My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Marlin_main.cpp 362KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  63. * G90 - Use Absolute Coordinates
  64. * G91 - Use Relative Coordinates
  65. * G92 - Set current position to coordinates given
  66. *
  67. * "M" Codes
  68. *
  69. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  70. * M1 - Same as M0
  71. * M17 - Enable/Power all stepper motors
  72. * M18 - Disable all stepper motors; same as M84
  73. * M20 - List SD card. (Requires SDSUPPORT)
  74. * M21 - Init SD card. (Requires SDSUPPORT)
  75. * M22 - Release SD card. (Requires SDSUPPORT)
  76. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  77. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  78. * M25 - Pause SD print. (Requires SDSUPPORT)
  79. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  80. * M27 - Report SD print status. (Requires SDSUPPORT)
  81. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  82. * M29 - Stop SD write. (Requires SDSUPPORT)
  83. * M30 - Delete file from SD: "M30 /path/file.gco"
  84. * M31 - Report time since last M109 or SD card start to serial.
  85. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  86. * Use P to run other files as sub-programs: "M32 P !filename#"
  87. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  88. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  89. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  90. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  91. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  92. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  93. * M75 - Start the print job timer.
  94. * M76 - Pause the print job timer.
  95. * M77 - Stop the print job timer.
  96. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  97. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  98. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  99. * M82 - Set E codes absolute (default).
  100. * M83 - Set E codes relative while in Absolute (G90) mode.
  101. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  102. * duration after which steppers should turn off. S0 disables the timeout.
  103. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  105. * M104 - Set extruder target temp.
  106. * M105 - Report current temperatures.
  107. * M106 - Fan on.
  108. * M107 - Fan off.
  109. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  110. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  111. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  112. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  113. * M110 - Set the current line number. (Used by host printing)
  114. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  115. * M112 - Emergency stop.
  116. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  117. * M114 - Report current position.
  118. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  119. * M117 - Display a message on the controller screen. (Requires an LCD)
  120. * M119 - Report endstops status.
  121. * M120 - Enable endstops detection.
  122. * M121 - Disable endstops detection.
  123. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  124. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  125. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  126. * M128 - EtoP Open. (Requires BARICUDA)
  127. * M129 - EtoP Closed. (Requires BARICUDA)
  128. * M140 - Set bed target temp. S<temp>
  129. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  130. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  131. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  132. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  133. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  134. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  135. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  136. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  137. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  138. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  139. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  140. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  141. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  142. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  143. * M205 - Set advanced settings. Current units apply:
  144. S<print> T<travel> minimum speeds
  145. B<minimum segment time>
  146. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  147. * M206 - Set additional homing offset.
  148. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  149. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  150. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  151. Every normal extrude-only move will be classified as retract depending on the direction.
  152. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  153. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  154. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  155. * M221 - Set Flow Percentage: "M221 S<percent>"
  156. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  157. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  158. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  159. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  160. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  162. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  163. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  164. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  165. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  166. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  167. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  168. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  169. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  170. * M400 - Finish all moves.
  171. * M401 - Lower Z probe. (Requires a probe)
  172. * M402 - Raise Z probe. (Requires a probe)
  173. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  174. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  176. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M410 - Quickstop. Abort all planned moves.
  178. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  179. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  180. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  181. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  182. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  183. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  184. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  185. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  186. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  187. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  188. * M666 - Set delta endstop adjustment. (Requires DELTA)
  189. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  190. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  191. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  197. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  198. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  199. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  200. *
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. #if ENABLED(AUTO_BED_LEVELING_UBL)
  281. #include "ubl.h"
  282. unified_bed_leveling ubl;
  283. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  284. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  285. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  286. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  287. || isnan(ubl.z_values[0][0]))
  288. #endif
  289. bool Running = true;
  290. uint8_t marlin_debug_flags = DEBUG_NONE;
  291. /**
  292. * Cartesian Current Position
  293. * Used to track the logical position as moves are queued.
  294. * Used by 'line_to_current_position' to do a move after changing it.
  295. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  296. */
  297. float current_position[XYZE] = { 0.0 };
  298. /**
  299. * Cartesian Destination
  300. * A temporary position, usually applied to 'current_position'.
  301. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  302. * 'line_to_destination' sets 'current_position' to 'destination'.
  303. */
  304. float destination[XYZE] = { 0.0 };
  305. /**
  306. * axis_homed
  307. * Flags that each linear axis was homed.
  308. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  309. *
  310. * axis_known_position
  311. * Flags that the position is known in each linear axis. Set when homed.
  312. * Cleared whenever a stepper powers off, potentially losing its position.
  313. */
  314. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  315. /**
  316. * GCode line number handling. Hosts may opt to include line numbers when
  317. * sending commands to Marlin, and lines will be checked for sequentiality.
  318. * M110 N<int> sets the current line number.
  319. */
  320. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  321. /**
  322. * GCode Command Queue
  323. * A simple ring buffer of BUFSIZE command strings.
  324. *
  325. * Commands are copied into this buffer by the command injectors
  326. * (immediate, serial, sd card) and they are processed sequentially by
  327. * the main loop. The process_next_command function parses the next
  328. * command and hands off execution to individual handler functions.
  329. */
  330. uint8_t commands_in_queue = 0; // Count of commands in the queue
  331. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  332. cmd_queue_index_w = 0; // Ring buffer write position
  333. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  334. /**
  335. * Current GCode Command
  336. * When a GCode handler is running, these will be set
  337. */
  338. static char *current_command, // The command currently being executed
  339. *current_command_args, // The address where arguments begin
  340. *seen_pointer; // Set by code_seen(), used by the code_value functions
  341. /**
  342. * Next Injected Command pointer. NULL if no commands are being injected.
  343. * Used by Marlin internally to ensure that commands initiated from within
  344. * are enqueued ahead of any pending serial or sd card commands.
  345. */
  346. static const char *injected_commands_P = NULL;
  347. #if ENABLED(INCH_MODE_SUPPORT)
  348. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  349. #endif
  350. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  351. TempUnit input_temp_units = TEMPUNIT_C;
  352. #endif
  353. /**
  354. * Feed rates are often configured with mm/m
  355. * but the planner and stepper like mm/s units.
  356. */
  357. float constexpr homing_feedrate_mm_s[] = {
  358. #if ENABLED(DELTA)
  359. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  360. #else
  361. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  362. #endif
  363. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  364. };
  365. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  366. int feedrate_percentage = 100, saved_feedrate_percentage,
  367. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  368. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  369. volumetric_enabled =
  370. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  371. true
  372. #else
  373. false
  374. #endif
  375. ;
  376. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  377. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  378. #if DISABLED(NO_WORKSPACE_OFFSETS)
  379. // The distance that XYZ has been offset by G92. Reset by G28.
  380. float position_shift[XYZ] = { 0 };
  381. // This offset is added to the configured home position.
  382. // Set by M206, M428, or menu item. Saved to EEPROM.
  383. float home_offset[XYZ] = { 0 };
  384. // The above two are combined to save on computes
  385. float workspace_offset[XYZ] = { 0 };
  386. #endif
  387. // Software Endstops are based on the configured limits.
  388. #if HAS_SOFTWARE_ENDSTOPS
  389. bool soft_endstops_enabled = true;
  390. #endif
  391. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  392. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  393. #if FAN_COUNT > 0
  394. int fanSpeeds[FAN_COUNT] = { 0 };
  395. #endif
  396. // The active extruder (tool). Set with T<extruder> command.
  397. uint8_t active_extruder = 0;
  398. // Relative Mode. Enable with G91, disable with G90.
  399. static bool relative_mode = false;
  400. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  401. volatile bool wait_for_heatup = true;
  402. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  403. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  404. volatile bool wait_for_user = false;
  405. #endif
  406. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  407. // Number of characters read in the current line of serial input
  408. static int serial_count = 0;
  409. // Inactivity shutdown
  410. millis_t previous_cmd_ms = 0;
  411. static millis_t max_inactive_time = 0;
  412. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  413. // Print Job Timer
  414. #if ENABLED(PRINTCOUNTER)
  415. PrintCounter print_job_timer = PrintCounter();
  416. #else
  417. Stopwatch print_job_timer = Stopwatch();
  418. #endif
  419. // Buzzer - I2C on the LCD or a BEEPER_PIN
  420. #if ENABLED(LCD_USE_I2C_BUZZER)
  421. #define BUZZ(d,f) lcd_buzz(d, f)
  422. #elif PIN_EXISTS(BEEPER)
  423. Buzzer buzzer;
  424. #define BUZZ(d,f) buzzer.tone(d, f)
  425. #else
  426. #define BUZZ(d,f) NOOP
  427. #endif
  428. static uint8_t target_extruder;
  429. #if HAS_BED_PROBE
  430. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  431. #endif
  432. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  433. #if HAS_ABL
  434. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  435. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  436. #elif defined(XY_PROBE_SPEED)
  437. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  438. #else
  439. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  440. #endif
  441. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  442. #if ENABLED(DELTA)
  443. #define ADJUST_DELTA(V) \
  444. if (planner.abl_enabled) { \
  445. const float zadj = bilinear_z_offset(V); \
  446. delta[A_AXIS] += zadj; \
  447. delta[B_AXIS] += zadj; \
  448. delta[C_AXIS] += zadj; \
  449. }
  450. #else
  451. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  452. #endif
  453. #elif IS_KINEMATIC
  454. #define ADJUST_DELTA(V) NOOP
  455. #endif
  456. #if ENABLED(Z_DUAL_ENDSTOPS)
  457. float z_endstop_adj =
  458. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  459. Z_DUAL_ENDSTOPS_ADJUSTMENT
  460. #else
  461. 0
  462. #endif
  463. ;
  464. #endif
  465. // Extruder offsets
  466. #if HOTENDS > 1
  467. float hotend_offset[XYZ][HOTENDS];
  468. #endif
  469. #if HAS_Z_SERVO_ENDSTOP
  470. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  471. #endif
  472. #if ENABLED(BARICUDA)
  473. int baricuda_valve_pressure = 0;
  474. int baricuda_e_to_p_pressure = 0;
  475. #endif
  476. #if ENABLED(FWRETRACT)
  477. bool autoretract_enabled = false;
  478. bool retracted[EXTRUDERS] = { false };
  479. bool retracted_swap[EXTRUDERS] = { false };
  480. float retract_length = RETRACT_LENGTH;
  481. float retract_length_swap = RETRACT_LENGTH_SWAP;
  482. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  483. float retract_zlift = RETRACT_ZLIFT;
  484. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  485. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  486. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  487. #endif // FWRETRACT
  488. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  489. bool powersupply =
  490. #if ENABLED(PS_DEFAULT_OFF)
  491. false
  492. #else
  493. true
  494. #endif
  495. ;
  496. #endif
  497. #if HAS_CASE_LIGHT
  498. bool case_light_on =
  499. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  500. true
  501. #else
  502. false
  503. #endif
  504. ;
  505. #endif
  506. #if ENABLED(DELTA)
  507. float delta[ABC],
  508. endstop_adj[ABC] = { 0 };
  509. // These values are loaded or reset at boot time when setup() calls
  510. // Config_RetrieveSettings(), which calls recalc_delta_settings().
  511. float delta_radius,
  512. delta_tower_angle_trim[ABC],
  513. delta_tower[ABC][2],
  514. delta_diagonal_rod,
  515. delta_diagonal_rod_trim[ABC],
  516. delta_diagonal_rod_2_tower[ABC],
  517. delta_segments_per_second,
  518. delta_clip_start_height = Z_MAX_POS;
  519. float delta_safe_distance_from_top();
  520. #endif
  521. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  522. int bilinear_grid_spacing[2], bilinear_start[2];
  523. float bed_level_grid[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  524. #endif
  525. #if IS_SCARA
  526. // Float constants for SCARA calculations
  527. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  528. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  529. L2_2 = sq(float(L2));
  530. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  531. delta[ABC];
  532. #endif
  533. float cartes[XYZ] = { 0 };
  534. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  535. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  536. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  537. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  538. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  539. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  540. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  541. #endif
  542. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  543. static bool filament_ran_out = false;
  544. #endif
  545. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  546. FilamentChangeMenuResponse filament_change_menu_response;
  547. #endif
  548. #if ENABLED(MIXING_EXTRUDER)
  549. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  550. #if MIXING_VIRTUAL_TOOLS > 1
  551. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  552. #endif
  553. #endif
  554. static bool send_ok[BUFSIZE];
  555. #if HAS_SERVOS
  556. Servo servo[NUM_SERVOS];
  557. #define MOVE_SERVO(I, P) servo[I].move(P)
  558. #if HAS_Z_SERVO_ENDSTOP
  559. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  560. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  561. #endif
  562. #endif
  563. #ifdef CHDK
  564. millis_t chdkHigh = 0;
  565. bool chdkActive = false;
  566. #endif
  567. #if ENABLED(PID_EXTRUSION_SCALING)
  568. int lpq_len = 20;
  569. #endif
  570. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  571. MarlinBusyState busy_state = NOT_BUSY;
  572. static millis_t next_busy_signal_ms = 0;
  573. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  574. #else
  575. #define host_keepalive() NOOP
  576. #endif
  577. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  578. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  579. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  580. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  581. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  582. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  583. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  584. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  585. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  586. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  587. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  588. /**
  589. * ***************************************************************************
  590. * ******************************** FUNCTIONS ********************************
  591. * ***************************************************************************
  592. */
  593. void stop();
  594. void get_available_commands();
  595. void process_next_command();
  596. void prepare_move_to_destination();
  597. void get_cartesian_from_steppers();
  598. void set_current_from_steppers_for_axis(const AxisEnum axis);
  599. #if ENABLED(ARC_SUPPORT)
  600. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  601. #endif
  602. #if ENABLED(BEZIER_CURVE_SUPPORT)
  603. void plan_cubic_move(const float offset[4]);
  604. #endif
  605. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  606. static void report_current_position();
  607. #if ENABLED(DEBUG_LEVELING_FEATURE)
  608. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  609. serialprintPGM(prefix);
  610. SERIAL_ECHOPAIR("(", x);
  611. SERIAL_ECHOPAIR(", ", y);
  612. SERIAL_ECHOPAIR(", ", z);
  613. SERIAL_CHAR(')');
  614. if (suffix) serialprintPGM(suffix);
  615. else SERIAL_EOL;
  616. }
  617. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  618. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  619. }
  620. #if HAS_ABL
  621. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  622. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  623. }
  624. #endif
  625. #define DEBUG_POS(SUFFIX,VAR) do { \
  626. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  627. #endif
  628. /**
  629. * sync_plan_position
  630. *
  631. * Set the planner/stepper positions directly from current_position with
  632. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  633. */
  634. inline void sync_plan_position() {
  635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  636. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  637. #endif
  638. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  639. }
  640. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  641. #if IS_KINEMATIC
  642. inline void sync_plan_position_kinematic() {
  643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  644. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  645. #endif
  646. planner.set_position_mm_kinematic(current_position);
  647. }
  648. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  649. #else
  650. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  651. #endif
  652. #if ENABLED(SDSUPPORT)
  653. #include "SdFatUtil.h"
  654. int freeMemory() { return SdFatUtil::FreeRam(); }
  655. #else
  656. extern "C" {
  657. extern char __bss_end;
  658. extern char __heap_start;
  659. extern void* __brkval;
  660. int freeMemory() {
  661. int free_memory;
  662. if ((int)__brkval == 0)
  663. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  664. else
  665. free_memory = ((int)&free_memory) - ((int)__brkval);
  666. return free_memory;
  667. }
  668. }
  669. #endif //!SDSUPPORT
  670. #if ENABLED(DIGIPOT_I2C)
  671. extern void digipot_i2c_set_current(int channel, float current);
  672. extern void digipot_i2c_init();
  673. #endif
  674. /**
  675. * Inject the next "immediate" command, when possible, onto the front of the queue.
  676. * Return true if any immediate commands remain to inject.
  677. */
  678. static bool drain_injected_commands_P() {
  679. if (injected_commands_P != NULL) {
  680. size_t i = 0;
  681. char c, cmd[30];
  682. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  683. cmd[sizeof(cmd) - 1] = '\0';
  684. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  685. cmd[i] = '\0';
  686. if (enqueue_and_echo_command(cmd)) // success?
  687. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  688. }
  689. return (injected_commands_P != NULL); // return whether any more remain
  690. }
  691. /**
  692. * Record one or many commands to run from program memory.
  693. * Aborts the current queue, if any.
  694. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  695. */
  696. void enqueue_and_echo_commands_P(const char* pgcode) {
  697. injected_commands_P = pgcode;
  698. drain_injected_commands_P(); // first command executed asap (when possible)
  699. }
  700. /**
  701. * Clear the Marlin command queue
  702. */
  703. void clear_command_queue() {
  704. cmd_queue_index_r = cmd_queue_index_w;
  705. commands_in_queue = 0;
  706. }
  707. /**
  708. * Once a new command is in the ring buffer, call this to commit it
  709. */
  710. inline void _commit_command(bool say_ok) {
  711. send_ok[cmd_queue_index_w] = say_ok;
  712. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  713. commands_in_queue++;
  714. }
  715. /**
  716. * Copy a command from RAM into the main command buffer.
  717. * Return true if the command was successfully added.
  718. * Return false for a full buffer, or if the 'command' is a comment.
  719. */
  720. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  721. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  722. strcpy(command_queue[cmd_queue_index_w], cmd);
  723. _commit_command(say_ok);
  724. return true;
  725. }
  726. /**
  727. * Enqueue with Serial Echo
  728. */
  729. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  730. if (_enqueuecommand(cmd, say_ok)) {
  731. SERIAL_ECHO_START;
  732. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  733. SERIAL_CHAR('"');
  734. SERIAL_EOL;
  735. return true;
  736. }
  737. return false;
  738. }
  739. void setup_killpin() {
  740. #if HAS_KILL
  741. SET_INPUT_PULLUP(KILL_PIN);
  742. #endif
  743. }
  744. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  745. void setup_filrunoutpin() {
  746. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  747. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  748. #else
  749. SET_INPUT(FIL_RUNOUT_PIN);
  750. #endif
  751. }
  752. #endif
  753. void setup_homepin(void) {
  754. #if HAS_HOME
  755. SET_INPUT_PULLUP(HOME_PIN);
  756. #endif
  757. }
  758. void setup_powerhold() {
  759. #if HAS_SUICIDE
  760. OUT_WRITE(SUICIDE_PIN, HIGH);
  761. #endif
  762. #if HAS_POWER_SWITCH
  763. #if ENABLED(PS_DEFAULT_OFF)
  764. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  765. #else
  766. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  767. #endif
  768. #endif
  769. }
  770. void suicide() {
  771. #if HAS_SUICIDE
  772. OUT_WRITE(SUICIDE_PIN, LOW);
  773. #endif
  774. }
  775. void servo_init() {
  776. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  777. servo[0].attach(SERVO0_PIN);
  778. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  779. #endif
  780. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  781. servo[1].attach(SERVO1_PIN);
  782. servo[1].detach();
  783. #endif
  784. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  785. servo[2].attach(SERVO2_PIN);
  786. servo[2].detach();
  787. #endif
  788. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  789. servo[3].attach(SERVO3_PIN);
  790. servo[3].detach();
  791. #endif
  792. #if HAS_Z_SERVO_ENDSTOP
  793. /**
  794. * Set position of Z Servo Endstop
  795. *
  796. * The servo might be deployed and positioned too low to stow
  797. * when starting up the machine or rebooting the board.
  798. * There's no way to know where the nozzle is positioned until
  799. * homing has been done - no homing with z-probe without init!
  800. *
  801. */
  802. STOW_Z_SERVO();
  803. #endif
  804. }
  805. /**
  806. * Stepper Reset (RigidBoard, et.al.)
  807. */
  808. #if HAS_STEPPER_RESET
  809. void disableStepperDrivers() {
  810. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  811. }
  812. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  813. #endif
  814. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  815. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  816. i2c.receive(bytes);
  817. }
  818. void i2c_on_request() { // just send dummy data for now
  819. i2c.reply("Hello World!\n");
  820. }
  821. #endif
  822. void gcode_line_error(const char* err, bool doFlush = true) {
  823. SERIAL_ERROR_START;
  824. serialprintPGM(err);
  825. SERIAL_ERRORLN(gcode_LastN);
  826. //Serial.println(gcode_N);
  827. if (doFlush) FlushSerialRequestResend();
  828. serial_count = 0;
  829. }
  830. /**
  831. * Get all commands waiting on the serial port and queue them.
  832. * Exit when the buffer is full or when no more characters are
  833. * left on the serial port.
  834. */
  835. inline void get_serial_commands() {
  836. static char serial_line_buffer[MAX_CMD_SIZE];
  837. static bool serial_comment_mode = false;
  838. // If the command buffer is empty for too long,
  839. // send "wait" to indicate Marlin is still waiting.
  840. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  841. static millis_t last_command_time = 0;
  842. const millis_t ms = millis();
  843. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  844. SERIAL_ECHOLNPGM(MSG_WAIT);
  845. last_command_time = ms;
  846. }
  847. #endif
  848. /**
  849. * Loop while serial characters are incoming and the queue is not full
  850. */
  851. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  852. char serial_char = MYSERIAL.read();
  853. /**
  854. * If the character ends the line
  855. */
  856. if (serial_char == '\n' || serial_char == '\r') {
  857. serial_comment_mode = false; // end of line == end of comment
  858. if (!serial_count) continue; // skip empty lines
  859. serial_line_buffer[serial_count] = 0; // terminate string
  860. serial_count = 0; //reset buffer
  861. char* command = serial_line_buffer;
  862. while (*command == ' ') command++; // skip any leading spaces
  863. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  864. char* apos = strchr(command, '*');
  865. if (npos) {
  866. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  867. if (M110) {
  868. char* n2pos = strchr(command + 4, 'N');
  869. if (n2pos) npos = n2pos;
  870. }
  871. gcode_N = strtol(npos + 1, NULL, 10);
  872. if (gcode_N != gcode_LastN + 1 && !M110) {
  873. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  874. return;
  875. }
  876. if (apos) {
  877. byte checksum = 0, count = 0;
  878. while (command[count] != '*') checksum ^= command[count++];
  879. if (strtol(apos + 1, NULL, 10) != checksum) {
  880. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  881. return;
  882. }
  883. // if no errors, continue parsing
  884. }
  885. else {
  886. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  887. return;
  888. }
  889. gcode_LastN = gcode_N;
  890. // if no errors, continue parsing
  891. }
  892. else if (apos) { // No '*' without 'N'
  893. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  894. return;
  895. }
  896. // Movement commands alert when stopped
  897. if (IsStopped()) {
  898. char* gpos = strchr(command, 'G');
  899. if (gpos) {
  900. int codenum = strtol(gpos + 1, NULL, 10);
  901. switch (codenum) {
  902. case 0:
  903. case 1:
  904. case 2:
  905. case 3:
  906. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  907. LCD_MESSAGEPGM(MSG_STOPPED);
  908. break;
  909. }
  910. }
  911. }
  912. #if DISABLED(EMERGENCY_PARSER)
  913. // If command was e-stop process now
  914. if (strcmp(command, "M108") == 0) {
  915. wait_for_heatup = false;
  916. #if ENABLED(ULTIPANEL)
  917. wait_for_user = false;
  918. #endif
  919. }
  920. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  921. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  922. #endif
  923. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  924. last_command_time = ms;
  925. #endif
  926. // Add the command to the queue
  927. _enqueuecommand(serial_line_buffer, true);
  928. }
  929. else if (serial_count >= MAX_CMD_SIZE - 1) {
  930. // Keep fetching, but ignore normal characters beyond the max length
  931. // The command will be injected when EOL is reached
  932. }
  933. else if (serial_char == '\\') { // Handle escapes
  934. if (MYSERIAL.available() > 0) {
  935. // if we have one more character, copy it over
  936. serial_char = MYSERIAL.read();
  937. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  938. }
  939. // otherwise do nothing
  940. }
  941. else { // it's not a newline, carriage return or escape char
  942. if (serial_char == ';') serial_comment_mode = true;
  943. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  944. }
  945. } // queue has space, serial has data
  946. }
  947. #if ENABLED(SDSUPPORT)
  948. /**
  949. * Get commands from the SD Card until the command buffer is full
  950. * or until the end of the file is reached. The special character '#'
  951. * can also interrupt buffering.
  952. */
  953. inline void get_sdcard_commands() {
  954. static bool stop_buffering = false,
  955. sd_comment_mode = false;
  956. if (!card.sdprinting) return;
  957. /**
  958. * '#' stops reading from SD to the buffer prematurely, so procedural
  959. * macro calls are possible. If it occurs, stop_buffering is triggered
  960. * and the buffer is run dry; this character _can_ occur in serial com
  961. * due to checksums, however, no checksums are used in SD printing.
  962. */
  963. if (commands_in_queue == 0) stop_buffering = false;
  964. uint16_t sd_count = 0;
  965. bool card_eof = card.eof();
  966. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  967. const int16_t n = card.get();
  968. char sd_char = (char)n;
  969. card_eof = card.eof();
  970. if (card_eof || n == -1
  971. || sd_char == '\n' || sd_char == '\r'
  972. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  973. ) {
  974. if (card_eof) {
  975. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  976. card.printingHasFinished();
  977. card.checkautostart(true);
  978. }
  979. else if (n == -1) {
  980. SERIAL_ERROR_START;
  981. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  982. }
  983. if (sd_char == '#') stop_buffering = true;
  984. sd_comment_mode = false; // for new command
  985. if (!sd_count) continue; // skip empty lines (and comment lines)
  986. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  987. sd_count = 0; // clear sd line buffer
  988. _commit_command(false);
  989. }
  990. else if (sd_count >= MAX_CMD_SIZE - 1) {
  991. /**
  992. * Keep fetching, but ignore normal characters beyond the max length
  993. * The command will be injected when EOL is reached
  994. */
  995. }
  996. else {
  997. if (sd_char == ';') sd_comment_mode = true;
  998. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  999. }
  1000. }
  1001. }
  1002. #endif // SDSUPPORT
  1003. /**
  1004. * Add to the circular command queue the next command from:
  1005. * - The command-injection queue (injected_commands_P)
  1006. * - The active serial input (usually USB)
  1007. * - The SD card file being actively printed
  1008. */
  1009. void get_available_commands() {
  1010. // if any immediate commands remain, don't get other commands yet
  1011. if (drain_injected_commands_P()) return;
  1012. get_serial_commands();
  1013. #if ENABLED(SDSUPPORT)
  1014. get_sdcard_commands();
  1015. #endif
  1016. }
  1017. inline bool code_has_value() {
  1018. int i = 1;
  1019. char c = seen_pointer[i];
  1020. while (c == ' ') c = seen_pointer[++i];
  1021. if (c == '-' || c == '+') c = seen_pointer[++i];
  1022. if (c == '.') c = seen_pointer[++i];
  1023. return NUMERIC(c);
  1024. }
  1025. inline float code_value_float() {
  1026. char* e = strchr(seen_pointer, 'E');
  1027. if (!e) return strtod(seen_pointer + 1, NULL);
  1028. *e = 0;
  1029. float ret = strtod(seen_pointer + 1, NULL);
  1030. *e = 'E';
  1031. return ret;
  1032. }
  1033. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1034. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1035. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1036. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1037. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1038. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1039. #if ENABLED(INCH_MODE_SUPPORT)
  1040. inline void set_input_linear_units(LinearUnit units) {
  1041. switch (units) {
  1042. case LINEARUNIT_INCH:
  1043. linear_unit_factor = 25.4;
  1044. break;
  1045. case LINEARUNIT_MM:
  1046. default:
  1047. linear_unit_factor = 1.0;
  1048. break;
  1049. }
  1050. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1051. }
  1052. inline float axis_unit_factor(int axis) {
  1053. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1054. }
  1055. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1056. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1057. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1058. #else
  1059. inline float code_value_linear_units() { return code_value_float(); }
  1060. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1061. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1062. #endif
  1063. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1064. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1065. float code_value_temp_abs() {
  1066. switch (input_temp_units) {
  1067. case TEMPUNIT_C:
  1068. return code_value_float();
  1069. case TEMPUNIT_F:
  1070. return (code_value_float() - 32) * 0.5555555556;
  1071. case TEMPUNIT_K:
  1072. return code_value_float() - 273.15;
  1073. default:
  1074. return code_value_float();
  1075. }
  1076. }
  1077. float code_value_temp_diff() {
  1078. switch (input_temp_units) {
  1079. case TEMPUNIT_C:
  1080. case TEMPUNIT_K:
  1081. return code_value_float();
  1082. case TEMPUNIT_F:
  1083. return code_value_float() * 0.5555555556;
  1084. default:
  1085. return code_value_float();
  1086. }
  1087. }
  1088. #else
  1089. float code_value_temp_abs() { return code_value_float(); }
  1090. float code_value_temp_diff() { return code_value_float(); }
  1091. #endif
  1092. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1093. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1094. bool code_seen(char code) {
  1095. seen_pointer = strchr(current_command_args, code);
  1096. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1097. }
  1098. /**
  1099. * Set target_extruder from the T parameter or the active_extruder
  1100. *
  1101. * Returns TRUE if the target is invalid
  1102. */
  1103. bool get_target_extruder_from_command(int code) {
  1104. if (code_seen('T')) {
  1105. if (code_value_byte() >= EXTRUDERS) {
  1106. SERIAL_ECHO_START;
  1107. SERIAL_CHAR('M');
  1108. SERIAL_ECHO(code);
  1109. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1110. return true;
  1111. }
  1112. target_extruder = code_value_byte();
  1113. }
  1114. else
  1115. target_extruder = active_extruder;
  1116. return false;
  1117. }
  1118. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1119. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1120. #endif
  1121. #if ENABLED(DUAL_X_CARRIAGE)
  1122. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1123. static float x_home_pos(const int extruder) {
  1124. if (extruder == 0)
  1125. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1126. else
  1127. /**
  1128. * In dual carriage mode the extruder offset provides an override of the
  1129. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1130. * This allows soft recalibration of the second extruder home position
  1131. * without firmware reflash (through the M218 command).
  1132. */
  1133. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1134. }
  1135. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1136. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1137. static bool active_extruder_parked = false; // used in mode 1 & 2
  1138. static float raised_parked_position[XYZE]; // used in mode 1
  1139. static millis_t delayed_move_time = 0; // used in mode 1
  1140. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1141. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1142. #endif // DUAL_X_CARRIAGE
  1143. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  1144. /**
  1145. * Software endstops can be used to monitor the open end of
  1146. * an axis that has a hardware endstop on the other end. Or
  1147. * they can prevent axes from moving past endstops and grinding.
  1148. *
  1149. * To keep doing their job as the coordinate system changes,
  1150. * the software endstop positions must be refreshed to remain
  1151. * at the same positions relative to the machine.
  1152. */
  1153. void update_software_endstops(const AxisEnum axis) {
  1154. const float offs = workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1155. #if ENABLED(DUAL_X_CARRIAGE)
  1156. if (axis == X_AXIS) {
  1157. // In Dual X mode hotend_offset[X] is T1's home position
  1158. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1159. if (active_extruder != 0) {
  1160. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1161. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1162. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1163. }
  1164. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1165. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1166. // but not so far to the right that T1 would move past the end
  1167. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1168. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1169. }
  1170. else {
  1171. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1172. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1173. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1174. }
  1175. }
  1176. #else
  1177. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1178. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1179. #endif
  1180. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1181. if (DEBUGGING(LEVELING)) {
  1182. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1183. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1184. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1185. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1186. #endif
  1187. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1188. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1189. }
  1190. #endif
  1191. #if ENABLED(DELTA)
  1192. if (axis == Z_AXIS)
  1193. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1194. #endif
  1195. }
  1196. #endif // NO_WORKSPACE_OFFSETS
  1197. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1198. /**
  1199. * Change the home offset for an axis, update the current
  1200. * position and the software endstops to retain the same
  1201. * relative distance to the new home.
  1202. *
  1203. * Since this changes the current_position, code should
  1204. * call sync_plan_position soon after this.
  1205. */
  1206. static void set_home_offset(const AxisEnum axis, const float v) {
  1207. current_position[axis] += v - home_offset[axis];
  1208. home_offset[axis] = v;
  1209. update_software_endstops(axis);
  1210. }
  1211. #endif // NO_WORKSPACE_OFFSETS
  1212. /**
  1213. * Set an axis' current position to its home position (after homing).
  1214. *
  1215. * For Core and Cartesian robots this applies one-to-one when an
  1216. * individual axis has been homed.
  1217. *
  1218. * DELTA should wait until all homing is done before setting the XYZ
  1219. * current_position to home, because homing is a single operation.
  1220. * In the case where the axis positions are already known and previously
  1221. * homed, DELTA could home to X or Y individually by moving either one
  1222. * to the center. However, homing Z always homes XY and Z.
  1223. *
  1224. * SCARA should wait until all XY homing is done before setting the XY
  1225. * current_position to home, because neither X nor Y is at home until
  1226. * both are at home. Z can however be homed individually.
  1227. *
  1228. * Callers must sync the planner position after calling this!
  1229. */
  1230. static void set_axis_is_at_home(AxisEnum axis) {
  1231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1232. if (DEBUGGING(LEVELING)) {
  1233. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1234. SERIAL_CHAR(')');
  1235. SERIAL_EOL;
  1236. }
  1237. #endif
  1238. axis_known_position[axis] = axis_homed[axis] = true;
  1239. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1240. position_shift[axis] = 0;
  1241. update_software_endstops(axis);
  1242. #endif
  1243. #if ENABLED(DUAL_X_CARRIAGE)
  1244. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1245. current_position[X_AXIS] = x_home_pos(active_extruder);
  1246. return;
  1247. }
  1248. #endif
  1249. #if ENABLED(MORGAN_SCARA)
  1250. /**
  1251. * Morgan SCARA homes XY at the same time
  1252. */
  1253. if (axis == X_AXIS || axis == Y_AXIS) {
  1254. float homeposition[XYZ];
  1255. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1256. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1257. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1258. /**
  1259. * Get Home position SCARA arm angles using inverse kinematics,
  1260. * and calculate homing offset using forward kinematics
  1261. */
  1262. inverse_kinematics(homeposition);
  1263. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1264. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1265. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1266. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1267. /**
  1268. * SCARA home positions are based on configuration since the actual
  1269. * limits are determined by the inverse kinematic transform.
  1270. */
  1271. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1272. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1273. }
  1274. else
  1275. #endif
  1276. {
  1277. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1278. }
  1279. /**
  1280. * Z Probe Z Homing? Account for the probe's Z offset.
  1281. */
  1282. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1283. if (axis == Z_AXIS) {
  1284. #if HOMING_Z_WITH_PROBE
  1285. current_position[Z_AXIS] -= zprobe_zoffset;
  1286. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1287. if (DEBUGGING(LEVELING)) {
  1288. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1289. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1290. }
  1291. #endif
  1292. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1293. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1294. #endif
  1295. }
  1296. #endif
  1297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1298. if (DEBUGGING(LEVELING)) {
  1299. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1300. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1301. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1302. #endif
  1303. DEBUG_POS("", current_position);
  1304. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1305. SERIAL_CHAR(')');
  1306. SERIAL_EOL;
  1307. }
  1308. #endif
  1309. }
  1310. /**
  1311. * Some planner shorthand inline functions
  1312. */
  1313. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1314. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1315. int hbd = homing_bump_divisor[axis];
  1316. if (hbd < 1) {
  1317. hbd = 10;
  1318. SERIAL_ECHO_START;
  1319. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1320. }
  1321. return homing_feedrate_mm_s[axis] / hbd;
  1322. }
  1323. //
  1324. // line_to_current_position
  1325. // Move the planner to the current position from wherever it last moved
  1326. // (or from wherever it has been told it is located).
  1327. //
  1328. inline void line_to_current_position() {
  1329. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1330. }
  1331. //
  1332. // line_to_destination
  1333. // Move the planner, not necessarily synced with current_position
  1334. //
  1335. inline void line_to_destination(float fr_mm_s) {
  1336. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1337. }
  1338. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1339. inline void set_current_to_destination() { COPY(current_position, destination); }
  1340. inline void set_destination_to_current() { COPY(destination, current_position); }
  1341. #if IS_KINEMATIC
  1342. /**
  1343. * Calculate delta, start a line, and set current_position to destination
  1344. */
  1345. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1347. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1348. #endif
  1349. if ( current_position[X_AXIS] == destination[X_AXIS]
  1350. && current_position[Y_AXIS] == destination[Y_AXIS]
  1351. && current_position[Z_AXIS] == destination[Z_AXIS]
  1352. && current_position[E_AXIS] == destination[E_AXIS]
  1353. ) return;
  1354. refresh_cmd_timeout();
  1355. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1356. set_current_to_destination();
  1357. }
  1358. #endif // IS_KINEMATIC
  1359. /**
  1360. * Plan a move to (X, Y, Z) and set the current_position
  1361. * The final current_position may not be the one that was requested
  1362. */
  1363. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1364. const float old_feedrate_mm_s = feedrate_mm_s;
  1365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1366. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1367. #endif
  1368. #if ENABLED(DELTA)
  1369. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1370. set_destination_to_current(); // sync destination at the start
  1371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1372. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1373. #endif
  1374. // when in the danger zone
  1375. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1376. if (z > delta_clip_start_height) { // staying in the danger zone
  1377. destination[X_AXIS] = x; // move directly (uninterpolated)
  1378. destination[Y_AXIS] = y;
  1379. destination[Z_AXIS] = z;
  1380. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1383. #endif
  1384. return;
  1385. }
  1386. else {
  1387. destination[Z_AXIS] = delta_clip_start_height;
  1388. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1390. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1391. #endif
  1392. }
  1393. }
  1394. if (z > current_position[Z_AXIS]) { // raising?
