My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 208KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #ifdef MESH_BED_LEVELING
  37. #include "mesh_bed_leveling.h"
  38. #endif
  39. #include "ultralcd.h"
  40. #include "planner.h"
  41. #include "stepper.h"
  42. #include "temperature.h"
  43. #include "cardreader.h"
  44. #include "watchdog.h"
  45. #include "configuration_store.h"
  46. #include "language.h"
  47. #include "pins_arduino.h"
  48. #include "math.h"
  49. #include "buzzer.h"
  50. #ifdef BLINKM
  51. #include "blinkm.h"
  52. #include "Wire.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "servo.h"
  56. #endif
  57. #if HAS_DIGIPOTSS
  58. #include <SPI.h>
  59. #endif
  60. /**
  61. * Look here for descriptions of G-codes:
  62. * - http://linuxcnc.org/handbook/gcode/g-code.html
  63. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  64. *
  65. * Help us document these G-codes online:
  66. * - http://www.marlinfirmware.org/index.php/G-Code
  67. * - http://reprap.org/wiki/G-code
  68. *
  69. * -----------------
  70. * Implemented Codes
  71. * -----------------
  72. *
  73. * "G" Codes
  74. *
  75. * G0 -> G1
  76. * G1 - Coordinated Movement X Y Z E
  77. * G2 - CW ARC
  78. * G3 - CCW ARC
  79. * G4 - Dwell S<seconds> or P<milliseconds>
  80. * G10 - retract filament according to settings of M207
  81. * G11 - retract recover filament according to settings of M208
  82. * G28 - Home one or more axes
  83. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. * G30 - Single Z Probe, probes bed at current XY location.
  85. * G31 - Dock sled (Z_PROBE_SLED only)
  86. * G32 - Undock sled (Z_PROBE_SLED only)
  87. * G90 - Use Absolute Coordinates
  88. * G91 - Use Relative Coordinates
  89. * G92 - Set current position to coordinates given
  90. *
  91. * "M" Codes
  92. *
  93. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. * M1 - Same as M0
  95. * M17 - Enable/Power all stepper motors
  96. * M18 - Disable all stepper motors; same as M84
  97. * M20 - List SD card
  98. * M21 - Init SD card
  99. * M22 - Release SD card
  100. * M23 - Select SD file (M23 filename.g)
  101. * M24 - Start/resume SD print
  102. * M25 - Pause SD print
  103. * M26 - Set SD position in bytes (M26 S12345)
  104. * M27 - Report SD print status
  105. * M28 - Start SD write (M28 filename.g)
  106. * M29 - Stop SD write
  107. * M30 - Delete file from SD (M30 filename.g)
  108. * M31 - Output time since last M109 or SD card start to serial
  109. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. * M33 - Get the longname version of a path
  114. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  115. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  116. * M80 - Turn on Power Supply
  117. * M81 - Turn off Power Supply
  118. * M82 - Set E codes absolute (default)
  119. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  120. * M84 - Disable steppers until next move,
  121. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  122. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  123. * M92 - Set axis_steps_per_unit - same syntax as G92
  124. * M104 - Set extruder target temp
  125. * M105 - Read current temp
  126. * M106 - Fan on
  127. * M107 - Fan off
  128. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  129. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  130. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  131. * M110 - Set the current line number
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - Display a message on the controller screen
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower z-probe if present
  175. * M402 - Raise z-probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  209. * M928 - Start SD logging (M928 filename.g) - ended by M29
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  215. *
  216. */
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. bool Running = true;
  221. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  222. static float feedrate = 1500.0, saved_feedrate;
  223. float current_position[NUM_AXIS] = { 0.0 };
  224. static float destination[NUM_AXIS] = { 0.0 };
  225. bool axis_known_position[3] = { false };
  226. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  227. static char *current_command, *current_command_args;
  228. static int cmd_queue_index_r = 0;
  229. static int cmd_queue_index_w = 0;
  230. static int commands_in_queue = 0;
  231. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  232. const float homing_feedrate[] = HOMING_FEEDRATE;
  233. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  234. int feedrate_multiplier = 100; //100->1 200->2
  235. int saved_feedrate_multiplier;
  236. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  237. bool volumetric_enabled = false;
  238. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  239. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  240. float home_offset[3] = { 0 };
  241. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  242. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  243. uint8_t active_extruder = 0;
  244. int fanSpeed = 0;
  245. bool cancel_heatup = false;
  246. const char errormagic[] PROGMEM = "Error:";
  247. const char echomagic[] PROGMEM = "echo:";
  248. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  249. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  250. static char serial_char;
  251. static int serial_count = 0;
  252. static boolean comment_mode = false;
  253. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  254. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  255. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  256. // Inactivity shutdown
  257. millis_t previous_cmd_ms = 0;
  258. static millis_t max_inactive_time = 0;
  259. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  260. millis_t print_job_start_ms = 0; ///< Print job start time
  261. millis_t print_job_stop_ms = 0; ///< Print job stop time
  262. static uint8_t target_extruder;
  263. bool no_wait_for_cooling = true;
  264. bool target_direction;
  265. #ifdef ENABLE_AUTO_BED_LEVELING
  266. int xy_travel_speed = XY_TRAVEL_SPEED;
  267. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  268. #endif
  269. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  270. float z_endstop_adj = 0;
  271. #endif
  272. // Extruder offsets
  273. #if EXTRUDERS > 1
  274. #ifndef EXTRUDER_OFFSET_X
  275. #define EXTRUDER_OFFSET_X { 0 }
  276. #endif
  277. #ifndef EXTRUDER_OFFSET_Y
  278. #define EXTRUDER_OFFSET_Y { 0 }
  279. #endif
  280. float extruder_offset[][EXTRUDERS] = {
  281. EXTRUDER_OFFSET_X,
  282. EXTRUDER_OFFSET_Y
  283. #ifdef DUAL_X_CARRIAGE
  284. , { 0 } // supports offsets in XYZ plane
  285. #endif
  286. };
  287. #endif
  288. #ifdef SERVO_ENDSTOPS
  289. const int servo_endstops[] = SERVO_ENDSTOPS;
  290. const int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  291. #endif
  292. #ifdef BARICUDA
  293. int ValvePressure = 0;
  294. int EtoPPressure = 0;
  295. #endif
  296. #ifdef FWRETRACT
  297. bool autoretract_enabled = false;
  298. bool retracted[EXTRUDERS] = { false };
  299. bool retracted_swap[EXTRUDERS] = { false };
  300. float retract_length = RETRACT_LENGTH;
  301. float retract_length_swap = RETRACT_LENGTH_SWAP;
  302. float retract_feedrate = RETRACT_FEEDRATE;
  303. float retract_zlift = RETRACT_ZLIFT;
  304. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  305. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  306. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  307. #endif // FWRETRACT
  308. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  309. bool powersupply =
  310. #ifdef PS_DEFAULT_OFF
  311. false
  312. #else
  313. true
  314. #endif
  315. ;
  316. #endif
  317. #ifdef DELTA
  318. float delta[3] = { 0 };
  319. #define SIN_60 0.8660254037844386
  320. #define COS_60 0.5
  321. float endstop_adj[3] = { 0 };
  322. // these are the default values, can be overriden with M665
  323. float delta_radius = DELTA_RADIUS;
  324. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  325. float delta_tower1_y = -COS_60 * delta_radius;
  326. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  327. float delta_tower2_y = -COS_60 * delta_radius;
  328. float delta_tower3_x = 0; // back middle tower
  329. float delta_tower3_y = delta_radius;
  330. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  331. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  332. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  333. #ifdef ENABLE_AUTO_BED_LEVELING
  334. int delta_grid_spacing[2] = { 0, 0 };
  335. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  336. #endif
  337. #else
  338. static bool home_all_axis = true;
  339. #endif
  340. #ifdef SCARA
  341. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  342. static float delta[3] = { 0 };
  343. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1 = 0; //index into ring buffer
  352. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist = 0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. #ifdef FILAMENT_RUNOUT_SENSOR
  357. static bool filrunoutEnqueued = false;
  358. #endif
  359. #ifdef SDSUPPORT
  360. static bool fromsd[BUFSIZE];
  361. #endif
  362. #if NUM_SERVOS > 0
  363. Servo servo[NUM_SERVOS];
  364. #endif
  365. #ifdef CHDK
  366. unsigned long chdkHigh = 0;
  367. boolean chdkActive = false;
  368. #endif
  369. //===========================================================================
  370. //================================ Functions ================================
  371. //===========================================================================
  372. void process_next_command();
  373. void plan_arc(float target[NUM_AXIS], float *offset, uint8_t clockwise);
  374. bool setTargetedHotend(int code);
  375. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  376. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  378. #ifdef PREVENT_DANGEROUS_EXTRUDE
  379. float extrude_min_temp = EXTRUDE_MINTEMP;
  380. #endif
  381. #ifdef SDSUPPORT
  382. #include "SdFatUtil.h"
  383. int freeMemory() { return SdFatUtil::FreeRam(); }
  384. #else
  385. extern "C" {
  386. extern unsigned int __bss_end;
  387. extern unsigned int __heap_start;
  388. extern void *__brkval;
  389. int freeMemory() {
  390. int free_memory;
  391. if ((int)__brkval == 0)
  392. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  393. else
  394. free_memory = ((int)&free_memory) - ((int)__brkval);
  395. return free_memory;
  396. }
  397. }
  398. #endif //!SDSUPPORT
  399. /**
  400. * Inject the next command from the command queue, when possible
  401. * Return false only if no command was pending
  402. */
  403. static bool drain_queued_commands_P() {
  404. if (!queued_commands_P) return false;
  405. // Get the next 30 chars from the sequence of gcodes to run
  406. char cmd[30];
  407. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  408. cmd[sizeof(cmd) - 1] = '\0';
  409. // Look for the end of line, or the end of sequence
  410. size_t i = 0;
  411. char c;
  412. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  413. cmd[i] = '\0';
  414. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  415. if (c)
  416. queued_commands_P += i + 1; // move to next command
  417. else
  418. queued_commands_P = NULL; // will have no more commands in the sequence
  419. }
  420. return true;
  421. }
  422. /**
  423. * Record one or many commands to run from program memory.
  424. * Aborts the current queue, if any.
  425. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  426. */
  427. void enqueuecommands_P(const char* pgcode) {
  428. queued_commands_P = pgcode;
  429. drain_queued_commands_P(); // first command executed asap (when possible)
  430. }
  431. /**
  432. * Copy a command directly into the main command buffer, from RAM.
  433. *
  434. * This is done in a non-safe way and needs a rework someday.
  435. * Returns false if it doesn't add any command
  436. */
  437. bool enqueuecommand(const char *cmd) {
  438. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  439. // This is dangerous if a mixing of serial and this happens
  440. char *command = command_queue[cmd_queue_index_w];
  441. strcpy(command, cmd);
  442. SERIAL_ECHO_START;
  443. SERIAL_ECHOPGM(MSG_Enqueueing);
  444. SERIAL_ECHO(command);
  445. SERIAL_ECHOLNPGM("\"");
  446. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  447. commands_in_queue++;
  448. return true;
  449. }
  450. void setup_killpin() {
  451. #if HAS_KILL
  452. SET_INPUT(KILL_PIN);
  453. WRITE(KILL_PIN, HIGH);
  454. #endif
  455. }
  456. void setup_filrunoutpin() {
  457. #if HAS_FILRUNOUT
  458. pinMode(FILRUNOUT_PIN, INPUT);
  459. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  460. WRITE(FILRUNOUT_PIN, HIGH);
  461. #endif
  462. #endif
  463. }
  464. // Set home pin
  465. void setup_homepin(void) {
  466. #if HAS_HOME
  467. SET_INPUT(HOME_PIN);
  468. WRITE(HOME_PIN, HIGH);
  469. #endif
  470. }
  471. void setup_photpin() {
  472. #if HAS_PHOTOGRAPH
  473. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  474. #endif
  475. }
  476. void setup_powerhold() {
  477. #if HAS_SUICIDE
  478. OUT_WRITE(SUICIDE_PIN, HIGH);
  479. #endif
  480. #if HAS_POWER_SWITCH
  481. #ifdef PS_DEFAULT_OFF
  482. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  483. #else
  484. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  485. #endif
  486. #endif
  487. }
  488. void suicide() {
  489. #if HAS_SUICIDE
  490. OUT_WRITE(SUICIDE_PIN, LOW);
  491. #endif
  492. }
  493. void servo_init() {
  494. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  495. servo[0].attach(SERVO0_PIN);
  496. #endif
  497. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  498. servo[1].attach(SERVO1_PIN);
  499. #endif
  500. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  501. servo[2].attach(SERVO2_PIN);
  502. #endif
  503. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  504. servo[3].attach(SERVO3_PIN);
  505. #endif
  506. // Set position of Servo Endstops that are defined
  507. #ifdef SERVO_ENDSTOPS
  508. for (int i = 0; i < 3; i++)
  509. if (servo_endstops[i] >= 0)
  510. servo[servo_endstops[i]].move(0, servo_endstop_angles[i * 2 + 1]);
  511. #endif
  512. }
  513. /**
  514. * Stepper Reset (RigidBoard, et.al.)
  515. */
  516. #if HAS_STEPPER_RESET
  517. void disableStepperDrivers() {
  518. pinMode(STEPPER_RESET_PIN, OUTPUT);
  519. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  520. }
  521. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  522. #endif
  523. /**
  524. * Marlin entry-point: Set up before the program loop
  525. * - Set up the kill pin, filament runout, power hold
  526. * - Start the serial port
  527. * - Print startup messages and diagnostics
  528. * - Get EEPROM or default settings
  529. * - Initialize managers for:
  530. * • temperature
  531. * • planner
  532. * • watchdog
  533. * • stepper
  534. * • photo pin
  535. * • servos
  536. * • LCD controller
  537. * • Digipot I2C
  538. * • Z probe sled
  539. * • status LEDs
  540. */
  541. void setup() {
  542. setup_killpin();
  543. setup_filrunoutpin();
  544. setup_powerhold();
  545. #if HAS_STEPPER_RESET
  546. disableStepperDrivers();
  547. #endif
  548. MYSERIAL.begin(BAUDRATE);
  549. SERIAL_PROTOCOLLNPGM("start");
  550. SERIAL_ECHO_START;
  551. // Check startup - does nothing if bootloader sets MCUSR to 0
  552. byte mcu = MCUSR;
  553. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  554. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  555. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  556. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  557. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  558. MCUSR = 0;
  559. SERIAL_ECHOPGM(MSG_MARLIN);
  560. SERIAL_ECHOLNPGM(" " BUILD_VERSION);
  561. #ifdef STRING_DISTRIBUTION_DATE
  562. #ifdef STRING_CONFIG_H_AUTHOR
  563. SERIAL_ECHO_START;
  564. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  565. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  566. SERIAL_ECHOPGM(MSG_AUTHOR);
  567. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  568. SERIAL_ECHOPGM("Compiled: ");
  569. SERIAL_ECHOLNPGM(__DATE__);
  570. #endif // STRING_CONFIG_H_AUTHOR
  571. #endif // STRING_DISTRIBUTION_DATE
  572. SERIAL_ECHO_START;
  573. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  574. SERIAL_ECHO(freeMemory());
  575. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  576. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  577. #ifdef SDSUPPORT
  578. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  579. #endif
  580. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  581. Config_RetrieveSettings();
  582. lcd_init();
  583. _delay_ms(1000); // wait 1sec to display the splash screen
  584. tp_init(); // Initialize temperature loop
  585. plan_init(); // Initialize planner;
  586. watchdog_init();
  587. st_init(); // Initialize stepper, this enables interrupts!
  588. setup_photpin();
  589. servo_init();
  590. #if HAS_CONTROLLERFAN
  591. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  592. #endif
  593. #if HAS_STEPPER_RESET
  594. enableStepperDrivers();
  595. #endif
  596. #ifdef DIGIPOT_I2C
  597. digipot_i2c_init();
  598. #endif
  599. #ifdef Z_PROBE_SLED
  600. pinMode(SLED_PIN, OUTPUT);
  601. digitalWrite(SLED_PIN, LOW); // turn it off
  602. #endif // Z_PROBE_SLED
  603. setup_homepin();
  604. #ifdef STAT_LED_RED
  605. pinMode(STAT_LED_RED, OUTPUT);
  606. digitalWrite(STAT_LED_RED, LOW); // turn it off
  607. #endif
  608. #ifdef STAT_LED_BLUE
  609. pinMode(STAT_LED_BLUE, OUTPUT);
  610. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  611. #endif
  612. }
  613. /**
  614. * The main Marlin program loop
  615. *
  616. * - Save or log commands to SD
  617. * - Process available commands (if not saving)
  618. * - Call heater manager
  619. * - Call inactivity manager
  620. * - Call endstop manager
  621. * - Call LCD update
  622. */
  623. void loop() {
  624. if (commands_in_queue < BUFSIZE - 1) get_command();
  625. #ifdef SDSUPPORT
  626. card.checkautostart(false);
  627. #endif
  628. if (commands_in_queue) {
  629. #ifdef SDSUPPORT
  630. if (card.saving) {
  631. char *command = command_queue[cmd_queue_index_r];
  632. if (strstr_P(command, PSTR("M29"))) {
  633. // M29 closes the file
  634. card.closefile();
  635. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  636. }
  637. else {
  638. // Write the string from the read buffer to SD
  639. card.write_command(command);
  640. if (card.logging)
  641. process_next_command(); // The card is saving because it's logging
  642. else
  643. SERIAL_PROTOCOLLNPGM(MSG_OK);
  644. }
  645. }
  646. else
  647. process_next_command();
  648. #else
  649. process_next_command();
  650. #endif // SDSUPPORT
  651. commands_in_queue--;
  652. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  653. }
  654. checkHitEndstops();
  655. idle();
  656. }
  657. void gcode_line_error(const char *err, bool doFlush=true) {
  658. SERIAL_ERROR_START;
  659. serialprintPGM(err);
  660. SERIAL_ERRORLN(gcode_LastN);
  661. //Serial.println(gcode_N);
  662. if (doFlush) FlushSerialRequestResend();
  663. serial_count = 0;
  664. }
  665. /**
  666. * Add to the circular command queue the next command from:
  667. * - The command-injection queue (queued_commands_P)
  668. * - The active serial input (usually USB)
  669. * - The SD card file being actively printed
  670. */
  671. void get_command() {
  672. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  673. #ifdef NO_TIMEOUTS
  674. static millis_t last_command_time = 0;
  675. millis_t ms = millis();
  676. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  677. SERIAL_ECHOLNPGM(MSG_WAIT);
  678. last_command_time = ms;
  679. }
  680. #endif
  681. //
  682. // Loop while serial characters are incoming and the queue is not full
  683. //
  684. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  685. #ifdef NO_TIMEOUTS
  686. last_command_time = ms;
  687. #endif
  688. serial_char = MYSERIAL.read();
  689. //
  690. // If the character ends the line, or the line is full...
  691. //
  692. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  693. // end of line == end of comment
  694. comment_mode = false;
  695. if (!serial_count) return; // empty lines just exit
  696. char *command = command_queue[cmd_queue_index_w];
  697. command[serial_count] = 0; // terminate string
  698. // this item in the queue is not from sd
  699. #ifdef SDSUPPORT
  700. fromsd[cmd_queue_index_w] = false;
  701. #endif
  702. char *npos = strchr(command, 'N');
  703. char *apos = strchr(command, '*');
  704. if (npos) {
  705. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  706. if (M110) {
  707. char *n2pos = strchr(command + 4, 'N');
  708. if (n2pos) npos = n2pos;
  709. }
  710. gcode_N = strtol(npos + 1, NULL, 10);
  711. if (gcode_N != gcode_LastN + 1 && !M110) {
  712. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  713. return;
  714. }
  715. if (apos) {
  716. byte checksum = 0, count = 0;
  717. while (command[count] != '*') checksum ^= command[count++];
  718. if (strtol(apos + 1, NULL, 10) != checksum) {
  719. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  720. return;
  721. }
  722. // if no errors, continue parsing
  723. }
  724. else if (npos == command) {
  725. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  726. return;
  727. }
  728. gcode_LastN = gcode_N;
  729. // if no errors, continue parsing
  730. }
  731. else if (apos) { // No '*' without 'N'
  732. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  733. return;
  734. }
  735. // Movement commands alert when stopped
  736. if (IsStopped()) {
  737. char *gpos = strchr(command, 'G');
  738. if (gpos) {
  739. int codenum = strtol(gpos + 1, NULL, 10);
  740. switch (codenum) {
  741. case 0:
  742. case 1:
  743. case 2:
  744. case 3:
  745. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  746. LCD_MESSAGEPGM(MSG_STOPPED);
  747. break;
  748. }
  749. }
  750. }
  751. // If command was e-stop process now
  752. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  753. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  754. commands_in_queue += 1;
  755. serial_count = 0; //clear buffer
  756. }
  757. else if (serial_char == '\\') { // Handle escapes
  758. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  759. // if we have one more character, copy it over
  760. serial_char = MYSERIAL.read();
  761. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  762. }
  763. // otherwise do nothing
  764. }
  765. else { // its not a newline, carriage return or escape char
  766. if (serial_char == ';') comment_mode = true;
  767. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  768. }
  769. }
  770. #ifdef SDSUPPORT
  771. if (!card.sdprinting || serial_count) return;
  772. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  773. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  774. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  775. static bool stop_buffering = false;
  776. if (commands_in_queue == 0) stop_buffering = false;
  777. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  778. int16_t n = card.get();
  779. serial_char = (char)n;
  780. if (serial_char == '\n' || serial_char == '\r' ||
  781. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  782. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  783. ) {
  784. if (card.eof()) {
  785. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  786. print_job_stop_ms = millis();
  787. char time[30];
  788. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  789. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  790. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  791. SERIAL_ECHO_START;
  792. SERIAL_ECHOLN(time);
  793. lcd_setstatus(time, true);
  794. card.printingHasFinished();
  795. card.checkautostart(true);
  796. }
  797. if (serial_char == '#') stop_buffering = true;
  798. if (!serial_count) {
  799. comment_mode = false; //for new command
  800. return; //if empty line
  801. }
  802. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  803. // if (!comment_mode) {
  804. fromsd[cmd_queue_index_w] = true;
  805. commands_in_queue += 1;
  806. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  807. // }
  808. comment_mode = false; //for new command
  809. serial_count = 0; //clear buffer
  810. }
  811. else {
  812. if (serial_char == ';') comment_mode = true;
  813. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  814. }
  815. }
  816. #endif // SDSUPPORT
  817. }
  818. bool code_has_value() {
  819. int i = 1;
  820. char c = seen_pointer[i];
  821. if (c == '-' || c == '+') c = seen_pointer[++i];
  822. if (c == '.') c = seen_pointer[++i];
  823. return (c >= '0' && c <= '9');
  824. }
  825. float code_value() {
  826. float ret;
  827. char *e = strchr(seen_pointer, 'E');
  828. if (e) {
  829. *e = 0;
  830. ret = strtod(seen_pointer+1, NULL);
  831. *e = 'E';
  832. }
  833. else
  834. ret = strtod(seen_pointer+1, NULL);
  835. return ret;
  836. }
  837. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  838. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  839. bool code_seen(char code) {
  840. seen_pointer = strchr(current_command_args, code);
  841. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  842. }
  843. #define DEFINE_PGM_READ_ANY(type, reader) \
  844. static inline type pgm_read_any(const type *p) \
  845. { return pgm_read_##reader##_near(p); }
  846. DEFINE_PGM_READ_ANY(float, float);
  847. DEFINE_PGM_READ_ANY(signed char, byte);
  848. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  849. static const PROGMEM type array##_P[3] = \
  850. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  851. static inline type array(int axis) \
  852. { return pgm_read_any(&array##_P[axis]); }
  853. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  854. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  855. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  856. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  857. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  858. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  859. #ifdef DUAL_X_CARRIAGE
  860. #define DXC_FULL_CONTROL_MODE 0
  861. #define DXC_AUTO_PARK_MODE 1
  862. #define DXC_DUPLICATION_MODE 2
  863. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  864. static float x_home_pos(int extruder) {
  865. if (extruder == 0)
  866. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  867. else
  868. // In dual carriage mode the extruder offset provides an override of the
  869. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  870. // This allow soft recalibration of the second extruder offset position without firmware reflash
  871. // (through the M218 command).
