  1012. current_position[Z_AXIS] = corrected_position.z;
  1013. sync_plan_position();
  1014. }
  1015. #endif // !AUTO_BED_LEVELING_GRID
  1016. static void run_z_probe() {
  1017. #ifdef DELTA
  1018. float start_z = current_position[Z_AXIS];
  1019. long start_steps = st_get_position(Z_AXIS);
  1020. // move down slowly until you find the bed
  1021. feedrate = homing_feedrate[Z_AXIS] / 4;
  1022. destination[Z_AXIS] = -10;
  1023. prepare_move_raw(); // this will also set_current_to_destination
  1024. st_synchronize();
  1025. endstops_hit_on_purpose(); // clear endstop hit flags
  1026. // we have to let the planner know where we are right now as it is not where we said to go.
  1027. long stop_steps = st_get_position(Z_AXIS);
  1028. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1029. current_position[Z_AXIS] = mm;
  1030. sync_plan_position_delta();
  1031. #else // !DELTA
  1032. plan_bed_level_matrix.set_to_identity();
  1033. feedrate = homing_feedrate[Z_AXIS];
  1034. // Move down until the probe (or endstop?) is triggered
  1035. float zPosition = -10;
  1036. line_to_z(zPosition);
  1037. st_synchronize();
  1038. // Tell the planner where we ended up - Get this from the stepper handler
  1039. zPosition = st_get_position_mm(Z_AXIS);
  1040. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1041. // move up the retract distance
  1042. zPosition += home_bump_mm(Z_AXIS);
  1043. line_to_z(zPosition);
  1044. st_synchronize();
  1045. endstops_hit_on_purpose(); // clear endstop hit flags
  1046. // move back down slowly to find bed
  1047. set_homing_bump_feedrate(Z_AXIS);
  1048. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1049. line_to_z(zPosition);
  1050. st_synchronize();
  1051. endstops_hit_on_purpose(); // clear endstop hit flags
  1052. // Get the current stepper position after bumping an endstop
  1053. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1054. sync_plan_position();
  1055. #endif // !DELTA
  1056. }
  1057. /**
  1058. * Plan a move to (X, Y, Z) and set the current_position
  1059. * The final current_position may not be the one that was requested
  1060. */
  1061. static void do_blocking_move_to(float x, float y, float z) {
  1062. float oldFeedRate = feedrate;
  1063. #ifdef DELTA
  1064. feedrate = XY_TRAVEL_SPEED;
  1065. destination[X_AXIS] = x;
  1066. destination[Y_AXIS] = y;
  1067. destination[Z_AXIS] = z;
  1068. prepare_move_raw(); // this will also set_current_to_destination
  1069. st_synchronize();
  1070. #else
  1071. feedrate = homing_feedrate[Z_AXIS];
  1072. current_position[Z_AXIS] = z;
  1073. line_to_current_position();
  1074. st_synchronize();
  1075. feedrate = xy_travel_speed;
  1076. current_position[X_AXIS] = x;
  1077. current_position[Y_AXIS] = y;
  1078. line_to_current_position();
  1079. st_synchronize();
  1080. #endif
  1081. feedrate = oldFeedRate;
  1082. }
  1083. static void clean_up_after_endstop_move() {
  1084. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1085. enable_endstops(false);
  1086. #endif
  1087. feedrate = saved_feedrate;
  1088. feedrate_multiplier = saved_feedrate_multiplier;
  1089. refresh_cmd_timeout();
  1090. }
  1091. static void deploy_z_probe() {
  1092. #ifdef SERVO_ENDSTOPS
  1093. // Engage Z Servo endstop if enabled
  1094. if (servo_endstops[Z_AXIS] >= 0) {
  1095. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1096. #if SERVO_LEVELING
  1097. srv->attach(0);
  1098. #endif
  1099. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1100. #if SERVO_LEVELING
  1101. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1102. srv->detach();
  1103. #endif
  1104. }
  1105. #elif defined(Z_PROBE_ALLEN_KEY)
  1106. feedrate = homing_feedrate[X_AXIS];
  1107. // Move to the start position to initiate deployment
  1108. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1109. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1110. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1111. prepare_move_raw(); // this will also set_current_to_destination
  1112. // Home X to touch the belt
  1113. feedrate = homing_feedrate[X_AXIS]/10;
  1114. destination[X_AXIS] = 0;
  1115. prepare_move_raw(); // this will also set_current_to_destination
  1116. // Home Y for safety
  1117. feedrate = homing_feedrate[X_AXIS]/2;
  1118. destination[Y_AXIS] = 0;
  1119. prepare_move_raw(); // this will also set_current_to_destination
  1120. st_synchronize();
  1121. #ifdef Z_PROBE_ENDSTOP
  1122. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1123. if (z_probe_endstop)
  1124. #else
  1125. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1126. if (z_min_endstop)
  1127. #endif
  1128. {
  1129. if (IsRunning()) {
  1130. SERIAL_ERROR_START;
  1131. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1132. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1133. }
  1134. Stop();
  1135. }
  1136. #endif // Z_PROBE_ALLEN_KEY
  1137. }
  1138. static void stow_z_probe(bool doRaise=true) {
  1139. #ifdef SERVO_ENDSTOPS
  1140. // Retract Z Servo endstop if enabled
  1141. if (servo_endstops[Z_AXIS] >= 0) {
  1142. #if Z_RAISE_AFTER_PROBING > 0
  1143. if (doRaise) {
  1144. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1145. st_synchronize();
  1146. }
  1147. #endif
  1148. // Change the Z servo angle
  1149. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1150. #if SERVO_LEVELING
  1151. srv->attach(0);
  1152. #endif
  1153. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1154. #if SERVO_LEVELING
  1155. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1156. srv->detach();
  1157. #endif
  1158. }
  1159. #elif defined(Z_PROBE_ALLEN_KEY)
  1160. // Move up for safety
  1161. feedrate = homing_feedrate[X_AXIS];
  1162. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1163. prepare_move_raw(); // this will also set_current_to_destination
  1164. // Move to the start position to initiate retraction
  1165. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1166. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1167. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1168. prepare_move_raw(); // this will also set_current_to_destination
  1169. // Move the nozzle down to push the probe into retracted position
  1170. feedrate = homing_feedrate[Z_AXIS]/10;
  1171. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1172. prepare_move_raw(); // this will also set_current_to_destination
  1173. // Move up for safety
  1174. feedrate = homing_feedrate[Z_AXIS]/2;
  1175. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1176. prepare_move_raw(); // this will also set_current_to_destination
  1177. // Home XY for safety
  1178. feedrate = homing_feedrate[X_AXIS]/2;
  1179. destination[X_AXIS] = 0;
  1180. destination[Y_AXIS] = 0;
  1181. prepare_move_raw(); // this will also set_current_to_destination
  1182. st_synchronize();
  1183. #ifdef Z_PROBE_ENDSTOP
  1184. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1185. if (!z_probe_endstop)
  1186. #else
  1187. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1188. if (!z_min_endstop)
  1189. #endif
  1190. {
  1191. if (IsRunning()) {
  1192. SERIAL_ERROR_START;
  1193. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1194. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1195. }
  1196. Stop();
  1197. }
  1198. #endif // Z_PROBE_ALLEN_KEY
  1199. }
  1200. enum ProbeAction {
  1201. ProbeStay = 0,
  1202. ProbeDeploy = BIT(0),
  1203. ProbeStow = BIT(1),
  1204. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1205. };
  1206. // Probe bed height at position (x,y), returns the measured z value
  1207. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1208. // move to right place
  1209. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1210. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1211. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1212. if (probe_action & ProbeDeploy) deploy_z_probe();
  1213. #endif
  1214. run_z_probe();
  1215. float measured_z = current_position[Z_AXIS];
  1216. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1217. if (probe_action == ProbeStay) {
  1218. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1219. st_synchronize();
  1220. }
  1221. #endif
  1222. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1223. if (probe_action & ProbeStow) stow_z_probe();
  1224. #endif
  1225. if (verbose_level > 2) {
  1226. SERIAL_PROTOCOLPGM("Bed X: ");
  1227. SERIAL_PROTOCOL_F(x, 3);
  1228. SERIAL_PROTOCOLPGM(" Y: ");
  1229. SERIAL_PROTOCOL_F(y, 3);
  1230. SERIAL_PROTOCOLPGM(" Z: ");
  1231. SERIAL_PROTOCOL_F(measured_z, 3);
  1232. SERIAL_EOL;
  1233. }
  1234. return measured_z;
  1235. }
  1236. #ifdef DELTA
  1237. /**
  1238. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1239. */
  1240. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1241. if (bed_level[x][y] != 0.0) {
  1242. return; // Don't overwrite good values.
  1243. }
  1244. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1245. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1246. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1247. float median = c; // Median is robust (ignores outliers).
  1248. if (a < b) {
  1249. if (b < c) median = b;
  1250. if (c < a) median = a;
  1251. } else { // b <= a
  1252. if (c < b) median = b;
  1253. if (a < c) median = a;
  1254. }
  1255. bed_level[x][y] = median;
  1256. }
  1257. // Fill in the unprobed points (corners of circular print surface)
  1258. // using linear extrapolation, away from the center.
  1259. static void extrapolate_unprobed_bed_level() {
  1260. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1261. for (int y = 0; y <= half; y++) {
  1262. for (int x = 0; x <= half; x++) {
  1263. if (x + y < 3) continue;
  1264. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1265. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1266. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1267. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1268. }
  1269. }
  1270. }
  1271. // Print calibration results for plotting or manual frame adjustment.
  1272. static void print_bed_level() {
  1273. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1274. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1275. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1276. SERIAL_PROTOCOLCHAR(' ');
  1277. }
  1278. SERIAL_EOL;
  1279. }
  1280. }
  1281. // Reset calibration results to zero.
  1282. void reset_bed_level() {
  1283. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1284. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1285. bed_level[x][y] = 0.0;
  1286. }
  1287. }
  1288. }
  1289. #endif // DELTA
  1290. #endif // ENABLE_AUTO_BED_LEVELING
  1291. #ifdef Z_PROBE_SLED
  1292. #ifndef SLED_DOCKING_OFFSET
  1293. #define SLED_DOCKING_OFFSET 0
  1294. #endif
  1295. /**
  1296. * Method to dock/undock a sled designed by Charles Bell.
  1297. *
  1298. * dock[in] If true, move to MAX_X and engage the electromagnet
  1299. * offset[in] The additional distance to move to adjust docking location
  1300. */
  1301. static void dock_sled(bool dock, int offset=0) {
  1302. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1303. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1304. SERIAL_ECHO_START;
  1305. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1306. return;
  1307. }
  1308. if (dock) {
  1309. float oldXpos = current_position[X_AXIS]; // save x position
  1310. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1311. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1312. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1313. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1314. } else {
  1315. float oldXpos = current_position[X_AXIS]; // save x position
  1316. float z_loc = current_position[Z_AXIS];
  1317. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1318. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1319. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1320. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1321. }
  1322. }
  1323. #endif // Z_PROBE_SLED
  1324. /**
  1325. * Home an individual axis
  1326. */
  1327. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1328. static void homeaxis(AxisEnum axis) {
  1329. #define HOMEAXIS_DO(LETTER) \
  1330. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1331. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1332. int axis_home_dir =
  1333. #ifdef DUAL_X_CARRIAGE
  1334. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1335. #endif
  1336. home_dir(axis);
  1337. // Set the axis position as setup for the move
  1338. current_position[axis] = 0;
  1339. sync_plan_position();
  1340. #ifdef Z_PROBE_SLED
  1341. // Get Probe
  1342. if (axis == Z_AXIS) {
  1343. if (axis_home_dir < 0) dock_sled(false);
  1344. }
  1345. #endif
  1346. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1347. // Deploy a probe if there is one, and homing towards the bed
  1348. if (axis == Z_AXIS) {
  1349. if (axis_home_dir < 0) deploy_z_probe();
  1350. }
  1351. #endif
  1352. #ifdef SERVO_ENDSTOPS
  1353. if (axis != Z_AXIS) {
  1354. // Engage Servo endstop if enabled
  1355. if (servo_endstops[axis] > -1)
  1356. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1357. }
  1358. #endif
  1359. // Set a flag for Z motor locking
  1360. #ifdef Z_DUAL_ENDSTOPS
  1361. if (axis == Z_AXIS) In_Homing_Process(true);
  1362. #endif
  1363. // Move towards the endstop until an endstop is triggered
  1364. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1365. feedrate = homing_feedrate[axis];
  1366. line_to_destination();
  1367. st_synchronize();
  1368. // Set the axis position as setup for the move
  1369. current_position[axis] = 0;
  1370. sync_plan_position();
  1371. enable_endstops(false); // Disable endstops while moving away
  1372. // Move away from the endstop by the axis HOME_BUMP_MM
  1373. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1374. line_to_destination();
  1375. st_synchronize();
  1376. enable_endstops(true); // Enable endstops for next homing move
  1377. // Slow down the feedrate for the next move
  1378. set_homing_bump_feedrate(axis);
  1379. // Move slowly towards the endstop until triggered
  1380. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1381. line_to_destination();
  1382. st_synchronize();
  1383. #ifdef Z_DUAL_ENDSTOPS
  1384. if (axis == Z_AXIS) {
  1385. float adj = fabs(z_endstop_adj);
  1386. bool lockZ1;
  1387. if (axis_home_dir > 0) {
  1388. adj = -adj;
  1389. lockZ1 = (z_endstop_adj > 0);
  1390. }
  1391. else
  1392. lockZ1 = (z_endstop_adj < 0);
  1393. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1394. sync_plan_position();
  1395. // Move to the adjusted endstop height
  1396. feedrate = homing_feedrate[axis];
  1397. destination[Z_AXIS] = adj;
  1398. line_to_destination();
  1399. st_synchronize();
  1400. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1401. In_Homing_Process(false);
  1402. } // Z_AXIS
  1403. #endif
  1404. #ifdef DELTA
  1405. // retrace by the amount specified in endstop_adj
  1406. if (endstop_adj[axis] * axis_home_dir < 0) {
  1407. enable_endstops(false); // Disable endstops while moving away
  1408. sync_plan_position();
  1409. destination[axis] = endstop_adj[axis];
  1410. line_to_destination();
  1411. st_synchronize();
  1412. enable_endstops(true); // Enable endstops for next homing move
  1413. }
  1414. #endif
  1415. // Set the axis position to its home position (plus home offsets)
  1416. axis_is_at_home(axis);
  1417. sync_plan_position();
  1418. destination[axis] = current_position[axis];
  1419. feedrate = 0.0;
  1420. endstops_hit_on_purpose(); // clear endstop hit flags
  1421. axis_known_position[axis] = true;
  1422. #ifdef Z_PROBE_SLED
  1423. // bring probe back
  1424. if (axis == Z_AXIS) {
  1425. if (axis_home_dir < 0) dock_sled(true);
  1426. }
  1427. #endif
  1428. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1429. // Deploy a probe if there is one, and homing towards the bed
  1430. if (axis == Z_AXIS) {
  1431. if (axis_home_dir < 0) stow_z_probe();
  1432. }
  1433. else
  1434. #endif
  1435. #ifdef SERVO_ENDSTOPS
  1436. {
  1437. // Retract Servo endstop if enabled
  1438. if (servo_endstops[axis] > -1)
  1439. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1440. }
  1441. #endif
  1442. }
  1443. }
  1444. #ifdef FWRETRACT
  1445. void retract(bool retracting, bool swapping=false) {
  1446. if (retracting == retracted[active_extruder]) return;
  1447. float oldFeedrate = feedrate;
  1448. set_destination_to_current();
  1449. if (retracting) {
  1450. feedrate = retract_feedrate * 60;
  1451. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1452. plan_set_e_position(current_position[E_AXIS]);
  1453. prepare_move();
  1454. if (retract_zlift > 0.01) {
  1455. current_position[Z_AXIS] -= retract_zlift;
  1456. #ifdef DELTA
  1457. sync_plan_position_delta();
  1458. #else
  1459. sync_plan_position();
  1460. #endif
  1461. prepare_move();
  1462. }
  1463. }
  1464. else {
  1465. if (retract_zlift > 0.01) {
  1466. current_position[Z_AXIS] += retract_zlift;
  1467. #ifdef DELTA
  1468. sync_plan_position_delta();
  1469. #else
  1470. sync_plan_position();
  1471. #endif
  1472. //prepare_move();
  1473. }
  1474. feedrate = retract_recover_feedrate * 60;
  1475. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1476. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1477. plan_set_e_position(current_position[E_AXIS]);
  1478. prepare_move();
  1479. }
  1480. feedrate = oldFeedrate;
  1481. retracted[active_extruder] = retracting;
  1482. } // retract()
  1483. #endif // FWRETRACT
  1484. /**
  1485. *
  1486. * G-Code Handler functions
  1487. *
  1488. */
  1489. /**
  1490. * Set XYZE destination and feedrate from the current GCode command
  1491. *
  1492. * - Set destination from included axis codes
  1493. * - Set to current for missing axis codes
  1494. * - Set the feedrate, if included
  1495. */
  1496. void gcode_get_destination() {
  1497. for (int i = 0; i < NUM_AXIS; i++) {
  1498. if (code_seen(axis_codes[i]))
  1499. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1500. else
  1501. destination[i] = current_position[i];
  1502. }
  1503. if (code_seen('F')) {
  1504. float next_feedrate = code_value();
  1505. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1506. }
  1507. }
  1508. void unknown_command_error() {
  1509. SERIAL_ECHO_START;
  1510. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1511. SERIAL_ECHO(current_command);
  1512. SERIAL_ECHOPGM("\"\n");
  1513. }
  1514. /**
  1515. * G0, G1: Coordinated movement of X Y Z E axes
  1516. */
  1517. inline void gcode_G0_G1() {
  1518. if (IsRunning()) {
  1519. gcode_get_destination(); // For X Y Z E F
  1520. #ifdef FWRETRACT
  1521. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1522. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1523. // Is this move an attempt to retract or recover?