  1395. destination[Z_AXIS] = z;
  1396. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1398. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1399. #endif
  1400. }
  1401. destination[X_AXIS] = x;
  1402. destination[Y_AXIS] = y;
  1403. prepare_move_to_destination(); // set_current_to_destination
  1404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1405. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1406. #endif
  1407. if (z < current_position[Z_AXIS]) { // lowering?
  1408. destination[Z_AXIS] = z;
  1409. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1411. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1412. #endif
  1413. }
  1414. #elif IS_SCARA
  1415. set_destination_to_current();
  1416. // If Z needs to raise, do it before moving XY
  1417. if (destination[Z_AXIS] < z) {
  1418. destination[Z_AXIS] = z;
  1419. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1420. }
  1421. destination[X_AXIS] = x;
  1422. destination[Y_AXIS] = y;
  1423. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1424. // If Z needs to lower, do it after moving XY
  1425. if (destination[Z_AXIS] > z) {
  1426. destination[Z_AXIS] = z;
  1427. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1428. }
  1429. #else
  1430. // If Z needs to raise, do it before moving XY
  1431. if (current_position[Z_AXIS] < z) {
  1432. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1433. current_position[Z_AXIS] = z;
  1434. line_to_current_position();
  1435. }
  1436. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1437. current_position[X_AXIS] = x;
  1438. current_position[Y_AXIS] = y;
  1439. line_to_current_position();
  1440. // If Z needs to lower, do it after moving XY
  1441. if (current_position[Z_AXIS] > z) {
  1442. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1443. current_position[Z_AXIS] = z;
  1444. line_to_current_position();
  1445. }
  1446. #endif
  1447. stepper.synchronize();
  1448. feedrate_mm_s = old_feedrate_mm_s;
  1449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1450. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1451. #endif
  1452. }
  1453. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1454. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1455. }
  1456. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1457. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1458. }
  1459. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1460. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1461. }
  1462. //
  1463. // Prepare to do endstop or probe moves
  1464. // with custom feedrates.
  1465. //
  1466. // - Save current feedrates
  1467. // - Reset the rate multiplier
  1468. // - Reset the command timeout
  1469. // - Enable the endstops (for endstop moves)
  1470. //
  1471. static void setup_for_endstop_or_probe_move() {
  1472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1473. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1474. #endif
  1475. saved_feedrate_mm_s = feedrate_mm_s;
  1476. saved_feedrate_percentage = feedrate_percentage;
  1477. feedrate_percentage = 100;
  1478. refresh_cmd_timeout();
  1479. }
  1480. static void clean_up_after_endstop_or_probe_move() {
  1481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1482. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1483. #endif
  1484. feedrate_mm_s = saved_feedrate_mm_s;
  1485. feedrate_percentage = saved_feedrate_percentage;
  1486. refresh_cmd_timeout();
  1487. }
  1488. #if HAS_BED_PROBE
  1489. /**
  1490. * Raise Z to a minimum height to make room for a probe to move
  1491. */
  1492. inline void do_probe_raise(float z_raise) {
  1493. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1494. if (DEBUGGING(LEVELING)) {
  1495. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1496. SERIAL_CHAR(')');
  1497. SERIAL_EOL;
  1498. }
  1499. #endif
  1500. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1501. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1502. if (z_dest > current_position[Z_AXIS])
  1503. do_blocking_move_to_z(z_dest);
  1504. }
  1505. #endif //HAS_BED_PROBE
  1506. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1507. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1508. const bool xx = x && !axis_homed[X_AXIS],
  1509. yy = y && !axis_homed[Y_AXIS],
  1510. zz = z && !axis_homed[Z_AXIS];
  1511. if (xx || yy || zz) {
  1512. SERIAL_ECHO_START;
  1513. SERIAL_ECHOPGM(MSG_HOME " ");
  1514. if (xx) SERIAL_ECHOPGM(MSG_X);
  1515. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1516. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1517. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1518. #if ENABLED(ULTRA_LCD)
  1519. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1520. #endif
  1521. return true;
  1522. }
  1523. return false;
  1524. }
  1525. #endif
  1526. #if ENABLED(Z_PROBE_SLED)
  1527. #ifndef SLED_DOCKING_OFFSET
  1528. #define SLED_DOCKING_OFFSET 0
  1529. #endif
  1530. /**
  1531. * Method to dock/undock a sled designed by Charles Bell.
  1532. *
  1533. * stow[in] If false, move to MAX_X and engage the solenoid
  1534. * If true, move to MAX_X and release the solenoid
  1535. */
  1536. static void dock_sled(bool stow) {
  1537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1538. if (DEBUGGING(LEVELING)) {
  1539. SERIAL_ECHOPAIR("dock_sled(", stow);
  1540. SERIAL_CHAR(')');
  1541. SERIAL_EOL;
  1542. }
  1543. #endif
  1544. // Dock sled a bit closer to ensure proper capturing
  1545. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1546. #if PIN_EXISTS(SLED)
  1547. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1548. #endif
  1549. }
  1550. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1551. void run_deploy_moves_script() {
  1552. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1553. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1554. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1555. #endif
  1556. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1557. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1558. #endif
  1559. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1560. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1561. #endif
  1562. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1563. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1564. #endif
  1565. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1566. #endif
  1567. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1568. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1569. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1570. #endif
  1571. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1572. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1573. #endif
  1574. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1575. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1576. #endif
  1577. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1578. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1579. #endif
  1580. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1581. #endif
  1582. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1588. #endif
  1589. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1590. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1591. #endif
  1592. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1593. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1594. #endif
  1595. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1596. #endif
  1597. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1598. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1599. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1602. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1603. #endif
  1604. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1605. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1606. #endif
  1607. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1608. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1609. #endif
  1610. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1611. #endif
  1612. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1620. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1621. #endif
  1622. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1623. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1624. #endif
  1625. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1626. #endif
  1627. }
  1628. void run_stow_moves_script() {
  1629. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1630. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1631. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1632. #endif
  1633. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1634. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1635. #endif
  1636. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1637. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1638. #endif
  1639. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1640. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1641. #endif
  1642. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1643. #endif
  1644. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1645. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1646. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1647. #endif
  1648. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1649. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1650. #endif
  1651. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1652. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1653. #endif
  1654. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1655. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1656. #endif
  1657. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1658. #endif
  1659. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1660. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1661. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1662. #endif
  1663. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1664. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1665. #endif
  1666. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1667. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1668. #endif
  1669. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1670. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1671. #endif
  1672. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1673. #endif
  1674. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1676. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1679. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1680. #endif
  1681. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1682. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1683. #endif
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1685. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1686. #endif
  1687. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1688. #endif
  1689. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1691. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1694. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1695. #endif
  1696. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1697. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1698. #endif
  1699. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1700. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1701. #endif
  1702. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1703. #endif
  1704. }
  1705. #endif
  1706. #if HAS_BED_PROBE
  1707. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1708. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1709. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1710. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1711. #else
  1712. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1713. #endif
  1714. #endif
  1715. #if ENABLED(BLTOUCH)
  1716. void bltouch_command(int angle) {
  1717. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1718. safe_delay(BLTOUCH_DELAY);
  1719. }
  1720. void set_bltouch_deployed(const bool deploy) {
  1721. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1722. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1723. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1724. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1725. safe_delay(1500); // wait for internal self test to complete
  1726. // measured completion time was 0.65 seconds
  1727. // after reset, deploy & stow sequence
  1728. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1729. SERIAL_ERROR_START;
  1730. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1731. stop(); // punt!
  1732. }
  1733. }
  1734. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1735. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1736. if (DEBUGGING(LEVELING)) {
  1737. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1738. SERIAL_CHAR(')');
  1739. SERIAL_EOL;
  1740. }
  1741. #endif
  1742. }
  1743. #endif
  1744. // returns false for ok and true for failure
  1745. bool set_probe_deployed(bool deploy) {
  1746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1747. if (DEBUGGING(LEVELING)) {
  1748. DEBUG_POS("set_probe_deployed", current_position);
  1749. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1750. }
  1751. #endif
  1752. if (endstops.z_probe_enabled == deploy) return false;
  1753. // Make room for probe
  1754. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1755. // When deploying make sure BLTOUCH is not already triggered
  1756. #if ENABLED(BLTOUCH)
  1757. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1758. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1759. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1760. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1761. safe_delay(1500); // wait for internal self test to complete
  1762. // measured completion time was 0.65 seconds
  1763. // after reset, deploy & stow sequence
  1764. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1765. SERIAL_ERROR_START;
  1766. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1767. stop(); // punt!
  1768. return true;
  1769. }
  1770. }
  1771. #elif ENABLED(Z_PROBE_SLED)
  1772. if (axis_unhomed_error(true, false, false)) {
  1773. SERIAL_ERROR_START;
  1774. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1775. stop();
  1776. return true;
  1777. }
  1778. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1779. if (axis_unhomed_error(true, true, true )) {
  1780. SERIAL_ERROR_START;
  1781. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1782. stop();
  1783. return true;
  1784. }
  1785. #endif
  1786. const float oldXpos = current_position[X_AXIS],
  1787. oldYpos = current_position[Y_AXIS];
  1788. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1789. // If endstop is already false, the Z probe is deployed
  1790. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1791. // Would a goto be less ugly?
  1792. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1793. // for a triggered when stowed manual probe.
  1794. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1795. // otherwise an Allen-Key probe can't be stowed.
  1796. #endif
  1797. #if ENABLED(Z_PROBE_SLED)
  1798. dock_sled(!deploy);
  1799. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1800. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1801. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1802. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1803. #endif
  1804. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1805. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1806. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1807. if (IsRunning()) {
  1808. SERIAL_ERROR_START;
  1809. SERIAL_ERRORLNPGM("Z-Probe failed");
  1810. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1811. }
  1812. stop();
  1813. return true;
  1814. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1815. #endif
  1816. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1817. endstops.enable_z_probe(deploy);
  1818. return false;
  1819. }
  1820. static void do_probe_move(float z, float fr_mm_m) {
  1821. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1822. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1823. #endif
  1824. // Deploy BLTouch at the start of any probe
  1825. #if ENABLED(BLTOUCH)
  1826. set_bltouch_deployed(true);
  1827. #endif
  1828. // Move down until probe triggered
  1829. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1830. // Retract BLTouch immediately after a probe
  1831. #if ENABLED(BLTOUCH)
  1832. set_bltouch_deployed(false);
  1833. #endif
  1834. // Clear endstop flags
  1835. endstops.hit_on_purpose();
  1836. // Get Z where the steppers were interrupted
  1837. set_current_from_steppers_for_axis(Z_AXIS);
  1838. // Tell the planner where we actually are
  1839. SYNC_PLAN_POSITION_KINEMATIC();
  1840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1841. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1842. #endif
  1843. }
  1844. // Do a single Z probe and return with current_position[Z_AXIS]
  1845. // at the height where the probe triggered.
  1846. static float run_z_probe() {
  1847. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1848. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1849. #endif
  1850. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1851. refresh_cmd_timeout();
  1852. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1853. // Do a first probe at the fast speed
  1854. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1856. float first_probe_z = current_position[Z_AXIS];
  1857. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1858. #endif
  1859. // move up by the bump distance
  1860. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1861. #else
  1862. // If the nozzle is above the travel height then
  1863. // move down quickly before doing the slow probe
  1864. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1865. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1866. if (z < current_position[Z_AXIS])
  1867. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1868. #endif
  1869. // move down slowly to find bed
  1870. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1872. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1873. #endif
  1874. // Debug: compare probe heights
  1875. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1876. if (DEBUGGING(LEVELING)) {
  1877. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1878. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1879. }
  1880. #endif
  1881. return current_position[Z_AXIS] + zprobe_zoffset;
  1882. }
  1883. //
  1884. // - Move to the given XY
  1885. // - Deploy the probe, if not already deployed
  1886. // - Probe the bed, get the Z position
  1887. // - Depending on the 'stow' flag
  1888. // - Stow the probe, or
  1889. // - Raise to the BETWEEN height
  1890. // - Return the probed Z position
  1891. //
  1892. //float probe_pt(const float &x, const float &y, const bool stow = true, const int verbose_level = 1) {
  1893. float probe_pt(const float x, const float y, const bool stow, const int verbose_level) {
  1894. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1895. if (DEBUGGING(LEVELING)) {
  1896. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1897. SERIAL_ECHOPAIR(", ", y);
  1898. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1899. SERIAL_ECHOLNPGM("stow)");
  1900. DEBUG_POS("", current_position);
  1901. }
  1902. #endif
  1903. const float old_feedrate_mm_s = feedrate_mm_s;
  1904. #if ENABLED(DELTA)
  1905. if (current_position[Z_AXIS] > delta_clip_start_height)
  1906. do_blocking_move_to_z(delta_clip_start_height);
  1907. #endif
  1908. // Ensure a minimum height before moving the probe
  1909. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1910. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1911. // Move the probe to the given XY
  1912. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1913. if (DEPLOY_PROBE()) return NAN;
  1914. const float measured_z = run_z_probe();
  1915. if (!stow)
  1916. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1917. else
  1918. if (STOW_PROBE()) return NAN;
  1919. if (verbose_level > 2) {
  1920. SERIAL_PROTOCOLPGM("Bed X: ");
  1921. SERIAL_PROTOCOL_F(x, 3);
  1922. SERIAL_PROTOCOLPGM(" Y: ");
  1923. SERIAL_PROTOCOL_F(y, 3);
  1924. SERIAL_PROTOCOLPGM(" Z: ");
  1925. SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3);
  1926. SERIAL_EOL;
  1927. }
  1928. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1929. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1930. #endif
  1931. feedrate_mm_s = old_feedrate_mm_s;
  1932. return measured_z;
  1933. }
  1934. #endif // HAS_BED_PROBE
  1935. #if PLANNER_LEVELING
  1936. /**
  1937. * Turn bed leveling on or off, fixing the current
  1938. * position as-needed.
  1939. *
  1940. * Disable: Current position = physical position
  1941. * Enable: Current position = "unleveled" physical position
  1942. */
  1943. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1944. #if ENABLED(MESH_BED_LEVELING)
  1945. if (enable != mbl.active()) {
  1946. if (!enable)
  1947. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1948. mbl.set_active(enable && mbl.has_mesh());
  1949. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  1950. }
  1951. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  1952. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1953. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1954. #else
  1955. constexpr bool can_change = true;
  1956. #endif
  1957. if (can_change && enable != planner.abl_enabled) {
  1958. planner.abl_enabled = enable;
  1959. if (!enable)
  1960. set_current_from_steppers_for_axis(
  1961. #if ABL_PLANAR
  1962. ALL_AXES
  1963. #else
  1964. Z_AXIS
  1965. #endif
  1966. );
  1967. else
  1968. planner.unapply_leveling(current_position);
  1969. }
  1970. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1971. ubl.state.active = enable;
  1972. //set_current_from_steppers_for_axis(Z_AXIS);
  1973. #endif
  1974. }
  1975. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1976. void set_z_fade_height(const float zfh) {
  1977. planner.z_fade_height = zfh;
  1978. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  1979. if (
  1980. #if ENABLED(MESH_BED_LEVELING)
  1981. mbl.active()
  1982. #else
  1983. planner.abl_enabled
  1984. #endif
  1985. ) {
  1986. set_current_from_steppers_for_axis(
  1987. #if ABL_PLANAR
  1988. ALL_AXES
  1989. #else
  1990. Z_AXIS
  1991. #endif
  1992. );
  1993. }
  1994. }
  1995. #endif // LEVELING_FADE_HEIGHT
  1996. /**
  1997. * Reset calibration results to zero.
  1998. */
  1999. void reset_bed_level() {
  2000. set_bed_leveling_enabled(false);
  2001. #if ENABLED(MESH_BED_LEVELING)
  2002. if (mbl.has_mesh()) {
  2003. mbl.reset();
  2004. mbl.set_has_mesh(false);
  2005. }
  2006. #else
  2007. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2008. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2009. #endif
  2010. #if ABL_PLANAR
  2011. planner.bed_level_matrix.set_to_identity();
  2012. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2013. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2014. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2015. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2016. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2017. bed_level_grid[x][y] = NAN;
  2018. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2019. ubl.reset();
  2020. #endif
  2021. #endif
  2022. }
  2023. #endif // PLANNER_LEVELING
  2024. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2025. //
  2026. // Enable if you prefer your output in JSON format
  2027. // suitable for SCAD or JavaScript mesh visualizers.
  2028. //
  2029. // Visualize meshes in OpenSCAD using the included script.
  2030. //
  2031. // buildroot/shared/scripts/MarlinMesh.scad
  2032. //
  2033. //#define SCAD_MESH_OUTPUT
  2034. /**
  2035. * Print calibration results for plotting or manual frame adjustment.
  2036. */
  2037. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2038. #ifndef SCAD_MESH_OUTPUT
  2039. for (uint8_t x = 0; x < sx; x++) {
  2040. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2041. SERIAL_PROTOCOLCHAR(' ');
  2042. SERIAL_PROTOCOL((int)x);
  2043. }
  2044. SERIAL_EOL;
  2045. #endif
  2046. #ifdef SCAD_MESH_OUTPUT
  2047. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2048. #endif
  2049. for (uint8_t y = 0; y < sy; y++) {
  2050. #ifdef SCAD_MESH_OUTPUT
  2051. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2052. #else
  2053. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2054. SERIAL_PROTOCOL((int)y);
  2055. #endif
  2056. for (uint8_t x = 0; x < sx; x++) {
  2057. SERIAL_PROTOCOLCHAR(' ');
  2058. const float offset = fn(x, y);
  2059. if (offset != NAN) {
  2060. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2061. SERIAL_PROTOCOL_F(offset, precision);
  2062. }
  2063. else {
  2064. #ifdef SCAD_MESH_OUTPUT
  2065. for (uint8_t i = 3; i < precision + 3; i++)
  2066. SERIAL_PROTOCOLCHAR(' ');
  2067. SERIAL_PROTOCOLPGM("NAN");
  2068. #else
  2069. for (uint8_t i = 0; i < precision + 3; i++)
  2070. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2071. #endif
  2072. }
  2073. #ifdef SCAD_MESH_OUTPUT
  2074. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2075. #endif
  2076. }
  2077. #ifdef SCAD_MESH_OUTPUT
  2078. SERIAL_PROTOCOLCHAR(' ');
  2079. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2080. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2081. #endif
  2082. SERIAL_EOL;
  2083. }
  2084. #ifdef SCAD_MESH_OUTPUT
  2085. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2086. #endif
  2087. SERIAL_EOL;
  2088. }
  2089. #endif
  2090. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2091. /**
  2092. * Extrapolate a single point from its neighbors
  2093. */
  2094. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2096. if (DEBUGGING(LEVELING)) {
  2097. SERIAL_ECHOPGM("Extrapolate [");
  2098. if (x < 10) SERIAL_CHAR(' ');
  2099. SERIAL_ECHO((int)x);
  2100. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2101. SERIAL_CHAR(' ');
  2102. if (y < 10) SERIAL_CHAR(' ');
  2103. SERIAL_ECHO((int)y);
  2104. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2105. SERIAL_CHAR(']');
  2106. }
  2107. #endif
  2108. if (bed_level_grid[x][y] != NAN) {
  2109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2110. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2111. #endif
  2112. return; // Don't overwrite good values.
  2113. }
  2114. SERIAL_EOL;
  2115. // Get X neighbors, Y neighbors, and XY neighbors
  2116. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2117. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2118. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2119. // Treat far unprobed points as zero, near as equal to far
  2120. if (a2 == NAN) a2 = 0.0; if (a1 == NAN) a1 = a2;
  2121. if (b2 == NAN) b2 = 0.0; if (b1 == NAN) b1 = b2;
  2122. if (c2 == NAN) c2 = 0.0; if (c1 == NAN) c1 = c2;
  2123. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2124. // Take the average instead of the median
  2125. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2126. // Median is robust (ignores outliers).
  2127. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2128. // : ((c < b) ? b : (a < c) ? a : c);
  2129. }
  2130. //Enable this if your SCARA uses 180° of total area
  2131. //#define EXTRAPOLATE_FROM_EDGE
  2132. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2133. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2134. #define HALF_IN_X
  2135. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2136. #define HALF_IN_Y
  2137. #endif
  2138. #endif
  2139. /**
  2140. * Fill in the unprobed points (corners of circular print surface)
  2141. * using linear extrapolation, away from the center.
  2142. */
  2143. static void extrapolate_unprobed_bed_level() {
  2144. #ifdef HALF_IN_X
  2145. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2146. #else
  2147. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2148. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2149. xlen = ctrx1;
  2150. #endif
  2151. #ifdef HALF_IN_Y
  2152. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2153. #else
  2154. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2155. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2156. ylen = ctry1;
  2157. #endif
  2158. for (uint8_t xo = 0; xo <= xlen; xo++)
  2159. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2160. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2161. #ifndef HALF_IN_X
  2162. const uint8_t x1 = ctrx1 - xo;
  2163. #endif
  2164. #ifndef HALF_IN_Y
  2165. const uint8_t y1 = ctry1 - yo;
  2166. #ifndef HALF_IN_X
  2167. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2168. #endif
  2169. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2170. #endif
  2171. #ifndef HALF_IN_X
  2172. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2173. #endif
  2174. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2175. }
  2176. }
  2177. static void print_bilinear_leveling_grid() {
  2178. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2179. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2180. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid[ix][iy]; }
  2181. );
  2182. }
  2183. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2184. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2185. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2186. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2187. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2188. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2189. int bilinear_grid_spacing_virt[2] = { 0 };
  2190. static void bed_level_virt_print() {
  2191. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2192. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2193. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid_virt[ix][iy]; }
  2194. );
  2195. }
  2196. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2197. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2198. uint8_t ep = 0, ip = 1;
  2199. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2200. if (x) {
  2201. ep = GRID_MAX_POINTS_X - 1;
  2202. ip = GRID_MAX_POINTS_X - 2;
  2203. }
  2204. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2205. return LINEAR_EXTRAPOLATION(
  2206. bed_level_grid[ep][y - 1],
  2207. bed_level_grid[ip][y - 1]
  2208. );
  2209. else
  2210. return LINEAR_EXTRAPOLATION(
  2211. bed_level_virt_coord(ep + 1, y),
  2212. bed_level_virt_coord(ip + 1, y)
  2213. );
  2214. }
  2215. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2216. if (y) {
  2217. ep = GRID_MAX_POINTS_Y - 1;
  2218. ip = GRID_MAX_POINTS_Y - 2;
  2219. }
  2220. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2221. return LINEAR_EXTRAPOLATION(
  2222. bed_level_grid[x - 1][ep],
  2223. bed_level_grid[x - 1][ip]
  2224. );
  2225. else
  2226. return LINEAR_EXTRAPOLATION(
  2227. bed_level_virt_coord(x, ep + 1),
  2228. bed_level_virt_coord(x, ip + 1)
  2229. );
  2230. }
  2231. return bed_level_grid[x - 1][y - 1];
  2232. }
  2233. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2234. return (
  2235. p[i-1] * -t * sq(1 - t)
  2236. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2237. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2238. - p[i+2] * sq(t) * (1 - t)
  2239. ) * 0.5;
  2240. }
  2241. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2242. float row[4], column[4];
  2243. for (uint8_t i = 0; i < 4; i++) {
  2244. for (uint8_t j = 0; j < 4; j++) {
  2245. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2246. }
  2247. row[i] = bed_level_virt_cmr(column, 1, ty);
  2248. }
  2249. return bed_level_virt_cmr(row, 1, tx);
  2250. }
  2251. void bed_level_virt_interpolate() {
  2252. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2253. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2254. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2255. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2256. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2257. continue;
  2258. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2259. bed_level_virt_2cmr(
  2260. x + 1,
  2261. y + 1,
  2262. (float)tx / (BILINEAR_SUBDIVISIONS),
  2263. (float)ty / (BILINEAR_SUBDIVISIONS)
  2264. );
  2265. }
  2266. }
  2267. #endif // ABL_BILINEAR_SUBDIVISION
  2268. #endif // AUTO_BED_LEVELING_BILINEAR
  2269. /**
  2270. * Home an individual linear axis
  2271. */
  2272. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2273. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2274. if (DEBUGGING(LEVELING)) {
  2275. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2276. SERIAL_ECHOPAIR(", ", distance);
  2277. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2278. SERIAL_CHAR(')');
  2279. SERIAL_EOL;
  2280. }
  2281. #endif
  2282. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2283. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2284. if (deploy_bltouch) set_bltouch_deployed(true);
  2285. #endif
  2286. // Tell the planner we're at Z=0
  2287. current_position[axis] = 0;
  2288. #if IS_SCARA
  2289. SYNC_PLAN_POSITION_KINEMATIC();
  2290. current_position[axis] = distance;
  2291. inverse_kinematics(current_position);
  2292. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2293. #else
  2294. sync_plan_position();
  2295. current_position[axis] = distance;
  2296. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2297. #endif
  2298. stepper.synchronize();
  2299. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2300. if (deploy_bltouch) set_bltouch_deployed(false);
  2301. #endif
  2302. endstops.hit_on_purpose();
  2303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2304. if (DEBUGGING(LEVELING)) {
  2305. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2306. SERIAL_CHAR(')');
  2307. SERIAL_EOL;
  2308. }
  2309. #endif
  2310. }
  2311. /**
  2312. * Home an individual "raw axis" to its endstop.
  2313. * This applies to XYZ on Cartesian and Core robots, and
  2314. * to the individual ABC steppers on DELTA and SCARA.
  2315. *
  2316. * At the end of the procedure the axis is marked as
  2317. * homed and the current position of that axis is updated.
  2318. * Kinematic robots should wait till all axes are homed
  2319. * before updating the current position.
  2320. */
  2321. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2322. static void homeaxis(const AxisEnum axis) {
  2323. #if IS_SCARA
  2324. // Only Z homing (with probe) is permitted
  2325. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2326. #else
  2327. #define CAN_HOME(A) \
  2328. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2329. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2330. #endif
  2331. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2332. if (DEBUGGING(LEVELING)) {
  2333. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2334. SERIAL_CHAR(')');
  2335. SERIAL_EOL;
  2336. }
  2337. #endif
  2338. const int axis_home_dir =
  2339. #if ENABLED(DUAL_X_CARRIAGE)
  2340. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2341. #endif
  2342. home_dir(axis);
  2343. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2344. #if HOMING_Z_WITH_PROBE
  2345. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2346. #endif
  2347. // Set a flag for Z motor locking
  2348. #if ENABLED(Z_DUAL_ENDSTOPS)
  2349. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2350. #endif
  2351. // Fast move towards endstop until triggered
  2352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2353. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2354. #endif
  2355. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2356. // When homing Z with probe respect probe clearance
  2357. const float bump = axis_home_dir * (
  2358. #if HOMING_Z_WITH_PROBE
  2359. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2360. #endif
  2361. home_bump_mm(axis)
  2362. );
  2363. // If a second homing move is configured...
  2364. if (bump) {
  2365. // Move away from the endstop by the axis HOME_BUMP_MM
  2366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2367. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2368. #endif
  2369. do_homing_move(axis, -bump);
  2370. // Slow move towards endstop until triggered
  2371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2372. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2373. #endif
  2374. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2375. }
  2376. #if ENABLED(Z_DUAL_ENDSTOPS)
  2377. if (axis == Z_AXIS) {
  2378. float adj = fabs(z_endstop_adj);
  2379. bool lockZ1;
  2380. if (axis_home_dir > 0) {
  2381. adj = -adj;
  2382. lockZ1 = (z_endstop_adj > 0);
  2383. }
  2384. else
  2385. lockZ1 = (z_endstop_adj < 0);
  2386. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2387. // Move to the adjusted endstop height
  2388. do_homing_move(axis, adj);
  2389. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2390. stepper.set_homing_flag(false);
  2391. } // Z_AXIS
  2392. #endif
  2393. #if IS_SCARA
  2394. set_axis_is_at_home(axis);
  2395. SYNC_PLAN_POSITION_KINEMATIC();
  2396. #elif ENABLED(DELTA)
  2397. // Delta has already moved all three towers up in G28
  2398. // so here it re-homes each tower in turn.
  2399. // Delta homing treats the axes as normal linear axes.
  2400. // retrace by the amount specified in endstop_adj
  2401. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2402. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2403. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2404. #endif
  2405. do_homing_move(axis, endstop_adj[axis]);
  2406. }
  2407. #else
  2408. // For cartesian/core machines,
  2409. // set the axis to its home position
  2410. set_axis_is_at_home(axis);
  2411. sync_plan_position();
  2412. destination[axis] = current_position[axis];
  2413. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2414. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2415. #endif
  2416. #endif
  2417. // Put away the Z probe
  2418. #if HOMING_Z_WITH_PROBE
  2419. if (axis == Z_AXIS && STOW_PROBE()) return;
  2420. #endif
  2421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2422. if (DEBUGGING(LEVELING)) {
  2423. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2424. SERIAL_CHAR(')');
  2425. SERIAL_EOL;
  2426. }
  2427. #endif
  2428. } // homeaxis()
  2429. #if ENABLED(FWRETRACT)
  2430. void retract(const bool retracting, const bool swapping = false) {
  2431. static float hop_height;
  2432. if (retracting == retracted[active_extruder]) return;
  2433. const float old_feedrate_mm_s = feedrate_mm_s;
  2434. set_destination_to_current();
  2435. if (retracting) {
  2436. feedrate_mm_s = retract_feedrate_mm_s;
  2437. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2438. sync_plan_position_e();
  2439. prepare_move_to_destination();
  2440. if (retract_zlift > 0.01) {
  2441. hop_height = current_position[Z_AXIS];
  2442. // Pretend current position is lower
  2443. current_position[Z_AXIS] -= retract_zlift;
  2444. SYNC_PLAN_POSITION_KINEMATIC();
  2445. // Raise up to the old current_position
  2446. prepare_move_to_destination();
  2447. }
  2448. }
  2449. else {
  2450. // If the height hasn't been altered, undo the Z hop
  2451. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2452. // Pretend current position is higher. Z will lower on the next move
  2453. current_position[Z_AXIS] += retract_zlift;
  2454. SYNC_PLAN_POSITION_KINEMATIC();
  2455. }
  2456. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2457. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2458. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2459. sync_plan_position_e();
  2460. // Lower Z and recover E
  2461. prepare_move_to_destination();
  2462. }
  2463. feedrate_mm_s = old_feedrate_mm_s;
  2464. retracted[active_extruder] = retracting;
  2465. } // retract()
  2466. #endif // FWRETRACT
  2467. #if ENABLED(MIXING_EXTRUDER)
  2468. void normalize_mix() {
  2469. float mix_total = 0.0;
  2470. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2471. // Scale all values if they don't add up to ~1.0
  2472. if (!NEAR(mix_total, 1.0)) {
  2473. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2474. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2475. }
  2476. }
  2477. #if ENABLED(DIRECT_MIXING_IN_G1)
  2478. // Get mixing parameters from the GCode
  2479. // The total "must" be 1.0 (but it will be normalized)
  2480. // If no mix factors are given, the old mix is preserved
  2481. void gcode_get_mix() {
  2482. const char* mixing_codes = "ABCDHI";
  2483. byte mix_bits = 0;
  2484. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2485. if (code_seen(mixing_codes[i])) {
  2486. SBI(mix_bits, i);
  2487. float v = code_value_float();
  2488. NOLESS(v, 0.0);
  2489. mixing_factor[i] = RECIPROCAL(v);
  2490. }
  2491. }
  2492. // If any mixing factors were included, clear the rest
  2493. // If none were included, preserve the last mix
  2494. if (mix_bits) {
  2495. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2496. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2497. normalize_mix();
  2498. }
  2499. }
  2500. #endif
  2501. #endif
  2502. /**
  2503. * ***************************************************************************
  2504. * ***************************** G-CODE HANDLING *****************************
  2505. * ***************************************************************************
  2506. */
  2507. /**
  2508. * Set XYZE destination and feedrate from the current GCode command
  2509. *
  2510. * - Set destination from included axis codes
  2511. * - Set to current for missing axis codes
  2512. * - Set the feedrate, if included
  2513. */
  2514. void gcode_get_destination() {
  2515. LOOP_XYZE(i) {
  2516. if (code_seen(axis_codes[i]))
  2517. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2518. else
  2519. destination[i] = current_position[i];
  2520. }
  2521. if (code_seen('F') && code_value_linear_units() > 0.0)
  2522. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2523. #if ENABLED(PRINTCOUNTER)
  2524. if (!DEBUGGING(DRYRUN))
  2525. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2526. #endif
  2527. // Get ABCDHI mixing factors
  2528. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2529. gcode_get_mix();
  2530. #endif
  2531. }
  2532. void unknown_command_error() {
  2533. SERIAL_ECHO_START;
  2534. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2535. SERIAL_CHAR('"');
  2536. SERIAL_EOL;
  2537. }
  2538. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2539. /**
  2540. * Output a "busy" message at regular intervals
  2541. * while the machine is not accepting commands.
  2542. */
  2543. void host_keepalive() {
  2544. const millis_t ms = millis();
  2545. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2546. if (PENDING(ms, next_busy_signal_ms)) return;
  2547. switch (busy_state) {
  2548. case IN_HANDLER:
  2549. case IN_PROCESS:
  2550. SERIAL_ECHO_START;
  2551. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2552. break;
  2553. case PAUSED_FOR_USER:
  2554. SERIAL_ECHO_START;
  2555. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2556. break;
  2557. case PAUSED_FOR_INPUT:
  2558. SERIAL_ECHO_START;
  2559. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2560. break;
  2561. default:
  2562. break;
  2563. }
  2564. }
  2565. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2566. }
  2567. #endif //HOST_KEEPALIVE_FEATURE
  2568. bool position_is_reachable(float target[XYZ]
  2569. #if HAS_BED_PROBE
  2570. , bool by_probe=false
  2571. #endif
  2572. ) {
  2573. float dx = RAW_X_POSITION(target[X_AXIS]),
  2574. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2575. #if HAS_BED_PROBE
  2576. if (by_probe) {
  2577. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2578. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2579. }
  2580. #endif
  2581. #if IS_SCARA
  2582. #if MIDDLE_DEAD_ZONE_R > 0
  2583. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2584. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2585. #else
  2586. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2587. #endif
  2588. #elif ENABLED(DELTA)
  2589. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2590. #else
  2591. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2592. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2593. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2594. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2595. #endif
  2596. }
  2597. /**************************************************
  2598. ***************** GCode Handlers *****************
  2599. **************************************************/
  2600. /**
  2601. * G0, G1: Coordinated movement of X Y Z E axes
  2602. */
  2603. inline void gcode_G0_G1(
  2604. #if IS_SCARA
  2605. bool fast_move=false
  2606. #endif
  2607. ) {
  2608. if (IsRunning()) {
  2609. gcode_get_destination(); // For X Y Z E F
  2610. #if ENABLED(FWRETRACT)
  2611. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2612. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2613. // Is this move an attempt to retract or recover?
  2614. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2615. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2616. sync_plan_position_e(); // AND from the planner
  2617. retract(!retracted[active_extruder]);
  2618. return;
  2619. }
  2620. }
  2621. #endif //FWRETRACT
  2622. #if IS_SCARA
  2623. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2624. #else
  2625. prepare_move_to_destination();
  2626. #endif
  2627. }
  2628. }
  2629. /**
  2630. * G2: Clockwise Arc
  2631. * G3: Counterclockwise Arc
  2632. *
  2633. * This command has two forms: IJ-form and R-form.
  2634. *
  2635. * - I specifies an X offset. J specifies a Y offset.
  2636. * At least one of the IJ parameters is required.
  2637. * X and Y can be omitted to do a complete circle.
  2638. * The given XY is not error-checked. The arc ends
  2639. * based on the angle of the destination.
  2640. * Mixing I or J with R will throw an error.
  2641. *
  2642. * - R specifies the radius. X or Y is required.
  2643. * Omitting both X and Y will throw an error.
  2644. * X or Y must differ from the current XY.
  2645. * Mixing R with I or J will throw an error.
  2646. *
  2647. * Examples:
  2648. *
  2649. * G2 I10 ; CW circle centered at X+10
  2650. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2651. */
  2652. #if ENABLED(ARC_SUPPORT)
  2653. inline void gcode_G2_G3(bool clockwise) {
  2654. if (IsRunning()) {
  2655. #if ENABLED(SF_ARC_FIX)
  2656. const bool relative_mode_backup = relative_mode;
  2657. relative_mode = true;
  2658. #endif
  2659. gcode_get_destination();
  2660. #if ENABLED(SF_ARC_FIX)
  2661. relative_mode = relative_mode_backup;
  2662. #endif
  2663. float arc_offset[2] = { 0.0, 0.0 };
  2664. if (code_seen('R')) {
  2665. const float r = code_value_axis_units(X_AXIS),
  2666. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2667. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2668. if (r && (x2 != x1 || y2 != y1)) {
  2669. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2670. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2671. d = HYPOT(dx, dy), // Linear distance between the points
  2672. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2673. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2674. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2675. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2676. arc_offset[X_AXIS] = cx - x1;
  2677. arc_offset[Y_AXIS] = cy - y1;
  2678. }
  2679. }
  2680. else {
  2681. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2682. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2683. }
  2684. if (arc_offset[0] || arc_offset[1]) {
  2685. // Send an arc to the planner
  2686. plan_arc(destination, arc_offset, clockwise);
  2687. refresh_cmd_timeout();
  2688. }
  2689. else {
  2690. // Bad arguments
  2691. SERIAL_ERROR_START;
  2692. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2693. }
  2694. }
  2695. }
  2696. #endif
  2697. /**
  2698. * G4: Dwell S<seconds> or P<milliseconds>
  2699. */
  2700. inline void gcode_G4() {
  2701. millis_t dwell_ms = 0;
  2702. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2703. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2704. stepper.synchronize();
  2705. refresh_cmd_timeout();
  2706. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2707. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2708. while (PENDING(millis(), dwell_ms)) idle();
  2709. }
  2710. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2711. /**
  2712. * Parameters interpreted according to:
  2713. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2714. * However I, J omission is not supported at this point; all
  2715. * parameters can be omitted and default to zero.
