My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 195KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  31. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  32. #ifdef MESH_BED_LEVELING
  33. #include "mesh_bed_leveling.h"
  34. #endif
  35. #include "ultralcd.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "configuration_store.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #ifdef BLINKM
  47. #include "blinkm.h"
  48. #include "Wire.h"
  49. #endif
  50. #if NUM_SERVOS > 0
  51. #include "servo.h"
  52. #endif
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. /**
  57. * Look here for descriptions of G-codes:
  58. * - http://linuxcnc.org/handbook/gcode/g-code.html
  59. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  60. *
  61. * Help us document these G-codes online:
  62. * - http://reprap.org/wiki/G-code
  63. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  64. */
  65. /**
  66. * Implemented Codes
  67. * -------------------
  68. *
  69. * "G" Codes
  70. *
  71. * G0 -> G1
  72. * G1 - Coordinated Movement X Y Z E
  73. * G2 - CW ARC
  74. * G3 - CCW ARC
  75. * G4 - Dwell S<seconds> or P<milliseconds>
  76. * G10 - retract filament according to settings of M207
  77. * G11 - retract recover filament according to settings of M208
  78. * G28 - Home one or more axes
  79. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  80. * G30 - Single Z Probe, probes bed at current XY location.
  81. * G31 - Dock sled (Z_PROBE_SLED only)
  82. * G32 - Undock sled (Z_PROBE_SLED only)
  83. * G90 - Use Absolute Coordinates
  84. * G91 - Use Relative Coordinates
  85. * G92 - Set current position to coordinates given
  86. *
  87. * "M" Codes
  88. *
  89. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  90. * M1 - Same as M0
  91. * M17 - Enable/Power all stepper motors
  92. * M18 - Disable all stepper motors; same as M84
  93. * M20 - List SD card
  94. * M21 - Init SD card
  95. * M22 - Release SD card
  96. * M23 - Select SD file (M23 filename.g)
  97. * M24 - Start/resume SD print
  98. * M25 - Pause SD print
  99. * M26 - Set SD position in bytes (M26 S12345)
  100. * M27 - Report SD print status
  101. * M28 - Start SD write (M28 filename.g)
  102. * M29 - Stop SD write
  103. * M30 - Delete file from SD (M30 filename.g)
  104. * M31 - Output time since last M109 or SD card start to serial
  105. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  106. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  107. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  108. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  109. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  110. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  111. * M80 - Turn on Power Supply
  112. * M81 - Turn off Power Supply
  113. * M82 - Set E codes absolute (default)
  114. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  115. * M84 - Disable steppers until next move,
  116. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  117. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  118. * M92 - Set axis_steps_per_unit - same syntax as G92
  119. * M104 - Set extruder target temp
  120. * M105 - Read current temp
  121. * M106 - Fan on
  122. * M107 - Fan off
  123. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  124. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  125. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  126. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  127. * M112 - Emergency stop
  128. * M114 - Output current position to serial port
  129. * M115 - Capabilities string
  130. * M117 - display message
  131. * M119 - Output Endstop status to serial port
  132. * M120 - Enable endstop detection
  133. * M121 - Disable endstop detection
  134. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. * M140 - Set bed target temp
  139. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  140. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  141. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  142. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  143. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  144. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  145. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  146. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  147. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  148. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  149. * M206 - Set additional homing offset
  150. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  151. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  152. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  153. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  154. * M220 - Set speed factor override percentage: S<factor in percent>
  155. * M221 - Set extrude factor override percentage: S<factor in percent>
  156. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  157. * M240 - Trigger a camera to take a photograph
  158. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  159. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  160. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  161. * M301 - Set PID parameters P I and D
  162. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  163. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  164. * M304 - Set bed PID parameters P I and D
  165. * M380 - Activate solenoid on active extruder
  166. * M381 - Disable all solenoids
  167. * M400 - Finish all moves
  168. * M401 - Lower z-probe if present
  169. * M402 - Raise z-probe if present
  170. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  171. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  172. * M406 - Turn off Filament Sensor extrusion control
  173. * M407 - Display measured filament diameter
  174. * M410 - Quickstop. Abort all the planned moves
  175. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  176. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  177. * M428 - Set the home_offset logically based on the current_position
  178. * M500 - Store parameters in EEPROM
  179. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  180. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  181. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  182. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  183. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  184. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  185. * M666 - Set delta endstop adjustment
  186. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  187. * M907 - Set digital trimpot motor current using axis codes.
  188. * M908 - Control digital trimpot directly.
  189. * M350 - Set microstepping mode.
  190. * M351 - Toggle MS1 MS2 pins directly.
  191. *
  192. * ************ SCARA Specific - This can change to suit future G-code regulations
  193. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  194. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  195. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  196. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  197. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  198. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  199. * ************* SCARA End ***************
  200. *
  201. * M928 - Start SD logging (M928 filename.g) - ended by M29
  202. * M999 - Restart after being stopped by error
  203. */
  204. #ifdef SDSUPPORT
  205. CardReader card;
  206. #endif
  207. bool Running = true;
  208. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  209. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  210. float current_position[NUM_AXIS] = { 0.0 };
  211. static float destination[NUM_AXIS] = { 0.0 };
  212. bool axis_known_position[3] = { false };
  213. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  214. static int cmd_queue_index_r = 0;
  215. static int cmd_queue_index_w = 0;
  216. static int commands_in_queue = 0;
  217. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  218. float homing_feedrate[] = HOMING_FEEDRATE;
  219. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  220. int feedrate_multiplier = 100; //100->1 200->2
  221. int saved_feedrate_multiplier;
  222. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  223. bool volumetric_enabled = false;
  224. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  225. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  226. float home_offset[3] = { 0 };
  227. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  228. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  229. uint8_t active_extruder = 0;
  230. int fanSpeed = 0;
  231. bool cancel_heatup = false;
  232. const char errormagic[] PROGMEM = "Error:";
  233. const char echomagic[] PROGMEM = "echo:";
  234. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  235. static float offset[3] = { 0 };
  236. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  237. static char serial_char;
  238. static int serial_count = 0;
  239. static boolean comment_mode = false;
  240. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  241. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  242. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  243. // Inactivity shutdown
  244. millis_t previous_cmd_ms = 0;
  245. static millis_t max_inactive_time = 0;
  246. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  247. millis_t print_job_start_ms = 0; ///< Print job start time
  248. millis_t print_job_stop_ms = 0; ///< Print job stop time
  249. static uint8_t target_extruder;
  250. bool no_wait_for_cooling = true;
  251. bool target_direction;
  252. #ifdef ENABLE_AUTO_BED_LEVELING
  253. int xy_travel_speed = XY_TRAVEL_SPEED;
  254. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  255. #endif
  256. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  257. float z_endstop_adj = 0;
  258. #endif
  259. // Extruder offsets
  260. #if EXTRUDERS > 1
  261. #ifndef EXTRUDER_OFFSET_X
  262. #define EXTRUDER_OFFSET_X { 0 }
  263. #endif
  264. #ifndef EXTRUDER_OFFSET_Y
  265. #define EXTRUDER_OFFSET_Y { 0 }
  266. #endif
  267. float extruder_offset[][EXTRUDERS] = {
  268. EXTRUDER_OFFSET_X,
  269. EXTRUDER_OFFSET_Y
  270. #ifdef DUAL_X_CARRIAGE
  271. , { 0 } // supports offsets in XYZ plane
  272. #endif
  273. };
  274. #endif
  275. #ifdef SERVO_ENDSTOPS
  276. int servo_endstops[] = SERVO_ENDSTOPS;
  277. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  278. #endif
  279. #ifdef BARICUDA
  280. int ValvePressure = 0;
  281. int EtoPPressure = 0;
  282. #endif
  283. #ifdef FWRETRACT
  284. bool autoretract_enabled = false;
  285. bool retracted[EXTRUDERS] = { false };
  286. bool retracted_swap[EXTRUDERS] = { false };
  287. float retract_length = RETRACT_LENGTH;
  288. float retract_length_swap = RETRACT_LENGTH_SWAP;
  289. float retract_feedrate = RETRACT_FEEDRATE;
  290. float retract_zlift = RETRACT_ZLIFT;
  291. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  292. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  293. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  294. #endif // FWRETRACT
  295. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  296. bool powersupply =
  297. #ifdef PS_DEFAULT_OFF
  298. false
  299. #else
  300. true
  301. #endif
  302. ;
  303. #endif
  304. #ifdef DELTA
  305. float delta[3] = { 0 };
  306. #define SIN_60 0.8660254037844386
  307. #define COS_60 0.5
  308. float endstop_adj[3] = { 0 };
  309. // these are the default values, can be overriden with M665
  310. float delta_radius = DELTA_RADIUS;
  311. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  312. float delta_tower1_y = -COS_60 * delta_radius;
  313. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  314. float delta_tower2_y = -COS_60 * delta_radius;
  315. float delta_tower3_x = 0; // back middle tower
  316. float delta_tower3_y = delta_radius;
  317. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  318. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  319. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  320. #ifdef ENABLE_AUTO_BED_LEVELING
  321. int delta_grid_spacing[2] = { 0, 0 };
  322. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  323. #endif
  324. #else
  325. static bool home_all_axis = true;
  326. #endif
  327. #ifdef SCARA
  328. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  329. static float delta[3] = { 0 };
  330. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  331. #endif
  332. #ifdef FILAMENT_SENSOR
  333. //Variables for Filament Sensor input
  334. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  335. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  336. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  337. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  338. int delay_index1 = 0; //index into ring buffer
  339. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  340. float delay_dist = 0; //delay distance counter
  341. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  342. #endif
  343. #ifdef FILAMENT_RUNOUT_SENSOR
  344. static bool filrunoutEnqueued = false;
  345. #endif
  346. #ifdef SDSUPPORT
  347. static bool fromsd[BUFSIZE];
  348. #endif
  349. #if NUM_SERVOS > 0
  350. Servo servo[NUM_SERVOS];
  351. #endif
  352. #ifdef CHDK
  353. unsigned long chdkHigh = 0;
  354. boolean chdkActive = false;
  355. #endif
  356. //===========================================================================
  357. //================================ Functions ================================
  358. //===========================================================================
  359. void get_arc_coordinates();
  360. bool setTargetedHotend(int code);
  361. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  362. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  363. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  364. #ifdef PREVENT_DANGEROUS_EXTRUDE
  365. float extrude_min_temp = EXTRUDE_MINTEMP;
  366. #endif
  367. #ifdef SDSUPPORT
  368. #include "SdFatUtil.h"
  369. int freeMemory() { return SdFatUtil::FreeRam(); }
  370. #else
  371. extern "C" {
  372. extern unsigned int __bss_end;
  373. extern unsigned int __heap_start;
  374. extern void *__brkval;
  375. int freeMemory() {
  376. int free_memory;
  377. if ((int)__brkval == 0)
  378. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  379. else
  380. free_memory = ((int)&free_memory) - ((int)__brkval);
  381. return free_memory;
  382. }
  383. }
  384. #endif //!SDSUPPORT
  385. /**
  386. * Inject the next command from the command queue, when possible
  387. * Return false only if no command was pending
  388. */
  389. static bool drain_queued_commands_P() {
  390. if (!queued_commands_P) return false;
  391. // Get the next 30 chars from the sequence of gcodes to run
  392. char cmd[30];
  393. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  394. cmd[sizeof(cmd) - 1] = '\0';
  395. // Look for the end of line, or the end of sequence
  396. size_t i = 0;
  397. char c;
  398. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  399. cmd[i] = '\0';
  400. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  401. if (c)
  402. queued_commands_P += i + 1; // move to next command
  403. else
  404. queued_commands_P = NULL; // will have no more commands in the sequence
  405. }
  406. return true;
  407. }
  408. /**
  409. * Record one or many commands to run from program memory.
  410. * Aborts the current queue, if any.
  411. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  412. */
  413. void enqueuecommands_P(const char* pgcode) {
  414. queued_commands_P = pgcode;
  415. drain_queued_commands_P(); // first command executed asap (when possible)
  416. }
  417. /**
  418. * Copy a command directly into the main command buffer, from RAM.
  419. *
  420. * This is done in a non-safe way and needs a rework someday.
  421. * Returns false if it doesn't add any command
  422. */
  423. bool enqueuecommand(const char *cmd) {
  424. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  425. // This is dangerous if a mixing of serial and this happens
  426. char *command = command_queue[cmd_queue_index_w];
  427. strcpy(command, cmd);
  428. SERIAL_ECHO_START;
  429. SERIAL_ECHOPGM(MSG_Enqueueing);
  430. SERIAL_ECHO(command);
  431. SERIAL_ECHOLNPGM("\"");
  432. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  433. commands_in_queue++;
  434. return true;
  435. }
  436. void setup_killpin() {
  437. #if HAS_KILL
  438. SET_INPUT(KILL_PIN);
  439. WRITE(KILL_PIN, HIGH);
  440. #endif
  441. }
  442. void setup_filrunoutpin() {
  443. #if HAS_FILRUNOUT
  444. pinMode(FILRUNOUT_PIN, INPUT);
  445. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  446. WRITE(FILRUNOUT_PIN, HIGH);
  447. #endif
  448. #endif
  449. }
  450. // Set home pin
  451. void setup_homepin(void) {
  452. #if HAS_HOME
  453. SET_INPUT(HOME_PIN);
  454. WRITE(HOME_PIN, HIGH);
  455. #endif
  456. }
  457. void setup_photpin() {
  458. #if HAS_PHOTOGRAPH
  459. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  460. #endif
  461. }
  462. void setup_powerhold() {
  463. #if HAS_SUICIDE
  464. OUT_WRITE(SUICIDE_PIN, HIGH);
  465. #endif
  466. #if HAS_POWER_SWITCH
  467. #ifdef PS_DEFAULT_OFF
  468. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  469. #else
  470. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  471. #endif
  472. #endif
  473. }
  474. void suicide() {
  475. #if HAS_SUICIDE
  476. OUT_WRITE(SUICIDE_PIN, LOW);
  477. #endif
  478. }
  479. void servo_init() {
  480. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  481. servo[0].attach(SERVO0_PIN);
  482. #endif
  483. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  484. servo[1].attach(SERVO1_PIN);
  485. #endif
  486. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  487. servo[2].attach(SERVO2_PIN);
  488. #endif
  489. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  490. servo[3].attach(SERVO3_PIN);
  491. #endif
  492. // Set position of Servo Endstops that are defined
  493. #ifdef SERVO_ENDSTOPS
  494. for (int i = 0; i < 3; i++)
  495. if (servo_endstops[i] >= 0)
  496. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  497. #endif
  498. #if SERVO_LEVELING
  499. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  500. servo[servo_endstops[Z_AXIS]].detach();
  501. #endif
  502. }
  503. /**
  504. * Marlin entry-point: Set up before the program loop
  505. * - Set up the kill pin, filament runout, power hold
  506. * - Start the serial port
  507. * - Print startup messages and diagnostics
  508. * - Get EEPROM or default settings
  509. * - Initialize managers for:
  510. * • temperature
  511. * • planner
  512. * • watchdog
  513. * • stepper
  514. * • photo pin
  515. * • servos
  516. * • LCD controller
  517. * • Digipot I2C
  518. * • Z probe sled
  519. * • status LEDs
  520. */
  521. void setup() {
  522. setup_killpin();
  523. setup_filrunoutpin();
  524. setup_powerhold();
  525. MYSERIAL.begin(BAUDRATE);
  526. SERIAL_PROTOCOLLNPGM("start");
  527. SERIAL_ECHO_START;
  528. // Check startup - does nothing if bootloader sets MCUSR to 0
  529. byte mcu = MCUSR;
  530. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  531. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  532. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  533. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  534. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  535. MCUSR = 0;
  536. SERIAL_ECHOPGM(MSG_MARLIN);
  537. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  538. #ifdef STRING_VERSION_CONFIG_H
  539. #ifdef STRING_CONFIG_H_AUTHOR
  540. SERIAL_ECHO_START;
  541. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  542. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  543. SERIAL_ECHOPGM(MSG_AUTHOR);
  544. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  545. SERIAL_ECHOPGM("Compiled: ");
  546. SERIAL_ECHOLNPGM(__DATE__);
  547. #endif // STRING_CONFIG_H_AUTHOR
  548. #endif // STRING_VERSION_CONFIG_H
  549. SERIAL_ECHO_START;
  550. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  551. SERIAL_ECHO(freeMemory());
  552. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  553. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  554. #ifdef SDSUPPORT
  555. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  556. #endif
  557. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  558. Config_RetrieveSettings();
  559. tp_init(); // Initialize temperature loop
  560. plan_init(); // Initialize planner;
  561. watchdog_init();
  562. st_init(); // Initialize stepper, this enables interrupts!