  1524. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1525. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1526. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1527. retract(!retracted[active_extruder]);
  1528. return;
  1529. }
  1530. }
  1531. #endif //FWRETRACT
  1532. prepare_move();
  1533. }
  1534. }
  1535. /**
  1536. * Plan an arc in 2 dimensions
  1537. *
  1538. * The arc is approximated by generating many small linear segments.
  1539. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1540. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  1541. * larger segments will tend to be more efficient. Your slicer should have
  1542. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  1543. */
  1544. void plan_arc(
  1545. float *target, // Destination position
  1546. float *offset, // Center of rotation relative to current_position
  1547. uint8_t clockwise // Clockwise?
  1548. ) {
  1549. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1550. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1551. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1552. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1553. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1554. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1555. r_axis1 = -offset[Y_AXIS],
  1556. rt_axis0 = target[X_AXIS] - center_axis0,
  1557. rt_axis1 = target[Y_AXIS] - center_axis1;
  1558. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1559. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1560. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1561. if (clockwise) { angular_travel -= RADIANS(360); }
  1562. // Make a circle if the angular rotation is 0
  1563. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1564. angular_travel += RADIANS(360);
  1565. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1566. if (mm_of_travel < 0.001) { return; }
  1567. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1568. if (segments == 0) segments = 1;
  1569. float theta_per_segment = angular_travel/segments;
  1570. float linear_per_segment = linear_travel/segments;
  1571. float extruder_per_segment = extruder_travel/segments;
  1572. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1573. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1574. r_T = [cos(phi) -sin(phi);
  1575. sin(phi) cos(phi] * r ;
  1576. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1577. defined from the circle center to the initial position. Each line segment is formed by successive
  1578. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1579. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1580. all double numbers are single precision on the Arduino. (True double precision will not have
  1581. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1582. tool precision in some cases. Therefore, arc path correction is implemented.
  1583. Small angle approximation may be used to reduce computation overhead further. This approximation
  1584. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1585. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1586. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1587. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1588. issue for CNC machines with the single precision Arduino calculations.
  1589. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1590. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1591. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1592. This is important when there are successive arc motions.
  1593. */
  1594. // Vector rotation matrix values
  1595. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1596. float sin_T = theta_per_segment;
  1597. float arc_target[4];
  1598. float sin_Ti;
  1599. float cos_Ti;
  1600. float r_axisi;
  1601. uint16_t i;
  1602. int8_t count = 0;
  1603. // Initialize the linear axis
  1604. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1605. // Initialize the extruder axis
  1606. arc_target[E_AXIS] = current_position[E_AXIS];
  1607. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1608. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1609. if (count < N_ARC_CORRECTION) {
  1610. // Apply vector rotation matrix to previous r_axis0 / 1
  1611. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1612. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1613. r_axis1 = r_axisi;
  1614. count++;
  1615. }
  1616. else {
  1617. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1618. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1619. cos_Ti = cos(i*theta_per_segment);
  1620. sin_Ti = sin(i*theta_per_segment);
  1621. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1622. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1623. count = 0;
  1624. }
  1625. // Update arc_target location
  1626. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1627. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1628. arc_target[Z_AXIS] += linear_per_segment;
  1629. arc_target[E_AXIS] += extruder_per_segment;
  1630. clamp_to_software_endstops(arc_target);
  1631. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1632. }
  1633. // Ensure last segment arrives at target location.
  1634. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1635. // As far as the parser is concerned, the position is now == target. In reality the
  1636. // motion control system might still be processing the action and the real tool position
  1637. // in any intermediate location.
  1638. set_current_to_destination();
  1639. }
  1640. /**
  1641. * G2: Clockwise Arc
  1642. * G3: Counterclockwise Arc
  1643. */
  1644. inline void gcode_G2_G3(bool clockwise) {
  1645. if (IsRunning()) {
  1646. #ifdef SF_ARC_FIX
  1647. bool relative_mode_backup = relative_mode;
  1648. relative_mode = true;
  1649. #endif
  1650. gcode_get_destination();
  1651. #ifdef SF_ARC_FIX
  1652. relative_mode = relative_mode_backup;
  1653. #endif
  1654. // Center of arc as offset from current_position
  1655. float arc_offset[2] = {
  1656. code_seen('I') ? code_value() : 0,
  1657. code_seen('J') ? code_value() : 0
  1658. };
  1659. // Send an arc to the planner
  1660. plan_arc(destination, arc_offset, clockwise);
  1661. refresh_cmd_timeout();
  1662. }
  1663. }
  1664. /**
  1665. * G4: Dwell S<seconds> or P<milliseconds>
  1666. */
  1667. inline void gcode_G4() {
  1668. millis_t codenum = 0;
  1669. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1670. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1671. st_synchronize();
  1672. refresh_cmd_timeout();
  1673. codenum += previous_cmd_ms; // keep track of when we started waiting
  1674. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1675. while (millis() < codenum) {
  1676. manage_heater();
  1677. manage_inactivity();
  1678. lcd_update();
  1679. }
  1680. }
  1681. #ifdef FWRETRACT
  1682. /**
  1683. * G10 - Retract filament according to settings of M207
  1684. * G11 - Recover filament according to settings of M208
  1685. */
  1686. inline void gcode_G10_G11(bool doRetract=false) {
  1687. #if EXTRUDERS > 1
  1688. if (doRetract) {
  1689. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1690. }
  1691. #endif
  1692. retract(doRetract
  1693. #if EXTRUDERS > 1
  1694. , retracted_swap[active_extruder]
  1695. #endif
  1696. );
  1697. }
  1698. #endif //FWRETRACT
  1699. /**
  1700. * G28: Home all axes according to settings
  1701. *
  1702. * Parameters
  1703. *
  1704. * None Home to all axes with no parameters.
  1705. * With QUICK_HOME enabled XY will home together, then Z.
  1706. *
  1707. * Cartesian parameters
  1708. *
  1709. * X Home to the X endstop
  1710. * Y Home to the Y endstop
  1711. * Z Home to the Z endstop
  1712. *
  1713. */
  1714. inline void gcode_G28() {
  1715. // Wait for planner moves to finish!
  1716. st_synchronize();
  1717. // For auto bed leveling, clear the level matrix
  1718. #ifdef ENABLE_AUTO_BED_LEVELING
  1719. plan_bed_level_matrix.set_to_identity();
  1720. #ifdef DELTA
  1721. reset_bed_level();
  1722. #endif
  1723. #endif
  1724. // For manual bed leveling deactivate the matrix temporarily
  1725. #ifdef MESH_BED_LEVELING
  1726. uint8_t mbl_was_active = mbl.active;
  1727. mbl.active = 0;
  1728. #endif
  1729. setup_for_endstop_move();
  1730. set_destination_to_current();
  1731. feedrate = 0.0;
  1732. #ifdef DELTA
  1733. // A delta can only safely home all axis at the same time
  1734. // all axis have to home at the same time
  1735. // Pretend the current position is 0,0,0
  1736. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1737. sync_plan_position();
  1738. // Move all carriages up together until the first endstop is hit.
  1739. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1740. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1741. line_to_destination();
  1742. st_synchronize();
  1743. endstops_hit_on_purpose(); // clear endstop hit flags
  1744. // Destination reached
  1745. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1746. // take care of back off and rehome now we are all at the top
  1747. HOMEAXIS(X);
  1748. HOMEAXIS(Y);
  1749. HOMEAXIS(Z);
  1750. sync_plan_position_delta();
  1751. #else // NOT DELTA
  1752. bool homeX = code_seen(axis_codes[X_AXIS]),
  1753. homeY = code_seen(axis_codes[Y_AXIS]),
  1754. homeZ = code_seen(axis_codes[Z_AXIS]);
  1755. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1756. if (home_all_axis || homeZ) {
  1757. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1758. HOMEAXIS(Z);
  1759. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1760. // Raise Z before homing any other axes
  1761. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1762. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1763. feedrate = max_feedrate[Z_AXIS] * 60;
  1764. line_to_destination();
  1765. st_synchronize();
  1766. #endif
  1767. } // home_all_axis || homeZ
  1768. #ifdef QUICK_HOME
  1769. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1770. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1771. #ifdef DUAL_X_CARRIAGE
  1772. int x_axis_home_dir = x_home_dir(active_extruder);
  1773. extruder_duplication_enabled = false;
  1774. #else
  1775. int x_axis_home_dir = home_dir(X_AXIS);
  1776. #endif
  1777. sync_plan_position();
  1778. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1779. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1780. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1781. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1782. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1783. line_to_destination();
  1784. st_synchronize();
  1785. axis_is_at_home(X_AXIS);
  1786. axis_is_at_home(Y_AXIS);
  1787. sync_plan_position();
  1788. destination[X_AXIS] = current_position[X_AXIS];
  1789. destination[Y_AXIS] = current_position[Y_AXIS];
  1790. line_to_destination();
  1791. feedrate = 0.0;
  1792. st_synchronize();
  1793. endstops_hit_on_purpose(); // clear endstop hit flags
  1794. current_position[X_AXIS] = destination[X_AXIS];
  1795. current_position[Y_AXIS] = destination[Y_AXIS];
  1796. #ifndef SCARA
  1797. current_position[Z_AXIS] = destination[Z_AXIS];
  1798. #endif
  1799. }
  1800. #endif // QUICK_HOME
  1801. #ifdef HOME_Y_BEFORE_X
  1802. // Home Y
  1803. if (home_all_axis || homeY) HOMEAXIS(Y);
  1804. #endif
  1805. // Home X
  1806. if (home_all_axis || homeX) {
  1807. #ifdef DUAL_X_CARRIAGE
  1808. int tmp_extruder = active_extruder;
  1809. extruder_duplication_enabled = false;
  1810. active_extruder = !active_extruder;
  1811. HOMEAXIS(X);
  1812. inactive_extruder_x_pos = current_position[X_AXIS];
  1813. active_extruder = tmp_extruder;
  1814. HOMEAXIS(X);
  1815. // reset state used by the different modes
  1816. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1817. delayed_move_time = 0;
  1818. active_extruder_parked = true;
  1819. #else
  1820. HOMEAXIS(X);
  1821. #endif
  1822. }
  1823. #ifndef HOME_Y_BEFORE_X
  1824. // Home Y
  1825. if (home_all_axis || homeY) HOMEAXIS(Y);
  1826. #endif
  1827. // Home Z last if homing towards the bed
  1828. #if Z_HOME_DIR < 0
  1829. if (home_all_axis || homeZ) {
  1830. #ifdef Z_SAFE_HOMING
  1831. if (home_all_axis) {
  1832. current_position[Z_AXIS] = 0;
  1833. sync_plan_position();
  1834. //
  1835. // Set the probe (or just the nozzle) destination to the safe homing point
  1836. //
  1837. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1838. // then this may not work as expected.
  1839. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1840. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1841. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1842. feedrate = XY_TRAVEL_SPEED;
  1843. // This could potentially move X, Y, Z all together
  1844. line_to_destination();
  1845. st_synchronize();
  1846. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1847. current_position[X_AXIS] = destination[X_AXIS];
  1848. current_position[Y_AXIS] = destination[Y_AXIS];
  1849. // Home the Z axis
  1850. HOMEAXIS(Z);
  1851. }
  1852. else if (homeZ) { // Don't need to Home Z twice
  1853. // Let's see if X and Y are homed
  1854. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1855. // Make sure the probe is within the physical limits
  1856. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1857. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1858. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1859. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1860. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1861. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1862. // Set the plan current position to X, Y, 0
  1863. current_position[Z_AXIS] = 0;
  1864. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1865. // Set Z destination away from bed and raise the axis
  1866. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1867. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1868. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1869. line_to_destination();
  1870. st_synchronize();
  1871. // Home the Z axis
  1872. HOMEAXIS(Z);
  1873. }
  1874. else {
  1875. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1876. SERIAL_ECHO_START;
  1877. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1878. }
  1879. }
  1880. else {
  1881. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1882. SERIAL_ECHO_START;
  1883. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1884. }
  1885. } // !home_all_axes && homeZ
  1886. #else // !Z_SAFE_HOMING
  1887. HOMEAXIS(Z);
  1888. #endif // !Z_SAFE_HOMING
  1889. } // home_all_axis || homeZ
  1890. #endif // Z_HOME_DIR < 0
  1891. sync_plan_position();
  1892. #endif // else DELTA
  1893. #ifdef SCARA
  1894. sync_plan_position_delta();
  1895. #endif
  1896. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1897. enable_endstops(false);
  1898. #endif
  1899. // For manual leveling move back to 0,0
  1900. #ifdef MESH_BED_LEVELING
  1901. if (mbl_was_active) {
  1902. current_position[X_AXIS] = mbl.get_x(0);
  1903. current_position[Y_AXIS] = mbl.get_y(0);
  1904. set_destination_to_current();
  1905. feedrate = homing_feedrate[X_AXIS];
  1906. line_to_destination();
  1907. st_synchronize();
  1908. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1909. sync_plan_position();
  1910. mbl.active = 1;
  1911. }
  1912. #endif
  1913. feedrate = saved_feedrate;
  1914. feedrate_multiplier = saved_feedrate_multiplier;
  1915. refresh_cmd_timeout();
  1916. endstops_hit_on_purpose(); // clear endstop hit flags
  1917. }
  1918. #ifdef MESH_BED_LEVELING
  1919. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1920. /**
  1921. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1922. * mesh to compensate for variable bed height
  1923. *
  1924. * Parameters With MESH_BED_LEVELING:
  1925. *
  1926. * S0 Produce a mesh report
  1927. * S1 Start probing mesh points
  1928. * S2 Probe the next mesh point
  1929. * S3 Xn Yn Zn.nn Manually modify a single point
  1930. *
  1931. * The S0 report the points as below
  1932. *
  1933. * +----> X-axis
  1934. * |
  1935. * |
  1936. * v Y-axis
  1937. *
  1938. */
  1939. inline void gcode_G29() {
  1940. static int probe_point = -1;
  1941. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1942. if (state < 0 || state > 3) {
  1943. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1944. return;
  1945. }
  1946. int ix, iy;
  1947. float z;
  1948. switch(state) {
  1949. case MeshReport:
  1950. if (mbl.active) {
  1951. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1952. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1953. SERIAL_PROTOCOLCHAR(',');
  1954. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1955. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1956. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1957. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1958. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1959. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1960. SERIAL_PROTOCOLPGM(" ");
  1961. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1962. }
  1963. SERIAL_EOL;
  1964. }
  1965. }
  1966. else
  1967. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1968. break;
  1969. case MeshStart:
  1970. mbl.reset();
  1971. probe_point = 0;
  1972. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1973. break;
  1974. case MeshNext:
  1975. if (probe_point < 0) {
  1976. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1977. return;
  1978. }
  1979. if (probe_point == 0) {
  1980. // Set Z to a positive value before recording the first Z.
  1981. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1982. sync_plan_position();
  1983. }
  1984. else {
  1985. // For others, save the Z of the previous point, then raise Z again.
  1986. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1987. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1988. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1989. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1990. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1992. st_synchronize();
  1993. }
  1994. // Is there another point to sample? Move there.
  1995. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1996. ix = probe_point % MESH_NUM_X_POINTS;
  1997. iy = probe_point / MESH_NUM_X_POINTS;
  1998. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1999. current_position[X_AXIS] = mbl.get_x(ix);
  2000. current_position[Y_AXIS] = mbl.get_y(iy);
  2001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2002. st_synchronize();
  2003. probe_point++;
  2004. }
  2005. else {
  2006. // After recording the last point, activate the mbl and home
  2007. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2008. probe_point = -1;
  2009. mbl.active = 1;
  2010. enqueuecommands_P(PSTR("G28"));
  2011. }
  2012. break;
  2013. case MeshSet:
  2014. if (code_seen('X') || code_seen('x')) {
  2015. ix = code_value_long()-1;
  2016. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2017. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2018. return;
  2019. }
  2020. } else {
  2021. SERIAL_PROTOCOLPGM("X not entered.\n");
  2022. return;
  2023. }
  2024. if (code_seen('Y') || code_seen('y')) {
  2025. iy = code_value_long()-1;
  2026. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2027. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2028. return;
  2029. }
  2030. } else {
  2031. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2032. return;
  2033. }
  2034. if (code_seen('Z') || code_seen('z')) {
  2035. z = code_value();
  2036. } else {
  2037. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2038. return;
  2039. }
  2040. mbl.z_values[iy][ix] = z;
  2041. } // switch(state)
  2042. }
  2043. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2044. /**
  2045. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2046. * Will fail if the printer has not been homed with G28.
  2047. *
  2048. * Enhanced G29 Auto Bed Leveling Probe Routine
  2049. *
  2050. * Parameters With AUTO_BED_LEVELING_GRID:
  2051. *
  2052. * P Set the size of the grid that will be probed (P x P points).
  2053. * Not supported by non-linear delta printer bed leveling.
  2054. * Example: "G29 P4"
  2055. *
  2056. * S Set the XY travel speed between probe points (in mm/min)
  2057. *
  2058. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2059. * or clean the rotation Matrix. Useful to check the topology
  2060. * after a first run of G29.
  2061. *
  2062. * V Set the verbose level (0-4). Example: "G29 V3"
  2063. *
  2064. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2065. * This is useful for manual bed leveling and finding flaws in the bed (to
  2066. * assist with part placement).
  2067. * Not supported by non-linear delta printer bed leveling.
  2068. *
  2069. * F Set the Front limit of the probing grid
  2070. * B Set the Back limit of the probing grid
  2071. * L Set the Left limit of the probing grid
  2072. * R Set the Right limit of the probing grid
  2073. *
  2074. * Global Parameters:
  2075. *
  2076. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2077. * Include "E" to engage/disengage the probe for each sample.
  2078. * There's no extra effect if you have a fixed probe.