  2716. */
  2717. /**
  2718. * G5: Cubic B-spline
  2719. */
  2720. inline void gcode_G5() {
  2721. if (IsRunning()) {
  2722. gcode_get_destination();
  2723. const float offset[] = {
  2724. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2725. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2726. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2727. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2728. };
  2729. plan_cubic_move(offset);
  2730. }
  2731. }
  2732. #endif // BEZIER_CURVE_SUPPORT
  2733. #if ENABLED(FWRETRACT)
  2734. /**
  2735. * G10 - Retract filament according to settings of M207
  2736. * G11 - Recover filament according to settings of M208
  2737. */
  2738. inline void gcode_G10_G11(bool doRetract=false) {
  2739. #if EXTRUDERS > 1
  2740. if (doRetract) {
  2741. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2742. }
  2743. #endif
  2744. retract(doRetract
  2745. #if EXTRUDERS > 1
  2746. , retracted_swap[active_extruder]
  2747. #endif
  2748. );
  2749. }
  2750. #endif //FWRETRACT
  2751. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2752. /**
  2753. * G12: Clean the nozzle
  2754. */
  2755. inline void gcode_G12() {
  2756. // Don't allow nozzle cleaning without homing first
  2757. if (axis_unhomed_error(true, true, true)) return;
  2758. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2759. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2760. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2761. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2762. Nozzle::clean(pattern, strokes, radius, objects);
  2763. }
  2764. #endif
  2765. #if ENABLED(INCH_MODE_SUPPORT)
  2766. /**
  2767. * G20: Set input mode to inches
  2768. */
  2769. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2770. /**
  2771. * G21: Set input mode to millimeters
  2772. */
  2773. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2774. #endif
  2775. #if ENABLED(NOZZLE_PARK_FEATURE)
  2776. /**
  2777. * G27: Park the nozzle
  2778. */
  2779. inline void gcode_G27() {
  2780. // Don't allow nozzle parking without homing first
  2781. if (axis_unhomed_error(true, true, true)) return;
  2782. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2783. }
  2784. #endif // NOZZLE_PARK_FEATURE
  2785. #if ENABLED(QUICK_HOME)
  2786. static void quick_home_xy() {
  2787. // Pretend the current position is 0,0
  2788. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2789. sync_plan_position();
  2790. const int x_axis_home_dir =
  2791. #if ENABLED(DUAL_X_CARRIAGE)
  2792. x_home_dir(active_extruder)
  2793. #else
  2794. home_dir(X_AXIS)
  2795. #endif
  2796. ;
  2797. const float mlx = max_length(X_AXIS),
  2798. mly = max_length(Y_AXIS),
  2799. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2800. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2801. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2802. endstops.hit_on_purpose(); // clear endstop hit flags
  2803. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2804. }
  2805. #endif // QUICK_HOME
  2806. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2807. void log_machine_info() {
  2808. SERIAL_ECHOPGM("Machine Type: ");
  2809. #if ENABLED(DELTA)
  2810. SERIAL_ECHOLNPGM("Delta");
  2811. #elif IS_SCARA
  2812. SERIAL_ECHOLNPGM("SCARA");
  2813. #elif IS_CORE
  2814. SERIAL_ECHOLNPGM("Core");
  2815. #else
  2816. SERIAL_ECHOLNPGM("Cartesian");
  2817. #endif
  2818. SERIAL_ECHOPGM("Probe: ");
  2819. #if ENABLED(PROBE_MANUALLY)
  2820. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2821. #elif ENABLED(FIX_MOUNTED_PROBE)
  2822. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2823. #elif ENABLED(BLTOUCH)
  2824. SERIAL_ECHOLNPGM("BLTOUCH");
  2825. #elif HAS_Z_SERVO_ENDSTOP
  2826. SERIAL_ECHOLNPGM("SERVO PROBE");
  2827. #elif ENABLED(Z_PROBE_SLED)
  2828. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2829. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2830. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2831. #else
  2832. SERIAL_ECHOLNPGM("NONE");
  2833. #endif
  2834. #if HAS_BED_PROBE
  2835. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2836. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2837. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2838. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2839. SERIAL_ECHOPGM(" (Right");
  2840. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2841. SERIAL_ECHOPGM(" (Left");
  2842. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2843. SERIAL_ECHOPGM(" (Middle");
  2844. #else
  2845. SERIAL_ECHOPGM(" (Aligned With");
  2846. #endif
  2847. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2848. SERIAL_ECHOPGM("-Back");
  2849. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2850. SERIAL_ECHOPGM("-Front");
  2851. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2852. SERIAL_ECHOPGM("-Center");
  2853. #endif
  2854. if (zprobe_zoffset < 0)
  2855. SERIAL_ECHOPGM(" & Below");
  2856. else if (zprobe_zoffset > 0)
  2857. SERIAL_ECHOPGM(" & Above");
  2858. else
  2859. SERIAL_ECHOPGM(" & Same Z as");
  2860. SERIAL_ECHOLNPGM(" Nozzle)");
  2861. #endif
  2862. #if HAS_ABL
  2863. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2864. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2865. SERIAL_ECHOPGM("LINEAR");
  2866. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2867. SERIAL_ECHOPGM("BILINEAR");
  2868. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2869. SERIAL_ECHOPGM("3POINT");
  2870. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2871. SERIAL_ECHOPGM("UBL");
  2872. #endif
  2873. if (planner.abl_enabled) {
  2874. SERIAL_ECHOLNPGM(" (enabled)");
  2875. #if ABL_PLANAR
  2876. float diff[XYZ] = {
  2877. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2878. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2879. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2880. };
  2881. SERIAL_ECHOPGM("ABL Adjustment X");
  2882. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2883. SERIAL_ECHO(diff[X_AXIS]);
  2884. SERIAL_ECHOPGM(" Y");
  2885. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2886. SERIAL_ECHO(diff[Y_AXIS]);
  2887. SERIAL_ECHOPGM(" Z");
  2888. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2889. SERIAL_ECHO(diff[Z_AXIS]);
  2890. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2891. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  2892. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2893. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2894. #endif
  2895. }
  2896. else
  2897. SERIAL_ECHOLNPGM(" (disabled)");
  2898. SERIAL_EOL;
  2899. #elif ENABLED(MESH_BED_LEVELING)
  2900. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2901. if (mbl.active()) {
  2902. float lz = current_position[Z_AXIS];
  2903. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2904. SERIAL_ECHOLNPGM(" (enabled)");
  2905. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2906. }
  2907. else
  2908. SERIAL_ECHOPGM(" (disabled)");
  2909. SERIAL_EOL;
  2910. #endif // MESH_BED_LEVELING
  2911. }
  2912. #endif // DEBUG_LEVELING_FEATURE
  2913. #if ENABLED(DELTA)
  2914. /**
  2915. * A delta can only safely home all axes at the same time
  2916. * This is like quick_home_xy() but for 3 towers.
  2917. */
  2918. inline void home_delta() {
  2919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2920. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2921. #endif
  2922. // Init the current position of all carriages to 0,0,0
  2923. ZERO(current_position);
  2924. sync_plan_position();
  2925. // Move all carriages together linearly until an endstop is hit.
  2926. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2927. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2928. line_to_current_position();
  2929. stepper.synchronize();
  2930. endstops.hit_on_purpose(); // clear endstop hit flags
  2931. // At least one carriage has reached the top.
  2932. // Now re-home each carriage separately.
  2933. HOMEAXIS(A);
  2934. HOMEAXIS(B);
  2935. HOMEAXIS(C);
  2936. // Set all carriages to their home positions
  2937. // Do this here all at once for Delta, because
  2938. // XYZ isn't ABC. Applying this per-tower would
  2939. // give the impression that they are the same.
  2940. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2941. SYNC_PLAN_POSITION_KINEMATIC();
  2942. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2943. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2944. #endif
  2945. }
  2946. #endif // DELTA
  2947. #if ENABLED(Z_SAFE_HOMING)
  2948. inline void home_z_safely() {
  2949. // Disallow Z homing if X or Y are unknown
  2950. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2951. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2952. SERIAL_ECHO_START;
  2953. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2954. return;
  2955. }
  2956. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2957. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2958. #endif
  2959. SYNC_PLAN_POSITION_KINEMATIC();
  2960. /**
  2961. * Move the Z probe (or just the nozzle) to the safe homing point
  2962. */
  2963. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2964. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2965. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2966. if (position_is_reachable(
  2967. destination
  2968. #if HOMING_Z_WITH_PROBE
  2969. , true
  2970. #endif
  2971. )
  2972. ) {
  2973. #if HOMING_Z_WITH_PROBE
  2974. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2975. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2976. #endif
  2977. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2978. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2979. #endif
  2980. // This causes the carriage on Dual X to unpark
  2981. #if ENABLED(DUAL_X_CARRIAGE)
  2982. active_extruder_parked = false;
  2983. #endif
  2984. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2985. HOMEAXIS(Z);
  2986. }
  2987. else {
  2988. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2989. SERIAL_ECHO_START;
  2990. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2991. }
  2992. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2993. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2994. #endif
  2995. }
  2996. #endif // Z_SAFE_HOMING
  2997. #if ENABLED(PROBE_MANUALLY)
  2998. bool g29_in_progress = false;
  2999. #else
  3000. constexpr bool g29_in_progress = false;
  3001. #endif
  3002. /**
  3003. * G28: Home all axes according to settings
  3004. *
  3005. * Parameters
  3006. *
  3007. * None Home to all axes with no parameters.
  3008. * With QUICK_HOME enabled XY will home together, then Z.
  3009. *
  3010. * Cartesian parameters
  3011. *
  3012. * X Home to the X endstop
  3013. * Y Home to the Y endstop
  3014. * Z Home to the Z endstop
  3015. *
  3016. */
  3017. inline void gcode_G28() {
  3018. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3019. if (DEBUGGING(LEVELING)) {
  3020. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3021. log_machine_info();
  3022. }
  3023. #endif
  3024. // Wait for planner moves to finish!
  3025. stepper.synchronize();
  3026. // Cancel the active G29 session
  3027. #if ENABLED(PROBE_MANUALLY)
  3028. g29_in_progress = false;
  3029. #endif
  3030. // Disable the leveling matrix before homing
  3031. #if PLANNER_LEVELING
  3032. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3033. const bool bed_leveling_state_at_entry = ubl.state.active;
  3034. #endif
  3035. set_bed_leveling_enabled(false);
  3036. #endif
  3037. // Always home with tool 0 active
  3038. #if HOTENDS > 1
  3039. const uint8_t old_tool_index = active_extruder;
  3040. tool_change(0, 0, true);
  3041. #endif
  3042. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3043. extruder_duplication_enabled = false;
  3044. #endif
  3045. setup_for_endstop_or_probe_move();
  3046. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3047. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3048. #endif
  3049. endstops.enable(true); // Enable endstops for next homing move
  3050. #if ENABLED(DELTA)
  3051. home_delta();
  3052. #else // NOT DELTA
  3053. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3054. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3055. set_destination_to_current();
  3056. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3057. if (home_all_axis || homeZ) {
  3058. HOMEAXIS(Z);
  3059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3060. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3061. #endif
  3062. }
  3063. #else
  3064. if (home_all_axis || homeX || homeY) {
  3065. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3066. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3067. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3068. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3069. if (DEBUGGING(LEVELING))
  3070. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3071. #endif
  3072. do_blocking_move_to_z(destination[Z_AXIS]);
  3073. }
  3074. }
  3075. #endif
  3076. #if ENABLED(QUICK_HOME)
  3077. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3078. #endif
  3079. #if ENABLED(HOME_Y_BEFORE_X)
  3080. // Home Y
  3081. if (home_all_axis || homeY) {
  3082. HOMEAXIS(Y);
  3083. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3084. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3085. #endif
  3086. }
  3087. #endif
  3088. // Home X
  3089. if (home_all_axis || homeX) {
  3090. #if ENABLED(DUAL_X_CARRIAGE)
  3091. // Always home the 2nd (right) extruder first
  3092. active_extruder = 1;
  3093. HOMEAXIS(X);
  3094. // Remember this extruder's position for later tool change
  3095. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3096. // Home the 1st (left) extruder
  3097. active_extruder = 0;
  3098. HOMEAXIS(X);
  3099. // Consider the active extruder to be parked
  3100. COPY(raised_parked_position, current_position);
  3101. delayed_move_time = 0;
  3102. active_extruder_parked = true;
  3103. #else
  3104. HOMEAXIS(X);
  3105. #endif
  3106. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3107. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3108. #endif
  3109. }
  3110. #if DISABLED(HOME_Y_BEFORE_X)
  3111. // Home Y
  3112. if (home_all_axis || homeY) {
  3113. HOMEAXIS(Y);
  3114. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3115. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3116. #endif
  3117. }
  3118. #endif
  3119. // Home Z last if homing towards the bed
  3120. #if Z_HOME_DIR < 0
  3121. if (home_all_axis || homeZ) {
  3122. #if ENABLED(Z_SAFE_HOMING)
  3123. home_z_safely();
  3124. #else
  3125. HOMEAXIS(Z);
  3126. #endif
  3127. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3128. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3129. #endif
  3130. } // home_all_axis || homeZ
  3131. #endif // Z_HOME_DIR < 0
  3132. SYNC_PLAN_POSITION_KINEMATIC();
  3133. #endif // !DELTA (gcode_G28)
  3134. endstops.not_homing();
  3135. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3136. // move to a height where we can use the full xy-area
  3137. do_blocking_move_to_z(delta_clip_start_height);
  3138. #endif
  3139. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3140. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3141. #endif
  3142. // Enable mesh leveling again
  3143. #if ENABLED(MESH_BED_LEVELING)
  3144. if (mbl.reactivate()) {
  3145. set_bed_leveling_enabled(true);
  3146. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3147. #if ENABLED(MESH_G28_REST_ORIGIN)
  3148. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3149. set_destination_to_current();
  3150. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3151. stepper.synchronize();
  3152. #endif
  3153. }
  3154. }
  3155. #endif
  3156. clean_up_after_endstop_or_probe_move();
  3157. // Restore the active tool after homing
  3158. #if HOTENDS > 1
  3159. tool_change(old_tool_index, 0, true);
  3160. #endif
  3161. report_current_position();
  3162. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3163. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3164. #endif
  3165. }
  3166. #if HAS_PROBING_PROCEDURE
  3167. void out_of_range_error(const char* p_edge) {
  3168. SERIAL_PROTOCOLPGM("?Probe ");
  3169. serialprintPGM(p_edge);
  3170. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3171. }
  3172. #endif
  3173. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3174. inline void _manual_goto_xy(const float &x, const float &y) {
  3175. const float old_feedrate_mm_s = feedrate_mm_s;
  3176. #if MANUAL_PROBE_HEIGHT > 0
  3177. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3178. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3179. line_to_current_position();
  3180. #endif
  3181. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3182. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3183. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3184. line_to_current_position();
  3185. #if MANUAL_PROBE_HEIGHT > 0
  3186. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3187. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3188. line_to_current_position();
  3189. #endif
  3190. feedrate_mm_s = old_feedrate_mm_s;
  3191. stepper.synchronize();
  3192. }
  3193. #endif
  3194. #if ENABLED(MESH_BED_LEVELING)
  3195. // Save 130 bytes with non-duplication of PSTR
  3196. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3197. void mbl_mesh_report() {
  3198. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3199. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3200. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3201. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3202. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3203. );
  3204. }
  3205. /**
  3206. * G29: Mesh-based Z probe, probes a grid and produces a
  3207. * mesh to compensate for variable bed height
  3208. *
  3209. * Parameters With MESH_BED_LEVELING:
  3210. *
  3211. * S0 Produce a mesh report
  3212. * S1 Start probing mesh points
  3213. * S2 Probe the next mesh point
  3214. * S3 Xn Yn Zn.nn Manually modify a single point
  3215. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3216. * S5 Reset and disable mesh
  3217. *
  3218. * The S0 report the points as below
  3219. *
  3220. * +----> X-axis 1-n
  3221. * |
  3222. * |
  3223. * v Y-axis 1-n
  3224. *
  3225. */
  3226. inline void gcode_G29() {
  3227. static int mbl_probe_index = -1;
  3228. #if HAS_SOFTWARE_ENDSTOPS
  3229. static bool enable_soft_endstops;
  3230. #endif
  3231. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3232. if (!WITHIN(state, 0, 5)) {
  3233. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3234. return;
  3235. }
  3236. int8_t px, py;
  3237. switch (state) {
  3238. case MeshReport:
  3239. if (mbl.has_mesh()) {
  3240. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3241. mbl_mesh_report();
  3242. }
  3243. else
  3244. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3245. break;
  3246. case MeshStart:
  3247. mbl.reset();
  3248. mbl_probe_index = 0;
  3249. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3250. break;
  3251. case MeshNext:
  3252. if (mbl_probe_index < 0) {
  3253. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3254. return;
  3255. }
  3256. // For each G29 S2...
  3257. if (mbl_probe_index == 0) {
  3258. #if HAS_SOFTWARE_ENDSTOPS
  3259. // For the initial G29 S2 save software endstop state
  3260. enable_soft_endstops = soft_endstops_enabled;
  3261. #endif
  3262. }
  3263. else {
  3264. // For G29 S2 after adjusting Z.
  3265. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3266. #if HAS_SOFTWARE_ENDSTOPS
  3267. soft_endstops_enabled = enable_soft_endstops;
  3268. #endif
  3269. }
  3270. // If there's another point to sample, move there with optional lift.
  3271. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3272. mbl.zigzag(mbl_probe_index, px, py);
  3273. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3274. #if HAS_SOFTWARE_ENDSTOPS
  3275. // Disable software endstops to allow manual adjustment
  3276. // If G29 is not completed, they will not be re-enabled
  3277. soft_endstops_enabled = false;
  3278. #endif
  3279. mbl_probe_index++;
  3280. }
  3281. else {
  3282. // One last "return to the bed" (as originally coded) at completion
  3283. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3284. line_to_current_position();
  3285. stepper.synchronize();
  3286. // After recording the last point, activate the mbl and home
  3287. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3288. mbl_probe_index = -1;
  3289. mbl.set_has_mesh(true);
  3290. mbl.set_reactivate(true);
  3291. enqueue_and_echo_commands_P(PSTR("G28"));
  3292. BUZZ(100, 659);
  3293. BUZZ(100, 698);
  3294. }
  3295. break;
  3296. case MeshSet:
  3297. if (code_seen('X')) {
  3298. px = code_value_int() - 1;
  3299. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3300. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3301. return;
  3302. }
  3303. }
  3304. else {
  3305. SERIAL_CHAR('X'); say_not_entered();
  3306. return;
  3307. }
  3308. if (code_seen('Y')) {
  3309. py = code_value_int() - 1;
  3310. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3311. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3312. return;
  3313. }
  3314. }
  3315. else {
  3316. SERIAL_CHAR('Y'); say_not_entered();
  3317. return;
  3318. }
  3319. if (code_seen('Z')) {
  3320. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3321. }
  3322. else {
  3323. SERIAL_CHAR('Z'); say_not_entered();
  3324. return;
  3325. }
  3326. break;
  3327. case MeshSetZOffset:
  3328. if (code_seen('Z')) {
  3329. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3330. }
  3331. else {
  3332. SERIAL_CHAR('Z'); say_not_entered();
  3333. return;
  3334. }
  3335. break;
  3336. case MeshReset:
  3337. reset_bed_level();
  3338. break;
  3339. } // switch(state)
  3340. report_current_position();
  3341. }
  3342. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3343. #if ABL_GRID
  3344. #if ENABLED(PROBE_Y_FIRST)
  3345. #define PR_OUTER_VAR xCount
  3346. #define PR_OUTER_END abl_grid_points_x
  3347. #define PR_INNER_VAR yCount
  3348. #define PR_INNER_END abl_grid_points_y
  3349. #else
  3350. #define PR_OUTER_VAR yCount
  3351. #define PR_OUTER_END abl_grid_points_y
  3352. #define PR_INNER_VAR xCount
  3353. #define PR_INNER_END abl_grid_points_x
  3354. #endif
  3355. #endif
  3356. /**
  3357. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3358. * Will fail if the printer has not been homed with G28.
  3359. *
  3360. * Enhanced G29 Auto Bed Leveling Probe Routine
  3361. *
  3362. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3363. * or alter the bed level data. Useful to check the topology
  3364. * after a first run of G29.
  3365. *
  3366. * J Jettison current bed leveling data
  3367. *
  3368. * V Set the verbose level (0-4). Example: "G29 V3"
  3369. *
  3370. * Parameters With LINEAR leveling only:
  3371. *
  3372. * P Set the size of the grid that will be probed (P x P points).
  3373. * Example: "G29 P4"
  3374. *
  3375. * X Set the X size of the grid that will be probed (X x Y points).
  3376. * Example: "G29 X7 Y5"
  3377. *
  3378. * Y Set the Y size of the grid that will be probed (X x Y points).
  3379. *
  3380. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3381. * This is useful for manual bed leveling and finding flaws in the bed (to
  3382. * assist with part placement).
  3383. * Not supported by non-linear delta printer bed leveling.
  3384. *
  3385. * Parameters With LINEAR and BILINEAR leveling only:
  3386. *
  3387. * S Set the XY travel speed between probe points (in units/min)
  3388. *
  3389. * F Set the Front limit of the probing grid
  3390. * B Set the Back limit of the probing grid
  3391. * L Set the Left limit of the probing grid
  3392. * R Set the Right limit of the probing grid
  3393. *
  3394. * Parameters with BILINEAR leveling only:
  3395. *
  3396. * Z Supply an additional Z probe offset
  3397. *
  3398. * Extra parameters with PROBE_MANUALLY:
  3399. *
  3400. * To do manual probing simply repeat G29 until the procedure is complete.
  3401. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3402. *
  3403. * Q Query leveling and G29 state
  3404. *
  3405. * A Abort current leveling procedure
  3406. *
  3407. * W Write a mesh point. (Ignored during leveling.)
  3408. * X Required X for mesh point
  3409. * Y Required Y for mesh point
  3410. * Z Required Z for mesh point
  3411. *
  3412. * Without PROBE_MANUALLY:
  3413. *
  3414. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3415. * Include "E" to engage/disengage the Z probe for each sample.
  3416. * There's no extra effect if you have a fixed Z probe.
  3417. *
  3418. */
  3419. inline void gcode_G29() {
  3420. // G29 Q is also available if debugging
  3421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3422. const bool query = code_seen('Q');
  3423. const uint8_t old_debug_flags = marlin_debug_flags;
  3424. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3425. if (DEBUGGING(LEVELING)) {
  3426. DEBUG_POS(">>> gcode_G29", current_position);
  3427. log_machine_info();
  3428. }
  3429. marlin_debug_flags = old_debug_flags;
  3430. #if DISABLED(PROBE_MANUALLY)
  3431. if (query) return;
  3432. #endif
  3433. #endif
  3434. // Don't allow auto-leveling without homing first
  3435. if (axis_unhomed_error(true, true, true)) return;
  3436. // Define local vars 'static' for manual probing, 'auto' otherwise
  3437. #if ENABLED(PROBE_MANUALLY)
  3438. #define ABL_VAR static
  3439. #else
  3440. #define ABL_VAR
  3441. #endif
  3442. ABL_VAR int verbose_level, abl_probe_index;
  3443. ABL_VAR float xProbe, yProbe, measured_z;
  3444. ABL_VAR bool dryrun, abl_should_enable;
  3445. #if HAS_SOFTWARE_ENDSTOPS
  3446. ABL_VAR bool enable_soft_endstops = true;
  3447. #endif
  3448. #if ABL_GRID
  3449. ABL_VAR uint8_t PR_OUTER_VAR;
  3450. ABL_VAR int8_t PR_INNER_VAR;
  3451. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3452. ABL_VAR float xGridSpacing, yGridSpacing;
  3453. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3454. #if ABL_PLANAR
  3455. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3456. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3457. ABL_VAR int abl2;
  3458. ABL_VAR bool do_topography_map;
  3459. #else // 3-point
  3460. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3461. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3462. int constexpr abl2 = ABL_GRID_MAX;
  3463. #endif
  3464. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3465. ABL_VAR float zoffset;
  3466. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3467. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3468. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3469. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3470. mean;
  3471. #endif
  3472. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3473. // Probe at 3 arbitrary points
  3474. ABL_VAR vector_3 points[3] = {
  3475. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3476. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3477. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3478. };
  3479. #endif // AUTO_BED_LEVELING_3POINT
  3480. /**
  3481. * On the initial G29 fetch command parameters.
  3482. */
  3483. if (!g29_in_progress) {
  3484. abl_probe_index = 0;
  3485. abl_should_enable = planner.abl_enabled;
  3486. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3487. if (code_seen('W')) {
  3488. if (!bilinear_grid_spacing[X_AXIS]) {
  3489. SERIAL_ERROR_START;
  3490. SERIAL_ERRORLNPGM("No bilinear grid");
  3491. return;
  3492. }
  3493. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3494. if (!WITHIN(z, -10, 10)) {
  3495. SERIAL_ERROR_START;
  3496. SERIAL_ERRORLNPGM("Bad Z value");
  3497. return;
  3498. }
  3499. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3500. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3501. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3502. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3503. if (x < 99998 && y < 99998) {
  3504. // Get nearest i / j from x / y
  3505. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3506. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3507. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3508. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3509. }
  3510. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3511. set_bed_leveling_enabled(false);
  3512. bed_level_grid[i][j] = z;
  3513. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3514. bed_level_virt_interpolate();
  3515. #endif
  3516. set_bed_leveling_enabled(abl_should_enable);
  3517. }
  3518. return;
  3519. } // code_seen('W')
  3520. #endif
  3521. #if PLANNER_LEVELING
  3522. // Jettison bed leveling data
  3523. if (code_seen('J')) {
  3524. reset_bed_level();
  3525. return;
  3526. }
  3527. #endif
  3528. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3529. if (!WITHIN(verbose_level, 0, 4)) {
  3530. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3531. return;
  3532. }
  3533. dryrun = code_seen('D') ? code_value_bool() : false;
  3534. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3535. do_topography_map = verbose_level > 2 || code_seen('T');
  3536. // X and Y specify points in each direction, overriding the default
  3537. // These values may be saved with the completed mesh
  3538. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3539. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3540. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3541. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3542. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3543. return;
  3544. }
  3545. abl2 = abl_grid_points_x * abl_grid_points_y;
  3546. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3547. zoffset = code_seen('Z') ? code_value_axis_units(Z_AXIS) : 0;
  3548. #if HAS_BED_PROBE
  3549. zoffset += zprobe_zoffset;
  3550. #endif
  3551. #endif
  3552. #if ABL_GRID
  3553. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3554. left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3555. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3556. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3557. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3558. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3559. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3560. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3561. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3562. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3563. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3564. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3565. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3566. if (left_out || right_out || front_out || back_out) {
  3567. if (left_out) {
  3568. out_of_range_error(PSTR("(L)eft"));
  3569. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3570. }
  3571. if (right_out) {
  3572. out_of_range_error(PSTR("(R)ight"));
  3573. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3574. }
  3575. if (front_out) {
  3576. out_of_range_error(PSTR("(F)ront"));
  3577. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3578. }
  3579. if (back_out) {
  3580. out_of_range_error(PSTR("(B)ack"));
  3581. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3582. }
  3583. return;
  3584. }
  3585. // probe at the points of a lattice grid
  3586. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3587. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3588. #endif // ABL_GRID
  3589. if (verbose_level > 0) {
  3590. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3591. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3592. }
  3593. stepper.synchronize();
  3594. // Disable auto bed leveling during G29
  3595. planner.abl_enabled = false;
  3596. if (!dryrun) {
  3597. // Re-orient the current position without leveling
  3598. // based on where the steppers are positioned.
  3599. set_current_from_steppers_for_axis(ALL_AXES);
  3600. // Sync the planner to where the steppers stopped
  3601. SYNC_PLAN_POSITION_KINEMATIC();
  3602. }
  3603. setup_for_endstop_or_probe_move();
  3604. //xProbe = yProbe = measured_z = 0;
  3605. #if HAS_BED_PROBE
  3606. // Deploy the probe. Probe will raise if needed.
  3607. if (DEPLOY_PROBE()) {
  3608. planner.abl_enabled = abl_should_enable;
  3609. return;
  3610. }
  3611. #endif
  3612. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3613. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3614. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3615. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3616. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3617. ) {
  3618. if (dryrun) {
  3619. // Before reset bed level, re-enable to correct the position
  3620. planner.abl_enabled = abl_should_enable;
  3621. }
  3622. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3623. reset_bed_level();
  3624. // Initialize a grid with the given dimensions
  3625. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3626. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3627. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3628. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3629. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3630. bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
  3631. bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
  3632. #endif
  3633. // Can't re-enable (on error) until the new grid is written
  3634. abl_should_enable = false;
  3635. }
  3636. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3637. mean = 0.0;
  3638. #endif // AUTO_BED_LEVELING_LINEAR
  3639. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3641. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3642. #endif
  3643. // Probe at 3 arbitrary points
  3644. points[0].z = points[1].z = points[2].z = 0;
  3645. #endif // AUTO_BED_LEVELING_3POINT
  3646. } // !g29_in_progress
  3647. #if ENABLED(PROBE_MANUALLY)
  3648. // Abort current G29 procedure, go back to ABLStart
  3649. if (code_seen('A') && g29_in_progress) {
  3650. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3651. #if HAS_SOFTWARE_ENDSTOPS
  3652. soft_endstops_enabled = enable_soft_endstops;
  3653. #endif
  3654. planner.abl_enabled = abl_should_enable;
  3655. g29_in_progress = false;
  3656. }
  3657. // Query G29 status
  3658. if (code_seen('Q')) {
  3659. if (!g29_in_progress)
  3660. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3661. else {
  3662. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3663. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3664. }
  3665. }
  3666. if (code_seen('A') || code_seen('Q')) return;
  3667. // Fall through to probe the first point
  3668. g29_in_progress = true;
  3669. if (abl_probe_index == 0) {
  3670. // For the initial G29 S2 save software endstop state
  3671. #if HAS_SOFTWARE_ENDSTOPS
  3672. enable_soft_endstops = soft_endstops_enabled;
  3673. #endif
  3674. }
  3675. else {
  3676. // For G29 after adjusting Z.
  3677. // Save the previous Z before going to the next point
  3678. measured_z = current_position[Z_AXIS];
  3679. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3680. mean += measured_z;
  3681. eqnBVector[abl_probe_index] = measured_z;
  3682. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3683. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3684. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3685. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3686. bed_level_grid[xCount][yCount] = measured_z;
  3687. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3688. points[i].z = measured_z;
  3689. #endif
  3690. }
  3691. //
  3692. // If there's another point to sample, move there with optional lift.
  3693. //
  3694. #if ABL_GRID
  3695. // Find a next point to probe
  3696. // On the first G29 this will be the first probe point
  3697. while (abl_probe_index < abl2) {
  3698. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3699. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3700. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3701. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3702. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3703. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3704. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3705. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3706. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3707. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3708. indexIntoAB[xCount][yCount] = abl_probe_index;
  3709. #endif
  3710. float pos[XYZ] = { xProbe, yProbe, 0 };
  3711. if (position_is_reachable(pos)) break;
  3712. ++abl_probe_index;
  3713. }
  3714. // Is there a next point to move to?
  3715. if (abl_probe_index < abl2) {
  3716. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3717. ++abl_probe_index;
  3718. #if HAS_SOFTWARE_ENDSTOPS
  3719. // Disable software endstops to allow manual adjustment
  3720. // If G29 is not completed, they will not be re-enabled
  3721. soft_endstops_enabled = false;
  3722. #endif
  3723. return;
  3724. }
  3725. else {
  3726. // Then leveling is done!
  3727. // G29 finishing code goes here
  3728. // After recording the last point, activate abl
  3729. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3730. g29_in_progress = false;
  3731. // Re-enable software endstops, if needed
  3732. #if HAS_SOFTWARE_ENDSTOPS
  3733. soft_endstops_enabled = enable_soft_endstops;
  3734. #endif
  3735. }
  3736. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3737. // Probe at 3 arbitrary points
  3738. if (abl_probe_index < 3) {
  3739. xProbe = LOGICAL_X_POSITION(points[i].x);
  3740. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3741. ++abl_probe_index;
  3742. #if HAS_SOFTWARE_ENDSTOPS
  3743. // Disable software endstops to allow manual adjustment
  3744. // If G29 is not completed, they will not be re-enabled
  3745. soft_endstops_enabled = false;
  3746. #endif
  3747. return;
  3748. }
  3749. else {
  3750. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3751. g29_in_progress = false;
  3752. // Re-enable software endstops, if needed
  3753. #if HAS_SOFTWARE_ENDSTOPS
  3754. soft_endstops_enabled = enable_soft_endstops;
  3755. #endif
  3756. if (!dryrun) {
  3757. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3758. if (planeNormal.z < 0) {
  3759. planeNormal.x *= -1;
  3760. planeNormal.y *= -1;
  3761. planeNormal.z *= -1;
  3762. }
  3763. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3764. // Can't re-enable (on error) until the new grid is written
  3765. abl_should_enable = false;
  3766. }
  3767. }
  3768. #endif // AUTO_BED_LEVELING_3POINT
  3769. #else // !PROBE_MANUALLY
  3770. bool stow_probe_after_each = code_seen('E');
  3771. #if ABL_GRID
  3772. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3773. // Outer loop is Y with PROBE_Y_FIRST disabled
  3774. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3775. int8_t inStart, inStop, inInc;
  3776. if (zig) { // away from origin
  3777. inStart = 0;
  3778. inStop = PR_INNER_END;
  3779. inInc = 1;
  3780. }
  3781. else { // towards origin
  3782. inStart = PR_INNER_END - 1;
  3783. inStop = -1;
  3784. inInc = -1;
  3785. }
  3786. zig = !zig; // zag
  3787. // Inner loop is Y with PROBE_Y_FIRST enabled
  3788. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3789. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3790. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3791. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3792. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3793. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3794. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3795. #endif
  3796. #if IS_KINEMATIC
  3797. // Avoid probing outside the round or hexagonal area
  3798. float pos[XYZ] = { xProbe, yProbe, 0 };
  3799. if (!position_is_reachable(pos, true)) continue;
  3800. #endif
  3801. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3802. if (measured_z == NAN) {
  3803. planner.abl_enabled = abl_should_enable;
  3804. return;
  3805. }
  3806. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3807. mean += measured_z;
  3808. eqnBVector[abl_probe_index] = measured_z;
  3809. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3810. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3811. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3812. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3813. bed_level_grid[xCount][yCount] = measured_z;
  3814. #endif
  3815. abl_should_enable = false;
  3816. idle();
  3817. } // inner
  3818. } // outer
  3819. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3820. // Probe at 3 arbitrary points
  3821. for (uint8_t i = 0; i < 3; ++i) {
  3822. // Retain the last probe position
  3823. xProbe = LOGICAL_X_POSITION(points[i].x);
  3824. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3825. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3826. }
  3827. if (measured_z == NAN) {
  3828. planner.abl_enabled = abl_should_enable;
  3829. return;
  3830. }
  3831. if (!dryrun) {
  3832. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3833. if (planeNormal.z < 0) {
  3834. planeNormal.x *= -1;
  3835. planeNormal.y *= -1;
  3836. planeNormal.z *= -1;
  3837. }
  3838. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3839. // Can't re-enable (on error) until the new grid is written
  3840. abl_should_enable = false;
  3841. }
  3842. #endif // AUTO_BED_LEVELING_3POINT
  3843. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3844. if (STOW_PROBE()) {
  3845. planner.abl_enabled = abl_should_enable;
  3846. return;
  3847. }
  3848. #endif // !PROBE_MANUALLY
  3849. //
  3850. // G29 Finishing Code
  3851. //
  3852. // Unless this is a dry run, auto bed leveling will
  3853. // definitely be enabled after this point
  3854. //
  3855. // Restore state after probing
  3856. clean_up_after_endstop_or_probe_move();
  3857. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3858. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3859. #endif
  3860. // Calculate leveling, print reports, correct the position
  3861. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3862. if (!dryrun) extrapolate_unprobed_bed_level();
  3863. print_bilinear_leveling_grid();
  3864. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3865. bed_level_virt_interpolate();
  3866. bed_level_virt_print();
  3867. #endif
  3868. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3869. // For LINEAR leveling calculate matrix, print reports, correct the position
  3870. /**
  3871. * solve the plane equation ax + by + d = z
  3872. * A is the matrix with rows [x y 1] for all the probed points
  3873. * B is the vector of the Z positions
  3874. * the normal vector to the plane is formed by the coefficients of the
  3875. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3876. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3877. */
  3878. float plane_equation_coefficients[3];
  3879. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3880. mean /= abl2;
  3881. if (verbose_level) {
  3882. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3883. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3884. SERIAL_PROTOCOLPGM(" b: ");
  3885. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3886. SERIAL_PROTOCOLPGM(" d: ");
  3887. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3888. SERIAL_EOL;
  3889. if (verbose_level > 2) {
  3890. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3891. SERIAL_PROTOCOL_F(mean, 8);
  3892. SERIAL_EOL;
  3893. }
  3894. }
  3895. // Create the matrix but don't correct the position yet
  3896. if (!dryrun) {
  3897. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3898. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3899. );
  3900. }
  3901. // Show the Topography map if enabled
  3902. if (do_topography_map) {
  3903. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3904. " +--- BACK --+\n"
  3905. " | |\n"
  3906. " L | (+) | R\n"
  3907. " E | | I\n"
  3908. " F | (-) N (+) | G\n"
  3909. " T | | H\n"
  3910. " | (-) | T\n"
  3911. " | |\n"
  3912. " O-- FRONT --+\n"
  3913. " (0,0)");
  3914. float min_diff = 999;
  3915. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3916. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3917. int ind = indexIntoAB[xx][yy];
  3918. float diff = eqnBVector[ind] - mean,
  3919. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3920. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3921. z_tmp = 0;
  3922. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3923. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3924. if (diff >= 0.0)
  3925. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3926. else
  3927. SERIAL_PROTOCOLCHAR(' ');
  3928. SERIAL_PROTOCOL_F(diff, 5);
  3929. } // xx
  3930. SERIAL_EOL;
  3931. } // yy
  3932. SERIAL_EOL;
  3933. if (verbose_level > 3) {
  3934. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3935. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3936. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3937. int ind = indexIntoAB[xx][yy];
  3938. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3939. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3940. z_tmp = 0;
  3941. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3942. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3943. if (diff >= 0.0)
  3944. SERIAL_PROTOCOLPGM(" +");
  3945. // Include + for column alignment
  3946. else
  3947. SERIAL_PROTOCOLCHAR(' ');
  3948. SERIAL_PROTOCOL_F(diff, 5);
  3949. } // xx
  3950. SERIAL_EOL;
  3951. } // yy
  3952. SERIAL_EOL;
  3953. }
  3954. } //do_topography_map
  3955. #endif // AUTO_BED_LEVELING_LINEAR
  3956. #if ABL_PLANAR
  3957. // For LINEAR and 3POINT leveling correct the current position
  3958. if (verbose_level > 0)
  3959. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3960. if (!dryrun) {
  3961. //
  3962. // Correct the current XYZ position based on the tilted plane.