  563. setup_photpin();
  564. servo_init();
  565. lcd_init();
  566. _delay_ms(1000); // wait 1sec to display the splash screen
  567. #if HAS_CONTROLLERFAN
  568. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  569. #endif
  570. #ifdef DIGIPOT_I2C
  571. digipot_i2c_init();
  572. #endif
  573. #ifdef Z_PROBE_SLED
  574. pinMode(SERVO0_PIN, OUTPUT);
  575. digitalWrite(SERVO0_PIN, LOW); // turn it off
  576. #endif // Z_PROBE_SLED
  577. setup_homepin();
  578. #ifdef STAT_LED_RED
  579. pinMode(STAT_LED_RED, OUTPUT);
  580. digitalWrite(STAT_LED_RED, LOW); // turn it off
  581. #endif
  582. #ifdef STAT_LED_BLUE
  583. pinMode(STAT_LED_BLUE, OUTPUT);
  584. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  585. #endif
  586. }
  587. /**
  588. * The main Marlin program loop
  589. *
  590. * - Save or log commands to SD
  591. * - Process available commands (if not saving)
  592. * - Call heater manager
  593. * - Call inactivity manager
  594. * - Call endstop manager
  595. * - Call LCD update
  596. */
  597. void loop() {
  598. if (commands_in_queue < BUFSIZE - 1) get_command();
  599. #ifdef SDSUPPORT
  600. card.checkautostart(false);
  601. #endif
  602. if (commands_in_queue) {
  603. #ifdef SDSUPPORT
  604. if (card.saving) {
  605. char *command = command_queue[cmd_queue_index_r];
  606. if (strstr_P(command, PSTR("M29"))) {
  607. // M29 closes the file
  608. card.closefile();
  609. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  610. }
  611. else {
  612. // Write the string from the read buffer to SD
  613. card.write_command(command);
  614. if (card.logging)
  615. process_commands(); // The card is saving because it's logging
  616. else
  617. SERIAL_PROTOCOLLNPGM(MSG_OK);
  618. }
  619. }
  620. else
  621. process_commands();
  622. #else
  623. process_commands();
  624. #endif // SDSUPPORT
  625. commands_in_queue--;
  626. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  627. }
  628. // Check heater every n milliseconds
  629. manage_heater();
  630. manage_inactivity();
  631. checkHitEndstops();
  632. lcd_update();
  633. }
  634. /**
  635. * Add to the circular command queue the next command from:
  636. * - The command-injection queue (queued_commands_P)
  637. * - The active serial input (usually USB)
  638. * - The SD card file being actively printed
  639. */
  640. void get_command() {
  641. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  642. #ifdef NO_TIMEOUTS
  643. static millis_t last_command_time = 0;
  644. millis_t ms = millis();
  645. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  646. SERIAL_ECHOLNPGM(MSG_WAIT);
  647. last_command_time = ms;
  648. }
  649. #endif
  650. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  651. #ifdef NO_TIMEOUTS
  652. last_command_time = ms;
  653. #endif
  654. serial_char = MYSERIAL.read();
  655. if (serial_char == '\n' || serial_char == '\r' ||
  656. serial_count >= (MAX_CMD_SIZE - 1)
  657. ) {
  658. // end of line == end of comment
  659. comment_mode = false;
  660. if (!serial_count) return; // shortcut for empty lines
  661. char *command = command_queue[cmd_queue_index_w];
  662. command[serial_count] = 0; // terminate string
  663. #ifdef SDSUPPORT
  664. fromsd[cmd_queue_index_w] = false;
  665. #endif
  666. if (strchr(command, 'N') != NULL) {
  667. strchr_pointer = strchr(command, 'N');
  668. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  669. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  670. SERIAL_ERROR_START;
  671. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  672. SERIAL_ERRORLN(gcode_LastN);
  673. //Serial.println(gcode_N);
  674. FlushSerialRequestResend();
  675. serial_count = 0;
  676. return;
  677. }
  678. if (strchr(command, '*') != NULL) {
  679. byte checksum = 0;
  680. byte count = 0;
  681. while (command[count] != '*') checksum ^= command[count++];
  682. strchr_pointer = strchr(command, '*');
  683. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  684. SERIAL_ERROR_START;
  685. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  686. SERIAL_ERRORLN(gcode_LastN);
  687. FlushSerialRequestResend();
  688. serial_count = 0;
  689. return;
  690. }
  691. //if no errors, continue parsing
  692. }
  693. else {
  694. SERIAL_ERROR_START;
  695. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  696. SERIAL_ERRORLN(gcode_LastN);
  697. FlushSerialRequestResend();
  698. serial_count = 0;
  699. return;
  700. }
  701. gcode_LastN = gcode_N;
  702. //if no errors, continue parsing
  703. }
  704. else { // if we don't receive 'N' but still see '*'
  705. if ((strchr(command, '*') != NULL)) {
  706. SERIAL_ERROR_START;
  707. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  708. SERIAL_ERRORLN(gcode_LastN);
  709. serial_count = 0;
  710. return;
  711. }
  712. }
  713. if (strchr(command, 'G') != NULL) {
  714. strchr_pointer = strchr(command, 'G');
  715. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  716. case 0:
  717. case 1:
  718. case 2:
  719. case 3:
  720. if (IsStopped()) {
  721. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  722. LCD_MESSAGEPGM(MSG_STOPPED);
  723. }
  724. break;
  725. default:
  726. break;
  727. }
  728. }
  729. // If command was e-stop process now
  730. if (strcmp(command, "M112") == 0) kill();
  731. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  732. commands_in_queue += 1;
  733. serial_count = 0; //clear buffer
  734. }
  735. else if (serial_char == '\\') { // Handle escapes
  736. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  737. // if we have one more character, copy it over
  738. serial_char = MYSERIAL.read();
  739. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  740. }
  741. // otherwise do nothing
  742. }
  743. else { // its not a newline, carriage return or escape char
  744. if (serial_char == ';') comment_mode = true;
  745. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  746. }
  747. }
  748. #ifdef SDSUPPORT
  749. if (!card.sdprinting || serial_count) return;
  750. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  751. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  752. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  753. static bool stop_buffering = false;
  754. if (commands_in_queue == 0) stop_buffering = false;
  755. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  756. int16_t n = card.get();
  757. serial_char = (char)n;
  758. if (serial_char == '\n' || serial_char == '\r' ||
  759. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  760. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  761. ) {
  762. if (card.eof()) {
  763. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  764. print_job_stop_ms = millis();
  765. char time[30];
  766. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  767. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  768. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  769. SERIAL_ECHO_START;
  770. SERIAL_ECHOLN(time);
  771. lcd_setstatus(time, true);
  772. card.printingHasFinished();
  773. card.checkautostart(true);
  774. }
  775. if (serial_char == '#') stop_buffering = true;
  776. if (!serial_count) {
  777. comment_mode = false; //for new command
  778. return; //if empty line
  779. }
  780. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  781. // if (!comment_mode) {
  782. fromsd[cmd_queue_index_w] = true;
  783. commands_in_queue += 1;
  784. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  785. // }
  786. comment_mode = false; //for new command
  787. serial_count = 0; //clear buffer
  788. }
  789. else {
  790. if (serial_char == ';') comment_mode = true;
  791. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  792. }
  793. }
  794. #endif // SDSUPPORT
  795. }
  796. bool code_has_value() {
  797. int i = 1;
  798. char c = strchr_pointer[i];
  799. if (c == '-' || c == '+') c = strchr_pointer[++i];
  800. if (c == '.') c = strchr_pointer[++i];
  801. return (c >= '0' && c <= '9');
  802. }
  803. float code_value() {
  804. float ret;
  805. char *e = strchr(strchr_pointer, 'E');
  806. if (e) {
  807. *e = 0;
  808. ret = strtod(strchr_pointer+1, NULL);
  809. *e = 'E';
  810. }
  811. else
  812. ret = strtod(strchr_pointer+1, NULL);
  813. return ret;
  814. }
  815. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  816. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  817. bool code_seen(char code) {
  818. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  819. return (strchr_pointer != NULL); //Return True if a character was found
  820. }
  821. #define DEFINE_PGM_READ_ANY(type, reader) \
  822. static inline type pgm_read_any(const type *p) \
  823. { return pgm_read_##reader##_near(p); }
  824. DEFINE_PGM_READ_ANY(float, float);
  825. DEFINE_PGM_READ_ANY(signed char, byte);
  826. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  827. static const PROGMEM type array##_P[3] = \
  828. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  829. static inline type array(int axis) \
  830. { return pgm_read_any(&array##_P[axis]); }
  831. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  832. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  833. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  834. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  835. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  836. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  837. #ifdef DUAL_X_CARRIAGE
  838. #define DXC_FULL_CONTROL_MODE 0
  839. #define DXC_AUTO_PARK_MODE 1
  840. #define DXC_DUPLICATION_MODE 2
  841. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  842. static float x_home_pos(int extruder) {
  843. if (extruder == 0)
  844. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  845. else
  846. // In dual carriage mode the extruder offset provides an override of the
  847. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  848. // This allow soft recalibration of the second extruder offset position without firmware reflash
  849. // (through the M218 command).
  850. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  851. }
  852. static int x_home_dir(int extruder) {
  853. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  854. }
  855. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  856. static bool active_extruder_parked = false; // used in mode 1 & 2
  857. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  858. static millis_t delayed_move_time = 0; // used in mode 1
  859. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  860. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  861. bool extruder_duplication_enabled = false; // used in mode 2
  862. #endif //DUAL_X_CARRIAGE
  863. static void axis_is_at_home(int axis) {
  864. #ifdef DUAL_X_CARRIAGE
  865. if (axis == X_AXIS) {
  866. if (active_extruder != 0) {
  867. current_position[X_AXIS] = x_home_pos(active_extruder);
  868. min_pos[X_AXIS] = X2_MIN_POS;
  869. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  870. return;
  871. }
  872. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  873. float xoff = home_offset[X_AXIS];
  874. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  875. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  876. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  877. return;
  878. }
  879. }
  880. #endif
  881. #ifdef SCARA
  882. if (axis == X_AXIS || axis == Y_AXIS) {
  883. float homeposition[3];
  884. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  885. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  886. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  887. // Works out real Homeposition angles using inverse kinematics,
  888. // and calculates homing offset using forward kinematics
  889. calculate_delta(homeposition);
  890. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  891. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  892. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  893. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  894. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  895. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  896. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  897. calculate_SCARA_forward_Transform(delta);
  898. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  899. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  900. current_position[axis] = delta[axis];
  901. // SCARA home positions are based on configuration since the actual limits are determined by the
  902. // inverse kinematic transform.
  903. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  904. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  905. }
  906. else
  907. #endif
  908. {
  909. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  910. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  911. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  912. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  913. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  914. #endif
  915. }
  916. }
  917. /**
  918. * Some planner shorthand inline functions
  919. */
  920. inline void set_homing_bump_feedrate(AxisEnum axis) {
  921. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  922. if (homing_bump_divisor[axis] >= 1)
  923. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  924. else {
  925. feedrate = homing_feedrate[axis] / 10;
  926. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  927. }
  928. }
  929. inline void line_to_current_position() {
  930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  931. }
  932. inline void line_to_z(float zPosition) {
  933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  934. }
  935. inline void line_to_destination(float mm_m) {
  936. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  937. }
  938. inline void line_to_destination() {
  939. line_to_destination(feedrate);
  940. }
  941. inline void sync_plan_position() {
  942. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  943. }
  944. #if defined(DELTA) || defined(SCARA)
  945. inline void sync_plan_position_delta() {
  946. calculate_delta(current_position);
  947. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  948. }
  949. #endif
  950. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  951. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  952. static void setup_for_endstop_move() {
  953. saved_feedrate = feedrate;
  954. saved_feedrate_multiplier = feedrate_multiplier;
  955. feedrate_multiplier = 100;
  956. refresh_cmd_timeout();
  957. enable_endstops(true);
  958. }
  959. #ifdef ENABLE_AUTO_BED_LEVELING
  960. #ifdef DELTA
  961. /**
  962. * Calculate delta, start a line, and set current_position to destination
  963. */
  964. void prepare_move_raw() {
  965. refresh_cmd_timeout();
  966. calculate_delta(destination);
  967. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  968. set_current_to_destination();
  969. }
  970. #endif
  971. #ifdef AUTO_BED_LEVELING_GRID
  972. #ifndef DELTA
  973. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  974. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  975. planeNormal.debug("planeNormal");
  976. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  977. //bedLevel.debug("bedLevel");
  978. //plan_bed_level_matrix.debug("bed level before");
  979. //vector_3 uncorrected_position = plan_get_position_mm();
  980. //uncorrected_position.debug("position before");
  981. vector_3 corrected_position = plan_get_position();
  982. //corrected_position.debug("position after");
  983. current_position[X_AXIS] = corrected_position.x;
  984. current_position[Y_AXIS] = corrected_position.y;
  985. current_position[Z_AXIS] = corrected_position.z;
  986. sync_plan_position();
  987. }
  988. #endif // !DELTA
  989. #else // !AUTO_BED_LEVELING_GRID
  990. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  991. plan_bed_level_matrix.set_to_identity();
  992. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  993. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  994. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  995. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  996. if (planeNormal.z < 0) {
  997. planeNormal.x = -planeNormal.x;
  998. planeNormal.y = -planeNormal.y;
  999. planeNormal.z = -planeNormal.z;
  1000. }
  1001. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1002. vector_3 corrected_position = plan_get_position();
  1003. current_position[X_AXIS] = corrected_position.x;
  1004. current_position[Y_AXIS] = corrected_position.y;
  1005. current_position[Z_AXIS] = corrected_position.z;
  1006. sync_plan_position();
  1007. }
  1008. #endif // !AUTO_BED_LEVELING_GRID
  1009. static void run_z_probe() {
  1010. #ifdef DELTA
  1011. float start_z = current_position[Z_AXIS];
  1012. long start_steps = st_get_position(Z_AXIS);
  1013. // move down slowly until you find the bed
  1014. feedrate = homing_feedrate[Z_AXIS] / 4;
  1015. destination[Z_AXIS] = -10;
  1016. prepare_move_raw(); // this will also set_current_to_destination
  1017. st_synchronize();
  1018. endstops_hit_on_purpose(); // clear endstop hit flags
  1019. // we have to let the planner know where we are right now as it is not where we said to go.
  1020. long stop_steps = st_get_position(Z_AXIS);
  1021. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1022. current_position[Z_AXIS] = mm;
  1023. sync_plan_position_delta();
  1024. #else // !DELTA
  1025. plan_bed_level_matrix.set_to_identity();
  1026. feedrate = homing_feedrate[Z_AXIS];
  1027. // move down until you find the bed
  1028. float zPosition = -10;
  1029. line_to_z(zPosition);
  1030. st_synchronize();
  1031. // we have to let the planner know where we are right now as it is not where we said to go.
  1032. zPosition = st_get_position_mm(Z_AXIS);
  1033. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1034. // move up the retract distance
  1035. zPosition += home_bump_mm(Z_AXIS);
  1036. line_to_z(zPosition);
  1037. st_synchronize();
  1038. endstops_hit_on_purpose(); // clear endstop hit flags
  1039. // move back down slowly to find bed
  1040. set_homing_bump_feedrate(Z_AXIS);
  1041. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1042. line_to_z(zPosition);
  1043. st_synchronize();
  1044. endstops_hit_on_purpose(); // clear endstop hit flags
  1045. // Get the current stepper position after bumping an endstop
  1046. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1047. sync_plan_position();
  1048. #endif // !DELTA
  1049. }
  1050. /**
  1051. * Plan a move to (X, Y, Z) and set the current_position
  1052. * The final current_position may not be the one that was requested
  1053. */
  1054. static void do_blocking_move_to(float x, float y, float z) {
  1055. float oldFeedRate = feedrate;
  1056. #ifdef DELTA
  1057. feedrate = XY_TRAVEL_SPEED;
  1058. destination[X_AXIS] = x;
  1059. destination[Y_AXIS] = y;
  1060. destination[Z_AXIS] = z;
  1061. prepare_move_raw(); // this will also set_current_to_destination
  1062. st_synchronize();
  1063. #else
  1064. feedrate = homing_feedrate[Z_AXIS];
  1065. current_position[Z_AXIS] = z;
  1066. line_to_current_position();
  1067. st_synchronize();
  1068. feedrate = xy_travel_speed;
  1069. current_position[X_AXIS] = x;
  1070. current_position[Y_AXIS] = y;
  1071. line_to_current_position();
  1072. st_synchronize();
  1073. #endif
  1074. feedrate = oldFeedRate;
  1075. }
  1076. static void clean_up_after_endstop_move() {
  1077. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1078. enable_endstops(false);
  1079. #endif
  1080. feedrate = saved_feedrate;
  1081. feedrate_multiplier = saved_feedrate_multiplier;
  1082. refresh_cmd_timeout();
  1083. }
  1084. static void deploy_z_probe() {
  1085. #ifdef SERVO_ENDSTOPS
  1086. // Engage Z Servo endstop if enabled
  1087. if (servo_endstops[Z_AXIS] >= 0) {
  1088. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1089. #if SERVO_LEVELING
  1090. srv->attach(0);
  1091. #endif
  1092. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1093. #if SERVO_LEVELING
  1094. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1095. srv->detach();
  1096. #endif
  1097. }
  1098. #elif defined(Z_PROBE_ALLEN_KEY)
  1099. feedrate = homing_feedrate[X_AXIS];
  1100. // Move to the start position to initiate deployment
  1101. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1102. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1103. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1104. prepare_move_raw(); // this will also set_current_to_destination
  1105. // Home X to touch the belt
  1106. feedrate = homing_feedrate[X_AXIS]/10;
  1107. destination[X_AXIS] = 0;
  1108. prepare_move_raw(); // this will also set_current_to_destination
  1109. // Home Y for safety
  1110. feedrate = homing_feedrate[X_AXIS]/2;
  1111. destination[Y_AXIS] = 0;
  1112. prepare_move_raw(); // this will also set_current_to_destination
  1113. st_synchronize();
  1114. #ifdef Z_PROBE_ENDSTOP
  1115. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1116. if (z_probe_endstop)
  1117. #else
  1118. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1119. if (z_min_endstop)
  1120. #endif
  1121. {
  1122. if (IsRunning()) {
  1123. SERIAL_ERROR_START;
  1124. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1125. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1126. }
  1127. Stop();
  1128. }
  1129. #endif // Z_PROBE_ALLEN_KEY
  1130. }
  1131. static void stow_z_probe(bool doRaise=true) {
  1132. #ifdef SERVO_ENDSTOPS
  1133. // Retract Z Servo endstop if enabled
  1134. if (servo_endstops[Z_AXIS] >= 0) {
  1135. #if Z_RAISE_AFTER_PROBING > 0
  1136. if (doRaise) {
  1137. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1138. st_synchronize();
  1139. }
  1140. #endif
  1141. // Change the Z servo angle
  1142. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1143. #if SERVO_LEVELING
  1144. srv->attach(0);
  1145. #endif
  1146. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1147. #if SERVO_LEVELING
  1148. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1149. srv->detach();
  1150. #endif
  1151. }
  1152. #elif defined(Z_PROBE_ALLEN_KEY)
  1153. // Move up for safety
  1154. feedrate = homing_feedrate[X_AXIS];
  1155. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1156. prepare_move_raw(); // this will also set_current_to_destination
  1157. // Move to the start position to initiate retraction
  1158. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1159. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1160. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1161. prepare_move_raw(); // this will also set_current_to_destination
  1162. // Move the nozzle down to push the probe into retracted position
  1163. feedrate = homing_feedrate[Z_AXIS]/10;
  1164. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1165. prepare_move_raw(); // this will also set_current_to_destination
  1166. // Move up for safety
  1167. feedrate = homing_feedrate[Z_AXIS]/2;
  1168. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1169. prepare_move_raw(); // this will also set_current_to_destination
  1170. // Home XY for safety
  1171. feedrate = homing_feedrate[X_AXIS]/2;
  1172. destination[X_AXIS] = 0;
  1173. destination[Y_AXIS] = 0;
  1174. prepare_move_raw(); // this will also set_current_to_destination
  1175. st_synchronize();
  1176. #ifdef Z_PROBE_ENDSTOP
  1177. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1178. if (!z_probe_endstop)
  1179. #else
  1180. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1181. if (!z_min_endstop)
  1182. #endif
  1183. {
  1184. if (IsRunning()) {
  1185. SERIAL_ERROR_START;
  1186. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1187. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1188. }
  1189. Stop();
  1190. }
  1191. #endif
  1192. }
  1193. enum ProbeAction {
  1194. ProbeStay = 0,
  1195. ProbeDeploy = BIT(0),
  1196. ProbeStow = BIT(1),
  1197. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1198. };
  1199. // Probe bed height at position (x,y), returns the measured z value
  1200. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1201. // move to right place
  1202. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1203. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1204. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1205. if (retract_action & ProbeDeploy) deploy_z_probe();
  1206. #endif
  1207. run_z_probe();
  1208. float measured_z = current_position[Z_AXIS];
  1209. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1210. if (retract_action == ProbeStay) {
  1211. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1212. st_synchronize();
  1213. }
  1214. #endif
  1215. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1216. if (retract_action & ProbeStow) stow_z_probe();
  1217. #endif
  1218. if (verbose_level > 2) {
  1219. SERIAL_PROTOCOLPGM("Bed");
  1220. SERIAL_PROTOCOLPGM(" X: ");
  1221. SERIAL_PROTOCOL_F(x, 3);
  1222. SERIAL_PROTOCOLPGM(" Y: ");
  1223. SERIAL_PROTOCOL_F(y, 3);
  1224. SERIAL_PROTOCOLPGM(" Z: ");
  1225. SERIAL_PROTOCOL_F(measured_z, 3);
  1226. SERIAL_EOL;
  1227. }
  1228. return measured_z;
  1229. }
  1230. #ifdef DELTA
  1231. /**
  1232. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1233. */
  1234. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1235. if (bed_level[x][y] != 0.0) {
  1236. return; // Don't overwrite good values.
  1237. }
  1238. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1239. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1240. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1241. float median = c; // Median is robust (ignores outliers).
  1242. if (a < b) {
  1243. if (b < c) median = b;
  1244. if (c < a) median = a;
  1245. } else { // b <= a
  1246. if (c < b) median = b;
  1247. if (a < c) median = a;
  1248. }
  1249. bed_level[x][y] = median;
  1250. }
  1251. // Fill in the unprobed points (corners of circular print surface)
  1252. // using linear extrapolation, away from the center.
  1253. static void extrapolate_unprobed_bed_level() {
  1254. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1255. for (int y = 0; y <= half; y++) {
  1256. for (int x = 0; x <= half; x++) {
  1257. if (x + y < 3) continue;
  1258. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1259. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1260. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1261. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1262. }
  1263. }
  1264. }
  1265. // Print calibration results for plotting or manual frame adjustment.