  2079. * Usage: "G29 E" or "G29 e"
  2080. *
  2081. */
  2082. inline void gcode_G29() {
  2083. // Don't allow auto-leveling without homing first
  2084. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2085. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2086. SERIAL_ECHO_START;
  2087. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2088. return;
  2089. }
  2090. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  2091. if (verbose_level < 0 || verbose_level > 4) {
  2092. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2093. return;
  2094. }
  2095. bool dryrun = code_seen('D') || code_seen('d'),
  2096. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2097. #ifdef AUTO_BED_LEVELING_GRID
  2098. #ifndef DELTA
  2099. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  2100. #endif
  2101. if (verbose_level > 0) {
  2102. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2103. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2104. }
  2105. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2106. #ifndef DELTA
  2107. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2108. if (auto_bed_leveling_grid_points < 2) {
  2109. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2110. return;
  2111. }
  2112. #endif
  2113. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2114. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2115. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2116. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2117. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2118. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2119. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2120. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2121. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2122. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2123. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2124. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2125. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2126. if (left_out || right_out || front_out || back_out) {
  2127. if (left_out) {
  2128. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  2129. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2130. }
  2131. if (right_out) {
  2132. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  2133. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2134. }
  2135. if (front_out) {
  2136. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  2137. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2138. }
  2139. if (back_out) {
  2140. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  2141. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2142. }
  2143. return;
  2144. }
  2145. #endif // AUTO_BED_LEVELING_GRID
  2146. #ifdef Z_PROBE_SLED
  2147. dock_sled(false); // engage (un-dock) the probe
  2148. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2149. deploy_z_probe();
  2150. #endif
  2151. st_synchronize();
  2152. if (!dryrun) {
  2153. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2154. plan_bed_level_matrix.set_to_identity();
  2155. #ifdef DELTA
  2156. reset_bed_level();
  2157. #else //!DELTA
  2158. //vector_3 corrected_position = plan_get_position_mm();
  2159. //corrected_position.debug("position before G29");
  2160. vector_3 uncorrected_position = plan_get_position();
  2161. //uncorrected_position.debug("position during G29");
  2162. current_position[X_AXIS] = uncorrected_position.x;
  2163. current_position[Y_AXIS] = uncorrected_position.y;
  2164. current_position[Z_AXIS] = uncorrected_position.z;
  2165. sync_plan_position();
  2166. #endif // !DELTA
  2167. }
  2168. setup_for_endstop_move();
  2169. feedrate = homing_feedrate[Z_AXIS];
  2170. #ifdef AUTO_BED_LEVELING_GRID
  2171. // probe at the points of a lattice grid
  2172. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2173. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2174. #ifdef DELTA
  2175. delta_grid_spacing[0] = xGridSpacing;
  2176. delta_grid_spacing[1] = yGridSpacing;
  2177. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2178. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2179. #else // !DELTA
  2180. // solve the plane equation ax + by + d = z
  2181. // A is the matrix with rows [x y 1] for all the probed points
  2182. // B is the vector of the Z positions
  2183. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2184. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2185. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2186. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2187. eqnBVector[abl2], // "B" vector of Z points
  2188. mean = 0.0;
  2189. #endif // !DELTA
  2190. int probePointCounter = 0;
  2191. bool zig = true;
  2192. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2193. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2194. int xStart, xStop, xInc;
  2195. if (zig) {
  2196. xStart = 0;
  2197. xStop = auto_bed_leveling_grid_points;
  2198. xInc = 1;
  2199. }
  2200. else {
  2201. xStart = auto_bed_leveling_grid_points - 1;
  2202. xStop = -1;
  2203. xInc = -1;
  2204. }
  2205. #ifndef DELTA
  2206. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2207. // This gets the probe points in more readable order.
  2208. if (!do_topography_map) zig = !zig;
  2209. #endif
  2210. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2211. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2212. // raise extruder
  2213. float measured_z,
  2214. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2215. #ifdef DELTA
  2216. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2217. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2218. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2219. #endif //DELTA
  2220. ProbeAction act;
  2221. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2222. act = ProbeDeployAndStow;
  2223. else if (yCount == 0 && xCount == xStart)
  2224. act = ProbeDeploy;
  2225. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2226. act = ProbeStow;
  2227. else
  2228. act = ProbeStay;
  2229. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2230. #ifndef DELTA
  2231. mean += measured_z;
  2232. eqnBVector[probePointCounter] = measured_z;
  2233. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2234. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2235. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2236. #else
  2237. bed_level[xCount][yCount] = measured_z + z_offset;
  2238. #endif
  2239. probePointCounter++;
  2240. manage_heater();
  2241. manage_inactivity();
  2242. lcd_update();
  2243. } //xProbe
  2244. } //yProbe
  2245. clean_up_after_endstop_move();
  2246. #ifdef DELTA
  2247. if (!dryrun) extrapolate_unprobed_bed_level();
  2248. print_bed_level();
  2249. #else // !DELTA
  2250. // solve lsq problem
  2251. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2252. mean /= abl2;
  2253. if (verbose_level) {
  2254. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2255. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2256. SERIAL_PROTOCOLPGM(" b: ");
  2257. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2258. SERIAL_PROTOCOLPGM(" d: ");
  2259. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2260. SERIAL_EOL;
  2261. if (verbose_level > 2) {
  2262. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2263. SERIAL_PROTOCOL_F(mean, 8);
  2264. SERIAL_EOL;
  2265. }
  2266. }
  2267. // Show the Topography map if enabled
  2268. if (do_topography_map) {
  2269. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2270. SERIAL_PROTOCOLPGM("+-----------+\n");
  2271. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2272. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2273. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2274. SERIAL_PROTOCOLPGM("+-----------+\n");
  2275. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2276. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2277. int ind = yy * auto_bed_leveling_grid_points + xx;
  2278. float diff = eqnBVector[ind] - mean;
  2279. if (diff >= 0.0)
  2280. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2281. else
  2282. SERIAL_PROTOCOLCHAR(' ');
  2283. SERIAL_PROTOCOL_F(diff, 5);
  2284. } // xx
  2285. SERIAL_EOL;
  2286. } // yy
  2287. SERIAL_EOL;
  2288. } //do_topography_map
  2289. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2290. free(plane_equation_coefficients);
  2291. #endif //!DELTA
  2292. #else // !AUTO_BED_LEVELING_GRID
  2293. // Actions for each probe
  2294. ProbeAction p1, p2, p3;
  2295. if (deploy_probe_for_each_reading)
  2296. p1 = p2 = p3 = ProbeDeployAndStow;
  2297. else
  2298. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2299. // Probe at 3 arbitrary points
  2300. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2301. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2302. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2303. clean_up_after_endstop_move();
  2304. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2305. #endif // !AUTO_BED_LEVELING_GRID
  2306. #ifndef DELTA
  2307. if (verbose_level > 0)
  2308. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2309. if (!dryrun) {
  2310. // Correct the Z height difference from z-probe position and hotend tip position.
  2311. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2312. // When the bed is uneven, this height must be corrected.
  2313. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2314. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2315. z_tmp = current_position[Z_AXIS],
  2316. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2317. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2318. current_position[Z_AXIS] += z_tmp - real_z; // The difference is added to current position and sent to planner.
  2319. sync_plan_position();
  2320. }
  2321. #endif // !DELTA
  2322. #ifdef Z_PROBE_SLED
  2323. dock_sled(true); // dock the probe
  2324. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2325. stow_z_probe();
  2326. #endif
  2327. #ifdef Z_PROBE_END_SCRIPT
  2328. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2329. st_synchronize();
  2330. #endif
  2331. }
  2332. #ifndef Z_PROBE_SLED
  2333. inline void gcode_G30() {
  2334. deploy_z_probe(); // Engage Z Servo endstop if available
  2335. st_synchronize();
  2336. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2337. setup_for_endstop_move();
  2338. feedrate = homing_feedrate[Z_AXIS];
  2339. run_z_probe();
  2340. SERIAL_PROTOCOLPGM("Bed X: ");
  2341. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2342. SERIAL_PROTOCOLPGM(" Y: ");
  2343. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2344. SERIAL_PROTOCOLPGM(" Z: ");
  2345. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2346. SERIAL_EOL;
  2347. clean_up_after_endstop_move();
  2348. stow_z_probe(); // Retract Z Servo endstop if available
  2349. }
  2350. #endif //!Z_PROBE_SLED
  2351. #endif //ENABLE_AUTO_BED_LEVELING
  2352. /**
  2353. * G92: Set current position to given X Y Z E
  2354. */
  2355. inline void gcode_G92() {
  2356. if (!code_seen(axis_codes[E_AXIS]))
  2357. st_synchronize();
  2358. bool didXYZ = false;
  2359. for (int i = 0; i < NUM_AXIS; i++) {
  2360. if (code_seen(axis_codes[i])) {
  2361. float v = current_position[i] = code_value();
  2362. if (i == E_AXIS)
  2363. plan_set_e_position(v);
  2364. else
  2365. didXYZ = true;
  2366. }
  2367. }
  2368. if (didXYZ) {
  2369. #if defined(DELTA) || defined(SCARA)
  2370. sync_plan_position_delta();
  2371. #else
  2372. sync_plan_position();
  2373. #endif
  2374. }
  2375. }
  2376. #ifdef ULTIPANEL
  2377. /**
  2378. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2379. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2380. */
  2381. inline void gcode_M0_M1() {
  2382. char *args = current_command_args;
  2383. millis_t codenum = 0;
  2384. bool hasP = false, hasS = false;
  2385. if (code_seen('P')) {
  2386. codenum = code_value_short(); // milliseconds to wait
  2387. hasP = codenum > 0;
  2388. }
  2389. if (code_seen('S')) {
  2390. codenum = code_value() * 1000; // seconds to wait
  2391. hasS = codenum > 0;
  2392. }
  2393. if (!hasP && !hasS && *args != '\0')
  2394. lcd_setstatus(args, true);
  2395. else {
  2396. LCD_MESSAGEPGM(MSG_USERWAIT);
  2397. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2398. dontExpireStatus();
  2399. #endif
  2400. }
  2401. lcd_ignore_click();
  2402. st_synchronize();
  2403. refresh_cmd_timeout();
  2404. if (codenum > 0) {
  2405. codenum += previous_cmd_ms; // keep track of when we started waiting
  2406. while(millis() < codenum && !lcd_clicked()) {
  2407. manage_heater();
  2408. manage_inactivity();
  2409. lcd_update();
  2410. }
  2411. lcd_ignore_click(false);
  2412. }
  2413. else {
  2414. if (!lcd_detected()) return;
  2415. while (!lcd_clicked()) {
  2416. manage_heater();
  2417. manage_inactivity();
  2418. lcd_update();
  2419. }
  2420. }
  2421. if (IS_SD_PRINTING)
  2422. LCD_MESSAGEPGM(MSG_RESUMING);
  2423. else
  2424. LCD_MESSAGEPGM(WELCOME_MSG);
  2425. }
  2426. #endif // ULTIPANEL
  2427. /**
  2428. * M17: Enable power on all stepper motors
  2429. */
  2430. inline void gcode_M17() {
  2431. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2432. enable_all_steppers();
  2433. }
  2434. #ifdef SDSUPPORT
  2435. /**
  2436. * M20: List SD card to serial output
  2437. */
  2438. inline void gcode_M20() {
  2439. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2440. card.ls();
  2441. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2442. }
  2443. /**
  2444. * M21: Init SD Card
  2445. */
  2446. inline void gcode_M21() {
  2447. card.initsd();
  2448. }
  2449. /**
  2450. * M22: Release SD Card
  2451. */
  2452. inline void gcode_M22() {
  2453. card.release();
  2454. }
  2455. /**
  2456. * M23: Select a file
  2457. */
  2458. inline void gcode_M23() {
  2459. card.openFile(current_command_args, true);
  2460. }
  2461. /**
  2462. * M24: Start SD Print
  2463. */
  2464. inline void gcode_M24() {
  2465. card.startFileprint();
  2466. print_job_start_ms = millis();
  2467. }
  2468. /**
  2469. * M25: Pause SD Print
  2470. */
  2471. inline void gcode_M25() {
  2472. card.pauseSDPrint();
  2473. }
  2474. /**
  2475. * M26: Set SD Card file index
  2476. */
  2477. inline void gcode_M26() {
  2478. if (card.cardOK && code_seen('S'))
  2479. card.setIndex(code_value_short());
  2480. }
  2481. /**
  2482. * M27: Get SD Card status
  2483. */
  2484. inline void gcode_M27() {
  2485. card.getStatus();
  2486. }
  2487. /**
  2488. * M28: Start SD Write
  2489. */
  2490. inline void gcode_M28() {
  2491. card.openFile(current_command_args, false);
  2492. }
  2493. /**
  2494. * M29: Stop SD Write
  2495. * Processed in write to file routine above
  2496. */
  2497. inline void gcode_M29() {
  2498. // card.saving = false;
  2499. }
  2500. /**
  2501. * M30 <filename>: Delete SD Card file
  2502. */
  2503. inline void gcode_M30() {
  2504. if (card.cardOK) {
  2505. card.closefile();
  2506. card.removeFile(current_command_args);
  2507. }
  2508. }
  2509. #endif
  2510. /**
  2511. * M31: Get the time since the start of SD Print (or last M109)
  2512. */
  2513. inline void gcode_M31() {
  2514. print_job_stop_ms = millis();
  2515. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2516. int min = t / 60, sec = t % 60;
  2517. char time[30];
  2518. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2519. SERIAL_ECHO_START;
  2520. SERIAL_ECHOLN(time);
  2521. lcd_setstatus(time);
  2522. autotempShutdown();
  2523. }
  2524. #ifdef SDSUPPORT
  2525. /**
  2526. * M32: Select file and start SD Print
  2527. */
  2528. inline void gcode_M32() {
  2529. if (card.sdprinting)
  2530. st_synchronize();
  2531. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2532. if (!namestartpos)
  2533. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2534. else
  2535. namestartpos++; //to skip the '!'
  2536. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2537. if (card.cardOK) {
  2538. card.openFile(namestartpos, true, !call_procedure);
  2539. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2540. card.setIndex(code_value_short());
  2541. card.startFileprint();
  2542. if (!call_procedure)
  2543. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2544. }
  2545. }
  2546. #ifdef LONG_FILENAME_HOST_SUPPORT
  2547. /**
  2548. * M33: Get the long full path of a file or folder
  2549. *
  2550. * Parameters:
  2551. * <dospath> Case-insensitive DOS-style path to a file or folder
  2552. *
  2553. * Example:
  2554. * M33 miscel~1/armchair/armcha~1.gco
  2555. *
  2556. * Output:
  2557. * /Miscellaneous/Armchair/Armchair.gcode
  2558. */
  2559. inline void gcode_M33() {
  2560. char *args = strchr_pointer + 4;
  2561. while (*args == ' ') ++args;
  2562. clear_asterisk(args);
  2563. card.printLongPath(args);
  2564. }
  2565. #endif
  2566. /**
  2567. * M928: Start SD Write
  2568. */
  2569. inline void gcode_M928() {
  2570. card.openLogFile(current_command_args);
  2571. }
  2572. #endif // SDSUPPORT
  2573. /**
  2574. * M42: Change pin status via GCode
  2575. */
  2576. inline void gcode_M42() {
  2577. if (code_seen('S')) {
  2578. int pin_status = code_value_short(),
  2579. pin_number = LED_PIN;
  2580. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2581. pin_number = code_value_short();
  2582. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2583. if (sensitive_pins[i] == pin_number) {
  2584. pin_number = -1;
  2585. break;
  2586. }
  2587. }
  2588. #if HAS_FAN
  2589. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2590. #endif
  2591. if (pin_number > -1) {
  2592. pinMode(pin_number, OUTPUT);
  2593. digitalWrite(pin_number, pin_status);
  2594. analogWrite(pin_number, pin_status);
  2595. }
  2596. } // code_seen('S')
  2597. }
  2598. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2599. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2600. #ifdef Z_PROBE_ENDSTOP
  2601. #if !HAS_Z_PROBE
  2602. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2603. #endif
  2604. #elif !HAS_Z_MIN
  2605. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2606. #endif
  2607. /**
  2608. * M48: Z-Probe repeatability measurement function.
  2609. *
  2610. * Usage:
  2611. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2612. * P = Number of sampled points (4-50, default 10)
  2613. * X = Sample X position
  2614. * Y = Sample Y position
  2615. * V = Verbose level (0-4, default=1)
  2616. * E = Engage probe for each reading
  2617. * L = Number of legs of movement before probe
  2618. *
  2619. * This function assumes the bed has been homed. Specifically, that a G28 command
  2620. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2621. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2622. * regenerated.
  2623. */
  2624. inline void gcode_M48() {
  2625. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2626. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2627. if (code_seen('V') || code_seen('v')) {
  2628. verbose_level = code_value_short();
  2629. if (verbose_level < 0 || verbose_level > 4 ) {
  2630. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2631. return;
  2632. }
  2633. }
  2634. if (verbose_level > 0)
  2635. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2636. if (code_seen('P') || code_seen('p')) {
  2637. n_samples = code_value_short();
  2638. if (n_samples < 4 || n_samples > 50) {
  2639. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2640. return;
  2641. }
  2642. }
  2643. double X_current = st_get_position_mm(X_AXIS),
  2644. Y_current = st_get_position_mm(Y_AXIS),
  2645. Z_current = st_get_position_mm(Z_AXIS),
  2646. E_current = st_get_position_mm(E_AXIS),
  2647. X_probe_location = X_current, Y_probe_location = Y_current,
  2648. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2649. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2650. if (code_seen('X') || code_seen('x')) {
  2651. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2652. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2653. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2654. return;
  2655. }
  2656. }
  2657. if (code_seen('Y') || code_seen('y')) {
  2658. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2659. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2660. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2661. return;
  2662. }
  2663. }
  2664. if (code_seen('L') || code_seen('l')) {
  2665. n_legs = code_value_short();
  2666. if (n_legs == 1) n_legs = 2;
  2667. if (n_legs < 0 || n_legs > 15) {
  2668. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2669. return;
  2670. }
  2671. }
  2672. //
  2673. // Do all the preliminary setup work. First raise the probe.