  3963. //
  3964. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3965. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3966. #endif
  3967. float converted[XYZ];
  3968. COPY(converted, current_position);
  3969. planner.abl_enabled = true;
  3970. planner.unapply_leveling(converted); // use conversion machinery
  3971. planner.abl_enabled = false;
  3972. // Use the last measured distance to the bed, if possible
  3973. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3974. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3975. ) {
  3976. float simple_z = current_position[Z_AXIS] - measured_z;
  3977. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3978. if (DEBUGGING(LEVELING)) {
  3979. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3980. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  3981. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  3982. }
  3983. #endif
  3984. converted[Z_AXIS] = simple_z;
  3985. }
  3986. // The rotated XY and corrected Z are now current_position
  3987. COPY(current_position, converted);
  3988. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3989. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3990. #endif
  3991. }
  3992. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3993. if (!dryrun) {
  3994. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3995. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3996. #endif
  3997. // Unapply the offset because it is going to be immediately applied
  3998. // and cause compensation movement in Z
  3999. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4000. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4001. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4002. #endif
  4003. }
  4004. #endif // ABL_PLANAR
  4005. #ifdef Z_PROBE_END_SCRIPT
  4006. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4007. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4008. #endif
  4009. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4010. stepper.synchronize();
  4011. #endif
  4012. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4013. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4014. #endif
  4015. report_current_position();
  4016. KEEPALIVE_STATE(IN_HANDLER);
  4017. // Auto Bed Leveling is complete! Enable if possible.
  4018. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4019. if (planner.abl_enabled)
  4020. SYNC_PLAN_POSITION_KINEMATIC();
  4021. }
  4022. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4023. #if HAS_BED_PROBE
  4024. /**
  4025. * G30: Do a single Z probe at the current XY
  4026. * Usage:
  4027. * G30 <X#> <Y#> <S#>
  4028. * X = Probe X position (default=current probe position)
  4029. * Y = Probe Y position (default=current probe position)
  4030. * S = Stows the probe if 1 (default=1)
  4031. */
  4032. inline void gcode_G30() {
  4033. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4034. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4035. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  4036. if (!position_is_reachable(pos, true)) return;
  4037. bool stow = code_seen('S') ? code_value_bool() : true;
  4038. // Disable leveling so the planner won't mess with us
  4039. #if PLANNER_LEVELING
  4040. set_bed_leveling_enabled(false);
  4041. #endif
  4042. setup_for_endstop_or_probe_move();
  4043. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  4044. SERIAL_PROTOCOLPGM("Bed X: ");
  4045. SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
  4046. SERIAL_PROTOCOLPGM(" Y: ");
  4047. SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
  4048. SERIAL_PROTOCOLPGM(" Z: ");
  4049. SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
  4050. clean_up_after_endstop_or_probe_move();
  4051. report_current_position();
  4052. }
  4053. #if ENABLED(Z_PROBE_SLED)
  4054. /**
  4055. * G31: Deploy the Z probe
  4056. */
  4057. inline void gcode_G31() { DEPLOY_PROBE(); }
  4058. /**
  4059. * G32: Stow the Z probe
  4060. */
  4061. inline void gcode_G32() { STOW_PROBE(); }
  4062. #endif // Z_PROBE_SLED
  4063. #endif // HAS_BED_PROBE
  4064. #if ENABLED(G38_PROBE_TARGET)
  4065. static bool G38_run_probe() {
  4066. bool G38_pass_fail = false;
  4067. // Get direction of move and retract
  4068. float retract_mm[XYZ];
  4069. LOOP_XYZ(i) {
  4070. float dist = destination[i] - current_position[i];
  4071. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4072. }
  4073. stepper.synchronize(); // wait until the machine is idle
  4074. // Move until destination reached or target hit
  4075. endstops.enable(true);
  4076. G38_move = true;
  4077. G38_endstop_hit = false;
  4078. prepare_move_to_destination();
  4079. stepper.synchronize();
  4080. G38_move = false;
  4081. endstops.hit_on_purpose();
  4082. set_current_from_steppers_for_axis(ALL_AXES);
  4083. SYNC_PLAN_POSITION_KINEMATIC();
  4084. if (G38_endstop_hit) {
  4085. G38_pass_fail = true;
  4086. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4087. // Move away by the retract distance
  4088. set_destination_to_current();
  4089. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4090. endstops.enable(false);
  4091. prepare_move_to_destination();
  4092. stepper.synchronize();
  4093. feedrate_mm_s /= 4;
  4094. // Bump the target more slowly
  4095. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4096. endstops.enable(true);
  4097. G38_move = true;
  4098. prepare_move_to_destination();
  4099. stepper.synchronize();
  4100. G38_move = false;
  4101. set_current_from_steppers_for_axis(ALL_AXES);
  4102. SYNC_PLAN_POSITION_KINEMATIC();
  4103. #endif
  4104. }
  4105. endstops.hit_on_purpose();
  4106. endstops.not_homing();
  4107. return G38_pass_fail;
  4108. }
  4109. /**
  4110. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4111. * G38.3 - probe toward workpiece, stop on contact
  4112. *
  4113. * Like G28 except uses Z min probe for all axes
  4114. */
  4115. inline void gcode_G38(bool is_38_2) {
  4116. // Get X Y Z E F
  4117. gcode_get_destination();
  4118. setup_for_endstop_or_probe_move();
  4119. // If any axis has enough movement, do the move
  4120. LOOP_XYZ(i)
  4121. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4122. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4123. // If G38.2 fails throw an error
  4124. if (!G38_run_probe() && is_38_2) {
  4125. SERIAL_ERROR_START;
  4126. SERIAL_ERRORLNPGM("Failed to reach target");
  4127. }
  4128. break;
  4129. }
  4130. clean_up_after_endstop_or_probe_move();
  4131. }
  4132. #endif // G38_PROBE_TARGET
  4133. /**
  4134. * G92: Set current position to given X Y Z E
  4135. */
  4136. inline void gcode_G92() {
  4137. bool didXYZ = false,
  4138. didE = code_seen('E');
  4139. if (!didE) stepper.synchronize();
  4140. LOOP_XYZE(i) {
  4141. if (code_seen(axis_codes[i])) {
  4142. #if IS_SCARA
  4143. current_position[i] = code_value_axis_units(i);
  4144. if (i != E_AXIS) didXYZ = true;
  4145. #else
  4146. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4147. float p = current_position[i];
  4148. #endif
  4149. float v = code_value_axis_units(i);
  4150. current_position[i] = v;
  4151. if (i != E_AXIS) {
  4152. didXYZ = true;
  4153. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4154. position_shift[i] += v - p; // Offset the coordinate space
  4155. update_software_endstops((AxisEnum)i);
  4156. #endif
  4157. }
  4158. #endif
  4159. }
  4160. }
  4161. if (didXYZ)
  4162. SYNC_PLAN_POSITION_KINEMATIC();
  4163. else if (didE)
  4164. sync_plan_position_e();
  4165. report_current_position();
  4166. }
  4167. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4168. /**
  4169. * M0: Unconditional stop - Wait for user button press on LCD
  4170. * M1: Conditional stop - Wait for user button press on LCD
  4171. */
  4172. inline void gcode_M0_M1() {
  4173. char* args = current_command_args;
  4174. millis_t codenum = 0;
  4175. bool hasP = false, hasS = false;
  4176. if (code_seen('P')) {
  4177. codenum = code_value_millis(); // milliseconds to wait
  4178. hasP = codenum > 0;
  4179. }
  4180. if (code_seen('S')) {
  4181. codenum = code_value_millis_from_seconds(); // seconds to wait
  4182. hasS = codenum > 0;
  4183. }
  4184. #if ENABLED(ULTIPANEL)
  4185. if (!hasP && !hasS && *args != '\0')
  4186. lcd_setstatus(args, true);
  4187. else {
  4188. LCD_MESSAGEPGM(MSG_USERWAIT);
  4189. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4190. dontExpireStatus();
  4191. #endif
  4192. }
  4193. #else
  4194. if (!hasP && !hasS && *args != '\0') {
  4195. SERIAL_ECHO_START;
  4196. SERIAL_ECHOLN(args);
  4197. }
  4198. #endif
  4199. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4200. wait_for_user = true;
  4201. stepper.synchronize();
  4202. refresh_cmd_timeout();
  4203. if (codenum > 0) {
  4204. codenum += previous_cmd_ms; // wait until this time for a click
  4205. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4206. }
  4207. else {
  4208. #if ENABLED(ULTIPANEL)
  4209. if (lcd_detected()) {
  4210. while (wait_for_user) idle();
  4211. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4212. }
  4213. #else
  4214. while (wait_for_user) idle();
  4215. #endif
  4216. }
  4217. wait_for_user = false;
  4218. KEEPALIVE_STATE(IN_HANDLER);
  4219. }
  4220. #endif // EMERGENCY_PARSER || ULTIPANEL
  4221. /**
  4222. * M17: Enable power on all stepper motors
  4223. */
  4224. inline void gcode_M17() {
  4225. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4226. enable_all_steppers();
  4227. }
  4228. #if IS_KINEMATIC
  4229. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4230. #else
  4231. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4232. #endif
  4233. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4234. float resume_position[XYZE];
  4235. bool move_away_flag = false;
  4236. inline void move_back_on_resume() {
  4237. if (!move_away_flag) return;
  4238. move_away_flag = false;
  4239. // Set extruder to saved position
  4240. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4241. planner.set_e_position_mm(current_position[E_AXIS]);
  4242. #if IS_KINEMATIC
  4243. // Move XYZ to starting position
  4244. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4245. #else
  4246. // Move XY to starting position, then Z
  4247. destination[X_AXIS] = resume_position[X_AXIS];
  4248. destination[Y_AXIS] = resume_position[Y_AXIS];
  4249. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4250. destination[Z_AXIS] = resume_position[Z_AXIS];
  4251. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4252. #endif
  4253. stepper.synchronize();
  4254. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4255. filament_ran_out = false;
  4256. #endif
  4257. set_current_to_destination();
  4258. }
  4259. #endif // PARK_HEAD_ON_PAUSE
  4260. #if ENABLED(SDSUPPORT)
  4261. /**
  4262. * M20: List SD card to serial output
  4263. */
  4264. inline void gcode_M20() {
  4265. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4266. card.ls();
  4267. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4268. }
  4269. /**
  4270. * M21: Init SD Card
  4271. */
  4272. inline void gcode_M21() { card.initsd(); }
  4273. /**
  4274. * M22: Release SD Card
  4275. */
  4276. inline void gcode_M22() { card.release(); }
  4277. /**
  4278. * M23: Open a file
  4279. */
  4280. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4281. /**
  4282. * M24: Start or Resume SD Print
  4283. */
  4284. inline void gcode_M24() {
  4285. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4286. move_back_on_resume();
  4287. #endif
  4288. card.startFileprint();
  4289. print_job_timer.start();
  4290. }
  4291. /**
  4292. * M25: Pause SD Print
  4293. */
  4294. inline void gcode_M25() {
  4295. card.pauseSDPrint();
  4296. print_job_timer.pause();
  4297. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4298. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4299. #endif
  4300. }
  4301. /**
  4302. * M26: Set SD Card file index
  4303. */
  4304. inline void gcode_M26() {
  4305. if (card.cardOK && code_seen('S'))
  4306. card.setIndex(code_value_long());
  4307. }
  4308. /**
  4309. * M27: Get SD Card status
  4310. */
  4311. inline void gcode_M27() { card.getStatus(); }
  4312. /**
  4313. * M28: Start SD Write
  4314. */
  4315. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4316. /**
  4317. * M29: Stop SD Write
  4318. * Processed in write to file routine above
  4319. */
  4320. inline void gcode_M29() {
  4321. // card.saving = false;
  4322. }
  4323. /**
  4324. * M30 <filename>: Delete SD Card file
  4325. */
  4326. inline void gcode_M30() {
  4327. if (card.cardOK) {
  4328. card.closefile();
  4329. card.removeFile(current_command_args);
  4330. }
  4331. }
  4332. #endif // SDSUPPORT
  4333. /**
  4334. * M31: Get the time since the start of SD Print (or last M109)
  4335. */
  4336. inline void gcode_M31() {
  4337. char buffer[21];
  4338. duration_t elapsed = print_job_timer.duration();
  4339. elapsed.toString(buffer);
  4340. lcd_setstatus(buffer);
  4341. SERIAL_ECHO_START;
  4342. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4343. #if ENABLED(AUTOTEMP)
  4344. thermalManager.autotempShutdown();
  4345. #endif
  4346. }
  4347. #if ENABLED(SDSUPPORT)
  4348. /**
  4349. * M32: Select file and start SD Print
  4350. */
  4351. inline void gcode_M32() {
  4352. if (card.sdprinting)
  4353. stepper.synchronize();
  4354. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4355. if (!namestartpos)
  4356. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4357. else
  4358. namestartpos++; //to skip the '!'
  4359. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4360. if (card.cardOK) {
  4361. card.openFile(namestartpos, true, call_procedure);
  4362. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4363. card.setIndex(code_value_long());
  4364. card.startFileprint();
  4365. // Procedure calls count as normal print time.
  4366. if (!call_procedure) print_job_timer.start();
  4367. }
  4368. }
  4369. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4370. /**
  4371. * M33: Get the long full path of a file or folder
  4372. *
  4373. * Parameters:
  4374. * <dospath> Case-insensitive DOS-style path to a file or folder
  4375. *
  4376. * Example:
  4377. * M33 miscel~1/armchair/armcha~1.gco
  4378. *
  4379. * Output:
  4380. * /Miscellaneous/Armchair/Armchair.gcode
  4381. */
  4382. inline void gcode_M33() {
  4383. card.printLongPath(current_command_args);
  4384. }
  4385. #endif
  4386. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4387. /**
  4388. * M34: Set SD Card Sorting Options
  4389. */
  4390. inline void gcode_M34() {
  4391. if (code_seen('S')) card.setSortOn(code_value_bool());
  4392. if (code_seen('F')) {
  4393. int v = code_value_long();
  4394. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4395. }
  4396. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4397. }
  4398. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4399. /**
  4400. * M928: Start SD Write
  4401. */
  4402. inline void gcode_M928() {
  4403. card.openLogFile(current_command_args);
  4404. }
  4405. #endif // SDSUPPORT
  4406. /**
  4407. * Sensitive pin test for M42, M226
  4408. */
  4409. static bool pin_is_protected(uint8_t pin) {
  4410. static const int sensitive_pins[] = SENSITIVE_PINS;
  4411. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4412. if (sensitive_pins[i] == pin) return true;
  4413. return false;
  4414. }
  4415. /**
  4416. * M42: Change pin status via GCode
  4417. *
  4418. * P<pin> Pin number (LED if omitted)
  4419. * S<byte> Pin status from 0 - 255
  4420. */
  4421. inline void gcode_M42() {
  4422. if (!code_seen('S')) return;
  4423. int pin_status = code_value_int();
  4424. if (!WITHIN(pin_status, 0, 255)) return;
  4425. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4426. if (pin_number < 0) return;
  4427. if (pin_is_protected(pin_number)) {
  4428. SERIAL_ERROR_START;
  4429. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4430. return;
  4431. }
  4432. pinMode(pin_number, OUTPUT);
  4433. digitalWrite(pin_number, pin_status);
  4434. analogWrite(pin_number, pin_status);
  4435. #if FAN_COUNT > 0
  4436. switch (pin_number) {
  4437. #if HAS_FAN0
  4438. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4439. #endif
  4440. #if HAS_FAN1
  4441. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4442. #endif
  4443. #if HAS_FAN2
  4444. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4445. #endif
  4446. }
  4447. #endif
  4448. }
  4449. #if ENABLED(PINS_DEBUGGING)
  4450. #include "pinsDebug.h"
  4451. inline void toggle_pins() {
  4452. int pin, j, start = 0, I_flag = 0, end = NUM_DIGITAL_PINS - 1, wait = 500, repeat = 1;
  4453. if (code_seen('R'))
  4454. repeat = code_value_int();
  4455. if (code_seen('S'))
  4456. start = code_value_int();
  4457. if (code_seen('E'))
  4458. end = code_value_int();
  4459. if (code_seen('I') )
  4460. I_flag++;
  4461. if (code_seen('W'))
  4462. wait = code_value_int();
  4463. for(pin = start; pin <= end; pin++) {
  4464. if ( I_flag == 0 && pin_is_protected(pin)) {
  4465. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4466. SERIAL_ECHOPGM(" untouched.\n");
  4467. }
  4468. else {
  4469. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4470. pinMode(pin, OUTPUT);
  4471. for(j = 0; j < repeat; j++) {
  4472. digitalWrite(pin, 0);
  4473. idle();
  4474. delay(wait);
  4475. digitalWrite(pin, 1);
  4476. idle();
  4477. delay(wait);
  4478. digitalWrite(pin, 0);
  4479. idle();
  4480. delay(wait);
  4481. }
  4482. }
  4483. SERIAL_ECHOPGM("\n");
  4484. }
  4485. SERIAL_ECHOPGM("Done\n");
  4486. return;
  4487. } // toggle pin(s)
  4488. inline void servo_probe_test(){
  4489. #if !(NUM_SERVOS >= 1 && HAS_SERVO_0)
  4490. SERIAL_ERROR_START;
  4491. SERIAL_ERRORLNPGM("SERVO not setup");
  4492. #else
  4493. #if !defined(z_servo_angle)
  4494. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  4495. #endif
  4496. uint8_t probe_index = code_seen('P') ? code_value_byte() : 0;
  4497. SERIAL_PROTOCOLLNPGM("Servo probe test");
  4498. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  4499. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  4500. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  4501. bool probe_inverting;
  4502. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  4503. #define PROBE_TEST_PIN Z_MIN_PIN
  4504. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  4505. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  4506. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  4507. if (Z_MIN_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
  4508. else SERIAL_PROTOCOLLNPGM("false");
  4509. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  4510. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  4511. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  4512. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  4513. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  4514. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  4515. if (Z_MIN_PROBE_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
  4516. else SERIAL_PROTOCOLLNPGM("false");
  4517. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  4518. #else
  4519. #error "ERROR - probe pin not defined - strange, SANITY_CHECK should have caught this"
  4520. #endif
  4521. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  4522. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  4523. bool deploy_state;
  4524. bool stow_state;
  4525. for (uint8_t i = 0; i < 4; i++) {
  4526. servo[probe_index].move(z_servo_angle[0]); //deploy
  4527. safe_delay(500);
  4528. deploy_state = digitalRead(PROBE_TEST_PIN);
  4529. servo[probe_index].move(z_servo_angle[1]); //stow
  4530. safe_delay(500);
  4531. stow_state = digitalRead(PROBE_TEST_PIN);
  4532. }
  4533. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  4534. refresh_cmd_timeout();
  4535. if (deploy_state != stow_state) {
  4536. SERIAL_PROTOCOLLNPGM("TLTouch detected"); // BLTouch clone?
  4537. if (deploy_state) {
  4538. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  4539. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  4540. }
  4541. else {
  4542. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  4543. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  4544. }
  4545. }
  4546. else { // measure active signal length
  4547. servo[probe_index].move(z_servo_angle[0]); //deploy
  4548. safe_delay(500);
  4549. SERIAL_PROTOCOLLNPGM("please trigger probe");
  4550. uint16_t probe_counter = 0;
  4551. for (uint16_t j = 0; j < 500*30 && probe_counter == 0 ; j++) { // allow 30 seconds max for operator to trigger probe
  4552. safe_delay(2);
  4553. if ( 0 == j%(500*1)) {refresh_cmd_timeout(); watchdog_reset();} // beat the dog every 45 seconds
  4554. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  4555. for (probe_counter = 1; probe_counter < 50 && (deploy_state != digitalRead(PROBE_TEST_PIN)); probe_counter ++) {
  4556. safe_delay(2);
  4557. }
  4558. if (probe_counter == 50) {
  4559. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  4560. }
  4561. else if (probe_counter >= 2 ) {
  4562. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2 ); // allow 4 - 100mS pulse
  4563. }
  4564. else {
  4565. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  4566. }
  4567. servo[probe_index].move(z_servo_angle[1]); //stow
  4568. } // pulse detected
  4569. } // for loop waiting for trigger
  4570. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  4571. } // measure active signal length
  4572. #endif
  4573. } // servo_probe_test
  4574. /**
  4575. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  4576. *
  4577. * M43 - report name and state of pin(s)
  4578. * P<pin> Pin to read or watch. If omitted, reads all pins.
  4579. * I Flag to ignore Marlin's pin protection.
  4580. *
  4581. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  4582. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4583. * I Flag to ignore Marlin's pin protection.
  4584. *
  4585. * M43 E<bool> - Enable / disable background endstop monitoring
  4586. * - Machine continues to operate
  4587. * - Reports changes to endstops
  4588. * - Toggles LED when an endstop changes
  4589. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  4590. *
  4591. * M43 T - Toggle pin(s) and report which pin is being toggled
  4592. * S<pin> - Start Pin number. If not given, will default to 0
  4593. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  4594. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  4595. * R - Repeat pulses on each pin this number of times before continueing to next pin
  4596. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  4597. *
  4598. * M43 S - Servo probe test
  4599. * P<index> - Probe index (optional - defaults to 0
  4600. */
  4601. inline void gcode_M43() {
  4602. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  4603. toggle_pins();
  4604. return;
  4605. }
  4606. // Enable or disable endstop monitoring
  4607. if (code_seen('E')) {
  4608. endstop_monitor_flag = code_value_bool();
  4609. SERIAL_PROTOCOLPGM("endstop monitor ");
  4610. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4611. SERIAL_PROTOCOLLNPGM("abled");
  4612. return;
  4613. }
  4614. if (code_seen('S')) {
  4615. servo_probe_test();
  4616. return;
  4617. }
  4618. // Get the range of pins to test or watch
  4619. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4620. if (code_seen('P')) {
  4621. first_pin = last_pin = code_value_byte();
  4622. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4623. }
  4624. bool ignore_protection = code_seen('I');
  4625. // Watch until click, M108, or reset
  4626. if (code_seen('W')) { // watch digital pins
  4627. SERIAL_PROTOCOLLNPGM("Watching pins");
  4628. byte pin_state[last_pin - first_pin + 1];
  4629. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4630. if (pin_is_protected(pin) && !ignore_protection) continue;
  4631. pinMode(pin, INPUT_PULLUP);
  4632. // if (IS_ANALOG(pin))
  4633. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4634. // else
  4635. pin_state[pin - first_pin] = digitalRead(pin);
  4636. }
  4637. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4638. wait_for_user = true;
  4639. #endif
  4640. for(;;) {
  4641. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4642. if (pin_is_protected(pin)) continue;
  4643. byte val;
  4644. // if (IS_ANALOG(pin))
  4645. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4646. // else
  4647. val = digitalRead(pin);
  4648. if (val != pin_state[pin - first_pin]) {
  4649. report_pin_state(pin);
  4650. pin_state[pin - first_pin] = val;
  4651. }
  4652. }
  4653. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4654. if (!wait_for_user) break;
  4655. #endif
  4656. safe_delay(500);
  4657. }
  4658. return;
  4659. }
  4660. // Report current state of selected pin(s)
  4661. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4662. report_pin_state_extended(pin, ignore_protection);
  4663. }
  4664. #endif // PINS_DEBUGGING
  4665. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4666. /**
  4667. * M48: Z probe repeatability measurement function.
  4668. *
  4669. * Usage:
  4670. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4671. * P = Number of sampled points (4-50, default 10)
  4672. * X = Sample X position
  4673. * Y = Sample Y position
  4674. * V = Verbose level (0-4, default=1)
  4675. * E = Engage Z probe for each reading
  4676. * L = Number of legs of movement before probe
  4677. * S = Schizoid (Or Star if you prefer)
  4678. *
  4679. * This function assumes the bed has been homed. Specifically, that a G28 command
  4680. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4681. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4682. * regenerated.
  4683. */
  4684. inline void gcode_M48() {
  4685. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4686. bool bed_leveling_state_at_entry=0;
  4687. bed_leveling_state_at_entry = ubl.state.active;
  4688. #endif
  4689. if (axis_unhomed_error(true, true, true)) return;
  4690. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4691. if (!WITHIN(verbose_level, 0, 4)) {
  4692. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4693. return;
  4694. }
  4695. if (verbose_level > 0)
  4696. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4697. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4698. if (!WITHIN(n_samples, 4, 50)) {
  4699. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4700. return;
  4701. }
  4702. float X_current = current_position[X_AXIS],
  4703. Y_current = current_position[Y_AXIS];
  4704. bool stow_probe_after_each = code_seen('E');
  4705. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4706. #if DISABLED(DELTA)
  4707. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  4708. out_of_range_error(PSTR("X"));
  4709. return;
  4710. }
  4711. #endif
  4712. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4713. #if DISABLED(DELTA)
  4714. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  4715. out_of_range_error(PSTR("Y"));
  4716. return;
  4717. }
  4718. #else
  4719. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4720. if (!position_is_reachable(pos, true)) {
  4721. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4722. return;
  4723. }
  4724. #endif
  4725. bool seen_L = code_seen('L');
  4726. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4727. if (n_legs > 15) {
  4728. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4729. return;
  4730. }
  4731. if (n_legs == 1) n_legs = 2;
  4732. bool schizoid_flag = code_seen('S');
  4733. if (schizoid_flag && !seen_L) n_legs = 7;
  4734. /**
  4735. * Now get everything to the specified probe point So we can safely do a
  4736. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4737. * we don't want to use that as a starting point for each probe.
  4738. */
  4739. if (verbose_level > 2)
  4740. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4741. // Disable bed level correction in M48 because we want the raw data when we probe
  4742. #if HAS_ABL
  4743. const bool abl_was_enabled = planner.abl_enabled;
  4744. set_bed_leveling_enabled(false);
  4745. #endif
  4746. setup_for_endstop_or_probe_move();
  4747. // Move to the first point, deploy, and probe
  4748. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4749. randomSeed(millis());
  4750. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4751. for (uint8_t n = 0; n < n_samples; n++) {
  4752. if (n_legs) {
  4753. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4754. float angle = random(0.0, 360.0),
  4755. radius = random(
  4756. #if ENABLED(DELTA)
  4757. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4758. #else
  4759. 5, X_MAX_LENGTH / 8
  4760. #endif
  4761. );
  4762. if (verbose_level > 3) {
  4763. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4764. SERIAL_ECHOPAIR(" angle: ", angle);
  4765. SERIAL_ECHOPGM(" Direction: ");
  4766. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4767. SERIAL_ECHOLNPGM("Clockwise");
  4768. }
  4769. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4770. double delta_angle;
  4771. if (schizoid_flag)
  4772. // The points of a 5 point star are 72 degrees apart. We need to
  4773. // skip a point and go to the next one on the star.
  4774. delta_angle = dir * 2.0 * 72.0;
  4775. else
  4776. // If we do this line, we are just trying to move further
  4777. // around the circle.
  4778. delta_angle = dir * (float) random(25, 45);
  4779. angle += delta_angle;
  4780. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4781. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4782. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4783. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4784. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4785. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4786. #if DISABLED(DELTA)
  4787. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4788. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4789. #else
  4790. // If we have gone out too far, we can do a simple fix and scale the numbers
  4791. // back in closer to the origin.
  4792. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4793. X_current /= 1.25;
  4794. Y_current /= 1.25;
  4795. if (verbose_level > 3) {
  4796. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4797. SERIAL_ECHOLNPAIR(", ", Y_current);
  4798. }
  4799. }
  4800. #endif
  4801. if (verbose_level > 3) {
  4802. SERIAL_PROTOCOLPGM("Going to:");
  4803. SERIAL_ECHOPAIR(" X", X_current);
  4804. SERIAL_ECHOPAIR(" Y", Y_current);
  4805. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4806. }
  4807. do_blocking_move_to_xy(X_current, Y_current);
  4808. } // n_legs loop
  4809. } // n_legs
  4810. // Probe a single point
  4811. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4812. /**
  4813. * Get the current mean for the data points we have so far
  4814. */
  4815. double sum = 0.0;
  4816. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4817. mean = sum / (n + 1);
  4818. NOMORE(min, sample_set[n]);
  4819. NOLESS(max, sample_set[n]);
  4820. /**
  4821. * Now, use that mean to calculate the standard deviation for the
  4822. * data points we have so far
  4823. */
  4824. sum = 0.0;
  4825. for (uint8_t j = 0; j <= n; j++)
  4826. sum += sq(sample_set[j] - mean);
  4827. sigma = sqrt(sum / (n + 1));
  4828. if (verbose_level > 0) {
  4829. if (verbose_level > 1) {
  4830. SERIAL_PROTOCOL(n + 1);
  4831. SERIAL_PROTOCOLPGM(" of ");
  4832. SERIAL_PROTOCOL((int)n_samples);
  4833. SERIAL_PROTOCOLPGM(": z: ");
  4834. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4835. if (verbose_level > 2) {
  4836. SERIAL_PROTOCOLPGM(" mean: ");
  4837. SERIAL_PROTOCOL_F(mean, 4);
  4838. SERIAL_PROTOCOLPGM(" sigma: ");
  4839. SERIAL_PROTOCOL_F(sigma, 6);
  4840. SERIAL_PROTOCOLPGM(" min: ");
  4841. SERIAL_PROTOCOL_F(min, 3);
  4842. SERIAL_PROTOCOLPGM(" max: ");
  4843. SERIAL_PROTOCOL_F(max, 3);
  4844. SERIAL_PROTOCOLPGM(" range: ");
  4845. SERIAL_PROTOCOL_F(max-min, 3);
  4846. }
  4847. SERIAL_EOL;
  4848. }
  4849. }
  4850. } // End of probe loop
  4851. if (STOW_PROBE()) return;
  4852. SERIAL_PROTOCOLPGM("Finished!");
  4853. SERIAL_EOL;
  4854. if (verbose_level > 0) {
  4855. SERIAL_PROTOCOLPGM("Mean: ");
  4856. SERIAL_PROTOCOL_F(mean, 6);
  4857. SERIAL_PROTOCOLPGM(" Min: ");
  4858. SERIAL_PROTOCOL_F(min, 3);
  4859. SERIAL_PROTOCOLPGM(" Max: ");
  4860. SERIAL_PROTOCOL_F(max, 3);
  4861. SERIAL_PROTOCOLPGM(" Range: ");
  4862. SERIAL_PROTOCOL_F(max-min, 3);
  4863. SERIAL_EOL;
  4864. }
  4865. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4866. SERIAL_PROTOCOL_F(sigma, 6);
  4867. SERIAL_EOL;
  4868. SERIAL_EOL;
  4869. clean_up_after_endstop_or_probe_move();
  4870. // Re-enable bed level correction if it has been on
  4871. #if HAS_ABL
  4872. set_bed_leveling_enabled(abl_was_enabled);
  4873. #endif
  4874. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4875. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  4876. ubl.state.active = bed_leveling_state_at_entry;
  4877. #endif
  4878. report_current_position();
  4879. }
  4880. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4881. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  4882. inline void gcode_M49() {
  4883. ubl.g26_debug_flag = !ubl.g26_debug_flag;
  4884. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  4885. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  4886. }
  4887. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  4888. /**
  4889. * M75: Start print timer
  4890. */
  4891. inline void gcode_M75() { print_job_timer.start(); }
  4892. /**
  4893. * M76: Pause print timer
  4894. */
  4895. inline void gcode_M76() { print_job_timer.pause(); }
  4896. /**
  4897. * M77: Stop print timer
  4898. */
  4899. inline void gcode_M77() { print_job_timer.stop(); }
  4900. #if ENABLED(PRINTCOUNTER)
  4901. /**
  4902. * M78: Show print statistics
  4903. */
  4904. inline void gcode_M78() {
  4905. // "M78 S78" will reset the statistics
  4906. if (code_seen('S') && code_value_int() == 78)
  4907. print_job_timer.initStats();
  4908. else
  4909. print_job_timer.showStats();
  4910. }
  4911. #endif
  4912. /**
  4913. * M104: Set hot end temperature
  4914. */
  4915. inline void gcode_M104() {
  4916. if (get_target_extruder_from_command(104)) return;
  4917. if (DEBUGGING(DRYRUN)) return;
  4918. #if ENABLED(SINGLENOZZLE)
  4919. if (target_extruder != active_extruder) return;
  4920. #endif
  4921. if (code_seen('S')) {
  4922. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4923. #if ENABLED(DUAL_X_CARRIAGE)
  4924. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4925. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4926. #endif
  4927. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4928. /**
  4929. * Stop the timer at the end of print, starting is managed by
  4930. * 'heat and wait' M109.
  4931. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4932. * stand by mode, for instance in a dual extruder setup, without affecting
  4933. * the running print timer.
  4934. */
  4935. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4936. print_job_timer.stop();
  4937. LCD_MESSAGEPGM(WELCOME_MSG);
  4938. }
  4939. #endif
  4940. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4941. }
  4942. #if ENABLED(AUTOTEMP)
  4943. planner.autotemp_M104_M109();
  4944. #endif
  4945. }
  4946. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4947. void print_heaterstates() {
  4948. #if HAS_TEMP_HOTEND
  4949. SERIAL_PROTOCOLPGM(" T:");
  4950. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4951. SERIAL_PROTOCOLPGM(" /");
  4952. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4953. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4954. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4955. SERIAL_PROTOCOLCHAR(')');
  4956. #endif
  4957. #endif
  4958. #if HAS_TEMP_BED
  4959. SERIAL_PROTOCOLPGM(" B:");
  4960. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4961. SERIAL_PROTOCOLPGM(" /");
  4962. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4963. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4964. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4965. SERIAL_PROTOCOLCHAR(')');
  4966. #endif
  4967. #endif
  4968. #if HOTENDS > 1
  4969. HOTEND_LOOP() {
  4970. SERIAL_PROTOCOLPAIR(" T", e);
  4971. SERIAL_PROTOCOLCHAR(':');
  4972. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4973. SERIAL_PROTOCOLPGM(" /");
  4974. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4975. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4976. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4977. SERIAL_PROTOCOLCHAR(')');
  4978. #endif
  4979. }
  4980. #endif
  4981. SERIAL_PROTOCOLPGM(" @:");
  4982. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4983. #if HAS_TEMP_BED
  4984. SERIAL_PROTOCOLPGM(" B@:");
  4985. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4986. #endif
  4987. #if HOTENDS > 1
  4988. HOTEND_LOOP() {
  4989. SERIAL_PROTOCOLPAIR(" @", e);
  4990. SERIAL_PROTOCOLCHAR(':');
  4991. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4992. }
  4993. #endif
  4994. }
  4995. #endif
  4996. /**
  4997. * M105: Read hot end and bed temperature
  4998. */
  4999. inline void gcode_M105() {
  5000. if (get_target_extruder_from_command(105)) return;
  5001. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5002. SERIAL_PROTOCOLPGM(MSG_OK);
  5003. print_heaterstates();
  5004. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5005. SERIAL_ERROR_START;
  5006. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5007. #endif
  5008. SERIAL_EOL;
  5009. }
  5010. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5011. static uint8_t auto_report_temp_interval;
  5012. static millis_t next_temp_report_ms;
  5013. /**
  5014. * M155: Set temperature auto-report interval. M155 S<seconds>
  5015. */
  5016. inline void gcode_M155() {
  5017. if (code_seen('S')) {
  5018. auto_report_temp_interval = code_value_byte();
  5019. NOMORE(auto_report_temp_interval, 60);
  5020. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5021. }
  5022. }
  5023. inline void auto_report_temperatures() {
  5024. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5025. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5026. print_heaterstates();
  5027. SERIAL_EOL;
  5028. }
  5029. }
  5030. #endif // AUTO_REPORT_TEMPERATURES
  5031. #if FAN_COUNT > 0
  5032. /**
  5033. * M106: Set Fan Speed
  5034. *
  5035. * S<int> Speed between 0-255
  5036. * P<index> Fan index, if more than one fan
  5037. */
  5038. inline void gcode_M106() {
  5039. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5040. p = code_seen('P') ? code_value_ushort() : 0;
  5041. NOMORE(s, 255);
  5042. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5043. }
  5044. /**
  5045. * M107: Fan Off
  5046. */
  5047. inline void gcode_M107() {
  5048. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5049. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5050. }
  5051. #endif // FAN_COUNT > 0
  5052. #if DISABLED(EMERGENCY_PARSER)
  5053. /**
  5054. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5055. */
  5056. inline void gcode_M108() { wait_for_heatup = false; }
  5057. /**
  5058. * M112: Emergency Stop
  5059. */
  5060. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5061. /**
  5062. * M410: Quickstop - Abort all planned moves
  5063. *
  5064. * This will stop the carriages mid-move, so most likely they
  5065. * will be out of sync with the stepper position after this.