  1266. static void print_bed_level() {
  1267. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1268. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1269. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1270. SERIAL_PROTOCOLCHAR(' ');
  1271. }
  1272. SERIAL_EOL;
  1273. }
  1274. }
  1275. // Reset calibration results to zero.
  1276. void reset_bed_level() {
  1277. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1278. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1279. bed_level[x][y] = 0.0;
  1280. }
  1281. }
  1282. }
  1283. #endif // DELTA
  1284. #endif // ENABLE_AUTO_BED_LEVELING
  1285. /**
  1286. * Home an individual axis
  1287. */
  1288. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1289. static void homeaxis(AxisEnum axis) {
  1290. #define HOMEAXIS_DO(LETTER) \
  1291. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1292. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1293. int axis_home_dir =
  1294. #ifdef DUAL_X_CARRIAGE
  1295. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1296. #endif
  1297. home_dir(axis);
  1298. // Set the axis position as setup for the move
  1299. current_position[axis] = 0;
  1300. sync_plan_position();
  1301. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1302. // Deploy a probe if there is one, and homing towards the bed
  1303. if (axis == Z_AXIS) {
  1304. if (axis_home_dir < 0) deploy_z_probe();
  1305. }
  1306. else
  1307. #endif
  1308. #ifdef SERVO_ENDSTOPS
  1309. {
  1310. // Engage Servo endstop if enabled
  1311. if (servo_endstops[axis] > -1)
  1312. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1313. }
  1314. #endif
  1315. // Set a flag for Z motor locking
  1316. #ifdef Z_DUAL_ENDSTOPS
  1317. if (axis == Z_AXIS) In_Homing_Process(true);
  1318. #endif
  1319. // Move towards the endstop until an endstop is triggered
  1320. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1321. feedrate = homing_feedrate[axis];
  1322. line_to_destination();
  1323. st_synchronize();
  1324. // Set the axis position as setup for the move
  1325. current_position[axis] = 0;
  1326. sync_plan_position();
  1327. enable_endstops(false); // Disable endstops while moving away
  1328. // Move away from the endstop by the axis HOME_BUMP_MM
  1329. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1330. line_to_destination();
  1331. st_synchronize();
  1332. enable_endstops(true); // Enable endstops for next homing move
  1333. // Slow down the feedrate for the next move
  1334. set_homing_bump_feedrate(axis);
  1335. // Move slowly towards the endstop until triggered
  1336. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1337. line_to_destination();
  1338. st_synchronize();
  1339. #ifdef Z_DUAL_ENDSTOPS
  1340. if (axis == Z_AXIS) {
  1341. float adj = fabs(z_endstop_adj);
  1342. bool lockZ1;
  1343. if (axis_home_dir > 0) {
  1344. adj = -adj;
  1345. lockZ1 = (z_endstop_adj > 0);
  1346. }
  1347. else
  1348. lockZ1 = (z_endstop_adj < 0);
  1349. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1350. sync_plan_position();
  1351. // Move to the adjusted endstop height
  1352. feedrate = homing_feedrate[axis];
  1353. destination[Z_AXIS] = adj;
  1354. line_to_destination();
  1355. st_synchronize();
  1356. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1357. In_Homing_Process(false);
  1358. } // Z_AXIS
  1359. #endif
  1360. #ifdef DELTA
  1361. // retrace by the amount specified in endstop_adj
  1362. if (endstop_adj[axis] * axis_home_dir < 0) {
  1363. enable_endstops(false); // Disable endstops while moving away
  1364. sync_plan_position();
  1365. destination[axis] = endstop_adj[axis];
  1366. line_to_destination();
  1367. st_synchronize();
  1368. enable_endstops(true); // Enable endstops for next homing move
  1369. }
  1370. #endif
  1371. // Set the axis position to its home position (plus home offsets)
  1372. axis_is_at_home(axis);
  1373. sync_plan_position();
  1374. destination[axis] = current_position[axis];
  1375. feedrate = 0.0;
  1376. endstops_hit_on_purpose(); // clear endstop hit flags
  1377. axis_known_position[axis] = true;
  1378. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1379. // Deploy a probe if there is one, and homing towards the bed
  1380. if (axis == Z_AXIS) {
  1381. if (axis_home_dir < 0) stow_z_probe();
  1382. }
  1383. else
  1384. #endif
  1385. #ifdef SERVO_ENDSTOPS
  1386. {
  1387. // Retract Servo endstop if enabled
  1388. if (servo_endstops[axis] > -1)
  1389. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1390. }
  1391. #endif
  1392. }
  1393. }
  1394. #ifdef FWRETRACT
  1395. void retract(bool retracting, bool swapping=false) {
  1396. if (retracting == retracted[active_extruder]) return;
  1397. float oldFeedrate = feedrate;
  1398. set_destination_to_current();
  1399. if (retracting) {
  1400. feedrate = retract_feedrate * 60;
  1401. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1402. plan_set_e_position(current_position[E_AXIS]);
  1403. prepare_move();
  1404. if (retract_zlift > 0.01) {
  1405. current_position[Z_AXIS] -= retract_zlift;
  1406. #ifdef DELTA
  1407. sync_plan_position_delta();
  1408. #else
  1409. sync_plan_position();
  1410. #endif
  1411. prepare_move();
  1412. }
  1413. }
  1414. else {
  1415. if (retract_zlift > 0.01) {
  1416. current_position[Z_AXIS] += retract_zlift;
  1417. #ifdef DELTA
  1418. sync_plan_position_delta();
  1419. #else
  1420. sync_plan_position();
  1421. #endif
  1422. //prepare_move();
  1423. }
  1424. feedrate = retract_recover_feedrate * 60;
  1425. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1426. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1427. plan_set_e_position(current_position[E_AXIS]);
  1428. prepare_move();
  1429. }
  1430. feedrate = oldFeedrate;
  1431. retracted[active_extruder] = retracting;
  1432. } // retract()
  1433. #endif // FWRETRACT
  1434. #ifdef Z_PROBE_SLED
  1435. #ifndef SLED_DOCKING_OFFSET
  1436. #define SLED_DOCKING_OFFSET 0
  1437. #endif
  1438. /**
  1439. * Method to dock/undock a sled designed by Charles Bell.
  1440. *
  1441. * dock[in] If true, move to MAX_X and engage the electromagnet
  1442. * offset[in] The additional distance to move to adjust docking location
  1443. */
  1444. static void dock_sled(bool dock, int offset=0) {
  1445. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1446. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1447. SERIAL_ECHO_START;
  1448. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1449. return;
  1450. }
  1451. if (dock) {
  1452. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
  1453. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1454. } else {
  1455. float z_loc = current_position[Z_AXIS];
  1456. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1457. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
  1458. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1459. }
  1460. }
  1461. #endif // Z_PROBE_SLED
  1462. /**
  1463. *
  1464. * G-Code Handler functions
  1465. *
  1466. */
  1467. /**
  1468. * G0, G1: Coordinated movement of X Y Z E axes
  1469. */
  1470. inline void gcode_G0_G1() {
  1471. if (IsRunning()) {
  1472. get_coordinates(); // For X Y Z E F
  1473. #ifdef FWRETRACT
  1474. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1475. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1476. // Is this move an attempt to retract or recover?
  1477. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1478. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1479. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1480. retract(!retracted[active_extruder]);
  1481. return;
  1482. }
  1483. }
  1484. #endif //FWRETRACT
  1485. prepare_move();
  1486. //ok_to_send();
  1487. }
  1488. }
  1489. /**
  1490. * G2: Clockwise Arc
  1491. * G3: Counterclockwise Arc
  1492. */
  1493. inline void gcode_G2_G3(bool clockwise) {
  1494. if (IsRunning()) {
  1495. get_arc_coordinates();
  1496. prepare_arc_move(clockwise);
  1497. }
  1498. }
  1499. /**
  1500. * G4: Dwell S<seconds> or P<milliseconds>
  1501. */
  1502. inline void gcode_G4() {
  1503. millis_t codenum = 0;
  1504. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1505. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1506. st_synchronize();
  1507. refresh_cmd_timeout();
  1508. codenum += previous_cmd_ms; // keep track of when we started waiting
  1509. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1510. while (millis() < codenum) {
  1511. manage_heater();
  1512. manage_inactivity();
  1513. lcd_update();
  1514. }
  1515. }
  1516. #ifdef FWRETRACT
  1517. /**
  1518. * G10 - Retract filament according to settings of M207
  1519. * G11 - Recover filament according to settings of M208
  1520. */
  1521. inline void gcode_G10_G11(bool doRetract=false) {
  1522. #if EXTRUDERS > 1
  1523. if (doRetract) {
  1524. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1525. }
  1526. #endif
  1527. retract(doRetract
  1528. #if EXTRUDERS > 1
  1529. , retracted_swap[active_extruder]
  1530. #endif
  1531. );
  1532. }
  1533. #endif //FWRETRACT
  1534. /**
  1535. * G28: Home all axes according to settings
  1536. *
  1537. * Parameters
  1538. *
  1539. * None Home to all axes with no parameters.
  1540. * With QUICK_HOME enabled XY will home together, then Z.
  1541. *
  1542. * Cartesian parameters
  1543. *
  1544. * X Home to the X endstop
  1545. * Y Home to the Y endstop
  1546. * Z Home to the Z endstop
  1547. *
  1548. */
  1549. inline void gcode_G28() {
  1550. // Wait for planner moves to finish!
  1551. st_synchronize();
  1552. // For auto bed leveling, clear the level matrix
  1553. #ifdef ENABLE_AUTO_BED_LEVELING
  1554. plan_bed_level_matrix.set_to_identity();
  1555. #ifdef DELTA
  1556. reset_bed_level();
  1557. #endif
  1558. #endif
  1559. // For manual bed leveling deactivate the matrix temporarily
  1560. #ifdef MESH_BED_LEVELING
  1561. uint8_t mbl_was_active = mbl.active;
  1562. mbl.active = 0;
  1563. #endif
  1564. setup_for_endstop_move();
  1565. set_destination_to_current();
  1566. feedrate = 0.0;
  1567. #ifdef DELTA
  1568. // A delta can only safely home all axis at the same time
  1569. // all axis have to home at the same time
  1570. // Pretend the current position is 0,0,0
  1571. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1572. sync_plan_position();
  1573. // Move all carriages up together until the first endstop is hit.
  1574. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1575. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1576. line_to_destination();
  1577. st_synchronize();
  1578. endstops_hit_on_purpose(); // clear endstop hit flags
  1579. // Destination reached
  1580. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1581. // take care of back off and rehome now we are all at the top
  1582. HOMEAXIS(X);
  1583. HOMEAXIS(Y);
  1584. HOMEAXIS(Z);
  1585. sync_plan_position_delta();
  1586. #else // NOT DELTA
  1587. bool homeX = code_seen(axis_codes[X_AXIS]),
  1588. homeY = code_seen(axis_codes[Y_AXIS]),
  1589. homeZ = code_seen(axis_codes[Z_AXIS]);
  1590. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1591. if (home_all_axis || homeZ) {
  1592. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1593. HOMEAXIS(Z);
  1594. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1595. // Raise Z before homing any other axes
  1596. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1597. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1598. feedrate = max_feedrate[Z_AXIS] * 60;
  1599. line_to_destination();
  1600. st_synchronize();
  1601. #endif
  1602. } // home_all_axis || homeZ
  1603. #ifdef QUICK_HOME
  1604. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1605. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1606. #ifdef DUAL_X_CARRIAGE
  1607. int x_axis_home_dir = x_home_dir(active_extruder);
  1608. extruder_duplication_enabled = false;
  1609. #else
  1610. int x_axis_home_dir = home_dir(X_AXIS);
  1611. #endif
  1612. sync_plan_position();
  1613. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1614. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1615. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1616. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1617. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1618. line_to_destination();
  1619. st_synchronize();
  1620. axis_is_at_home(X_AXIS);
  1621. axis_is_at_home(Y_AXIS);
  1622. sync_plan_position();
  1623. destination[X_AXIS] = current_position[X_AXIS];
  1624. destination[Y_AXIS] = current_position[Y_AXIS];
  1625. line_to_destination();
  1626. feedrate = 0.0;
  1627. st_synchronize();
  1628. endstops_hit_on_purpose(); // clear endstop hit flags
  1629. current_position[X_AXIS] = destination[X_AXIS];
  1630. current_position[Y_AXIS] = destination[Y_AXIS];
  1631. #ifndef SCARA
  1632. current_position[Z_AXIS] = destination[Z_AXIS];
  1633. #endif
  1634. }
  1635. #endif // QUICK_HOME
  1636. #ifdef HOME_Y_BEFORE_X
  1637. // Home Y
  1638. if (home_all_axis || homeY) HOMEAXIS(Y);
  1639. #endif
  1640. // Home X
  1641. if (home_all_axis || homeX) {
  1642. #ifdef DUAL_X_CARRIAGE
  1643. int tmp_extruder = active_extruder;
  1644. extruder_duplication_enabled = false;
  1645. active_extruder = !active_extruder;
  1646. HOMEAXIS(X);
  1647. inactive_extruder_x_pos = current_position[X_AXIS];
  1648. active_extruder = tmp_extruder;
  1649. HOMEAXIS(X);
  1650. // reset state used by the different modes
  1651. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1652. delayed_move_time = 0;
  1653. active_extruder_parked = true;
  1654. #else
  1655. HOMEAXIS(X);
  1656. #endif
  1657. }
  1658. #ifndef HOME_Y_BEFORE_X
  1659. // Home Y
  1660. if (home_all_axis || homeY) HOMEAXIS(Y);
  1661. #endif
  1662. // Home Z last if homing towards the bed
  1663. #if Z_HOME_DIR < 0
  1664. if (home_all_axis || homeZ) {
  1665. #ifdef Z_SAFE_HOMING
  1666. if (home_all_axis) {
  1667. current_position[Z_AXIS] = 0;
  1668. sync_plan_position();
  1669. //
  1670. // Set the probe (or just the nozzle) destination to the safe homing point
  1671. //
  1672. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1673. // then this may not work as expected.
  1674. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1675. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1676. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1677. feedrate = XY_TRAVEL_SPEED;
  1678. // This could potentially move X, Y, Z all together
  1679. line_to_destination();
  1680. st_synchronize();
  1681. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1682. current_position[X_AXIS] = destination[X_AXIS];
  1683. current_position[Y_AXIS] = destination[Y_AXIS];
  1684. // Home the Z axis
  1685. HOMEAXIS(Z);
  1686. }
  1687. else if (homeZ) { // Don't need to Home Z twice
  1688. // Let's see if X and Y are homed
  1689. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1690. // Make sure the probe is within the physical limits
  1691. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1692. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1693. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1694. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1695. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1696. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1697. // Set the plan current position to X, Y, 0
  1698. current_position[Z_AXIS] = 0;
  1699. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1700. // Set Z destination away from bed and raise the axis
  1701. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1702. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1703. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1704. line_to_destination();
  1705. st_synchronize();
  1706. // Home the Z axis
  1707. HOMEAXIS(Z);
  1708. }
  1709. else {
  1710. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1711. SERIAL_ECHO_START;
  1712. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1713. }
  1714. }
  1715. else {
  1716. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1717. SERIAL_ECHO_START;
  1718. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1719. }
  1720. } // !home_all_axes && homeZ
  1721. #else // !Z_SAFE_HOMING
  1722. HOMEAXIS(Z);
  1723. #endif // !Z_SAFE_HOMING
  1724. } // home_all_axis || homeZ
  1725. #endif // Z_HOME_DIR < 0
  1726. sync_plan_position();
  1727. #endif // else DELTA
  1728. #ifdef SCARA
  1729. sync_plan_position_delta();
  1730. #endif
  1731. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1732. enable_endstops(false);
  1733. #endif
  1734. // For manual leveling move back to 0,0
  1735. #ifdef MESH_BED_LEVELING
  1736. if (mbl_was_active) {
  1737. current_position[X_AXIS] = mbl.get_x(0);
  1738. current_position[Y_AXIS] = mbl.get_y(0);
  1739. set_destination_to_current();
  1740. feedrate = homing_feedrate[X_AXIS];
  1741. line_to_destination();
  1742. st_synchronize();
  1743. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1744. sync_plan_position();
  1745. mbl.active = 1;
  1746. }
  1747. #endif
  1748. feedrate = saved_feedrate;
  1749. feedrate_multiplier = saved_feedrate_multiplier;
  1750. refresh_cmd_timeout();
  1751. endstops_hit_on_purpose(); // clear endstop hit flags
  1752. }
  1753. #ifdef MESH_BED_LEVELING
  1754. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1755. /**
  1756. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1757. * mesh to compensate for variable bed height
  1758. *
  1759. * Parameters With MESH_BED_LEVELING:
  1760. *
  1761. * S0 Produce a mesh report
  1762. * S1 Start probing mesh points
  1763. * S2 Probe the next mesh point
  1764. * S3 Xn Yn Zn.nn Manually modify a single point
  1765. *
  1766. * The S0 report the points as below
  1767. *
  1768. * +----> X-axis
  1769. * |
  1770. * |
  1771. * v Y-axis
  1772. *
  1773. */
  1774. inline void gcode_G29() {
  1775. static int probe_point = -1;
  1776. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1777. if (state < 0 || state > 3) {
  1778. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1779. return;
  1780. }
  1781. int ix, iy;
  1782. float z;
  1783. switch(state) {
  1784. case MeshReport:
  1785. if (mbl.active) {
  1786. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1787. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1788. SERIAL_PROTOCOLCHAR(',');
  1789. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1790. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1791. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1792. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1793. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1794. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1795. SERIAL_PROTOCOLPGM(" ");
  1796. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1797. }
  1798. SERIAL_EOL;
  1799. }
  1800. }
  1801. else
  1802. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1803. break;
  1804. case MeshStart:
  1805. mbl.reset();
  1806. probe_point = 0;
  1807. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1808. break;
  1809. case MeshNext:
  1810. if (probe_point < 0) {
  1811. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1812. return;
  1813. }
  1814. if (probe_point == 0) {
  1815. // Set Z to a positive value before recording the first Z.
  1816. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1817. sync_plan_position();
  1818. }
  1819. else {
  1820. // For others, save the Z of the previous point, then raise Z again.
  1821. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1822. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1823. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1824. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1825. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1827. st_synchronize();
  1828. }
  1829. // Is there another point to sample? Move there.
  1830. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1831. ix = probe_point % MESH_NUM_X_POINTS;
  1832. iy = probe_point / MESH_NUM_X_POINTS;
  1833. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1834. current_position[X_AXIS] = mbl.get_x(ix);
  1835. current_position[Y_AXIS] = mbl.get_y(iy);
  1836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1837. st_synchronize();
  1838. probe_point++;
  1839. }
  1840. else {
  1841. // After recording the last point, activate the mbl and home
  1842. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1843. probe_point = -1;
  1844. mbl.active = 1;
  1845. enqueuecommands_P(PSTR("G28"));
  1846. }
  1847. break;
  1848. case MeshSet:
  1849. if (code_seen('X') || code_seen('x')) {
  1850. ix = code_value_long()-1;
  1851. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1852. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1853. return;
  1854. }
  1855. } else {
  1856. SERIAL_PROTOCOLPGM("X not entered.\n");
  1857. return;
  1858. }
  1859. if (code_seen('Y') || code_seen('y')) {
  1860. iy = code_value_long()-1;
  1861. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1862. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1863. return;
  1864. }
  1865. } else {
  1866. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1867. return;
  1868. }
  1869. if (code_seen('Z') || code_seen('z')) {
  1870. z = code_value();
  1871. } else {
  1872. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1873. return;
  1874. }
  1875. mbl.z_values[iy][ix] = z;
  1876. } // switch(state)
  1877. }
  1878. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1879. /**
  1880. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1881. * Will fail if the printer has not been homed with G28.