  872. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  873. }
  874. static int x_home_dir(int extruder) {
  875. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  876. }
  877. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  878. static bool active_extruder_parked = false; // used in mode 1 & 2
  879. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  880. static millis_t delayed_move_time = 0; // used in mode 1
  881. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  882. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  883. bool extruder_duplication_enabled = false; // used in mode 2
  884. #endif //DUAL_X_CARRIAGE
  885. static void set_axis_is_at_home(AxisEnum axis) {
  886. #ifdef DUAL_X_CARRIAGE
  887. if (axis == X_AXIS) {
  888. if (active_extruder != 0) {
  889. current_position[X_AXIS] = x_home_pos(active_extruder);
  890. min_pos[X_AXIS] = X2_MIN_POS;
  891. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  892. return;
  893. }
  894. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  895. float xoff = home_offset[X_AXIS];
  896. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  897. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  898. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  899. return;
  900. }
  901. }
  902. #endif
  903. #ifdef SCARA
  904. if (axis == X_AXIS || axis == Y_AXIS) {
  905. float homeposition[3];
  906. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  907. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  908. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  909. // Works out real Homeposition angles using inverse kinematics,
  910. // and calculates homing offset using forward kinematics
  911. calculate_delta(homeposition);
  912. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  913. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  914. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  915. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  916. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  917. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  918. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  919. calculate_SCARA_forward_Transform(delta);
  920. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  921. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  922. current_position[axis] = delta[axis];
  923. // SCARA home positions are based on configuration since the actual limits are determined by the
  924. // inverse kinematic transform.
  925. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  926. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  927. }
  928. else
  929. #endif
  930. {
  931. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  932. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  933. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  934. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  935. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  936. #endif
  937. }
  938. }
  939. /**
  940. * Some planner shorthand inline functions
  941. */
  942. inline void set_homing_bump_feedrate(AxisEnum axis) {
  943. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  944. int hbd = homing_bump_divisor[axis];
  945. if (hbd < 1) {
  946. hbd = 10;
  947. SERIAL_ECHO_START;
  948. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  949. }
  950. feedrate = homing_feedrate[axis] / hbd;
  951. }
  952. inline void line_to_current_position() {
  953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  954. }
  955. inline void line_to_z(float zPosition) {
  956. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  957. }
  958. inline void line_to_destination(float mm_m) {
  959. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  960. }
  961. inline void line_to_destination() {
  962. line_to_destination(feedrate);
  963. }
  964. inline void sync_plan_position() {
  965. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  966. }
  967. #if defined(DELTA) || defined(SCARA)
  968. inline void sync_plan_position_delta() {
  969. calculate_delta(current_position);
  970. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  971. }
  972. #endif
  973. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  974. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  975. static void setup_for_endstop_move() {
  976. saved_feedrate = feedrate;
  977. saved_feedrate_multiplier = feedrate_multiplier;
  978. feedrate_multiplier = 100;
  979. refresh_cmd_timeout();
  980. enable_endstops(true);
  981. }
  982. #ifdef ENABLE_AUTO_BED_LEVELING
  983. #ifdef DELTA
  984. /**
  985. * Calculate delta, start a line, and set current_position to destination
  986. */
  987. void prepare_move_raw() {
  988. refresh_cmd_timeout();
  989. calculate_delta(destination);
  990. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  991. set_current_to_destination();
  992. }
  993. #endif
  994. #ifdef AUTO_BED_LEVELING_GRID
  995. #ifndef DELTA
  996. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  997. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  998. planeNormal.debug("planeNormal");
  999. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1000. //bedLevel.debug("bedLevel");
  1001. //plan_bed_level_matrix.debug("bed level before");
  1002. //vector_3 uncorrected_position = plan_get_position_mm();
  1003. //uncorrected_position.debug("position before");
  1004. vector_3 corrected_position = plan_get_position();
  1005. //corrected_position.debug("position after");
  1006. current_position[X_AXIS] = corrected_position.x;
  1007. current_position[Y_AXIS] = corrected_position.y;
  1008. current_position[Z_AXIS] = corrected_position.z;
  1009. sync_plan_position();
  1010. }
  1011. #endif // !DELTA
  1012. #else // !AUTO_BED_LEVELING_GRID
  1013. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1014. plan_bed_level_matrix.set_to_identity();
  1015. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1016. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1017. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1018. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1019. if (planeNormal.z < 0) {
  1020. planeNormal.x = -planeNormal.x;
  1021. planeNormal.y = -planeNormal.y;
  1022. planeNormal.z = -planeNormal.z;
  1023. }
  1024. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1025. vector_3 corrected_position = plan_get_position();
  1026. current_position[X_AXIS] = corrected_position.x;
  1027. current_position[Y_AXIS] = corrected_position.y;
  1028. current_position[Z_AXIS] = corrected_position.z;
  1029. sync_plan_position();
  1030. }
  1031. #endif // !AUTO_BED_LEVELING_GRID
  1032. static void run_z_probe() {
  1033. #ifdef DELTA
  1034. float start_z = current_position[Z_AXIS];
  1035. long start_steps = st_get_position(Z_AXIS);
  1036. // move down slowly until you find the bed
  1037. feedrate = homing_feedrate[Z_AXIS] / 4;
  1038. destination[Z_AXIS] = -10;
  1039. prepare_move_raw(); // this will also set_current_to_destination
  1040. st_synchronize();
  1041. endstops_hit_on_purpose(); // clear endstop hit flags
  1042. // we have to let the planner know where we are right now as it is not where we said to go.
  1043. long stop_steps = st_get_position(Z_AXIS);
  1044. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1045. current_position[Z_AXIS] = mm;
  1046. sync_plan_position_delta();
  1047. #else // !DELTA
  1048. plan_bed_level_matrix.set_to_identity();
  1049. feedrate = homing_feedrate[Z_AXIS];
  1050. // Move down until the probe (or endstop?) is triggered
  1051. float zPosition = -(Z_MAX_LENGTH + 10);
  1052. line_to_z(zPosition);
  1053. st_synchronize();
  1054. // Tell the planner where we ended up - Get this from the stepper handler
  1055. zPosition = st_get_position_mm(Z_AXIS);
  1056. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1057. // move up the retract distance
  1058. zPosition += home_bump_mm(Z_AXIS);
  1059. line_to_z(zPosition);
  1060. st_synchronize();
  1061. endstops_hit_on_purpose(); // clear endstop hit flags
  1062. // move back down slowly to find bed
  1063. set_homing_bump_feedrate(Z_AXIS);
  1064. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1065. line_to_z(zPosition);
  1066. st_synchronize();
  1067. endstops_hit_on_purpose(); // clear endstop hit flags
  1068. // Get the current stepper position after bumping an endstop
  1069. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1070. sync_plan_position();
  1071. #endif // !DELTA
  1072. }
  1073. /**
  1074. * Plan a move to (X, Y, Z) and set the current_position
  1075. * The final current_position may not be the one that was requested
  1076. */
  1077. static void do_blocking_move_to(float x, float y, float z) {
  1078. float oldFeedRate = feedrate;
  1079. #ifdef DELTA
  1080. feedrate = XY_TRAVEL_SPEED;
  1081. destination[X_AXIS] = x;
  1082. destination[Y_AXIS] = y;
  1083. destination[Z_AXIS] = z;
  1084. prepare_move_raw(); // this will also set_current_to_destination
  1085. st_synchronize();
  1086. #else
  1087. feedrate = homing_feedrate[Z_AXIS];
  1088. current_position[Z_AXIS] = z;
  1089. line_to_current_position();
  1090. st_synchronize();
  1091. feedrate = xy_travel_speed;
  1092. current_position[X_AXIS] = x;
  1093. current_position[Y_AXIS] = y;
  1094. line_to_current_position();
  1095. st_synchronize();
  1096. #endif
  1097. feedrate = oldFeedRate;
  1098. }
  1099. static void clean_up_after_endstop_move() {
  1100. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1101. enable_endstops(false);
  1102. #endif
  1103. feedrate = saved_feedrate;
  1104. feedrate_multiplier = saved_feedrate_multiplier;
  1105. refresh_cmd_timeout();
  1106. }
  1107. static void deploy_z_probe() {
  1108. #ifdef SERVO_ENDSTOPS
  1109. // Engage Z Servo endstop if enabled
  1110. if (servo_endstops[Z_AXIS] >= 0) {
  1111. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1112. srv->move(0, servo_endstop_angles[Z_AXIS * 2]);
  1113. }
  1114. #elif defined(Z_PROBE_ALLEN_KEY)
  1115. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1116. // If endstop is already false, the probe is deployed
  1117. #ifdef Z_PROBE_ENDSTOP
  1118. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1119. if (z_probe_endstop)
  1120. #else
  1121. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1122. if (z_min_endstop)
  1123. #endif
  1124. {
  1125. // Move to the start position to initiate deployment
  1126. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1127. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1128. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1129. prepare_move_raw(); // this will also set_current_to_destination
  1130. // Move to engage deployment
  1131. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
  1132. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1133. }
  1134. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
  1135. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1136. }
  1137. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
  1138. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1139. }
  1140. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
  1141. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1142. }
  1143. prepare_move_raw();
  1144. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1145. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1146. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1147. }
  1148. // Move to trigger deployment
  1149. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1150. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1151. }
  1152. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
  1153. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1154. }
  1155. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
  1156. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1157. }
  1158. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
  1159. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1160. }
  1161. prepare_move_raw();
  1162. #endif
  1163. }
  1164. // Partially Home X,Y for safety
  1165. destination[X_AXIS] = destination[X_AXIS]*0.75;
  1166. destination[Y_AXIS] = destination[Y_AXIS]*0.75;
  1167. prepare_move_raw(); // this will also set_current_to_destination
  1168. st_synchronize();
  1169. #ifdef Z_PROBE_ENDSTOP
  1170. z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1171. if (z_probe_endstop)
  1172. #else
  1173. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1174. if (z_min_endstop)
  1175. #endif
  1176. {
  1177. if (IsRunning()) {
  1178. SERIAL_ERROR_START;
  1179. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1180. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1181. }
  1182. Stop();
  1183. }
  1184. #endif // Z_PROBE_ALLEN_KEY
  1185. }
  1186. static void stow_z_probe(bool doRaise=true) {
  1187. #ifdef SERVO_ENDSTOPS
  1188. // Retract Z Servo endstop if enabled
  1189. if (servo_endstops[Z_AXIS] >= 0) {
  1190. #if Z_RAISE_AFTER_PROBING > 0
  1191. if (doRaise) {
  1192. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1193. st_synchronize();
  1194. }
  1195. #endif
  1196. // Change the Z servo angle
  1197. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1198. srv->move(0, servo_endstop_angles[Z_AXIS * 2 + 1]);
  1199. }
  1200. #elif defined(Z_PROBE_ALLEN_KEY)
  1201. // Move up for safety
  1202. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1203. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1204. prepare_move_raw(); // this will also set_current_to_destination
  1205. // Move to the start position to initiate retraction
  1206. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1207. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1208. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1209. prepare_move_raw();
  1210. // Move the nozzle down to push the probe into retracted position
  1211. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
  1212. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1213. }
  1214. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
  1215. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1216. }
  1217. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
  1218. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1219. }
  1220. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1221. prepare_move_raw();
  1222. // Move up for safety
  1223. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
  1224. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1225. }
  1226. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
  1227. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1228. }
  1229. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
  1230. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1231. }
  1232. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1233. prepare_move_raw();
  1234. // Home XY for safety
  1235. feedrate = homing_feedrate[X_AXIS]/2;
  1236. destination[X_AXIS] = 0;
  1237. destination[Y_AXIS] = 0;
  1238. prepare_move_raw(); // this will also set_current_to_destination
  1239. st_synchronize();
  1240. #ifdef Z_PROBE_ENDSTOP
  1241. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1242. if (!z_probe_endstop)
  1243. #else
  1244. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1245. if (!z_min_endstop)
  1246. #endif
  1247. {
  1248. if (IsRunning()) {
  1249. SERIAL_ERROR_START;
  1250. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1251. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1252. }
  1253. Stop();
  1254. }
  1255. #endif // Z_PROBE_ALLEN_KEY
  1256. }
  1257. enum ProbeAction {
  1258. ProbeStay = 0,
  1259. ProbeDeploy = BIT(0),
  1260. ProbeStow = BIT(1),
  1261. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1262. };
  1263. // Probe bed height at position (x,y), returns the measured z value
  1264. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1265. // Move Z up to the z_before height, then move the probe to the given XY
  1266. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1267. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1268. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1269. if (probe_action & ProbeDeploy) deploy_z_probe();
  1270. #endif
  1271. run_z_probe();
  1272. float measured_z = current_position[Z_AXIS];
  1273. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1274. if (probe_action & ProbeStow) stow_z_probe();
  1275. #endif
  1276. if (verbose_level > 2) {
  1277. SERIAL_PROTOCOLPGM("Bed X: ");
  1278. SERIAL_PROTOCOL_F(x, 3);
  1279. SERIAL_PROTOCOLPGM(" Y: ");
  1280. SERIAL_PROTOCOL_F(y, 3);
  1281. SERIAL_PROTOCOLPGM(" Z: ");
  1282. SERIAL_PROTOCOL_F(measured_z, 3);
  1283. SERIAL_EOL;
  1284. }
  1285. return measured_z;
  1286. }
  1287. #ifdef DELTA
  1288. /**
  1289. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1290. */
  1291. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1292. if (bed_level[x][y] != 0.0) {
  1293. return; // Don't overwrite good values.
  1294. }
  1295. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1296. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1297. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1298. float median = c; // Median is robust (ignores outliers).
  1299. if (a < b) {
  1300. if (b < c) median = b;
  1301. if (c < a) median = a;
  1302. } else { // b <= a
  1303. if (c < b) median = b;
  1304. if (a < c) median = a;
  1305. }
  1306. bed_level[x][y] = median;
  1307. }
  1308. // Fill in the unprobed points (corners of circular print surface)
  1309. // using linear extrapolation, away from the center.
  1310. static void extrapolate_unprobed_bed_level() {
  1311. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1312. for (int y = 0; y <= half; y++) {
  1313. for (int x = 0; x <= half; x++) {
  1314. if (x + y < 3) continue;
  1315. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1316. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1317. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1318. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1319. }
  1320. }
  1321. }
  1322. // Print calibration results for plotting or manual frame adjustment.
  1323. static void print_bed_level() {
  1324. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1325. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1326. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1327. SERIAL_PROTOCOLCHAR(' ');
  1328. }
  1329. SERIAL_EOL;
  1330. }
  1331. }
  1332. // Reset calibration results to zero.
  1333. void reset_bed_level() {
  1334. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1335. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1336. bed_level[x][y] = 0.0;
  1337. }
  1338. }
  1339. }
  1340. #endif // DELTA
  1341. #endif // ENABLE_AUTO_BED_LEVELING
  1342. #ifdef Z_PROBE_SLED
  1343. #ifndef SLED_DOCKING_OFFSET
  1344. #define SLED_DOCKING_OFFSET 0
  1345. #endif
  1346. /**
  1347. * Method to dock/undock a sled designed by Charles Bell.
  1348. *
  1349. * dock[in] If true, move to MAX_X and engage the electromagnet
  1350. * offset[in] The additional distance to move to adjust docking location
  1351. */
  1352. static void dock_sled(bool dock, int offset=0) {
  1353. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1354. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1355. SERIAL_ECHO_START;
  1356. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1357. return;
  1358. }
  1359. if (dock) {
  1360. float oldXpos = current_position[X_AXIS]; // save x position
  1361. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1362. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1363. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1364. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1365. } else {
  1366. float oldXpos = current_position[X_AXIS]; // save x position
  1367. float z_loc = current_position[Z_AXIS];
  1368. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1369. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1370. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1371. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1372. }
  1373. }
  1374. #endif // Z_PROBE_SLED
  1375. /**
  1376. * Home an individual axis
  1377. */
  1378. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1379. static void homeaxis(AxisEnum axis) {
  1380. #define HOMEAXIS_DO(LETTER) \
  1381. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1382. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1383. int axis_home_dir =
  1384. #ifdef DUAL_X_CARRIAGE
  1385. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1386. #endif
  1387. home_dir(axis);
  1388. // Set the axis position as setup for the move
  1389. current_position[axis] = 0;
  1390. sync_plan_position();
  1391. #ifdef Z_PROBE_SLED
  1392. // Get Probe
  1393. if (axis == Z_AXIS) {
  1394. if (axis_home_dir < 0) dock_sled(false);
  1395. }
  1396. #endif
  1397. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1398. // Deploy a probe if there is one, and homing towards the bed
  1399. if (axis == Z_AXIS) {
  1400. if (axis_home_dir < 0) deploy_z_probe();
  1401. }
  1402. #endif
  1403. #ifdef SERVO_ENDSTOPS
  1404. if (axis != Z_AXIS) {
  1405. // Engage Servo endstop if enabled
  1406. if (servo_endstops[axis] > -1)
  1407. servo[servo_endstops[axis]].move(0, servo_endstop_angles[axis * 2]);
  1408. }
  1409. #endif
  1410. // Set a flag for Z motor locking
  1411. #ifdef Z_DUAL_ENDSTOPS
  1412. if (axis == Z_AXIS) In_Homing_Process(true);
  1413. #endif
  1414. // Move towards the endstop until an endstop is triggered
  1415. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1416. feedrate = homing_feedrate[axis];
  1417. line_to_destination();
  1418. st_synchronize();
  1419. // Set the axis position as setup for the move
  1420. current_position[axis] = 0;
  1421. sync_plan_position();
  1422. enable_endstops(false); // Disable endstops while moving away
  1423. // Move away from the endstop by the axis HOME_BUMP_MM
  1424. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1425. line_to_destination();
  1426. st_synchronize();
  1427. enable_endstops(true); // Enable endstops for next homing move
  1428. // Slow down the feedrate for the next move
  1429. set_homing_bump_feedrate(axis);
  1430. // Move slowly towards the endstop until triggered
  1431. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1432. line_to_destination();
  1433. st_synchronize();
  1434. #ifdef Z_DUAL_ENDSTOPS
  1435. if (axis == Z_AXIS) {
  1436. float adj = fabs(z_endstop_adj);
  1437. bool lockZ1;
  1438. if (axis_home_dir > 0) {
  1439. adj = -adj;
  1440. lockZ1 = (z_endstop_adj > 0);
  1441. }
  1442. else
  1443. lockZ1 = (z_endstop_adj < 0);
  1444. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1445. sync_plan_position();
  1446. // Move to the adjusted endstop height
  1447. feedrate = homing_feedrate[axis];
  1448. destination[Z_AXIS] = adj;
  1449. line_to_destination();
  1450. st_synchronize();
  1451. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1452. In_Homing_Process(false);
  1453. } // Z_AXIS
  1454. #endif
  1455. #ifdef DELTA
  1456. // retrace by the amount specified in endstop_adj
  1457. if (endstop_adj[axis] * axis_home_dir < 0) {
  1458. enable_endstops(false); // Disable endstops while moving away
  1459. sync_plan_position();
  1460. destination[axis] = endstop_adj[axis];
  1461. line_to_destination();
  1462. st_synchronize();
  1463. enable_endstops(true); // Enable endstops for next homing move
  1464. }
  1465. #endif
  1466. // Set the axis position to its home position (plus home offsets)
  1467. set_axis_is_at_home(axis);
  1468. sync_plan_position();
  1469. destination[axis] = current_position[axis];
  1470. feedrate = 0.0;
  1471. endstops_hit_on_purpose(); // clear endstop hit flags
  1472. axis_known_position[axis] = true;
  1473. #ifdef Z_PROBE_SLED
  1474. // bring probe back
  1475. if (axis == Z_AXIS) {
  1476. if (axis_home_dir < 0) dock_sled(true);
  1477. }
  1478. #endif
  1479. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1480. // Deploy a probe if there is one, and homing towards the bed
  1481. if (axis == Z_AXIS) {
  1482. if (axis_home_dir < 0) stow_z_probe();
  1483. }
  1484. else
  1485. #endif
  1486. {
  1487. #ifdef SERVO_ENDSTOPS
  1488. // Retract Servo endstop if enabled
  1489. if (servo_endstops[axis] > -1)
  1490. servo[servo_endstops[axis]].move(0, servo_endstop_angles[axis * 2 + 1]);
  1491. #endif
  1492. }
  1493. }
  1494. }
  1495. #ifdef FWRETRACT
  1496. void retract(bool retracting, bool swapping=false) {
  1497. if (retracting == retracted[active_extruder]) return;
  1498. float oldFeedrate = feedrate;
  1499. set_destination_to_current();
  1500. if (retracting) {
  1501. feedrate = retract_feedrate * 60;
  1502. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1503. plan_set_e_position(current_position[E_AXIS]);
  1504. prepare_move();
  1505. if (retract_zlift > 0.01) {
  1506. current_position[Z_AXIS] -= retract_zlift;
  1507. #ifdef DELTA
  1508. sync_plan_position_delta();
  1509. #else
  1510. sync_plan_position();
  1511. #endif
  1512. prepare_move();
  1513. }
  1514. }
  1515. else {
  1516. if (retract_zlift > 0.01) {
  1517. current_position[Z_AXIS] += retract_zlift;
  1518. #ifdef DELTA
  1519. sync_plan_position_delta();
  1520. #else
  1521. sync_plan_position();
  1522. #endif
  1523. //prepare_move();
  1524. }
  1525. feedrate = retract_recover_feedrate * 60;
  1526. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1527. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1528. plan_set_e_position(current_position[E_AXIS]);
  1529. prepare_move();
  1530. }
  1531. feedrate = oldFeedrate;
  1532. retracted[active_extruder] = retracting;
  1533. } // retract()
  1534. #endif // FWRETRACT
  1535. /**
  1536. *
  1537. * G-Code Handler functions
  1538. *
  1539. */
  1540. /**
  1541. * Set XYZE destination and feedrate from the current GCode command
  1542. *
  1543. * - Set destination from included axis codes
  1544. * - Set to current for missing axis codes
  1545. * - Set the feedrate, if included
  1546. */
  1547. void gcode_get_destination() {
  1548. for (int i = 0; i < NUM_AXIS; i++) {
  1549. if (code_seen(axis_codes[i]))
  1550. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1551. else
  1552. destination[i] = current_position[i];
  1553. }
  1554. if (code_seen('F')) {
  1555. float next_feedrate = code_value();
  1556. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1557. }
  1558. }
  1559. void unknown_command_error() {
  1560. SERIAL_ECHO_START;
  1561. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1562. SERIAL_ECHO(current_command);
  1563. SERIAL_ECHOPGM("\"\n");
  1564. }
  1565. /**
  1566. * G0, G1: Coordinated movement of X Y Z E axes
  1567. */
  1568. inline void gcode_G0_G1() {
  1569. if (IsRunning()) {
  1570. gcode_get_destination(); // For X Y Z E F
  1571. #ifdef FWRETRACT
  1572. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1573. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1574. // Is this move an attempt to retract or recover?