  5066. */
  5067. inline void gcode_M410() { quickstop_stepper(); }
  5068. #endif
  5069. #ifndef MIN_COOLING_SLOPE_DEG
  5070. #define MIN_COOLING_SLOPE_DEG 1.50
  5071. #endif
  5072. #ifndef MIN_COOLING_SLOPE_TIME
  5073. #define MIN_COOLING_SLOPE_TIME 60
  5074. #endif
  5075. /**
  5076. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5077. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5078. */
  5079. inline void gcode_M109() {
  5080. if (get_target_extruder_from_command(109)) return;
  5081. if (DEBUGGING(DRYRUN)) return;
  5082. #if ENABLED(SINGLENOZZLE)
  5083. if (target_extruder != active_extruder) return;
  5084. #endif
  5085. bool no_wait_for_cooling = code_seen('S');
  5086. if (no_wait_for_cooling || code_seen('R')) {
  5087. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5088. #if ENABLED(DUAL_X_CARRIAGE)
  5089. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5090. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5091. #endif
  5092. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5093. /**
  5094. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5095. * stand by mode, for instance in a dual extruder setup, without affecting
  5096. * the running print timer.
  5097. */
  5098. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  5099. print_job_timer.stop();
  5100. LCD_MESSAGEPGM(WELCOME_MSG);
  5101. }
  5102. /**
  5103. * We do not check if the timer is already running because this check will
  5104. * be done for us inside the Stopwatch::start() method thus a running timer
  5105. * will not restart.
  5106. */
  5107. else print_job_timer.start();
  5108. #endif
  5109. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5110. }
  5111. #if ENABLED(AUTOTEMP)
  5112. planner.autotemp_M104_M109();
  5113. #endif
  5114. #if TEMP_RESIDENCY_TIME > 0
  5115. millis_t residency_start_ms = 0;
  5116. // Loop until the temperature has stabilized
  5117. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5118. #else
  5119. // Loop until the temperature is very close target
  5120. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5121. #endif //TEMP_RESIDENCY_TIME > 0
  5122. float theTarget = -1.0, old_temp = 9999.0;
  5123. bool wants_to_cool = false;
  5124. wait_for_heatup = true;
  5125. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5126. KEEPALIVE_STATE(NOT_BUSY);
  5127. do {
  5128. // Target temperature might be changed during the loop
  5129. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  5130. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5131. theTarget = thermalManager.degTargetHotend(target_extruder);
  5132. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5133. if (no_wait_for_cooling && wants_to_cool) break;
  5134. }
  5135. now = millis();
  5136. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5137. next_temp_ms = now + 1000UL;
  5138. print_heaterstates();
  5139. #if TEMP_RESIDENCY_TIME > 0
  5140. SERIAL_PROTOCOLPGM(" W:");
  5141. if (residency_start_ms) {
  5142. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5143. SERIAL_PROTOCOLLN(rem);
  5144. }
  5145. else {
  5146. SERIAL_PROTOCOLLNPGM("?");
  5147. }
  5148. #else
  5149. SERIAL_EOL;
  5150. #endif
  5151. }
  5152. idle();
  5153. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5154. float temp = thermalManager.degHotend(target_extruder);
  5155. #if TEMP_RESIDENCY_TIME > 0
  5156. float temp_diff = fabs(theTarget - temp);
  5157. if (!residency_start_ms) {
  5158. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5159. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5160. }
  5161. else if (temp_diff > TEMP_HYSTERESIS) {
  5162. // Restart the timer whenever the temperature falls outside the hysteresis.
  5163. residency_start_ms = now;
  5164. }
  5165. #endif //TEMP_RESIDENCY_TIME > 0
  5166. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5167. if (wants_to_cool) {
  5168. // break after MIN_COOLING_SLOPE_TIME seconds
  5169. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5170. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5171. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5172. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5173. old_temp = temp;
  5174. }
  5175. }
  5176. } while (wait_for_heatup && TEMP_CONDITIONS);
  5177. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5178. KEEPALIVE_STATE(IN_HANDLER);
  5179. }
  5180. #if HAS_TEMP_BED
  5181. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5182. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5183. #endif
  5184. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5185. #define MIN_COOLING_SLOPE_TIME_BED 60
  5186. #endif
  5187. /**
  5188. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5189. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5190. */
  5191. inline void gcode_M190() {
  5192. if (DEBUGGING(DRYRUN)) return;
  5193. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5194. bool no_wait_for_cooling = code_seen('S');
  5195. if (no_wait_for_cooling || code_seen('R')) {
  5196. thermalManager.setTargetBed(code_value_temp_abs());
  5197. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5198. if (code_value_temp_abs() > BED_MINTEMP) {
  5199. /**
  5200. * We start the timer when 'heating and waiting' command arrives, LCD
  5201. * functions never wait. Cooling down managed by extruders.
  5202. *
  5203. * We do not check if the timer is already running because this check will
  5204. * be done for us inside the Stopwatch::start() method thus a running timer
  5205. * will not restart.
  5206. */
  5207. print_job_timer.start();
  5208. }
  5209. #endif
  5210. }
  5211. #if TEMP_BED_RESIDENCY_TIME > 0
  5212. millis_t residency_start_ms = 0;
  5213. // Loop until the temperature has stabilized
  5214. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5215. #else
  5216. // Loop until the temperature is very close target
  5217. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5218. #endif //TEMP_BED_RESIDENCY_TIME > 0
  5219. float theTarget = -1.0, old_temp = 9999.0;
  5220. bool wants_to_cool = false;
  5221. wait_for_heatup = true;
  5222. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5223. KEEPALIVE_STATE(NOT_BUSY);
  5224. target_extruder = active_extruder; // for print_heaterstates
  5225. do {
  5226. // Target temperature might be changed during the loop
  5227. if (theTarget != thermalManager.degTargetBed()) {
  5228. wants_to_cool = thermalManager.isCoolingBed();
  5229. theTarget = thermalManager.degTargetBed();
  5230. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5231. if (no_wait_for_cooling && wants_to_cool) break;
  5232. }
  5233. now = millis();
  5234. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5235. next_temp_ms = now + 1000UL;
  5236. print_heaterstates();
  5237. #if TEMP_BED_RESIDENCY_TIME > 0
  5238. SERIAL_PROTOCOLPGM(" W:");
  5239. if (residency_start_ms) {
  5240. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5241. SERIAL_PROTOCOLLN(rem);
  5242. }
  5243. else {
  5244. SERIAL_PROTOCOLLNPGM("?");
  5245. }
  5246. #else
  5247. SERIAL_EOL;
  5248. #endif
  5249. }
  5250. idle();
  5251. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5252. float temp = thermalManager.degBed();
  5253. #if TEMP_BED_RESIDENCY_TIME > 0
  5254. float temp_diff = fabs(theTarget - temp);
  5255. if (!residency_start_ms) {
  5256. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5257. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5258. }
  5259. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5260. // Restart the timer whenever the temperature falls outside the hysteresis.
  5261. residency_start_ms = now;
  5262. }
  5263. #endif //TEMP_BED_RESIDENCY_TIME > 0
  5264. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5265. if (wants_to_cool) {
  5266. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  5267. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5268. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5269. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5270. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5271. old_temp = temp;
  5272. }
  5273. }
  5274. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5275. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5276. KEEPALIVE_STATE(IN_HANDLER);
  5277. }
  5278. #endif // HAS_TEMP_BED
  5279. /**
  5280. * M110: Set Current Line Number
  5281. */
  5282. inline void gcode_M110() {
  5283. if (code_seen('N')) gcode_LastN = code_value_long();
  5284. }
  5285. /**
  5286. * M111: Set the debug level
  5287. */
  5288. inline void gcode_M111() {
  5289. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  5290. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5291. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5292. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5293. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5294. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5296. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5297. #endif
  5298. const static char* const debug_strings[] PROGMEM = {
  5299. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5300. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5301. str_debug_32
  5302. #endif
  5303. };
  5304. SERIAL_ECHO_START;
  5305. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5306. if (marlin_debug_flags) {
  5307. uint8_t comma = 0;
  5308. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5309. if (TEST(marlin_debug_flags, i)) {
  5310. if (comma++) SERIAL_CHAR(',');
  5311. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5312. }
  5313. }
  5314. }
  5315. else {
  5316. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5317. }
  5318. SERIAL_EOL;
  5319. }
  5320. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5321. /**
  5322. * M113: Get or set Host Keepalive interval (0 to disable)
  5323. *
  5324. * S<seconds> Optional. Set the keepalive interval.
  5325. */
  5326. inline void gcode_M113() {
  5327. if (code_seen('S')) {
  5328. host_keepalive_interval = code_value_byte();
  5329. NOMORE(host_keepalive_interval, 60);
  5330. }
  5331. else {
  5332. SERIAL_ECHO_START;
  5333. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5334. }
  5335. }
  5336. #endif
  5337. #if ENABLED(BARICUDA)
  5338. #if HAS_HEATER_1
  5339. /**
  5340. * M126: Heater 1 valve open
  5341. */
  5342. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5343. /**
  5344. * M127: Heater 1 valve close
  5345. */
  5346. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5347. #endif
  5348. #if HAS_HEATER_2
  5349. /**
  5350. * M128: Heater 2 valve open
  5351. */
  5352. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5353. /**
  5354. * M129: Heater 2 valve close
  5355. */
  5356. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5357. #endif
  5358. #endif //BARICUDA
  5359. /**
  5360. * M140: Set bed temperature
  5361. */
  5362. inline void gcode_M140() {
  5363. if (DEBUGGING(DRYRUN)) return;
  5364. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5365. }
  5366. #if ENABLED(ULTIPANEL)
  5367. /**
  5368. * M145: Set the heatup state for a material in the LCD menu
  5369. * S<material> (0=PLA, 1=ABS)
  5370. * H<hotend temp>
  5371. * B<bed temp>
  5372. * F<fan speed>
  5373. */
  5374. inline void gcode_M145() {
  5375. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5376. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5377. SERIAL_ERROR_START;
  5378. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5379. }
  5380. else {
  5381. int v;
  5382. if (code_seen('H')) {
  5383. v = code_value_int();
  5384. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5385. }
  5386. if (code_seen('F')) {
  5387. v = code_value_int();
  5388. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5389. }
  5390. #if TEMP_SENSOR_BED != 0
  5391. if (code_seen('B')) {
  5392. v = code_value_int();
  5393. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5394. }
  5395. #endif
  5396. }
  5397. }
  5398. #endif // ULTIPANEL
  5399. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5400. /**
  5401. * M149: Set temperature units
  5402. */
  5403. inline void gcode_M149() {
  5404. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5405. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5406. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5407. }
  5408. #endif
  5409. #if HAS_POWER_SWITCH
  5410. /**
  5411. * M80: Turn on Power Supply
  5412. */
  5413. inline void gcode_M80() {
  5414. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5415. /**
  5416. * If you have a switch on suicide pin, this is useful
  5417. * if you want to start another print with suicide feature after
  5418. * a print without suicide...
  5419. */
  5420. #if HAS_SUICIDE
  5421. OUT_WRITE(SUICIDE_PIN, HIGH);
  5422. #endif
  5423. #if ENABLED(ULTIPANEL)
  5424. powersupply = true;
  5425. LCD_MESSAGEPGM(WELCOME_MSG);
  5426. lcd_update();
  5427. #endif
  5428. }
  5429. #endif // HAS_POWER_SWITCH
  5430. /**
  5431. * M81: Turn off Power, including Power Supply, if there is one.
  5432. *
  5433. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5434. */
  5435. inline void gcode_M81() {
  5436. thermalManager.disable_all_heaters();
  5437. stepper.finish_and_disable();
  5438. #if FAN_COUNT > 0
  5439. #if FAN_COUNT > 1
  5440. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5441. #else
  5442. fanSpeeds[0] = 0;
  5443. #endif
  5444. #endif
  5445. safe_delay(1000); // Wait 1 second before switching off
  5446. #if HAS_SUICIDE
  5447. stepper.synchronize();
  5448. suicide();
  5449. #elif HAS_POWER_SWITCH
  5450. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5451. #endif
  5452. #if ENABLED(ULTIPANEL)
  5453. #if HAS_POWER_SWITCH
  5454. powersupply = false;
  5455. #endif
  5456. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5457. lcd_update();
  5458. #endif
  5459. }
  5460. /**
  5461. * M82: Set E codes absolute (default)
  5462. */
  5463. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5464. /**
  5465. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5466. */
  5467. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5468. /**
  5469. * M18, M84: Disable all stepper motors
  5470. */
  5471. inline void gcode_M18_M84() {
  5472. if (code_seen('S')) {
  5473. stepper_inactive_time = code_value_millis_from_seconds();
  5474. }
  5475. else {
  5476. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5477. if (all_axis) {
  5478. stepper.finish_and_disable();
  5479. }
  5480. else {
  5481. stepper.synchronize();
  5482. if (code_seen('X')) disable_x();
  5483. if (code_seen('Y')) disable_y();
  5484. if (code_seen('Z')) disable_z();
  5485. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5486. if (code_seen('E')) disable_e_steppers();
  5487. #endif
  5488. }
  5489. }
  5490. }
  5491. /**
  5492. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5493. */
  5494. inline void gcode_M85() {
  5495. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5496. }
  5497. /**
  5498. * Multi-stepper support for M92, M201, M203
  5499. */
  5500. #if ENABLED(DISTINCT_E_FACTORS)
  5501. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5502. #define TARGET_EXTRUDER target_extruder
  5503. #else
  5504. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5505. #define TARGET_EXTRUDER 0
  5506. #endif
  5507. /**
  5508. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5509. * (Follows the same syntax as G92)
  5510. *
  5511. * With multiple extruders use T to specify which one.
  5512. */
  5513. inline void gcode_M92() {
  5514. GET_TARGET_EXTRUDER(92);
  5515. LOOP_XYZE(i) {
  5516. if (code_seen(axis_codes[i])) {
  5517. if (i == E_AXIS) {
  5518. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5519. if (value < 20.0) {
  5520. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5521. planner.max_jerk[E_AXIS] *= factor;
  5522. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5523. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5524. }
  5525. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5526. }
  5527. else {
  5528. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5529. }
  5530. }
  5531. }
  5532. planner.refresh_positioning();
  5533. }
  5534. /**
  5535. * Output the current position to serial
  5536. */
  5537. static void report_current_position() {
  5538. SERIAL_PROTOCOLPGM("X:");
  5539. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5540. SERIAL_PROTOCOLPGM(" Y:");
  5541. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5542. SERIAL_PROTOCOLPGM(" Z:");
  5543. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5544. SERIAL_PROTOCOLPGM(" E:");
  5545. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5546. stepper.report_positions();
  5547. #if IS_SCARA
  5548. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5549. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5550. SERIAL_EOL;
  5551. #endif
  5552. }
  5553. /**
  5554. * M114: Output current position to serial port
  5555. */
  5556. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  5557. /**
  5558. * M115: Capabilities string
  5559. */
  5560. inline void gcode_M115() {
  5561. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5562. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5563. // EEPROM (M500, M501)
  5564. #if ENABLED(EEPROM_SETTINGS)
  5565. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5566. #else
  5567. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5568. #endif
  5569. // AUTOREPORT_TEMP (M155)
  5570. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5571. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5572. #else
  5573. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5574. #endif
  5575. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5576. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5577. // AUTOLEVEL (G29)
  5578. #if HAS_ABL
  5579. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5580. #else
  5581. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5582. #endif
  5583. // Z_PROBE (G30)
  5584. #if HAS_BED_PROBE
  5585. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5586. #else
  5587. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5588. #endif
  5589. // MESH_REPORT (M420 V)
  5590. #if PLANNER_LEVELING
  5591. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  5592. #else
  5593. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  5594. #endif
  5595. // SOFTWARE_POWER (G30)
  5596. #if HAS_POWER_SWITCH
  5597. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5598. #else
  5599. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5600. #endif
  5601. // TOGGLE_LIGHTS (M355)
  5602. #if HAS_CASE_LIGHT
  5603. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5604. #else
  5605. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5606. #endif
  5607. // EMERGENCY_PARSER (M108, M112, M410)
  5608. #if ENABLED(EMERGENCY_PARSER)
  5609. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5610. #else
  5611. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5612. #endif
  5613. #endif // EXTENDED_CAPABILITIES_REPORT
  5614. }
  5615. /**
  5616. * M117: Set LCD Status Message
  5617. */
  5618. inline void gcode_M117() {
  5619. lcd_setstatus(current_command_args);
  5620. }
  5621. /**
  5622. * M119: Output endstop states to serial output
  5623. */
  5624. inline void gcode_M119() { endstops.M119(); }
  5625. /**
  5626. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5627. */
  5628. inline void gcode_M120() { endstops.enable_globally(true); }
  5629. /**
  5630. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5631. */
  5632. inline void gcode_M121() { endstops.enable_globally(false); }
  5633. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5634. /**
  5635. * M125: Store current position and move to filament change position.
  5636. * Called on pause (by M25) to prevent material leaking onto the
  5637. * object. On resume (M24) the head will be moved back and the
  5638. * print will resume.
  5639. *
  5640. * If Marlin is compiled without SD Card support, M125 can be
  5641. * used directly to pause the print and move to park position,
  5642. * resuming with a button click or M108.
  5643. *
  5644. * L = override retract length
  5645. * X = override X
  5646. * Y = override Y
  5647. * Z = override Z raise
  5648. */
  5649. inline void gcode_M125() {
  5650. if (move_away_flag) return; // already paused
  5651. const bool job_running = print_job_timer.isRunning();
  5652. // there are blocks after this one, or sd printing
  5653. move_away_flag = job_running || planner.blocks_queued()
  5654. #if ENABLED(SDSUPPORT)
  5655. || card.sdprinting
  5656. #endif
  5657. ;
  5658. if (!move_away_flag) return; // nothing to pause
  5659. // M125 can be used to pause a print too
  5660. #if ENABLED(SDSUPPORT)
  5661. card.pauseSDPrint();
  5662. #endif
  5663. print_job_timer.pause();
  5664. // Save current position
  5665. COPY(resume_position, current_position);
  5666. set_destination_to_current();
  5667. // Initial retract before move to filament change position
  5668. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  5669. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5670. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  5671. #endif
  5672. ;
  5673. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5674. // Lift Z axis
  5675. const float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5676. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5677. FILAMENT_CHANGE_Z_ADD
  5678. #else
  5679. 0
  5680. #endif
  5681. ;
  5682. if (z_lift > 0) {
  5683. destination[Z_AXIS] += z_lift;
  5684. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5685. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5686. }
  5687. // Move XY axes to filament change position or given position
  5688. destination[X_AXIS] = code_seen('X') ? code_value_axis_units(X_AXIS) : 0
  5689. #ifdef FILAMENT_CHANGE_X_POS
  5690. + FILAMENT_CHANGE_X_POS
  5691. #endif
  5692. ;
  5693. destination[Y_AXIS] = code_seen('Y') ? code_value_axis_units(Y_AXIS) : 0
  5694. #ifdef FILAMENT_CHANGE_Y_POS
  5695. + FILAMENT_CHANGE_Y_POS
  5696. #endif
  5697. ;
  5698. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  5699. if (active_extruder > 0) {
  5700. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  5701. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  5702. }
  5703. #endif
  5704. clamp_to_software_endstops(destination);
  5705. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5706. set_current_to_destination();
  5707. stepper.synchronize();
  5708. disable_e_steppers();
  5709. #if DISABLED(SDSUPPORT)
  5710. // Wait for lcd click or M108
  5711. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5712. wait_for_user = true;
  5713. while (wait_for_user) idle();
  5714. KEEPALIVE_STATE(IN_HANDLER);
  5715. // Return to print position and continue
  5716. move_back_on_resume();
  5717. if (job_running) print_job_timer.start();
  5718. move_away_flag = false;
  5719. #endif
  5720. }
  5721. #endif // PARK_HEAD_ON_PAUSE
  5722. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5723. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5724. #if ENABLED(BLINKM)
  5725. // This variant uses i2c to send the RGB components to the device.
  5726. SendColors(r, g, b);
  5727. #else
  5728. // This variant uses 3 separate pins for the RGB components.
  5729. // If the pins can do PWM then their intensity will be set.
  5730. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5731. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5732. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5733. analogWrite(RGB_LED_R_PIN, r);
  5734. analogWrite(RGB_LED_G_PIN, g);
  5735. analogWrite(RGB_LED_B_PIN, b);
  5736. #endif
  5737. }
  5738. /**
  5739. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5740. *
  5741. * Always sets all 3 components. If a component is left out, set to 0.
  5742. *
  5743. * Examples:
  5744. *
  5745. * M150 R255 ; Turn LED red
  5746. * M150 R255 U127 ; Turn LED orange (PWM only)
  5747. * M150 ; Turn LED off
  5748. * M150 R U B ; Turn LED white
  5749. *
  5750. */
  5751. inline void gcode_M150() {
  5752. set_led_color(
  5753. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5754. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5755. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5756. );
  5757. }
  5758. #endif // BLINKM || RGB_LED
  5759. /**
  5760. * M200: Set filament diameter and set E axis units to cubic units
  5761. *
  5762. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5763. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5764. */
  5765. inline void gcode_M200() {
  5766. if (get_target_extruder_from_command(200)) return;
  5767. if (code_seen('D')) {
  5768. // setting any extruder filament size disables volumetric on the assumption that
  5769. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5770. // for all extruders
  5771. volumetric_enabled = (code_value_linear_units() != 0.0);
  5772. if (volumetric_enabled) {
  5773. filament_size[target_extruder] = code_value_linear_units();
  5774. // make sure all extruders have some sane value for the filament size
  5775. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5776. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5777. }
  5778. }
  5779. else {
  5780. //reserved for setting filament diameter via UFID or filament measuring device
  5781. return;
  5782. }
  5783. calculate_volumetric_multipliers();
  5784. }
  5785. /**
  5786. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5787. *
  5788. * With multiple extruders use T to specify which one.
  5789. */
  5790. inline void gcode_M201() {
  5791. GET_TARGET_EXTRUDER(201);
  5792. LOOP_XYZE(i) {
  5793. if (code_seen(axis_codes[i])) {
  5794. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5795. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5796. }
  5797. }
  5798. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5799. planner.reset_acceleration_rates();
  5800. }
  5801. #if 0 // Not used for Sprinter/grbl gen6
  5802. inline void gcode_M202() {
  5803. LOOP_XYZE(i) {
  5804. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5805. }
  5806. }
  5807. #endif
  5808. /**
  5809. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5810. *
  5811. * With multiple extruders use T to specify which one.
  5812. */
  5813. inline void gcode_M203() {
  5814. GET_TARGET_EXTRUDER(203);
  5815. LOOP_XYZE(i)
  5816. if (code_seen(axis_codes[i])) {
  5817. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5818. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5819. }
  5820. }
  5821. /**
  5822. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5823. *
  5824. * P = Printing moves
  5825. * R = Retract only (no X, Y, Z) moves
  5826. * T = Travel (non printing) moves
  5827. *
  5828. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5829. */
  5830. inline void gcode_M204() {
  5831. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5832. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5833. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5834. }
  5835. if (code_seen('P')) {
  5836. planner.acceleration = code_value_linear_units();
  5837. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5838. }
  5839. if (code_seen('R')) {
  5840. planner.retract_acceleration = code_value_linear_units();
  5841. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5842. }
  5843. if (code_seen('T')) {
  5844. planner.travel_acceleration = code_value_linear_units();
  5845. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5846. }
  5847. }
  5848. /**
  5849. * M205: Set Advanced Settings
  5850. *
  5851. * S = Min Feed Rate (units/s)
  5852. * T = Min Travel Feed Rate (units/s)
  5853. * B = Min Segment Time (µs)
  5854. * X = Max X Jerk (units/sec^2)
  5855. * Y = Max Y Jerk (units/sec^2)
  5856. * Z = Max Z Jerk (units/sec^2)
  5857. * E = Max E Jerk (units/sec^2)
  5858. */
  5859. inline void gcode_M205() {
  5860. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5861. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5862. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5863. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5864. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5865. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5866. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5867. }
  5868. #if DISABLED(NO_WORKSPACE_OFFSETS)
  5869. /**
  5870. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5871. */
  5872. inline void gcode_M206() {
  5873. LOOP_XYZ(i)
  5874. if (code_seen(axis_codes[i]))
  5875. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5876. #if ENABLED(MORGAN_SCARA)
  5877. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5878. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5879. #endif
  5880. SYNC_PLAN_POSITION_KINEMATIC();
  5881. report_current_position();
  5882. }
  5883. #endif // NO_WORKSPACE_OFFSETS
  5884. #if ENABLED(DELTA)
  5885. /**
  5886. * M665: Set delta configurations
  5887. *
  5888. * L = diagonal rod
  5889. * R = delta radius
  5890. * S = segments per second
  5891. * A = Alpha (Tower 1) diagonal rod trim
  5892. * B = Beta (Tower 2) diagonal rod trim
  5893. * C = Gamma (Tower 3) diagonal rod trim
  5894. */
  5895. inline void gcode_M665() {
  5896. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5897. if (code_seen('R')) delta_radius = code_value_linear_units();
  5898. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5899. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  5900. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  5901. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  5902. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  5903. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  5904. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  5905. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5906. }
  5907. /**
  5908. * M666: Set delta endstop adjustment
  5909. */
  5910. inline void gcode_M666() {
  5911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5912. if (DEBUGGING(LEVELING)) {
  5913. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5914. }
  5915. #endif
  5916. LOOP_XYZ(i) {
  5917. if (code_seen(axis_codes[i])) {
  5918. endstop_adj[i] = code_value_axis_units(i);
  5919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5920. if (DEBUGGING(LEVELING)) {
  5921. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5922. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5923. }
  5924. #endif
  5925. }
  5926. }
  5927. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5928. if (DEBUGGING(LEVELING)) {
  5929. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5930. }
  5931. #endif
  5932. }
  5933. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5934. /**
  5935. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5936. */
  5937. inline void gcode_M666() {
  5938. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5939. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5940. }
  5941. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5942. #if ENABLED(FWRETRACT)
  5943. /**
  5944. * M207: Set firmware retraction values
  5945. *
  5946. * S[+units] retract_length
  5947. * W[+units] retract_length_swap (multi-extruder)
  5948. * F[units/min] retract_feedrate_mm_s
  5949. * Z[units] retract_zlift
  5950. */
  5951. inline void gcode_M207() {
  5952. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5953. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5954. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5955. #if EXTRUDERS > 1
  5956. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5957. #endif
  5958. }
  5959. /**
  5960. * M208: Set firmware un-retraction values
  5961. *
  5962. * S[+units] retract_recover_length (in addition to M207 S*)
  5963. * W[+units] retract_recover_length_swap (multi-extruder)
  5964. * F[units/min] retract_recover_feedrate_mm_s
  5965. */
  5966. inline void gcode_M208() {
  5967. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5968. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5969. #if EXTRUDERS > 1
  5970. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5971. #endif
  5972. }
  5973. /**
  5974. * M209: Enable automatic retract (M209 S1)
  5975. * For slicers that don't support G10/11, reversed extrude-only
  5976. * moves will be classified as retraction.
  5977. */
  5978. inline void gcode_M209() {
  5979. if (code_seen('S')) {
  5980. autoretract_enabled = code_value_bool();
  5981. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5982. }
  5983. }
  5984. #endif // FWRETRACT
  5985. /**
  5986. * M211: Enable, Disable, and/or Report software endstops
  5987. *
  5988. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5989. */
  5990. inline void gcode_M211() {
  5991. SERIAL_ECHO_START;
  5992. #if HAS_SOFTWARE_ENDSTOPS
  5993. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5994. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5995. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5996. #else
  5997. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5998. SERIAL_ECHOPGM(MSG_OFF);
  5999. #endif
  6000. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6001. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6002. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6003. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6004. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6005. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6006. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6007. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6008. }
  6009. #if HOTENDS > 1
  6010. /**
  6011. * M218 - set hotend offset (in linear units)
  6012. *
  6013. * T<tool>
  6014. * X<xoffset>
  6015. * Y<yoffset>
  6016. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6017. */
  6018. inline void gcode_M218() {
  6019. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6020. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  6021. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  6022. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6023. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  6024. #endif
  6025. SERIAL_ECHO_START;
  6026. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6027. HOTEND_LOOP() {
  6028. SERIAL_CHAR(' ');
  6029. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6030. SERIAL_CHAR(',');
  6031. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6032. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6033. SERIAL_CHAR(',');
  6034. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6035. #endif
  6036. }
  6037. SERIAL_EOL;
  6038. }
  6039. #endif // HOTENDS > 1
  6040. /**
  6041. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6042. */
  6043. inline void gcode_M220() {
  6044. if (code_seen('S')) feedrate_percentage = code_value_int();
  6045. }
  6046. /**
  6047. * M221: Set extrusion percentage (M221 T0 S95)
  6048. */
  6049. inline void gcode_M221() {
  6050. if (get_target_extruder_from_command(221)) return;
  6051. if (code_seen('S'))
  6052. flow_percentage[target_extruder] = code_value_int();
  6053. }
  6054. /**
  6055. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6056. */
  6057. inline void gcode_M226() {
  6058. if (code_seen('P')) {
  6059. int pin_number = code_value_int(),
  6060. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6061. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6062. int target = LOW;
  6063. stepper.synchronize();
  6064. pinMode(pin_number, INPUT);
  6065. switch (pin_state) {
  6066. case 1:
  6067. target = HIGH;
  6068. break;
  6069. case 0:
  6070. target = LOW;
  6071. break;
  6072. case -1:
  6073. target = !digitalRead(pin_number);
  6074. break;
  6075. }
  6076. while (digitalRead(pin_number) != target) idle();
  6077. } // pin_state -1 0 1 && pin_number > -1
  6078. } // code_seen('P')
  6079. }
  6080. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6081. /**
  6082. * M260: Send data to a I2C slave device
  6083. *
  6084. * This is a PoC, the formating and arguments for the GCODE will
  6085. * change to be more compatible, the current proposal is:
  6086. *
  6087. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6088. *
  6089. * M260 B<byte-1 value in base 10>
  6090. * M260 B<byte-2 value in base 10>
  6091. * M260 B<byte-3 value in base 10>
  6092. *
  6093. * M260 S1 ; Send the buffered data and reset the buffer
  6094. * M260 R1 ; Reset the buffer without sending data
  6095. *
  6096. */
  6097. inline void gcode_M260() {
  6098. // Set the target address
  6099. if (code_seen('A')) i2c.address(code_value_byte());
  6100. // Add a new byte to the buffer
  6101. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6102. // Flush the buffer to the bus
  6103. if (code_seen('S')) i2c.send();
  6104. // Reset and rewind the buffer
  6105. else if (code_seen('R')) i2c.reset();
  6106. }
  6107. /**
  6108. * M261: Request X bytes from I2C slave device
  6109. *
  6110. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6111. */
  6112. inline void gcode_M261() {
  6113. if (code_seen('A')) i2c.address(code_value_byte());
  6114. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6115. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6116. i2c.relay(bytes);
  6117. }
  6118. else {
  6119. SERIAL_ERROR_START;
  6120. SERIAL_ERRORLN("Bad i2c request");
  6121. }
  6122. }
  6123. #endif // EXPERIMENTAL_I2CBUS
  6124. #if HAS_SERVOS
  6125. /**
  6126. * M280: Get or set servo position. P<index> [S<angle>]
  6127. */
  6128. inline void gcode_M280() {
  6129. if (!code_seen('P')) return;
  6130. int servo_index = code_value_int();
  6131. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6132. if (code_seen('S'))
  6133. MOVE_SERVO(servo_index, code_value_int());
  6134. else {
  6135. SERIAL_ECHO_START;
  6136. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6137. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6138. }
  6139. }
  6140. else {
  6141. SERIAL_ERROR_START;
  6142. SERIAL_ECHOPAIR("Servo ", servo_index);
  6143. SERIAL_ECHOLNPGM(" out of range");
  6144. }
  6145. }
  6146. #endif // HAS_SERVOS
  6147. #if HAS_BUZZER
  6148. /**
  6149. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6150. */
  6151. inline void gcode_M300() {
  6152. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6153. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6154. // Limits the tone duration to 0-5 seconds.