  2674. //
  2675. st_synchronize();
  2676. plan_bed_level_matrix.set_to_identity();
  2677. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2678. st_synchronize();
  2679. //
  2680. // Now get everything to the specified probe point So we can safely do a probe to
  2681. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2682. // use that as a starting point for each probe.
  2683. //
  2684. if (verbose_level > 2)
  2685. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2686. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2687. E_current,
  2688. homing_feedrate[X_AXIS]/60,
  2689. active_extruder);
  2690. st_synchronize();
  2691. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2692. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2693. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2694. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2695. //
  2696. // OK, do the initial probe to get us close to the bed.
  2697. // Then retrace the right amount and use that in subsequent probes
  2698. //
  2699. deploy_z_probe();
  2700. setup_for_endstop_move();
  2701. run_z_probe();
  2702. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2703. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2704. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2705. E_current,
  2706. homing_feedrate[X_AXIS]/60,
  2707. active_extruder);
  2708. st_synchronize();
  2709. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2710. if (deploy_probe_for_each_reading) stow_z_probe();
  2711. for (uint8_t n=0; n < n_samples; n++) {
  2712. // Make sure we are at the probe location
  2713. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2714. if (n_legs) {
  2715. millis_t ms = millis();
  2716. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2717. theta = RADIANS(ms % 360L);
  2718. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2719. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2720. //SERIAL_ECHOPAIR(" theta: ",theta);
  2721. //SERIAL_ECHOPAIR(" direction: ",dir);
  2722. //SERIAL_EOL;
  2723. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2724. ms = millis();
  2725. theta += RADIANS(dir * (ms % 20L));
  2726. radius += (ms % 10L) - 5L;
  2727. if (radius < 0.0) radius = -radius;
  2728. X_current = X_probe_location + cos(theta) * radius;
  2729. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2730. Y_current = Y_probe_location + sin(theta) * radius;
  2731. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2732. if (verbose_level > 3) {
  2733. SERIAL_ECHOPAIR("x: ", X_current);
  2734. SERIAL_ECHOPAIR("y: ", Y_current);
  2735. SERIAL_EOL;
  2736. }
  2737. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2738. } // n_legs loop
  2739. // Go back to the probe location
  2740. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2741. } // n_legs
  2742. if (deploy_probe_for_each_reading) {
  2743. deploy_z_probe();
  2744. delay(1000);
  2745. }
  2746. setup_for_endstop_move();
  2747. run_z_probe();
  2748. sample_set[n] = current_position[Z_AXIS];
  2749. //
  2750. // Get the current mean for the data points we have so far
  2751. //
  2752. sum = 0.0;
  2753. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2754. mean = sum / (n + 1);
  2755. //
  2756. // Now, use that mean to calculate the standard deviation for the
  2757. // data points we have so far
  2758. //
  2759. sum = 0.0;
  2760. for (uint8_t j = 0; j <= n; j++) {
  2761. float ss = sample_set[j] - mean;
  2762. sum += ss * ss;
  2763. }
  2764. sigma = sqrt(sum / (n + 1));
  2765. if (verbose_level > 1) {
  2766. SERIAL_PROTOCOL(n+1);
  2767. SERIAL_PROTOCOLPGM(" of ");
  2768. SERIAL_PROTOCOL(n_samples);
  2769. SERIAL_PROTOCOLPGM(" z: ");
  2770. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2771. if (verbose_level > 2) {
  2772. SERIAL_PROTOCOLPGM(" mean: ");
  2773. SERIAL_PROTOCOL_F(mean,6);
  2774. SERIAL_PROTOCOLPGM(" sigma: ");
  2775. SERIAL_PROTOCOL_F(sigma,6);
  2776. }
  2777. }
  2778. if (verbose_level > 0) SERIAL_EOL;
  2779. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2780. st_synchronize();
  2781. // Stow between
  2782. if (deploy_probe_for_each_reading) {
  2783. stow_z_probe();
  2784. delay(1000);
  2785. }
  2786. }
  2787. // Stow after
  2788. if (!deploy_probe_for_each_reading) {
  2789. stow_z_probe();
  2790. delay(1000);
  2791. }
  2792. clean_up_after_endstop_move();
  2793. if (verbose_level > 0) {
  2794. SERIAL_PROTOCOLPGM("Mean: ");
  2795. SERIAL_PROTOCOL_F(mean, 6);
  2796. SERIAL_EOL;
  2797. }
  2798. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2799. SERIAL_PROTOCOL_F(sigma, 6);
  2800. SERIAL_EOL; SERIAL_EOL;
  2801. }
  2802. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2803. /**
  2804. * M104: Set hot end temperature
  2805. */
  2806. inline void gcode_M104() {
  2807. if (setTargetedHotend(104)) return;
  2808. if (code_seen('S')) {
  2809. float temp = code_value();
  2810. setTargetHotend(temp, target_extruder);
  2811. #ifdef DUAL_X_CARRIAGE
  2812. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2813. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2814. #endif
  2815. }
  2816. }
  2817. /**
  2818. * M105: Read hot end and bed temperature
  2819. */
  2820. inline void gcode_M105() {
  2821. if (setTargetedHotend(105)) return;
  2822. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2823. SERIAL_PROTOCOLPGM(MSG_OK);
  2824. #if HAS_TEMP_0
  2825. SERIAL_PROTOCOLPGM(" T:");
  2826. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2827. SERIAL_PROTOCOLPGM(" /");
  2828. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2829. #endif
  2830. #if HAS_TEMP_BED
  2831. SERIAL_PROTOCOLPGM(" B:");
  2832. SERIAL_PROTOCOL_F(degBed(), 1);
  2833. SERIAL_PROTOCOLPGM(" /");
  2834. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2835. #endif
  2836. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2837. SERIAL_PROTOCOLPGM(" T");
  2838. SERIAL_PROTOCOL(e);
  2839. SERIAL_PROTOCOLCHAR(':');
  2840. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2841. SERIAL_PROTOCOLPGM(" /");
  2842. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2843. }
  2844. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2845. SERIAL_ERROR_START;
  2846. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2847. #endif
  2848. SERIAL_PROTOCOLPGM(" @:");
  2849. #ifdef EXTRUDER_WATTS
  2850. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2851. SERIAL_PROTOCOLCHAR('W');
  2852. #else
  2853. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2854. #endif
  2855. SERIAL_PROTOCOLPGM(" B@:");
  2856. #ifdef BED_WATTS
  2857. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2858. SERIAL_PROTOCOLCHAR('W');
  2859. #else
  2860. SERIAL_PROTOCOL(getHeaterPower(-1));
  2861. #endif
  2862. #ifdef SHOW_TEMP_ADC_VALUES
  2863. #if HAS_TEMP_BED
  2864. SERIAL_PROTOCOLPGM(" ADC B:");
  2865. SERIAL_PROTOCOL_F(degBed(),1);
  2866. SERIAL_PROTOCOLPGM("C->");
  2867. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2868. #endif
  2869. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2870. SERIAL_PROTOCOLPGM(" T");
  2871. SERIAL_PROTOCOL(cur_extruder);
  2872. SERIAL_PROTOCOLCHAR(':');
  2873. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2874. SERIAL_PROTOCOLPGM("C->");
  2875. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2876. }
  2877. #endif
  2878. SERIAL_EOL;
  2879. }
  2880. #if HAS_FAN
  2881. /**
  2882. * M106: Set Fan Speed
  2883. */
  2884. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2885. /**
  2886. * M107: Fan Off
  2887. */
  2888. inline void gcode_M107() { fanSpeed = 0; }
  2889. #endif // HAS_FAN
  2890. /**
  2891. * M109: Wait for extruder(s) to reach temperature
  2892. */
  2893. inline void gcode_M109() {
  2894. if (setTargetedHotend(109)) return;
  2895. LCD_MESSAGEPGM(MSG_HEATING);
  2896. no_wait_for_cooling = code_seen('S');
  2897. if (no_wait_for_cooling || code_seen('R')) {
  2898. float temp = code_value();
  2899. setTargetHotend(temp, target_extruder);
  2900. #ifdef DUAL_X_CARRIAGE
  2901. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2902. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2903. #endif
  2904. }
  2905. #ifdef AUTOTEMP
  2906. autotemp_enabled = code_seen('F');
  2907. if (autotemp_enabled) autotemp_factor = code_value();
  2908. if (code_seen('S')) autotemp_min = code_value();
  2909. if (code_seen('B')) autotemp_max = code_value();
  2910. #endif
  2911. millis_t temp_ms = millis();
  2912. /* See if we are heating up or cooling down */
  2913. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2914. cancel_heatup = false;
  2915. #ifdef TEMP_RESIDENCY_TIME
  2916. long residency_start_ms = -1;
  2917. /* continue to loop until we have reached the target temp
  2918. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2919. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2920. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2921. #else
  2922. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2923. #endif //TEMP_RESIDENCY_TIME
  2924. { // while loop
  2925. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2926. SERIAL_PROTOCOLPGM("T:");
  2927. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2928. SERIAL_PROTOCOLPGM(" E:");
  2929. SERIAL_PROTOCOL((int)target_extruder);
  2930. #ifdef TEMP_RESIDENCY_TIME
  2931. SERIAL_PROTOCOLPGM(" W:");
  2932. if (residency_start_ms > -1) {
  2933. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2934. SERIAL_PROTOCOLLN(temp_ms);
  2935. }
  2936. else {
  2937. SERIAL_PROTOCOLLNPGM("?");
  2938. }
  2939. #else
  2940. SERIAL_EOL;
  2941. #endif
  2942. temp_ms = millis();
  2943. }
  2944. manage_heater();
  2945. manage_inactivity();
  2946. lcd_update();
  2947. #ifdef TEMP_RESIDENCY_TIME
  2948. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2949. // or when current temp falls outside the hysteresis after target temp was reached
  2950. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2951. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2952. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2953. {
  2954. residency_start_ms = millis();
  2955. }
  2956. #endif //TEMP_RESIDENCY_TIME
  2957. }
  2958. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2959. refresh_cmd_timeout();
  2960. print_job_start_ms = previous_cmd_ms;
  2961. }
  2962. #if HAS_TEMP_BED
  2963. /**
  2964. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2965. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2966. */
  2967. inline void gcode_M190() {
  2968. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2969. no_wait_for_cooling = code_seen('S');
  2970. if (no_wait_for_cooling || code_seen('R'))
  2971. setTargetBed(code_value());
  2972. millis_t temp_ms = millis();
  2973. cancel_heatup = false;
  2974. target_direction = isHeatingBed(); // true if heating, false if cooling
  2975. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2976. millis_t ms = millis();
  2977. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2978. temp_ms = ms;
  2979. float tt = degHotend(active_extruder);
  2980. SERIAL_PROTOCOLPGM("T:");
  2981. SERIAL_PROTOCOL(tt);
  2982. SERIAL_PROTOCOLPGM(" E:");
  2983. SERIAL_PROTOCOL((int)active_extruder);
  2984. SERIAL_PROTOCOLPGM(" B:");
  2985. SERIAL_PROTOCOL_F(degBed(), 1);
  2986. SERIAL_EOL;
  2987. }
  2988. manage_heater();
  2989. manage_inactivity();
  2990. lcd_update();
  2991. }
  2992. LCD_MESSAGEPGM(MSG_BED_DONE);
  2993. refresh_cmd_timeout();
  2994. }
  2995. #endif // HAS_TEMP_BED
  2996. /**
  2997. * M111: Set the debug level
  2998. */
  2999. inline void gcode_M111() {
  3000. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  3001. }
  3002. /**
  3003. * M112: Emergency Stop
  3004. */
  3005. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3006. #ifdef BARICUDA
  3007. #if HAS_HEATER_1
  3008. /**
  3009. * M126: Heater 1 valve open
  3010. */
  3011. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3012. /**
  3013. * M127: Heater 1 valve close
  3014. */
  3015. inline void gcode_M127() { ValvePressure = 0; }
  3016. #endif
  3017. #if HAS_HEATER_2
  3018. /**
  3019. * M128: Heater 2 valve open
  3020. */
  3021. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3022. /**
  3023. * M129: Heater 2 valve close
  3024. */
  3025. inline void gcode_M129() { EtoPPressure = 0; }
  3026. #endif
  3027. #endif //BARICUDA
  3028. /**
  3029. * M140: Set bed temperature
  3030. */
  3031. inline void gcode_M140() {
  3032. if (code_seen('S')) setTargetBed(code_value());
  3033. }
  3034. #ifdef ULTIPANEL
  3035. /**
  3036. * M145: Set the heatup state for a material in the LCD menu
  3037. * S<material> (0=PLA, 1=ABS)
  3038. * H<hotend temp>
  3039. * B<bed temp>
  3040. * F<fan speed>
  3041. */
  3042. inline void gcode_M145() {
  3043. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3044. if (material < 0 || material > 1) {
  3045. SERIAL_ERROR_START;
  3046. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3047. }
  3048. else {
  3049. int v;
  3050. switch (material) {
  3051. case 0:
  3052. if (code_seen('H')) {
  3053. v = code_value_short();
  3054. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3055. }
  3056. if (code_seen('F')) {
  3057. v = code_value_short();
  3058. plaPreheatFanSpeed = constrain(v, 0, 255);
  3059. }
  3060. #if TEMP_SENSOR_BED != 0
  3061. if (code_seen('B')) {
  3062. v = code_value_short();
  3063. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3064. }
  3065. #endif
  3066. break;
  3067. case 1:
  3068. if (code_seen('H')) {
  3069. v = code_value_short();
  3070. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3071. }
  3072. if (code_seen('F')) {
  3073. v = code_value_short();
  3074. absPreheatFanSpeed = constrain(v, 0, 255);
  3075. }
  3076. #if TEMP_SENSOR_BED != 0
  3077. if (code_seen('B')) {
  3078. v = code_value_short();
  3079. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3080. }
  3081. #endif
  3082. break;
  3083. }
  3084. }
  3085. }
  3086. #endif
  3087. #if HAS_POWER_SWITCH
  3088. /**
  3089. * M80: Turn on Power Supply
  3090. */
  3091. inline void gcode_M80() {
  3092. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3093. // If you have a switch on suicide pin, this is useful
  3094. // if you want to start another print with suicide feature after
  3095. // a print without suicide...
  3096. #if HAS_SUICIDE
  3097. OUT_WRITE(SUICIDE_PIN, HIGH);
  3098. #endif
  3099. #ifdef ULTIPANEL
  3100. powersupply = true;
  3101. LCD_MESSAGEPGM(WELCOME_MSG);
  3102. lcd_update();
  3103. #endif
  3104. }
  3105. #endif // HAS_POWER_SWITCH
  3106. /**
  3107. * M81: Turn off Power, including Power Supply, if there is one.