  1575. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1576. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1577. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1578. retract(!retracted[active_extruder]);
  1579. return;
  1580. }
  1581. }
  1582. #endif //FWRETRACT
  1583. prepare_move();
  1584. }
  1585. }
  1586. /**
  1587. * G2: Clockwise Arc
  1588. * G3: Counterclockwise Arc
  1589. */
  1590. inline void gcode_G2_G3(bool clockwise) {
  1591. if (IsRunning()) {
  1592. #ifdef SF_ARC_FIX
  1593. bool relative_mode_backup = relative_mode;
  1594. relative_mode = true;
  1595. #endif
  1596. gcode_get_destination();
  1597. #ifdef SF_ARC_FIX
  1598. relative_mode = relative_mode_backup;
  1599. #endif
  1600. // Center of arc as offset from current_position
  1601. float arc_offset[2] = {
  1602. code_seen('I') ? code_value() : 0,
  1603. code_seen('J') ? code_value() : 0
  1604. };
  1605. // Send an arc to the planner
  1606. plan_arc(destination, arc_offset, clockwise);
  1607. refresh_cmd_timeout();
  1608. }
  1609. }
  1610. /**
  1611. * G4: Dwell S<seconds> or P<milliseconds>
  1612. */
  1613. inline void gcode_G4() {
  1614. millis_t codenum = 0;
  1615. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1616. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1617. st_synchronize();
  1618. refresh_cmd_timeout();
  1619. codenum += previous_cmd_ms; // keep track of when we started waiting
  1620. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1621. while (millis() < codenum) idle();
  1622. }
  1623. #ifdef FWRETRACT
  1624. /**
  1625. * G10 - Retract filament according to settings of M207
  1626. * G11 - Recover filament according to settings of M208
  1627. */
  1628. inline void gcode_G10_G11(bool doRetract=false) {
  1629. #if EXTRUDERS > 1
  1630. if (doRetract) {
  1631. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1632. }
  1633. #endif
  1634. retract(doRetract
  1635. #if EXTRUDERS > 1
  1636. , retracted_swap[active_extruder]
  1637. #endif
  1638. );
  1639. }
  1640. #endif //FWRETRACT
  1641. /**
  1642. * G28: Home all axes according to settings
  1643. *
  1644. * Parameters
  1645. *
  1646. * None Home to all axes with no parameters.
  1647. * With QUICK_HOME enabled XY will home together, then Z.
  1648. *
  1649. * Cartesian parameters
  1650. *
  1651. * X Home to the X endstop
  1652. * Y Home to the Y endstop
  1653. * Z Home to the Z endstop
  1654. *
  1655. */
  1656. inline void gcode_G28() {
  1657. // Wait for planner moves to finish!
  1658. st_synchronize();
  1659. // For auto bed leveling, clear the level matrix
  1660. #ifdef ENABLE_AUTO_BED_LEVELING
  1661. plan_bed_level_matrix.set_to_identity();
  1662. #ifdef DELTA
  1663. reset_bed_level();
  1664. #endif
  1665. #endif
  1666. // For manual bed leveling deactivate the matrix temporarily
  1667. #ifdef MESH_BED_LEVELING
  1668. uint8_t mbl_was_active = mbl.active;
  1669. mbl.active = 0;
  1670. #endif
  1671. setup_for_endstop_move();
  1672. set_destination_to_current();
  1673. feedrate = 0.0;
  1674. #ifdef DELTA
  1675. // A delta can only safely home all axis at the same time
  1676. // all axis have to home at the same time
  1677. // Pretend the current position is 0,0,0
  1678. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1679. sync_plan_position();
  1680. // Move all carriages up together until the first endstop is hit.
  1681. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1682. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1683. line_to_destination();
  1684. st_synchronize();
  1685. endstops_hit_on_purpose(); // clear endstop hit flags
  1686. // Destination reached
  1687. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1688. // take care of back off and rehome now we are all at the top
  1689. HOMEAXIS(X);
  1690. HOMEAXIS(Y);
  1691. HOMEAXIS(Z);
  1692. sync_plan_position_delta();
  1693. #else // NOT DELTA
  1694. bool homeX = code_seen(axis_codes[X_AXIS]),
  1695. homeY = code_seen(axis_codes[Y_AXIS]),
  1696. homeZ = code_seen(axis_codes[Z_AXIS]);
  1697. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1698. if (home_all_axis || homeZ) {
  1699. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1700. HOMEAXIS(Z);
  1701. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1702. // Raise Z before homing any other axes
  1703. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1704. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1705. feedrate = max_feedrate[Z_AXIS] * 60;
  1706. line_to_destination();
  1707. st_synchronize();
  1708. #endif
  1709. } // home_all_axis || homeZ
  1710. #ifdef QUICK_HOME
  1711. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1712. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1713. #ifdef DUAL_X_CARRIAGE
  1714. int x_axis_home_dir = x_home_dir(active_extruder);
  1715. extruder_duplication_enabled = false;
  1716. #else
  1717. int x_axis_home_dir = home_dir(X_AXIS);
  1718. #endif
  1719. sync_plan_position();
  1720. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1721. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1722. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1723. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1724. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1725. line_to_destination();
  1726. st_synchronize();
  1727. set_axis_is_at_home(X_AXIS);
  1728. set_axis_is_at_home(Y_AXIS);
  1729. sync_plan_position();
  1730. destination[X_AXIS] = current_position[X_AXIS];
  1731. destination[Y_AXIS] = current_position[Y_AXIS];
  1732. line_to_destination();
  1733. feedrate = 0.0;
  1734. st_synchronize();
  1735. endstops_hit_on_purpose(); // clear endstop hit flags
  1736. current_position[X_AXIS] = destination[X_AXIS];
  1737. current_position[Y_AXIS] = destination[Y_AXIS];
  1738. #ifndef SCARA
  1739. current_position[Z_AXIS] = destination[Z_AXIS];
  1740. #endif
  1741. }
  1742. #endif // QUICK_HOME
  1743. #ifdef HOME_Y_BEFORE_X
  1744. // Home Y
  1745. if (home_all_axis || homeY) HOMEAXIS(Y);
  1746. #endif
  1747. // Home X
  1748. if (home_all_axis || homeX) {
  1749. #ifdef DUAL_X_CARRIAGE
  1750. int tmp_extruder = active_extruder;
  1751. extruder_duplication_enabled = false;
  1752. active_extruder = !active_extruder;
  1753. HOMEAXIS(X);
  1754. inactive_extruder_x_pos = current_position[X_AXIS];
  1755. active_extruder = tmp_extruder;
  1756. HOMEAXIS(X);
  1757. // reset state used by the different modes
  1758. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1759. delayed_move_time = 0;
  1760. active_extruder_parked = true;
  1761. #else
  1762. HOMEAXIS(X);
  1763. #endif
  1764. }
  1765. #ifndef HOME_Y_BEFORE_X
  1766. // Home Y
  1767. if (home_all_axis || homeY) HOMEAXIS(Y);
  1768. #endif
  1769. // Home Z last if homing towards the bed
  1770. #if Z_HOME_DIR < 0
  1771. if (home_all_axis || homeZ) {
  1772. #ifdef Z_SAFE_HOMING
  1773. if (home_all_axis) {
  1774. current_position[Z_AXIS] = 0;
  1775. sync_plan_position();
  1776. //
  1777. // Set the probe (or just the nozzle) destination to the safe homing point
  1778. //
  1779. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1780. // then this may not work as expected.
  1781. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1782. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1783. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1784. feedrate = XY_TRAVEL_SPEED;
  1785. // This could potentially move X, Y, Z all together
  1786. line_to_destination();
  1787. st_synchronize();
  1788. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1789. current_position[X_AXIS] = destination[X_AXIS];
  1790. current_position[Y_AXIS] = destination[Y_AXIS];
  1791. // Home the Z axis
  1792. HOMEAXIS(Z);
  1793. }
  1794. else if (homeZ) { // Don't need to Home Z twice
  1795. // Let's see if X and Y are homed
  1796. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1797. // Make sure the probe is within the physical limits
  1798. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1799. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1800. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1801. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1802. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1803. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1804. // Set the plan current position to X, Y, 0
  1805. current_position[Z_AXIS] = 0;
  1806. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1807. // Set Z destination away from bed and raise the axis
  1808. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1809. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1810. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1811. line_to_destination();
  1812. st_synchronize();
  1813. // Home the Z axis
  1814. HOMEAXIS(Z);
  1815. }
  1816. else {
  1817. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1818. SERIAL_ECHO_START;
  1819. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1820. }
  1821. }
  1822. else {
  1823. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1824. SERIAL_ECHO_START;
  1825. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1826. }
  1827. } // !home_all_axes && homeZ
  1828. #else // !Z_SAFE_HOMING
  1829. HOMEAXIS(Z);
  1830. #endif // !Z_SAFE_HOMING
  1831. } // home_all_axis || homeZ
  1832. #endif // Z_HOME_DIR < 0
  1833. sync_plan_position();
  1834. #endif // else DELTA
  1835. #ifdef SCARA
  1836. sync_plan_position_delta();
  1837. #endif
  1838. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1839. enable_endstops(false);
  1840. #endif
  1841. // For manual leveling move back to 0,0
  1842. #ifdef MESH_BED_LEVELING
  1843. if (mbl_was_active) {
  1844. current_position[X_AXIS] = mbl.get_x(0);
  1845. current_position[Y_AXIS] = mbl.get_y(0);
  1846. set_destination_to_current();
  1847. feedrate = homing_feedrate[X_AXIS];
  1848. line_to_destination();
  1849. st_synchronize();
  1850. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1851. sync_plan_position();
  1852. mbl.active = 1;
  1853. }
  1854. #endif
  1855. feedrate = saved_feedrate;
  1856. feedrate_multiplier = saved_feedrate_multiplier;
  1857. refresh_cmd_timeout();
  1858. endstops_hit_on_purpose(); // clear endstop hit flags
  1859. }
  1860. #ifdef MESH_BED_LEVELING
  1861. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1862. /**
  1863. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1864. * mesh to compensate for variable bed height
  1865. *
  1866. * Parameters With MESH_BED_LEVELING:
  1867. *
  1868. * S0 Produce a mesh report
  1869. * S1 Start probing mesh points
  1870. * S2 Probe the next mesh point
  1871. * S3 Xn Yn Zn.nn Manually modify a single point
  1872. *
  1873. * The S0 report the points as below
  1874. *
  1875. * +----> X-axis
  1876. * |
  1877. * |
  1878. * v Y-axis
  1879. *
  1880. */
  1881. inline void gcode_G29() {
  1882. static int probe_point = -1;
  1883. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  1884. if (state < 0 || state > 3) {
  1885. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1886. return;
  1887. }
  1888. int ix, iy;
  1889. float z;
  1890. switch(state) {
  1891. case MeshReport:
  1892. if (mbl.active) {
  1893. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1894. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1895. SERIAL_PROTOCOLCHAR(',');
  1896. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1897. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1898. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1899. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1900. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1901. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1902. SERIAL_PROTOCOLPGM(" ");
  1903. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1904. }
  1905. SERIAL_EOL;
  1906. }
  1907. }
  1908. else
  1909. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1910. break;
  1911. case MeshStart:
  1912. mbl.reset();
  1913. probe_point = 0;
  1914. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1915. break;
  1916. case MeshNext:
  1917. if (probe_point < 0) {
  1918. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1919. return;
  1920. }
  1921. if (probe_point == 0) {
  1922. // Set Z to a positive value before recording the first Z.
  1923. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1924. sync_plan_position();
  1925. }
  1926. else {
  1927. // For others, save the Z of the previous point, then raise Z again.
  1928. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1929. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1930. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1931. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1932. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1934. st_synchronize();
  1935. }
  1936. // Is there another point to sample? Move there.
  1937. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1938. ix = probe_point % MESH_NUM_X_POINTS;
  1939. iy = probe_point / MESH_NUM_X_POINTS;
  1940. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1941. current_position[X_AXIS] = mbl.get_x(ix);
  1942. current_position[Y_AXIS] = mbl.get_y(iy);
  1943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1944. st_synchronize();
  1945. probe_point++;
  1946. }
  1947. else {
  1948. // After recording the last point, activate the mbl and home
  1949. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1950. probe_point = -1;
  1951. mbl.active = 1;
  1952. enqueuecommands_P(PSTR("G28"));
  1953. }
  1954. break;
  1955. case MeshSet:
  1956. if (code_seen('X')) {
  1957. ix = code_value_long()-1;
  1958. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1959. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1960. return;
  1961. }
  1962. } else {
  1963. SERIAL_PROTOCOLPGM("X not entered.\n");
  1964. return;
  1965. }
  1966. if (code_seen('Y')) {
  1967. iy = code_value_long()-1;
  1968. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1969. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1970. return;
  1971. }
  1972. } else {
  1973. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1974. return;
  1975. }
  1976. if (code_seen('Z')) {
  1977. z = code_value();
  1978. } else {
  1979. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1980. return;
  1981. }
  1982. mbl.z_values[iy][ix] = z;
  1983. } // switch(state)
  1984. }
  1985. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1986. void out_of_range_error(const char *p_edge) {
  1987. SERIAL_PROTOCOLPGM("?Probe ");
  1988. serialprintPGM(p_edge);
  1989. SERIAL_PROTOCOLLNPGM(" position out of range.");
  1990. }
  1991. /**
  1992. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1993. * Will fail if the printer has not been homed with G28.
  1994. *
  1995. * Enhanced G29 Auto Bed Leveling Probe Routine
  1996. *
  1997. * Parameters With AUTO_BED_LEVELING_GRID:
  1998. *
  1999. * P Set the size of the grid that will be probed (P x P points).
  2000. * Not supported by non-linear delta printer bed leveling.
  2001. * Example: "G29 P4"
  2002. *
  2003. * S Set the XY travel speed between probe points (in mm/min)
  2004. *
  2005. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2006. * or clean the rotation Matrix. Useful to check the topology
  2007. * after a first run of G29.
  2008. *
  2009. * V Set the verbose level (0-4). Example: "G29 V3"
  2010. *
  2011. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2012. * This is useful for manual bed leveling and finding flaws in the bed (to
  2013. * assist with part placement).
  2014. * Not supported by non-linear delta printer bed leveling.
  2015. *
  2016. * F Set the Front limit of the probing grid
  2017. * B Set the Back limit of the probing grid
  2018. * L Set the Left limit of the probing grid
  2019. * R Set the Right limit of the probing grid
  2020. *
  2021. * Global Parameters:
  2022. *
  2023. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2024. * Include "E" to engage/disengage the probe for each sample.
  2025. * There's no extra effect if you have a fixed probe.
  2026. * Usage: "G29 E" or "G29 e"
  2027. *
  2028. */
  2029. inline void gcode_G29() {
  2030. // Don't allow auto-leveling without homing first
  2031. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2032. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2033. SERIAL_ECHO_START;
  2034. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2035. return;
  2036. }
  2037. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2038. if (verbose_level < 0 || verbose_level > 4) {
  2039. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2040. return;
  2041. }
  2042. bool dryrun = code_seen('D'),
  2043. deploy_probe_for_each_reading = code_seen('E');
  2044. #ifdef AUTO_BED_LEVELING_GRID
  2045. #ifndef DELTA
  2046. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2047. #endif
  2048. if (verbose_level > 0) {
  2049. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2050. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2051. }
  2052. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2053. #ifndef DELTA
  2054. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2055. if (auto_bed_leveling_grid_points < 2) {
  2056. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2057. return;
  2058. }
  2059. #endif
  2060. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2061. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2062. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2063. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2064. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2065. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2066. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2067. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2068. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2069. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2070. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2071. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2072. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2073. if (left_out || right_out || front_out || back_out) {
  2074. if (left_out) {
  2075. out_of_range_error(PSTR("(L)eft"));
  2076. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2077. }
  2078. if (right_out) {
  2079. out_of_range_error(PSTR("(R)ight"));
  2080. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2081. }
  2082. if (front_out) {
  2083. out_of_range_error(PSTR("(F)ront"));
  2084. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2085. }
  2086. if (back_out) {
  2087. out_of_range_error(PSTR("(B)ack"));
  2088. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2089. }
  2090. return;
  2091. }
  2092. #endif // AUTO_BED_LEVELING_GRID
  2093. #ifdef Z_PROBE_SLED
  2094. dock_sled(false); // engage (un-dock) the probe
  2095. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2096. deploy_z_probe();
  2097. #endif
  2098. st_synchronize();
  2099. if (!dryrun) {
  2100. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2101. plan_bed_level_matrix.set_to_identity();
  2102. #ifdef DELTA
  2103. reset_bed_level();
  2104. #else //!DELTA
  2105. //vector_3 corrected_position = plan_get_position_mm();
  2106. //corrected_position.debug("position before G29");
  2107. vector_3 uncorrected_position = plan_get_position();
  2108. //uncorrected_position.debug("position during G29");
  2109. current_position[X_AXIS] = uncorrected_position.x;
  2110. current_position[Y_AXIS] = uncorrected_position.y;
  2111. current_position[Z_AXIS] = uncorrected_position.z;
  2112. sync_plan_position();
  2113. #endif // !DELTA
  2114. }
  2115. setup_for_endstop_move();
  2116. feedrate = homing_feedrate[Z_AXIS];
  2117. #ifdef AUTO_BED_LEVELING_GRID
  2118. // probe at the points of a lattice grid
  2119. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2120. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2121. #ifdef DELTA
  2122. delta_grid_spacing[0] = xGridSpacing;
  2123. delta_grid_spacing[1] = yGridSpacing;
  2124. float z_offset = zprobe_zoffset;
  2125. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2126. #else // !DELTA
  2127. // solve the plane equation ax + by + d = z
  2128. // A is the matrix with rows [x y 1] for all the probed points
  2129. // B is the vector of the Z positions
  2130. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2131. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2132. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2133. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2134. eqnBVector[abl2], // "B" vector of Z points
  2135. mean = 0.0;
  2136. #endif // !DELTA
  2137. int probePointCounter = 0;
  2138. bool zig = true;
  2139. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2140. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2141. int xStart, xStop, xInc;
  2142. if (zig) {
  2143. xStart = 0;
  2144. xStop = auto_bed_leveling_grid_points;
  2145. xInc = 1;
  2146. }
  2147. else {
  2148. xStart = auto_bed_leveling_grid_points - 1;
  2149. xStop = -1;
  2150. xInc = -1;
  2151. }
  2152. #ifndef DELTA
  2153. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2154. // This gets the probe points in more readable order.