  1882. *
  1883. * Enhanced G29 Auto Bed Leveling Probe Routine
  1884. *
  1885. * Parameters With AUTO_BED_LEVELING_GRID:
  1886. *
  1887. * P Set the size of the grid that will be probed (P x P points).
  1888. * Not supported by non-linear delta printer bed leveling.
  1889. * Example: "G29 P4"
  1890. *
  1891. * S Set the XY travel speed between probe points (in mm/min)
  1892. *
  1893. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1894. * or clean the rotation Matrix. Useful to check the topology
  1895. * after a first run of G29.
  1896. *
  1897. * V Set the verbose level (0-4). Example: "G29 V3"
  1898. *
  1899. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1900. * This is useful for manual bed leveling and finding flaws in the bed (to
  1901. * assist with part placement).
  1902. * Not supported by non-linear delta printer bed leveling.
  1903. *
  1904. * F Set the Front limit of the probing grid
  1905. * B Set the Back limit of the probing grid
  1906. * L Set the Left limit of the probing grid
  1907. * R Set the Right limit of the probing grid
  1908. *
  1909. * Global Parameters:
  1910. *
  1911. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1912. * Include "E" to engage/disengage the probe for each sample.
  1913. * There's no extra effect if you have a fixed probe.
  1914. * Usage: "G29 E" or "G29 e"
  1915. *
  1916. */
  1917. inline void gcode_G29() {
  1918. // Don't allow auto-leveling without homing first
  1919. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1920. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1921. SERIAL_ECHO_START;
  1922. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1923. return;
  1924. }
  1925. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1926. if (verbose_level < 0 || verbose_level > 4) {
  1927. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1928. return;
  1929. }
  1930. bool dryrun = code_seen('D') || code_seen('d'),
  1931. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1932. #ifdef AUTO_BED_LEVELING_GRID
  1933. #ifndef DELTA
  1934. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1935. #endif
  1936. if (verbose_level > 0) {
  1937. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1938. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1939. }
  1940. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1941. #ifndef DELTA
  1942. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1943. if (auto_bed_leveling_grid_points < 2) {
  1944. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1945. return;
  1946. }
  1947. #endif
  1948. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1949. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1950. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1951. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1952. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1953. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1954. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1955. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1956. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1957. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1958. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1959. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1960. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1961. if (left_out || right_out || front_out || back_out) {
  1962. if (left_out) {
  1963. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1964. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1965. }
  1966. if (right_out) {
  1967. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1968. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1969. }
  1970. if (front_out) {
  1971. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1972. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1973. }
  1974. if (back_out) {
  1975. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1976. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1977. }
  1978. return;
  1979. }
  1980. #endif // AUTO_BED_LEVELING_GRID
  1981. #ifdef Z_PROBE_SLED
  1982. dock_sled(false); // engage (un-dock) the probe
  1983. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1984. deploy_z_probe();
  1985. #endif
  1986. st_synchronize();
  1987. if (!dryrun) {
  1988. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1989. plan_bed_level_matrix.set_to_identity();
  1990. #ifdef DELTA
  1991. reset_bed_level();
  1992. #else //!DELTA
  1993. //vector_3 corrected_position = plan_get_position_mm();
  1994. //corrected_position.debug("position before G29");
  1995. vector_3 uncorrected_position = plan_get_position();
  1996. //uncorrected_position.debug("position during G29");
  1997. current_position[X_AXIS] = uncorrected_position.x;
  1998. current_position[Y_AXIS] = uncorrected_position.y;
  1999. current_position[Z_AXIS] = uncorrected_position.z;
  2000. sync_plan_position();
  2001. #endif // !DELTA
  2002. }
  2003. setup_for_endstop_move();
  2004. feedrate = homing_feedrate[Z_AXIS];
  2005. #ifdef AUTO_BED_LEVELING_GRID
  2006. // probe at the points of a lattice grid
  2007. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2008. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2009. #ifdef DELTA
  2010. delta_grid_spacing[0] = xGridSpacing;
  2011. delta_grid_spacing[1] = yGridSpacing;
  2012. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2013. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2014. #else // !DELTA
  2015. // solve the plane equation ax + by + d = z
  2016. // A is the matrix with rows [x y 1] for all the probed points
  2017. // B is the vector of the Z positions
  2018. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2019. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2020. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2021. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2022. eqnBVector[abl2], // "B" vector of Z points
  2023. mean = 0.0;
  2024. #endif // !DELTA
  2025. int probePointCounter = 0;
  2026. bool zig = true;
  2027. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2028. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2029. int xStart, xStop, xInc;
  2030. if (zig) {
  2031. xStart = 0;
  2032. xStop = auto_bed_leveling_grid_points;
  2033. xInc = 1;
  2034. }
  2035. else {
  2036. xStart = auto_bed_leveling_grid_points - 1;
  2037. xStop = -1;
  2038. xInc = -1;
  2039. }
  2040. #ifndef DELTA
  2041. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2042. // This gets the probe points in more readable order.
  2043. if (!do_topography_map) zig = !zig;
  2044. #endif
  2045. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2046. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2047. // raise extruder
  2048. float measured_z,
  2049. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2050. #ifdef DELTA
  2051. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2052. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2053. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2054. #endif //DELTA
  2055. ProbeAction act;
  2056. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2057. act = ProbeDeployAndStow;
  2058. else if (yCount == 0 && xCount == xStart)
  2059. act = ProbeDeploy;
  2060. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2061. act = ProbeStow;
  2062. else
  2063. act = ProbeStay;
  2064. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2065. #ifndef DELTA
  2066. mean += measured_z;
  2067. eqnBVector[probePointCounter] = measured_z;
  2068. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2069. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2070. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2071. #else
  2072. bed_level[xCount][yCount] = measured_z + z_offset;
  2073. #endif
  2074. probePointCounter++;
  2075. manage_heater();
  2076. manage_inactivity();
  2077. lcd_update();
  2078. } //xProbe
  2079. } //yProbe
  2080. clean_up_after_endstop_move();
  2081. #ifdef DELTA
  2082. if (!dryrun) extrapolate_unprobed_bed_level();
  2083. print_bed_level();
  2084. #else // !DELTA
  2085. // solve lsq problem
  2086. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2087. mean /= abl2;
  2088. if (verbose_level) {
  2089. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2090. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2091. SERIAL_PROTOCOLPGM(" b: ");
  2092. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2093. SERIAL_PROTOCOLPGM(" d: ");
  2094. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2095. SERIAL_EOL;
  2096. if (verbose_level > 2) {
  2097. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2098. SERIAL_PROTOCOL_F(mean, 8);
  2099. SERIAL_EOL;
  2100. }
  2101. }
  2102. // Show the Topography map if enabled
  2103. if (do_topography_map) {
  2104. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2105. SERIAL_PROTOCOLPGM("+-----------+\n");
  2106. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2107. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2108. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2109. SERIAL_PROTOCOLPGM("+-----------+\n");
  2110. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2111. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2112. int ind = yy * auto_bed_leveling_grid_points + xx;
  2113. float diff = eqnBVector[ind] - mean;
  2114. if (diff >= 0.0)
  2115. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2116. else
  2117. SERIAL_PROTOCOLCHAR(' ');
  2118. SERIAL_PROTOCOL_F(diff, 5);
  2119. } // xx
  2120. SERIAL_EOL;
  2121. } // yy
  2122. SERIAL_EOL;
  2123. } //do_topography_map
  2124. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2125. free(plane_equation_coefficients);
  2126. #endif //!DELTA
  2127. #else // !AUTO_BED_LEVELING_GRID
  2128. // Actions for each probe
  2129. ProbeAction p1, p2, p3;
  2130. if (deploy_probe_for_each_reading)
  2131. p1 = p2 = p3 = ProbeDeployAndStow;
  2132. else
  2133. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2134. // Probe at 3 arbitrary points
  2135. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2136. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2137. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2138. clean_up_after_endstop_move();
  2139. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2140. #endif // !AUTO_BED_LEVELING_GRID
  2141. #ifndef DELTA
  2142. if (verbose_level > 0)
  2143. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2144. if (!dryrun) {
  2145. // Correct the Z height difference from z-probe position and hotend tip position.
  2146. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2147. // When the bed is uneven, this height must be corrected.
  2148. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2149. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2150. z_tmp = current_position[Z_AXIS],
  2151. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2152. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2153. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2154. sync_plan_position();
  2155. }
  2156. #endif // !DELTA
  2157. #ifdef Z_PROBE_SLED
  2158. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2159. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2160. stow_z_probe();
  2161. #endif
  2162. #ifdef Z_PROBE_END_SCRIPT
  2163. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2164. st_synchronize();
  2165. #endif
  2166. }
  2167. #ifndef Z_PROBE_SLED
  2168. inline void gcode_G30() {
  2169. deploy_z_probe(); // Engage Z Servo endstop if available
  2170. st_synchronize();
  2171. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2172. setup_for_endstop_move();
  2173. feedrate = homing_feedrate[Z_AXIS];
  2174. run_z_probe();
  2175. SERIAL_PROTOCOLPGM("Bed");
  2176. SERIAL_PROTOCOLPGM(" X: ");
  2177. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2178. SERIAL_PROTOCOLPGM(" Y: ");
  2179. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2180. SERIAL_PROTOCOLPGM(" Z: ");
  2181. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2182. SERIAL_EOL;
  2183. clean_up_after_endstop_move();
  2184. stow_z_probe(); // Retract Z Servo endstop if available
  2185. }
  2186. #endif //!Z_PROBE_SLED
  2187. #endif //ENABLE_AUTO_BED_LEVELING
  2188. /**
  2189. * G92: Set current position to given X Y Z E
  2190. */
  2191. inline void gcode_G92() {
  2192. if (!code_seen(axis_codes[E_AXIS]))
  2193. st_synchronize();
  2194. bool didXYZ = false;
  2195. for (int i = 0; i < NUM_AXIS; i++) {
  2196. if (code_seen(axis_codes[i])) {
  2197. float v = current_position[i] = code_value();
  2198. if (i == E_AXIS)
  2199. plan_set_e_position(v);
  2200. else
  2201. didXYZ = true;
  2202. }
  2203. }
  2204. if (didXYZ) sync_plan_position();
  2205. }
  2206. #ifdef ULTIPANEL
  2207. /**
  2208. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2209. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2210. */
  2211. inline void gcode_M0_M1() {
  2212. char *src = strchr_pointer + 2;
  2213. millis_t codenum = 0;
  2214. bool hasP = false, hasS = false;
  2215. if (code_seen('P')) {
  2216. codenum = code_value_short(); // milliseconds to wait
  2217. hasP = codenum > 0;
  2218. }
  2219. if (code_seen('S')) {
  2220. codenum = code_value_short() * 1000UL; // seconds to wait
  2221. hasS = codenum > 0;
  2222. }
  2223. char* starpos = strchr(src, '*');
  2224. if (starpos != NULL) *(starpos) = '\0';
  2225. while (*src == ' ') ++src;
  2226. if (!hasP && !hasS && *src != '\0')
  2227. lcd_setstatus(src, true);
  2228. else {
  2229. LCD_MESSAGEPGM(MSG_USERWAIT);
  2230. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2231. dontExpireStatus();
  2232. #endif
  2233. }
  2234. lcd_ignore_click();
  2235. st_synchronize();
  2236. refresh_cmd_timeout();
  2237. if (codenum > 0) {
  2238. codenum += previous_cmd_ms; // keep track of when we started waiting
  2239. while(millis() < codenum && !lcd_clicked()) {
  2240. manage_heater();
  2241. manage_inactivity();
  2242. lcd_update();
  2243. }
  2244. lcd_ignore_click(false);
  2245. }
  2246. else {
  2247. if (!lcd_detected()) return;
  2248. while (!lcd_clicked()) {
  2249. manage_heater();
  2250. manage_inactivity();
  2251. lcd_update();
  2252. }
  2253. }
  2254. if (IS_SD_PRINTING)
  2255. LCD_MESSAGEPGM(MSG_RESUMING);
  2256. else
  2257. LCD_MESSAGEPGM(WELCOME_MSG);
  2258. }
  2259. #endif // ULTIPANEL
  2260. /**
  2261. * M17: Enable power on all stepper motors
  2262. */
  2263. inline void gcode_M17() {
  2264. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2265. enable_all_steppers();
  2266. }
  2267. #ifdef SDSUPPORT
  2268. /**
  2269. * M20: List SD card to serial output
  2270. */
  2271. inline void gcode_M20() {
  2272. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2273. card.ls();
  2274. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2275. }
  2276. /**
  2277. * M21: Init SD Card
  2278. */
  2279. inline void gcode_M21() {
  2280. card.initsd();
  2281. }
  2282. /**
  2283. * M22: Release SD Card
  2284. */
  2285. inline void gcode_M22() {
  2286. card.release();
  2287. }
  2288. /**
  2289. * M23: Select a file
  2290. */
  2291. inline void gcode_M23() {
  2292. char* codepos = strchr_pointer + 4;
  2293. char* starpos = strchr(codepos, '*');
  2294. if (starpos) *starpos = '\0';
  2295. card.openFile(codepos, true);
  2296. }
  2297. /**
  2298. * M24: Start SD Print
  2299. */
  2300. inline void gcode_M24() {
  2301. card.startFileprint();
  2302. print_job_start_ms = millis();
  2303. }
  2304. /**
  2305. * M25: Pause SD Print
  2306. */
  2307. inline void gcode_M25() {
  2308. card.pauseSDPrint();
  2309. }
  2310. /**
  2311. * M26: Set SD Card file index
  2312. */
  2313. inline void gcode_M26() {
  2314. if (card.cardOK && code_seen('S'))
  2315. card.setIndex(code_value_short());
  2316. }
  2317. /**
  2318. * M27: Get SD Card status
  2319. */
  2320. inline void gcode_M27() {
  2321. card.getStatus();
  2322. }
  2323. /**
  2324. * M28: Start SD Write
  2325. */
  2326. inline void gcode_M28() {
  2327. char* codepos = strchr_pointer + 4;
  2328. char* starpos = strchr(codepos, '*');
  2329. if (starpos) {
  2330. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2331. strchr_pointer = strchr(npos, ' ') + 1;
  2332. *(starpos) = '\0';
  2333. }
  2334. card.openFile(codepos, false);
  2335. }
  2336. /**
  2337. * M29: Stop SD Write
  2338. * Processed in write to file routine above
  2339. */
  2340. inline void gcode_M29() {
  2341. // card.saving = false;
  2342. }
  2343. /**
  2344. * M30 <filename>: Delete SD Card file
  2345. */
  2346. inline void gcode_M30() {
  2347. if (card.cardOK) {
  2348. card.closefile();
  2349. char* starpos = strchr(strchr_pointer + 4, '*');
  2350. if (starpos) {
  2351. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2352. strchr_pointer = strchr(npos, ' ') + 1;
  2353. *(starpos) = '\0';
  2354. }
  2355. card.removeFile(strchr_pointer + 4);
  2356. }
  2357. }
  2358. #endif
  2359. /**
  2360. * M31: Get the time since the start of SD Print (or last M109)
  2361. */
  2362. inline void gcode_M31() {
  2363. print_job_stop_ms = millis();
  2364. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2365. int min = t / 60, sec = t % 60;
  2366. char time[30];
  2367. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2368. SERIAL_ECHO_START;
  2369. SERIAL_ECHOLN(time);
  2370. lcd_setstatus(time);
  2371. autotempShutdown();
  2372. }
  2373. #ifdef SDSUPPORT
  2374. /**
  2375. * M32: Select file and start SD Print
  2376. */
  2377. inline void gcode_M32() {
  2378. if (card.sdprinting)
  2379. st_synchronize();
  2380. char* codepos = strchr_pointer + 4;
  2381. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2382. if (! namestartpos)
  2383. namestartpos = codepos; //default name position, 4 letters after the M
  2384. else
  2385. namestartpos++; //to skip the '!'
  2386. char* starpos = strchr(codepos, '*');
  2387. if (starpos) *(starpos) = '\0';
  2388. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2389. if (card.cardOK) {
  2390. card.openFile(namestartpos, true, !call_procedure);
  2391. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2392. card.setIndex(code_value_short());
  2393. card.startFileprint();
  2394. if (!call_procedure)
  2395. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2396. }
  2397. }
  2398. /**
  2399. * M928: Start SD Write
  2400. */
  2401. inline void gcode_M928() {
  2402. char* starpos = strchr(strchr_pointer + 5, '*');
  2403. if (starpos) {
  2404. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2405. strchr_pointer = strchr(npos, ' ') + 1;
  2406. *(starpos) = '\0';
  2407. }
  2408. card.openLogFile(strchr_pointer + 5);
  2409. }
  2410. #endif // SDSUPPORT
  2411. /**
  2412. * M42: Change pin status via GCode
  2413. */
  2414. inline void gcode_M42() {
  2415. if (code_seen('S')) {
  2416. int pin_status = code_value_short(),
  2417. pin_number = LED_PIN;
  2418. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2419. pin_number = code_value_short();
  2420. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2421. if (sensitive_pins[i] == pin_number) {
  2422. pin_number = -1;
  2423. break;
  2424. }
  2425. }
  2426. #if HAS_FAN
  2427. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2428. #endif
  2429. if (pin_number > -1) {
  2430. pinMode(pin_number, OUTPUT);
  2431. digitalWrite(pin_number, pin_status);
  2432. analogWrite(pin_number, pin_status);
  2433. }
  2434. } // code_seen('S')
  2435. }
  2436. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2437. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2438. #ifdef Z_PROBE_ENDSTOP
  2439. #if !HAS_Z_PROBE
  2440. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2441. #endif
  2442. #elif !HAS_Z_MIN
  2443. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2444. #endif
  2445. /**
  2446. * M48: Z-Probe repeatability measurement function.
  2447. *
  2448. * Usage:
  2449. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2450. * P = Number of sampled points (4-50, default 10)
  2451. * X = Sample X position
  2452. * Y = Sample Y position
  2453. * V = Verbose level (0-4, default=1)
  2454. * E = Engage probe for each reading
  2455. * L = Number of legs of movement before probe
  2456. *
  2457. * This function assumes the bed has been homed. Specifically, that a G28 command
  2458. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2459. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2460. * regenerated.
  2461. */
  2462. inline void gcode_M48() {
  2463. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2464. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2465. if (code_seen('V') || code_seen('v')) {
  2466. verbose_level = code_value_short();
  2467. if (verbose_level < 0 || verbose_level > 4 ) {
  2468. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2469. return;
  2470. }
  2471. }
  2472. if (verbose_level > 0)
  2473. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2474. if (code_seen('P') || code_seen('p')) {
  2475. n_samples = code_value_short();
  2476. if (n_samples < 4 || n_samples > 50) {
  2477. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2478. return;
  2479. }
  2480. }
  2481. double X_current = st_get_position_mm(X_AXIS),
  2482. Y_current = st_get_position_mm(Y_AXIS),
  2483. Z_current = st_get_position_mm(Z_AXIS),
  2484. E_current = st_get_position_mm(E_AXIS),
  2485. X_probe_location = X_current, Y_probe_location = Y_current,
  2486. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2487. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2488. if (code_seen('X') || code_seen('x')) {
  2489. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2490. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2491. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2492. return;
  2493. }
  2494. }
  2495. if (code_seen('Y') || code_seen('y')) {
  2496. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2497. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2498. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2499. return;
  2500. }
  2501. }
  2502. if (code_seen('L') || code_seen('l')) {
  2503. n_legs = code_value_short();
  2504. if (n_legs == 1) n_legs = 2;
  2505. if (n_legs < 0 || n_legs > 15) {
  2506. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2507. return;
  2508. }
  2509. }
  2510. //
  2511. // Do all the preliminary setup work. First raise the probe.