  6155. NOMORE(duration, 5000);
  6156. BUZZ(duration, frequency);
  6157. }
  6158. #endif // HAS_BUZZER
  6159. #if ENABLED(PIDTEMP)
  6160. /**
  6161. * M301: Set PID parameters P I D (and optionally C, L)
  6162. *
  6163. * P[float] Kp term
  6164. * I[float] Ki term (unscaled)
  6165. * D[float] Kd term (unscaled)
  6166. *
  6167. * With PID_EXTRUSION_SCALING:
  6168. *
  6169. * C[float] Kc term
  6170. * L[float] LPQ length
  6171. */
  6172. inline void gcode_M301() {
  6173. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6174. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6175. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6176. if (e < HOTENDS) { // catch bad input value
  6177. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6178. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6179. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6180. #if ENABLED(PID_EXTRUSION_SCALING)
  6181. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6182. if (code_seen('L')) lpq_len = code_value_float();
  6183. NOMORE(lpq_len, LPQ_MAX_LEN);
  6184. #endif
  6185. thermalManager.updatePID();
  6186. SERIAL_ECHO_START;
  6187. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6188. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6189. #endif // PID_PARAMS_PER_HOTEND
  6190. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6191. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6192. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6193. #if ENABLED(PID_EXTRUSION_SCALING)
  6194. //Kc does not have scaling applied above, or in resetting defaults
  6195. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6196. #endif
  6197. SERIAL_EOL;
  6198. }
  6199. else {
  6200. SERIAL_ERROR_START;
  6201. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6202. }
  6203. }
  6204. #endif // PIDTEMP
  6205. #if ENABLED(PIDTEMPBED)
  6206. inline void gcode_M304() {
  6207. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6208. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6209. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6210. thermalManager.updatePID();
  6211. SERIAL_ECHO_START;
  6212. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6213. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6214. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6215. }
  6216. #endif // PIDTEMPBED
  6217. #if defined(CHDK) || HAS_PHOTOGRAPH
  6218. /**
  6219. * M240: Trigger a camera by emulating a Canon RC-1
  6220. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6221. */
  6222. inline void gcode_M240() {
  6223. #ifdef CHDK
  6224. OUT_WRITE(CHDK, HIGH);
  6225. chdkHigh = millis();
  6226. chdkActive = true;
  6227. #elif HAS_PHOTOGRAPH
  6228. const uint8_t NUM_PULSES = 16;
  6229. const float PULSE_LENGTH = 0.01524;
  6230. for (int i = 0; i < NUM_PULSES; i++) {
  6231. WRITE(PHOTOGRAPH_PIN, HIGH);
  6232. _delay_ms(PULSE_LENGTH);
  6233. WRITE(PHOTOGRAPH_PIN, LOW);
  6234. _delay_ms(PULSE_LENGTH);
  6235. }
  6236. delay(7.33);
  6237. for (int i = 0; i < NUM_PULSES; i++) {
  6238. WRITE(PHOTOGRAPH_PIN, HIGH);
  6239. _delay_ms(PULSE_LENGTH);
  6240. WRITE(PHOTOGRAPH_PIN, LOW);
  6241. _delay_ms(PULSE_LENGTH);
  6242. }
  6243. #endif // !CHDK && HAS_PHOTOGRAPH
  6244. }
  6245. #endif // CHDK || PHOTOGRAPH_PIN
  6246. #if HAS_LCD_CONTRAST
  6247. /**
  6248. * M250: Read and optionally set the LCD contrast
  6249. */
  6250. inline void gcode_M250() {
  6251. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6252. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6253. SERIAL_PROTOCOL(lcd_contrast);
  6254. SERIAL_EOL;
  6255. }
  6256. #endif // HAS_LCD_CONTRAST
  6257. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6258. /**
  6259. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6260. *
  6261. * S<temperature> sets the minimum extrude temperature
  6262. * P<bool> enables (1) or disables (0) cold extrusion
  6263. *
  6264. * Examples:
  6265. *
  6266. * M302 ; report current cold extrusion state
  6267. * M302 P0 ; enable cold extrusion checking
  6268. * M302 P1 ; disables cold extrusion checking
  6269. * M302 S0 ; always allow extrusion (disables checking)
  6270. * M302 S170 ; only allow extrusion above 170
  6271. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6272. */
  6273. inline void gcode_M302() {
  6274. bool seen_S = code_seen('S');
  6275. if (seen_S) {
  6276. thermalManager.extrude_min_temp = code_value_temp_abs();
  6277. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6278. }
  6279. if (code_seen('P'))
  6280. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6281. else if (!seen_S) {
  6282. // Report current state
  6283. SERIAL_ECHO_START;
  6284. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6285. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6286. SERIAL_ECHOLNPGM("C)");
  6287. }
  6288. }
  6289. #endif // PREVENT_COLD_EXTRUSION
  6290. /**
  6291. * M303: PID relay autotune
  6292. *
  6293. * S<temperature> sets the target temperature. (default 150C)
  6294. * E<extruder> (-1 for the bed) (default 0)
  6295. * C<cycles>
  6296. * U<bool> with a non-zero value will apply the result to current settings
  6297. */
  6298. inline void gcode_M303() {
  6299. #if HAS_PID_HEATING
  6300. int e = code_seen('E') ? code_value_int() : 0;
  6301. int c = code_seen('C') ? code_value_int() : 5;
  6302. bool u = code_seen('U') && code_value_bool();
  6303. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6304. if (WITHIN(e, 0, HOTENDS - 1))
  6305. target_extruder = e;
  6306. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6307. thermalManager.PID_autotune(temp, e, c, u);
  6308. KEEPALIVE_STATE(IN_HANDLER);
  6309. #else
  6310. SERIAL_ERROR_START;
  6311. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6312. #endif
  6313. }
  6314. #if ENABLED(MORGAN_SCARA)
  6315. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6316. if (IsRunning()) {
  6317. forward_kinematics_SCARA(delta_a, delta_b);
  6318. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6319. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6320. destination[Z_AXIS] = current_position[Z_AXIS];
  6321. prepare_move_to_destination();
  6322. return true;
  6323. }
  6324. return false;
  6325. }
  6326. /**
  6327. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6328. */
  6329. inline bool gcode_M360() {
  6330. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6331. return SCARA_move_to_cal(0, 120);
  6332. }
  6333. /**
  6334. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6335. */
  6336. inline bool gcode_M361() {
  6337. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6338. return SCARA_move_to_cal(90, 130);
  6339. }
  6340. /**
  6341. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6342. */
  6343. inline bool gcode_M362() {
  6344. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6345. return SCARA_move_to_cal(60, 180);
  6346. }
  6347. /**
  6348. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6349. */
  6350. inline bool gcode_M363() {
  6351. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6352. return SCARA_move_to_cal(50, 90);
  6353. }
  6354. /**
  6355. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6356. */
  6357. inline bool gcode_M364() {
  6358. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6359. return SCARA_move_to_cal(45, 135);
  6360. }
  6361. #endif // SCARA
  6362. #if ENABLED(EXT_SOLENOID)
  6363. void enable_solenoid(uint8_t num) {
  6364. switch (num) {
  6365. case 0:
  6366. OUT_WRITE(SOL0_PIN, HIGH);
  6367. break;
  6368. #if HAS_SOLENOID_1
  6369. case 1:
  6370. OUT_WRITE(SOL1_PIN, HIGH);
  6371. break;
  6372. #endif
  6373. #if HAS_SOLENOID_2
  6374. case 2:
  6375. OUT_WRITE(SOL2_PIN, HIGH);
  6376. break;
  6377. #endif
  6378. #if HAS_SOLENOID_3
  6379. case 3:
  6380. OUT_WRITE(SOL3_PIN, HIGH);
  6381. break;
  6382. #endif
  6383. default:
  6384. SERIAL_ECHO_START;
  6385. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6386. break;
  6387. }
  6388. }
  6389. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6390. void disable_all_solenoids() {
  6391. OUT_WRITE(SOL0_PIN, LOW);
  6392. OUT_WRITE(SOL1_PIN, LOW);
  6393. OUT_WRITE(SOL2_PIN, LOW);
  6394. OUT_WRITE(SOL3_PIN, LOW);
  6395. }
  6396. /**
  6397. * M380: Enable solenoid on the active extruder
  6398. */
  6399. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6400. /**
  6401. * M381: Disable all solenoids
  6402. */
  6403. inline void gcode_M381() { disable_all_solenoids(); }
  6404. #endif // EXT_SOLENOID
  6405. /**
  6406. * M400: Finish all moves
  6407. */
  6408. inline void gcode_M400() { stepper.synchronize(); }
  6409. #if HAS_BED_PROBE
  6410. /**
  6411. * M401: Engage Z Servo endstop if available
  6412. */
  6413. inline void gcode_M401() { DEPLOY_PROBE(); }
  6414. /**
  6415. * M402: Retract Z Servo endstop if enabled
  6416. */
  6417. inline void gcode_M402() { STOW_PROBE(); }
  6418. #endif // HAS_BED_PROBE
  6419. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6420. /**
  6421. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6422. */
  6423. inline void gcode_M404() {
  6424. if (code_seen('W')) {
  6425. filament_width_nominal = code_value_linear_units();
  6426. }
  6427. else {
  6428. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6429. SERIAL_PROTOCOLLN(filament_width_nominal);
  6430. }
  6431. }
  6432. /**
  6433. * M405: Turn on filament sensor for control
  6434. */
  6435. inline void gcode_M405() {
  6436. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6437. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6438. if (code_seen('D')) meas_delay_cm = code_value_int();
  6439. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6440. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6441. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6442. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6443. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6444. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6445. }
  6446. filament_sensor = true;
  6447. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6448. //SERIAL_PROTOCOL(filament_width_meas);
  6449. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6450. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6451. }
  6452. /**
  6453. * M406: Turn off filament sensor for control
  6454. */
  6455. inline void gcode_M406() { filament_sensor = false; }
  6456. /**
  6457. * M407: Get measured filament diameter on serial output
  6458. */
  6459. inline void gcode_M407() {
  6460. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6461. SERIAL_PROTOCOLLN(filament_width_meas);
  6462. }
  6463. #endif // FILAMENT_WIDTH_SENSOR
  6464. void quickstop_stepper() {
  6465. stepper.quick_stop();
  6466. stepper.synchronize();
  6467. set_current_from_steppers_for_axis(ALL_AXES);
  6468. SYNC_PLAN_POSITION_KINEMATIC();
  6469. }
  6470. #if PLANNER_LEVELING
  6471. /**
  6472. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6473. *
  6474. * S[bool] Turns leveling on or off
  6475. * Z[height] Sets the Z fade height (0 or none to disable)
  6476. * V[bool] Verbose - Print the leveling grid
  6477. *
  6478. * With AUTO_BED_LEVELING_UBL only:
  6479. *
  6480. * L[index] Load UBL mesh from index (0 is default)
  6481. */
  6482. inline void gcode_M420() {
  6483. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6484. // L to load a mesh from the EEPROM
  6485. if (code_seen('L')) {
  6486. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  6487. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  6488. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  6489. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  6490. return;
  6491. }
  6492. ubl.load_mesh(storage_slot);
  6493. if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
  6494. ubl.state.eeprom_storage_slot = storage_slot;
  6495. }
  6496. #endif // AUTO_BED_LEVELING_UBL
  6497. // V to print the matrix or mesh
  6498. if (code_seen('V')) {
  6499. #if ABL_PLANAR
  6500. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6501. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6502. if (bilinear_grid_spacing[X_AXIS]) {
  6503. print_bilinear_leveling_grid();
  6504. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6505. bed_level_virt_print();
  6506. #endif
  6507. }
  6508. #elif ENABLED(MESH_BED_LEVELING)
  6509. if (mbl.has_mesh()) {
  6510. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6511. mbl_mesh_report();
  6512. }
  6513. #endif
  6514. }
  6515. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6516. // L to load a mesh from the EEPROM
  6517. if (code_seen('L') || code_seen('V')) {
  6518. ubl.display_map(0); // Currently only supports one map type
  6519. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6520. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6521. }
  6522. #endif
  6523. bool to_enable = false;
  6524. if (code_seen('S')) {
  6525. to_enable = code_value_bool();
  6526. set_bed_leveling_enabled(to_enable);
  6527. }
  6528. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6529. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6530. #endif
  6531. const bool new_status =
  6532. #if ENABLED(MESH_BED_LEVELING)
  6533. mbl.active()
  6534. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6535. ubl.state.active
  6536. #else
  6537. planner.abl_enabled
  6538. #endif
  6539. ;
  6540. if (to_enable && !new_status) {
  6541. SERIAL_ERROR_START;
  6542. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  6543. }
  6544. SERIAL_ECHO_START;
  6545. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  6546. }
  6547. #endif
  6548. #if ENABLED(MESH_BED_LEVELING)
  6549. /**
  6550. * M421: Set a single Mesh Bed Leveling Z coordinate
  6551. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  6552. */
  6553. inline void gcode_M421() {
  6554. int8_t px = 0, py = 0;
  6555. float z = 0;
  6556. bool hasX, hasY, hasZ, hasI, hasJ;
  6557. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  6558. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  6559. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6560. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6561. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6562. if (hasX && hasY && hasZ) {
  6563. if (px >= 0 && py >= 0)
  6564. mbl.set_z(px, py, z);
  6565. else {
  6566. SERIAL_ERROR_START;
  6567. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6568. }
  6569. }
  6570. else if (hasI && hasJ && hasZ) {
  6571. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  6572. mbl.set_z(px, py, z);
  6573. else {
  6574. SERIAL_ERROR_START;
  6575. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6576. }
  6577. }
  6578. else {
  6579. SERIAL_ERROR_START;
  6580. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6581. }
  6582. }
  6583. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6584. /**
  6585. * M421: Set a single Mesh Bed Leveling Z coordinate
  6586. *
  6587. * M421 I<xindex> J<yindex> Z<linear>
  6588. */
  6589. inline void gcode_M421() {
  6590. int8_t px = 0, py = 0;
  6591. float z = 0;
  6592. bool hasI, hasJ, hasZ;
  6593. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6594. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6595. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6596. if (hasI && hasJ && hasZ) {
  6597. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  6598. bed_level_grid[px][py] = z;
  6599. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6600. bed_level_virt_interpolate();
  6601. #endif
  6602. }
  6603. else {
  6604. SERIAL_ERROR_START;
  6605. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6606. }
  6607. }
  6608. else {
  6609. SERIAL_ERROR_START;
  6610. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6611. }
  6612. }
  6613. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6614. /**
  6615. * M421: Set a single Mesh Bed Leveling Z coordinate
  6616. *
  6617. * M421 I<xindex> J<yindex> Z<linear>
  6618. */
  6619. inline void gcode_M421() {
  6620. int8_t px = 0, py = 0;
  6621. float z = 0;
  6622. bool hasI, hasJ, hasZ;
  6623. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6624. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6625. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6626. if (hasI && hasJ && hasZ) {
  6627. if (WITHIN(px, 0, GRID_MAX_POINTS_Y - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  6628. ubl.z_values[px][py] = z;
  6629. }
  6630. else {
  6631. SERIAL_ERROR_START;
  6632. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6633. }
  6634. }
  6635. else {
  6636. SERIAL_ERROR_START;
  6637. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6638. }
  6639. }
  6640. #endif
  6641. #if DISABLED(NO_WORKSPACE_OFFSETS)
  6642. /**
  6643. * M428: Set home_offset based on the distance between the
  6644. * current_position and the nearest "reference point."
  6645. * If an axis is past center its endstop position
  6646. * is the reference-point. Otherwise it uses 0. This allows
  6647. * the Z offset to be set near the bed when using a max endstop.
  6648. *
  6649. * M428 can't be used more than 2cm away from 0 or an endstop.
  6650. *
  6651. * Use M206 to set these values directly.
  6652. */
  6653. inline void gcode_M428() {
  6654. bool err = false;
  6655. LOOP_XYZ(i) {
  6656. if (axis_homed[i]) {
  6657. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6658. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6659. if (WITHIN(diff, -20, 20)) {
  6660. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6661. }
  6662. else {
  6663. SERIAL_ERROR_START;
  6664. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6665. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6666. BUZZ(200, 40);
  6667. err = true;
  6668. break;
  6669. }
  6670. }
  6671. }
  6672. if (!err) {
  6673. SYNC_PLAN_POSITION_KINEMATIC();
  6674. report_current_position();
  6675. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6676. BUZZ(100, 659);
  6677. BUZZ(100, 698);
  6678. }
  6679. }
  6680. #endif // NO_WORKSPACE_OFFSETS
  6681. /**
  6682. * M500: Store settings in EEPROM
  6683. */
  6684. inline void gcode_M500() {
  6685. (void)Config_StoreSettings();
  6686. }
  6687. /**
  6688. * M501: Read settings from EEPROM
  6689. */
  6690. inline void gcode_M501() {
  6691. (void)Config_RetrieveSettings();
  6692. }
  6693. /**
  6694. * M502: Revert to default settings
  6695. */
  6696. inline void gcode_M502() {
  6697. (void)Config_ResetDefault();
  6698. }
  6699. /**
  6700. * M503: print settings currently in memory
  6701. */
  6702. inline void gcode_M503() {
  6703. (void)Config_PrintSettings(code_seen('S') && !code_value_bool());
  6704. }
  6705. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6706. /**
  6707. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6708. */
  6709. inline void gcode_M540() {
  6710. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6711. }
  6712. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6713. #if HAS_BED_PROBE
  6714. inline void gcode_M851() {
  6715. SERIAL_ECHO_START;
  6716. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6717. SERIAL_CHAR(' ');
  6718. if (code_seen('Z')) {
  6719. float value = code_value_axis_units(Z_AXIS);
  6720. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  6721. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6722. // Correct bilinear grid for new probe offset
  6723. const float diff = value - zprobe_zoffset;
  6724. if (diff) {
  6725. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  6726. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  6727. bed_level_grid[x][y] += diff;
  6728. }
  6729. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6730. bed_level_virt_interpolate();
  6731. #endif
  6732. #endif
  6733. zprobe_zoffset = value;
  6734. SERIAL_ECHO(zprobe_zoffset);
  6735. }
  6736. else {
  6737. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6738. SERIAL_CHAR(' ');
  6739. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6740. }
  6741. }
  6742. else {
  6743. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6744. }
  6745. SERIAL_EOL;
  6746. }
  6747. #endif // HAS_BED_PROBE
  6748. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6749. void filament_change_beep(const bool init=false) {
  6750. static millis_t next_buzz = 0;
  6751. static uint16_t runout_beep = 0;
  6752. if (init) next_buzz = runout_beep = 0;
  6753. const millis_t ms = millis();
  6754. if (ELAPSED(ms, next_buzz)) {
  6755. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  6756. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  6757. BUZZ(300, 2000);
  6758. runout_beep++;
  6759. }
  6760. }
  6761. }
  6762. static bool busy_doing_M600 = false;
  6763. /**
  6764. * M600: Pause for filament change
  6765. *
  6766. * E[distance] - Retract the filament this far (negative value)
  6767. * Z[distance] - Move the Z axis by this distance
  6768. * X[position] - Move to this X position, with Y
  6769. * Y[position] - Move to this Y position, with X
  6770. * L[distance] - Retract distance for removal (manual reload)
  6771. *
  6772. * Default values are used for omitted arguments.
  6773. *
  6774. */
  6775. inline void gcode_M600() {
  6776. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6777. SERIAL_ERROR_START;
  6778. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6779. return;
  6780. }
  6781. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  6782. // Pause the print job timer
  6783. const bool job_running = print_job_timer.isRunning();
  6784. print_job_timer.pause();
  6785. // Show initial message and wait for synchronize steppers
  6786. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6787. stepper.synchronize();
  6788. // Save current position of all axes
  6789. float lastpos[XYZE];
  6790. COPY(lastpos, current_position);
  6791. set_destination_to_current();
  6792. // Initial retract before move to filament change position
  6793. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  6794. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6795. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6796. #endif
  6797. ;
  6798. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6799. // Lift Z axis
  6800. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6801. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6802. FILAMENT_CHANGE_Z_ADD
  6803. #else
  6804. 0
  6805. #endif
  6806. ;
  6807. if (z_lift > 0) {
  6808. destination[Z_AXIS] += z_lift;
  6809. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6810. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6811. }
  6812. // Move XY axes to filament exchange position
  6813. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6814. #ifdef FILAMENT_CHANGE_X_POS
  6815. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6816. #endif
  6817. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6818. #ifdef FILAMENT_CHANGE_Y_POS
  6819. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6820. #endif
  6821. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6822. stepper.synchronize();
  6823. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6824. idle();
  6825. // Unload filament
  6826. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6827. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6828. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  6829. #endif
  6830. ;
  6831. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6832. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6833. stepper.synchronize();
  6834. disable_e_steppers();
  6835. safe_delay(100);
  6836. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  6837. bool nozzle_timed_out = false;
  6838. float temps[4];
  6839. // Wait for filament insert by user and press button
  6840. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6841. #if HAS_BUZZER
  6842. filament_change_beep(true);
  6843. #endif
  6844. idle();
  6845. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  6846. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6847. wait_for_user = true; // LCD click or M108 will clear this
  6848. while (wait_for_user) {
  6849. if (nozzle_timed_out)
  6850. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6851. #if HAS_BUZZER
  6852. filament_change_beep();
  6853. #endif
  6854. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  6855. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  6856. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  6857. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6858. }
  6859. idle(true);
  6860. }
  6861. KEEPALIVE_STATE(IN_HANDLER);
  6862. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  6863. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  6864. // Show "wait for heating"
  6865. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  6866. wait_for_heatup = true;
  6867. while (wait_for_heatup) {
  6868. idle();
  6869. wait_for_heatup = false;
  6870. HOTEND_LOOP() {
  6871. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  6872. wait_for_heatup = true;
  6873. break;
  6874. }
  6875. }
  6876. }
  6877. // Show "insert filament"
  6878. if (nozzle_timed_out)
  6879. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6880. #if HAS_BUZZER
  6881. filament_change_beep(true);
  6882. #endif
  6883. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6884. wait_for_user = true; // LCD click or M108 will clear this
  6885. while (wait_for_user && nozzle_timed_out) {
  6886. #if HAS_BUZZER
  6887. filament_change_beep();
  6888. #endif
  6889. idle(true);
  6890. }
  6891. KEEPALIVE_STATE(IN_HANDLER);
  6892. // Show "load" message
  6893. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6894. // Load filament
  6895. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  6896. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  6897. + FILAMENT_CHANGE_LOAD_LENGTH
  6898. #endif
  6899. ;
  6900. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6901. stepper.synchronize();
  6902. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6903. do {
  6904. // "Wait for filament extrude"
  6905. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6906. // Extrude filament to get into hotend
  6907. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6908. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6909. stepper.synchronize();
  6910. // Show "Extrude More" / "Resume" menu and wait for reply
  6911. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6912. wait_for_user = false;
  6913. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6914. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6915. KEEPALIVE_STATE(IN_HANDLER);
  6916. // Keep looping if "Extrude More" was selected
  6917. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  6918. #endif
  6919. // "Wait for print to resume"
  6920. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6921. // Set extruder to saved position
  6922. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6923. planner.set_e_position_mm(current_position[E_AXIS]);
  6924. #if IS_KINEMATIC
  6925. // Move XYZ to starting position
  6926. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6927. #else
  6928. // Move XY to starting position, then Z
  6929. destination[X_AXIS] = lastpos[X_AXIS];
  6930. destination[Y_AXIS] = lastpos[Y_AXIS];
  6931. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6932. destination[Z_AXIS] = lastpos[Z_AXIS];
  6933. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6934. #endif
  6935. stepper.synchronize();
  6936. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6937. filament_ran_out = false;
  6938. #endif
  6939. // Show status screen
  6940. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6941. // Resume the print job timer if it was running
  6942. if (job_running) print_job_timer.start();
  6943. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  6944. }
  6945. #endif // FILAMENT_CHANGE_FEATURE
  6946. #if ENABLED(DUAL_X_CARRIAGE)
  6947. /**
  6948. * M605: Set dual x-carriage movement mode
  6949. *
  6950. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6951. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6952. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6953. * units x-offset and an optional differential hotend temperature of
  6954. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6955. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6956. *
  6957. * Note: the X axis should be homed after changing dual x-carriage mode.
  6958. */
  6959. inline void gcode_M605() {
  6960. stepper.synchronize();
  6961. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6962. switch (dual_x_carriage_mode) {
  6963. case DXC_FULL_CONTROL_MODE:
  6964. case DXC_AUTO_PARK_MODE:
  6965. break;
  6966. case DXC_DUPLICATION_MODE:
  6967. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6968. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6969. SERIAL_ECHO_START;
  6970. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6971. SERIAL_CHAR(' ');
  6972. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6973. SERIAL_CHAR(',');
  6974. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6975. SERIAL_CHAR(' ');
  6976. SERIAL_ECHO(duplicate_extruder_x_offset);
  6977. SERIAL_CHAR(',');
  6978. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6979. break;
  6980. default:
  6981. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6982. break;
  6983. }
  6984. active_extruder_parked = false;
  6985. extruder_duplication_enabled = false;
  6986. delayed_move_time = 0;
  6987. }
  6988. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6989. inline void gcode_M605() {
  6990. stepper.synchronize();
  6991. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6992. SERIAL_ECHO_START;
  6993. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6994. }
  6995. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  6996. #if ENABLED(LIN_ADVANCE)
  6997. /**
  6998. * M905: Set advance factor
  6999. */
  7000. inline void gcode_M905() {
  7001. stepper.synchronize();
  7002. const float newK = code_seen('K') ? code_value_float() : -1,
  7003. newD = code_seen('D') ? code_value_float() : -1,
  7004. newW = code_seen('W') ? code_value_float() : -1,
  7005. newH = code_seen('H') ? code_value_float() : -1;
  7006. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  7007. SERIAL_ECHO_START;
  7008. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  7009. if (newD >= 0 || newW >= 0 || newH >= 0) {
  7010. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  7011. planner.set_advance_ed_ratio(ratio);
  7012. SERIAL_ECHO_START;
  7013. SERIAL_ECHOPGM("E/D ratio: ");
  7014. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  7015. }
  7016. }
  7017. #endif // LIN_ADVANCE
  7018. #if ENABLED(HAVE_TMC2130)
  7019. static void tmc2130_print_current(const int mA, const char name) {
  7020. SERIAL_CHAR(name);
  7021. SERIAL_ECHOPGM(" axis driver current: ");
  7022. SERIAL_ECHOLN(mA);
  7023. }
  7024. static void tmc2130_set_current(const int mA, TMC2130Stepper &st, const char name) {
  7025. tmc2130_print_current(mA, name);
  7026. st.setCurrent(mA, 0.11, 0.5);
  7027. }
  7028. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7029. tmc2130_print_current(st.getCurrent(), name);
  7030. }
  7031. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7032. SERIAL_CHAR(name);
  7033. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7034. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7035. }
  7036. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7037. st.clear_otpw();
  7038. SERIAL_CHAR(name);
  7039. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7040. }
  7041. /**
  7042. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7043. *
  7044. * Report driver currents when no axis specified
  7045. */
  7046. inline void gcode_M906() {
  7047. uint16_t values[XYZE];
  7048. LOOP_XYZE(i)
  7049. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7050. #if ENABLED(X_IS_TMC2130)
  7051. if (values[X_AXIS]) tmc2130_set_current(values[X_AXIS], stepperX, 'X');
  7052. else tmc2130_get_current(stepperX, 'X');
  7053. #endif
  7054. #if ENABLED(Y_IS_TMC2130)
  7055. if (values[Y_AXIS]) tmc2130_set_current(values[Y_AXIS], stepperY, 'Y');
  7056. else tmc2130_get_current(stepperY, 'Y');
  7057. #endif
  7058. #if ENABLED(Z_IS_TMC2130)
  7059. if (values[Z_AXIS]) tmc2130_set_current(values[Z_AXIS], stepperZ, 'Z');
  7060. else tmc2130_get_current(stepperZ, 'Z');
  7061. #endif
  7062. #if ENABLED(E0_IS_TMC2130)
  7063. if (values[E_AXIS]) tmc2130_set_current(values[E_AXIS], stepperE0, 'E');
  7064. else tmc2130_get_current(stepperE0, 'E');
  7065. #endif
  7066. }
  7067. /**
  7068. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7069. * The flag is held by the library and persist until manually cleared by M912
  7070. */
  7071. inline void gcode_M911() {
  7072. #if ENABLED(X_IS_TMC2130)
  7073. tmc2130_report_otpw(stepperX, 'X');
  7074. #endif
  7075. #if ENABLED(Y_IS_TMC2130)
  7076. tmc2130_report_otpw(stepperY, 'Y');
  7077. #endif
  7078. #if ENABLED(Z_IS_TMC2130)
  7079. tmc2130_report_otpw(stepperZ, 'Z');
  7080. #endif
  7081. #if ENABLED(E0_IS_TMC2130)
  7082. tmc2130_report_otpw(stepperE0, 'E');
  7083. #endif
  7084. }
  7085. /**
  7086. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7087. */
  7088. inline void gcode_M912() {
  7089. #if ENABLED(X_IS_TMC2130)
  7090. if (code_seen('X')) tmc2130_clear_otpw(stepperX, 'X');
  7091. #endif
  7092. #if ENABLED(Y_IS_TMC2130)
  7093. if (code_seen('Y')) tmc2130_clear_otpw(stepperY, 'Y');
  7094. #endif
  7095. #if ENABLED(Z_IS_TMC2130)
  7096. if (code_seen('Z')) tmc2130_clear_otpw(stepperZ, 'Z');
  7097. #endif
  7098. #if ENABLED(E0_IS_TMC2130)
  7099. if (code_seen('E')) tmc2130_clear_otpw(stepperE0, 'E');
  7100. #endif
  7101. }
  7102. #endif // HAVE_TMC2130
  7103. /**
  7104. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7105. */
  7106. inline void gcode_M907() {
  7107. #if HAS_DIGIPOTSS
  7108. LOOP_XYZE(i)
  7109. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7110. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7111. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7112. #elif HAS_MOTOR_CURRENT_PWM
  7113. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7114. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7115. #endif
  7116. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7117. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7118. #endif
  7119. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7120. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7121. #endif
  7122. #endif
  7123. #if ENABLED(DIGIPOT_I2C)
  7124. // this one uses actual amps in floating point
  7125. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7126. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7127. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7128. #endif
  7129. #if ENABLED(DAC_STEPPER_CURRENT)
  7130. if (code_seen('S')) {
  7131. float dac_percent = code_value_float();
  7132. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7133. }
  7134. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7135. #endif
  7136. }
  7137. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7138. /**
  7139. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7140. */
  7141. inline void gcode_M908() {
  7142. #if HAS_DIGIPOTSS
  7143. stepper.digitalPotWrite(
  7144. code_seen('P') ? code_value_int() : 0,
  7145. code_seen('S') ? code_value_int() : 0
  7146. );
  7147. #endif
  7148. #ifdef DAC_STEPPER_CURRENT
  7149. dac_current_raw(
  7150. code_seen('P') ? code_value_byte() : -1,
  7151. code_seen('S') ? code_value_ushort() : 0
  7152. );
  7153. #endif
  7154. }
  7155. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7156. inline void gcode_M909() { dac_print_values(); }
  7157. inline void gcode_M910() { dac_commit_eeprom(); }
  7158. #endif
  7159. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7160. #if HAS_MICROSTEPS
  7161. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7162. inline void gcode_M350() {
  7163. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7164. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7165. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7166. stepper.microstep_readings();
  7167. }
  7168. /**
  7169. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7170. * S# determines MS1 or MS2, X# sets the pin high/low.
  7171. */
  7172. inline void gcode_M351() {
  7173. if (code_seen('S')) switch (code_value_byte()) {
  7174. case 1:
  7175. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7176. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7177. break;
  7178. case 2:
  7179. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7180. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7181. break;
  7182. }
  7183. stepper.microstep_readings();
  7184. }
  7185. #endif // HAS_MICROSTEPS
  7186. #if HAS_CASE_LIGHT
  7187. uint8_t case_light_brightness = 255;
  7188. void update_case_light() {
  7189. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7190. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7191. }
  7192. #endif // HAS_CASE_LIGHT
  7193. /**
  7194. * M355: Turn case lights on/off and set brightness
  7195. *
  7196. * S<bool> Turn case light on or off
  7197. * P<byte> Set case light brightness (PWM pin required)
  7198. */
  7199. inline void gcode_M355() {
  7200. #if HAS_CASE_LIGHT
  7201. if (code_seen('P')) case_light_brightness = code_value_byte();
  7202. if (code_seen('S')) case_light_on = code_value_bool();
  7203. update_case_light();
  7204. SERIAL_ECHO_START;
  7205. SERIAL_ECHOPGM("Case lights ");
  7206. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7207. #else
  7208. SERIAL_ERROR_START;
  7209. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7210. #endif // HAS_CASE_LIGHT
  7211. }
  7212. #if ENABLED(MIXING_EXTRUDER)
  7213. /**
  7214. * M163: Set a single mix factor for a mixing extruder
  7215. * This is called "weight" by some systems.
  7216. *
  7217. * S[index] The channel index to set
  7218. * P[float] The mix value
  7219. *
  7220. */
  7221. inline void gcode_M163() {
  7222. int mix_index = code_seen('S') ? code_value_int() : 0;
  7223. if (mix_index < MIXING_STEPPERS) {
  7224. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7225. NOLESS(mix_value, 0.0);
  7226. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7227. }
  7228. }
  7229. #if MIXING_VIRTUAL_TOOLS > 1
  7230. /**
  7231. * M164: Store the current mix factors as a virtual tool.
  7232. *
  7233. * S[index] The virtual tool to store
  7234. *
  7235. */
  7236. inline void gcode_M164() {
  7237. int tool_index = code_seen('S') ? code_value_int() : 0;
  7238. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7239. normalize_mix();
  7240. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7241. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7242. }
  7243. }
  7244. #endif
  7245. #if ENABLED(DIRECT_MIXING_IN_G1)
  7246. /**
  7247. * M165: Set multiple mix factors for a mixing extruder.
  7248. * Factors that are left out will be set to 0.
  7249. * All factors together must add up to 1.0.
  7250. *
  7251. * A[factor] Mix factor for extruder stepper 1
  7252. * B[factor] Mix factor for extruder stepper 2
  7253. * C[factor] Mix factor for extruder stepper 3
  7254. * D[factor] Mix factor for extruder stepper 4
  7255. * H[factor] Mix factor for extruder stepper 5
  7256. * I[factor] Mix factor for extruder stepper 6
  7257. *
  7258. */
  7259. inline void gcode_M165() { gcode_get_mix(); }
  7260. #endif
  7261. #endif // MIXING_EXTRUDER
  7262. /**
  7263. * M999: Restart after being stopped
  7264. *
  7265. * Default behaviour is to flush the serial buffer and request
  7266. * a resend to the host starting on the last N line received.
  7267. *
  7268. * Sending "M999 S1" will resume printing without flushing the
  7269. * existing command buffer.
  7270. *
  7271. */
  7272. inline void gcode_M999() {
  7273. Running = true;
  7274. lcd_reset_alert_level();
  7275. if (code_seen('S') && code_value_bool()) return;
  7276. // gcode_LastN = Stopped_gcode_LastN;
  7277. FlushSerialRequestResend();
  7278. }
  7279. #if ENABLED(SWITCHING_EXTRUDER)
  7280. inline void move_extruder_servo(uint8_t e) {
  7281. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7282. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7283. safe_delay(500);
  7284. }
  7285. #endif
  7286. inline void invalid_extruder_error(const uint8_t &e) {
  7287. SERIAL_ECHO_START;
  7288. SERIAL_CHAR('T');
  7289. SERIAL_ECHO_F(e, DEC);
  7290. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7291. }
  7292. /**
  7293. * Perform a tool-change, which may result in moving the
  7294. * previous tool out of the way and the new tool into place.
  7295. */
  7296. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7297. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7298. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7299. return invalid_extruder_error(tmp_extruder);
  7300. // T0-Tnnn: Switch virtual tool by changing the mix
  7301. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7302. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7303. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7304. #if HOTENDS > 1
  7305. if (tmp_extruder >= EXTRUDERS)
  7306. return invalid_extruder_error(tmp_extruder);
  7307. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7308. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7309. if (tmp_extruder != active_extruder) {
  7310. if (!no_move && axis_unhomed_error(true, true, true)) {
  7311. SERIAL_ECHOLNPGM("No move on toolchange");
  7312. no_move = true;
  7313. }
  7314. // Save current position to destination, for use later
  7315. set_destination_to_current();
  7316. #if ENABLED(DUAL_X_CARRIAGE)
  7317. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7318. if (DEBUGGING(LEVELING)) {
  7319. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7320. switch (dual_x_carriage_mode) {
  7321. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7322. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7323. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7324. }
  7325. }
  7326. #endif
  7327. const float xhome = x_home_pos(active_extruder);
  7328. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7329. && IsRunning()
  7330. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7331. ) {
  7332. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7333. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7334. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7335. #endif
  7336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7337. if (DEBUGGING(LEVELING)) {
  7338. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7339. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7340. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7341. }
  7342. #endif
  7343. // Park old head: 1) raise 2) move to park position 3) lower
  7344. for (uint8_t i = 0; i < 3; i++)
  7345. planner.buffer_line(
  7346. i == 0 ? current_position[X_AXIS] : xhome,
  7347. current_position[Y_AXIS],
  7348. i == 2 ? current_position[Z_AXIS] : raised_z,
  7349. current_position[E_AXIS],
  7350. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7351. active_extruder
  7352. );
  7353. stepper.synchronize();
  7354. }
  7355. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7356. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7357. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7358. // Activate the new extruder
  7359. active_extruder = tmp_extruder;
  7360. // This function resets the max/min values - the current position may be overwritten below.
  7361. set_axis_is_at_home(X_AXIS);
  7362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7363. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7364. #endif
  7365. // Only when auto-parking are carriages safe to move
  7366. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7367. switch (dual_x_carriage_mode) {
  7368. case DXC_FULL_CONTROL_MODE:
  7369. // New current position is the position of the activated extruder
  7370. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7371. // Save the inactive extruder's position (from the old current_position)
  7372. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7373. break;
  7374. case DXC_AUTO_PARK_MODE:
  7375. // record raised toolhead position for use by unpark
  7376. COPY(raised_parked_position, current_position);
  7377. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7378. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7379. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7380. #endif
  7381. active_extruder_parked = true;
  7382. delayed_move_time = 0;
  7383. break;
  7384. case DXC_DUPLICATION_MODE:
  7385. // If the new extruder is the left one, set it "parked"
  7386. // This triggers the second extruder to move into the duplication position
  7387. active_extruder_parked = (active_extruder == 0);
  7388. if (active_extruder_parked)
  7389. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7390. else
  7391. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7392. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7393. extruder_duplication_enabled = false;
  7394. break;
  7395. }
  7396. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7397. if (DEBUGGING(LEVELING)) {
  7398. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7399. DEBUG_POS("New extruder (parked)", current_position);
  7400. }
  7401. #endif
  7402. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7403. #else // !DUAL_X_CARRIAGE
  7404. #if ENABLED(SWITCHING_EXTRUDER)
  7405. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7406. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7407. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7408. // Always raise by some amount (destination copied from current_position earlier)
  7409. current_position[Z_AXIS] += z_raise;
  7410. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7411. stepper.synchronize();
  7412. move_extruder_servo(active_extruder);
  7413. #endif
  7414. /**
  7415. * Set current_position to the position of the new nozzle.
  7416. * Offsets are based on linear distance, so we need to get
  7417. * the resulting position in coordinate space.
  7418. *
  7419. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  7420. * - With mesh leveling, update Z for the new position
  7421. * - Otherwise, just use the raw linear distance
  7422. *
  7423. * Software endstops are altered here too. Consider a case where:
  7424. * E0 at X=0 ... E1 at X=10
  7425. * When we switch to E1 now X=10, but E1 can't move left.
  7426. * To express this we apply the change in XY to the software endstops.
  7427. * E1 can move farther right than E0, so the right limit is extended.
  7428. *
  7429. * Note that we don't adjust the Z software endstops. Why not?
  7430. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  7431. * because the bed is 1mm lower at the new position. As long as
  7432. * the first nozzle is out of the way, the carriage should be
  7433. * allowed to move 1mm lower. This technically "breaks" the
  7434. * Z software endstop. But this is technically correct (and
  7435. * there is no viable alternative).