  2155. if (!do_topography_map) zig = !zig;
  2156. #else
  2157. zig = !zig;
  2158. #endif
  2159. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2160. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2161. // raise extruder
  2162. float measured_z,
  2163. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2164. #ifdef DELTA
  2165. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2166. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2167. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2168. #endif //DELTA
  2169. ProbeAction act;
  2170. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2171. act = ProbeDeployAndStow;
  2172. else if (yCount == 0 && xCount == xStart)
  2173. act = ProbeDeploy;
  2174. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2175. act = ProbeStow;
  2176. else
  2177. act = ProbeStay;
  2178. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2179. #ifndef DELTA
  2180. mean += measured_z;
  2181. eqnBVector[probePointCounter] = measured_z;
  2182. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2183. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2184. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2185. #else
  2186. bed_level[xCount][yCount] = measured_z + z_offset;
  2187. #endif
  2188. probePointCounter++;
  2189. idle();
  2190. } //xProbe
  2191. } //yProbe
  2192. clean_up_after_endstop_move();
  2193. #ifdef DELTA
  2194. if (!dryrun) extrapolate_unprobed_bed_level();
  2195. print_bed_level();
  2196. #else // !DELTA
  2197. // solve lsq problem
  2198. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2199. mean /= abl2;
  2200. if (verbose_level) {
  2201. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2202. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2203. SERIAL_PROTOCOLPGM(" b: ");
  2204. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2205. SERIAL_PROTOCOLPGM(" d: ");
  2206. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2207. SERIAL_EOL;
  2208. if (verbose_level > 2) {
  2209. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2210. SERIAL_PROTOCOL_F(mean, 8);
  2211. SERIAL_EOL;
  2212. }
  2213. }
  2214. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2215. free(plane_equation_coefficients);
  2216. // Show the Topography map if enabled
  2217. if (do_topography_map) {
  2218. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2219. SERIAL_PROTOCOLPGM("+-----------+\n");
  2220. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2221. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2222. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2223. SERIAL_PROTOCOLPGM("+-----------+\n");
  2224. float min_diff = 999;
  2225. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2226. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2227. int ind = yy * auto_bed_leveling_grid_points + xx;
  2228. float diff = eqnBVector[ind] - mean;
  2229. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2230. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2231. z_tmp = 0;
  2232. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2233. if (eqnBVector[ind] - z_tmp < min_diff)
  2234. min_diff = eqnBVector[ind] - z_tmp;
  2235. if (diff >= 0.0)
  2236. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2237. else
  2238. SERIAL_PROTOCOLCHAR(' ');
  2239. SERIAL_PROTOCOL_F(diff, 5);
  2240. } // xx
  2241. SERIAL_EOL;
  2242. } // yy
  2243. SERIAL_EOL;
  2244. if (verbose_level > 3) {
  2245. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2246. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2247. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2248. int ind = yy * auto_bed_leveling_grid_points + xx;
  2249. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2250. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2251. z_tmp = 0;
  2252. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2253. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2254. if (diff >= 0.0)
  2255. SERIAL_PROTOCOLPGM(" +");
  2256. // Include + for column alignment
  2257. else
  2258. SERIAL_PROTOCOLCHAR(' ');
  2259. SERIAL_PROTOCOL_F(diff, 5);
  2260. } // xx
  2261. SERIAL_EOL;
  2262. } // yy
  2263. SERIAL_EOL;
  2264. }
  2265. } //do_topography_map
  2266. #endif //!DELTA
  2267. #else // !AUTO_BED_LEVELING_GRID
  2268. // Actions for each probe
  2269. ProbeAction p1, p2, p3;
  2270. if (deploy_probe_for_each_reading)
  2271. p1 = p2 = p3 = ProbeDeployAndStow;
  2272. else
  2273. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2274. // Probe at 3 arbitrary points
  2275. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2276. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2277. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2278. clean_up_after_endstop_move();
  2279. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2280. #endif // !AUTO_BED_LEVELING_GRID
  2281. #ifndef DELTA
  2282. if (verbose_level > 0)
  2283. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2284. if (!dryrun) {
  2285. // Correct the Z height difference from z-probe position and hotend tip position.
  2286. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2287. // When the bed is uneven, this height must be corrected.
  2288. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2289. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2290. z_tmp = current_position[Z_AXIS],
  2291. real_z = st_get_position_mm(Z_AXIS); //get the real Z (since the auto bed leveling is already correcting the plane)
  2292. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2293. //line below controls z probe offset, zprobe_zoffset is the actual offset that can be modified via m851 or is read from EEPROM
  2294. current_position[Z_AXIS] = z_tmp - real_z - zprobe_zoffset; // The difference is added to current position and sent to planner.
  2295. sync_plan_position();
  2296. }
  2297. #endif // !DELTA
  2298. #ifdef Z_PROBE_SLED
  2299. dock_sled(true); // dock the probe
  2300. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2301. stow_z_probe();
  2302. #endif
  2303. #ifdef Z_PROBE_END_SCRIPT
  2304. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2305. st_synchronize();
  2306. #endif
  2307. }
  2308. #ifndef Z_PROBE_SLED
  2309. inline void gcode_G30() {
  2310. deploy_z_probe(); // Engage Z Servo endstop if available
  2311. st_synchronize();
  2312. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2313. setup_for_endstop_move();
  2314. feedrate = homing_feedrate[Z_AXIS];
  2315. run_z_probe();
  2316. SERIAL_PROTOCOLPGM("Bed X: ");
  2317. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2318. SERIAL_PROTOCOLPGM(" Y: ");
  2319. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2320. SERIAL_PROTOCOLPGM(" Z: ");
  2321. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2322. SERIAL_EOL;
  2323. clean_up_after_endstop_move();
  2324. stow_z_probe(); // Retract Z Servo endstop if available
  2325. }
  2326. #endif //!Z_PROBE_SLED
  2327. #endif //ENABLE_AUTO_BED_LEVELING
  2328. /**
  2329. * G92: Set current position to given X Y Z E
  2330. */
  2331. inline void gcode_G92() {
  2332. if (!code_seen(axis_codes[E_AXIS]))
  2333. st_synchronize();
  2334. bool didXYZ = false;
  2335. for (int i = 0; i < NUM_AXIS; i++) {
  2336. if (code_seen(axis_codes[i])) {
  2337. float v = current_position[i] = code_value();
  2338. if (i == E_AXIS)
  2339. plan_set_e_position(v);
  2340. else
  2341. didXYZ = true;
  2342. }
  2343. }
  2344. if (didXYZ) {
  2345. #if defined(DELTA) || defined(SCARA)
  2346. sync_plan_position_delta();
  2347. #else
  2348. sync_plan_position();
  2349. #endif
  2350. }
  2351. }
  2352. #ifdef ULTIPANEL
  2353. /**
  2354. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2355. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2356. */
  2357. inline void gcode_M0_M1() {
  2358. char *args = current_command_args;
  2359. millis_t codenum = 0;
  2360. bool hasP = false, hasS = false;
  2361. if (code_seen('P')) {
  2362. codenum = code_value_short(); // milliseconds to wait
  2363. hasP = codenum > 0;
  2364. }
  2365. if (code_seen('S')) {
  2366. codenum = code_value() * 1000; // seconds to wait
  2367. hasS = codenum > 0;
  2368. }
  2369. if (!hasP && !hasS && *args != '\0')
  2370. lcd_setstatus(args, true);
  2371. else {
  2372. LCD_MESSAGEPGM(MSG_USERWAIT);
  2373. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2374. dontExpireStatus();
  2375. #endif
  2376. }
  2377. lcd_ignore_click();
  2378. st_synchronize();
  2379. refresh_cmd_timeout();
  2380. if (codenum > 0) {
  2381. codenum += previous_cmd_ms; // wait until this time for a click
  2382. while (millis() < codenum && !lcd_clicked()) idle();
  2383. lcd_ignore_click(false);
  2384. }
  2385. else {
  2386. if (!lcd_detected()) return;
  2387. while (!lcd_clicked()) idle();
  2388. }
  2389. if (IS_SD_PRINTING)
  2390. LCD_MESSAGEPGM(MSG_RESUMING);
  2391. else
  2392. LCD_MESSAGEPGM(WELCOME_MSG);
  2393. }
  2394. #endif // ULTIPANEL
  2395. /**
  2396. * M17: Enable power on all stepper motors
  2397. */
  2398. inline void gcode_M17() {
  2399. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2400. enable_all_steppers();
  2401. }
  2402. #ifdef SDSUPPORT
  2403. /**
  2404. * M20: List SD card to serial output
  2405. */
  2406. inline void gcode_M20() {
  2407. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2408. card.ls();
  2409. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2410. }
  2411. /**
  2412. * M21: Init SD Card
  2413. */
  2414. inline void gcode_M21() {
  2415. card.initsd();
  2416. }
  2417. /**
  2418. * M22: Release SD Card
  2419. */
  2420. inline void gcode_M22() {
  2421. card.release();
  2422. }
  2423. /**
  2424. * M23: Select a file
  2425. */
  2426. inline void gcode_M23() {
  2427. card.openFile(current_command_args, true);
  2428. }
  2429. /**
  2430. * M24: Start SD Print
  2431. */
  2432. inline void gcode_M24() {
  2433. card.startFileprint();
  2434. print_job_start_ms = millis();
  2435. }
  2436. /**
  2437. * M25: Pause SD Print
  2438. */
  2439. inline void gcode_M25() {
  2440. card.pauseSDPrint();
  2441. }
  2442. /**
  2443. * M26: Set SD Card file index
  2444. */
  2445. inline void gcode_M26() {
  2446. if (card.cardOK && code_seen('S'))
  2447. card.setIndex(code_value_short());
  2448. }
  2449. /**
  2450. * M27: Get SD Card status
  2451. */
  2452. inline void gcode_M27() {
  2453. card.getStatus();
  2454. }
  2455. /**
  2456. * M28: Start SD Write
  2457. */
  2458. inline void gcode_M28() {
  2459. card.openFile(current_command_args, false);
  2460. }
  2461. /**
  2462. * M29: Stop SD Write
  2463. * Processed in write to file routine above
  2464. */
  2465. inline void gcode_M29() {
  2466. // card.saving = false;
  2467. }
  2468. /**
  2469. * M30 <filename>: Delete SD Card file
  2470. */
  2471. inline void gcode_M30() {
  2472. if (card.cardOK) {
  2473. card.closefile();
  2474. card.removeFile(current_command_args);
  2475. }
  2476. }
  2477. #endif
  2478. /**
  2479. * M31: Get the time since the start of SD Print (or last M109)
  2480. */
  2481. inline void gcode_M31() {
  2482. print_job_stop_ms = millis();
  2483. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2484. int min = t / 60, sec = t % 60;
  2485. char time[30];
  2486. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2487. SERIAL_ECHO_START;
  2488. SERIAL_ECHOLN(time);
  2489. lcd_setstatus(time);
  2490. autotempShutdown();
  2491. }
  2492. #ifdef SDSUPPORT
  2493. /**
  2494. * M32: Select file and start SD Print
  2495. */
  2496. inline void gcode_M32() {
  2497. if (card.sdprinting)
  2498. st_synchronize();
  2499. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2500. if (!namestartpos)
  2501. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2502. else
  2503. namestartpos++; //to skip the '!'
  2504. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2505. if (card.cardOK) {
  2506. card.openFile(namestartpos, true, !call_procedure);
  2507. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2508. card.setIndex(code_value_short());
  2509. card.startFileprint();
  2510. if (!call_procedure)
  2511. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2512. }
  2513. }
  2514. #ifdef LONG_FILENAME_HOST_SUPPORT
  2515. /**
  2516. * M33: Get the long full path of a file or folder
  2517. *
  2518. * Parameters:
  2519. * <dospath> Case-insensitive DOS-style path to a file or folder
  2520. *
  2521. * Example:
  2522. * M33 miscel~1/armchair/armcha~1.gco
  2523. *
  2524. * Output:
  2525. * /Miscellaneous/Armchair/Armchair.gcode
  2526. */
  2527. inline void gcode_M33() {
  2528. card.printLongPath(current_command_args);
  2529. }
  2530. #endif
  2531. /**
  2532. * M928: Start SD Write
  2533. */
  2534. inline void gcode_M928() {
  2535. card.openLogFile(current_command_args);
  2536. }
  2537. #endif // SDSUPPORT
  2538. /**
  2539. * M42: Change pin status via GCode
  2540. */
  2541. inline void gcode_M42() {
  2542. if (code_seen('S')) {
  2543. int pin_status = code_value_short(),
  2544. pin_number = LED_PIN;
  2545. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2546. pin_number = code_value_short();
  2547. for (int8_t i = 0; i < COUNT(sensitive_pins); i++) {
  2548. if (sensitive_pins[i] == pin_number) {
  2549. pin_number = -1;
  2550. break;
  2551. }
  2552. }
  2553. #if HAS_FAN
  2554. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2555. #endif
  2556. if (pin_number > -1) {
  2557. pinMode(pin_number, OUTPUT);
  2558. digitalWrite(pin_number, pin_status);
  2559. analogWrite(pin_number, pin_status);
  2560. }
  2561. } // code_seen('S')
  2562. }
  2563. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2564. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2565. #ifdef Z_PROBE_ENDSTOP
  2566. #if !HAS_Z_PROBE
  2567. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2568. #endif
  2569. #elif !HAS_Z_MIN
  2570. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2571. #endif
  2572. /**
  2573. * M48: Z-Probe repeatability measurement function.
  2574. *
  2575. * Usage:
  2576. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2577. * P = Number of sampled points (4-50, default 10)
  2578. * X = Sample X position
  2579. * Y = Sample Y position
  2580. * V = Verbose level (0-4, default=1)
  2581. * E = Engage probe for each reading
  2582. * L = Number of legs of movement before probe
  2583. *
  2584. * This function assumes the bed has been homed. Specifically, that a G28 command
  2585. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2586. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2587. * regenerated.
  2588. */
  2589. inline void gcode_M48() {
  2590. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2591. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2592. if (code_seen('V')) {
  2593. verbose_level = code_value_short();
  2594. if (verbose_level < 0 || verbose_level > 4 ) {
  2595. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2596. return;
  2597. }
  2598. }
  2599. if (verbose_level > 0)
  2600. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2601. if (code_seen('P')) {
  2602. n_samples = code_value_short();
  2603. if (n_samples < 4 || n_samples > 50) {
  2604. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2605. return;
  2606. }
  2607. }
  2608. double X_current = st_get_position_mm(X_AXIS),
  2609. Y_current = st_get_position_mm(Y_AXIS),
  2610. Z_current = st_get_position_mm(Z_AXIS),
  2611. E_current = st_get_position_mm(E_AXIS),
  2612. X_probe_location = X_current, Y_probe_location = Y_current,
  2613. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2614. bool deploy_probe_for_each_reading = code_seen('E');
  2615. if (code_seen('X')) {
  2616. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2617. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2618. out_of_range_error(PSTR("X"));
  2619. return;
  2620. }
  2621. }
  2622. if (code_seen('Y')) {
  2623. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2624. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2625. out_of_range_error(PSTR("Y"));
  2626. return;
  2627. }
  2628. }
  2629. if (code_seen('L')) {
  2630. n_legs = code_value_short();
  2631. if (n_legs == 1) n_legs = 2;
  2632. if (n_legs < 0 || n_legs > 15) {
  2633. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2634. return;
  2635. }
  2636. }
  2637. //
  2638. // Do all the preliminary setup work. First raise the probe.
  2639. //
  2640. st_synchronize();
  2641. plan_bed_level_matrix.set_to_identity();
  2642. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2643. st_synchronize();
  2644. //
  2645. // Now get everything to the specified probe point So we can safely do a probe to
  2646. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2647. // use that as a starting point for each probe.
  2648. //
  2649. if (verbose_level > 2)
  2650. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2651. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2652. E_current,
  2653. homing_feedrate[X_AXIS]/60,
  2654. active_extruder);
  2655. st_synchronize();
  2656. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2657. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2658. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2659. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2660. //
  2661. // OK, do the initial probe to get us close to the bed.
  2662. // Then retrace the right amount and use that in subsequent probes
  2663. //
  2664. deploy_z_probe();
  2665. setup_for_endstop_move();
  2666. run_z_probe();
  2667. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2668. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2669. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2670. E_current,
  2671. homing_feedrate[X_AXIS]/60,
  2672. active_extruder);
  2673. st_synchronize();
  2674. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2675. if (deploy_probe_for_each_reading) stow_z_probe();
  2676. for (uint8_t n=0; n < n_samples; n++) {
  2677. // Make sure we are at the probe location
  2678. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2679. if (n_legs) {
  2680. millis_t ms = millis();
  2681. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2682. theta = RADIANS(ms % 360L);
  2683. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2684. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2685. //SERIAL_ECHOPAIR(" theta: ",theta);
  2686. //SERIAL_ECHOPAIR(" direction: ",dir);
  2687. //SERIAL_EOL;
  2688. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2689. ms = millis();
  2690. theta += RADIANS(dir * (ms % 20L));
  2691. radius += (ms % 10L) - 5L;
  2692. if (radius < 0.0) radius = -radius;
  2693. X_current = X_probe_location + cos(theta) * radius;
  2694. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2695. Y_current = Y_probe_location + sin(theta) * radius;
  2696. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2697. if (verbose_level > 3) {
  2698. SERIAL_ECHOPAIR("x: ", X_current);
  2699. SERIAL_ECHOPAIR("y: ", Y_current);
  2700. SERIAL_EOL;
  2701. }
  2702. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2703. } // n_legs loop
  2704. // Go back to the probe location
  2705. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2706. } // n_legs
  2707. if (deploy_probe_for_each_reading) {
  2708. deploy_z_probe();
  2709. delay(1000);
  2710. }
  2711. setup_for_endstop_move();
  2712. run_z_probe();
  2713. sample_set[n] = current_position[Z_AXIS];
  2714. //
  2715. // Get the current mean for the data points we have so far
  2716. //
  2717. sum = 0.0;
  2718. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2719. mean = sum / (n + 1);
  2720. //
  2721. // Now, use that mean to calculate the standard deviation for the
  2722. // data points we have so far
  2723. //
  2724. sum = 0.0;
  2725. for (uint8_t j = 0; j <= n; j++) {
  2726. float ss = sample_set[j] - mean;
  2727. sum += ss * ss;
  2728. }
  2729. sigma = sqrt(sum / (n + 1));
  2730. if (verbose_level > 1) {
  2731. SERIAL_PROTOCOL(n+1);
  2732. SERIAL_PROTOCOLPGM(" of ");
  2733. SERIAL_PROTOCOL((int)n_samples);
  2734. SERIAL_PROTOCOLPGM(" z: ");
  2735. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2736. if (verbose_level > 2) {
  2737. SERIAL_PROTOCOLPGM(" mean: ");
  2738. SERIAL_PROTOCOL_F(mean,6);
  2739. SERIAL_PROTOCOLPGM(" sigma: ");
  2740. SERIAL_PROTOCOL_F(sigma,6);
  2741. }
  2742. }
  2743. if (verbose_level > 0) SERIAL_EOL;
  2744. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2745. st_synchronize();
  2746. // Stow between
  2747. if (deploy_probe_for_each_reading) {
  2748. stow_z_probe();
  2749. delay(1000);
  2750. }
  2751. }
  2752. // Stow after
  2753. if (!deploy_probe_for_each_reading) {
  2754. stow_z_probe();
  2755. delay(1000);
  2756. }
  2757. clean_up_after_endstop_move();
  2758. if (verbose_level > 0) {
  2759. SERIAL_PROTOCOLPGM("Mean: ");
  2760. SERIAL_PROTOCOL_F(mean, 6);
  2761. SERIAL_EOL;
  2762. }
  2763. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2764. SERIAL_PROTOCOL_F(sigma, 6);
  2765. SERIAL_EOL; SERIAL_EOL;
  2766. }
  2767. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2768. /**
  2769. * M104: Set hot end temperature
  2770. */
  2771. inline void gcode_M104() {
  2772. if (setTargetedHotend(104)) return;
  2773. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2774. if (code_seen('S')) {
  2775. float temp = code_value();
  2776. setTargetHotend(temp, target_extruder);
  2777. #ifdef DUAL_X_CARRIAGE
  2778. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2779. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2780. #endif
  2781. }
  2782. }
  2783. /**
  2784. * M105: Read hot end and bed temperature
  2785. */
  2786. inline void gcode_M105() {
  2787. if (setTargetedHotend(105)) return;
  2788. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2789. SERIAL_PROTOCOLPGM(MSG_OK);
  2790. #if HAS_TEMP_0 || defined(HEATER_0_USES_MAX6675)
  2791. SERIAL_PROTOCOLPGM(" T:");
  2792. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2793. SERIAL_PROTOCOLPGM(" /");
  2794. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2795. #endif
  2796. #if HAS_TEMP_BED
  2797. SERIAL_PROTOCOLPGM(" B:");
  2798. SERIAL_PROTOCOL_F(degBed(), 1);
  2799. SERIAL_PROTOCOLPGM(" /");
  2800. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2801. #endif
  2802. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2803. SERIAL_PROTOCOLPGM(" T");
  2804. SERIAL_PROTOCOL(e);
  2805. SERIAL_PROTOCOLCHAR(':');
  2806. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2807. SERIAL_PROTOCOLPGM(" /");
  2808. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2809. }
  2810. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2811. SERIAL_ERROR_START;
  2812. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2813. #endif
  2814. SERIAL_PROTOCOLPGM(" @:");
  2815. #ifdef EXTRUDER_WATTS
  2816. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2817. SERIAL_PROTOCOLCHAR('W');
  2818. #else
  2819. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2820. #endif
  2821. SERIAL_PROTOCOLPGM(" B@:");
  2822. #ifdef BED_WATTS
  2823. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2824. SERIAL_PROTOCOLCHAR('W');
  2825. #else
  2826. SERIAL_PROTOCOL(getHeaterPower(-1));
  2827. #endif
  2828. #ifdef SHOW_TEMP_ADC_VALUES
  2829. #if HAS_TEMP_BED
  2830. SERIAL_PROTOCOLPGM(" ADC B:");
  2831. SERIAL_PROTOCOL_F(degBed(),1);
  2832. SERIAL_PROTOCOLPGM("C->");
  2833. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2834. #endif
  2835. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2836. SERIAL_PROTOCOLPGM(" T");