  2512. //
  2513. st_synchronize();
  2514. plan_bed_level_matrix.set_to_identity();
  2515. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2516. st_synchronize();
  2517. //
  2518. // Now get everything to the specified probe point So we can safely do a probe to
  2519. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2520. // use that as a starting point for each probe.
  2521. //
  2522. if (verbose_level > 2)
  2523. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2524. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2525. E_current,
  2526. homing_feedrate[X_AXIS]/60,
  2527. active_extruder);
  2528. st_synchronize();
  2529. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2530. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2531. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2532. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2533. //
  2534. // OK, do the initial probe to get us close to the bed.
  2535. // Then retrace the right amount and use that in subsequent probes
  2536. //
  2537. deploy_z_probe();
  2538. setup_for_endstop_move();
  2539. run_z_probe();
  2540. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2541. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2542. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2543. E_current,
  2544. homing_feedrate[X_AXIS]/60,
  2545. active_extruder);
  2546. st_synchronize();
  2547. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2548. if (deploy_probe_for_each_reading) stow_z_probe();
  2549. for (uint8_t n=0; n < n_samples; n++) {
  2550. // Make sure we are at the probe location
  2551. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2552. if (n_legs) {
  2553. millis_t ms = millis();
  2554. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2555. theta = RADIANS(ms % 360L);
  2556. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2557. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2558. //SERIAL_ECHOPAIR(" theta: ",theta);
  2559. //SERIAL_ECHOPAIR(" direction: ",dir);
  2560. //SERIAL_EOL;
  2561. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2562. ms = millis();
  2563. theta += RADIANS(dir * (ms % 20L));
  2564. radius += (ms % 10L) - 5L;
  2565. if (radius < 0.0) radius = -radius;
  2566. X_current = X_probe_location + cos(theta) * radius;
  2567. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2568. Y_current = Y_probe_location + sin(theta) * radius;
  2569. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2570. if (verbose_level > 3) {
  2571. SERIAL_ECHOPAIR("x: ", X_current);
  2572. SERIAL_ECHOPAIR("y: ", Y_current);
  2573. SERIAL_EOL;
  2574. }
  2575. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2576. } // n_legs loop
  2577. // Go back to the probe location
  2578. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2579. } // n_legs
  2580. if (deploy_probe_for_each_reading) {
  2581. deploy_z_probe();
  2582. delay(1000);
  2583. }
  2584. setup_for_endstop_move();
  2585. run_z_probe();
  2586. sample_set[n] = current_position[Z_AXIS];
  2587. //
  2588. // Get the current mean for the data points we have so far
  2589. //
  2590. sum = 0.0;
  2591. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2592. mean = sum / (n + 1);
  2593. //
  2594. // Now, use that mean to calculate the standard deviation for the
  2595. // data points we have so far
  2596. //
  2597. sum = 0.0;
  2598. for (uint8_t j = 0; j <= n; j++) {
  2599. float ss = sample_set[j] - mean;
  2600. sum += ss * ss;
  2601. }
  2602. sigma = sqrt(sum / (n + 1));
  2603. if (verbose_level > 1) {
  2604. SERIAL_PROTOCOL(n+1);
  2605. SERIAL_PROTOCOLPGM(" of ");
  2606. SERIAL_PROTOCOL(n_samples);
  2607. SERIAL_PROTOCOLPGM(" z: ");
  2608. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2609. if (verbose_level > 2) {
  2610. SERIAL_PROTOCOLPGM(" mean: ");
  2611. SERIAL_PROTOCOL_F(mean,6);
  2612. SERIAL_PROTOCOLPGM(" sigma: ");
  2613. SERIAL_PROTOCOL_F(sigma,6);
  2614. }
  2615. }
  2616. if (verbose_level > 0) SERIAL_EOL;
  2617. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2618. st_synchronize();
  2619. // Stow between
  2620. if (deploy_probe_for_each_reading) {
  2621. stow_z_probe();
  2622. delay(1000);
  2623. }
  2624. }
  2625. // Stow after
  2626. if (!deploy_probe_for_each_reading) {
  2627. stow_z_probe();
  2628. delay(1000);
  2629. }
  2630. clean_up_after_endstop_move();
  2631. if (verbose_level > 0) {
  2632. SERIAL_PROTOCOLPGM("Mean: ");
  2633. SERIAL_PROTOCOL_F(mean, 6);
  2634. SERIAL_EOL;
  2635. }
  2636. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2637. SERIAL_PROTOCOL_F(sigma, 6);
  2638. SERIAL_EOL; SERIAL_EOL;
  2639. }
  2640. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2641. /**
  2642. * M104: Set hot end temperature
  2643. */
  2644. inline void gcode_M104() {
  2645. if (setTargetedHotend(104)) return;
  2646. if (code_seen('S')) {
  2647. float temp = code_value();
  2648. setTargetHotend(temp, target_extruder);
  2649. #ifdef DUAL_X_CARRIAGE
  2650. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2651. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2652. #endif
  2653. #ifdef WATCH_TEMP_PERIOD
  2654. start_watching_heater(target_extruder);
  2655. #endif
  2656. }
  2657. }
  2658. /**
  2659. * M105: Read hot end and bed temperature
  2660. */
  2661. inline void gcode_M105() {
  2662. if (setTargetedHotend(105)) return;
  2663. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2664. SERIAL_PROTOCOLPGM("ok");
  2665. #if HAS_TEMP_0
  2666. SERIAL_PROTOCOLPGM(" T:");
  2667. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2668. SERIAL_PROTOCOLPGM(" /");
  2669. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2670. #endif
  2671. #if HAS_TEMP_BED
  2672. SERIAL_PROTOCOLPGM(" B:");
  2673. SERIAL_PROTOCOL_F(degBed(), 1);
  2674. SERIAL_PROTOCOLPGM(" /");
  2675. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2676. #endif
  2677. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2678. SERIAL_PROTOCOLPGM(" T");
  2679. SERIAL_PROTOCOL(e);
  2680. SERIAL_PROTOCOLCHAR(':');
  2681. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2682. SERIAL_PROTOCOLPGM(" /");
  2683. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2684. }
  2685. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2686. SERIAL_ERROR_START;
  2687. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2688. #endif
  2689. SERIAL_PROTOCOLPGM(" @:");
  2690. #ifdef EXTRUDER_WATTS
  2691. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2692. SERIAL_PROTOCOLCHAR('W');
  2693. #else
  2694. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2695. #endif
  2696. SERIAL_PROTOCOLPGM(" B@:");
  2697. #ifdef BED_WATTS
  2698. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2699. SERIAL_PROTOCOLCHAR('W');
  2700. #else
  2701. SERIAL_PROTOCOL(getHeaterPower(-1));
  2702. #endif
  2703. #ifdef SHOW_TEMP_ADC_VALUES
  2704. #if HAS_TEMP_BED
  2705. SERIAL_PROTOCOLPGM(" ADC B:");
  2706. SERIAL_PROTOCOL_F(degBed(),1);
  2707. SERIAL_PROTOCOLPGM("C->");
  2708. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2709. #endif
  2710. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2711. SERIAL_PROTOCOLPGM(" T");
  2712. SERIAL_PROTOCOL(cur_extruder);
  2713. SERIAL_PROTOCOLCHAR(':');
  2714. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2715. SERIAL_PROTOCOLPGM("C->");
  2716. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2717. }
  2718. #endif
  2719. SERIAL_EOL;
  2720. }
  2721. #if HAS_FAN
  2722. /**
  2723. * M106: Set Fan Speed
  2724. */
  2725. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2726. /**
  2727. * M107: Fan Off
  2728. */
  2729. inline void gcode_M107() { fanSpeed = 0; }
  2730. #endif // HAS_FAN
  2731. /**
  2732. * M109: Wait for extruder(s) to reach temperature
  2733. */
  2734. inline void gcode_M109() {
  2735. if (setTargetedHotend(109)) return;
  2736. LCD_MESSAGEPGM(MSG_HEATING);
  2737. no_wait_for_cooling = code_seen('S');
  2738. if (no_wait_for_cooling || code_seen('R')) {
  2739. float temp = code_value();
  2740. setTargetHotend(temp, target_extruder);
  2741. #ifdef DUAL_X_CARRIAGE
  2742. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2743. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2744. #endif
  2745. }
  2746. #ifdef AUTOTEMP
  2747. autotemp_enabled = code_seen('F');
  2748. if (autotemp_enabled) autotemp_factor = code_value();
  2749. if (code_seen('S')) autotemp_min = code_value();
  2750. if (code_seen('B')) autotemp_max = code_value();
  2751. #endif
  2752. #ifdef WATCH_TEMP_PERIOD
  2753. start_watching_heater(target_extruder);
  2754. #endif
  2755. millis_t temp_ms = millis();
  2756. /* See if we are heating up or cooling down */
  2757. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2758. cancel_heatup = false;
  2759. #ifdef TEMP_RESIDENCY_TIME
  2760. long residency_start_ms = -1;
  2761. /* continue to loop until we have reached the target temp
  2762. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2763. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2764. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2765. #else
  2766. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2767. #endif //TEMP_RESIDENCY_TIME
  2768. { // while loop
  2769. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2770. SERIAL_PROTOCOLPGM("T:");
  2771. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2772. SERIAL_PROTOCOLPGM(" E:");
  2773. SERIAL_PROTOCOL((int)target_extruder);
  2774. #ifdef TEMP_RESIDENCY_TIME
  2775. SERIAL_PROTOCOLPGM(" W:");
  2776. if (residency_start_ms > -1) {
  2777. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2778. SERIAL_PROTOCOLLN(temp_ms);
  2779. }
  2780. else {
  2781. SERIAL_PROTOCOLLNPGM("?");
  2782. }
  2783. #else
  2784. SERIAL_EOL;
  2785. #endif
  2786. temp_ms = millis();
  2787. }
  2788. manage_heater();
  2789. manage_inactivity();
  2790. lcd_update();
  2791. #ifdef TEMP_RESIDENCY_TIME
  2792. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2793. // or when current temp falls outside the hysteresis after target temp was reached
  2794. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2795. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2796. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2797. {
  2798. residency_start_ms = millis();
  2799. }
  2800. #endif //TEMP_RESIDENCY_TIME
  2801. }
  2802. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2803. refresh_cmd_timeout();
  2804. print_job_start_ms = previous_cmd_ms;
  2805. }
  2806. #if HAS_TEMP_BED
  2807. /**
  2808. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2809. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2810. */
  2811. inline void gcode_M190() {
  2812. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2813. no_wait_for_cooling = code_seen('S');
  2814. if (no_wait_for_cooling || code_seen('R'))
  2815. setTargetBed(code_value());
  2816. millis_t temp_ms = millis();
  2817. cancel_heatup = false;
  2818. target_direction = isHeatingBed(); // true if heating, false if cooling
  2819. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2820. millis_t ms = millis();
  2821. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2822. temp_ms = ms;
  2823. float tt = degHotend(active_extruder);
  2824. SERIAL_PROTOCOLPGM("T:");
  2825. SERIAL_PROTOCOL(tt);
  2826. SERIAL_PROTOCOLPGM(" E:");
  2827. SERIAL_PROTOCOL((int)active_extruder);
  2828. SERIAL_PROTOCOLPGM(" B:");
  2829. SERIAL_PROTOCOL_F(degBed(), 1);
  2830. SERIAL_EOL;
  2831. }
  2832. manage_heater();
  2833. manage_inactivity();
  2834. lcd_update();
  2835. }
  2836. LCD_MESSAGEPGM(MSG_BED_DONE);
  2837. refresh_cmd_timeout();
  2838. }
  2839. #endif // HAS_TEMP_BED
  2840. /**
  2841. * M111: Set the debug level
  2842. */
  2843. inline void gcode_M111() {
  2844. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2845. }
  2846. /**
  2847. * M112: Emergency Stop
  2848. */
  2849. inline void gcode_M112() { kill(); }
  2850. #ifdef BARICUDA
  2851. #if HAS_HEATER_1
  2852. /**
  2853. * M126: Heater 1 valve open
  2854. */
  2855. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2856. /**
  2857. * M127: Heater 1 valve close
  2858. */
  2859. inline void gcode_M127() { ValvePressure = 0; }
  2860. #endif
  2861. #if HAS_HEATER_2
  2862. /**
  2863. * M128: Heater 2 valve open
  2864. */
  2865. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2866. /**
  2867. * M129: Heater 2 valve close
  2868. */
  2869. inline void gcode_M129() { EtoPPressure = 0; }
  2870. #endif
  2871. #endif //BARICUDA
  2872. /**
  2873. * M140: Set bed temperature
  2874. */
  2875. inline void gcode_M140() {
  2876. if (code_seen('S')) setTargetBed(code_value());
  2877. }
  2878. #ifdef ULTIPANEL
  2879. /**
  2880. * M145: Set the heatup state for a material in the LCD menu
  2881. * S<material> (0=PLA, 1=ABS)
  2882. * H<hotend temp>
  2883. * B<bed temp>
  2884. * F<fan speed>
  2885. */
  2886. inline void gcode_M145() {
  2887. uint8_t material = code_seen('S') ? code_value_short() : 0;
  2888. if (material < 0 || material > 1) {
  2889. SERIAL_ERROR_START;
  2890. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  2891. }
  2892. else {
  2893. int v;
  2894. switch (material) {
  2895. case 0:
  2896. if (code_seen('H')) {
  2897. v = code_value_short();
  2898. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2899. }
  2900. if (code_seen('F')) {
  2901. v = code_value_short();
  2902. plaPreheatFanSpeed = constrain(v, 0, 255);
  2903. }
  2904. #if TEMP_SENSOR_BED != 0
  2905. if (code_seen('B')) {
  2906. v = code_value_short();
  2907. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2908. }
  2909. #endif
  2910. break;
  2911. case 1:
  2912. if (code_seen('H')) {
  2913. v = code_value_short();
  2914. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2915. }
  2916. if (code_seen('F')) {
  2917. v = code_value_short();
  2918. absPreheatFanSpeed = constrain(v, 0, 255);
  2919. }
  2920. #if TEMP_SENSOR_BED != 0
  2921. if (code_seen('B')) {
  2922. v = code_value_short();
  2923. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2924. }
  2925. #endif
  2926. break;
  2927. }
  2928. }
  2929. }
  2930. #endif
  2931. #if HAS_POWER_SWITCH
  2932. /**
  2933. * M80: Turn on Power Supply
  2934. */
  2935. inline void gcode_M80() {
  2936. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2937. // If you have a switch on suicide pin, this is useful
  2938. // if you want to start another print with suicide feature after
  2939. // a print without suicide...
  2940. #if HAS_SUICIDE
  2941. OUT_WRITE(SUICIDE_PIN, HIGH);
  2942. #endif
  2943. #ifdef ULTIPANEL
  2944. powersupply = true;
  2945. LCD_MESSAGEPGM(WELCOME_MSG);
  2946. lcd_update();
  2947. #endif
  2948. }
  2949. #endif // HAS_POWER_SWITCH
  2950. /**
  2951. * M81: Turn off Power, including Power Supply, if there is one.