  3108. *
  3109. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3110. */
  3111. inline void gcode_M81() {
  3112. disable_all_heaters();
  3113. st_synchronize();
  3114. disable_e0();
  3115. disable_e1();
  3116. disable_e2();
  3117. disable_e3();
  3118. finishAndDisableSteppers();
  3119. fanSpeed = 0;
  3120. delay(1000); // Wait 1 second before switching off
  3121. #if HAS_SUICIDE
  3122. st_synchronize();
  3123. suicide();
  3124. #elif HAS_POWER_SWITCH
  3125. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3126. #endif
  3127. #ifdef ULTIPANEL
  3128. #if HAS_POWER_SWITCH
  3129. powersupply = false;
  3130. #endif
  3131. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3132. lcd_update();
  3133. #endif
  3134. }
  3135. /**
  3136. * M82: Set E codes absolute (default)
  3137. */
  3138. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3139. /**
  3140. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  3141. */
  3142. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3143. /**
  3144. * M18, M84: Disable all stepper motors
  3145. */
  3146. inline void gcode_M18_M84() {
  3147. if (code_seen('S')) {
  3148. stepper_inactive_time = code_value() * 1000;
  3149. }
  3150. else {
  3151. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3152. if (all_axis) {
  3153. st_synchronize();
  3154. disable_e0();
  3155. disable_e1();
  3156. disable_e2();
  3157. disable_e3();
  3158. finishAndDisableSteppers();
  3159. }
  3160. else {
  3161. st_synchronize();
  3162. if (code_seen('X')) disable_x();
  3163. if (code_seen('Y')) disable_y();
  3164. if (code_seen('Z')) disable_z();
  3165. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3166. if (code_seen('E')) {
  3167. disable_e0();
  3168. disable_e1();
  3169. disable_e2();
  3170. disable_e3();
  3171. }
  3172. #endif
  3173. }
  3174. }
  3175. }
  3176. /**
  3177. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3178. */
  3179. inline void gcode_M85() {
  3180. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3181. }
  3182. /**
  3183. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3184. * (Follows the same syntax as G92)
  3185. */
  3186. inline void gcode_M92() {
  3187. for(int8_t i=0; i < NUM_AXIS; i++) {
  3188. if (code_seen(axis_codes[i])) {
  3189. if (i == E_AXIS) {
  3190. float value = code_value();
  3191. if (value < 20.0) {
  3192. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3193. max_e_jerk *= factor;
  3194. max_feedrate[i] *= factor;
  3195. axis_steps_per_sqr_second[i] *= factor;
  3196. }
  3197. axis_steps_per_unit[i] = value;
  3198. }
  3199. else {
  3200. axis_steps_per_unit[i] = code_value();
  3201. }
  3202. }
  3203. }
  3204. }
  3205. /**
  3206. * M114: Output current position to serial port
  3207. */
  3208. inline void gcode_M114() {
  3209. SERIAL_PROTOCOLPGM("X:");
  3210. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3211. SERIAL_PROTOCOLPGM(" Y:");
  3212. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3213. SERIAL_PROTOCOLPGM(" Z:");
  3214. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3215. SERIAL_PROTOCOLPGM(" E:");
  3216. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3217. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3218. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3219. SERIAL_PROTOCOLPGM(" Y:");
  3220. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3221. SERIAL_PROTOCOLPGM(" Z:");
  3222. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3223. SERIAL_EOL;
  3224. #ifdef SCARA
  3225. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3226. SERIAL_PROTOCOL(delta[X_AXIS]);
  3227. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3228. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3229. SERIAL_EOL;
  3230. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3231. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3232. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3233. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3234. SERIAL_EOL;
  3235. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3236. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3237. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3238. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3239. SERIAL_EOL; SERIAL_EOL;
  3240. #endif
  3241. }
  3242. /**
  3243. * M115: Capabilities string
  3244. */
  3245. inline void gcode_M115() {
  3246. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3247. }
  3248. /**
  3249. * M117: Set LCD Status Message
  3250. */
  3251. inline void gcode_M117() {
  3252. lcd_setstatus(current_command_args);
  3253. }
  3254. /**
  3255. * M119: Output endstop states to serial output
  3256. */
  3257. inline void gcode_M119() {
  3258. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3259. #if HAS_X_MIN
  3260. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3261. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3262. #endif
  3263. #if HAS_X_MAX
  3264. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3265. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3266. #endif
  3267. #if HAS_Y_MIN
  3268. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3269. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3270. #endif
  3271. #if HAS_Y_MAX
  3272. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3273. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3274. #endif
  3275. #if HAS_Z_MIN
  3276. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3277. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3278. #endif
  3279. #if HAS_Z_MAX
  3280. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3281. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3282. #endif
  3283. #if HAS_Z2_MAX
  3284. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3285. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3286. #endif
  3287. #if HAS_Z_PROBE
  3288. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3289. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3290. #endif
  3291. }
  3292. /**
  3293. * M120: Enable endstops
  3294. */
  3295. inline void gcode_M120() { enable_endstops(true); }
  3296. /**
  3297. * M121: Disable endstops
  3298. */
  3299. inline void gcode_M121() { enable_endstops(false); }
  3300. #ifdef BLINKM
  3301. /**
  3302. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3303. */
  3304. inline void gcode_M150() {
  3305. SendColors(
  3306. code_seen('R') ? (byte)code_value_short() : 0,
  3307. code_seen('U') ? (byte)code_value_short() : 0,
  3308. code_seen('B') ? (byte)code_value_short() : 0
  3309. );
  3310. }
  3311. #endif // BLINKM
  3312. /**
  3313. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3314. * T<extruder>
  3315. * D<millimeters>
  3316. */
  3317. inline void gcode_M200() {
  3318. int tmp_extruder = active_extruder;
  3319. if (code_seen('T')) {
  3320. tmp_extruder = code_value_short();
  3321. if (tmp_extruder >= EXTRUDERS) {
  3322. SERIAL_ECHO_START;
  3323. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3324. return;
  3325. }
  3326. }
  3327. if (code_seen('D')) {
  3328. float diameter = code_value();
  3329. // setting any extruder filament size disables volumetric on the assumption that
  3330. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3331. // for all extruders
  3332. volumetric_enabled = (diameter != 0.0);
  3333. if (volumetric_enabled) {
  3334. filament_size[tmp_extruder] = diameter;
  3335. // make sure all extruders have some sane value for the filament size
  3336. for (int i=0; i<EXTRUDERS; i++)
  3337. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3338. }
  3339. }
  3340. else {
  3341. //reserved for setting filament diameter via UFID or filament measuring device
  3342. return;
  3343. }
  3344. calculate_volumetric_multipliers();
  3345. }
  3346. /**
  3347. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3348. */
  3349. inline void gcode_M201() {
  3350. for (int8_t i=0; i < NUM_AXIS; i++) {
  3351. if (code_seen(axis_codes[i])) {
  3352. max_acceleration_units_per_sq_second[i] = code_value();
  3353. }
  3354. }
  3355. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3356. reset_acceleration_rates();
  3357. }
  3358. #if 0 // Not used for Sprinter/grbl gen6
  3359. inline void gcode_M202() {
  3360. for(int8_t i=0; i < NUM_AXIS; i++) {
  3361. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3362. }
  3363. }
  3364. #endif
  3365. /**
  3366. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3367. */
  3368. inline void gcode_M203() {
  3369. for (int8_t i=0; i < NUM_AXIS; i++) {
  3370. if (code_seen(axis_codes[i])) {
  3371. max_feedrate[i] = code_value();
  3372. }
  3373. }
  3374. }
  3375. /**
  3376. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3377. *
  3378. * P = Printing moves
  3379. * R = Retract only (no X, Y, Z) moves
  3380. * T = Travel (non printing) moves
  3381. *
  3382. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3383. */
  3384. inline void gcode_M204() {
  3385. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3386. acceleration = code_value();
  3387. travel_acceleration = acceleration;
  3388. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3389. SERIAL_EOL;
  3390. }
  3391. if (code_seen('P')) {
  3392. acceleration = code_value();
  3393. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3394. SERIAL_EOL;
  3395. }
  3396. if (code_seen('R')) {
  3397. retract_acceleration = code_value();
  3398. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3399. SERIAL_EOL;
  3400. }
  3401. if (code_seen('T')) {
  3402. travel_acceleration = code_value();
  3403. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3404. SERIAL_EOL;
  3405. }
  3406. }
  3407. /**
  3408. * M205: Set Advanced Settings
  3409. *
  3410. * S = Min Feed Rate (mm/s)
  3411. * T = Min Travel Feed Rate (mm/s)
  3412. * B = Min Segment Time (µs)
  3413. * X = Max XY Jerk (mm/s/s)
  3414. * Z = Max Z Jerk (mm/s/s)
  3415. * E = Max E Jerk (mm/s/s)
  3416. */
  3417. inline void gcode_M205() {
  3418. if (code_seen('S')) minimumfeedrate = code_value();
  3419. if (code_seen('T')) mintravelfeedrate = code_value();
  3420. if (code_seen('B')) minsegmenttime = code_value();
  3421. if (code_seen('X')) max_xy_jerk = code_value();
  3422. if (code_seen('Z')) max_z_jerk = code_value();
  3423. if (code_seen('E')) max_e_jerk = code_value();
  3424. }
  3425. /**
  3426. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3427. */
  3428. inline void gcode_M206() {
  3429. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3430. if (code_seen(axis_codes[i])) {
  3431. home_offset[i] = code_value();
  3432. }
  3433. }
  3434. #ifdef SCARA
  3435. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3436. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3437. #endif
  3438. }
  3439. #ifdef DELTA
  3440. /**
  3441. * M665: Set delta configurations
  3442. *
  3443. * L = diagonal rod
  3444. * R = delta radius
  3445. * S = segments per second
  3446. */
  3447. inline void gcode_M665() {
  3448. if (code_seen('L')) delta_diagonal_rod = code_value();
  3449. if (code_seen('R')) delta_radius = code_value();
  3450. if (code_seen('S')) delta_segments_per_second = code_value();
  3451. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3452. }
  3453. /**
  3454. * M666: Set delta endstop adjustment
  3455. */
  3456. inline void gcode_M666() {
  3457. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3458. if (code_seen(axis_codes[i])) {
  3459. endstop_adj[i] = code_value();
  3460. }
  3461. }
  3462. }
  3463. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3464. /**
  3465. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3466. */
  3467. inline void gcode_M666() {
  3468. if (code_seen('Z')) z_endstop_adj = code_value();
  3469. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3470. SERIAL_EOL;
  3471. }
  3472. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3473. #ifdef FWRETRACT
  3474. /**
  3475. * M207: Set firmware retraction values
  3476. *
  3477. * S[+mm] retract_length
  3478. * W[+mm] retract_length_swap (multi-extruder)
  3479. * F[mm/min] retract_feedrate
  3480. * Z[mm] retract_zlift
  3481. */
  3482. inline void gcode_M207() {
  3483. if (code_seen('S')) retract_length = code_value();
  3484. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3485. if (code_seen('Z')) retract_zlift = code_value();
  3486. #if EXTRUDERS > 1
  3487. if (code_seen('W')) retract_length_swap = code_value();
  3488. #endif
  3489. }
  3490. /**
  3491. * M208: Set firmware un-retraction values
  3492. *
  3493. * S[+mm] retract_recover_length (in addition to M207 S*)
  3494. * W[+mm] retract_recover_length_swap (multi-extruder)
  3495. * F[mm/min] retract_recover_feedrate
  3496. */
  3497. inline void gcode_M208() {
  3498. if (code_seen('S')) retract_recover_length = code_value();
  3499. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3500. #if EXTRUDERS > 1
  3501. if (code_seen('W')) retract_recover_length_swap = code_value();
  3502. #endif
  3503. }
  3504. /**
  3505. * M209: Enable automatic retract (M209 S1)
  3506. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3507. */
  3508. inline void gcode_M209() {
  3509. if (code_seen('S')) {
  3510. int t = code_value_short();
  3511. switch(t) {
  3512. case 0:
  3513. autoretract_enabled = false;
  3514. break;
  3515. case 1:
  3516. autoretract_enabled = true;
  3517. break;
  3518. default:
  3519. unknown_command_error();
  3520. return;
  3521. }
  3522. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3523. }
  3524. }
  3525. #endif // FWRETRACT
  3526. #if EXTRUDERS > 1
  3527. /**
  3528. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3529. */
  3530. inline void gcode_M218() {
  3531. if (setTargetedHotend(218)) return;
  3532. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3533. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3534. #ifdef DUAL_X_CARRIAGE
  3535. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3536. #endif
  3537. SERIAL_ECHO_START;
  3538. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3539. for (int e = 0; e < EXTRUDERS; e++) {
  3540. SERIAL_CHAR(' ');
  3541. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3542. SERIAL_CHAR(',');
  3543. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3544. #ifdef DUAL_X_CARRIAGE
  3545. SERIAL_CHAR(',');
  3546. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3547. #endif
  3548. }
  3549. SERIAL_EOL;
  3550. }
  3551. #endif // EXTRUDERS > 1
  3552. /**
  3553. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3554. */
  3555. inline void gcode_M220() {
  3556. if (code_seen('S')) feedrate_multiplier = code_value();
  3557. }
  3558. /**
  3559. * M221: Set extrusion percentage (M221 T0 S95)
  3560. */
  3561. inline void gcode_M221() {
  3562. if (code_seen('S')) {
  3563. int sval = code_value();
  3564. if (code_seen('T')) {
  3565. if (setTargetedHotend(221)) return;
  3566. extruder_multiply[target_extruder] = sval;
  3567. }
  3568. else {
  3569. extruder_multiply[active_extruder] = sval;
  3570. }
  3571. }
  3572. }
  3573. /**
  3574. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3575. */
  3576. inline void gcode_M226() {
  3577. if (code_seen('P')) {
  3578. int pin_number = code_value();
  3579. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3580. if (pin_state >= -1 && pin_state <= 1) {
  3581. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3582. if (sensitive_pins[i] == pin_number) {
  3583. pin_number = -1;
  3584. break;
  3585. }
  3586. }
  3587. if (pin_number > -1) {
  3588. int target = LOW;
  3589. st_synchronize();
  3590. pinMode(pin_number, INPUT);
  3591. switch(pin_state){
  3592. case 1:
  3593. target = HIGH;
  3594. break;
  3595. case 0:
  3596. target = LOW;
  3597. break;
  3598. case -1:
  3599. target = !digitalRead(pin_number);
  3600. break;
  3601. }
  3602. while(digitalRead(pin_number) != target) {
  3603. manage_heater();
  3604. manage_inactivity();
  3605. lcd_update();
  3606. }
  3607. } // pin_number > -1
  3608. } // pin_state -1 0 1
  3609. } // code_seen('P')
  3610. }
  3611. #if NUM_SERVOS > 0
  3612. /**
  3613. * M280: Get or set servo position. P<index> S<angle>
  3614. */
  3615. inline void gcode_M280() {
  3616. int servo_index = code_seen('P') ? code_value_short() : -1;
  3617. int servo_position = 0;
  3618. if (code_seen('S')) {
  3619. servo_position = code_value_short();
  3620. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3621. Servo *srv = &servo[servo_index];
  3622. #if SERVO_LEVELING
  3623. srv->attach(0);
  3624. #endif
  3625. srv->write(servo_position);
  3626. #if SERVO_LEVELING
  3627. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3628. srv->detach();
  3629. #endif
  3630. }
  3631. else {
  3632. SERIAL_ECHO_START;
  3633. SERIAL_ECHO("Servo ");
  3634. SERIAL_ECHO(servo_index);
  3635. SERIAL_ECHOLN(" out of range");
  3636. }
  3637. }
  3638. else if (servo_index >= 0) {
  3639. SERIAL_PROTOCOL(MSG_OK);
  3640. SERIAL_PROTOCOL(" Servo ");
  3641. SERIAL_PROTOCOL(servo_index);
  3642. SERIAL_PROTOCOL(": ");
  3643. SERIAL_PROTOCOL(servo[servo_index].read());
  3644. SERIAL_EOL;
  3645. }
  3646. }
  3647. #endif // NUM_SERVOS > 0
  3648. #if HAS_LCD_BUZZ
  3649. /**
  3650. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3651. */
  3652. inline void gcode_M300() {
  3653. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3654. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3655. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3656. lcd_buzz(beepP, beepS);
  3657. }
  3658. #endif // HAS_LCD_BUZZ
  3659. #ifdef PIDTEMP
  3660. /**
  3661. * M301: Set PID parameters P I D (and optionally C)
  3662. */
  3663. inline void gcode_M301() {
  3664. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3665. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3666. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3667. if (e < EXTRUDERS) { // catch bad input value
  3668. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3669. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3670. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3671. #ifdef PID_ADD_EXTRUSION_RATE
  3672. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3673. #endif
  3674. updatePID();
  3675. SERIAL_PROTOCOL(MSG_OK);
  3676. #ifdef PID_PARAMS_PER_EXTRUDER
  3677. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3678. SERIAL_PROTOCOL(e);
  3679. #endif // PID_PARAMS_PER_EXTRUDER
  3680. SERIAL_PROTOCOL(" p:");
  3681. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3682. SERIAL_PROTOCOL(" i:");
  3683. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3684. SERIAL_PROTOCOL(" d:");
  3685. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3686. #ifdef PID_ADD_EXTRUSION_RATE
  3687. SERIAL_PROTOCOL(" c:");
  3688. //Kc does not have scaling applied above, or in resetting defaults
  3689. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3690. #endif
  3691. SERIAL_EOL;
  3692. }
  3693. else {
  3694. SERIAL_ECHO_START;
  3695. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3696. }
  3697. }
  3698. #endif // PIDTEMP
  3699. #ifdef PIDTEMPBED
  3700. inline void gcode_M304() {
  3701. if (code_seen('P')) bedKp = code_value();
  3702. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3703. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3704. updatePID();
  3705. SERIAL_PROTOCOL(MSG_OK);
  3706. SERIAL_PROTOCOL(" p:");
  3707. SERIAL_PROTOCOL(bedKp);
  3708. SERIAL_PROTOCOL(" i:");
  3709. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3710. SERIAL_PROTOCOL(" d:");
  3711. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3712. SERIAL_EOL;
  3713. }
  3714. #endif // PIDTEMPBED
  3715. #if defined(CHDK) || HAS_PHOTOGRAPH
  3716. /**
  3717. * M240: Trigger a camera by emulating a Canon RC-1
  3718. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3719. */
  3720. inline void gcode_M240() {
  3721. #ifdef CHDK
  3722. OUT_WRITE(CHDK, HIGH);
  3723. chdkHigh = millis();
  3724. chdkActive = true;
  3725. #elif HAS_PHOTOGRAPH
  3726. const uint8_t NUM_PULSES = 16;
  3727. const float PULSE_LENGTH = 0.01524;
  3728. for (int i = 0; i < NUM_PULSES; i++) {
  3729. WRITE(PHOTOGRAPH_PIN, HIGH);
  3730. _delay_ms(PULSE_LENGTH);
  3731. WRITE(PHOTOGRAPH_PIN, LOW);
  3732. _delay_ms(PULSE_LENGTH);
  3733. }
  3734. delay(7.33);
  3735. for (int i = 0; i < NUM_PULSES; i++) {
  3736. WRITE(PHOTOGRAPH_PIN, HIGH);
  3737. _delay_ms(PULSE_LENGTH);
  3738. WRITE(PHOTOGRAPH_PIN, LOW);
  3739. _delay_ms(PULSE_LENGTH);
  3740. }
  3741. #endif // !CHDK && HAS_PHOTOGRAPH
  3742. }
  3743. #endif // CHDK || PHOTOGRAPH_PIN
  3744. #ifdef HAS_LCD_CONTRAST
  3745. /**
  3746. * M250: Read and optionally set the LCD contrast
  3747. */
  3748. inline void gcode_M250() {
  3749. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3750. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3751. SERIAL_PROTOCOL(lcd_contrast);
  3752. SERIAL_EOL;
  3753. }
  3754. #endif // HAS_LCD_CONTRAST
  3755. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3756. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3757. /**
  3758. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3759. */
  3760. inline void gcode_M302() {
  3761. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3762. }
  3763. #endif // PREVENT_DANGEROUS_EXTRUDE
  3764. /**
  3765. * M303: PID relay autotune
  3766. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3767. * E<extruder> (-1 for the bed)
  3768. * C<cycles>
  3769. */
  3770. inline void gcode_M303() {
  3771. int e = code_seen('E') ? code_value_short() : 0;
  3772. int c = code_seen('C') ? code_value_short() : 5;
  3773. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3774. PID_autotune(temp, e, c);
  3775. // Suppress a line mismatch error
  3776. gcode_LastN += 1;
  3777. FlushSerialRequestResend();
  3778. }
  3779. #ifdef SCARA
  3780. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3781. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3782. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3783. if (IsRunning()) {
  3784. //gcode_get_destination(); // For X Y Z E F
  3785. delta[X_AXIS] = delta_x;
  3786. delta[Y_AXIS] = delta_y;
  3787. calculate_SCARA_forward_Transform(delta);
  3788. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3789. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3790. prepare_move();
  3791. //ok_to_send();
  3792. return true;
  3793. }
  3794. return false;
  3795. }
  3796. /**
  3797. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3798. */
  3799. inline bool gcode_M360() {
  3800. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3801. return SCARA_move_to_cal(0, 120);
  3802. }
  3803. /**
  3804. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3805. */
  3806. inline bool gcode_M361() {
  3807. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3808. return SCARA_move_to_cal(90, 130);
  3809. }
  3810. /**
  3811. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3812. */
  3813. inline bool gcode_M362() {
  3814. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3815. return SCARA_move_to_cal(60, 180);
  3816. }
  3817. /**
  3818. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3819. */
  3820. inline bool gcode_M363() {
  3821. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3822. return SCARA_move_to_cal(50, 90);
  3823. }
  3824. /**
  3825. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3826. */
  3827. inline bool gcode_M364() {
  3828. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3829. return SCARA_move_to_cal(45, 135);
  3830. }
  3831. /**
  3832. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3833. */
  3834. inline void gcode_M365() {
  3835. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3836. if (code_seen(axis_codes[i])) {
  3837. axis_scaling[i] = code_value();
  3838. }
  3839. }
  3840. }
  3841. #endif // SCARA
  3842. #ifdef EXT_SOLENOID
  3843. void enable_solenoid(uint8_t num) {
  3844. switch(num) {
  3845. case 0:
  3846. OUT_WRITE(SOL0_PIN, HIGH);
  3847. break;
  3848. #if HAS_SOLENOID_1
  3849. case 1:
  3850. OUT_WRITE(SOL1_PIN, HIGH);
  3851. break;
  3852. #endif
  3853. #if HAS_SOLENOID_2
  3854. case 2:
  3855. OUT_WRITE(SOL2_PIN, HIGH);
  3856. break;
  3857. #endif
  3858. #if HAS_SOLENOID_3
  3859. case 3:
  3860. OUT_WRITE(SOL3_PIN, HIGH);
  3861. break;
  3862. #endif
  3863. default:
  3864. SERIAL_ECHO_START;
  3865. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3866. break;
  3867. }
  3868. }
  3869. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3870. void disable_all_solenoids() {
  3871. OUT_WRITE(SOL0_PIN, LOW);
  3872. OUT_WRITE(SOL1_PIN, LOW);
  3873. OUT_WRITE(SOL2_PIN, LOW);
  3874. OUT_WRITE(SOL3_PIN, LOW);
  3875. }
  3876. /**
  3877. * M380: Enable solenoid on the active extruder
  3878. */
  3879. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3880. /**
  3881. * M381: Disable all solenoids
  3882. */
  3883. inline void gcode_M381() { disable_all_solenoids(); }
  3884. #endif // EXT_SOLENOID
  3885. /**
  3886. * M400: Finish all moves
  3887. */
  3888. inline void gcode_M400() { st_synchronize(); }
  3889. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3890. #ifdef SERVO_ENDSTOPS
  3891. void raise_z_for_servo() {
  3892. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3893. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3894. if (zpos < z_dest)
  3895. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3896. }
  3897. #endif
  3898. /**
  3899. * M401: Engage Z Servo endstop if available
  3900. */
  3901. inline void gcode_M401() {
  3902. #ifdef SERVO_ENDSTOPS
  3903. raise_z_for_servo();
  3904. #endif
  3905. deploy_z_probe();
  3906. }
  3907. /**
  3908. * M402: Retract Z Servo endstop if enabled
  3909. */
  3910. inline void gcode_M402() {
  3911. #ifdef SERVO_ENDSTOPS
  3912. raise_z_for_servo();
  3913. #endif
  3914. stow_z_probe(false);
  3915. }
  3916. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3917. #ifdef FILAMENT_SENSOR
  3918. /**
  3919. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3920. */
  3921. inline void gcode_M404() {
  3922. #if HAS_FILWIDTH
  3923. if (code_seen('W')) {
  3924. filament_width_nominal = code_value();
  3925. }
  3926. else {
  3927. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3928. SERIAL_PROTOCOLLN(filament_width_nominal);
  3929. }
  3930. #endif
  3931. }
  3932. /**
  3933. * M405: Turn on filament sensor for control
  3934. */
  3935. inline void gcode_M405() {
  3936. if (code_seen('D')) meas_delay_cm = code_value();
  3937. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3938. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3939. int temp_ratio = widthFil_to_size_ratio();
  3940. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3941. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3942. delay_index1 = delay_index2 = 0;
  3943. }
  3944. filament_sensor = true;
  3945. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3946. //SERIAL_PROTOCOL(filament_width_meas);
  3947. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3948. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3949. }
  3950. /**
  3951. * M406: Turn off filament sensor for control
  3952. */
  3953. inline void gcode_M406() { filament_sensor = false; }
  3954. /**
  3955. * M407: Get measured filament diameter on serial output
  3956. */
  3957. inline void gcode_M407() {
  3958. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3959. SERIAL_PROTOCOLLN(filament_width_meas);
  3960. }
  3961. #endif // FILAMENT_SENSOR
  3962. /**
  3963. * M410: Quickstop - Abort all planned moves
  3964. *
  3965. * This will stop the carriages mid-move, so most likely they
  3966. * will be out of sync with the stepper position after this.