  2837. SERIAL_PROTOCOL(cur_extruder);
  2838. SERIAL_PROTOCOLCHAR(':');
  2839. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2840. SERIAL_PROTOCOLPGM("C->");
  2841. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2842. }
  2843. #endif
  2844. SERIAL_EOL;
  2845. }
  2846. #if HAS_FAN
  2847. /**
  2848. * M106: Set Fan Speed
  2849. */
  2850. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2851. /**
  2852. * M107: Fan Off
  2853. */
  2854. inline void gcode_M107() { fanSpeed = 0; }
  2855. #endif // HAS_FAN
  2856. /**
  2857. * M109: Wait for extruder(s) to reach temperature
  2858. */
  2859. inline void gcode_M109() {
  2860. if (setTargetedHotend(109)) return;
  2861. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2862. LCD_MESSAGEPGM(MSG_HEATING);
  2863. no_wait_for_cooling = code_seen('S');
  2864. if (no_wait_for_cooling || code_seen('R')) {
  2865. float temp = code_value();
  2866. setTargetHotend(temp, target_extruder);
  2867. #ifdef DUAL_X_CARRIAGE
  2868. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2869. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2870. #endif
  2871. }
  2872. #ifdef AUTOTEMP
  2873. autotemp_enabled = code_seen('F');
  2874. if (autotemp_enabled) autotemp_factor = code_value();
  2875. if (code_seen('S')) autotemp_min = code_value();
  2876. if (code_seen('B')) autotemp_max = code_value();
  2877. #endif
  2878. millis_t temp_ms = millis();
  2879. /* See if we are heating up or cooling down */
  2880. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2881. cancel_heatup = false;
  2882. #ifdef TEMP_RESIDENCY_TIME
  2883. long residency_start_ms = -1;
  2884. /* continue to loop until we have reached the target temp
  2885. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2886. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2887. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2888. #else
  2889. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2890. #endif //TEMP_RESIDENCY_TIME
  2891. { // while loop
  2892. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2893. SERIAL_PROTOCOLPGM("T:");
  2894. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2895. SERIAL_PROTOCOLPGM(" E:");
  2896. SERIAL_PROTOCOL((int)target_extruder);
  2897. #ifdef TEMP_RESIDENCY_TIME
  2898. SERIAL_PROTOCOLPGM(" W:");
  2899. if (residency_start_ms > -1) {
  2900. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2901. SERIAL_PROTOCOLLN(temp_ms);
  2902. }
  2903. else {
  2904. SERIAL_PROTOCOLLNPGM("?");
  2905. }
  2906. #else
  2907. SERIAL_EOL;
  2908. #endif
  2909. temp_ms = millis();
  2910. }
  2911. idle();
  2912. #ifdef TEMP_RESIDENCY_TIME
  2913. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2914. // or when current temp falls outside the hysteresis after target temp was reached
  2915. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2916. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2917. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2918. {
  2919. residency_start_ms = millis();
  2920. }
  2921. #endif //TEMP_RESIDENCY_TIME
  2922. }
  2923. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2924. refresh_cmd_timeout();
  2925. print_job_start_ms = previous_cmd_ms;
  2926. }
  2927. #if HAS_TEMP_BED
  2928. /**
  2929. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2930. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2931. */
  2932. inline void gcode_M190() {
  2933. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2934. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2935. no_wait_for_cooling = code_seen('S');
  2936. if (no_wait_for_cooling || code_seen('R'))
  2937. setTargetBed(code_value());
  2938. millis_t temp_ms = millis();
  2939. cancel_heatup = false;
  2940. target_direction = isHeatingBed(); // true if heating, false if cooling
  2941. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2942. millis_t ms = millis();
  2943. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2944. temp_ms = ms;
  2945. float tt = degHotend(active_extruder);
  2946. SERIAL_PROTOCOLPGM("T:");
  2947. SERIAL_PROTOCOL(tt);
  2948. SERIAL_PROTOCOLPGM(" E:");
  2949. SERIAL_PROTOCOL((int)active_extruder);
  2950. SERIAL_PROTOCOLPGM(" B:");
  2951. SERIAL_PROTOCOL_F(degBed(), 1);
  2952. SERIAL_EOL;
  2953. }
  2954. idle();
  2955. }
  2956. LCD_MESSAGEPGM(MSG_BED_DONE);
  2957. refresh_cmd_timeout();
  2958. }
  2959. #endif // HAS_TEMP_BED
  2960. /**
  2961. * M111: Set the debug level
  2962. */
  2963. inline void gcode_M111() {
  2964. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
  2965. if (marlin_debug_flags & DEBUG_ECHO) {
  2966. SERIAL_ECHO_START;
  2967. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  2968. }
  2969. // FOR MOMENT NOT ACTIVE
  2970. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  2971. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  2972. if (marlin_debug_flags & DEBUG_DRYRUN) {
  2973. SERIAL_ECHO_START;
  2974. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  2975. disable_all_heaters();
  2976. }
  2977. }
  2978. /**
  2979. * M112: Emergency Stop
  2980. */
  2981. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  2982. #ifdef BARICUDA
  2983. #if HAS_HEATER_1
  2984. /**
  2985. * M126: Heater 1 valve open
  2986. */
  2987. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2988. /**
  2989. * M127: Heater 1 valve close
  2990. */
  2991. inline void gcode_M127() { ValvePressure = 0; }
  2992. #endif
  2993. #if HAS_HEATER_2
  2994. /**
  2995. * M128: Heater 2 valve open
  2996. */
  2997. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2998. /**
  2999. * M129: Heater 2 valve close
  3000. */
  3001. inline void gcode_M129() { EtoPPressure = 0; }
  3002. #endif
  3003. #endif //BARICUDA
  3004. /**
  3005. * M140: Set bed temperature
  3006. */
  3007. inline void gcode_M140() {
  3008. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3009. if (code_seen('S')) setTargetBed(code_value());
  3010. }
  3011. #ifdef ULTIPANEL
  3012. /**
  3013. * M145: Set the heatup state for a material in the LCD menu
  3014. * S<material> (0=PLA, 1=ABS)
  3015. * H<hotend temp>
  3016. * B<bed temp>
  3017. * F<fan speed>
  3018. */
  3019. inline void gcode_M145() {
  3020. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3021. if (material < 0 || material > 1) {
  3022. SERIAL_ERROR_START;
  3023. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3024. }
  3025. else {
  3026. int v;
  3027. switch (material) {
  3028. case 0:
  3029. if (code_seen('H')) {
  3030. v = code_value_short();
  3031. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3032. }
  3033. if (code_seen('F')) {
  3034. v = code_value_short();
  3035. plaPreheatFanSpeed = constrain(v, 0, 255);
  3036. }
  3037. #if TEMP_SENSOR_BED != 0
  3038. if (code_seen('B')) {
  3039. v = code_value_short();
  3040. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3041. }
  3042. #endif
  3043. break;
  3044. case 1:
  3045. if (code_seen('H')) {
  3046. v = code_value_short();
  3047. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3048. }
  3049. if (code_seen('F')) {
  3050. v = code_value_short();
  3051. absPreheatFanSpeed = constrain(v, 0, 255);
  3052. }
  3053. #if TEMP_SENSOR_BED != 0
  3054. if (code_seen('B')) {
  3055. v = code_value_short();
  3056. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3057. }
  3058. #endif
  3059. break;
  3060. }
  3061. }
  3062. }
  3063. #endif
  3064. #if HAS_POWER_SWITCH
  3065. /**
  3066. * M80: Turn on Power Supply
  3067. */
  3068. inline void gcode_M80() {
  3069. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3070. // If you have a switch on suicide pin, this is useful
  3071. // if you want to start another print with suicide feature after
  3072. // a print without suicide...
  3073. #if HAS_SUICIDE
  3074. OUT_WRITE(SUICIDE_PIN, HIGH);
  3075. #endif
  3076. #ifdef ULTIPANEL
  3077. powersupply = true;
  3078. LCD_MESSAGEPGM(WELCOME_MSG);
  3079. lcd_update();
  3080. #endif
  3081. }
  3082. #endif // HAS_POWER_SWITCH
  3083. /**
  3084. * M81: Turn off Power, including Power Supply, if there is one.
  3085. *
  3086. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3087. */
  3088. inline void gcode_M81() {
  3089. disable_all_heaters();
  3090. finishAndDisableSteppers();
  3091. fanSpeed = 0;
  3092. delay(1000); // Wait 1 second before switching off
  3093. #if HAS_SUICIDE
  3094. st_synchronize();
  3095. suicide();
  3096. #elif HAS_POWER_SWITCH
  3097. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3098. #endif
  3099. #ifdef ULTIPANEL
  3100. #if HAS_POWER_SWITCH
  3101. powersupply = false;
  3102. #endif
  3103. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3104. lcd_update();
  3105. #endif
  3106. }
  3107. /**
  3108. * M82: Set E codes absolute (default)
  3109. */
  3110. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3111. /**
  3112. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3113. */
  3114. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3115. /**
  3116. * M18, M84: Disable all stepper motors
  3117. */
  3118. inline void gcode_M18_M84() {
  3119. if (code_seen('S')) {
  3120. stepper_inactive_time = code_value() * 1000;
  3121. }
  3122. else {
  3123. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3124. if (all_axis) {
  3125. finishAndDisableSteppers();
  3126. }
  3127. else {
  3128. st_synchronize();
  3129. if (code_seen('X')) disable_x();
  3130. if (code_seen('Y')) disable_y();
  3131. if (code_seen('Z')) disable_z();
  3132. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3133. if (code_seen('E')) {
  3134. disable_e0();
  3135. disable_e1();
  3136. disable_e2();
  3137. disable_e3();
  3138. }
  3139. #endif
  3140. }
  3141. }
  3142. }
  3143. /**
  3144. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3145. */
  3146. inline void gcode_M85() {
  3147. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3148. }
  3149. /**
  3150. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3151. * (Follows the same syntax as G92)
  3152. */
  3153. inline void gcode_M92() {
  3154. for(int8_t i=0; i < NUM_AXIS; i++) {
  3155. if (code_seen(axis_codes[i])) {
  3156. if (i == E_AXIS) {
  3157. float value = code_value();
  3158. if (value < 20.0) {
  3159. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3160. max_e_jerk *= factor;
  3161. max_feedrate[i] *= factor;
  3162. axis_steps_per_sqr_second[i] *= factor;
  3163. }
  3164. axis_steps_per_unit[i] = value;
  3165. }
  3166. else {
  3167. axis_steps_per_unit[i] = code_value();
  3168. }
  3169. }
  3170. }
  3171. }
  3172. /**
  3173. * M114: Output current position to serial port
  3174. */
  3175. inline void gcode_M114() {
  3176. SERIAL_PROTOCOLPGM("X:");
  3177. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3178. SERIAL_PROTOCOLPGM(" Y:");
  3179. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3180. SERIAL_PROTOCOLPGM(" Z:");
  3181. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3182. SERIAL_PROTOCOLPGM(" E:");
  3183. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3184. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3185. SERIAL_PROTOCOL(st_get_position_mm(X_AXIS));
  3186. SERIAL_PROTOCOLPGM(" Y:");
  3187. SERIAL_PROTOCOL(st_get_position_mm(Y_AXIS));
  3188. SERIAL_PROTOCOLPGM(" Z:");
  3189. SERIAL_PROTOCOL(st_get_position_mm(Z_AXIS));
  3190. SERIAL_EOL;
  3191. #ifdef SCARA
  3192. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3193. SERIAL_PROTOCOL(delta[X_AXIS]);
  3194. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3195. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3196. SERIAL_EOL;
  3197. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3198. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3199. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3200. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3201. SERIAL_EOL;
  3202. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3203. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3204. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3205. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3206. SERIAL_EOL; SERIAL_EOL;
  3207. #endif
  3208. }
  3209. /**
  3210. * M115: Capabilities string
  3211. */
  3212. inline void gcode_M115() {
  3213. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3214. }
  3215. /**
  3216. * M117: Set LCD Status Message
  3217. */
  3218. inline void gcode_M117() {
  3219. lcd_setstatus(current_command_args);
  3220. }
  3221. /**
  3222. * M119: Output endstop states to serial output
  3223. */
  3224. inline void gcode_M119() {
  3225. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3226. #if HAS_X_MIN
  3227. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3228. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3229. #endif
  3230. #if HAS_X_MAX
  3231. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3232. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3233. #endif
  3234. #if HAS_Y_MIN
  3235. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3236. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3237. #endif
  3238. #if HAS_Y_MAX
  3239. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3240. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3241. #endif
  3242. #if HAS_Z_MIN
  3243. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3244. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3245. #endif
  3246. #if HAS_Z_MAX
  3247. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3248. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3249. #endif
  3250. #if HAS_Z2_MAX
  3251. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3252. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3253. #endif
  3254. #if HAS_Z_PROBE
  3255. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3256. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3257. #endif
  3258. }
  3259. /**
  3260. * M120: Enable endstops
  3261. */
  3262. inline void gcode_M120() { enable_endstops(true); }
  3263. /**
  3264. * M121: Disable endstops
  3265. */
  3266. inline void gcode_M121() { enable_endstops(false); }
  3267. #ifdef BLINKM
  3268. /**
  3269. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3270. */
  3271. inline void gcode_M150() {
  3272. SendColors(
  3273. code_seen('R') ? (byte)code_value_short() : 0,
  3274. code_seen('U') ? (byte)code_value_short() : 0,
  3275. code_seen('B') ? (byte)code_value_short() : 0
  3276. );
  3277. }
  3278. #endif // BLINKM
  3279. /**
  3280. * M200: Set filament diameter and set E axis units to cubic millimeters
  3281. *
  3282. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3283. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3284. */
  3285. inline void gcode_M200() {
  3286. if (setTargetedHotend(200)) return;
  3287. if (code_seen('D')) {
  3288. float diameter = code_value();
  3289. // setting any extruder filament size disables volumetric on the assumption that
  3290. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3291. // for all extruders
  3292. volumetric_enabled = (diameter != 0.0);
  3293. if (volumetric_enabled) {
  3294. filament_size[target_extruder] = diameter;
  3295. // make sure all extruders have some sane value for the filament size
  3296. for (int i=0; i<EXTRUDERS; i++)
  3297. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3298. }
  3299. }
  3300. else {
  3301. //reserved for setting filament diameter via UFID or filament measuring device
  3302. return;
  3303. }
  3304. calculate_volumetric_multipliers();
  3305. }
  3306. /**
  3307. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3308. */
  3309. inline void gcode_M201() {
  3310. for (int8_t i=0; i < NUM_AXIS; i++) {
  3311. if (code_seen(axis_codes[i])) {
  3312. max_acceleration_units_per_sq_second[i] = code_value();
  3313. }
  3314. }
  3315. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3316. reset_acceleration_rates();
  3317. }
  3318. #if 0 // Not used for Sprinter/grbl gen6
  3319. inline void gcode_M202() {
  3320. for(int8_t i=0; i < NUM_AXIS; i++) {
  3321. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3322. }
  3323. }
  3324. #endif
  3325. /**
  3326. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3327. */
  3328. inline void gcode_M203() {
  3329. for (int8_t i=0; i < NUM_AXIS; i++) {
  3330. if (code_seen(axis_codes[i])) {
  3331. max_feedrate[i] = code_value();
  3332. }
  3333. }
  3334. }
  3335. /**
  3336. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3337. *
  3338. * P = Printing moves
  3339. * R = Retract only (no X, Y, Z) moves
  3340. * T = Travel (non printing) moves
  3341. *
  3342. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3343. */
  3344. inline void gcode_M204() {
  3345. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3346. travel_acceleration = acceleration = code_value();
  3347. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3348. SERIAL_EOL;
  3349. }
  3350. if (code_seen('P')) {
  3351. acceleration = code_value();
  3352. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3353. SERIAL_EOL;
  3354. }
  3355. if (code_seen('R')) {
  3356. retract_acceleration = code_value();
  3357. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3358. SERIAL_EOL;
  3359. }
  3360. if (code_seen('T')) {
  3361. travel_acceleration = code_value();
  3362. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3363. SERIAL_EOL;
  3364. }
  3365. }
  3366. /**
  3367. * M205: Set Advanced Settings
  3368. *
  3369. * S = Min Feed Rate (mm/s)
  3370. * T = Min Travel Feed Rate (mm/s)
  3371. * B = Min Segment Time (µs)
  3372. * X = Max XY Jerk (mm/s/s)
  3373. * Z = Max Z Jerk (mm/s/s)
  3374. * E = Max E Jerk (mm/s/s)
  3375. */
  3376. inline void gcode_M205() {
  3377. if (code_seen('S')) minimumfeedrate = code_value();
  3378. if (code_seen('T')) mintravelfeedrate = code_value();
  3379. if (code_seen('B')) minsegmenttime = code_value();
  3380. if (code_seen('X')) max_xy_jerk = code_value();
  3381. if (code_seen('Z')) max_z_jerk = code_value();
  3382. if (code_seen('E')) max_e_jerk = code_value();
  3383. }
  3384. /**
  3385. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3386. */
  3387. inline void gcode_M206() {
  3388. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3389. if (code_seen(axis_codes[i])) {
  3390. home_offset[i] = code_value();
  3391. }
  3392. }
  3393. #ifdef SCARA
  3394. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3395. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3396. #endif
  3397. }
  3398. #ifdef DELTA
  3399. /**
  3400. * M665: Set delta configurations
  3401. *
  3402. * L = diagonal rod
  3403. * R = delta radius
  3404. * S = segments per second
  3405. */
  3406. inline void gcode_M665() {
  3407. if (code_seen('L')) delta_diagonal_rod = code_value();
  3408. if (code_seen('R')) delta_radius = code_value();
  3409. if (code_seen('S')) delta_segments_per_second = code_value();
  3410. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3411. }
  3412. /**
  3413. * M666: Set delta endstop adjustment
  3414. */
  3415. inline void gcode_M666() {
  3416. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3417. if (code_seen(axis_codes[i])) {
  3418. endstop_adj[i] = code_value();
  3419. }
  3420. }
  3421. }
  3422. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3423. /**
  3424. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3425. */
  3426. inline void gcode_M666() {
  3427. if (code_seen('Z')) z_endstop_adj = code_value();
  3428. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3429. SERIAL_EOL;
  3430. }
  3431. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3432. #ifdef FWRETRACT
  3433. /**
  3434. * M207: Set firmware retraction values
  3435. *
  3436. * S[+mm] retract_length
  3437. * W[+mm] retract_length_swap (multi-extruder)
  3438. * F[mm/min] retract_feedrate
  3439. * Z[mm] retract_zlift
  3440. */
  3441. inline void gcode_M207() {
  3442. if (code_seen('S')) retract_length = code_value();
  3443. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3444. if (code_seen('Z')) retract_zlift = code_value();
  3445. #if EXTRUDERS > 1
  3446. if (code_seen('W')) retract_length_swap = code_value();
  3447. #endif
  3448. }
  3449. /**
  3450. * M208: Set firmware un-retraction values
  3451. *
  3452. * S[+mm] retract_recover_length (in addition to M207 S*)
  3453. * W[+mm] retract_recover_length_swap (multi-extruder)
  3454. * F[mm/min] retract_recover_feedrate
  3455. */
  3456. inline void gcode_M208() {
  3457. if (code_seen('S')) retract_recover_length = code_value();
  3458. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3459. #if EXTRUDERS > 1
  3460. if (code_seen('W')) retract_recover_length_swap = code_value();
  3461. #endif
  3462. }
  3463. /**
  3464. * M209: Enable automatic retract (M209 S1)
  3465. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3466. */
  3467. inline void gcode_M209() {
  3468. if (code_seen('S')) {
  3469. int t = code_value_short();
  3470. switch(t) {
  3471. case 0:
  3472. autoretract_enabled = false;
  3473. break;
  3474. case 1:
  3475. autoretract_enabled = true;
  3476. break;
  3477. default:
  3478. unknown_command_error();
  3479. return;
  3480. }
  3481. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3482. }
  3483. }
  3484. #endif // FWRETRACT
  3485. #if EXTRUDERS > 1
  3486. /**
  3487. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3488. */
  3489. inline void gcode_M218() {
  3490. if (setTargetedHotend(218)) return;
  3491. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3492. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3493. #ifdef DUAL_X_CARRIAGE
  3494. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3495. #endif
  3496. SERIAL_ECHO_START;
  3497. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3498. for (int e = 0; e < EXTRUDERS; e++) {
  3499. SERIAL_CHAR(' ');
  3500. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3501. SERIAL_CHAR(',');
  3502. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3503. #ifdef DUAL_X_CARRIAGE
  3504. SERIAL_CHAR(',');
  3505. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3506. #endif
  3507. }
  3508. SERIAL_EOL;
  3509. }
  3510. #endif // EXTRUDERS > 1
  3511. /**
  3512. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3513. */
  3514. inline void gcode_M220() {
  3515. if (code_seen('S')) feedrate_multiplier = code_value();
  3516. }
  3517. /**
  3518. * M221: Set extrusion percentage (M221 T0 S95)
  3519. */
  3520. inline void gcode_M221() {
  3521. if (code_seen('S')) {
  3522. int sval = code_value();
  3523. if (code_seen('T')) {
  3524. if (setTargetedHotend(221)) return;
  3525. extruder_multiplier[target_extruder] = sval;
  3526. }
  3527. else {
  3528. extruder_multiplier[active_extruder] = sval;
  3529. }
  3530. }
  3531. }
  3532. /**
  3533. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3534. */
  3535. inline void gcode_M226() {
  3536. if (code_seen('P')) {
  3537. int pin_number = code_value();
  3538. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3539. if (pin_state >= -1 && pin_state <= 1) {
  3540. for (int8_t i = 0; i < COUNT(sensitive_pins); i++) {
  3541. if (sensitive_pins[i] == pin_number) {
  3542. pin_number = -1;
  3543. break;
  3544. }
  3545. }
  3546. if (pin_number > -1) {
  3547. int target = LOW;
  3548. st_synchronize();
  3549. pinMode(pin_number, INPUT);
  3550. switch(pin_state){
  3551. case 1:
  3552. target = HIGH;
  3553. break;
  3554. case 0:
  3555. target = LOW;
  3556. break;
  3557. case -1:
  3558. target = !digitalRead(pin_number);
  3559. break;
  3560. }
  3561. while (digitalRead(pin_number) != target) idle();