  7436. */
  7437. #if ABL_PLANAR
  7438. // Offset extruder, make sure to apply the bed level rotation matrix
  7439. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  7440. hotend_offset[Y_AXIS][tmp_extruder],
  7441. 0),
  7442. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  7443. hotend_offset[Y_AXIS][active_extruder],
  7444. 0),
  7445. offset_vec = tmp_offset_vec - act_offset_vec;
  7446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7447. if (DEBUGGING(LEVELING)) {
  7448. tmp_offset_vec.debug("tmp_offset_vec");
  7449. act_offset_vec.debug("act_offset_vec");
  7450. offset_vec.debug("offset_vec (BEFORE)");
  7451. }
  7452. #endif
  7453. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7454. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7455. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7456. #endif
  7457. // Adjustments to the current position
  7458. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7459. current_position[Z_AXIS] += offset_vec.z;
  7460. #else // !ABL_PLANAR
  7461. const float xydiff[2] = {
  7462. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7463. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7464. };
  7465. #if ENABLED(MESH_BED_LEVELING)
  7466. if (mbl.active()) {
  7467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7468. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7469. #endif
  7470. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7471. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  7472. z1 = current_position[Z_AXIS], z2 = z1;
  7473. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  7474. planner.apply_leveling(x2, y2, z2);
  7475. current_position[Z_AXIS] += z2 - z1;
  7476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7477. if (DEBUGGING(LEVELING))
  7478. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  7479. #endif
  7480. }
  7481. #endif // MESH_BED_LEVELING
  7482. #endif // !HAS_ABL
  7483. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7484. if (DEBUGGING(LEVELING)) {
  7485. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  7486. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  7487. SERIAL_ECHOLNPGM(" }");
  7488. }
  7489. #endif
  7490. // The newly-selected extruder XY is actually at...
  7491. current_position[X_AXIS] += xydiff[X_AXIS];
  7492. current_position[Y_AXIS] += xydiff[Y_AXIS];
  7493. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE)
  7494. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  7495. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7496. position_shift[i] += xydiff[i];
  7497. #endif
  7498. update_software_endstops((AxisEnum)i);
  7499. }
  7500. #endif
  7501. // Set the new active extruder
  7502. active_extruder = tmp_extruder;
  7503. #endif // !DUAL_X_CARRIAGE
  7504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7505. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  7506. #endif
  7507. // Tell the planner the new "current position"
  7508. SYNC_PLAN_POSITION_KINEMATIC();
  7509. // Move to the "old position" (move the extruder into place)
  7510. if (!no_move && IsRunning()) {
  7511. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7512. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  7513. #endif
  7514. prepare_move_to_destination();
  7515. }
  7516. #if ENABLED(SWITCHING_EXTRUDER)
  7517. // Move back down, if needed. (Including when the new tool is higher.)
  7518. if (z_raise != z_diff) {
  7519. destination[Z_AXIS] += z_diff;
  7520. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  7521. prepare_move_to_destination();
  7522. }
  7523. #endif
  7524. } // (tmp_extruder != active_extruder)
  7525. stepper.synchronize();
  7526. #if ENABLED(EXT_SOLENOID)
  7527. disable_all_solenoids();
  7528. enable_solenoid_on_active_extruder();
  7529. #endif // EXT_SOLENOID
  7530. feedrate_mm_s = old_feedrate_mm_s;
  7531. #else // HOTENDS <= 1
  7532. // Set the new active extruder
  7533. active_extruder = tmp_extruder;
  7534. UNUSED(fr_mm_s);
  7535. UNUSED(no_move);
  7536. #endif // HOTENDS <= 1
  7537. SERIAL_ECHO_START;
  7538. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  7539. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7540. }
  7541. /**
  7542. * T0-T3: Switch tool, usually switching extruders
  7543. *
  7544. * F[units/min] Set the movement feedrate
  7545. * S1 Don't move the tool in XY after change
  7546. */
  7547. inline void gcode_T(uint8_t tmp_extruder) {
  7548. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7549. if (DEBUGGING(LEVELING)) {
  7550. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  7551. SERIAL_CHAR(')');
  7552. SERIAL_EOL;
  7553. DEBUG_POS("BEFORE", current_position);
  7554. }
  7555. #endif
  7556. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  7557. tool_change(tmp_extruder);
  7558. #elif HOTENDS > 1
  7559. tool_change(
  7560. tmp_extruder,
  7561. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  7562. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  7563. );
  7564. #endif
  7565. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7566. if (DEBUGGING(LEVELING)) {
  7567. DEBUG_POS("AFTER", current_position);
  7568. SERIAL_ECHOLNPGM("<<< gcode_T");
  7569. }
  7570. #endif
  7571. }
  7572. /**
  7573. * Process a single command and dispatch it to its handler
  7574. * This is called from the main loop()
  7575. */
  7576. void process_next_command() {
  7577. current_command = command_queue[cmd_queue_index_r];
  7578. if (DEBUGGING(ECHO)) {
  7579. SERIAL_ECHO_START;
  7580. SERIAL_ECHOLN(current_command);
  7581. }
  7582. // Sanitize the current command:
  7583. // - Skip leading spaces
  7584. // - Bypass N[-0-9][0-9]*[ ]*
  7585. // - Overwrite * with nul to mark the end
  7586. while (*current_command == ' ') ++current_command;
  7587. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  7588. current_command += 2; // skip N[-0-9]
  7589. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  7590. while (*current_command == ' ') ++current_command; // skip [ ]*
  7591. }
  7592. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  7593. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  7594. char *cmd_ptr = current_command;
  7595. // Get the command code, which must be G, M, or T
  7596. char command_code = *cmd_ptr++;
  7597. // Skip spaces to get the numeric part
  7598. while (*cmd_ptr == ' ') cmd_ptr++;
  7599. // Allow for decimal point in command
  7600. #if ENABLED(G38_PROBE_TARGET)
  7601. uint8_t subcode = 0;
  7602. #endif
  7603. uint16_t codenum = 0; // define ahead of goto
  7604. // Bail early if there's no code
  7605. bool code_is_good = NUMERIC(*cmd_ptr);
  7606. if (!code_is_good) goto ExitUnknownCommand;
  7607. // Get and skip the code number
  7608. do {
  7609. codenum = (codenum * 10) + (*cmd_ptr - '0');
  7610. cmd_ptr++;
  7611. } while (NUMERIC(*cmd_ptr));
  7612. // Allow for decimal point in command
  7613. #if ENABLED(G38_PROBE_TARGET)
  7614. if (*cmd_ptr == '.') {
  7615. cmd_ptr++;
  7616. while (NUMERIC(*cmd_ptr))
  7617. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  7618. }
  7619. #endif
  7620. // Skip all spaces to get to the first argument, or nul
  7621. while (*cmd_ptr == ' ') cmd_ptr++;
  7622. // The command's arguments (if any) start here, for sure!
  7623. current_command_args = cmd_ptr;
  7624. KEEPALIVE_STATE(IN_HANDLER);
  7625. // Handle a known G, M, or T
  7626. switch (command_code) {
  7627. case 'G': switch (codenum) {
  7628. // G0, G1
  7629. case 0:
  7630. case 1:
  7631. #if IS_SCARA
  7632. gcode_G0_G1(codenum == 0);
  7633. #else
  7634. gcode_G0_G1();
  7635. #endif
  7636. break;
  7637. // G2, G3
  7638. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  7639. case 2: // G2 - CW ARC
  7640. case 3: // G3 - CCW ARC
  7641. gcode_G2_G3(codenum == 2);
  7642. break;
  7643. #endif
  7644. // G4 Dwell
  7645. case 4:
  7646. gcode_G4();
  7647. break;
  7648. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7649. // G5
  7650. case 5: // G5 - Cubic B_spline
  7651. gcode_G5();
  7652. break;
  7653. #endif // BEZIER_CURVE_SUPPORT
  7654. #if ENABLED(FWRETRACT)
  7655. case 10: // G10: retract
  7656. case 11: // G11: retract_recover
  7657. gcode_G10_G11(codenum == 10);
  7658. break;
  7659. #endif // FWRETRACT
  7660. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  7661. case 12:
  7662. gcode_G12(); // G12: Nozzle Clean
  7663. break;
  7664. #endif // NOZZLE_CLEAN_FEATURE
  7665. #if ENABLED(INCH_MODE_SUPPORT)
  7666. case 20: //G20: Inch Mode
  7667. gcode_G20();
  7668. break;
  7669. case 21: //G21: MM Mode
  7670. gcode_G21();
  7671. break;
  7672. #endif // INCH_MODE_SUPPORT
  7673. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7674. case 26: // G26: Mesh Validation Pattern generation
  7675. gcode_G26();
  7676. break;
  7677. #endif // AUTO_BED_LEVELING_UBL
  7678. #if ENABLED(NOZZLE_PARK_FEATURE)
  7679. case 27: // G27: Nozzle Park
  7680. gcode_G27();
  7681. break;
  7682. #endif // NOZZLE_PARK_FEATURE
  7683. case 28: // G28: Home all axes, one at a time
  7684. gcode_G28();
  7685. break;
  7686. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  7687. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  7688. // or provides access to the UBL System if enabled.
  7689. gcode_G29();
  7690. break;
  7691. #endif // PLANNER_LEVELING
  7692. #if HAS_BED_PROBE
  7693. case 30: // G30 Single Z probe
  7694. gcode_G30();
  7695. break;
  7696. #if ENABLED(Z_PROBE_SLED)
  7697. case 31: // G31: dock the sled
  7698. gcode_G31();
  7699. break;
  7700. case 32: // G32: undock the sled
  7701. gcode_G32();
  7702. break;
  7703. #endif // Z_PROBE_SLED
  7704. #endif // HAS_BED_PROBE
  7705. #if ENABLED(G38_PROBE_TARGET)
  7706. case 38: // G38.2 & G38.3
  7707. if (subcode == 2 || subcode == 3)
  7708. gcode_G38(subcode == 2);
  7709. break;
  7710. #endif
  7711. case 90: // G90
  7712. relative_mode = false;
  7713. break;
  7714. case 91: // G91
  7715. relative_mode = true;
  7716. break;
  7717. case 92: // G92
  7718. gcode_G92();
  7719. break;
  7720. }
  7721. break;
  7722. case 'M': switch (codenum) {
  7723. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  7724. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  7725. case 1: // M1: Conditional stop - Wait for user button press on LCD
  7726. gcode_M0_M1();
  7727. break;
  7728. #endif // ULTIPANEL
  7729. case 17: // M17: Enable all stepper motors
  7730. gcode_M17();
  7731. break;
  7732. #if ENABLED(SDSUPPORT)
  7733. case 20: // M20: list SD card
  7734. gcode_M20(); break;
  7735. case 21: // M21: init SD card
  7736. gcode_M21(); break;
  7737. case 22: // M22: release SD card
  7738. gcode_M22(); break;
  7739. case 23: // M23: Select file
  7740. gcode_M23(); break;
  7741. case 24: // M24: Start SD print
  7742. gcode_M24(); break;
  7743. case 25: // M25: Pause SD print
  7744. gcode_M25(); break;
  7745. case 26: // M26: Set SD index
  7746. gcode_M26(); break;
  7747. case 27: // M27: Get SD status
  7748. gcode_M27(); break;
  7749. case 28: // M28: Start SD write
  7750. gcode_M28(); break;
  7751. case 29: // M29: Stop SD write
  7752. gcode_M29(); break;
  7753. case 30: // M30 <filename> Delete File
  7754. gcode_M30(); break;
  7755. case 32: // M32: Select file and start SD print
  7756. gcode_M32(); break;
  7757. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  7758. case 33: // M33: Get the long full path to a file or folder
  7759. gcode_M33(); break;
  7760. #endif
  7761. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  7762. case 34: //M34 - Set SD card sorting options
  7763. gcode_M34(); break;
  7764. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  7765. case 928: // M928: Start SD write
  7766. gcode_M928(); break;
  7767. #endif //SDSUPPORT
  7768. case 31: // M31: Report time since the start of SD print or last M109
  7769. gcode_M31(); break;
  7770. case 42: // M42: Change pin state
  7771. gcode_M42(); break;
  7772. #if ENABLED(PINS_DEBUGGING)
  7773. case 43: // M43: Read pin state
  7774. gcode_M43(); break;
  7775. #endif
  7776. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  7777. case 48: // M48: Z probe repeatability test
  7778. gcode_M48();
  7779. break;
  7780. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7781. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7782. case 49: // M49: Turn on or off G26 debug flag for verbose output
  7783. gcode_M49();
  7784. break;
  7785. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  7786. case 75: // M75: Start print timer
  7787. gcode_M75(); break;
  7788. case 76: // M76: Pause print timer
  7789. gcode_M76(); break;
  7790. case 77: // M77: Stop print timer
  7791. gcode_M77(); break;
  7792. #if ENABLED(PRINTCOUNTER)
  7793. case 78: // M78: Show print statistics
  7794. gcode_M78(); break;
  7795. #endif
  7796. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  7797. case 100: // M100: Free Memory Report
  7798. gcode_M100();
  7799. break;
  7800. #endif
  7801. case 104: // M104: Set hot end temperature
  7802. gcode_M104();
  7803. break;
  7804. case 110: // M110: Set Current Line Number
  7805. gcode_M110();
  7806. break;
  7807. case 111: // M111: Set debug level
  7808. gcode_M111();
  7809. break;
  7810. #if DISABLED(EMERGENCY_PARSER)
  7811. case 108: // M108: Cancel Waiting
  7812. gcode_M108();
  7813. break;
  7814. case 112: // M112: Emergency Stop
  7815. gcode_M112();
  7816. break;
  7817. case 410: // M410 quickstop - Abort all the planned moves.
  7818. gcode_M410();
  7819. break;
  7820. #endif
  7821. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7822. case 113: // M113: Set Host Keepalive interval
  7823. gcode_M113();
  7824. break;
  7825. #endif
  7826. case 140: // M140: Set bed temperature
  7827. gcode_M140();
  7828. break;
  7829. case 105: // M105: Report current temperature
  7830. gcode_M105();
  7831. KEEPALIVE_STATE(NOT_BUSY);
  7832. return; // "ok" already printed
  7833. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7834. case 155: // M155: Set temperature auto-report interval
  7835. gcode_M155();
  7836. break;
  7837. #endif
  7838. case 109: // M109: Wait for hotend temperature to reach target
  7839. gcode_M109();
  7840. break;
  7841. #if HAS_TEMP_BED
  7842. case 190: // M190: Wait for bed temperature to reach target
  7843. gcode_M190();
  7844. break;
  7845. #endif // HAS_TEMP_BED
  7846. #if FAN_COUNT > 0
  7847. case 106: // M106: Fan On
  7848. gcode_M106();
  7849. break;
  7850. case 107: // M107: Fan Off
  7851. gcode_M107();
  7852. break;
  7853. #endif // FAN_COUNT > 0
  7854. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7855. case 125: // M125: Store current position and move to filament change position
  7856. gcode_M125(); break;
  7857. #endif
  7858. #if ENABLED(BARICUDA)
  7859. // PWM for HEATER_1_PIN
  7860. #if HAS_HEATER_1
  7861. case 126: // M126: valve open
  7862. gcode_M126();
  7863. break;
  7864. case 127: // M127: valve closed
  7865. gcode_M127();
  7866. break;
  7867. #endif // HAS_HEATER_1
  7868. // PWM for HEATER_2_PIN
  7869. #if HAS_HEATER_2
  7870. case 128: // M128: valve open
  7871. gcode_M128();
  7872. break;
  7873. case 129: // M129: valve closed
  7874. gcode_M129();
  7875. break;
  7876. #endif // HAS_HEATER_2
  7877. #endif // BARICUDA
  7878. #if HAS_POWER_SWITCH
  7879. case 80: // M80: Turn on Power Supply
  7880. gcode_M80();
  7881. break;
  7882. #endif // HAS_POWER_SWITCH
  7883. case 81: // M81: Turn off Power, including Power Supply, if possible
  7884. gcode_M81();
  7885. break;
  7886. case 82: // M83: Set E axis normal mode (same as other axes)
  7887. gcode_M82();
  7888. break;
  7889. case 83: // M83: Set E axis relative mode
  7890. gcode_M83();
  7891. break;
  7892. case 18: // M18 => M84
  7893. case 84: // M84: Disable all steppers or set timeout
  7894. gcode_M18_M84();
  7895. break;
  7896. case 85: // M85: Set inactivity stepper shutdown timeout
  7897. gcode_M85();
  7898. break;
  7899. case 92: // M92: Set the steps-per-unit for one or more axes
  7900. gcode_M92();
  7901. break;
  7902. case 114: // M114: Report current position
  7903. gcode_M114();
  7904. break;
  7905. case 115: // M115: Report capabilities
  7906. gcode_M115();
  7907. break;
  7908. case 117: // M117: Set LCD message text, if possible
  7909. gcode_M117();
  7910. break;
  7911. case 119: // M119: Report endstop states
  7912. gcode_M119();
  7913. break;
  7914. case 120: // M120: Enable endstops
  7915. gcode_M120();
  7916. break;
  7917. case 121: // M121: Disable endstops
  7918. gcode_M121();
  7919. break;
  7920. #if ENABLED(ULTIPANEL)
  7921. case 145: // M145: Set material heatup parameters
  7922. gcode_M145();
  7923. break;
  7924. #endif
  7925. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7926. case 149: // M149: Set temperature units
  7927. gcode_M149();
  7928. break;
  7929. #endif
  7930. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  7931. case 150: // M150: Set Status LED Color
  7932. gcode_M150();
  7933. break;
  7934. #endif // BLINKM
  7935. #if ENABLED(MIXING_EXTRUDER)
  7936. case 163: // M163: Set a component weight for mixing extruder
  7937. gcode_M163();
  7938. break;
  7939. #if MIXING_VIRTUAL_TOOLS > 1
  7940. case 164: // M164: Save current mix as a virtual extruder
  7941. gcode_M164();
  7942. break;
  7943. #endif
  7944. #if ENABLED(DIRECT_MIXING_IN_G1)
  7945. case 165: // M165: Set multiple mix weights
  7946. gcode_M165();
  7947. break;
  7948. #endif
  7949. #endif
  7950. case 200: // M200: Set filament diameter, E to cubic units
  7951. gcode_M200();
  7952. break;
  7953. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7954. gcode_M201();
  7955. break;
  7956. #if 0 // Not used for Sprinter/grbl gen6
  7957. case 202: // M202
  7958. gcode_M202();
  7959. break;
  7960. #endif
  7961. case 203: // M203: Set max feedrate (units/sec)
  7962. gcode_M203();
  7963. break;
  7964. case 204: // M204: Set acceleration
  7965. gcode_M204();
  7966. break;
  7967. case 205: //M205: Set advanced settings
  7968. gcode_M205();
  7969. break;
  7970. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7971. case 206: // M206: Set home offsets
  7972. gcode_M206();
  7973. break;
  7974. #endif
  7975. #if ENABLED(DELTA)
  7976. case 665: // M665: Set delta configurations
  7977. gcode_M665();
  7978. break;
  7979. #endif
  7980. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7981. case 666: // M666: Set delta or dual endstop adjustment
  7982. gcode_M666();
  7983. break;
  7984. #endif
  7985. #if ENABLED(FWRETRACT)
  7986. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  7987. gcode_M207();
  7988. break;
  7989. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  7990. gcode_M208();
  7991. break;
  7992. case 209: // M209: Turn Automatic Retract Detection on/off
  7993. gcode_M209();
  7994. break;
  7995. #endif // FWRETRACT
  7996. case 211: // M211: Enable, Disable, and/or Report software endstops
  7997. gcode_M211();
  7998. break;
  7999. #if HOTENDS > 1
  8000. case 218: // M218: Set a tool offset
  8001. gcode_M218();
  8002. break;
  8003. #endif
  8004. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8005. gcode_M220();
  8006. break;
  8007. case 221: // M221: Set Flow Percentage
  8008. gcode_M221();
  8009. break;
  8010. case 226: // M226: Wait until a pin reaches a state
  8011. gcode_M226();
  8012. break;
  8013. #if HAS_SERVOS
  8014. case 280: // M280: Set servo position absolute
  8015. gcode_M280();
  8016. break;
  8017. #endif // HAS_SERVOS
  8018. #if HAS_BUZZER
  8019. case 300: // M300: Play beep tone
  8020. gcode_M300();
  8021. break;
  8022. #endif // HAS_BUZZER
  8023. #if ENABLED(PIDTEMP)
  8024. case 301: // M301: Set hotend PID parameters
  8025. gcode_M301();
  8026. break;
  8027. #endif // PIDTEMP
  8028. #if ENABLED(PIDTEMPBED)
  8029. case 304: // M304: Set bed PID parameters
  8030. gcode_M304();
  8031. break;
  8032. #endif // PIDTEMPBED
  8033. #if defined(CHDK) || HAS_PHOTOGRAPH
  8034. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8035. gcode_M240();
  8036. break;
  8037. #endif // CHDK || PHOTOGRAPH_PIN
  8038. #if HAS_LCD_CONTRAST
  8039. case 250: // M250: Set LCD contrast
  8040. gcode_M250();
  8041. break;
  8042. #endif // HAS_LCD_CONTRAST
  8043. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8044. case 260: // M260: Send data to an i2c slave
  8045. gcode_M260();
  8046. break;
  8047. case 261: // M261: Request data from an i2c slave
  8048. gcode_M261();
  8049. break;
  8050. #endif // EXPERIMENTAL_I2CBUS
  8051. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8052. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8053. gcode_M302();
  8054. break;
  8055. #endif // PREVENT_COLD_EXTRUSION
  8056. case 303: // M303: PID autotune
  8057. gcode_M303();
  8058. break;
  8059. #if ENABLED(MORGAN_SCARA)
  8060. case 360: // M360: SCARA Theta pos1
  8061. if (gcode_M360()) return;
  8062. break;
  8063. case 361: // M361: SCARA Theta pos2
  8064. if (gcode_M361()) return;
  8065. break;
  8066. case 362: // M362: SCARA Psi pos1
  8067. if (gcode_M362()) return;
  8068. break;
  8069. case 363: // M363: SCARA Psi pos2
  8070. if (gcode_M363()) return;
  8071. break;
  8072. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8073. if (gcode_M364()) return;
  8074. break;
  8075. #endif // SCARA
  8076. case 400: // M400: Finish all moves
  8077. gcode_M400();
  8078. break;
  8079. #if HAS_BED_PROBE
  8080. case 401: // M401: Deploy probe
  8081. gcode_M401();
  8082. break;
  8083. case 402: // M402: Stow probe
  8084. gcode_M402();
  8085. break;
  8086. #endif // HAS_BED_PROBE
  8087. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8088. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8089. gcode_M404();
  8090. break;
  8091. case 405: // M405: Turn on filament sensor for control
  8092. gcode_M405();
  8093. break;
  8094. case 406: // M406: Turn off filament sensor for control
  8095. gcode_M406();
  8096. break;
  8097. case 407: // M407: Display measured filament diameter
  8098. gcode_M407();
  8099. break;
  8100. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  8101. #if PLANNER_LEVELING
  8102. case 420: // M420: Enable/Disable Bed Leveling
  8103. gcode_M420();
  8104. break;
  8105. #endif
  8106. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8107. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8108. gcode_M421();
  8109. break;
  8110. #endif
  8111. #if DISABLED(NO_WORKSPACE_OFFSETS)
  8112. case 428: // M428: Apply current_position to home_offset
  8113. gcode_M428();
  8114. break;
  8115. #endif
  8116. case 500: // M500: Store settings in EEPROM
  8117. gcode_M500();
  8118. break;
  8119. case 501: // M501: Read settings from EEPROM
  8120. gcode_M501();
  8121. break;
  8122. case 502: // M502: Revert to default settings
  8123. gcode_M502();
  8124. break;
  8125. case 503: // M503: print settings currently in memory
  8126. gcode_M503();
  8127. break;
  8128. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8129. case 540: // M540: Set abort on endstop hit for SD printing
  8130. gcode_M540();
  8131. break;
  8132. #endif
  8133. #if HAS_BED_PROBE
  8134. case 851: // M851: Set Z Probe Z Offset
  8135. gcode_M851();
  8136. break;
  8137. #endif // HAS_BED_PROBE
  8138. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8139. case 600: // M600: Pause for filament change
  8140. gcode_M600();
  8141. break;
  8142. #endif // FILAMENT_CHANGE_FEATURE
  8143. #if ENABLED(DUAL_X_CARRIAGE)
  8144. case 605: // M605: Set Dual X Carriage movement mode
  8145. gcode_M605();
  8146. break;
  8147. #endif // DUAL_X_CARRIAGE
  8148. #if ENABLED(LIN_ADVANCE)
  8149. case 905: // M905: Set advance K factor.
  8150. gcode_M905();
  8151. break;
  8152. #endif
  8153. #if ENABLED(HAVE_TMC2130)
  8154. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8155. gcode_M906();
  8156. break;
  8157. #endif
  8158. case 907: // M907: Set digital trimpot motor current using axis codes.
  8159. gcode_M907();
  8160. break;
  8161. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8162. case 908: // M908: Control digital trimpot directly.
  8163. gcode_M908();
  8164. break;
  8165. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8166. case 909: // M909: Print digipot/DAC current value
  8167. gcode_M909();
  8168. break;
  8169. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8170. gcode_M910();
  8171. break;
  8172. #endif
  8173. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8174. #if ENABLED(HAVE_TMC2130)
  8175. case 911: // M911: Report TMC2130 prewarn triggered flags
  8176. gcode_M911();
  8177. break;
  8178. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8179. gcode_M912();
  8180. break;
  8181. #endif
  8182. #if HAS_MICROSTEPS
  8183. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8184. gcode_M350();
  8185. break;
  8186. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8187. gcode_M351();
  8188. break;
  8189. #endif // HAS_MICROSTEPS
  8190. case 355: // M355 Turn case lights on/off
  8191. gcode_M355();
  8192. break;
  8193. case 999: // M999: Restart after being Stopped
  8194. gcode_M999();
  8195. break;
  8196. }
  8197. break;
  8198. case 'T':
  8199. gcode_T(codenum);
  8200. break;
  8201. default: code_is_good = false;
  8202. }
  8203. KEEPALIVE_STATE(NOT_BUSY);
  8204. ExitUnknownCommand:
  8205. // Still unknown command? Throw an error
  8206. if (!code_is_good) unknown_command_error();
  8207. ok_to_send();
  8208. }
  8209. /**
  8210. * Send a "Resend: nnn" message to the host to
  8211. * indicate that a command needs to be re-sent.
  8212. */
  8213. void FlushSerialRequestResend() {
  8214. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8215. MYSERIAL.flush();
  8216. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8217. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8218. ok_to_send();
  8219. }
  8220. /**
  8221. * Send an "ok" message to the host, indicating
  8222. * that a command was successfully processed.
  8223. *
  8224. * If ADVANCED_OK is enabled also include:
  8225. * N<int> Line number of the command, if any
  8226. * P<int> Planner space remaining
  8227. * B<int> Block queue space remaining
  8228. */
  8229. void ok_to_send() {
  8230. refresh_cmd_timeout();
  8231. if (!send_ok[cmd_queue_index_r]) return;
  8232. SERIAL_PROTOCOLPGM(MSG_OK);
  8233. #if ENABLED(ADVANCED_OK)
  8234. char* p = command_queue[cmd_queue_index_r];
  8235. if (*p == 'N') {
  8236. SERIAL_PROTOCOL(' ');
  8237. SERIAL_ECHO(*p++);
  8238. while (NUMERIC_SIGNED(*p))
  8239. SERIAL_ECHO(*p++);
  8240. }
  8241. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8242. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8243. #endif
  8244. SERIAL_EOL;
  8245. }
  8246. #if HAS_SOFTWARE_ENDSTOPS
  8247. /**
  8248. * Constrain the given coordinates to the software endstops.
  8249. */
  8250. void clamp_to_software_endstops(float target[XYZ]) {
  8251. if (!soft_endstops_enabled) return;
  8252. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8253. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8254. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8255. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8256. #endif
  8257. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8258. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8259. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8260. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8261. #endif
  8262. }
  8263. #endif
  8264. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8265. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8266. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8267. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8268. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8269. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  8270. #else
  8271. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8272. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8273. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8274. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  8275. #endif
  8276. // Get the Z adjustment for non-linear bed leveling
  8277. float bilinear_z_offset(float cartesian[XYZ]) {
  8278. // XY relative to the probed area
  8279. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  8280. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  8281. // Convert to grid box units
  8282. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  8283. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  8284. // Whole units for the grid line indices. Constrained within bounds.
  8285. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  8286. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  8287. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  8288. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8289. // Subtract whole to get the ratio within the grid box
  8290. ratio_x -= gridx; ratio_y -= gridy;
  8291. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  8292. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  8293. // Z at the box corners
  8294. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  8295. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  8296. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  8297. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  8298. // Bilinear interpolate
  8299. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  8300. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  8301. offset = L + ratio_x * (R - L);
  8302. /*
  8303. static float last_offset = 0;
  8304. if (fabs(last_offset - offset) > 0.2) {
  8305. SERIAL_ECHOPGM("Sudden Shift at ");
  8306. SERIAL_ECHOPAIR("x=", x);
  8307. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8308. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8309. SERIAL_ECHOPAIR(" y=", y);
  8310. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8311. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8312. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8313. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8314. SERIAL_ECHOPAIR(" z1=", z1);
  8315. SERIAL_ECHOPAIR(" z2=", z2);
  8316. SERIAL_ECHOPAIR(" z3=", z3);
  8317. SERIAL_ECHOLNPAIR(" z4=", z4);
  8318. SERIAL_ECHOPAIR(" L=", L);
  8319. SERIAL_ECHOPAIR(" R=", R);
  8320. SERIAL_ECHOLNPAIR(" offset=", offset);
  8321. }
  8322. last_offset = offset;
  8323. */
  8324. return offset;
  8325. }
  8326. #endif // AUTO_BED_LEVELING_BILINEAR
  8327. #if ENABLED(DELTA)
  8328. /**
  8329. * Recalculate factors used for delta kinematics whenever
  8330. * settings have been changed (e.g., by M665).
  8331. */
  8332. void recalc_delta_settings(float radius, float diagonal_rod) {
  8333. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8334. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8335. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8336. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8337. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8338. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8339. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8340. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8341. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8342. }
  8343. #if ENABLED(DELTA_FAST_SQRT)
  8344. /**
  8345. * Fast inverse sqrt from Quake III Arena
  8346. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8347. */
  8348. float Q_rsqrt(float number) {
  8349. long i;
  8350. float x2, y;
  8351. const float threehalfs = 1.5f;
  8352. x2 = number * 0.5f;
  8353. y = number;
  8354. i = * ( long * ) &y; // evil floating point bit level hacking
  8355. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  8356. y = * ( float * ) &i;
  8357. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8358. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8359. return y;
  8360. }
  8361. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8362. #else
  8363. #define _SQRT(n) sqrt(n)
  8364. #endif
  8365. /**
  8366. * Delta Inverse Kinematics
  8367. *
  8368. * Calculate the tower positions for a given logical
  8369. * position, storing the result in the delta[] array.
  8370. *
  8371. * This is an expensive calculation, requiring 3 square
  8372. * roots per segmented linear move, and strains the limits
  8373. * of a Mega2560 with a Graphical Display.
  8374. *
  8375. * Suggested optimizations include:
  8376. *
  8377. * - Disable the home_offset (M206) and/or position_shift (G92)
  8378. * features to remove up to 12 float additions.
  8379. *
  8380. * - Use a fast-inverse-sqrt function and add the reciprocal.
  8381. * (see above)
  8382. */
  8383. // Macro to obtain the Z position of an individual tower
  8384. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  8385. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  8386. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  8387. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  8388. ) \
  8389. )
  8390. #define DELTA_RAW_IK() do { \
  8391. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  8392. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  8393. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  8394. } while(0)
  8395. #define DELTA_LOGICAL_IK() do { \
  8396. const float raw[XYZ] = { \
  8397. RAW_X_POSITION(logical[X_AXIS]), \
  8398. RAW_Y_POSITION(logical[Y_AXIS]), \
  8399. RAW_Z_POSITION(logical[Z_AXIS]) \
  8400. }; \
  8401. DELTA_RAW_IK(); \
  8402. } while(0)
  8403. #define DELTA_DEBUG() do { \
  8404. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  8405. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  8406. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  8407. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  8408. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  8409. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  8410. } while(0)
  8411. void inverse_kinematics(const float logical[XYZ]) {
  8412. DELTA_LOGICAL_IK();
  8413. // DELTA_DEBUG();
  8414. }
  8415. /**
  8416. * Calculate the highest Z position where the
  8417. * effector has the full range of XY motion.
  8418. */
  8419. float delta_safe_distance_from_top() {
  8420. float cartesian[XYZ] = {
  8421. LOGICAL_X_POSITION(0),
  8422. LOGICAL_Y_POSITION(0),
  8423. LOGICAL_Z_POSITION(0)
  8424. };
  8425. inverse_kinematics(cartesian);
  8426. float distance = delta[A_AXIS];
  8427. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  8428. inverse_kinematics(cartesian);
  8429. return abs(distance - delta[A_AXIS]);
  8430. }
  8431. /**
  8432. * Delta Forward Kinematics
  8433. *
  8434. * See the Wikipedia article "Trilateration"
  8435. * https://en.wikipedia.org/wiki/Trilateration
  8436. *
  8437. * Establish a new coordinate system in the plane of the
  8438. * three carriage points. This system has its origin at
  8439. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  8440. * plane with a Z component of zero.
  8441. * We will define unit vectors in this coordinate system
  8442. * in our original coordinate system. Then when we calculate
  8443. * the Xnew, Ynew and Znew values, we can translate back into
  8444. * the original system by moving along those unit vectors
  8445. * by the corresponding values.
  8446. *
  8447. * Variable names matched to Marlin, c-version, and avoid the
  8448. * use of any vector library.
  8449. *
  8450. * by Andreas Hardtung 2016-06-07
  8451. * based on a Java function from "Delta Robot Kinematics V3"
  8452. * by Steve Graves
  8453. *
  8454. * The result is stored in the cartes[] array.
  8455. */
  8456. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  8457. // Create a vector in old coordinates along x axis of new coordinate
  8458. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  8459. // Get the Magnitude of vector.
  8460. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  8461. // Create unit vector by dividing by magnitude.
  8462. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  8463. // Get the vector from the origin of the new system to the third point.
  8464. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  8465. // Use the dot product to find the component of this vector on the X axis.
  8466. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  8467. // Create a vector along the x axis that represents the x component of p13.
  8468. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  8469. // Subtract the X component from the original vector leaving only Y. We use the
  8470. // variable that will be the unit vector after we scale it.
  8471. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  8472. // The magnitude of Y component
  8473. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  8474. // Convert to a unit vector
  8475. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  8476. // The cross product of the unit x and y is the unit z
  8477. // float[] ez = vectorCrossProd(ex, ey);
  8478. float ez[3] = {
  8479. ex[1] * ey[2] - ex[2] * ey[1],
  8480. ex[2] * ey[0] - ex[0] * ey[2],
  8481. ex[0] * ey[1] - ex[1] * ey[0]
  8482. };
  8483. // We now have the d, i and j values defined in Wikipedia.
  8484. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  8485. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  8486. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  8487. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  8488. // Start from the origin of the old coordinates and add vectors in the
  8489. // old coords that represent the Xnew, Ynew and Znew to find the point
  8490. // in the old system.
  8491. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  8492. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  8493. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  8494. }
  8495. void forward_kinematics_DELTA(float point[ABC]) {
  8496. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  8497. }
  8498. #endif // DELTA
  8499. /**
  8500. * Get the stepper positions in the cartes[] array.
  8501. * Forward kinematics are applied for DELTA and SCARA.
  8502. *
  8503. * The result is in the current coordinate space with
  8504. * leveling applied. The coordinates need to be run through
  8505. * unapply_leveling to obtain the "ideal" coordinates
  8506. * suitable for current_position, etc.
  8507. */
  8508. void get_cartesian_from_steppers() {
  8509. #if ENABLED(DELTA)
  8510. forward_kinematics_DELTA(
  8511. stepper.get_axis_position_mm(A_AXIS),
  8512. stepper.get_axis_position_mm(B_AXIS),
  8513. stepper.get_axis_position_mm(C_AXIS)
  8514. );
  8515. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8516. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8517. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  8518. #elif IS_SCARA
  8519. forward_kinematics_SCARA(
  8520. stepper.get_axis_position_degrees(A_AXIS),
  8521. stepper.get_axis_position_degrees(B_AXIS)
  8522. );
  8523. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8524. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8525. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8526. #else
  8527. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  8528. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  8529. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8530. #endif
  8531. }
  8532. /**
  8533. * Set the current_position for an axis based on
  8534. * the stepper positions, removing any leveling that
  8535. * may have been applied.
  8536. */
  8537. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  8538. get_cartesian_from_steppers();
  8539. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  8540. planner.unapply_leveling(cartes);
  8541. #endif
  8542. if (axis == ALL_AXES)
  8543. COPY(current_position, cartes);
  8544. else
  8545. current_position[axis] = cartes[axis];
  8546. }
  8547. #if ENABLED(MESH_BED_LEVELING)
  8548. /**
  8549. * Prepare a mesh-leveled linear move in a Cartesian setup,
  8550. * splitting the move where it crosses mesh borders.