  3967. */
  3968. inline void gcode_M410() { quickStop(); }
  3969. #ifdef MESH_BED_LEVELING
  3970. /**
  3971. * M420: Enable/Disable Mesh Bed Leveling
  3972. */
  3973. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3974. /**
  3975. * M421: Set a single Mesh Bed Leveling Z coordinate
  3976. */
  3977. inline void gcode_M421() {
  3978. float x, y, z;
  3979. bool err = false, hasX, hasY, hasZ;
  3980. if ((hasX = code_seen('X'))) x = code_value();
  3981. if ((hasY = code_seen('Y'))) y = code_value();
  3982. if ((hasZ = code_seen('Z'))) z = code_value();
  3983. if (!hasX || !hasY || !hasZ) {
  3984. SERIAL_ERROR_START;
  3985. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3986. err = true;
  3987. }
  3988. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3989. SERIAL_ERROR_START;
  3990. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3991. err = true;
  3992. }
  3993. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3994. }
  3995. #endif
  3996. /**
  3997. * M428: Set home_offset based on the distance between the
  3998. * current_position and the nearest "reference point."
  3999. * If an axis is past center its endstop position
  4000. * is the reference-point. Otherwise it uses 0. This allows
  4001. * the Z offset to be set near the bed when using a max endstop.
  4002. *
  4003. * M428 can't be used more than 2cm away from 0 or an endstop.
  4004. *
  4005. * Use M206 to set these values directly.
  4006. */
  4007. inline void gcode_M428() {
  4008. bool err = false;
  4009. float new_offs[3], new_pos[3];
  4010. memcpy(new_pos, current_position, sizeof(new_pos));
  4011. memcpy(new_offs, home_offset, sizeof(new_offs));
  4012. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4013. if (axis_known_position[i]) {
  4014. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4015. diff = new_pos[i] - base;
  4016. if (diff > -20 && diff < 20) {
  4017. new_offs[i] -= diff;
  4018. new_pos[i] = base;
  4019. }
  4020. else {
  4021. SERIAL_ERROR_START;
  4022. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4023. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4024. #if HAS_LCD_BUZZ
  4025. enqueuecommands_P(PSTR("M300 S40 P200"));
  4026. #endif
  4027. err = true;
  4028. break;
  4029. }
  4030. }
  4031. }
  4032. if (!err) {
  4033. memcpy(current_position, new_pos, sizeof(new_pos));
  4034. memcpy(home_offset, new_offs, sizeof(new_offs));
  4035. sync_plan_position();
  4036. LCD_ALERTMESSAGEPGM("Offset applied.");
  4037. #if HAS_LCD_BUZZ
  4038. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4039. #endif
  4040. }
  4041. }
  4042. /**
  4043. * M500: Store settings in EEPROM
  4044. */
  4045. inline void gcode_M500() {
  4046. Config_StoreSettings();
  4047. }
  4048. /**
  4049. * M501: Read settings from EEPROM
  4050. */
  4051. inline void gcode_M501() {
  4052. Config_RetrieveSettings();
  4053. }
  4054. /**
  4055. * M502: Revert to default settings
  4056. */
  4057. inline void gcode_M502() {
  4058. Config_ResetDefault();
  4059. }
  4060. /**
  4061. * M503: print settings currently in memory
  4062. */
  4063. inline void gcode_M503() {
  4064. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4065. }
  4066. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4067. /**
  4068. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4069. */
  4070. inline void gcode_M540() {
  4071. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4072. }
  4073. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4074. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4075. inline void gcode_SET_Z_PROBE_OFFSET() {
  4076. float value;
  4077. if (code_seen('Z')) {
  4078. value = code_value();
  4079. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4080. zprobe_zoffset = -value;
  4081. SERIAL_ECHO_START;
  4082. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4083. SERIAL_EOL;
  4084. }
  4085. else {
  4086. SERIAL_ECHO_START;
  4087. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4088. SERIAL_ECHOPGM(MSG_Z_MIN);
  4089. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4090. SERIAL_ECHOPGM(MSG_Z_MAX);
  4091. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4092. SERIAL_EOL;
  4093. }
  4094. }
  4095. else {
  4096. SERIAL_ECHO_START;
  4097. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  4098. SERIAL_ECHO(-zprobe_zoffset);
  4099. SERIAL_EOL;
  4100. }
  4101. }
  4102. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4103. #ifdef FILAMENTCHANGEENABLE
  4104. /**
  4105. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4106. */
  4107. inline void gcode_M600() {
  4108. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4109. for (int i=0; i<NUM_AXIS; i++)
  4110. target[i] = lastpos[i] = current_position[i];
  4111. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  4112. #ifdef DELTA
  4113. #define RUNPLAN calculate_delta(target); BASICPLAN
  4114. #else
  4115. #define RUNPLAN BASICPLAN
  4116. #endif
  4117. //retract by E
  4118. if (code_seen('E')) target[E_AXIS] += code_value();
  4119. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4120. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4121. #endif
  4122. RUNPLAN;
  4123. //lift Z
  4124. if (code_seen('Z')) target[Z_AXIS] += code_value();
  4125. #ifdef FILAMENTCHANGE_ZADD
  4126. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4127. #endif
  4128. RUNPLAN;
  4129. //move xy
  4130. if (code_seen('X')) target[X_AXIS] = code_value();
  4131. #ifdef FILAMENTCHANGE_XPOS
  4132. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  4133. #endif
  4134. if (code_seen('Y')) target[Y_AXIS] = code_value();
  4135. #ifdef FILAMENTCHANGE_YPOS
  4136. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4137. #endif
  4138. RUNPLAN;
  4139. if (code_seen('L')) target[E_AXIS] += code_value();
  4140. #ifdef FILAMENTCHANGE_FINALRETRACT
  4141. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4142. #endif
  4143. RUNPLAN;
  4144. //finish moves
  4145. st_synchronize();
  4146. //disable extruder steppers so filament can be removed
  4147. disable_e0();
  4148. disable_e1();
  4149. disable_e2();
  4150. disable_e3();
  4151. delay(100);
  4152. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4153. uint8_t cnt = 0;
  4154. while (!lcd_clicked()) {
  4155. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  4156. manage_heater();
  4157. manage_inactivity(true);
  4158. lcd_update();
  4159. } // while(!lcd_clicked)
  4160. //return to normal
  4161. if (code_seen('L')) target[E_AXIS] -= code_value();
  4162. #ifdef FILAMENTCHANGE_FINALRETRACT
  4163. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4164. #endif
  4165. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4166. plan_set_e_position(current_position[E_AXIS]);
  4167. RUNPLAN; //should do nothing
  4168. lcd_reset_alert_level();
  4169. #ifdef DELTA
  4170. calculate_delta(lastpos);
  4171. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4172. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4173. #else
  4174. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4175. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4176. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4177. #endif
  4178. #ifdef FILAMENT_RUNOUT_SENSOR
  4179. filrunoutEnqueued = false;
  4180. #endif
  4181. }
  4182. #endif // FILAMENTCHANGEENABLE
  4183. #ifdef DUAL_X_CARRIAGE
  4184. /**
  4185. * M605: Set dual x-carriage movement mode
  4186. *
  4187. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4188. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4189. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4190. * millimeters x-offset and an optional differential hotend temperature of
  4191. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4192. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4193. *
  4194. * Note: the X axis should be homed after changing dual x-carriage mode.
  4195. */
  4196. inline void gcode_M605() {
  4197. st_synchronize();
  4198. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4199. switch(dual_x_carriage_mode) {
  4200. case DXC_DUPLICATION_MODE:
  4201. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4202. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4203. SERIAL_ECHO_START;
  4204. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4205. SERIAL_CHAR(' ');
  4206. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4207. SERIAL_CHAR(',');
  4208. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4209. SERIAL_CHAR(' ');
  4210. SERIAL_ECHO(duplicate_extruder_x_offset);
  4211. SERIAL_CHAR(',');
  4212. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4213. break;
  4214. case DXC_FULL_CONTROL_MODE:
  4215. case DXC_AUTO_PARK_MODE:
  4216. break;
  4217. default:
  4218. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4219. break;
  4220. }
  4221. active_extruder_parked = false;
  4222. extruder_duplication_enabled = false;
  4223. delayed_move_time = 0;
  4224. }
  4225. #endif // DUAL_X_CARRIAGE
  4226. /**
  4227. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4228. */
  4229. inline void gcode_M907() {
  4230. #if HAS_DIGIPOTSS
  4231. for (int i=0;i<NUM_AXIS;i++)
  4232. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4233. if (code_seen('B')) digipot_current(4, code_value());
  4234. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4235. #endif
  4236. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4237. if (code_seen('X')) digipot_current(0, code_value());
  4238. #endif
  4239. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4240. if (code_seen('Z')) digipot_current(1, code_value());
  4241. #endif
  4242. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4243. if (code_seen('E')) digipot_current(2, code_value());
  4244. #endif
  4245. #ifdef DIGIPOT_I2C
  4246. // this one uses actual amps in floating point
  4247. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4248. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4249. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4250. #endif
  4251. }
  4252. #if HAS_DIGIPOTSS
  4253. /**
  4254. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4255. */
  4256. inline void gcode_M908() {
  4257. digitalPotWrite(
  4258. code_seen('P') ? code_value() : 0,
  4259. code_seen('S') ? code_value() : 0
  4260. );
  4261. }
  4262. #endif // HAS_DIGIPOTSS
  4263. #if HAS_MICROSTEPS
  4264. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4265. inline void gcode_M350() {
  4266. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4267. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4268. if(code_seen('B')) microstep_mode(4,code_value());
  4269. microstep_readings();
  4270. }
  4271. /**
  4272. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4273. * S# determines MS1 or MS2, X# sets the pin high/low.
  4274. */
  4275. inline void gcode_M351() {
  4276. if (code_seen('S')) switch(code_value_short()) {
  4277. case 1:
  4278. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4279. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4280. break;
  4281. case 2:
  4282. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4283. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4284. break;
  4285. }
  4286. microstep_readings();
  4287. }
  4288. #endif // HAS_MICROSTEPS
  4289. /**
  4290. * M999: Restart after being stopped
  4291. */
  4292. inline void gcode_M999() {
  4293. Running = true;
  4294. lcd_reset_alert_level();
  4295. gcode_LastN = Stopped_gcode_LastN;
  4296. FlushSerialRequestResend();
  4297. }
  4298. /**
  4299. * T0-T3: Switch tool, usually switching extruders
  4300. *
  4301. * F[mm/min] Set the movement feedrate
  4302. */
  4303. inline void gcode_T(uint8_t tmp_extruder) {
  4304. if (tmp_extruder >= EXTRUDERS) {
  4305. SERIAL_ECHO_START;
  4306. SERIAL_CHAR('T');
  4307. SERIAL_ECHO(tmp_extruder);
  4308. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4309. }
  4310. else {
  4311. target_extruder = tmp_extruder;
  4312. #if EXTRUDERS > 1
  4313. bool make_move = false;
  4314. #endif
  4315. if (code_seen('F')) {
  4316. #if EXTRUDERS > 1
  4317. make_move = true;
  4318. #endif
  4319. float next_feedrate = code_value();
  4320. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4321. }
  4322. #if EXTRUDERS > 1
  4323. if (tmp_extruder != active_extruder) {
  4324. // Save current position to return to after applying extruder offset
  4325. set_destination_to_current();
  4326. #ifdef DUAL_X_CARRIAGE
  4327. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4328. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4329. // Park old head: 1) raise 2) move to park position 3) lower
  4330. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4331. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4332. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4333. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4334. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4335. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4336. st_synchronize();
  4337. }
  4338. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4339. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4340. extruder_offset[Y_AXIS][active_extruder] +
  4341. extruder_offset[Y_AXIS][tmp_extruder];
  4342. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4343. extruder_offset[Z_AXIS][active_extruder] +
  4344. extruder_offset[Z_AXIS][tmp_extruder];
  4345. active_extruder = tmp_extruder;
  4346. // This function resets the max/min values - the current position may be overwritten below.
  4347. axis_is_at_home(X_AXIS);
  4348. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4349. current_position[X_AXIS] = inactive_extruder_x_pos;
  4350. inactive_extruder_x_pos = destination[X_AXIS];
  4351. }
  4352. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4353. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4354. if (active_extruder == 0 || active_extruder_parked)
  4355. current_position[X_AXIS] = inactive_extruder_x_pos;
  4356. else
  4357. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4358. inactive_extruder_x_pos = destination[X_AXIS];
  4359. extruder_duplication_enabled = false;
  4360. }
  4361. else {
  4362. // record raised toolhead position for use by unpark
  4363. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4364. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4365. active_extruder_parked = true;
  4366. delayed_move_time = 0;
  4367. }
  4368. #else // !DUAL_X_CARRIAGE
  4369. // Offset extruder (only by XY)
  4370. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4371. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4372. // Set the new active extruder and position
  4373. active_extruder = tmp_extruder;
  4374. #endif // !DUAL_X_CARRIAGE
  4375. #ifdef DELTA
  4376. sync_plan_position_delta();
  4377. #else
  4378. sync_plan_position();
  4379. #endif
  4380. // Move to the old position if 'F' was in the parameters
  4381. if (make_move && IsRunning()) prepare_move();
  4382. }
  4383. #ifdef EXT_SOLENOID
  4384. st_synchronize();
  4385. disable_all_solenoids();
  4386. enable_solenoid_on_active_extruder();
  4387. #endif // EXT_SOLENOID
  4388. #endif // EXTRUDERS > 1
  4389. SERIAL_ECHO_START;
  4390. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4391. SERIAL_PROTOCOLLN((int)active_extruder);
  4392. }
  4393. }
  4394. /**
  4395. * Process a single command and dispatch it to its handler
  4396. * This is called from the main loop()
  4397. */
  4398. void process_next_command() {
  4399. current_command = command_queue[cmd_queue_index_r];
  4400. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4401. SERIAL_ECHO_START;
  4402. SERIAL_ECHOLN(current_command);
  4403. }
  4404. // Sanitize the current command:
  4405. // - Skip leading spaces
  4406. // - Bypass N...