  3562. } // pin_number > -1
  3563. } // pin_state -1 0 1
  3564. } // code_seen('P')
  3565. }
  3566. #if NUM_SERVOS > 0
  3567. /**
  3568. * M280: Get or set servo position. P<index> S<angle>
  3569. */
  3570. inline void gcode_M280() {
  3571. int servo_index = code_seen('P') ? code_value_short() : -1;
  3572. int servo_position = 0;
  3573. if (code_seen('S')) {
  3574. servo_position = code_value_short();
  3575. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3576. Servo *srv = &servo[servo_index];
  3577. srv->move(0, servo_position);
  3578. }
  3579. else {
  3580. SERIAL_ECHO_START;
  3581. SERIAL_ECHO("Servo ");
  3582. SERIAL_ECHO(servo_index);
  3583. SERIAL_ECHOLN(" out of range");
  3584. }
  3585. }
  3586. else if (servo_index >= 0) {
  3587. SERIAL_PROTOCOL(MSG_OK);
  3588. SERIAL_PROTOCOL(" Servo ");
  3589. SERIAL_PROTOCOL(servo_index);
  3590. SERIAL_PROTOCOL(": ");
  3591. SERIAL_PROTOCOL(servo[servo_index].read());
  3592. SERIAL_EOL;
  3593. }
  3594. }
  3595. #endif // NUM_SERVOS > 0
  3596. #if HAS_BUZZER
  3597. /**
  3598. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3599. */
  3600. inline void gcode_M300() {
  3601. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3602. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3603. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3604. buzz(beepP, beepS);
  3605. }
  3606. #endif // HAS_BUZZER
  3607. #ifdef PIDTEMP
  3608. /**
  3609. * M301: Set PID parameters P I D (and optionally C)
  3610. */
  3611. inline void gcode_M301() {
  3612. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3613. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3614. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3615. if (e < EXTRUDERS) { // catch bad input value
  3616. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3617. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3618. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3619. #ifdef PID_ADD_EXTRUSION_RATE
  3620. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3621. #endif
  3622. updatePID();
  3623. SERIAL_PROTOCOL(MSG_OK);
  3624. #ifdef PID_PARAMS_PER_EXTRUDER
  3625. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3626. SERIAL_PROTOCOL(e);
  3627. #endif // PID_PARAMS_PER_EXTRUDER
  3628. SERIAL_PROTOCOL(" p:");
  3629. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3630. SERIAL_PROTOCOL(" i:");
  3631. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3632. SERIAL_PROTOCOL(" d:");
  3633. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3634. #ifdef PID_ADD_EXTRUSION_RATE
  3635. SERIAL_PROTOCOL(" c:");
  3636. //Kc does not have scaling applied above, or in resetting defaults
  3637. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3638. #endif
  3639. SERIAL_EOL;
  3640. }
  3641. else {
  3642. SERIAL_ECHO_START;
  3643. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3644. }
  3645. }
  3646. #endif // PIDTEMP
  3647. #ifdef PIDTEMPBED
  3648. inline void gcode_M304() {
  3649. if (code_seen('P')) bedKp = code_value();
  3650. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3651. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3652. updatePID();
  3653. SERIAL_PROTOCOL(MSG_OK);
  3654. SERIAL_PROTOCOL(" p:");
  3655. SERIAL_PROTOCOL(bedKp);
  3656. SERIAL_PROTOCOL(" i:");
  3657. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3658. SERIAL_PROTOCOL(" d:");
  3659. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3660. SERIAL_EOL;
  3661. }
  3662. #endif // PIDTEMPBED
  3663. #if defined(CHDK) || HAS_PHOTOGRAPH
  3664. /**
  3665. * M240: Trigger a camera by emulating a Canon RC-1
  3666. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3667. */
  3668. inline void gcode_M240() {
  3669. #ifdef CHDK
  3670. OUT_WRITE(CHDK, HIGH);
  3671. chdkHigh = millis();
  3672. chdkActive = true;
  3673. #elif HAS_PHOTOGRAPH
  3674. const uint8_t NUM_PULSES = 16;
  3675. const float PULSE_LENGTH = 0.01524;
  3676. for (int i = 0; i < NUM_PULSES; i++) {
  3677. WRITE(PHOTOGRAPH_PIN, HIGH);
  3678. _delay_ms(PULSE_LENGTH);
  3679. WRITE(PHOTOGRAPH_PIN, LOW);
  3680. _delay_ms(PULSE_LENGTH);
  3681. }
  3682. delay(7.33);
  3683. for (int i = 0; i < NUM_PULSES; i++) {
  3684. WRITE(PHOTOGRAPH_PIN, HIGH);
  3685. _delay_ms(PULSE_LENGTH);
  3686. WRITE(PHOTOGRAPH_PIN, LOW);
  3687. _delay_ms(PULSE_LENGTH);
  3688. }
  3689. #endif // !CHDK && HAS_PHOTOGRAPH
  3690. }
  3691. #endif // CHDK || PHOTOGRAPH_PIN
  3692. #ifdef HAS_LCD_CONTRAST
  3693. /**
  3694. * M250: Read and optionally set the LCD contrast
  3695. */
  3696. inline void gcode_M250() {
  3697. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3698. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3699. SERIAL_PROTOCOL(lcd_contrast);
  3700. SERIAL_EOL;
  3701. }
  3702. #endif // HAS_LCD_CONTRAST
  3703. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3704. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3705. /**
  3706. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3707. */
  3708. inline void gcode_M302() {
  3709. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3710. }
  3711. #endif // PREVENT_DANGEROUS_EXTRUDE
  3712. /**
  3713. * M303: PID relay autotune
  3714. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3715. * E<extruder> (-1 for the bed)
  3716. * C<cycles>
  3717. */
  3718. inline void gcode_M303() {
  3719. int e = code_seen('E') ? code_value_short() : 0;
  3720. int c = code_seen('C') ? code_value_short() : 5;
  3721. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3722. PID_autotune(temp, e, c);
  3723. }
  3724. #ifdef SCARA
  3725. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3726. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3727. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3728. if (IsRunning()) {
  3729. //gcode_get_destination(); // For X Y Z E F
  3730. delta[X_AXIS] = delta_x;
  3731. delta[Y_AXIS] = delta_y;
  3732. calculate_SCARA_forward_Transform(delta);
  3733. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3734. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3735. prepare_move();
  3736. //ok_to_send();
  3737. return true;
  3738. }
  3739. return false;
  3740. }
  3741. /**
  3742. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3743. */
  3744. inline bool gcode_M360() {
  3745. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3746. return SCARA_move_to_cal(0, 120);
  3747. }
  3748. /**
  3749. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3750. */
  3751. inline bool gcode_M361() {
  3752. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3753. return SCARA_move_to_cal(90, 130);
  3754. }
  3755. /**
  3756. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3757. */
  3758. inline bool gcode_M362() {
  3759. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3760. return SCARA_move_to_cal(60, 180);
  3761. }
  3762. /**
  3763. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3764. */
  3765. inline bool gcode_M363() {
  3766. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3767. return SCARA_move_to_cal(50, 90);
  3768. }
  3769. /**
  3770. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3771. */
  3772. inline bool gcode_M364() {
  3773. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3774. return SCARA_move_to_cal(45, 135);
  3775. }
  3776. /**
  3777. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3778. */
  3779. inline void gcode_M365() {
  3780. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3781. if (code_seen(axis_codes[i])) {
  3782. axis_scaling[i] = code_value();
  3783. }
  3784. }
  3785. }
  3786. #endif // SCARA
  3787. #ifdef EXT_SOLENOID
  3788. void enable_solenoid(uint8_t num) {
  3789. switch(num) {
  3790. case 0:
  3791. OUT_WRITE(SOL0_PIN, HIGH);
  3792. break;
  3793. #if HAS_SOLENOID_1
  3794. case 1:
  3795. OUT_WRITE(SOL1_PIN, HIGH);
  3796. break;
  3797. #endif
  3798. #if HAS_SOLENOID_2
  3799. case 2:
  3800. OUT_WRITE(SOL2_PIN, HIGH);
  3801. break;
  3802. #endif
  3803. #if HAS_SOLENOID_3
  3804. case 3:
  3805. OUT_WRITE(SOL3_PIN, HIGH);
  3806. break;
  3807. #endif
  3808. default:
  3809. SERIAL_ECHO_START;
  3810. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3811. break;
  3812. }
  3813. }
  3814. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3815. void disable_all_solenoids() {
  3816. OUT_WRITE(SOL0_PIN, LOW);
  3817. OUT_WRITE(SOL1_PIN, LOW);
  3818. OUT_WRITE(SOL2_PIN, LOW);
  3819. OUT_WRITE(SOL3_PIN, LOW);
  3820. }
  3821. /**
  3822. * M380: Enable solenoid on the active extruder
  3823. */
  3824. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3825. /**
  3826. * M381: Disable all solenoids
  3827. */
  3828. inline void gcode_M381() { disable_all_solenoids(); }
  3829. #endif // EXT_SOLENOID
  3830. /**
  3831. * M400: Finish all moves
  3832. */
  3833. inline void gcode_M400() { st_synchronize(); }
  3834. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3835. #ifdef SERVO_ENDSTOPS
  3836. void raise_z_for_servo() {
  3837. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3838. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
  3839. if (zpos < z_dest)
  3840. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3841. }
  3842. #endif
  3843. /**
  3844. * M401: Engage Z Servo endstop if available
  3845. */
  3846. inline void gcode_M401() {
  3847. #ifdef SERVO_ENDSTOPS
  3848. raise_z_for_servo();
  3849. #endif
  3850. deploy_z_probe();
  3851. }
  3852. /**
  3853. * M402: Retract Z Servo endstop if enabled
  3854. */
  3855. inline void gcode_M402() {
  3856. #ifdef SERVO_ENDSTOPS
  3857. raise_z_for_servo();
  3858. #endif
  3859. stow_z_probe(false);
  3860. }
  3861. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3862. #ifdef FILAMENT_SENSOR
  3863. /**
  3864. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3865. */
  3866. inline void gcode_M404() {
  3867. #if HAS_FILWIDTH
  3868. if (code_seen('W')) {
  3869. filament_width_nominal = code_value();
  3870. }
  3871. else {
  3872. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3873. SERIAL_PROTOCOLLN(filament_width_nominal);
  3874. }
  3875. #endif
  3876. }
  3877. /**
  3878. * M405: Turn on filament sensor for control
  3879. */
  3880. inline void gcode_M405() {
  3881. if (code_seen('D')) meas_delay_cm = code_value();
  3882. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3883. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3884. int temp_ratio = widthFil_to_size_ratio();
  3885. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3886. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3887. delay_index1 = delay_index2 = 0;
  3888. }
  3889. filament_sensor = true;
  3890. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3891. //SERIAL_PROTOCOL(filament_width_meas);
  3892. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3893. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  3894. }
  3895. /**
  3896. * M406: Turn off filament sensor for control
  3897. */
  3898. inline void gcode_M406() { filament_sensor = false; }
  3899. /**
  3900. * M407: Get measured filament diameter on serial output
  3901. */
  3902. inline void gcode_M407() {
  3903. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3904. SERIAL_PROTOCOLLN(filament_width_meas);
  3905. }
  3906. #endif // FILAMENT_SENSOR
  3907. /**
  3908. * M410: Quickstop - Abort all planned moves
  3909. *
  3910. * This will stop the carriages mid-move, so most likely they
  3911. * will be out of sync with the stepper position after this.
  3912. */
  3913. inline void gcode_M410() { quickStop(); }
  3914. #ifdef MESH_BED_LEVELING
  3915. /**
  3916. * M420: Enable/Disable Mesh Bed Leveling
  3917. */
  3918. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3919. /**
  3920. * M421: Set a single Mesh Bed Leveling Z coordinate
  3921. */
  3922. inline void gcode_M421() {
  3923. float x, y, z;
  3924. bool err = false, hasX, hasY, hasZ;
  3925. if ((hasX = code_seen('X'))) x = code_value();
  3926. if ((hasY = code_seen('Y'))) y = code_value();
  3927. if ((hasZ = code_seen('Z'))) z = code_value();
  3928. if (!hasX || !hasY || !hasZ) {
  3929. SERIAL_ERROR_START;
  3930. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3931. err = true;
  3932. }
  3933. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3934. SERIAL_ERROR_START;
  3935. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3936. err = true;
  3937. }
  3938. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3939. }
  3940. #endif
  3941. /**
  3942. * M428: Set home_offset based on the distance between the
  3943. * current_position and the nearest "reference point."
  3944. * If an axis is past center its endstop position
  3945. * is the reference-point. Otherwise it uses 0. This allows
  3946. * the Z offset to be set near the bed when using a max endstop.
  3947. *
  3948. * M428 can't be used more than 2cm away from 0 or an endstop.
  3949. *
  3950. * Use M206 to set these values directly.
  3951. */
  3952. inline void gcode_M428() {
  3953. bool err = false;
  3954. float new_offs[3], new_pos[3];
  3955. memcpy(new_pos, current_position, sizeof(new_pos));
  3956. memcpy(new_offs, home_offset, sizeof(new_offs));
  3957. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3958. if (axis_known_position[i]) {
  3959. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3960. diff = new_pos[i] - base;
  3961. if (diff > -20 && diff < 20) {
  3962. new_offs[i] -= diff;
  3963. new_pos[i] = base;
  3964. }
  3965. else {
  3966. SERIAL_ERROR_START;
  3967. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  3968. LCD_ALERTMESSAGEPGM("Err: Too far!");
  3969. #if HAS_BUZZER
  3970. enqueuecommands_P(PSTR("M300 S40 P200"));
  3971. #endif
  3972. err = true;
  3973. break;
  3974. }
  3975. }
  3976. }
  3977. if (!err) {
  3978. memcpy(current_position, new_pos, sizeof(new_pos));
  3979. memcpy(home_offset, new_offs, sizeof(new_offs));
  3980. sync_plan_position();
  3981. LCD_ALERTMESSAGEPGM("Offset applied.");
  3982. #if HAS_BUZZER
  3983. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  3984. #endif
  3985. }
  3986. }
  3987. /**
  3988. * M500: Store settings in EEPROM
  3989. */
  3990. inline void gcode_M500() {
  3991. Config_StoreSettings();
  3992. }
  3993. /**
  3994. * M501: Read settings from EEPROM
  3995. */
  3996. inline void gcode_M501() {
  3997. Config_RetrieveSettings();
  3998. }
  3999. /**
  4000. * M502: Revert to default settings
  4001. */
  4002. inline void gcode_M502() {
  4003. Config_ResetDefault();
  4004. }
  4005. /**
  4006. * M503: print settings currently in memory
  4007. */
  4008. inline void gcode_M503() {
  4009. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4010. }
  4011. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4012. /**
  4013. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4014. */
  4015. inline void gcode_M540() {
  4016. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4017. }
  4018. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4019. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4020. inline void gcode_SET_Z_PROBE_OFFSET() {
  4021. float value;
  4022. if (code_seen('Z')) {
  4023. value = code_value();
  4024. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4025. zprobe_zoffset = value;
  4026. SERIAL_ECHO_START;
  4027. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4028. SERIAL_EOL;
  4029. }
  4030. else {
  4031. SERIAL_ECHO_START;
  4032. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4033. SERIAL_ECHOPGM(MSG_Z_MIN);
  4034. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4035. SERIAL_ECHOPGM(MSG_Z_MAX);
  4036. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4037. SERIAL_EOL;
  4038. }
  4039. }
  4040. else {
  4041. SERIAL_ECHO_START;
  4042. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " : ");
  4043. SERIAL_ECHO(zprobe_zoffset);
  4044. SERIAL_EOL;
  4045. }
  4046. }
  4047. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4048. #ifdef FILAMENTCHANGEENABLE
  4049. /**
  4050. * M600: Pause for filament change
  4051. *
  4052. * E[distance] - Retract the filament this far (negative value)
  4053. * Z[distance] - Move the Z axis by this distance
  4054. * X[position] - Move to this X position, with Y
  4055. * Y[position] - Move to this Y position, with X
  4056. * L[distance] - Retract distance for removal (manual reload)
  4057. *
  4058. * Default values are used for omitted arguments.
  4059. *
  4060. */
  4061. inline void gcode_M600() {
  4062. if (degHotend(active_extruder) < extrude_min_temp) {
  4063. SERIAL_ERROR_START;
  4064. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4065. return;
  4066. }
  4067. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4068. for (int i=0; i<NUM_AXIS; i++)
  4069. lastpos[i] = destination[i] = current_position[i];
  4070. #ifdef DELTA
  4071. #define RUNPLAN calculate_delta(destination); \
  4072. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4073. #else
  4074. #define RUNPLAN line_to_destination();
  4075. #endif
  4076. //retract by E
  4077. if (code_seen('E')) destination[E_AXIS] += code_value();
  4078. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4079. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4080. #endif
  4081. RUNPLAN;
  4082. //lift Z
  4083. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4084. #ifdef FILAMENTCHANGE_ZADD
  4085. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4086. #endif
  4087. RUNPLAN;
  4088. //move xy
  4089. if (code_seen('X')) destination[X_AXIS] = code_value();
  4090. #ifdef FILAMENTCHANGE_XPOS
  4091. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4092. #endif
  4093. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4094. #ifdef FILAMENTCHANGE_YPOS
  4095. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4096. #endif
  4097. RUNPLAN;
  4098. if (code_seen('L')) destination[E_AXIS] += code_value();
  4099. #ifdef FILAMENTCHANGE_FINALRETRACT
  4100. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4101. #endif
  4102. RUNPLAN;
  4103. //finish moves
  4104. st_synchronize();
  4105. //disable extruder steppers so filament can be removed
  4106. disable_e0();
  4107. disable_e1();
  4108. disable_e2();
  4109. disable_e3();
  4110. delay(100);
  4111. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4112. millis_t next_tick = 0;
  4113. while (!lcd_clicked()) {
  4114. #ifndef AUTO_FILAMENT_CHANGE
  4115. millis_t ms = millis();
  4116. if (ms >= next_tick) {
  4117. lcd_quick_feedback();
  4118. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4119. }
  4120. manage_heater();
  4121. manage_inactivity(true);
  4122. lcd_update();
  4123. #else
  4124. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4125. destination[E_AXIS] = current_position[E_AXIS];
  4126. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4127. st_synchronize();
  4128. #endif
  4129. } // while(!lcd_clicked)
  4130. lcd_quick_feedback(); // click sound feedback
  4131. #ifdef AUTO_FILAMENT_CHANGE
  4132. current_position[E_AXIS] = 0;
  4133. st_synchronize();
  4134. #endif
  4135. //return to normal
  4136. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4137. #ifdef FILAMENTCHANGE_FINALRETRACT
  4138. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4139. #endif
  4140. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4141. plan_set_e_position(current_position[E_AXIS]);
  4142. RUNPLAN; //should do nothing
  4143. lcd_reset_alert_level();
  4144. #ifdef DELTA
  4145. // Move XYZ to starting position, then E
  4146. calculate_delta(lastpos);
  4147. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4148. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4149. #else
  4150. // Move XY to starting position, then Z, then E
  4151. destination[X_AXIS] = lastpos[X_AXIS];
  4152. destination[Y_AXIS] = lastpos[Y_AXIS];
  4153. line_to_destination();
  4154. destination[Z_AXIS] = lastpos[Z_AXIS];
  4155. line_to_destination();
  4156. destination[E_AXIS] = lastpos[E_AXIS];
  4157. line_to_destination();
  4158. #endif
  4159. #ifdef FILAMENT_RUNOUT_SENSOR
  4160. filrunoutEnqueued = false;
  4161. #endif
  4162. }
  4163. #endif // FILAMENTCHANGEENABLE
  4164. #ifdef DUAL_X_CARRIAGE
  4165. /**
  4166. * M605: Set dual x-carriage movement mode
  4167. *
  4168. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4169. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4170. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4171. * millimeters x-offset and an optional differential hotend temperature of
  4172. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4173. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4174. *
  4175. * Note: the X axis should be homed after changing dual x-carriage mode.
  4176. */
  4177. inline void gcode_M605() {
  4178. st_synchronize();
  4179. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4180. switch(dual_x_carriage_mode) {
  4181. case DXC_DUPLICATION_MODE:
  4182. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4183. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4184. SERIAL_ECHO_START;
  4185. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4186. SERIAL_CHAR(' ');
  4187. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4188. SERIAL_CHAR(',');
  4189. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4190. SERIAL_CHAR(' ');
  4191. SERIAL_ECHO(duplicate_extruder_x_offset);
  4192. SERIAL_CHAR(',');
  4193. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4194. break;
  4195. case DXC_FULL_CONTROL_MODE:
  4196. case DXC_AUTO_PARK_MODE:
  4197. break;
  4198. default:
  4199. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4200. break;
  4201. }
  4202. active_extruder_parked = false;
  4203. extruder_duplication_enabled = false;
  4204. delayed_move_time = 0;
  4205. }
  4206. #endif // DUAL_X_CARRIAGE
  4207. /**
  4208. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4209. */
  4210. inline void gcode_M907() {
  4211. #if HAS_DIGIPOTSS
  4212. for (int i=0;i<NUM_AXIS;i++)
  4213. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4214. if (code_seen('B')) digipot_current(4, code_value());
  4215. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4216. #endif
  4217. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4218. if (code_seen('X')) digipot_current(0, code_value());
  4219. #endif
  4220. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4221. if (code_seen('Z')) digipot_current(1, code_value());
  4222. #endif
  4223. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4224. if (code_seen('E')) digipot_current(2, code_value());
  4225. #endif
  4226. #ifdef DIGIPOT_I2C
  4227. // this one uses actual amps in floating point
  4228. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4229. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4230. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4231. #endif
  4232. }
  4233. #if HAS_DIGIPOTSS
  4234. /**
  4235. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4236. */
  4237. inline void gcode_M908() {
  4238. digitalPotWrite(
  4239. code_seen('P') ? code_value() : 0,
  4240. code_seen('S') ? code_value() : 0
  4241. );
  4242. }
  4243. #endif // HAS_DIGIPOTSS
  4244. #if HAS_MICROSTEPS
  4245. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4246. inline void gcode_M350() {
  4247. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4248. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4249. if(code_seen('B')) microstep_mode(4,code_value());
  4250. microstep_readings();
  4251. }
  4252. /**
  4253. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4254. * S# determines MS1 or MS2, X# sets the pin high/low.