  8551. */
  8552. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  8553. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  8554. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  8555. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  8556. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  8557. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  8558. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  8559. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  8560. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  8561. if (cx1 == cx2 && cy1 == cy2) {
  8562. // Start and end on same mesh square
  8563. line_to_destination(fr_mm_s);
  8564. set_current_to_destination();
  8565. return;
  8566. }
  8567. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8568. float normalized_dist, end[XYZE];
  8569. // Split at the left/front border of the right/top square
  8570. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8571. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8572. COPY(end, destination);
  8573. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  8574. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8575. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  8576. CBI(x_splits, gcx);
  8577. }
  8578. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8579. COPY(end, destination);
  8580. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  8581. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8582. destination[X_AXIS] = MBL_SEGMENT_END(X);
  8583. CBI(y_splits, gcy);
  8584. }
  8585. else {
  8586. // Already split on a border
  8587. line_to_destination(fr_mm_s);
  8588. set_current_to_destination();
  8589. return;
  8590. }
  8591. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  8592. destination[E_AXIS] = MBL_SEGMENT_END(E);
  8593. // Do the split and look for more borders
  8594. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8595. // Restore destination from stack
  8596. COPY(destination, end);
  8597. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8598. }
  8599. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  8600. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  8601. /**
  8602. * Prepare a bilinear-leveled linear move on Cartesian,
  8603. * splitting the move where it crosses grid borders.
  8604. */
  8605. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  8606. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  8607. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  8608. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  8609. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  8610. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  8611. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  8612. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  8613. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  8614. if (cx1 == cx2 && cy1 == cy2) {
  8615. // Start and end on same mesh square
  8616. line_to_destination(fr_mm_s);
  8617. set_current_to_destination();
  8618. return;
  8619. }
  8620. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8621. float normalized_dist, end[XYZE];
  8622. // Split at the left/front border of the right/top square
  8623. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8624. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8625. COPY(end, destination);
  8626. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  8627. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8628. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  8629. CBI(x_splits, gcx);
  8630. }
  8631. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8632. COPY(end, destination);
  8633. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  8634. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8635. destination[X_AXIS] = LINE_SEGMENT_END(X);
  8636. CBI(y_splits, gcy);
  8637. }
  8638. else {
  8639. // Already split on a border
  8640. line_to_destination(fr_mm_s);
  8641. set_current_to_destination();
  8642. return;
  8643. }
  8644. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  8645. destination[E_AXIS] = LINE_SEGMENT_END(E);
  8646. // Do the split and look for more borders
  8647. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8648. // Restore destination from stack
  8649. COPY(destination, end);
  8650. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8651. }
  8652. #endif // AUTO_BED_LEVELING_BILINEAR
  8653. #if IS_KINEMATIC
  8654. /**
  8655. * Prepare a linear move in a DELTA or SCARA setup.
  8656. *
  8657. * This calls planner.buffer_line several times, adding
  8658. * small incremental moves for DELTA or SCARA.
  8659. */
  8660. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  8661. // Get the top feedrate of the move in the XY plane
  8662. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  8663. // If the move is only in Z/E don't split up the move
  8664. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  8665. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8666. return true;
  8667. }
  8668. // Get the cartesian distances moved in XYZE
  8669. float difference[XYZE];
  8670. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  8671. // Get the linear distance in XYZ
  8672. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  8673. // If the move is very short, check the E move distance
  8674. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  8675. // No E move either? Game over.
  8676. if (UNEAR_ZERO(cartesian_mm)) return false;
  8677. // Minimum number of seconds to move the given distance
  8678. float seconds = cartesian_mm / _feedrate_mm_s;
  8679. // The number of segments-per-second times the duration
  8680. // gives the number of segments
  8681. uint16_t segments = delta_segments_per_second * seconds;
  8682. // For SCARA minimum segment size is 0.25mm
  8683. #if IS_SCARA
  8684. NOMORE(segments, cartesian_mm * 4);
  8685. #endif
  8686. // At least one segment is required
  8687. NOLESS(segments, 1);
  8688. // The approximate length of each segment
  8689. const float inv_segments = 1.0 / float(segments),
  8690. segment_distance[XYZE] = {
  8691. difference[X_AXIS] * inv_segments,
  8692. difference[Y_AXIS] * inv_segments,
  8693. difference[Z_AXIS] * inv_segments,
  8694. difference[E_AXIS] * inv_segments
  8695. };
  8696. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  8697. // SERIAL_ECHOPAIR(" seconds=", seconds);
  8698. // SERIAL_ECHOLNPAIR(" segments=", segments);
  8699. #if IS_SCARA
  8700. // SCARA needs to scale the feed rate from mm/s to degrees/s
  8701. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  8702. feed_factor = inv_segment_length * _feedrate_mm_s;
  8703. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  8704. oldB = stepper.get_axis_position_degrees(B_AXIS);
  8705. #endif
  8706. // Get the logical current position as starting point
  8707. float logical[XYZE];
  8708. COPY(logical, current_position);
  8709. // Drop one segment so the last move is to the exact target.
  8710. // If there's only 1 segment, loops will be skipped entirely.
  8711. --segments;
  8712. // Calculate and execute the segments
  8713. for (uint16_t s = segments + 1; --s;) {
  8714. LOOP_XYZE(i) logical[i] += segment_distance[i];
  8715. #if ENABLED(DELTA)
  8716. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  8717. #else
  8718. inverse_kinematics(logical);
  8719. #endif
  8720. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  8721. #if IS_SCARA
  8722. // For SCARA scale the feed rate from mm/s to degrees/s
  8723. // Use ratio between the length of the move and the larger angle change
  8724. const float adiff = abs(delta[A_AXIS] - oldA),
  8725. bdiff = abs(delta[B_AXIS] - oldB);
  8726. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8727. oldA = delta[A_AXIS];
  8728. oldB = delta[B_AXIS];
  8729. #else
  8730. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  8731. #endif
  8732. }
  8733. // Since segment_distance is only approximate,
  8734. // the final move must be to the exact destination.
  8735. #if IS_SCARA
  8736. // For SCARA scale the feed rate from mm/s to degrees/s
  8737. // With segments > 1 length is 1 segment, otherwise total length
  8738. inverse_kinematics(ltarget);
  8739. ADJUST_DELTA(logical);
  8740. const float adiff = abs(delta[A_AXIS] - oldA),
  8741. bdiff = abs(delta[B_AXIS] - oldB);
  8742. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8743. #else
  8744. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8745. #endif
  8746. return true;
  8747. }
  8748. #else // !IS_KINEMATIC
  8749. /**
  8750. * Prepare a linear move in a Cartesian setup.
  8751. * If Mesh Bed Leveling is enabled, perform a mesh move.
  8752. *
  8753. * Returns true if the caller didn't update current_position.
  8754. */
  8755. inline bool prepare_move_to_destination_cartesian() {
  8756. // Do not use feedrate_percentage for E or Z only moves
  8757. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  8758. line_to_destination();
  8759. }
  8760. else {
  8761. #if ENABLED(MESH_BED_LEVELING)
  8762. if (mbl.active()) {
  8763. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8764. return false;
  8765. }
  8766. else
  8767. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8768. if (ubl.state.active) {
  8769. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  8770. return false;
  8771. }
  8772. else
  8773. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8774. if (planner.abl_enabled) {
  8775. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8776. return false;
  8777. }
  8778. else
  8779. #endif
  8780. line_to_destination(MMS_SCALED(feedrate_mm_s));
  8781. }
  8782. return true;
  8783. }
  8784. #endif // !IS_KINEMATIC
  8785. #if ENABLED(DUAL_X_CARRIAGE)
  8786. /**
  8787. * Prepare a linear move in a dual X axis setup
  8788. */
  8789. inline bool prepare_move_to_destination_dualx() {
  8790. if (active_extruder_parked) {
  8791. switch (dual_x_carriage_mode) {
  8792. case DXC_FULL_CONTROL_MODE:
  8793. break;
  8794. case DXC_AUTO_PARK_MODE:
  8795. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8796. // This is a travel move (with no extrusion)
  8797. // Skip it, but keep track of the current position
  8798. // (so it can be used as the start of the next non-travel move)
  8799. if (delayed_move_time != 0xFFFFFFFFUL) {
  8800. set_current_to_destination();
  8801. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8802. delayed_move_time = millis();
  8803. return false;
  8804. }
  8805. }
  8806. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8807. for (uint8_t i = 0; i < 3; i++)
  8808. planner.buffer_line(
  8809. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8810. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8811. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8812. current_position[E_AXIS],
  8813. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8814. active_extruder
  8815. );
  8816. delayed_move_time = 0;
  8817. active_extruder_parked = false;
  8818. break;
  8819. case DXC_DUPLICATION_MODE:
  8820. if (active_extruder == 0) {
  8821. // move duplicate extruder into correct duplication position.
  8822. planner.set_position_mm(
  8823. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8824. current_position[Y_AXIS],
  8825. current_position[Z_AXIS],
  8826. current_position[E_AXIS]
  8827. );
  8828. planner.buffer_line(
  8829. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8830. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8831. planner.max_feedrate_mm_s[X_AXIS], 1
  8832. );
  8833. SYNC_PLAN_POSITION_KINEMATIC();
  8834. stepper.synchronize();
  8835. extruder_duplication_enabled = true;
  8836. active_extruder_parked = false;
  8837. }
  8838. break;
  8839. }
  8840. }
  8841. return true;
  8842. }
  8843. #endif // DUAL_X_CARRIAGE
  8844. /**
  8845. * Prepare a single move and get ready for the next one
  8846. *
  8847. * This may result in several calls to planner.buffer_line to
  8848. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8849. */
  8850. void prepare_move_to_destination() {
  8851. clamp_to_software_endstops(destination);
  8852. refresh_cmd_timeout();
  8853. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8854. if (!DEBUGGING(DRYRUN)) {
  8855. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8856. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8857. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8858. SERIAL_ECHO_START;
  8859. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8860. }
  8861. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8862. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8863. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8864. SERIAL_ECHO_START;
  8865. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8866. }
  8867. #endif
  8868. }
  8869. }
  8870. #endif
  8871. #if IS_KINEMATIC
  8872. if (!prepare_kinematic_move_to(destination)) return;
  8873. #else
  8874. #if ENABLED(DUAL_X_CARRIAGE)
  8875. if (!prepare_move_to_destination_dualx()) return;
  8876. #endif
  8877. if (!prepare_move_to_destination_cartesian()) return;
  8878. #endif
  8879. set_current_to_destination();
  8880. }
  8881. #if ENABLED(ARC_SUPPORT)
  8882. /**
  8883. * Plan an arc in 2 dimensions
  8884. *
  8885. * The arc is approximated by generating many small linear segments.
  8886. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8887. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8888. * larger segments will tend to be more efficient. Your slicer should have
  8889. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8890. */
  8891. void plan_arc(
  8892. float logical[XYZE], // Destination position
  8893. float* offset, // Center of rotation relative to current_position
  8894. uint8_t clockwise // Clockwise?
  8895. ) {
  8896. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8897. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8898. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8899. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8900. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8901. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8902. r_Y = -offset[Y_AXIS],
  8903. rt_X = logical[X_AXIS] - center_X,
  8904. rt_Y = logical[Y_AXIS] - center_Y;
  8905. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8906. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8907. if (angular_travel < 0) angular_travel += RADIANS(360);
  8908. if (clockwise) angular_travel -= RADIANS(360);
  8909. // Make a circle if the angular rotation is 0
  8910. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8911. angular_travel += RADIANS(360);
  8912. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8913. if (mm_of_travel < 0.001) return;
  8914. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8915. if (segments == 0) segments = 1;
  8916. /**
  8917. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8918. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8919. * r_T = [cos(phi) -sin(phi);
  8920. * sin(phi) cos(phi)] * r ;
  8921. *
  8922. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8923. * defined from the circle center to the initial position. Each line segment is formed by successive
  8924. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8925. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8926. * all double numbers are single precision on the Arduino. (True double precision will not have
  8927. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8928. * tool precision in some cases. Therefore, arc path correction is implemented.
  8929. *
  8930. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8931. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8932. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8933. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8934. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8935. * issue for CNC machines with the single precision Arduino calculations.
  8936. *
  8937. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8938. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8939. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8940. * This is important when there are successive arc motions.
  8941. */
  8942. // Vector rotation matrix values
  8943. float arc_target[XYZE],
  8944. theta_per_segment = angular_travel / segments,
  8945. linear_per_segment = linear_travel / segments,
  8946. extruder_per_segment = extruder_travel / segments,
  8947. sin_T = theta_per_segment,
  8948. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8949. // Initialize the linear axis
  8950. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8951. // Initialize the extruder axis
  8952. arc_target[E_AXIS] = current_position[E_AXIS];
  8953. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8954. millis_t next_idle_ms = millis() + 200UL;
  8955. int8_t count = 0;
  8956. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8957. thermalManager.manage_heater();
  8958. if (ELAPSED(millis(), next_idle_ms)) {
  8959. next_idle_ms = millis() + 200UL;
  8960. idle();
  8961. }
  8962. if (++count < N_ARC_CORRECTION) {
  8963. // Apply vector rotation matrix to previous r_X / 1
  8964. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8965. r_X = r_X * cos_T - r_Y * sin_T;
  8966. r_Y = r_new_Y;
  8967. }
  8968. else {
  8969. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8970. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8971. // To reduce stuttering, the sin and cos could be computed at different times.
  8972. // For now, compute both at the same time.
  8973. float cos_Ti = cos(i * theta_per_segment),
  8974. sin_Ti = sin(i * theta_per_segment);
  8975. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8976. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8977. count = 0;
  8978. }
  8979. // Update arc_target location
  8980. arc_target[X_AXIS] = center_X + r_X;
  8981. arc_target[Y_AXIS] = center_Y + r_Y;
  8982. arc_target[Z_AXIS] += linear_per_segment;
  8983. arc_target[E_AXIS] += extruder_per_segment;
  8984. clamp_to_software_endstops(arc_target);
  8985. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  8986. }
  8987. // Ensure last segment arrives at target location.
  8988. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  8989. // As far as the parser is concerned, the position is now == target. In reality the
  8990. // motion control system might still be processing the action and the real tool position
  8991. // in any intermediate location.
  8992. set_current_to_destination();
  8993. }
  8994. #endif
  8995. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8996. void plan_cubic_move(const float offset[4]) {
  8997. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  8998. // As far as the parser is concerned, the position is now == destination. In reality the
  8999. // motion control system might still be processing the action and the real tool position
  9000. // in any intermediate location.
  9001. set_current_to_destination();
  9002. }
  9003. #endif // BEZIER_CURVE_SUPPORT
  9004. #if HAS_CONTROLLERFAN
  9005. void controllerFan() {
  9006. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9007. nextMotorCheck = 0; // Last time the state was checked
  9008. const millis_t ms = millis();
  9009. if (ELAPSED(ms, nextMotorCheck)) {
  9010. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9011. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9012. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9013. #if E_STEPPERS > 1
  9014. || E1_ENABLE_READ == E_ENABLE_ON
  9015. #if HAS_X2_ENABLE
  9016. || X2_ENABLE_READ == X_ENABLE_ON
  9017. #endif
  9018. #if E_STEPPERS > 2
  9019. || E2_ENABLE_READ == E_ENABLE_ON
  9020. #if E_STEPPERS > 3
  9021. || E3_ENABLE_READ == E_ENABLE_ON
  9022. #endif
  9023. #endif
  9024. #endif
  9025. ) {
  9026. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9027. }
  9028. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9029. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9030. // allows digital or PWM fan output to be used (see M42 handling)
  9031. digitalWrite(CONTROLLERFAN_PIN, speed);
  9032. analogWrite(CONTROLLERFAN_PIN, speed);
  9033. }
  9034. }
  9035. #endif // HAS_CONTROLLERFAN
  9036. #if ENABLED(MORGAN_SCARA)
  9037. /**
  9038. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9039. * Maths and first version by QHARLEY.
  9040. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9041. */
  9042. void forward_kinematics_SCARA(const float &a, const float &b) {
  9043. float a_sin = sin(RADIANS(a)) * L1,
  9044. a_cos = cos(RADIANS(a)) * L1,
  9045. b_sin = sin(RADIANS(b)) * L2,
  9046. b_cos = cos(RADIANS(b)) * L2;
  9047. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9048. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9049. /*
  9050. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9051. SERIAL_ECHOPAIR(" b=", b);
  9052. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9053. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9054. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9055. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9056. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9057. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9058. //*/
  9059. }
  9060. /**
  9061. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9062. *
  9063. * See http://forums.reprap.org/read.php?185,283327
  9064. *
  9065. * Maths and first version by QHARLEY.
  9066. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9067. */
  9068. void inverse_kinematics(const float logical[XYZ]) {
  9069. static float C2, S2, SK1, SK2, THETA, PSI;
  9070. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9071. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9072. if (L1 == L2)
  9073. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9074. else
  9075. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9076. S2 = sqrt(sq(C2) - 1);
  9077. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9078. SK1 = L1 + L2 * C2;
  9079. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9080. SK2 = L2 * S2;
  9081. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9082. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9083. // Angle of Arm2
  9084. PSI = atan2(S2, C2);
  9085. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9086. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9087. delta[C_AXIS] = logical[Z_AXIS];
  9088. /*
  9089. DEBUG_POS("SCARA IK", logical);
  9090. DEBUG_POS("SCARA IK", delta);
  9091. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9092. SERIAL_ECHOPAIR(",", sy);
  9093. SERIAL_ECHOPAIR(" C2=", C2);
  9094. SERIAL_ECHOPAIR(" S2=", S2);
  9095. SERIAL_ECHOPAIR(" Theta=", THETA);
  9096. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9097. //*/
  9098. }
  9099. #endif // MORGAN_SCARA
  9100. #if ENABLED(TEMP_STAT_LEDS)
  9101. static bool red_led = false;
  9102. static millis_t next_status_led_update_ms = 0;
  9103. void handle_status_leds(void) {
  9104. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9105. next_status_led_update_ms += 500; // Update every 0.5s
  9106. float max_temp = 0.0;
  9107. #if HAS_TEMP_BED
  9108. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9109. #endif
  9110. HOTEND_LOOP() {
  9111. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9112. }
  9113. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9114. if (new_led != red_led) {
  9115. red_led = new_led;
  9116. #if PIN_EXISTS(STAT_LED_RED)
  9117. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9118. #if PIN_EXISTS(STAT_LED_BLUE)
  9119. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9120. #endif
  9121. #else
  9122. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9123. #endif
  9124. }
  9125. }
  9126. }
  9127. #endif
  9128. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9129. void handle_filament_runout() {
  9130. if (!filament_ran_out) {
  9131. filament_ran_out = true;
  9132. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9133. stepper.synchronize();
  9134. }
  9135. }
  9136. #endif // FILAMENT_RUNOUT_SENSOR
  9137. #if ENABLED(FAST_PWM_FAN)
  9138. void setPwmFrequency(uint8_t pin, int val) {
  9139. val &= 0x07;
  9140. switch (digitalPinToTimer(pin)) {
  9141. #ifdef TCCR0A
  9142. case TIMER0A:
  9143. case TIMER0B:
  9144. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  9145. // TCCR0B |= val;
  9146. break;
  9147. #endif
  9148. #ifdef TCCR1A
  9149. case TIMER1A:
  9150. case TIMER1B:
  9151. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9152. // TCCR1B |= val;
  9153. break;
  9154. #endif
  9155. #ifdef TCCR2
  9156. case TIMER2:
  9157. case TIMER2:
  9158. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9159. TCCR2 |= val;
  9160. break;
  9161. #endif
  9162. #ifdef TCCR2A
  9163. case TIMER2A:
  9164. case TIMER2B:
  9165. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  9166. TCCR2B |= val;
  9167. break;
  9168. #endif
  9169. #ifdef TCCR3A
  9170. case TIMER3A:
  9171. case TIMER3B:
  9172. case TIMER3C:
  9173. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  9174. TCCR3B |= val;
  9175. break;
  9176. #endif
  9177. #ifdef TCCR4A
  9178. case TIMER4A:
  9179. case TIMER4B:
  9180. case TIMER4C:
  9181. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  9182. TCCR4B |= val;
  9183. break;
  9184. #endif
  9185. #ifdef TCCR5A
  9186. case TIMER5A:
  9187. case TIMER5B:
  9188. case TIMER5C:
  9189. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  9190. TCCR5B |= val;
  9191. break;
  9192. #endif
  9193. }
  9194. }
  9195. #endif // FAST_PWM_FAN
  9196. float calculate_volumetric_multiplier(float diameter) {
  9197. if (!volumetric_enabled || diameter == 0) return 1.0;
  9198. return 1.0 / (M_PI * sq(diameter * 0.5));
  9199. }
  9200. void calculate_volumetric_multipliers() {
  9201. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9202. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9203. }
  9204. void enable_all_steppers() {
  9205. enable_x();
  9206. enable_y();
  9207. enable_z();
  9208. enable_e0();
  9209. enable_e1();
  9210. enable_e2();
  9211. enable_e3();
  9212. }
  9213. void disable_e_steppers() {
  9214. disable_e0();
  9215. disable_e1();
  9216. disable_e2();
  9217. disable_e3();
  9218. }
  9219. void disable_all_steppers() {
  9220. disable_x();
  9221. disable_y();
  9222. disable_z();
  9223. disable_e_steppers();
  9224. }
  9225. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9226. void automatic_current_control(const TMC2130Stepper &st) {
  9227. #if CURRENT_STEP > 0
  9228. const bool is_otpw = st.checkOT(), // Check otpw even if we don't adjust. Allows for flag inspection.
  9229. is_otpw_triggered = st.getOTPW();
  9230. if (!is_otpw && !is_otpw_triggered) {
  9231. // OTPW bit not triggered yet -> Increase current
  9232. const uint16_t current = st.getCurrent() + CURRENT_STEP;
  9233. if (current <= AUTO_ADJUST_MAX) st.SilentStepStick2130(current);
  9234. }
  9235. else if (is_otpw && is_otpw_triggered) {
  9236. // OTPW bit triggered, triggered flag raised -> Decrease current
  9237. st.SilentStepStick2130((float)st.getCurrent() - CURRENT_STEP);
  9238. }
  9239. // OTPW bit cleared (we've cooled down), triggered flag still raised until manually cleared -> Do nothing, we're good
  9240. #endif
  9241. }
  9242. void checkOverTemp() {
  9243. static millis_t next_cOT = 0;
  9244. if (ELAPSED(millis(), next_cOT)) {
  9245. next_cOT = millis() + 5000;
  9246. #if ENABLED(X_IS_TMC2130)
  9247. automatic_current_control(stepperX);
  9248. #endif
  9249. #if ENABLED(Y_IS_TMC2130)
  9250. automatic_current_control(stepperY);
  9251. #endif
  9252. #if ENABLED(Z_IS_TMC2130)
  9253. automatic_current_control(stepperZ);
  9254. #endif
  9255. #if ENABLED(X2_IS_TMC2130)
  9256. automatic_current_control(stepperX2);
  9257. #endif
  9258. #if ENABLED(Y2_IS_TMC2130)
  9259. automatic_current_control(stepperY2);
  9260. #endif
  9261. #if ENABLED(Z2_IS_TMC2130)
  9262. automatic_current_control(stepperZ2);
  9263. #endif
  9264. #if ENABLED(E0_IS_TMC2130)
  9265. automatic_current_control(stepperE0);
  9266. #endif
  9267. #if ENABLED(E1_IS_TMC2130)
  9268. automatic_current_control(stepperE1);
  9269. #endif
  9270. #if ENABLED(E2_IS_TMC2130)
  9271. automatic_current_control(stepperE2);
  9272. #endif
  9273. #if ENABLED(E3_IS_TMC2130)
  9274. automatic_current_control(stepperE3);
  9275. #endif
  9276. }
  9277. }
  9278. #endif // AUTOMATIC_CURRENT_CONTROL
  9279. /**
  9280. * Manage several activities:
  9281. * - Check for Filament Runout
  9282. * - Keep the command buffer full
  9283. * - Check for maximum inactive time between commands
  9284. * - Check for maximum inactive time between stepper commands
  9285. * - Check if pin CHDK needs to go LOW
  9286. * - Check for KILL button held down
  9287. * - Check for HOME button held down
  9288. * - Check if cooling fan needs to be switched on
  9289. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9290. */
  9291. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9292. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9293. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9294. handle_filament_runout();
  9295. #endif
  9296. if (commands_in_queue < BUFSIZE) get_available_commands();
  9297. const millis_t ms = millis();
  9298. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9299. SERIAL_ERROR_START;
  9300. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9301. kill(PSTR(MSG_KILLED));
  9302. }
  9303. // Prevent steppers timing-out in the middle of M600
  9304. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9305. #define M600_TEST !busy_doing_M600
  9306. #else
  9307. #define M600_TEST true
  9308. #endif
  9309. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9310. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9311. #if ENABLED(DISABLE_INACTIVE_X)
  9312. disable_x();
  9313. #endif
  9314. #if ENABLED(DISABLE_INACTIVE_Y)
  9315. disable_y();
  9316. #endif
  9317. #if ENABLED(DISABLE_INACTIVE_Z)
  9318. disable_z();
  9319. #endif
  9320. #if ENABLED(DISABLE_INACTIVE_E)
  9321. disable_e_steppers();
  9322. #endif
  9323. }
  9324. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9325. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9326. chdkActive = false;
  9327. WRITE(CHDK, LOW);
  9328. }
  9329. #endif
  9330. #if HAS_KILL
  9331. // Check if the kill button was pressed and wait just in case it was an accidental
  9332. // key kill key press
  9333. // -------------------------------------------------------------------------------
  9334. static int killCount = 0; // make the inactivity button a bit less responsive
  9335. const int KILL_DELAY = 750;
  9336. if (!READ(KILL_PIN))
  9337. killCount++;
  9338. else if (killCount > 0)
  9339. killCount--;
  9340. // Exceeded threshold and we can confirm that it was not accidental
  9341. // KILL the machine
  9342. // ----------------------------------------------------------------
  9343. if (killCount >= KILL_DELAY) {
  9344. SERIAL_ERROR_START;
  9345. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  9346. kill(PSTR(MSG_KILLED));
  9347. }
  9348. #endif
  9349. #if HAS_HOME
  9350. // Check to see if we have to home, use poor man's debouncer
  9351. // ---------------------------------------------------------
  9352. static int homeDebounceCount = 0; // poor man's debouncing count
  9353. const int HOME_DEBOUNCE_DELAY = 2500;
  9354. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  9355. if (!homeDebounceCount) {
  9356. enqueue_and_echo_commands_P(PSTR("G28"));
  9357. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  9358. }
  9359. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  9360. homeDebounceCount++;
  9361. else
  9362. homeDebounceCount = 0;
  9363. }
  9364. #endif
  9365. #if HAS_CONTROLLERFAN
  9366. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  9367. #endif
  9368. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  9369. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  9370. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  9371. bool oldstatus;
  9372. #if ENABLED(SWITCHING_EXTRUDER)
  9373. oldstatus = E0_ENABLE_READ;
  9374. enable_e0();
  9375. #else // !SWITCHING_EXTRUDER
  9376. switch (active_extruder) {
  9377. case 0:
  9378. oldstatus = E0_ENABLE_READ;
  9379. enable_e0();
  9380. break;
  9381. #if E_STEPPERS > 1
  9382. case 1:
  9383. oldstatus = E1_ENABLE_READ;
  9384. enable_e1();
  9385. break;
  9386. #if E_STEPPERS > 2
  9387. case 2:
  9388. oldstatus = E2_ENABLE_READ;
  9389. enable_e2();
  9390. break;
  9391. #if E_STEPPERS > 3
  9392. case 3:
  9393. oldstatus = E3_ENABLE_READ;
  9394. enable_e3();
  9395. break;
  9396. #endif
  9397. #endif
  9398. #endif
  9399. }
  9400. #endif // !SWITCHING_EXTRUDER
  9401. previous_cmd_ms = ms; // refresh_cmd_timeout()
  9402. const float olde = current_position[E_AXIS];
  9403. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  9404. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  9405. current_position[E_AXIS] = olde;
  9406. planner.set_e_position_mm(olde);
  9407. stepper.synchronize();
  9408. #if ENABLED(SWITCHING_EXTRUDER)
  9409. E0_ENABLE_WRITE(oldstatus);
  9410. #else
  9411. switch (active_extruder) {
  9412. case 0:
  9413. E0_ENABLE_WRITE(oldstatus);
  9414. break;
  9415. #if E_STEPPERS > 1
  9416. case 1:
  9417. E1_ENABLE_WRITE(oldstatus);
  9418. break;
  9419. #if E_STEPPERS > 2
  9420. case 2:
  9421. E2_ENABLE_WRITE(oldstatus);
  9422. break;
  9423. #if E_STEPPERS > 3
  9424. case 3:
  9425. E3_ENABLE_WRITE(oldstatus);
  9426. break;
  9427. #endif
  9428. #endif
  9429. #endif
  9430. }
  9431. #endif // !SWITCHING_EXTRUDER
  9432. }
  9433. #endif // EXTRUDER_RUNOUT_PREVENT
  9434. #if ENABLED(DUAL_X_CARRIAGE)
  9435. // handle delayed move timeout
  9436. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  9437. // travel moves have been received so enact them
  9438. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  9439. set_destination_to_current();
  9440. prepare_move_to_destination();
  9441. }
  9442. #endif
  9443. #if ENABLED(TEMP_STAT_LEDS)
  9444. handle_status_leds();
  9445. #endif
  9446. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9447. checkOverTemp();
  9448. #endif
  9449. planner.check_axes_activity();
  9450. }
  9451. /**
  9452. * Standard idle routine keeps the machine alive
  9453. */
  9454. void idle(
  9455. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9456. bool no_stepper_sleep/*=false*/
  9457. #endif
  9458. ) {
  9459. lcd_update();
  9460. host_keepalive();
  9461. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9462. auto_report_temperatures();
  9463. #endif
  9464. manage_inactivity(
  9465. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9466. no_stepper_sleep
  9467. #endif
  9468. );
  9469. thermalManager.manage_heater();
  9470. #if ENABLED(PRINTCOUNTER)
  9471. print_job_timer.tick();
  9472. #endif
  9473. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  9474. buzzer.tick();
  9475. #endif
  9476. }
  9477. /**
  9478. * Kill all activity and lock the machine.
  9479. * After this the machine will need to be reset.
  9480. */
  9481. void kill(const char* lcd_msg) {
  9482. SERIAL_ERROR_START;
  9483. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  9484. thermalManager.disable_all_heaters();
  9485. disable_all_steppers();
  9486. #if ENABLED(ULTRA_LCD)
  9487. kill_screen(lcd_msg);
  9488. #else
  9489. UNUSED(lcd_msg);
  9490. #endif
  9491. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  9492. cli(); // Stop interrupts
  9493. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  9494. thermalManager.disable_all_heaters(); //turn off heaters again
  9495. #if HAS_POWER_SWITCH
  9496. SET_INPUT(PS_ON_PIN);
  9497. #endif
  9498. suicide();
  9499. while (1) {
  9500. #if ENABLED(USE_WATCHDOG)
  9501. watchdog_reset();
  9502. #endif
  9503. } // Wait for reset
  9504. }
  9505. /**
  9506. * Turn off heaters and stop the print in progress
  9507. * After a stop the machine may be resumed with M999
  9508. */
  9509. void stop() {
  9510. thermalManager.disable_all_heaters();
  9511. if (IsRunning()) {
  9512. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  9513. SERIAL_ERROR_START;
  9514. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  9515. LCD_MESSAGEPGM(MSG_STOPPED);
  9516. safe_delay(350); // allow enough time for messages to get out before stopping
  9517. Running = false;
  9518. }
  9519. }
  9520. /**
  9521. * Marlin entry-point: Set up before the program loop
  9522. * - Set up the kill pin, filament runout, power hold
  9523. * - Start the serial port
  9524. * - Print startup messages and diagnostics
  9525. * - Get EEPROM or default settings
  9526. * - Initialize managers for:
  9527. * • temperature
  9528. * • planner
  9529. * • watchdog
  9530. * • stepper
  9531. * • photo pin
  9532. * • servos
  9533. * • LCD controller
  9534. * • Digipot I2C
  9535. * • Z probe sled
  9536. * • status LEDs
  9537. */
  9538. void setup() {
  9539. #ifdef DISABLE_JTAG
  9540. // Disable JTAG on AT90USB chips to free up pins for IO
  9541. MCUCR = 0x80;
  9542. MCUCR = 0x80;
  9543. #endif
  9544. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9545. setup_filrunoutpin();
  9546. #endif
  9547. setup_killpin();
  9548. setup_powerhold();
  9549. #if HAS_STEPPER_RESET
  9550. disableStepperDrivers();
  9551. #endif
  9552. MYSERIAL.begin(BAUDRATE);
  9553. SERIAL_PROTOCOLLNPGM("start");
  9554. SERIAL_ECHO_START;
  9555. // Check startup - does nothing if bootloader sets MCUSR to 0
  9556. byte mcu = MCUSR;
  9557. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  9558. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  9559. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  9560. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  9561. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  9562. MCUSR = 0;
  9563. SERIAL_ECHOPGM(MSG_MARLIN);
  9564. SERIAL_CHAR(' ');
  9565. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  9566. SERIAL_EOL;
  9567. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  9568. SERIAL_ECHO_START;
  9569. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  9570. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  9571. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  9572. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  9573. #endif
  9574. SERIAL_ECHO_START;
  9575. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  9576. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  9577. // Send "ok" after commands by default
  9578. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  9579. // Load data from EEPROM if available (or use defaults)
  9580. // This also updates variables in the planner, elsewhere
  9581. (void)Config_RetrieveSettings();
  9582. #if DISABLED(NO_WORKSPACE_OFFSETS)
  9583. // Initialize current position based on home_offset
  9584. COPY(current_position, home_offset);
  9585. #else
  9586. ZERO(current_position);
  9587. #endif
  9588. // Vital to init stepper/planner equivalent for current_position
  9589. SYNC_PLAN_POSITION_KINEMATIC();
  9590. thermalManager.init(); // Initialize temperature loop
  9591. #if ENABLED(USE_WATCHDOG)
  9592. watchdog_init();
  9593. #endif
  9594. stepper.init(); // Initialize stepper, this enables interrupts!
  9595. servo_init();
  9596. #if HAS_PHOTOGRAPH
  9597. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  9598. #endif
  9599. #if HAS_CASE_LIGHT
  9600. update_case_light();
  9601. #endif
  9602. #if HAS_BED_PROBE
  9603. endstops.enable_z_probe(false);
  9604. #endif
  9605. #if HAS_CONTROLLERFAN
  9606. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  9607. #endif
  9608. #if HAS_STEPPER_RESET
  9609. enableStepperDrivers();
  9610. #endif
  9611. #if ENABLED(DIGIPOT_I2C)
  9612. digipot_i2c_init();
  9613. #endif
  9614. #if ENABLED(DAC_STEPPER_CURRENT)
  9615. dac_init();
  9616. #endif
  9617. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  9618. OUT_WRITE(SLED_PIN, LOW); // turn it off
  9619. #endif // Z_PROBE_SLED
  9620. setup_homepin();
  9621. #if PIN_EXISTS(STAT_LED_RED)
  9622. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  9623. #endif
  9624. #if PIN_EXISTS(STAT_LED_BLUE)
  9625. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  9626. #endif
  9627. #if ENABLED(RGB_LED)
  9628. SET_OUTPUT(RGB_LED_R_PIN);
  9629. SET_OUTPUT(RGB_LED_G_PIN);
  9630. SET_OUTPUT(RGB_LED_B_PIN);
  9631. #endif
  9632. lcd_init();
  9633. #if ENABLED(SHOW_BOOTSCREEN)
  9634. #if ENABLED(DOGLCD)
  9635. safe_delay(BOOTSCREEN_TIMEOUT);
  9636. #elif ENABLED(ULTRA_LCD)
  9637. bootscreen();
  9638. #if DISABLED(SDSUPPORT)
  9639. lcd_init();
  9640. #endif
  9641. #endif
  9642. #endif
  9643. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9644. // Initialize mixing to 100% color 1
  9645. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9646. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  9647. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  9648. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9649. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  9650. #endif
  9651. #if ENABLED(BLTOUCH)
  9652. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  9653. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  9654. set_bltouch_deployed(false); // error condition.
  9655. #endif
  9656. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  9657. i2c.onReceive(i2c_on_receive);
  9658. i2c.onRequest(i2c_on_request);
  9659. #endif
  9660. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  9661. setup_endstop_interrupts();
  9662. #endif
  9663. }
  9664. /**
  9665. * The main Marlin program loop
  9666. *
  9667. * - Save or log commands to SD
  9668. * - Process available commands (if not saving)
  9669. * - Call heater manager
  9670. * - Call inactivity manager
  9671. * - Call endstop manager
  9672. * - Call LCD update
  9673. */
  9674. void loop() {
  9675. if (commands_in_queue < BUFSIZE) get_available_commands();
  9676. #if ENABLED(SDSUPPORT)
  9677. card.checkautostart(false);
  9678. #endif
  9679. if (commands_in_queue) {
  9680. #if ENABLED(SDSUPPORT)
  9681. if (card.saving) {
  9682. char* command = command_queue[cmd_queue_index_r];
  9683. if (strstr_P(command, PSTR("M29"))) {
  9684. // M29 closes the file
  9685. card.closefile();
  9686. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  9687. ok_to_send();
  9688. }
  9689. else {
  9690. // Write the string from the read buffer to SD
  9691. card.write_command(command);
  9692. if (card.logging)
  9693. process_next_command(); // The card is saving because it's logging
  9694. else
  9695. ok_to_send();
  9696. }
  9697. }
  9698. else
  9699. process_next_command();
  9700. #else
  9701. process_next_command();
  9702. #endif // SDSUPPORT
  9703. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  9704. if (commands_in_queue) {
  9705. --commands_in_queue;
  9706. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  9707. }
  9708. }
  9709. endstops.report_state();
  9710. idle();
  9711. }