  4407. // - Overwrite * with nul to mark the end
  4408. while (*current_command == ' ') ++current_command;
  4409. if (*current_command == 'N' && current_command[1] >= '0' && current_command[1] <= '9') {
  4410. while (*current_command != ' ') ++current_command;
  4411. while (*current_command == ' ') ++current_command;
  4412. }
  4413. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4414. if (starpos) *starpos = '\0';
  4415. // Get the command code, which must be G, M, or T
  4416. char command_code = *current_command;
  4417. // The code must have a numeric value
  4418. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4419. int codenum; // define ahead of goto
  4420. // Bail early if there's no code
  4421. if (!code_is_good) goto ExitUnknownCommand;
  4422. // Args pointer optimizes code_seen, especially those taking XYZEF
  4423. // This wastes a little cpu on commands that expect no arguments.
  4424. current_command_args = current_command;
  4425. while (*current_command_args != ' ') ++current_command_args;
  4426. while (*current_command_args == ' ') ++current_command_args;
  4427. // Interpret the code int
  4428. seen_pointer = current_command;
  4429. codenum = code_value_short();
  4430. // Handle a known G, M, or T
  4431. switch(command_code) {
  4432. case 'G': switch (codenum) {
  4433. // G0, G1
  4434. case 0:
  4435. case 1:
  4436. gcode_G0_G1();
  4437. break;
  4438. // G2, G3
  4439. #ifndef SCARA
  4440. case 2: // G2 - CW ARC
  4441. case 3: // G3 - CCW ARC
  4442. gcode_G2_G3(codenum == 2);
  4443. break;
  4444. #endif
  4445. // G4 Dwell
  4446. case 4:
  4447. gcode_G4();
  4448. break;
  4449. #ifdef FWRETRACT
  4450. case 10: // G10: retract
  4451. case 11: // G11: retract_recover
  4452. gcode_G10_G11(codenum == 10);
  4453. break;
  4454. #endif //FWRETRACT
  4455. case 28: // G28: Home all axes, one at a time
  4456. gcode_G28();
  4457. break;
  4458. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4459. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4460. gcode_G29();
  4461. break;
  4462. #endif
  4463. #ifdef ENABLE_AUTO_BED_LEVELING
  4464. #ifndef Z_PROBE_SLED
  4465. case 30: // G30 Single Z Probe
  4466. gcode_G30();
  4467. break;
  4468. #else // Z_PROBE_SLED
  4469. case 31: // G31: dock the sled
  4470. case 32: // G32: undock the sled
  4471. dock_sled(codenum == 31);
  4472. break;
  4473. #endif // Z_PROBE_SLED
  4474. #endif // ENABLE_AUTO_BED_LEVELING
  4475. case 90: // G90
  4476. relative_mode = false;
  4477. break;
  4478. case 91: // G91
  4479. relative_mode = true;
  4480. break;
  4481. case 92: // G92
  4482. gcode_G92();
  4483. break;
  4484. default: code_is_good = false;
  4485. }
  4486. break;
  4487. case 'M': switch (codenum) {
  4488. #ifdef ULTIPANEL
  4489. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4490. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4491. gcode_M0_M1();
  4492. break;
  4493. #endif // ULTIPANEL
  4494. case 17:
  4495. gcode_M17();
  4496. break;
  4497. #ifdef SDSUPPORT
  4498. case 20: // M20 - list SD card
  4499. gcode_M20(); break;
  4500. case 21: // M21 - init SD card
  4501. gcode_M21(); break;
  4502. case 22: //M22 - release SD card
  4503. gcode_M22(); break;
  4504. case 23: //M23 - Select file
  4505. gcode_M23(); break;
  4506. case 24: //M24 - Start SD print
  4507. gcode_M24(); break;
  4508. case 25: //M25 - Pause SD print
  4509. gcode_M25(); break;
  4510. case 26: //M26 - Set SD index
  4511. gcode_M26(); break;
  4512. case 27: //M27 - Get SD status
  4513. gcode_M27(); break;
  4514. case 28: //M28 - Start SD write
  4515. gcode_M28(); break;
  4516. case 29: //M29 - Stop SD write
  4517. gcode_M29(); break;
  4518. case 30: //M30 <filename> Delete File
  4519. gcode_M30(); break;
  4520. case 32: //M32 - Select file and start SD print
  4521. gcode_M32(); break;
  4522. #ifdef LONG_FILENAME_HOST_SUPPORT
  4523. case 33: //M33 - Get the long full path to a file or folder
  4524. gcode_M33(); break;
  4525. #endif // LONG_FILENAME_HOST_SUPPORT
  4526. case 928: //M928 - Start SD write
  4527. gcode_M928(); break;
  4528. #endif //SDSUPPORT
  4529. case 31: //M31 take time since the start of the SD print or an M109 command
  4530. gcode_M31();
  4531. break;
  4532. case 42: //M42 -Change pin status via gcode
  4533. gcode_M42();
  4534. break;
  4535. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4536. case 48: // M48 Z-Probe repeatability
  4537. gcode_M48();
  4538. break;
  4539. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4540. case 104: // M104
  4541. gcode_M104();
  4542. break;
  4543. case 111: // M111: Set debug level
  4544. gcode_M111();
  4545. break;
  4546. case 112: // M112: Emergency Stop
  4547. gcode_M112();
  4548. break;
  4549. case 140: // M140: Set bed temp
  4550. gcode_M140();
  4551. break;
  4552. case 105: // M105: Read current temperature
  4553. gcode_M105();
  4554. return; // "ok" already printed
  4555. case 109: // M109: Wait for temperature
  4556. gcode_M109();
  4557. break;
  4558. #if HAS_TEMP_BED
  4559. case 190: // M190: Wait for bed heater to reach target
  4560. gcode_M190();
  4561. break;
  4562. #endif // HAS_TEMP_BED
  4563. #if HAS_FAN
  4564. case 106: // M106: Fan On
  4565. gcode_M106();
  4566. break;
  4567. case 107: // M107: Fan Off
  4568. gcode_M107();
  4569. break;
  4570. #endif // HAS_FAN
  4571. #ifdef BARICUDA
  4572. // PWM for HEATER_1_PIN
  4573. #if HAS_HEATER_1
  4574. case 126: // M126: valve open
  4575. gcode_M126();
  4576. break;
  4577. case 127: // M127: valve closed
  4578. gcode_M127();
  4579. break;
  4580. #endif // HAS_HEATER_1
  4581. // PWM for HEATER_2_PIN
  4582. #if HAS_HEATER_2
  4583. case 128: // M128: valve open
  4584. gcode_M128();
  4585. break;
  4586. case 129: // M129: valve closed
  4587. gcode_M129();
  4588. break;
  4589. #endif // HAS_HEATER_2
  4590. #endif // BARICUDA
  4591. #if HAS_POWER_SWITCH
  4592. case 80: // M80: Turn on Power Supply
  4593. gcode_M80();
  4594. break;
  4595. #endif // HAS_POWER_SWITCH
  4596. case 81: // M81: Turn off Power, including Power Supply, if possible
  4597. gcode_M81();
  4598. break;
  4599. case 82:
  4600. gcode_M82();
  4601. break;
  4602. case 83:
  4603. gcode_M83();
  4604. break;
  4605. case 18: // (for compatibility)
  4606. case 84: // M84
  4607. gcode_M18_M84();
  4608. break;
  4609. case 85: // M85
  4610. gcode_M85();
  4611. break;
  4612. case 92: // M92: Set the steps-per-unit for one or more axes
  4613. gcode_M92();
  4614. break;
  4615. case 115: // M115: Report capabilities
  4616. gcode_M115();
  4617. break;
  4618. case 117: // M117: Set LCD message text, if possible
  4619. gcode_M117();
  4620. break;
  4621. case 114: // M114: Report current position
  4622. gcode_M114();
  4623. break;
  4624. case 120: // M120: Enable endstops
  4625. gcode_M120();
  4626. break;
  4627. case 121: // M121: Disable endstops
  4628. gcode_M121();
  4629. break;
  4630. case 119: // M119: Report endstop states
  4631. gcode_M119();
  4632. break;
  4633. #ifdef ULTIPANEL
  4634. case 145: // M145: Set material heatup parameters
  4635. gcode_M145();
  4636. break;
  4637. #endif
  4638. #ifdef BLINKM
  4639. case 150: // M150
  4640. gcode_M150();
  4641. break;
  4642. #endif //BLINKM
  4643. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4644. gcode_M200();
  4645. break;
  4646. case 201: // M201
  4647. gcode_M201();
  4648. break;
  4649. #if 0 // Not used for Sprinter/grbl gen6
  4650. case 202: // M202
  4651. gcode_M202();
  4652. break;
  4653. #endif
  4654. case 203: // M203 max feedrate mm/sec
  4655. gcode_M203();
  4656. break;
  4657. case 204: // M204 acclereration S normal moves T filmanent only moves
  4658. gcode_M204();
  4659. break;
  4660. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4661. gcode_M205();
  4662. break;
  4663. case 206: // M206 additional homing offset
  4664. gcode_M206();
  4665. break;
  4666. #ifdef DELTA
  4667. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4668. gcode_M665();
  4669. break;
  4670. #endif
  4671. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4672. case 666: // M666 set delta / dual endstop adjustment
  4673. gcode_M666();
  4674. break;
  4675. #endif
  4676. #ifdef FWRETRACT
  4677. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4678. gcode_M207();
  4679. break;
  4680. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4681. gcode_M208();
  4682. break;
  4683. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4684. gcode_M209();
  4685. break;
  4686. #endif // FWRETRACT
  4687. #if EXTRUDERS > 1
  4688. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4689. gcode_M218();
  4690. break;
  4691. #endif
  4692. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4693. gcode_M220();
  4694. break;
  4695. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4696. gcode_M221();
  4697. break;
  4698. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4699. gcode_M226();
  4700. break;
  4701. #if NUM_SERVOS > 0
  4702. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4703. gcode_M280();
  4704. break;
  4705. #endif // NUM_SERVOS > 0
  4706. #if HAS_LCD_BUZZ
  4707. case 300: // M300 - Play beep tone
  4708. gcode_M300();
  4709. break;
  4710. #endif // HAS_LCD_BUZZ
  4711. #ifdef PIDTEMP
  4712. case 301: // M301
  4713. gcode_M301();
  4714. break;
  4715. #endif // PIDTEMP
  4716. #ifdef PIDTEMPBED
  4717. case 304: // M304
  4718. gcode_M304();
  4719. break;
  4720. #endif // PIDTEMPBED
  4721. #if defined(CHDK) || HAS_PHOTOGRAPH
  4722. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4723. gcode_M240();
  4724. break;
  4725. #endif // CHDK || PHOTOGRAPH_PIN
  4726. #ifdef HAS_LCD_CONTRAST
  4727. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4728. gcode_M250();
  4729. break;
  4730. #endif // HAS_LCD_CONTRAST
  4731. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4732. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4733. gcode_M302();
  4734. break;
  4735. #endif // PREVENT_DANGEROUS_EXTRUDE
  4736. case 303: // M303 PID autotune
  4737. gcode_M303();
  4738. break;
  4739. #ifdef SCARA
  4740. case 360: // M360 SCARA Theta pos1
  4741. if (gcode_M360()) return;
  4742. break;
  4743. case 361: // M361 SCARA Theta pos2
  4744. if (gcode_M361()) return;
  4745. break;
  4746. case 362: // M362 SCARA Psi pos1
  4747. if (gcode_M362()) return;
  4748. break;
  4749. case 363: // M363 SCARA Psi pos2
  4750. if (gcode_M363()) return;
  4751. break;
  4752. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4753. if (gcode_M364()) return;
  4754. break;
  4755. case 365: // M365 Set SCARA scaling for X Y Z
  4756. gcode_M365();
  4757. break;
  4758. #endif // SCARA
  4759. case 400: // M400 finish all moves
  4760. gcode_M400();
  4761. break;
  4762. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4763. case 401:
  4764. gcode_M401();
  4765. break;
  4766. case 402:
  4767. gcode_M402();
  4768. break;
  4769. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4770. #ifdef FILAMENT_SENSOR
  4771. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4772. gcode_M404();
  4773. break;
  4774. case 405: //M405 Turn on filament sensor for control
  4775. gcode_M405();
  4776. break;
  4777. case 406: //M406 Turn off filament sensor for control
  4778. gcode_M406();
  4779. break;
  4780. case 407: //M407 Display measured filament diameter
  4781. gcode_M407();
  4782. break;
  4783. #endif // FILAMENT_SENSOR
  4784. case 410: // M410 quickstop - Abort all the planned moves.
  4785. gcode_M410();
  4786. break;
  4787. #ifdef MESH_BED_LEVELING
  4788. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4789. gcode_M420();
  4790. break;
  4791. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4792. gcode_M421();
  4793. break;
  4794. #endif
  4795. case 428: // M428 Apply current_position to home_offset
  4796. gcode_M428();
  4797. break;
  4798. case 500: // M500 Store settings in EEPROM
  4799. gcode_M500();
  4800. break;
  4801. case 501: // M501 Read settings from EEPROM
  4802. gcode_M501();
  4803. break;
  4804. case 502: // M502 Revert to default settings
  4805. gcode_M502();
  4806. break;
  4807. case 503: // M503 print settings currently in memory
  4808. gcode_M503();
  4809. break;
  4810. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4811. case 540:
  4812. gcode_M540();
  4813. break;
  4814. #endif
  4815. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4816. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4817. gcode_SET_Z_PROBE_OFFSET();
  4818. break;
  4819. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4820. #ifdef FILAMENTCHANGEENABLE
  4821. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4822. gcode_M600();
  4823. break;
  4824. #endif // FILAMENTCHANGEENABLE
  4825. #ifdef DUAL_X_CARRIAGE
  4826. case 605:
  4827. gcode_M605();
  4828. break;
  4829. #endif // DUAL_X_CARRIAGE
  4830. case 907: // M907 Set digital trimpot motor current using axis codes.
  4831. gcode_M907();
  4832. break;
  4833. #if HAS_DIGIPOTSS
  4834. case 908: // M908 Control digital trimpot directly.
  4835. gcode_M908();
  4836. break;
  4837. #endif // HAS_DIGIPOTSS
  4838. #if HAS_MICROSTEPS
  4839. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4840. gcode_M350();
  4841. break;
  4842. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4843. gcode_M351();
  4844. break;
  4845. #endif // HAS_MICROSTEPS
  4846. case 999: // M999: Restart after being Stopped
  4847. gcode_M999();
  4848. break;
  4849. default: code_is_good = false;
  4850. }
  4851. break;
  4852. case 'T':
  4853. gcode_T(codenum);
  4854. break;
  4855. }
  4856. ExitUnknownCommand:
  4857. // Still unknown command? Throw an error
  4858. if (!code_is_good) unknown_command_error();
  4859. ok_to_send();
  4860. }
  4861. void FlushSerialRequestResend() {
  4862. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4863. MYSERIAL.flush();
  4864. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4865. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4866. ok_to_send();
  4867. }
  4868. void ok_to_send() {
  4869. refresh_cmd_timeout();
  4870. #ifdef SDSUPPORT
  4871. if (fromsd[cmd_queue_index_r]) return;
  4872. #endif
  4873. SERIAL_PROTOCOLPGM(MSG_OK);
  4874. #ifdef ADVANCED_OK
  4875. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4876. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4877. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4878. #endif
  4879. SERIAL_EOL;
  4880. }
  4881. void clamp_to_software_endstops(float target[3]) {
  4882. if (min_software_endstops) {
  4883. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4884. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4885. float negative_z_offset = 0;
  4886. #ifdef ENABLE_AUTO_BED_LEVELING
  4887. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4888. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4889. #endif
  4890. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4891. }
  4892. if (max_software_endstops) {
  4893. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4894. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4895. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4896. }
  4897. }
  4898. #ifdef DELTA
  4899. void recalc_delta_settings(float radius, float diagonal_rod) {
  4900. delta_tower1_x = -SIN_60 * radius; // front left tower
  4901. delta_tower1_y = -COS_60 * radius;
  4902. delta_tower2_x = SIN_60 * radius; // front right tower
  4903. delta_tower2_y = -COS_60 * radius;
  4904. delta_tower3_x = 0.0; // back middle tower
  4905. delta_tower3_y = radius;
  4906. delta_diagonal_rod_2 = sq(diagonal_rod);
  4907. }
  4908. void calculate_delta(float cartesian[3]) {
  4909. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4910. - sq(delta_tower1_x-cartesian[X_AXIS])
  4911. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4912. ) + cartesian[Z_AXIS];
  4913. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4914. - sq(delta_tower2_x-cartesian[X_AXIS])
  4915. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4916. ) + cartesian[Z_AXIS];
  4917. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4918. - sq(delta_tower3_x-cartesian[X_AXIS])
  4919. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4920. ) + cartesian[Z_AXIS];
  4921. /*
  4922. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4923. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4924. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4925. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4926. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4927. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4928. */
  4929. }
  4930. #ifdef ENABLE_AUTO_BED_LEVELING
  4931. // Adjust print surface height by linear interpolation over the bed_level array.