  4255. */
  4256. inline void gcode_M351() {
  4257. if (code_seen('S')) switch(code_value_short()) {
  4258. case 1:
  4259. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4260. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4261. break;
  4262. case 2:
  4263. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4264. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4265. break;
  4266. }
  4267. microstep_readings();
  4268. }
  4269. #endif // HAS_MICROSTEPS
  4270. /**
  4271. * M999: Restart after being stopped
  4272. */
  4273. inline void gcode_M999() {
  4274. Running = true;
  4275. lcd_reset_alert_level();
  4276. gcode_LastN = Stopped_gcode_LastN;
  4277. FlushSerialRequestResend();
  4278. }
  4279. /**
  4280. * T0-T3: Switch tool, usually switching extruders
  4281. *
  4282. * F[mm/min] Set the movement feedrate
  4283. */
  4284. inline void gcode_T(uint8_t tmp_extruder) {
  4285. if (tmp_extruder >= EXTRUDERS) {
  4286. SERIAL_ECHO_START;
  4287. SERIAL_CHAR('T');
  4288. SERIAL_PROTOCOL_F(tmp_extruder,DEC);
  4289. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4290. }
  4291. else {
  4292. target_extruder = tmp_extruder;
  4293. #if EXTRUDERS > 1
  4294. bool make_move = false;
  4295. #endif
  4296. if (code_seen('F')) {
  4297. #if EXTRUDERS > 1
  4298. make_move = true;
  4299. #endif
  4300. float next_feedrate = code_value();
  4301. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4302. }
  4303. #if EXTRUDERS > 1
  4304. if (tmp_extruder != active_extruder) {
  4305. // Save current position to return to after applying extruder offset
  4306. set_destination_to_current();
  4307. #ifdef DUAL_X_CARRIAGE
  4308. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4309. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4310. // Park old head: 1) raise 2) move to park position 3) lower
  4311. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4312. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4313. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4314. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4315. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4316. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4317. st_synchronize();
  4318. }
  4319. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4320. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4321. extruder_offset[Y_AXIS][active_extruder] +
  4322. extruder_offset[Y_AXIS][tmp_extruder];
  4323. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4324. extruder_offset[Z_AXIS][active_extruder] +
  4325. extruder_offset[Z_AXIS][tmp_extruder];
  4326. active_extruder = tmp_extruder;
  4327. // This function resets the max/min values - the current position may be overwritten below.
  4328. set_axis_is_at_home(X_AXIS);
  4329. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4330. current_position[X_AXIS] = inactive_extruder_x_pos;
  4331. inactive_extruder_x_pos = destination[X_AXIS];
  4332. }
  4333. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4334. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4335. if (active_extruder == 0 || active_extruder_parked)
  4336. current_position[X_AXIS] = inactive_extruder_x_pos;
  4337. else
  4338. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4339. inactive_extruder_x_pos = destination[X_AXIS];
  4340. extruder_duplication_enabled = false;
  4341. }
  4342. else {
  4343. // record raised toolhead position for use by unpark
  4344. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4345. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4346. active_extruder_parked = true;
  4347. delayed_move_time = 0;
  4348. }
  4349. #else // !DUAL_X_CARRIAGE
  4350. // Offset extruder (only by XY)
  4351. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4352. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4353. // Set the new active extruder and position
  4354. active_extruder = tmp_extruder;
  4355. #endif // !DUAL_X_CARRIAGE
  4356. #ifdef DELTA
  4357. sync_plan_position_delta();
  4358. #else
  4359. sync_plan_position();
  4360. #endif
  4361. // Move to the old position if 'F' was in the parameters
  4362. if (make_move && IsRunning()) prepare_move();
  4363. }
  4364. #ifdef EXT_SOLENOID
  4365. st_synchronize();
  4366. disable_all_solenoids();
  4367. enable_solenoid_on_active_extruder();
  4368. #endif // EXT_SOLENOID
  4369. #endif // EXTRUDERS > 1
  4370. SERIAL_ECHO_START;
  4371. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4372. SERIAL_PROTOCOLLN((int)active_extruder);
  4373. }
  4374. }
  4375. /**
  4376. * Process a single command and dispatch it to its handler
  4377. * This is called from the main loop()
  4378. */
  4379. void process_next_command() {
  4380. current_command = command_queue[cmd_queue_index_r];
  4381. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4382. SERIAL_ECHO_START;
  4383. SERIAL_ECHOLN(current_command);
  4384. }
  4385. // Sanitize the current command:
  4386. // - Skip leading spaces
  4387. // - Bypass N[0-9][0-9]*[ ]*
  4388. // - Overwrite * with nul to mark the end
  4389. while (*current_command == ' ') ++current_command;
  4390. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  4391. current_command += 2; // skip N[-0-9]
  4392. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4393. while (*current_command == ' ') ++current_command; // skip [ ]*
  4394. }
  4395. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4396. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  4397. // Get the command code, which must be G, M, or T
  4398. char command_code = *current_command;
  4399. // The code must have a numeric value
  4400. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4401. int codenum; // define ahead of goto
  4402. // Bail early if there's no code
  4403. if (!code_is_good) goto ExitUnknownCommand;
  4404. // Args pointer optimizes code_seen, especially those taking XYZEF
  4405. // This wastes a little cpu on commands that expect no arguments.
  4406. current_command_args = current_command;
  4407. while (*current_command_args && *current_command_args != ' ') ++current_command_args;
  4408. while (*current_command_args == ' ') ++current_command_args;
  4409. // Interpret the code int
  4410. seen_pointer = current_command;
  4411. codenum = code_value_short();
  4412. // Handle a known G, M, or T
  4413. switch(command_code) {
  4414. case 'G': switch (codenum) {
  4415. // G0, G1
  4416. case 0:
  4417. case 1:
  4418. gcode_G0_G1();
  4419. break;
  4420. // G2, G3
  4421. #ifndef SCARA
  4422. case 2: // G2 - CW ARC
  4423. case 3: // G3 - CCW ARC
  4424. gcode_G2_G3(codenum == 2);
  4425. break;
  4426. #endif
  4427. // G4 Dwell
  4428. case 4:
  4429. gcode_G4();
  4430. break;
  4431. #ifdef FWRETRACT
  4432. case 10: // G10: retract
  4433. case 11: // G11: retract_recover
  4434. gcode_G10_G11(codenum == 10);
  4435. break;
  4436. #endif //FWRETRACT
  4437. case 28: // G28: Home all axes, one at a time
  4438. gcode_G28();
  4439. break;
  4440. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4441. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4442. gcode_G29();
  4443. break;
  4444. #endif
  4445. #ifdef ENABLE_AUTO_BED_LEVELING
  4446. #ifndef Z_PROBE_SLED
  4447. case 30: // G30 Single Z Probe
  4448. gcode_G30();
  4449. break;
  4450. #else // Z_PROBE_SLED
  4451. case 31: // G31: dock the sled
  4452. case 32: // G32: undock the sled
  4453. dock_sled(codenum == 31);
  4454. break;
  4455. #endif // Z_PROBE_SLED
  4456. #endif // ENABLE_AUTO_BED_LEVELING
  4457. case 90: // G90
  4458. relative_mode = false;
  4459. break;
  4460. case 91: // G91
  4461. relative_mode = true;
  4462. break;
  4463. case 92: // G92
  4464. gcode_G92();
  4465. break;
  4466. }
  4467. break;
  4468. case 'M': switch (codenum) {
  4469. #ifdef ULTIPANEL
  4470. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4471. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4472. gcode_M0_M1();
  4473. break;
  4474. #endif // ULTIPANEL
  4475. case 17:
  4476. gcode_M17();
  4477. break;
  4478. #ifdef SDSUPPORT
  4479. case 20: // M20 - list SD card
  4480. gcode_M20(); break;
  4481. case 21: // M21 - init SD card
  4482. gcode_M21(); break;
  4483. case 22: //M22 - release SD card
  4484. gcode_M22(); break;
  4485. case 23: //M23 - Select file
  4486. gcode_M23(); break;
  4487. case 24: //M24 - Start SD print
  4488. gcode_M24(); break;
  4489. case 25: //M25 - Pause SD print
  4490. gcode_M25(); break;
  4491. case 26: //M26 - Set SD index
  4492. gcode_M26(); break;
  4493. case 27: //M27 - Get SD status
  4494. gcode_M27(); break;
  4495. case 28: //M28 - Start SD write
  4496. gcode_M28(); break;
  4497. case 29: //M29 - Stop SD write
  4498. gcode_M29(); break;
  4499. case 30: //M30 <filename> Delete File
  4500. gcode_M30(); break;
  4501. case 32: //M32 - Select file and start SD print
  4502. gcode_M32(); break;
  4503. #ifdef LONG_FILENAME_HOST_SUPPORT
  4504. case 33: //M33 - Get the long full path to a file or folder
  4505. gcode_M33(); break;
  4506. #endif // LONG_FILENAME_HOST_SUPPORT
  4507. case 928: //M928 - Start SD write
  4508. gcode_M928(); break;
  4509. #endif //SDSUPPORT
  4510. case 31: //M31 take time since the start of the SD print or an M109 command
  4511. gcode_M31();
  4512. break;
  4513. case 42: //M42 -Change pin status via gcode
  4514. gcode_M42();
  4515. break;
  4516. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4517. case 48: // M48 Z-Probe repeatability
  4518. gcode_M48();
  4519. break;
  4520. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4521. case 104: // M104
  4522. gcode_M104();
  4523. break;
  4524. case 111: // M111: Set debug level
  4525. gcode_M111();
  4526. break;
  4527. case 112: // M112: Emergency Stop
  4528. gcode_M112();
  4529. break;
  4530. case 140: // M140: Set bed temp
  4531. gcode_M140();
  4532. break;
  4533. case 105: // M105: Read current temperature
  4534. gcode_M105();
  4535. return; // "ok" already printed
  4536. case 109: // M109: Wait for temperature
  4537. gcode_M109();
  4538. break;
  4539. #if HAS_TEMP_BED
  4540. case 190: // M190: Wait for bed heater to reach target
  4541. gcode_M190();
  4542. break;
  4543. #endif // HAS_TEMP_BED
  4544. #if HAS_FAN
  4545. case 106: // M106: Fan On
  4546. gcode_M106();
  4547. break;
  4548. case 107: // M107: Fan Off
  4549. gcode_M107();
  4550. break;
  4551. #endif // HAS_FAN
  4552. #ifdef BARICUDA
  4553. // PWM for HEATER_1_PIN
  4554. #if HAS_HEATER_1
  4555. case 126: // M126: valve open
  4556. gcode_M126();
  4557. break;
  4558. case 127: // M127: valve closed
  4559. gcode_M127();
  4560. break;
  4561. #endif // HAS_HEATER_1
  4562. // PWM for HEATER_2_PIN
  4563. #if HAS_HEATER_2
  4564. case 128: // M128: valve open
  4565. gcode_M128();
  4566. break;
  4567. case 129: // M129: valve closed
  4568. gcode_M129();
  4569. break;
  4570. #endif // HAS_HEATER_2
  4571. #endif // BARICUDA
  4572. #if HAS_POWER_SWITCH
  4573. case 80: // M80: Turn on Power Supply
  4574. gcode_M80();
  4575. break;
  4576. #endif // HAS_POWER_SWITCH
  4577. case 81: // M81: Turn off Power, including Power Supply, if possible
  4578. gcode_M81();
  4579. break;
  4580. case 82:
  4581. gcode_M82();
  4582. break;
  4583. case 83:
  4584. gcode_M83();
  4585. break;
  4586. case 18: // (for compatibility)
  4587. case 84: // M84
  4588. gcode_M18_M84();
  4589. break;
  4590. case 85: // M85
  4591. gcode_M85();
  4592. break;
  4593. case 92: // M92: Set the steps-per-unit for one or more axes
  4594. gcode_M92();
  4595. break;
  4596. case 115: // M115: Report capabilities
  4597. gcode_M115();
  4598. break;
  4599. case 117: // M117: Set LCD message text, if possible
  4600. gcode_M117();
  4601. break;
  4602. case 114: // M114: Report current position
  4603. gcode_M114();
  4604. break;
  4605. case 120: // M120: Enable endstops
  4606. gcode_M120();
  4607. break;
  4608. case 121: // M121: Disable endstops
  4609. gcode_M121();
  4610. break;
  4611. case 119: // M119: Report endstop states
  4612. gcode_M119();
  4613. break;
  4614. #ifdef ULTIPANEL
  4615. case 145: // M145: Set material heatup parameters
  4616. gcode_M145();
  4617. break;
  4618. #endif
  4619. #ifdef BLINKM
  4620. case 150: // M150
  4621. gcode_M150();
  4622. break;
  4623. #endif //BLINKM
  4624. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4625. gcode_M200();
  4626. break;
  4627. case 201: // M201
  4628. gcode_M201();
  4629. break;
  4630. #if 0 // Not used for Sprinter/grbl gen6
  4631. case 202: // M202
  4632. gcode_M202();
  4633. break;
  4634. #endif
  4635. case 203: // M203 max feedrate mm/sec
  4636. gcode_M203();
  4637. break;
  4638. case 204: // M204 acclereration S normal moves T filmanent only moves
  4639. gcode_M204();
  4640. break;
  4641. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4642. gcode_M205();
  4643. break;
  4644. case 206: // M206 additional homing offset
  4645. gcode_M206();
  4646. break;
  4647. #ifdef DELTA
  4648. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4649. gcode_M665();
  4650. break;
  4651. #endif
  4652. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4653. case 666: // M666 set delta / dual endstop adjustment
  4654. gcode_M666();
  4655. break;
  4656. #endif
  4657. #ifdef FWRETRACT
  4658. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4659. gcode_M207();
  4660. break;
  4661. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4662. gcode_M208();
  4663. break;
  4664. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4665. gcode_M209();
  4666. break;
  4667. #endif // FWRETRACT
  4668. #if EXTRUDERS > 1
  4669. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4670. gcode_M218();
  4671. break;
  4672. #endif
  4673. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4674. gcode_M220();
  4675. break;
  4676. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4677. gcode_M221();
  4678. break;
  4679. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4680. gcode_M226();
  4681. break;
  4682. #if NUM_SERVOS > 0
  4683. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4684. gcode_M280();
  4685. break;
  4686. #endif // NUM_SERVOS > 0
  4687. #if HAS_BUZZER
  4688. case 300: // M300 - Play beep tone
  4689. gcode_M300();
  4690. break;
  4691. #endif // HAS_BUZZER
  4692. #ifdef PIDTEMP
  4693. case 301: // M301
  4694. gcode_M301();
  4695. break;
  4696. #endif // PIDTEMP
  4697. #ifdef PIDTEMPBED
  4698. case 304: // M304
  4699. gcode_M304();
  4700. break;
  4701. #endif // PIDTEMPBED
  4702. #if defined(CHDK) || HAS_PHOTOGRAPH
  4703. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4704. gcode_M240();
  4705. break;
  4706. #endif // CHDK || PHOTOGRAPH_PIN
  4707. #ifdef HAS_LCD_CONTRAST
  4708. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4709. gcode_M250();
  4710. break;
  4711. #endif // HAS_LCD_CONTRAST
  4712. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4713. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4714. gcode_M302();
  4715. break;
  4716. #endif // PREVENT_DANGEROUS_EXTRUDE
  4717. case 303: // M303 PID autotune
  4718. gcode_M303();
  4719. break;
  4720. #ifdef SCARA
  4721. case 360: // M360 SCARA Theta pos1
  4722. if (gcode_M360()) return;
  4723. break;
  4724. case 361: // M361 SCARA Theta pos2
  4725. if (gcode_M361()) return;
  4726. break;
  4727. case 362: // M362 SCARA Psi pos1
  4728. if (gcode_M362()) return;
  4729. break;
  4730. case 363: // M363 SCARA Psi pos2
  4731. if (gcode_M363()) return;
  4732. break;
  4733. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4734. if (gcode_M364()) return;
  4735. break;
  4736. case 365: // M365 Set SCARA scaling for X Y Z
  4737. gcode_M365();
  4738. break;
  4739. #endif // SCARA
  4740. case 400: // M400 finish all moves
  4741. gcode_M400();
  4742. break;
  4743. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4744. case 401:
  4745. gcode_M401();
  4746. break;
  4747. case 402:
  4748. gcode_M402();
  4749. break;
  4750. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4751. #ifdef FILAMENT_SENSOR
  4752. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4753. gcode_M404();
  4754. break;
  4755. case 405: //M405 Turn on filament sensor for control
  4756. gcode_M405();
  4757. break;
  4758. case 406: //M406 Turn off filament sensor for control
  4759. gcode_M406();
  4760. break;
  4761. case 407: //M407 Display measured filament diameter
  4762. gcode_M407();
  4763. break;
  4764. #endif // FILAMENT_SENSOR
  4765. case 410: // M410 quickstop - Abort all the planned moves.
  4766. gcode_M410();
  4767. break;
  4768. #ifdef MESH_BED_LEVELING
  4769. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4770. gcode_M420();
  4771. break;
  4772. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4773. gcode_M421();
  4774. break;
  4775. #endif
  4776. case 428: // M428 Apply current_position to home_offset
  4777. gcode_M428();
  4778. break;
  4779. case 500: // M500 Store settings in EEPROM
  4780. gcode_M500();
  4781. break;
  4782. case 501: // M501 Read settings from EEPROM
  4783. gcode_M501();
  4784. break;
  4785. case 502: // M502 Revert to default settings
  4786. gcode_M502();
  4787. break;
  4788. case 503: // M503 print settings currently in memory
  4789. gcode_M503();
  4790. break;
  4791. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4792. case 540:
  4793. gcode_M540();
  4794. break;
  4795. #endif
  4796. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4797. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4798. gcode_SET_Z_PROBE_OFFSET();
  4799. break;
  4800. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4801. #ifdef FILAMENTCHANGEENABLE
  4802. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4803. gcode_M600();
  4804. break;
  4805. #endif // FILAMENTCHANGEENABLE
  4806. #ifdef DUAL_X_CARRIAGE
  4807. case 605:
  4808. gcode_M605();
  4809. break;
  4810. #endif // DUAL_X_CARRIAGE
  4811. case 907: // M907 Set digital trimpot motor current using axis codes.
  4812. gcode_M907();
  4813. break;
  4814. #if HAS_DIGIPOTSS
  4815. case 908: // M908 Control digital trimpot directly.
  4816. gcode_M908();
  4817. break;
  4818. #endif // HAS_DIGIPOTSS
  4819. #if HAS_MICROSTEPS
  4820. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4821. gcode_M350();
  4822. break;
  4823. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4824. gcode_M351();
  4825. break;
  4826. #endif // HAS_MICROSTEPS
  4827. case 999: // M999: Restart after being Stopped
  4828. gcode_M999();
  4829. break;
  4830. }
  4831. break;
  4832. case 'T':
  4833. gcode_T(codenum);
  4834. break;
  4835. default: code_is_good = false;
  4836. }
  4837. ExitUnknownCommand:
  4838. // Still unknown command? Throw an error
  4839. if (!code_is_good) unknown_command_error();
  4840. ok_to_send();
  4841. }
  4842. void FlushSerialRequestResend() {
  4843. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4844. MYSERIAL.flush();
  4845. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4846. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4847. ok_to_send();
  4848. }
  4849. void ok_to_send() {
  4850. refresh_cmd_timeout();
  4851. #ifdef SDSUPPORT
  4852. if (fromsd[cmd_queue_index_r]) return;
  4853. #endif
  4854. SERIAL_PROTOCOLPGM(MSG_OK);
  4855. #ifdef ADVANCED_OK
  4856. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4857. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4858. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4859. #endif
  4860. SERIAL_EOL;
  4861. }
  4862. void clamp_to_software_endstops(float target[3]) {
  4863. if (min_software_endstops) {
  4864. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4865. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4866. float negative_z_offset = 0;
  4867. #ifdef ENABLE_AUTO_BED_LEVELING
  4868. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  4869. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4870. #endif
  4871. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4872. }
  4873. if (max_software_endstops) {
  4874. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4875. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4876. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4877. }
  4878. }
  4879. #ifdef DELTA
  4880. void recalc_delta_settings(float radius, float diagonal_rod) {
  4881. delta_tower1_x = -SIN_60 * radius; // front left tower
  4882. delta_tower1_y = -COS_60 * radius;
  4883. delta_tower2_x = SIN_60 * radius; // front right tower
  4884. delta_tower2_y = -COS_60 * radius;
  4885. delta_tower3_x = 0.0; // back middle tower
  4886. delta_tower3_y = radius;
  4887. delta_diagonal_rod_2 = sq(diagonal_rod);
  4888. }
  4889. void calculate_delta(float cartesian[3]) {
  4890. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4891. - sq(delta_tower1_x-cartesian[X_AXIS])
  4892. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4893. ) + cartesian[Z_AXIS];
  4894. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4895. - sq(delta_tower2_x-cartesian[X_AXIS])
  4896. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4897. ) + cartesian[Z_AXIS];
  4898. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4899. - sq(delta_tower3_x-cartesian[X_AXIS])
  4900. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4901. ) + cartesian[Z_AXIS];
  4902. /*
  4903. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4904. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4905. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4906. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4907. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4908. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4909. */
  4910. }
  4911. #ifdef ENABLE_AUTO_BED_LEVELING
  4912. // Adjust print surface height by linear interpolation over the bed_level array.