  2952. *
  2953. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2954. */
  2955. inline void gcode_M81() {
  2956. disable_all_heaters();
  2957. st_synchronize();
  2958. disable_e0();
  2959. disable_e1();
  2960. disable_e2();
  2961. disable_e3();
  2962. finishAndDisableSteppers();
  2963. fanSpeed = 0;
  2964. delay(1000); // Wait 1 second before switching off
  2965. #if HAS_SUICIDE
  2966. st_synchronize();
  2967. suicide();
  2968. #elif HAS_POWER_SWITCH
  2969. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2970. #endif
  2971. #ifdef ULTIPANEL
  2972. #if HAS_POWER_SWITCH
  2973. powersupply = false;
  2974. #endif
  2975. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2976. lcd_update();
  2977. #endif
  2978. }
  2979. /**
  2980. * M82: Set E codes absolute (default)
  2981. */
  2982. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2983. /**
  2984. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2985. */
  2986. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2987. /**
  2988. * M18, M84: Disable all stepper motors
  2989. */
  2990. inline void gcode_M18_M84() {
  2991. if (code_seen('S')) {
  2992. stepper_inactive_time = code_value() * 1000;
  2993. }
  2994. else {
  2995. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2996. if (all_axis) {
  2997. st_synchronize();
  2998. disable_e0();
  2999. disable_e1();
  3000. disable_e2();
  3001. disable_e3();
  3002. finishAndDisableSteppers();
  3003. }
  3004. else {
  3005. st_synchronize();
  3006. if (code_seen('X')) disable_x();
  3007. if (code_seen('Y')) disable_y();
  3008. if (code_seen('Z')) disable_z();
  3009. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3010. if (code_seen('E')) {
  3011. disable_e0();
  3012. disable_e1();
  3013. disable_e2();
  3014. disable_e3();
  3015. }
  3016. #endif
  3017. }
  3018. }
  3019. }
  3020. /**
  3021. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3022. */
  3023. inline void gcode_M85() {
  3024. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3025. }
  3026. /**
  3027. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3028. * (Follows the same syntax as G92)
  3029. */
  3030. inline void gcode_M92() {
  3031. for(int8_t i=0; i < NUM_AXIS; i++) {
  3032. if (code_seen(axis_codes[i])) {
  3033. if (i == E_AXIS) {
  3034. float value = code_value();
  3035. if (value < 20.0) {
  3036. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3037. max_e_jerk *= factor;
  3038. max_feedrate[i] *= factor;
  3039. axis_steps_per_sqr_second[i] *= factor;
  3040. }
  3041. axis_steps_per_unit[i] = value;
  3042. }
  3043. else {
  3044. axis_steps_per_unit[i] = code_value();
  3045. }
  3046. }
  3047. }
  3048. }
  3049. /**
  3050. * M114: Output current position to serial port
  3051. */
  3052. inline void gcode_M114() {
  3053. SERIAL_PROTOCOLPGM("X:");
  3054. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3055. SERIAL_PROTOCOLPGM(" Y:");
  3056. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3057. SERIAL_PROTOCOLPGM(" Z:");
  3058. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3059. SERIAL_PROTOCOLPGM(" E:");
  3060. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3061. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3062. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3063. SERIAL_PROTOCOLPGM(" Y:");
  3064. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3065. SERIAL_PROTOCOLPGM(" Z:");
  3066. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3067. SERIAL_EOL;
  3068. #ifdef SCARA
  3069. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3070. SERIAL_PROTOCOL(delta[X_AXIS]);
  3071. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3072. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3073. SERIAL_EOL;
  3074. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3075. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3076. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3077. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3078. SERIAL_EOL;
  3079. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3080. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3081. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3082. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3083. SERIAL_EOL; SERIAL_EOL;
  3084. #endif
  3085. }
  3086. /**
  3087. * M115: Capabilities string
  3088. */
  3089. inline void gcode_M115() {
  3090. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3091. }
  3092. /**
  3093. * M117: Set LCD Status Message
  3094. */
  3095. inline void gcode_M117() {
  3096. char* codepos = strchr_pointer + 5;
  3097. char* starpos = strchr(codepos, '*');
  3098. if (starpos) *starpos = '\0';
  3099. lcd_setstatus(codepos);
  3100. }
  3101. /**
  3102. * M119: Output endstop states to serial output
  3103. */
  3104. inline void gcode_M119() {
  3105. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3106. #if HAS_X_MIN
  3107. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3108. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3109. #endif
  3110. #if HAS_X_MAX
  3111. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3112. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3113. #endif
  3114. #if HAS_Y_MIN
  3115. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3116. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3117. #endif
  3118. #if HAS_Y_MAX
  3119. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3120. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3121. #endif
  3122. #if HAS_Z_MIN
  3123. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3124. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3125. #endif
  3126. #if HAS_Z_MAX
  3127. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3128. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3129. #endif
  3130. #if HAS_Z2_MAX
  3131. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3132. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3133. #endif
  3134. #if HAS_Z_PROBE
  3135. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3136. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3137. #endif
  3138. }
  3139. /**
  3140. * M120: Enable endstops
  3141. */
  3142. inline void gcode_M120() { enable_endstops(false); }
  3143. /**
  3144. * M121: Disable endstops
  3145. */
  3146. inline void gcode_M121() { enable_endstops(true); }
  3147. #ifdef BLINKM
  3148. /**
  3149. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3150. */
  3151. inline void gcode_M150() {
  3152. SendColors(
  3153. code_seen('R') ? (byte)code_value_short() : 0,
  3154. code_seen('U') ? (byte)code_value_short() : 0,
  3155. code_seen('B') ? (byte)code_value_short() : 0
  3156. );
  3157. }
  3158. #endif // BLINKM
  3159. /**
  3160. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3161. * T<extruder>
  3162. * D<millimeters>
  3163. */
  3164. inline void gcode_M200() {
  3165. int tmp_extruder = active_extruder;
  3166. if (code_seen('T')) {
  3167. tmp_extruder = code_value_short();
  3168. if (tmp_extruder >= EXTRUDERS) {
  3169. SERIAL_ECHO_START;
  3170. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3171. return;
  3172. }
  3173. }
  3174. if (code_seen('D')) {
  3175. float diameter = code_value();
  3176. // setting any extruder filament size disables volumetric on the assumption that
  3177. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3178. // for all extruders
  3179. volumetric_enabled = (diameter != 0.0);
  3180. if (volumetric_enabled) {
  3181. filament_size[tmp_extruder] = diameter;
  3182. // make sure all extruders have some sane value for the filament size
  3183. for (int i=0; i<EXTRUDERS; i++)
  3184. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3185. }
  3186. }
  3187. else {
  3188. //reserved for setting filament diameter via UFID or filament measuring device
  3189. return;
  3190. }
  3191. calculate_volumetric_multipliers();
  3192. }
  3193. /**
  3194. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3195. */
  3196. inline void gcode_M201() {
  3197. for (int8_t i=0; i < NUM_AXIS; i++) {
  3198. if (code_seen(axis_codes[i])) {
  3199. max_acceleration_units_per_sq_second[i] = code_value();
  3200. }
  3201. }
  3202. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3203. reset_acceleration_rates();
  3204. }
  3205. #if 0 // Not used for Sprinter/grbl gen6
  3206. inline void gcode_M202() {
  3207. for(int8_t i=0; i < NUM_AXIS; i++) {
  3208. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3209. }
  3210. }
  3211. #endif
  3212. /**
  3213. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3214. */
  3215. inline void gcode_M203() {
  3216. for (int8_t i=0; i < NUM_AXIS; i++) {
  3217. if (code_seen(axis_codes[i])) {
  3218. max_feedrate[i] = code_value();
  3219. }
  3220. }
  3221. }
  3222. /**
  3223. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3224. *
  3225. * P = Printing moves
  3226. * R = Retract only (no X, Y, Z) moves
  3227. * T = Travel (non printing) moves
  3228. *
  3229. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3230. */
  3231. inline void gcode_M204() {
  3232. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3233. acceleration = code_value();
  3234. travel_acceleration = acceleration;
  3235. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3236. SERIAL_EOL;
  3237. }
  3238. if (code_seen('P')) {
  3239. acceleration = code_value();
  3240. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3241. SERIAL_EOL;
  3242. }
  3243. if (code_seen('R')) {
  3244. retract_acceleration = code_value();
  3245. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3246. SERIAL_EOL;
  3247. }
  3248. if (code_seen('T')) {
  3249. travel_acceleration = code_value();
  3250. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3251. SERIAL_EOL;
  3252. }
  3253. }
  3254. /**
  3255. * M205: Set Advanced Settings
  3256. *
  3257. * S = Min Feed Rate (mm/s)
  3258. * T = Min Travel Feed Rate (mm/s)
  3259. * B = Min Segment Time (µs)
  3260. * X = Max XY Jerk (mm/s/s)
  3261. * Z = Max Z Jerk (mm/s/s)
  3262. * E = Max E Jerk (mm/s/s)
  3263. */
  3264. inline void gcode_M205() {
  3265. if (code_seen('S')) minimumfeedrate = code_value();
  3266. if (code_seen('T')) mintravelfeedrate = code_value();
  3267. if (code_seen('B')) minsegmenttime = code_value();
  3268. if (code_seen('X')) max_xy_jerk = code_value();
  3269. if (code_seen('Z')) max_z_jerk = code_value();
  3270. if (code_seen('E')) max_e_jerk = code_value();
  3271. }
  3272. /**
  3273. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3274. */
  3275. inline void gcode_M206() {
  3276. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3277. if (code_seen(axis_codes[i])) {
  3278. home_offset[i] = code_value();
  3279. }
  3280. }
  3281. #ifdef SCARA
  3282. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3283. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3284. #endif
  3285. }
  3286. #ifdef DELTA
  3287. /**
  3288. * M665: Set delta configurations
  3289. *
  3290. * L = diagonal rod
  3291. * R = delta radius
  3292. * S = segments per second
  3293. */
  3294. inline void gcode_M665() {
  3295. if (code_seen('L')) delta_diagonal_rod = code_value();
  3296. if (code_seen('R')) delta_radius = code_value();
  3297. if (code_seen('S')) delta_segments_per_second = code_value();
  3298. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3299. }
  3300. /**
  3301. * M666: Set delta endstop adjustment
  3302. */
  3303. inline void gcode_M666() {
  3304. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3305. if (code_seen(axis_codes[i])) {
  3306. endstop_adj[i] = code_value();
  3307. }
  3308. }
  3309. }
  3310. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3311. /**
  3312. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3313. */
  3314. inline void gcode_M666() {
  3315. if (code_seen('Z')) z_endstop_adj = code_value();
  3316. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3317. SERIAL_EOL;
  3318. }
  3319. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3320. #ifdef FWRETRACT
  3321. /**
  3322. * M207: Set firmware retraction values
  3323. *
  3324. * S[+mm] retract_length
  3325. * W[+mm] retract_length_swap (multi-extruder)
  3326. * F[mm/min] retract_feedrate
  3327. * Z[mm] retract_zlift
  3328. */
  3329. inline void gcode_M207() {
  3330. if (code_seen('S')) retract_length = code_value();
  3331. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3332. if (code_seen('Z')) retract_zlift = code_value();
  3333. #if EXTRUDERS > 1
  3334. if (code_seen('W')) retract_length_swap = code_value();
  3335. #endif
  3336. }
  3337. /**
  3338. * M208: Set firmware un-retraction values
  3339. *
  3340. * S[+mm] retract_recover_length (in addition to M207 S*)
  3341. * W[+mm] retract_recover_length_swap (multi-extruder)
  3342. * F[mm/min] retract_recover_feedrate
  3343. */
  3344. inline void gcode_M208() {
  3345. if (code_seen('S')) retract_recover_length = code_value();
  3346. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3347. #if EXTRUDERS > 1
  3348. if (code_seen('W')) retract_recover_length_swap = code_value();
  3349. #endif
  3350. }
  3351. /**
  3352. * M209: Enable automatic retract (M209 S1)
  3353. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3354. */
  3355. inline void gcode_M209() {
  3356. if (code_seen('S')) {
  3357. int t = code_value_short();
  3358. switch(t) {
  3359. case 0:
  3360. autoretract_enabled = false;
  3361. break;
  3362. case 1:
  3363. autoretract_enabled = true;
  3364. break;
  3365. default:
  3366. SERIAL_ECHO_START;
  3367. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3368. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3369. SERIAL_ECHOLNPGM("\"");
  3370. return;
  3371. }
  3372. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3373. }
  3374. }
  3375. #endif // FWRETRACT
  3376. #if EXTRUDERS > 1
  3377. /**
  3378. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3379. */
  3380. inline void gcode_M218() {
  3381. if (setTargetedHotend(218)) return;
  3382. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3383. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3384. #ifdef DUAL_X_CARRIAGE
  3385. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3386. #endif
  3387. SERIAL_ECHO_START;
  3388. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3389. for (int e = 0; e < EXTRUDERS; e++) {
  3390. SERIAL_CHAR(' ');
  3391. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3392. SERIAL_CHAR(',');
  3393. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3394. #ifdef DUAL_X_CARRIAGE
  3395. SERIAL_CHAR(',');
  3396. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3397. #endif
  3398. }
  3399. SERIAL_EOL;
  3400. }
  3401. #endif // EXTRUDERS > 1
  3402. /**
  3403. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3404. */
  3405. inline void gcode_M220() {
  3406. if (code_seen('S')) feedrate_multiplier = code_value();
  3407. }
  3408. /**
  3409. * M221: Set extrusion percentage (M221 T0 S95)
  3410. */
  3411. inline void gcode_M221() {
  3412. if (code_seen('S')) {
  3413. int sval = code_value();
  3414. if (code_seen('T')) {
  3415. if (setTargetedHotend(221)) return;
  3416. extruder_multiply[target_extruder] = sval;
  3417. }
  3418. else {
  3419. extruder_multiply[active_extruder] = sval;
  3420. }
  3421. }
  3422. }
  3423. /**
  3424. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3425. */
  3426. inline void gcode_M226() {
  3427. if (code_seen('P')) {
  3428. int pin_number = code_value();
  3429. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3430. if (pin_state >= -1 && pin_state <= 1) {
  3431. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3432. if (sensitive_pins[i] == pin_number) {
  3433. pin_number = -1;
  3434. break;
  3435. }
  3436. }
  3437. if (pin_number > -1) {
  3438. int target = LOW;
  3439. st_synchronize();
  3440. pinMode(pin_number, INPUT);
  3441. switch(pin_state){
  3442. case 1:
  3443. target = HIGH;
  3444. break;
  3445. case 0:
  3446. target = LOW;
  3447. break;
  3448. case -1:
  3449. target = !digitalRead(pin_number);
  3450. break;
  3451. }
  3452. while(digitalRead(pin_number) != target) {
  3453. manage_heater();
  3454. manage_inactivity();
  3455. lcd_update();
  3456. }
  3457. } // pin_number > -1
  3458. } // pin_state -1 0 1
  3459. } // code_seen('P')
  3460. }
  3461. #if NUM_SERVOS > 0
  3462. /**
  3463. * M280: Get or set servo position. P<index> S<angle>
  3464. */
  3465. inline void gcode_M280() {
  3466. int servo_index = code_seen('P') ? code_value_short() : -1;
  3467. int servo_position = 0;
  3468. if (code_seen('S')) {
  3469. servo_position = code_value_short();
  3470. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3471. Servo *srv = &servo[servo_index];
  3472. #if SERVO_LEVELING
  3473. srv->attach(0);
  3474. #endif
  3475. srv->write(servo_position);
  3476. #if SERVO_LEVELING
  3477. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3478. srv->detach();
  3479. #endif
  3480. }
  3481. else {
  3482. SERIAL_ECHO_START;
  3483. SERIAL_ECHO("Servo ");
  3484. SERIAL_ECHO(servo_index);
  3485. SERIAL_ECHOLN(" out of range");
  3486. }
  3487. }
  3488. else if (servo_index >= 0) {
  3489. SERIAL_PROTOCOL(MSG_OK);
  3490. SERIAL_PROTOCOL(" Servo ");
  3491. SERIAL_PROTOCOL(servo_index);
  3492. SERIAL_PROTOCOL(": ");
  3493. SERIAL_PROTOCOL(servo[servo_index].read());
  3494. SERIAL_EOL;
  3495. }
  3496. }
  3497. #endif // NUM_SERVOS > 0
  3498. #if HAS_LCD_BUZZ
  3499. /**
  3500. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3501. */
  3502. inline void gcode_M300() {
  3503. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3504. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3505. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3506. lcd_buzz(beepP, beepS);
  3507. }
  3508. #endif // HAS_LCD_BUZZ
  3509. #ifdef PIDTEMP
  3510. /**
  3511. * M301: Set PID parameters P I D (and optionally C)
  3512. */
  3513. inline void gcode_M301() {
  3514. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3515. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3516. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3517. if (e < EXTRUDERS) { // catch bad input value
  3518. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3519. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3520. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3521. #ifdef PID_ADD_EXTRUSION_RATE
  3522. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3523. #endif
  3524. updatePID();
  3525. SERIAL_PROTOCOL(MSG_OK);
  3526. #ifdef PID_PARAMS_PER_EXTRUDER
  3527. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3528. SERIAL_PROTOCOL(e);
  3529. #endif // PID_PARAMS_PER_EXTRUDER
  3530. SERIAL_PROTOCOL(" p:");
  3531. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3532. SERIAL_PROTOCOL(" i:");
  3533. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3534. SERIAL_PROTOCOL(" d:");
  3535. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3536. #ifdef PID_ADD_EXTRUSION_RATE
  3537. SERIAL_PROTOCOL(" c:");
  3538. //Kc does not have scaling applied above, or in resetting defaults
  3539. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3540. #endif
  3541. SERIAL_EOL;
  3542. }
  3543. else {
  3544. SERIAL_ECHO_START;
  3545. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3546. }
  3547. }
  3548. #endif // PIDTEMP
  3549. #ifdef PIDTEMPBED
  3550. inline void gcode_M304() {
  3551. if (code_seen('P')) bedKp = code_value();
  3552. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3553. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3554. updatePID();
  3555. SERIAL_PROTOCOL(MSG_OK);
  3556. SERIAL_PROTOCOL(" p:");
  3557. SERIAL_PROTOCOL(bedKp);
  3558. SERIAL_PROTOCOL(" i:");
  3559. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3560. SERIAL_PROTOCOL(" d:");
  3561. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3562. SERIAL_EOL;
  3563. }
  3564. #endif // PIDTEMPBED
  3565. #if defined(CHDK) || HAS_PHOTOGRAPH
  3566. /**
  3567. * M240: Trigger a camera by emulating a Canon RC-1
  3568. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3569. */
  3570. inline void gcode_M240() {
  3571. #ifdef CHDK
  3572. OUT_WRITE(CHDK, HIGH);
  3573. chdkHigh = millis();
  3574. chdkActive = true;
  3575. #elif HAS_PHOTOGRAPH
  3576. const uint8_t NUM_PULSES = 16;
  3577. const float PULSE_LENGTH = 0.01524;
  3578. for (int i = 0; i < NUM_PULSES; i++) {
  3579. WRITE(PHOTOGRAPH_PIN, HIGH);
  3580. _delay_ms(PULSE_LENGTH);
  3581. WRITE(PHOTOGRAPH_PIN, LOW);
  3582. _delay_ms(PULSE_LENGTH);
  3583. }
  3584. delay(7.33);
  3585. for (int i = 0; i < NUM_PULSES; i++) {
  3586. WRITE(PHOTOGRAPH_PIN, HIGH);
  3587. _delay_ms(PULSE_LENGTH);
  3588. WRITE(PHOTOGRAPH_PIN, LOW);
  3589. _delay_ms(PULSE_LENGTH);
  3590. }
  3591. #endif // !CHDK && HAS_PHOTOGRAPH
  3592. }
  3593. #endif // CHDK || PHOTOGRAPH_PIN
  3594. #ifdef HAS_LCD_CONTRAST
  3595. /**
  3596. * M250: Read and optionally set the LCD contrast
  3597. */
  3598. inline void gcode_M250() {
  3599. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3600. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3601. SERIAL_PROTOCOL(lcd_contrast);
  3602. SERIAL_EOL;
  3603. }
  3604. #endif // HAS_LCD_CONTRAST
  3605. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3606. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3607. /**
  3608. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3609. */
  3610. inline void gcode_M302() {
  3611. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3612. }
  3613. #endif // PREVENT_DANGEROUS_EXTRUDE
  3614. /**
  3615. * M303: PID relay autotune
  3616. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3617. * E<extruder> (-1 for the bed)
  3618. * C<cycles>
  3619. */
  3620. inline void gcode_M303() {
  3621. int e = code_seen('E') ? code_value_short() : 0;
  3622. int c = code_seen('C') ? code_value_short() : 5;
  3623. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3624. PID_autotune(temp, e, c);
  3625. }
  3626. #ifdef SCARA
  3627. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3628. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3629. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3630. if (IsRunning()) {
  3631. //get_coordinates(); // For X Y Z E F
  3632. delta[X_AXIS] = delta_x;
  3633. delta[Y_AXIS] = delta_y;
  3634. calculate_SCARA_forward_Transform(delta);
  3635. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3636. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3637. prepare_move();
  3638. //ok_to_send();
  3639. return true;
  3640. }
  3641. return false;
  3642. }
  3643. /**
  3644. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3645. */
  3646. inline bool gcode_M360() {
  3647. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3648. return SCARA_move_to_cal(0, 120);
  3649. }
  3650. /**
  3651. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3652. */
  3653. inline bool gcode_M361() {
  3654. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3655. return SCARA_move_to_cal(90, 130);
  3656. }
  3657. /**
  3658. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3659. */
  3660. inline bool gcode_M362() {
  3661. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3662. return SCARA_move_to_cal(60, 180);
  3663. }
  3664. /**
  3665. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3666. */
  3667. inline bool gcode_M363() {
  3668. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3669. return SCARA_move_to_cal(50, 90);
  3670. }
  3671. /**
  3672. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3673. */
  3674. inline bool gcode_M364() {
  3675. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3676. return SCARA_move_to_cal(45, 135);
  3677. }
  3678. /**
  3679. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3680. */
  3681. inline void gcode_M365() {
  3682. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3683. if (code_seen(axis_codes[i])) {
  3684. axis_scaling[i] = code_value();
  3685. }
  3686. }
  3687. }
  3688. #endif // SCARA
  3689. #ifdef EXT_SOLENOID
  3690. void enable_solenoid(uint8_t num) {
  3691. switch(num) {
  3692. case 0:
  3693. OUT_WRITE(SOL0_PIN, HIGH);
  3694. break;
  3695. #if HAS_SOLENOID_1
  3696. case 1:
  3697. OUT_WRITE(SOL1_PIN, HIGH);
  3698. break;
  3699. #endif
  3700. #if HAS_SOLENOID_2
  3701. case 2:
  3702. OUT_WRITE(SOL2_PIN, HIGH);
  3703. break;
  3704. #endif
  3705. #if HAS_SOLENOID_3
  3706. case 3:
  3707. OUT_WRITE(SOL3_PIN, HIGH);
  3708. break;
  3709. #endif
  3710. default:
  3711. SERIAL_ECHO_START;
  3712. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3713. break;
  3714. }
  3715. }
  3716. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3717. void disable_all_solenoids() {
  3718. OUT_WRITE(SOL0_PIN, LOW);
  3719. OUT_WRITE(SOL1_PIN, LOW);
  3720. OUT_WRITE(SOL2_PIN, LOW);
  3721. OUT_WRITE(SOL3_PIN, LOW);
  3722. }
  3723. /**
  3724. * M380: Enable solenoid on the active extruder
  3725. */
  3726. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3727. /**
  3728. * M381: Disable all solenoids
  3729. */
  3730. inline void gcode_M381() { disable_all_solenoids(); }
  3731. #endif // EXT_SOLENOID
  3732. /**
  3733. * M400: Finish all moves
  3734. */
  3735. inline void gcode_M400() { st_synchronize(); }
  3736. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3737. #ifdef SERVO_ENDSTOPS
  3738. void raise_z_for_servo() {
  3739. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3740. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3741. if (zpos < z_dest)
  3742. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3743. }
  3744. #endif
  3745. /**
  3746. * M401: Engage Z Servo endstop if available
  3747. */
  3748. inline void gcode_M401() {
  3749. #ifdef SERVO_ENDSTOPS
  3750. raise_z_for_servo();
  3751. #endif
  3752. deploy_z_probe();
  3753. }
  3754. /**
  3755. * M402: Retract Z Servo endstop if enabled
  3756. */
  3757. inline void gcode_M402() {
  3758. #ifdef SERVO_ENDSTOPS
  3759. raise_z_for_servo();
  3760. #endif
  3761. stow_z_probe(false);
  3762. }
  3763. #endif
  3764. #ifdef FILAMENT_SENSOR
  3765. /**
  3766. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3767. */
  3768. inline void gcode_M404() {
  3769. #if HAS_FILWIDTH
  3770. if (code_seen('W')) {
  3771. filament_width_nominal = code_value();
  3772. }
  3773. else {
  3774. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3775. SERIAL_PROTOCOLLN(filament_width_nominal);
  3776. }
  3777. #endif
  3778. }
  3779. /**
  3780. * M405: Turn on filament sensor for control
  3781. */
  3782. inline void gcode_M405() {
  3783. if (code_seen('D')) meas_delay_cm = code_value();
  3784. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3785. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3786. int temp_ratio = widthFil_to_size_ratio();
  3787. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3788. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3789. delay_index1 = delay_index2 = 0;
  3790. }
  3791. filament_sensor = true;
  3792. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3793. //SERIAL_PROTOCOL(filament_width_meas);
  3794. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3795. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3796. }
  3797. /**
  3798. * M406: Turn off filament sensor for control
  3799. */
  3800. inline void gcode_M406() { filament_sensor = false; }
  3801. /**
  3802. * M407: Get measured filament diameter on serial output
  3803. */
  3804. inline void gcode_M407() {
  3805. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3806. SERIAL_PROTOCOLLN(filament_width_meas);
  3807. }
  3808. #endif // FILAMENT_SENSOR
  3809. /**
  3810. * M410: Quickstop - Abort all planned moves
  3811. *
  3812. * This will stop the carriages mid-move, so most likely they
  3813. * will be out of sync with the stepper position after this.