  4932. void adjust_delta(float cartesian[3]) {
  4933. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4934. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4935. float h1 = 0.001 - half, h2 = half - 0.001,
  4936. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4937. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4938. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4939. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4940. z1 = bed_level[floor_x + half][floor_y + half],
  4941. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4942. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4943. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4944. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4945. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4946. offset = (1 - ratio_x) * left + ratio_x * right;
  4947. delta[X_AXIS] += offset;
  4948. delta[Y_AXIS] += offset;
  4949. delta[Z_AXIS] += offset;
  4950. /*
  4951. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4952. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4953. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4954. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4955. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4956. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4957. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4958. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4959. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4960. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4961. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4962. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4963. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4964. */
  4965. }
  4966. #endif // ENABLE_AUTO_BED_LEVELING
  4967. #endif // DELTA
  4968. #ifdef MESH_BED_LEVELING
  4969. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4970. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4971. {
  4972. if (!mbl.active) {
  4973. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4974. set_current_to_destination();
  4975. return;
  4976. }
  4977. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4978. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4979. int ix = mbl.select_x_index(x);
  4980. int iy = mbl.select_y_index(y);
  4981. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4982. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4983. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4984. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4985. if (pix == ix && piy == iy) {
  4986. // Start and end on same mesh square
  4987. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4988. set_current_to_destination();
  4989. return;
  4990. }
  4991. float nx, ny, ne, normalized_dist;
  4992. if (ix > pix && (x_splits) & BIT(ix)) {
  4993. nx = mbl.get_x(ix);
  4994. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4995. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4996. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4997. x_splits ^= BIT(ix);
  4998. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4999. nx = mbl.get_x(pix);
  5000. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5001. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5002. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5003. x_splits ^= BIT(pix);
  5004. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5005. ny = mbl.get_y(iy);
  5006. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5007. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5008. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5009. y_splits ^= BIT(iy);
  5010. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5011. ny = mbl.get_y(piy);
  5012. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5013. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5014. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5015. y_splits ^= BIT(piy);
  5016. } else {
  5017. // Already split on a border
  5018. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5019. set_current_to_destination();
  5020. return;
  5021. }
  5022. // Do the split and look for more borders
  5023. destination[X_AXIS] = nx;
  5024. destination[Y_AXIS] = ny;
  5025. destination[E_AXIS] = ne;
  5026. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5027. destination[X_AXIS] = x;
  5028. destination[Y_AXIS] = y;
  5029. destination[E_AXIS] = e;
  5030. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5031. }
  5032. #endif // MESH_BED_LEVELING
  5033. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5034. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5035. float de = dest_e - curr_e;
  5036. if (de) {
  5037. if (degHotend(active_extruder) < extrude_min_temp) {
  5038. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5039. SERIAL_ECHO_START;
  5040. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5041. }
  5042. #ifdef PREVENT_LENGTHY_EXTRUDE
  5043. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5044. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5045. SERIAL_ECHO_START;
  5046. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5047. }
  5048. #endif
  5049. }
  5050. }
  5051. #endif // PREVENT_DANGEROUS_EXTRUDE
  5052. #if defined(DELTA) || defined(SCARA)
  5053. inline bool prepare_move_delta() {
  5054. float difference[NUM_AXIS];
  5055. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5056. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5057. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5058. if (cartesian_mm < 0.000001) return false;
  5059. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5060. int steps = max(1, int(delta_segments_per_second * seconds));
  5061. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5062. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5063. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5064. for (int s = 1; s <= steps; s++) {
  5065. float fraction = float(s) / float(steps);
  5066. for (int8_t i = 0; i < NUM_AXIS; i++)
  5067. destination[i] = current_position[i] + difference[i] * fraction;
  5068. calculate_delta(destination);
  5069. #ifdef ENABLE_AUTO_BED_LEVELING
  5070. adjust_delta(destination);
  5071. #endif
  5072. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5073. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5074. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5075. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5076. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5077. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5078. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5079. }
  5080. return true;
  5081. }
  5082. #endif // DELTA || SCARA
  5083. #ifdef SCARA
  5084. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5085. #endif
  5086. #ifdef DUAL_X_CARRIAGE
  5087. inline bool prepare_move_dual_x_carriage() {
  5088. if (active_extruder_parked) {
  5089. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5090. // move duplicate extruder into correct duplication position.
  5091. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5092. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5093. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5094. sync_plan_position();
  5095. st_synchronize();
  5096. extruder_duplication_enabled = true;
  5097. active_extruder_parked = false;
  5098. }
  5099. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5100. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5101. // This is a travel move (with no extrusion)
  5102. // Skip it, but keep track of the current position
  5103. // (so it can be used as the start of the next non-travel move)
  5104. if (delayed_move_time != 0xFFFFFFFFUL) {
  5105. set_current_to_destination();
  5106. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5107. delayed_move_time = millis();
  5108. return false;
  5109. }
  5110. }
  5111. delayed_move_time = 0;
  5112. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5113. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5116. active_extruder_parked = false;
  5117. }
  5118. }
  5119. return true;
  5120. }
  5121. #endif // DUAL_X_CARRIAGE
  5122. #if !defined(DELTA) && !defined(SCARA)
  5123. inline bool prepare_move_cartesian() {
  5124. // Do not use feedrate_multiplier for E or Z only moves
  5125. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5126. line_to_destination();
  5127. }
  5128. else {
  5129. #ifdef MESH_BED_LEVELING
  5130. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5131. return false;
  5132. #else
  5133. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5134. #endif
  5135. }
  5136. return true;
  5137. }
  5138. #endif // !DELTA && !SCARA
  5139. /**
  5140. * Prepare a single move and get ready for the next one
  5141. */
  5142. void prepare_move() {
  5143. clamp_to_software_endstops(destination);
  5144. refresh_cmd_timeout();
  5145. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5146. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5147. #endif
  5148. #ifdef SCARA
  5149. if (!prepare_move_scara()) return;
  5150. #elif defined(DELTA)
  5151. if (!prepare_move_delta()) return;
  5152. #endif
  5153. #ifdef DUAL_X_CARRIAGE
  5154. if (!prepare_move_dual_x_carriage()) return;
  5155. #endif
  5156. #if !defined(DELTA) && !defined(SCARA)
  5157. if (!prepare_move_cartesian()) return;
  5158. #endif
  5159. set_current_to_destination();
  5160. }
  5161. #if HAS_CONTROLLERFAN
  5162. void controllerFan() {
  5163. static millis_t lastMotor = 0; // Last time a motor was turned on
  5164. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5165. millis_t ms = millis();
  5166. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5167. lastMotorCheck = ms;
  5168. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5169. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5170. #if EXTRUDERS > 1
  5171. || E1_ENABLE_READ == E_ENABLE_ON
  5172. #if HAS_X2_ENABLE
  5173. || X2_ENABLE_READ == X_ENABLE_ON
  5174. #endif
  5175. #if EXTRUDERS > 2
  5176. || E2_ENABLE_READ == E_ENABLE_ON
  5177. #if EXTRUDERS > 3
  5178. || E3_ENABLE_READ == E_ENABLE_ON
  5179. #endif
  5180. #endif
  5181. #endif
  5182. ) {
  5183. lastMotor = ms; //... set time to NOW so the fan will turn on
  5184. }
  5185. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5186. // allows digital or PWM fan output to be used (see M42 handling)
  5187. digitalWrite(CONTROLLERFAN_PIN, speed);
  5188. analogWrite(CONTROLLERFAN_PIN, speed);
  5189. }
  5190. }
  5191. #endif // HAS_CONTROLLERFAN
  5192. #ifdef SCARA
  5193. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5194. // Perform forward kinematics, and place results in delta[3]
  5195. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5196. float x_sin, x_cos, y_sin, y_cos;
  5197. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5198. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5199. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5200. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5201. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5202. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5203. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5204. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5205. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5206. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5207. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5208. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5209. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5210. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5211. }
  5212. void calculate_delta(float cartesian[3]){
  5213. //reverse kinematics.
  5214. // Perform reversed kinematics, and place results in delta[3]
  5215. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5216. float SCARA_pos[2];
  5217. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5218. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5219. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5220. #if (Linkage_1 == Linkage_2)
  5221. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5222. #else
  5223. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5224. #endif
  5225. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5226. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5227. SCARA_K2 = Linkage_2 * SCARA_S2;
  5228. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5229. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5230. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5231. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5232. delta[Z_AXIS] = cartesian[Z_AXIS];
  5233. /*
  5234. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5235. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5236. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5237. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5238. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5239. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5240. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5241. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5242. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5243. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5244. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5245. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5246. SERIAL_EOL;
  5247. */
  5248. }
  5249. #endif // SCARA
  5250. #ifdef TEMP_STAT_LEDS
  5251. static bool red_led = false;
  5252. static millis_t next_status_led_update_ms = 0;
  5253. void handle_status_leds(void) {
  5254. float max_temp = 0.0;
  5255. if (millis() > next_status_led_update_ms) {
  5256. next_status_led_update_ms += 500; // Update every 0.5s
  5257. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5258. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5259. #if HAS_TEMP_BED
  5260. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5261. #endif
  5262. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5263. if (new_led != red_led) {
  5264. red_led = new_led;
  5265. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5266. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5267. }
  5268. }
  5269. }
  5270. #endif
  5271. void enable_all_steppers() {
  5272. enable_x();
  5273. enable_y();
  5274. enable_z();
  5275. enable_e0();
  5276. enable_e1();
  5277. enable_e2();
  5278. enable_e3();
  5279. }
  5280. void disable_all_steppers() {
  5281. disable_x();
  5282. disable_y();
  5283. disable_z();
  5284. disable_e0();
  5285. disable_e1();
  5286. disable_e2();
  5287. disable_e3();
  5288. }
  5289. /**
  5290. * Manage several activities:
  5291. * - Check for Filament Runout
  5292. * - Keep the command buffer full
  5293. * - Check for maximum inactive time between commands
  5294. * - Check for maximum inactive time between stepper commands
  5295. * - Check if pin CHDK needs to go LOW
  5296. * - Check for KILL button held down
  5297. * - Check for HOME button held down
  5298. * - Check if cooling fan needs to be switched on
  5299. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5300. */
  5301. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5302. #if HAS_FILRUNOUT
  5303. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5304. filrunout();
  5305. #endif
  5306. if (commands_in_queue < BUFSIZE - 1) get_command();
  5307. millis_t ms = millis();
  5308. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5309. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5310. && !ignore_stepper_queue && !blocks_queued())
  5311. disable_all_steppers();
  5312. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5313. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5314. chdkActive = false;
  5315. WRITE(CHDK, LOW);
  5316. }
  5317. #endif
  5318. #if HAS_KILL
  5319. // Check if the kill button was pressed and wait just in case it was an accidental
  5320. // key kill key press
  5321. // -------------------------------------------------------------------------------
  5322. static int killCount = 0; // make the inactivity button a bit less responsive
  5323. const int KILL_DELAY = 750;
  5324. if (!READ(KILL_PIN))
  5325. killCount++;
  5326. else if (killCount > 0)
  5327. killCount--;
  5328. // Exceeded threshold and we can confirm that it was not accidental
  5329. // KILL the machine
  5330. // ----------------------------------------------------------------
  5331. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5332. #endif
  5333. #if HAS_HOME
  5334. // Check to see if we have to home, use poor man's debouncer
  5335. // ---------------------------------------------------------
  5336. static int homeDebounceCount = 0; // poor man's debouncing count
  5337. const int HOME_DEBOUNCE_DELAY = 750;
  5338. if (!READ(HOME_PIN)) {
  5339. if (!homeDebounceCount) {
  5340. enqueuecommands_P(PSTR("G28"));
  5341. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5342. }
  5343. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5344. homeDebounceCount++;
  5345. else
  5346. homeDebounceCount = 0;
  5347. }
  5348. #endif
  5349. #if HAS_CONTROLLERFAN
  5350. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5351. #endif
  5352. #ifdef EXTRUDER_RUNOUT_PREVENT
  5353. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5354. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5355. bool oldstatus;
  5356. switch(active_extruder) {
  5357. case 0:
  5358. oldstatus = E0_ENABLE_READ;
  5359. enable_e0();
  5360. break;
  5361. #if EXTRUDERS > 1
  5362. case 1:
  5363. oldstatus = E1_ENABLE_READ;
  5364. enable_e1();
  5365. break;
  5366. #if EXTRUDERS > 2
  5367. case 2:
  5368. oldstatus = E2_ENABLE_READ;
  5369. enable_e2();
  5370. break;
  5371. #if EXTRUDERS > 3
  5372. case 3:
  5373. oldstatus = E3_ENABLE_READ;
  5374. enable_e3();
  5375. break;
  5376. #endif
  5377. #endif
  5378. #endif
  5379. }
  5380. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5381. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5382. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5383. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5384. current_position[E_AXIS] = oldepos;
  5385. destination[E_AXIS] = oldedes;
  5386. plan_set_e_position(oldepos);
  5387. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5388. st_synchronize();
  5389. switch(active_extruder) {
  5390. case 0:
  5391. E0_ENABLE_WRITE(oldstatus);
  5392. break;
  5393. #if EXTRUDERS > 1
  5394. case 1:
  5395. E1_ENABLE_WRITE(oldstatus);
  5396. break;
  5397. #if EXTRUDERS > 2
  5398. case 2:
  5399. E2_ENABLE_WRITE(oldstatus);
  5400. break;
  5401. #if EXTRUDERS > 3
  5402. case 3:
  5403. E3_ENABLE_WRITE(oldstatus);
  5404. break;
  5405. #endif
  5406. #endif
  5407. #endif
  5408. }
  5409. }
  5410. #endif
  5411. #ifdef DUAL_X_CARRIAGE
  5412. // handle delayed move timeout
  5413. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5414. // travel moves have been received so enact them
  5415. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5416. set_destination_to_current();
  5417. prepare_move();
  5418. }
  5419. #endif
  5420. #ifdef TEMP_STAT_LEDS
  5421. handle_status_leds();
  5422. #endif
  5423. check_axes_activity();
  5424. }
  5425. void kill(const char *lcd_msg) {
  5426. #ifdef ULTRA_LCD
  5427. lcd_setalertstatuspgm(lcd_msg);
  5428. #endif
  5429. cli(); // Stop interrupts
  5430. disable_all_heaters();
  5431. disable_all_steppers();
  5432. #if HAS_POWER_SWITCH
  5433. pinMode(PS_ON_PIN, INPUT);
  5434. #endif
  5435. SERIAL_ERROR_START;
  5436. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5437. // FMC small patch to update the LCD before ending
  5438. sei(); // enable interrupts
  5439. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5440. cli(); // disable interrupts
  5441. suicide();
  5442. while(1) { /* Intentionally left empty */ } // Wait for reset
  5443. }
  5444. #ifdef FILAMENT_RUNOUT_SENSOR
  5445. void filrunout() {
  5446. if (!filrunoutEnqueued) {
  5447. filrunoutEnqueued = true;
  5448. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5449. st_synchronize();
  5450. }
  5451. }
  5452. #endif // FILAMENT_RUNOUT_SENSOR
  5453. #ifdef FAST_PWM_FAN
  5454. void setPwmFrequency(uint8_t pin, int val) {
  5455. val &= 0x07;
  5456. switch (digitalPinToTimer(pin)) {
  5457. #if defined(TCCR0A)
  5458. case TIMER0A:
  5459. case TIMER0B:
  5460. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5461. // TCCR0B |= val;
  5462. break;
  5463. #endif
  5464. #if defined(TCCR1A)
  5465. case TIMER1A:
  5466. case TIMER1B:
  5467. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5468. // TCCR1B |= val;
  5469. break;
  5470. #endif
  5471. #if defined(TCCR2)
  5472. case TIMER2:
  5473. case TIMER2:
  5474. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5475. TCCR2 |= val;
  5476. break;
  5477. #endif
  5478. #if defined(TCCR2A)
  5479. case TIMER2A:
  5480. case TIMER2B:
  5481. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5482. TCCR2B |= val;
  5483. break;
  5484. #endif
  5485. #if defined(TCCR3A)
  5486. case TIMER3A:
  5487. case TIMER3B:
  5488. case TIMER3C:
  5489. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5490. TCCR3B |= val;
  5491. break;
  5492. #endif
  5493. #if defined(TCCR4A)
  5494. case TIMER4A:
  5495. case TIMER4B:
  5496. case TIMER4C:
  5497. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5498. TCCR4B |= val;
  5499. break;
  5500. #endif
  5501. #if defined(TCCR5A)
  5502. case TIMER5A:
  5503. case TIMER5B:
  5504. case TIMER5C:
  5505. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5506. TCCR5B |= val;
  5507. break;
  5508. #endif
  5509. }
  5510. }
  5511. #endif // FAST_PWM_FAN
  5512. void Stop() {
  5513. disable_all_heaters();
  5514. if (IsRunning()) {
  5515. Running = false;
  5516. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5517. SERIAL_ERROR_START;
  5518. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5519. LCD_MESSAGEPGM(MSG_STOPPED);
  5520. }
  5521. }
  5522. bool setTargetedHotend(int code){
  5523. target_extruder = active_extruder;
  5524. if (code_seen('T')) {
  5525. target_extruder = code_value_short();
  5526. if (target_extruder >= EXTRUDERS) {
  5527. SERIAL_ECHO_START;
  5528. switch(code){
  5529. case 104:
  5530. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5531. break;
  5532. case 105:
  5533. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5534. break;
  5535. case 109:
  5536. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5537. break;
  5538. case 218:
  5539. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5540. break;
  5541. case 221:
  5542. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5543. break;
  5544. }
  5545. SERIAL_ECHOLN(target_extruder);
  5546. return true;
  5547. }
  5548. }
  5549. return false;
  5550. }
  5551. float calculate_volumetric_multiplier(float diameter) {
  5552. if (!volumetric_enabled || diameter == 0) return 1.0;
  5553. float d2 = diameter * 0.5;
  5554. return 1.0 / (M_PI * d2 * d2);
  5555. }
  5556. void calculate_volumetric_multipliers() {
  5557. for (int i=0; i<EXTRUDERS; i++)
  5558. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5559. }