  4913. void adjust_delta(float cartesian[3]) {
  4914. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4915. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4916. float h1 = 0.001 - half, h2 = half - 0.001,
  4917. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4918. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4919. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4920. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4921. z1 = bed_level[floor_x + half][floor_y + half],
  4922. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4923. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4924. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4925. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4926. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4927. offset = (1 - ratio_x) * left + ratio_x * right;
  4928. delta[X_AXIS] += offset;
  4929. delta[Y_AXIS] += offset;
  4930. delta[Z_AXIS] += offset;
  4931. /*
  4932. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4933. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4934. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4935. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4936. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4937. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4938. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4939. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4940. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4941. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4942. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4943. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4944. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4945. */
  4946. }
  4947. #endif // ENABLE_AUTO_BED_LEVELING
  4948. #endif // DELTA
  4949. #ifdef MESH_BED_LEVELING
  4950. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4951. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4952. {
  4953. if (!mbl.active) {
  4954. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4955. set_current_to_destination();
  4956. return;
  4957. }
  4958. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4959. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4960. int ix = mbl.select_x_index(x);
  4961. int iy = mbl.select_y_index(y);
  4962. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4963. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4964. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4965. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4966. if (pix == ix && piy == iy) {
  4967. // Start and end on same mesh square
  4968. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4969. set_current_to_destination();
  4970. return;
  4971. }
  4972. float nx, ny, ne, normalized_dist;
  4973. if (ix > pix && (x_splits) & BIT(ix)) {
  4974. nx = mbl.get_x(ix);
  4975. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4976. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4977. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4978. x_splits ^= BIT(ix);
  4979. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4980. nx = mbl.get_x(pix);
  4981. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4982. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4983. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4984. x_splits ^= BIT(pix);
  4985. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4986. ny = mbl.get_y(iy);
  4987. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4988. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4989. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4990. y_splits ^= BIT(iy);
  4991. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4992. ny = mbl.get_y(piy);
  4993. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4994. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4995. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4996. y_splits ^= BIT(piy);
  4997. } else {
  4998. // Already split on a border
  4999. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5000. set_current_to_destination();
  5001. return;
  5002. }
  5003. // Do the split and look for more borders
  5004. destination[X_AXIS] = nx;
  5005. destination[Y_AXIS] = ny;
  5006. destination[E_AXIS] = ne;
  5007. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5008. destination[X_AXIS] = x;
  5009. destination[Y_AXIS] = y;
  5010. destination[E_AXIS] = e;
  5011. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5012. }
  5013. #endif // MESH_BED_LEVELING
  5014. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5015. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5016. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5017. float de = dest_e - curr_e;
  5018. if (de) {
  5019. if (degHotend(active_extruder) < extrude_min_temp) {
  5020. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5021. SERIAL_ECHO_START;
  5022. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5023. }
  5024. #ifdef PREVENT_LENGTHY_EXTRUDE
  5025. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5026. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5027. SERIAL_ECHO_START;
  5028. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5029. }
  5030. #endif
  5031. }
  5032. }
  5033. #endif // PREVENT_DANGEROUS_EXTRUDE
  5034. #if defined(DELTA) || defined(SCARA)
  5035. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5036. float difference[NUM_AXIS];
  5037. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5038. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5039. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5040. if (cartesian_mm < 0.000001) return false;
  5041. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5042. int steps = max(1, int(delta_segments_per_second * seconds));
  5043. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5044. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5045. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5046. for (int s = 1; s <= steps; s++) {
  5047. float fraction = float(s) / float(steps);
  5048. for (int8_t i = 0; i < NUM_AXIS; i++)
  5049. target[i] = current_position[i] + difference[i] * fraction;
  5050. calculate_delta(target);
  5051. #ifdef ENABLE_AUTO_BED_LEVELING
  5052. adjust_delta(target);
  5053. #endif
  5054. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5055. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5056. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5057. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5058. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5059. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5060. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5061. }
  5062. return true;
  5063. }
  5064. #endif // DELTA || SCARA
  5065. #ifdef SCARA
  5066. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5067. #endif
  5068. #ifdef DUAL_X_CARRIAGE
  5069. inline bool prepare_move_dual_x_carriage() {
  5070. if (active_extruder_parked) {
  5071. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5072. // move duplicate extruder into correct duplication position.
  5073. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5074. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5075. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5076. sync_plan_position();
  5077. st_synchronize();
  5078. extruder_duplication_enabled = true;
  5079. active_extruder_parked = false;
  5080. }
  5081. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5082. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5083. // This is a travel move (with no extrusion)
  5084. // Skip it, but keep track of the current position
  5085. // (so it can be used as the start of the next non-travel move)
  5086. if (delayed_move_time != 0xFFFFFFFFUL) {
  5087. set_current_to_destination();
  5088. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5089. delayed_move_time = millis();
  5090. return false;
  5091. }
  5092. }
  5093. delayed_move_time = 0;
  5094. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5095. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5097. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5098. active_extruder_parked = false;
  5099. }
  5100. }
  5101. return true;
  5102. }
  5103. #endif // DUAL_X_CARRIAGE
  5104. #if !defined(DELTA) && !defined(SCARA)
  5105. inline bool prepare_move_cartesian() {
  5106. // Do not use feedrate_multiplier for E or Z only moves
  5107. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5108. line_to_destination();
  5109. }
  5110. else {
  5111. #ifdef MESH_BED_LEVELING
  5112. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5113. return false;
  5114. #else
  5115. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5116. #endif
  5117. }
  5118. return true;
  5119. }
  5120. #endif // !DELTA && !SCARA
  5121. /**
  5122. * Prepare a single move and get ready for the next one
  5123. *
  5124. * (This may call plan_buffer_line several times to put
  5125. * smaller moves into the planner for DELTA or SCARA.)
  5126. */
  5127. void prepare_move() {
  5128. clamp_to_software_endstops(destination);
  5129. refresh_cmd_timeout();
  5130. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5131. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5132. #endif
  5133. #ifdef SCARA
  5134. if (!prepare_move_scara(destination)) return;
  5135. #elif defined(DELTA)
  5136. if (!prepare_move_delta(destination)) return;
  5137. #endif
  5138. #ifdef DUAL_X_CARRIAGE
  5139. if (!prepare_move_dual_x_carriage()) return;
  5140. #endif
  5141. #if !defined(DELTA) && !defined(SCARA)
  5142. if (!prepare_move_cartesian()) return;
  5143. #endif
  5144. set_current_to_destination();
  5145. }
  5146. /**
  5147. * Plan an arc in 2 dimensions
  5148. *
  5149. * The arc is approximated by generating many small linear segments.
  5150. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5151. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5152. * larger segments will tend to be more efficient. Your slicer should have
  5153. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5154. */
  5155. void plan_arc(
  5156. float target[NUM_AXIS], // Destination position
  5157. float *offset, // Center of rotation relative to current_position
  5158. uint8_t clockwise // Clockwise?
  5159. ) {
  5160. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5161. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5162. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5163. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5164. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5165. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5166. r_axis1 = -offset[Y_AXIS],
  5167. rt_axis0 = target[X_AXIS] - center_axis0,
  5168. rt_axis1 = target[Y_AXIS] - center_axis1;
  5169. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5170. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  5171. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  5172. if (clockwise) { angular_travel -= RADIANS(360); }
  5173. // Make a circle if the angular rotation is 0
  5174. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5175. angular_travel += RADIANS(360);
  5176. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  5177. if (mm_of_travel < 0.001) { return; }
  5178. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  5179. if (segments == 0) segments = 1;
  5180. float theta_per_segment = angular_travel/segments;
  5181. float linear_per_segment = linear_travel/segments;
  5182. float extruder_per_segment = extruder_travel/segments;
  5183. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5184. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5185. r_T = [cos(phi) -sin(phi);
  5186. sin(phi) cos(phi] * r ;
  5187. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  5188. defined from the circle center to the initial position. Each line segment is formed by successive
  5189. vector rotations. This requires only two cos() and sin() computations to form the rotation
  5190. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  5191. all double numbers are single precision on the Arduino. (True double precision will not have
  5192. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  5193. tool precision in some cases. Therefore, arc path correction is implemented.
  5194. Small angle approximation may be used to reduce computation overhead further. This approximation
  5195. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  5196. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  5197. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  5198. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  5199. issue for CNC machines with the single precision Arduino calculations.
  5200. This approximation also allows plan_arc to immediately insert a line segment into the planner
  5201. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  5202. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  5203. This is important when there are successive arc motions.
  5204. */
  5205. // Vector rotation matrix values
  5206. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  5207. float sin_T = theta_per_segment;
  5208. float arc_target[NUM_AXIS];
  5209. float sin_Ti;
  5210. float cos_Ti;
  5211. float r_axisi;
  5212. uint16_t i;
  5213. int8_t count = 0;
  5214. // Initialize the linear axis
  5215. arc_target[Z_AXIS] = current_position[Z_AXIS];
  5216. // Initialize the extruder axis
  5217. arc_target[E_AXIS] = current_position[E_AXIS];
  5218. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  5219. for (i = 1; i < segments; i++) { // Increment (segments-1)
  5220. if (count < N_ARC_CORRECTION) {
  5221. // Apply vector rotation matrix to previous r_axis0 / 1
  5222. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  5223. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  5224. r_axis1 = r_axisi;
  5225. count++;
  5226. }
  5227. else {
  5228. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  5229. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  5230. cos_Ti = cos(i*theta_per_segment);
  5231. sin_Ti = sin(i*theta_per_segment);
  5232. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  5233. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  5234. count = 0;
  5235. }
  5236. // Update arc_target location
  5237. arc_target[X_AXIS] = center_axis0 + r_axis0;
  5238. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  5239. arc_target[Z_AXIS] += linear_per_segment;
  5240. arc_target[E_AXIS] += extruder_per_segment;
  5241. clamp_to_software_endstops(arc_target);
  5242. #if defined(DELTA) || defined(SCARA)
  5243. calculate_delta(arc_target);
  5244. #ifdef ENABLE_AUTO_BED_LEVELING
  5245. adjust_delta(arc_target);
  5246. #endif
  5247. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5248. #else
  5249. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5250. #endif
  5251. }
  5252. // Ensure last segment arrives at target location.
  5253. #if defined(DELTA) || defined(SCARA)
  5254. calculate_delta(target);
  5255. #ifdef ENABLE_AUTO_BED_LEVELING
  5256. adjust_delta(target);
  5257. #endif
  5258. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5259. #else
  5260. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5261. #endif
  5262. // As far as the parser is concerned, the position is now == target. In reality the
  5263. // motion control system might still be processing the action and the real tool position
  5264. // in any intermediate location.
  5265. set_current_to_destination();
  5266. }
  5267. #if HAS_CONTROLLERFAN
  5268. void controllerFan() {
  5269. static millis_t lastMotor = 0; // Last time a motor was turned on
  5270. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5271. millis_t ms = millis();
  5272. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5273. lastMotorCheck = ms;
  5274. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5275. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5276. #if EXTRUDERS > 1
  5277. || E1_ENABLE_READ == E_ENABLE_ON
  5278. #if HAS_X2_ENABLE
  5279. || X2_ENABLE_READ == X_ENABLE_ON
  5280. #endif
  5281. #if EXTRUDERS > 2
  5282. || E2_ENABLE_READ == E_ENABLE_ON
  5283. #if EXTRUDERS > 3
  5284. || E3_ENABLE_READ == E_ENABLE_ON
  5285. #endif
  5286. #endif
  5287. #endif
  5288. ) {
  5289. lastMotor = ms; //... set time to NOW so the fan will turn on
  5290. }
  5291. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5292. // allows digital or PWM fan output to be used (see M42 handling)
  5293. digitalWrite(CONTROLLERFAN_PIN, speed);
  5294. analogWrite(CONTROLLERFAN_PIN, speed);
  5295. }
  5296. }
  5297. #endif // HAS_CONTROLLERFAN
  5298. #ifdef SCARA
  5299. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5300. // Perform forward kinematics, and place results in delta[3]
  5301. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5302. float x_sin, x_cos, y_sin, y_cos;
  5303. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5304. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5305. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5306. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5307. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5308. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5309. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5310. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5311. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5312. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5313. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5314. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5315. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5316. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5317. }
  5318. void calculate_delta(float cartesian[3]){
  5319. //reverse kinematics.
  5320. // Perform reversed kinematics, and place results in delta[3]
  5321. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5322. float SCARA_pos[2];
  5323. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5324. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5325. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5326. #if (Linkage_1 == Linkage_2)
  5327. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5328. #else
  5329. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5330. #endif
  5331. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5332. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5333. SCARA_K2 = Linkage_2 * SCARA_S2;
  5334. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5335. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5336. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5337. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5338. delta[Z_AXIS] = cartesian[Z_AXIS];
  5339. /*
  5340. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5341. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5342. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5343. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5344. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5345. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5346. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5347. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5348. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5349. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5350. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5351. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5352. SERIAL_EOL;
  5353. */
  5354. }
  5355. #endif // SCARA
  5356. #ifdef TEMP_STAT_LEDS
  5357. static bool red_led = false;
  5358. static millis_t next_status_led_update_ms = 0;
  5359. void handle_status_leds(void) {
  5360. float max_temp = 0.0;
  5361. if (millis() > next_status_led_update_ms) {
  5362. next_status_led_update_ms += 500; // Update every 0.5s
  5363. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5364. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5365. #if HAS_TEMP_BED
  5366. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5367. #endif
  5368. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5369. if (new_led != red_led) {
  5370. red_led = new_led;
  5371. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5372. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5373. }
  5374. }
  5375. }
  5376. #endif
  5377. void enable_all_steppers() {
  5378. enable_x();
  5379. enable_y();
  5380. enable_z();
  5381. enable_e0();
  5382. enable_e1();
  5383. enable_e2();
  5384. enable_e3();
  5385. }
  5386. void disable_all_steppers() {
  5387. disable_x();
  5388. disable_y();
  5389. disable_z();
  5390. disable_e0();
  5391. disable_e1();
  5392. disable_e2();
  5393. disable_e3();
  5394. }
  5395. /**
  5396. * Standard idle routine keeps the machine alive
  5397. */
  5398. void idle() {
  5399. manage_heater();
  5400. manage_inactivity();
  5401. lcd_update();
  5402. }
  5403. /**
  5404. * Manage several activities:
  5405. * - Check for Filament Runout
  5406. * - Keep the command buffer full
  5407. * - Check for maximum inactive time between commands
  5408. * - Check for maximum inactive time between stepper commands
  5409. * - Check if pin CHDK needs to go LOW
  5410. * - Check for KILL button held down
  5411. * - Check for HOME button held down
  5412. * - Check if cooling fan needs to be switched on
  5413. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5414. */
  5415. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5416. #if HAS_FILRUNOUT
  5417. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5418. filrunout();
  5419. #endif
  5420. if (commands_in_queue < BUFSIZE - 1) get_command();
  5421. millis_t ms = millis();
  5422. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5423. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5424. && !ignore_stepper_queue && !blocks_queued()) {
  5425. #if DISABLE_X == true
  5426. disable_x();
  5427. #endif
  5428. #if DISABLE_Y == true
  5429. disable_y();
  5430. #endif
  5431. #if DISABLE_Z == true
  5432. disable_z();
  5433. #endif
  5434. #if DISABLE_E == true
  5435. disable_e0();
  5436. disable_e1();
  5437. disable_e2();
  5438. disable_e3();
  5439. #endif
  5440. }
  5441. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5442. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5443. chdkActive = false;
  5444. WRITE(CHDK, LOW);
  5445. }
  5446. #endif
  5447. #if HAS_KILL
  5448. // Check if the kill button was pressed and wait just in case it was an accidental
  5449. // key kill key press
  5450. // -------------------------------------------------------------------------------
  5451. static int killCount = 0; // make the inactivity button a bit less responsive
  5452. const int KILL_DELAY = 750;
  5453. if (!READ(KILL_PIN))
  5454. killCount++;
  5455. else if (killCount > 0)
  5456. killCount--;
  5457. // Exceeded threshold and we can confirm that it was not accidental
  5458. // KILL the machine
  5459. // ----------------------------------------------------------------
  5460. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5461. #endif
  5462. #if HAS_HOME
  5463. // Check to see if we have to home, use poor man's debouncer
  5464. // ---------------------------------------------------------
  5465. static int homeDebounceCount = 0; // poor man's debouncing count
  5466. const int HOME_DEBOUNCE_DELAY = 750;
  5467. if (!READ(HOME_PIN)) {
  5468. if (!homeDebounceCount) {
  5469. enqueuecommands_P(PSTR("G28"));
  5470. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5471. }
  5472. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5473. homeDebounceCount++;
  5474. else
  5475. homeDebounceCount = 0;
  5476. }
  5477. #endif
  5478. #if HAS_CONTROLLERFAN
  5479. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5480. #endif
  5481. #ifdef EXTRUDER_RUNOUT_PREVENT
  5482. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5483. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5484. bool oldstatus;
  5485. switch(active_extruder) {
  5486. case 0:
  5487. oldstatus = E0_ENABLE_READ;
  5488. enable_e0();
  5489. break;
  5490. #if EXTRUDERS > 1
  5491. case 1:
  5492. oldstatus = E1_ENABLE_READ;
  5493. enable_e1();
  5494. break;
  5495. #if EXTRUDERS > 2
  5496. case 2:
  5497. oldstatus = E2_ENABLE_READ;
  5498. enable_e2();
  5499. break;
  5500. #if EXTRUDERS > 3
  5501. case 3:
  5502. oldstatus = E3_ENABLE_READ;
  5503. enable_e3();
  5504. break;
  5505. #endif
  5506. #endif
  5507. #endif
  5508. }
  5509. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5510. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5511. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5512. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5513. current_position[E_AXIS] = oldepos;
  5514. destination[E_AXIS] = oldedes;
  5515. plan_set_e_position(oldepos);
  5516. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5517. st_synchronize();
  5518. switch(active_extruder) {
  5519. case 0:
  5520. E0_ENABLE_WRITE(oldstatus);
  5521. break;
  5522. #if EXTRUDERS > 1
  5523. case 1:
  5524. E1_ENABLE_WRITE(oldstatus);
  5525. break;
  5526. #if EXTRUDERS > 2
  5527. case 2:
  5528. E2_ENABLE_WRITE(oldstatus);
  5529. break;
  5530. #if EXTRUDERS > 3
  5531. case 3:
  5532. E3_ENABLE_WRITE(oldstatus);
  5533. break;
  5534. #endif
  5535. #endif
  5536. #endif
  5537. }
  5538. }
  5539. #endif
  5540. #ifdef DUAL_X_CARRIAGE
  5541. // handle delayed move timeout
  5542. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5543. // travel moves have been received so enact them
  5544. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5545. set_destination_to_current();
  5546. prepare_move();
  5547. }
  5548. #endif
  5549. #ifdef TEMP_STAT_LEDS
  5550. handle_status_leds();
  5551. #endif
  5552. check_axes_activity();
  5553. }
  5554. void kill(const char *lcd_msg) {
  5555. #ifdef ULTRA_LCD
  5556. lcd_setalertstatuspgm(lcd_msg);
  5557. #endif
  5558. cli(); // Stop interrupts
  5559. disable_all_heaters();
  5560. disable_all_steppers();
  5561. #if HAS_POWER_SWITCH
  5562. pinMode(PS_ON_PIN, INPUT);
  5563. #endif
  5564. SERIAL_ERROR_START;
  5565. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5566. // FMC small patch to update the LCD before ending
  5567. sei(); // enable interrupts
  5568. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5569. cli(); // disable interrupts
  5570. suicide();
  5571. while(1) { /* Intentionally left empty */ } // Wait for reset
  5572. }
  5573. #ifdef FILAMENT_RUNOUT_SENSOR
  5574. void filrunout() {
  5575. if (!filrunoutEnqueued) {
  5576. filrunoutEnqueued = true;
  5577. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5578. st_synchronize();
  5579. }
  5580. }
  5581. #endif // FILAMENT_RUNOUT_SENSOR
  5582. #ifdef FAST_PWM_FAN
  5583. void setPwmFrequency(uint8_t pin, int val) {
  5584. val &= 0x07;
  5585. switch (digitalPinToTimer(pin)) {
  5586. #if defined(TCCR0A)
  5587. case TIMER0A:
  5588. case TIMER0B:
  5589. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5590. // TCCR0B |= val;
  5591. break;
  5592. #endif
  5593. #if defined(TCCR1A)
  5594. case TIMER1A:
  5595. case TIMER1B:
  5596. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5597. // TCCR1B |= val;
  5598. break;
  5599. #endif
  5600. #if defined(TCCR2)
  5601. case TIMER2:
  5602. case TIMER2:
  5603. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5604. TCCR2 |= val;
  5605. break;
  5606. #endif
  5607. #if defined(TCCR2A)
  5608. case TIMER2A:
  5609. case TIMER2B:
  5610. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5611. TCCR2B |= val;
  5612. break;
  5613. #endif
  5614. #if defined(TCCR3A)
  5615. case TIMER3A:
  5616. case TIMER3B:
  5617. case TIMER3C:
  5618. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5619. TCCR3B |= val;
  5620. break;
  5621. #endif
  5622. #if defined(TCCR4A)
  5623. case TIMER4A:
  5624. case TIMER4B:
  5625. case TIMER4C:
  5626. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5627. TCCR4B |= val;
  5628. break;
  5629. #endif
  5630. #if defined(TCCR5A)
  5631. case TIMER5A:
  5632. case TIMER5B:
  5633. case TIMER5C:
  5634. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5635. TCCR5B |= val;
  5636. break;
  5637. #endif
  5638. }
  5639. }
  5640. #endif // FAST_PWM_FAN
  5641. void Stop() {
  5642. disable_all_heaters();
  5643. if (IsRunning()) {
  5644. Running = false;
  5645. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5646. SERIAL_ERROR_START;
  5647. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5648. LCD_MESSAGEPGM(MSG_STOPPED);
  5649. }
  5650. }
  5651. /**
  5652. * Set target_extruder from the T parameter or the active_extruder
  5653. *
  5654. * Returns TRUE if the target is invalid
  5655. */
  5656. bool setTargetedHotend(int code) {
  5657. target_extruder = active_extruder;
  5658. if (code_seen('T')) {
  5659. target_extruder = code_value_short();
  5660. if (target_extruder >= EXTRUDERS) {
  5661. SERIAL_ECHO_START;
  5662. SERIAL_CHAR('M');
  5663. SERIAL_ECHO(code);
  5664. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  5665. SERIAL_ECHOLN(target_extruder);
  5666. return true;
  5667. }
  5668. }
  5669. return false;
  5670. }
  5671. float calculate_volumetric_multiplier(float diameter) {
  5672. if (!volumetric_enabled || diameter == 0) return 1.0;
  5673. float d2 = diameter * 0.5;
  5674. return 1.0 / (M_PI * d2 * d2);
  5675. }
  5676. void calculate_volumetric_multipliers() {
  5677. for (int i=0; i<EXTRUDERS; i++)
  5678. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5679. }