  3814. */
  3815. inline void gcode_M410() { quickStop(); }
  3816. #ifdef MESH_BED_LEVELING
  3817. /**
  3818. * M420: Enable/Disable Mesh Bed Leveling
  3819. */
  3820. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3821. /**
  3822. * M421: Set a single Mesh Bed Leveling Z coordinate
  3823. */
  3824. inline void gcode_M421() {
  3825. float x, y, z;
  3826. bool err = false, hasX, hasY, hasZ;
  3827. if ((hasX = code_seen('X'))) x = code_value();
  3828. if ((hasY = code_seen('Y'))) y = code_value();
  3829. if ((hasZ = code_seen('Z'))) z = code_value();
  3830. if (!hasX || !hasY || !hasZ) {
  3831. SERIAL_ERROR_START;
  3832. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3833. err = true;
  3834. }
  3835. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3836. SERIAL_ERROR_START;
  3837. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3838. err = true;
  3839. }
  3840. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3841. }
  3842. #endif
  3843. /**
  3844. * M428: Set home_offset based on the distance between the
  3845. * current_position and the nearest "reference point."
  3846. * If an axis is past center its endstop position
  3847. * is the reference-point. Otherwise it uses 0. This allows
  3848. * the Z offset to be set near the bed when using a max endstop.
  3849. *
  3850. * M428 can't be used more than 2cm away from 0 or an endstop.
  3851. *
  3852. * Use M206 to set these values directly.
  3853. */
  3854. inline void gcode_M428() {
  3855. bool err = false;
  3856. float new_offs[3], new_pos[3];
  3857. memcpy(new_pos, current_position, sizeof(new_pos));
  3858. memcpy(new_offs, home_offset, sizeof(new_offs));
  3859. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3860. if (axis_known_position[i]) {
  3861. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3862. diff = new_pos[i] - base;
  3863. if (diff > -20 && diff < 20) {
  3864. new_offs[i] -= diff;
  3865. new_pos[i] = base;
  3866. }
  3867. else {
  3868. SERIAL_ERROR_START;
  3869. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  3870. LCD_ALERTMESSAGEPGM("Err: Too far!");
  3871. #if HAS_LCD_BUZZ
  3872. enqueuecommands_P(PSTR("M300 S40 P200"));
  3873. #endif
  3874. err = true;
  3875. break;
  3876. }
  3877. }
  3878. }
  3879. if (!err) {
  3880. memcpy(current_position, new_pos, sizeof(new_pos));
  3881. memcpy(home_offset, new_offs, sizeof(new_offs));
  3882. sync_plan_position();
  3883. LCD_ALERTMESSAGEPGM("Offset applied.");
  3884. #if HAS_LCD_BUZZ
  3885. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  3886. #endif
  3887. }
  3888. }
  3889. /**
  3890. * M500: Store settings in EEPROM
  3891. */
  3892. inline void gcode_M500() {
  3893. Config_StoreSettings();
  3894. }
  3895. /**
  3896. * M501: Read settings from EEPROM
  3897. */
  3898. inline void gcode_M501() {
  3899. Config_RetrieveSettings();
  3900. }
  3901. /**
  3902. * M502: Revert to default settings
  3903. */
  3904. inline void gcode_M502() {
  3905. Config_ResetDefault();
  3906. }
  3907. /**
  3908. * M503: print settings currently in memory
  3909. */
  3910. inline void gcode_M503() {
  3911. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3912. }
  3913. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3914. /**
  3915. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3916. */
  3917. inline void gcode_M540() {
  3918. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3919. }
  3920. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3921. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3922. inline void gcode_SET_Z_PROBE_OFFSET() {
  3923. float value;
  3924. if (code_seen('Z')) {
  3925. value = code_value();
  3926. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3927. zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
  3928. SERIAL_ECHO_START;
  3929. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3930. SERIAL_EOL;
  3931. }
  3932. else {
  3933. SERIAL_ECHO_START;
  3934. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3935. SERIAL_ECHOPGM(MSG_Z_MIN);
  3936. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3937. SERIAL_ECHOPGM(MSG_Z_MAX);
  3938. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3939. SERIAL_EOL;
  3940. }
  3941. }
  3942. else {
  3943. SERIAL_ECHO_START;
  3944. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3945. SERIAL_ECHO(-zprobe_zoffset);
  3946. SERIAL_EOL;
  3947. }
  3948. }
  3949. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3950. #ifdef FILAMENTCHANGEENABLE
  3951. /**
  3952. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3953. */
  3954. inline void gcode_M600() {
  3955. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3956. for (int i=0; i<NUM_AXIS; i++)
  3957. target[i] = lastpos[i] = current_position[i];
  3958. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3959. #ifdef DELTA
  3960. #define RUNPLAN calculate_delta(target); BASICPLAN
  3961. #else
  3962. #define RUNPLAN BASICPLAN
  3963. #endif
  3964. //retract by E
  3965. if (code_seen('E')) target[E_AXIS] += code_value();
  3966. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3967. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3968. #endif
  3969. RUNPLAN;
  3970. //lift Z
  3971. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3972. #ifdef FILAMENTCHANGE_ZADD
  3973. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3974. #endif
  3975. RUNPLAN;
  3976. //move xy
  3977. if (code_seen('X')) target[X_AXIS] = code_value();
  3978. #ifdef FILAMENTCHANGE_XPOS
  3979. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3980. #endif
  3981. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3982. #ifdef FILAMENTCHANGE_YPOS
  3983. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3984. #endif
  3985. RUNPLAN;
  3986. if (code_seen('L')) target[E_AXIS] += code_value();
  3987. #ifdef FILAMENTCHANGE_FINALRETRACT
  3988. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3989. #endif
  3990. RUNPLAN;
  3991. //finish moves
  3992. st_synchronize();
  3993. //disable extruder steppers so filament can be removed
  3994. disable_e0();
  3995. disable_e1();
  3996. disable_e2();
  3997. disable_e3();
  3998. delay(100);
  3999. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4000. uint8_t cnt = 0;
  4001. while (!lcd_clicked()) {
  4002. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  4003. manage_heater();
  4004. manage_inactivity(true);
  4005. lcd_update();
  4006. } // while(!lcd_clicked)
  4007. //return to normal
  4008. if (code_seen('L')) target[E_AXIS] -= code_value();
  4009. #ifdef FILAMENTCHANGE_FINALRETRACT
  4010. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4011. #endif
  4012. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4013. plan_set_e_position(current_position[E_AXIS]);
  4014. RUNPLAN; //should do nothing
  4015. lcd_reset_alert_level();
  4016. #ifdef DELTA
  4017. calculate_delta(lastpos);
  4018. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4019. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4020. #else
  4021. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4022. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4023. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4024. #endif
  4025. #ifdef FILAMENT_RUNOUT_SENSOR
  4026. filrunoutEnqueued = false;
  4027. #endif
  4028. }
  4029. #endif // FILAMENTCHANGEENABLE
  4030. #ifdef DUAL_X_CARRIAGE
  4031. /**
  4032. * M605: Set dual x-carriage movement mode
  4033. *
  4034. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4035. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4036. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4037. * millimeters x-offset and an optional differential hotend temperature of
  4038. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4039. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4040. *
  4041. * Note: the X axis should be homed after changing dual x-carriage mode.
  4042. */
  4043. inline void gcode_M605() {
  4044. st_synchronize();
  4045. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4046. switch(dual_x_carriage_mode) {
  4047. case DXC_DUPLICATION_MODE:
  4048. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4049. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4050. SERIAL_ECHO_START;
  4051. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4052. SERIAL_CHAR(' ');
  4053. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4054. SERIAL_CHAR(',');
  4055. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4056. SERIAL_CHAR(' ');
  4057. SERIAL_ECHO(duplicate_extruder_x_offset);
  4058. SERIAL_CHAR(',');
  4059. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4060. break;
  4061. case DXC_FULL_CONTROL_MODE:
  4062. case DXC_AUTO_PARK_MODE:
  4063. break;
  4064. default:
  4065. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4066. break;
  4067. }
  4068. active_extruder_parked = false;
  4069. extruder_duplication_enabled = false;
  4070. delayed_move_time = 0;
  4071. }
  4072. #endif // DUAL_X_CARRIAGE
  4073. /**
  4074. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4075. */
  4076. inline void gcode_M907() {
  4077. #if HAS_DIGIPOTSS
  4078. for (int i=0;i<NUM_AXIS;i++)
  4079. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4080. if (code_seen('B')) digipot_current(4, code_value());
  4081. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4082. #endif
  4083. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4084. if (code_seen('X')) digipot_current(0, code_value());
  4085. #endif
  4086. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4087. if (code_seen('Z')) digipot_current(1, code_value());
  4088. #endif
  4089. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4090. if (code_seen('E')) digipot_current(2, code_value());
  4091. #endif
  4092. #ifdef DIGIPOT_I2C
  4093. // this one uses actual amps in floating point
  4094. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4095. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4096. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4097. #endif
  4098. }
  4099. #if HAS_DIGIPOTSS
  4100. /**
  4101. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4102. */
  4103. inline void gcode_M908() {
  4104. digitalPotWrite(
  4105. code_seen('P') ? code_value() : 0,
  4106. code_seen('S') ? code_value() : 0
  4107. );
  4108. }
  4109. #endif // HAS_DIGIPOTSS
  4110. #if HAS_MICROSTEPS
  4111. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4112. inline void gcode_M350() {
  4113. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4114. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4115. if(code_seen('B')) microstep_mode(4,code_value());
  4116. microstep_readings();
  4117. }
  4118. /**
  4119. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4120. * S# determines MS1 or MS2, X# sets the pin high/low.
  4121. */
  4122. inline void gcode_M351() {
  4123. if (code_seen('S')) switch(code_value_short()) {
  4124. case 1:
  4125. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4126. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4127. break;
  4128. case 2:
  4129. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4130. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4131. break;
  4132. }
  4133. microstep_readings();
  4134. }
  4135. #endif // HAS_MICROSTEPS
  4136. /**
  4137. * M999: Restart after being stopped
  4138. */
  4139. inline void gcode_M999() {
  4140. Running = true;
  4141. lcd_reset_alert_level();
  4142. gcode_LastN = Stopped_gcode_LastN;
  4143. FlushSerialRequestResend();
  4144. }
  4145. /**
  4146. * T0-T3: Switch tool, usually switching extruders
  4147. */
  4148. inline void gcode_T() {
  4149. int tmp_extruder = code_value();
  4150. if (tmp_extruder >= EXTRUDERS) {
  4151. SERIAL_ECHO_START;
  4152. SERIAL_CHAR('T');
  4153. SERIAL_ECHO(tmp_extruder);
  4154. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4155. }
  4156. else {
  4157. target_extruder = tmp_extruder;
  4158. #if EXTRUDERS > 1
  4159. bool make_move = false;
  4160. #endif
  4161. if (code_seen('F')) {
  4162. #if EXTRUDERS > 1
  4163. make_move = true;
  4164. #endif
  4165. next_feedrate = code_value();
  4166. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4167. }
  4168. #if EXTRUDERS > 1
  4169. if (tmp_extruder != active_extruder) {
  4170. // Save current position to return to after applying extruder offset
  4171. set_destination_to_current();
  4172. #ifdef DUAL_X_CARRIAGE
  4173. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4174. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4175. // Park old head: 1) raise 2) move to park position 3) lower
  4176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4177. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4178. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4179. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4180. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4181. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4182. st_synchronize();
  4183. }
  4184. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4185. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4186. extruder_offset[Y_AXIS][active_extruder] +
  4187. extruder_offset[Y_AXIS][tmp_extruder];
  4188. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4189. extruder_offset[Z_AXIS][active_extruder] +
  4190. extruder_offset[Z_AXIS][tmp_extruder];
  4191. active_extruder = tmp_extruder;
  4192. // This function resets the max/min values - the current position may be overwritten below.
  4193. axis_is_at_home(X_AXIS);
  4194. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4195. current_position[X_AXIS] = inactive_extruder_x_pos;
  4196. inactive_extruder_x_pos = destination[X_AXIS];
  4197. }
  4198. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4199. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4200. if (active_extruder == 0 || active_extruder_parked)
  4201. current_position[X_AXIS] = inactive_extruder_x_pos;
  4202. else
  4203. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4204. inactive_extruder_x_pos = destination[X_AXIS];
  4205. extruder_duplication_enabled = false;
  4206. }
  4207. else {
  4208. // record raised toolhead position for use by unpark
  4209. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4210. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4211. active_extruder_parked = true;
  4212. delayed_move_time = 0;
  4213. }
  4214. #else // !DUAL_X_CARRIAGE
  4215. // Offset extruder (only by XY)
  4216. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4217. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4218. // Set the new active extruder and position
  4219. active_extruder = tmp_extruder;
  4220. #endif // !DUAL_X_CARRIAGE
  4221. #ifdef DELTA
  4222. sync_plan_position_delta();
  4223. #else
  4224. sync_plan_position();
  4225. #endif
  4226. // Move to the old position if 'F' was in the parameters
  4227. if (make_move && IsRunning()) prepare_move();
  4228. }
  4229. #ifdef EXT_SOLENOID
  4230. st_synchronize();
  4231. disable_all_solenoids();
  4232. enable_solenoid_on_active_extruder();
  4233. #endif // EXT_SOLENOID
  4234. #endif // EXTRUDERS > 1
  4235. SERIAL_ECHO_START;
  4236. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4237. SERIAL_PROTOCOLLN((int)active_extruder);
  4238. }
  4239. }
  4240. /**
  4241. * Process Commands and dispatch them to handlers
  4242. * This is called from the main loop()
  4243. */
  4244. void process_commands() {
  4245. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4246. SERIAL_ECHO_START;
  4247. SERIAL_ECHOLN(command_queue[cmd_queue_index_r]);
  4248. }
  4249. if (code_seen('G')) {
  4250. int gCode = code_value_short();
  4251. switch(gCode) {
  4252. // G0, G1
  4253. case 0:
  4254. case 1:
  4255. gcode_G0_G1();
  4256. break;
  4257. // G2, G3
  4258. #ifndef SCARA
  4259. case 2: // G2 - CW ARC
  4260. case 3: // G3 - CCW ARC
  4261. gcode_G2_G3(gCode == 2);
  4262. break;
  4263. #endif
  4264. // G4 Dwell
  4265. case 4:
  4266. gcode_G4();
  4267. break;
  4268. #ifdef FWRETRACT
  4269. case 10: // G10: retract
  4270. case 11: // G11: retract_recover
  4271. gcode_G10_G11(gCode == 10);
  4272. break;
  4273. #endif //FWRETRACT
  4274. case 28: // G28: Home all axes, one at a time
  4275. gcode_G28();
  4276. break;
  4277. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4278. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4279. gcode_G29();
  4280. break;
  4281. #endif
  4282. #ifdef ENABLE_AUTO_BED_LEVELING
  4283. #ifndef Z_PROBE_SLED
  4284. case 30: // G30 Single Z Probe
  4285. gcode_G30();
  4286. break;
  4287. #else // Z_PROBE_SLED
  4288. case 31: // G31: dock the sled
  4289. case 32: // G32: undock the sled
  4290. dock_sled(gCode == 31);
  4291. break;
  4292. #endif // Z_PROBE_SLED
  4293. #endif // ENABLE_AUTO_BED_LEVELING
  4294. case 90: // G90
  4295. relative_mode = false;
  4296. break;
  4297. case 91: // G91
  4298. relative_mode = true;
  4299. break;
  4300. case 92: // G92
  4301. gcode_G92();
  4302. break;
  4303. }
  4304. }
  4305. else if (code_seen('M')) {
  4306. switch(code_value_short()) {
  4307. #ifdef ULTIPANEL
  4308. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4309. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4310. gcode_M0_M1();
  4311. break;
  4312. #endif // ULTIPANEL
  4313. case 17:
  4314. gcode_M17();
  4315. break;
  4316. #ifdef SDSUPPORT
  4317. case 20: // M20 - list SD card
  4318. gcode_M20(); break;
  4319. case 21: // M21 - init SD card
  4320. gcode_M21(); break;
  4321. case 22: //M22 - release SD card
  4322. gcode_M22(); break;
  4323. case 23: //M23 - Select file
  4324. gcode_M23(); break;
  4325. case 24: //M24 - Start SD print
  4326. gcode_M24(); break;
  4327. case 25: //M25 - Pause SD print
  4328. gcode_M25(); break;
  4329. case 26: //M26 - Set SD index
  4330. gcode_M26(); break;
  4331. case 27: //M27 - Get SD status
  4332. gcode_M27(); break;
  4333. case 28: //M28 - Start SD write
  4334. gcode_M28(); break;
  4335. case 29: //M29 - Stop SD write
  4336. gcode_M29(); break;
  4337. case 30: //M30 <filename> Delete File
  4338. gcode_M30(); break;
  4339. case 32: //M32 - Select file and start SD print
  4340. gcode_M32(); break;
  4341. case 928: //M928 - Start SD write
  4342. gcode_M928(); break;
  4343. #endif //SDSUPPORT
  4344. case 31: //M31 take time since the start of the SD print or an M109 command
  4345. gcode_M31();
  4346. break;
  4347. case 42: //M42 -Change pin status via gcode
  4348. gcode_M42();
  4349. break;
  4350. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4351. case 48: // M48 Z-Probe repeatability
  4352. gcode_M48();
  4353. break;
  4354. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4355. case 104: // M104
  4356. gcode_M104();
  4357. break;
  4358. case 111: // M111: Set debug level
  4359. gcode_M111();
  4360. break;
  4361. case 112: // M112: Emergency Stop
  4362. gcode_M112();
  4363. break;
  4364. case 140: // M140: Set bed temp
  4365. gcode_M140();
  4366. break;
  4367. case 105: // M105: Read current temperature
  4368. gcode_M105();
  4369. return;
  4370. break;
  4371. case 109: // M109: Wait for temperature
  4372. gcode_M109();
  4373. break;
  4374. #if HAS_TEMP_BED
  4375. case 190: // M190: Wait for bed heater to reach target
  4376. gcode_M190();
  4377. break;
  4378. #endif // HAS_TEMP_BED
  4379. #if HAS_FAN
  4380. case 106: // M106: Fan On
  4381. gcode_M106();
  4382. break;
  4383. case 107: // M107: Fan Off
  4384. gcode_M107();
  4385. break;
  4386. #endif // HAS_FAN
  4387. #ifdef BARICUDA
  4388. // PWM for HEATER_1_PIN
  4389. #if HAS_HEATER_1
  4390. case 126: // M126: valve open
  4391. gcode_M126();
  4392. break;
  4393. case 127: // M127: valve closed
  4394. gcode_M127();
  4395. break;
  4396. #endif // HAS_HEATER_1
  4397. // PWM for HEATER_2_PIN
  4398. #if HAS_HEATER_2
  4399. case 128: // M128: valve open
  4400. gcode_M128();
  4401. break;
  4402. case 129: // M129: valve closed
  4403. gcode_M129();
  4404. break;
  4405. #endif // HAS_HEATER_2
  4406. #endif // BARICUDA
  4407. #if HAS_POWER_SWITCH
  4408. case 80: // M80: Turn on Power Supply
  4409. gcode_M80();
  4410. break;
  4411. #endif // HAS_POWER_SWITCH
  4412. case 81: // M81: Turn off Power, including Power Supply, if possible
  4413. gcode_M81();
  4414. break;
  4415. case 82:
  4416. gcode_M82();
  4417. break;
  4418. case 83:
  4419. gcode_M83();
  4420. break;
  4421. case 18: // (for compatibility)
  4422. case 84: // M84
  4423. gcode_M18_M84();
  4424. break;
  4425. case 85: // M85
  4426. gcode_M85();
  4427. break;
  4428. case 92: // M92: Set the steps-per-unit for one or more axes
  4429. gcode_M92();
  4430. break;
  4431. case 115: // M115: Report capabilities
  4432. gcode_M115();
  4433. break;
  4434. case 117: // M117: Set LCD message text
  4435. gcode_M117();
  4436. break;
  4437. case 114: // M114: Report current position
  4438. gcode_M114();
  4439. break;
  4440. case 120: // M120: Enable endstops
  4441. gcode_M120();
  4442. break;
  4443. case 121: // M121: Disable endstops
  4444. gcode_M121();
  4445. break;
  4446. case 119: // M119: Report endstop states
  4447. gcode_M119();
  4448. break;
  4449. #ifdef ULTIPANEL
  4450. case 145: // M145: Set material heatup parameters
  4451. gcode_M145();
  4452. break;
  4453. #endif
  4454. #ifdef BLINKM
  4455. case 150: // M150
  4456. gcode_M150();
  4457. break;
  4458. #endif //BLINKM
  4459. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4460. gcode_M200();
  4461. break;
  4462. case 201: // M201
  4463. gcode_M201();
  4464. break;
  4465. #if 0 // Not used for Sprinter/grbl gen6
  4466. case 202: // M202
  4467. gcode_M202();
  4468. break;
  4469. #endif
  4470. case 203: // M203 max feedrate mm/sec
  4471. gcode_M203();
  4472. break;
  4473. case 204: // M204 acclereration S normal moves T filmanent only moves
  4474. gcode_M204();
  4475. break;
  4476. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4477. gcode_M205();
  4478. break;
  4479. case 206: // M206 additional homing offset
  4480. gcode_M206();
  4481. break;
  4482. #ifdef DELTA
  4483. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4484. gcode_M665();
  4485. break;
  4486. #endif
  4487. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4488. case 666: // M666 set delta / dual endstop adjustment
  4489. gcode_M666();
  4490. break;
  4491. #endif
  4492. #ifdef FWRETRACT
  4493. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4494. gcode_M207();
  4495. break;
  4496. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4497. gcode_M208();
  4498. break;
  4499. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4500. gcode_M209();
  4501. break;
  4502. #endif // FWRETRACT
  4503. #if EXTRUDERS > 1
  4504. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4505. gcode_M218();
  4506. break;
  4507. #endif
  4508. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4509. gcode_M220();
  4510. break;
  4511. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4512. gcode_M221();
  4513. break;
  4514. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4515. gcode_M226();
  4516. break;
  4517. #if NUM_SERVOS > 0
  4518. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4519. gcode_M280();
  4520. break;
  4521. #endif // NUM_SERVOS > 0
  4522. #if HAS_LCD_BUZZ
  4523. case 300: // M300 - Play beep tone
  4524. gcode_M300();
  4525. break;
  4526. #endif // HAS_LCD_BUZZ
  4527. #ifdef PIDTEMP
  4528. case 301: // M301
  4529. gcode_M301();
  4530. break;
  4531. #endif // PIDTEMP
  4532. #ifdef PIDTEMPBED
  4533. case 304: // M304
  4534. gcode_M304();
  4535. break;
  4536. #endif // PIDTEMPBED
  4537. #if defined(CHDK) || HAS_PHOTOGRAPH
  4538. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4539. gcode_M240();
  4540. break;
  4541. #endif // CHDK || PHOTOGRAPH_PIN
  4542. #ifdef HAS_LCD_CONTRAST
  4543. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4544. gcode_M250();
  4545. break;
  4546. #endif // HAS_LCD_CONTRAST
  4547. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4548. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4549. gcode_M302();
  4550. break;
  4551. #endif // PREVENT_DANGEROUS_EXTRUDE
  4552. case 303: // M303 PID autotune
  4553. gcode_M303();
  4554. break;
  4555. #ifdef SCARA
  4556. case 360: // M360 SCARA Theta pos1
  4557. if (gcode_M360()) return;
  4558. break;
  4559. case 361: // M361 SCARA Theta pos2
  4560. if (gcode_M361()) return;
  4561. break;
  4562. case 362: // M362 SCARA Psi pos1
  4563. if (gcode_M362()) return;
  4564. break;
  4565. case 363: // M363 SCARA Psi pos2
  4566. if (gcode_M363()) return;
  4567. break;
  4568. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4569. if (gcode_M364()) return;
  4570. break;
  4571. case 365: // M365 Set SCARA scaling for X Y Z
  4572. gcode_M365();
  4573. break;
  4574. #endif // SCARA
  4575. case 400: // M400 finish all moves
  4576. gcode_M400();
  4577. break;
  4578. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4579. case 401:
  4580. gcode_M401();
  4581. break;
  4582. case 402:
  4583. gcode_M402();
  4584. break;
  4585. #endif
  4586. #ifdef FILAMENT_SENSOR
  4587. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4588. gcode_M404();
  4589. break;
  4590. case 405: //M405 Turn on filament sensor for control
  4591. gcode_M405();
  4592. break;
  4593. case 406: //M406 Turn off filament sensor for control
  4594. gcode_M406();
  4595. break;
  4596. case 407: //M407 Display measured filament diameter
  4597. gcode_M407();
  4598. break;
  4599. #endif // FILAMENT_SENSOR
  4600. case 410: // M410 quickstop - Abort all the planned moves.
  4601. gcode_M410();
  4602. break;
  4603. #ifdef MESH_BED_LEVELING
  4604. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4605. gcode_M420();
  4606. break;
  4607. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4608. gcode_M421();
  4609. break;
  4610. #endif
  4611. case 428: // M428 Apply current_position to home_offset
  4612. gcode_M428();
  4613. break;
  4614. case 500: // M500 Store settings in EEPROM
  4615. gcode_M500();
  4616. break;
  4617. case 501: // M501 Read settings from EEPROM
  4618. gcode_M501();
  4619. break;
  4620. case 502: // M502 Revert to default settings
  4621. gcode_M502();
  4622. break;
  4623. case 503: // M503 print settings currently in memory
  4624. gcode_M503();
  4625. break;
  4626. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4627. case 540:
  4628. gcode_M540();
  4629. break;
  4630. #endif
  4631. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4632. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4633. gcode_SET_Z_PROBE_OFFSET();
  4634. break;
  4635. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4636. #ifdef FILAMENTCHANGEENABLE
  4637. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4638. gcode_M600();
  4639. break;
  4640. #endif // FILAMENTCHANGEENABLE
  4641. #ifdef DUAL_X_CARRIAGE
  4642. case 605:
  4643. gcode_M605();
  4644. break;
  4645. #endif // DUAL_X_CARRIAGE
  4646. case 907: // M907 Set digital trimpot motor current using axis codes.
  4647. gcode_M907();
  4648. break;
  4649. #if HAS_DIGIPOTSS
  4650. case 908: // M908 Control digital trimpot directly.
  4651. gcode_M908();
  4652. break;
  4653. #endif // HAS_DIGIPOTSS
  4654. #if HAS_MICROSTEPS
  4655. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4656. gcode_M350();
  4657. break;
  4658. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4659. gcode_M351();
  4660. break;
  4661. #endif // HAS_MICROSTEPS
  4662. case 999: // M999: Restart after being Stopped
  4663. gcode_M999();
  4664. break;
  4665. }
  4666. }
  4667. else if (code_seen('T')) {
  4668. gcode_T();
  4669. }
  4670. else {
  4671. SERIAL_ECHO_START;
  4672. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4673. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4674. SERIAL_ECHOLNPGM("\"");
  4675. }
  4676. ok_to_send();
  4677. }
  4678. void FlushSerialRequestResend() {
  4679. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4680. MYSERIAL.flush();
  4681. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4682. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4683. ok_to_send();
  4684. }
  4685. void ok_to_send() {
  4686. refresh_cmd_timeout();
  4687. #ifdef SDSUPPORT
  4688. if (fromsd[cmd_queue_index_r]) return;
  4689. #endif
  4690. SERIAL_PROTOCOLPGM(MSG_OK);
  4691. #ifdef ADVANCED_OK
  4692. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4693. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4694. #endif
  4695. SERIAL_EOL;
  4696. }
  4697. void get_coordinates() {
  4698. for (int i = 0; i < NUM_AXIS; i++) {
  4699. if (code_seen(axis_codes[i]))
  4700. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4701. else
  4702. destination[i] = current_position[i];
  4703. }
  4704. if (code_seen('F')) {
  4705. next_feedrate = code_value();
  4706. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4707. }
  4708. }
  4709. void get_arc_coordinates() {
  4710. #ifdef SF_ARC_FIX
  4711. bool relative_mode_backup = relative_mode;
  4712. relative_mode = true;
  4713. #endif
  4714. get_coordinates();
  4715. #ifdef SF_ARC_FIX
  4716. relative_mode = relative_mode_backup;
  4717. #endif
  4718. offset[0] = code_seen('I') ? code_value() : 0;
  4719. offset[1] = code_seen('J') ? code_value() : 0;
  4720. }
  4721. void clamp_to_software_endstops(float target[3]) {
  4722. if (min_software_endstops) {
  4723. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4724. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4725. float negative_z_offset = 0;
  4726. #ifdef ENABLE_AUTO_BED_LEVELING
  4727. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4728. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4729. #endif
  4730. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4731. }
  4732. if (max_software_endstops) {
  4733. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4734. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4735. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4736. }
  4737. }
  4738. #ifdef DELTA
  4739. void recalc_delta_settings(float radius, float diagonal_rod) {
  4740. delta_tower1_x = -SIN_60 * radius; // front left tower
  4741. delta_tower1_y = -COS_60 * radius;
  4742. delta_tower2_x = SIN_60 * radius; // front right tower
  4743. delta_tower2_y = -COS_60 * radius;
  4744. delta_tower3_x = 0.0; // back middle tower
  4745. delta_tower3_y = radius;
  4746. delta_diagonal_rod_2 = sq(diagonal_rod);
  4747. }
  4748. void calculate_delta(float cartesian[3]) {
  4749. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4750. - sq(delta_tower1_x-cartesian[X_AXIS])
  4751. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4752. ) + cartesian[Z_AXIS];
  4753. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4754. - sq(delta_tower2_x-cartesian[X_AXIS])
  4755. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4756. ) + cartesian[Z_AXIS];
  4757. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4758. - sq(delta_tower3_x-cartesian[X_AXIS])
  4759. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4760. ) + cartesian[Z_AXIS];
  4761. /*
  4762. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4763. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4764. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4765. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4766. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4767. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4768. */
  4769. }
  4770. #ifdef ENABLE_AUTO_BED_LEVELING
  4771. // Adjust print surface height by linear interpolation over the bed_level array.
  4772. void adjust_delta(float cartesian[3]) {
  4773. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4774. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4775. float h1 = 0.001 - half, h2 = half - 0.001,
  4776. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4777. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4778. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4779. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4780. z1 = bed_level[floor_x + half][floor_y + half],
  4781. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4782. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4783. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4784. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4785. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4786. offset = (1 - ratio_x) * left + ratio_x * right;
  4787. delta[X_AXIS] += offset;
  4788. delta[Y_AXIS] += offset;
  4789. delta[Z_AXIS] += offset;
  4790. /*
  4791. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4792. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4793. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4794. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4795. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4796. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4797. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4798. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4799. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4800. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4801. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4802. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4803. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4804. */
  4805. }
  4806. #endif // ENABLE_AUTO_BED_LEVELING
  4807. #endif // DELTA
  4808. #ifdef MESH_BED_LEVELING
  4809. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4810. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4811. {
  4812. if (!mbl.active) {
  4813. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4814. set_current_to_destination();
  4815. return;
  4816. }
  4817. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4818. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4819. int ix = mbl.select_x_index(x);
  4820. int iy = mbl.select_y_index(y);
  4821. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4822. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4823. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4824. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4825. if (pix == ix && piy == iy) {
  4826. // Start and end on same mesh square
  4827. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4828. set_current_to_destination();
  4829. return;
  4830. }
  4831. float nx, ny, ne, normalized_dist;
  4832. if (ix > pix && (x_splits) & BIT(ix)) {
  4833. nx = mbl.get_x(ix);
  4834. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4835. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4836. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4837. x_splits ^= BIT(ix);
  4838. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4839. nx = mbl.get_x(pix);
  4840. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4841. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4842. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4843. x_splits ^= BIT(pix);
  4844. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4845. ny = mbl.get_y(iy);
  4846. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4847. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4848. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4849. y_splits ^= BIT(iy);
  4850. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4851. ny = mbl.get_y(piy);
  4852. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4853. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4854. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4855. y_splits ^= BIT(piy);
  4856. } else {
  4857. // Already split on a border
  4858. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4859. set_current_to_destination();
  4860. return;
  4861. }
  4862. // Do the split and look for more borders
  4863. destination[X_AXIS] = nx;
  4864. destination[Y_AXIS] = ny;
  4865. destination[E_AXIS] = ne;
  4866. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4867. destination[X_AXIS] = x;
  4868. destination[Y_AXIS] = y;
  4869. destination[E_AXIS] = e;
  4870. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4871. }
  4872. #endif // MESH_BED_LEVELING
  4873. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4874. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4875. float de = dest_e - curr_e;
  4876. if (de) {
  4877. if (degHotend(active_extruder) < extrude_min_temp) {
  4878. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4879. SERIAL_ECHO_START;
  4880. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4881. }
  4882. #ifdef PREVENT_LENGTHY_EXTRUDE
  4883. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4884. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4885. SERIAL_ECHO_START;
  4886. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4887. }
  4888. #endif
  4889. }
  4890. }
  4891. #endif // PREVENT_DANGEROUS_EXTRUDE
  4892. #if defined(DELTA) || defined(SCARA)
  4893. inline bool prepare_move_delta() {
  4894. float difference[NUM_AXIS];
  4895. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4896. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4897. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4898. if (cartesian_mm < 0.000001) return false;
  4899. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4900. int steps = max(1, int(delta_segments_per_second * seconds));
  4901. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4902. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4903. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4904. for (int s = 1; s <= steps; s++) {
  4905. float fraction = float(s) / float(steps);
  4906. for (int8_t i = 0; i < NUM_AXIS; i++)
  4907. destination[i] = current_position[i] + difference[i] * fraction;
  4908. calculate_delta(destination);
  4909. #ifdef ENABLE_AUTO_BED_LEVELING
  4910. adjust_delta(destination);
  4911. #endif
  4912. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4913. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4914. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4915. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4916. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4917. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4918. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4919. }
  4920. return true;
  4921. }
  4922. #endif // DELTA || SCARA
  4923. #ifdef SCARA
  4924. inline bool prepare_move_scara() { return prepare_move_delta(); }
  4925. #endif
  4926. #ifdef DUAL_X_CARRIAGE
  4927. inline bool prepare_move_dual_x_carriage() {
  4928. if (active_extruder_parked) {
  4929. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4930. // move duplicate extruder into correct duplication position.
  4931. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4932. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4933. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4934. sync_plan_position();
  4935. st_synchronize();
  4936. extruder_duplication_enabled = true;
  4937. active_extruder_parked = false;
  4938. }
  4939. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4940. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4941. // This is a travel move (with no extrusion)
  4942. // Skip it, but keep track of the current position
  4943. // (so it can be used as the start of the next non-travel move)
  4944. if (delayed_move_time != 0xFFFFFFFFUL) {
  4945. set_current_to_destination();
  4946. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4947. delayed_move_time = millis();
  4948. return false;
  4949. }
  4950. }
  4951. delayed_move_time = 0;
  4952. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4953. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4956. active_extruder_parked = false;
  4957. }
  4958. }
  4959. return true;
  4960. }
  4961. #endif // DUAL_X_CARRIAGE
  4962. #if !defined(DELTA) && !defined(SCARA)
  4963. inline bool prepare_move_cartesian() {
  4964. // Do not use feedrate_multiplier for E or Z only moves
  4965. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4966. line_to_destination();
  4967. }
  4968. else {
  4969. #ifdef MESH_BED_LEVELING
  4970. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  4971. return false;
  4972. #else
  4973. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  4974. #endif
  4975. }
  4976. return true;
  4977. }
  4978. #endif // !DELTA && !SCARA
  4979. /**
  4980. * Prepare a single move and get ready for the next one
  4981. */
  4982. void prepare_move() {
  4983. clamp_to_software_endstops(destination);
  4984. refresh_cmd_timeout();
  4985. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4986. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4987. #endif
  4988. #ifdef SCARA
  4989. if (!prepare_move_scara()) return;
  4990. #elif defined(DELTA)
  4991. if (!prepare_move_delta()) return;
  4992. #endif
  4993. #ifdef DUAL_X_CARRIAGE
  4994. if (!prepare_move_dual_x_carriage()) return;
  4995. #endif
  4996. #if !defined(DELTA) && !defined(SCARA)
  4997. if (!prepare_move_cartesian()) return;
  4998. #endif
  4999. set_current_to_destination();
  5000. }
  5001. void prepare_arc_move(char isclockwise) {
  5002. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5003. // Trace the arc
  5004. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
  5005. // As far as the parser is concerned, the position is now == target. In reality the
  5006. // motion control system might still be processing the action and the real tool position
  5007. // in any intermediate location.
  5008. set_current_to_destination();
  5009. refresh_cmd_timeout();
  5010. }
  5011. #if HAS_CONTROLLERFAN
  5012. void controllerFan() {
  5013. static millis_t lastMotor = 0; // Last time a motor was turned on
  5014. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5015. millis_t ms = millis();
  5016. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5017. lastMotorCheck = ms;
  5018. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5019. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5020. #if EXTRUDERS > 1
  5021. || E1_ENABLE_READ == E_ENABLE_ON
  5022. #if HAS_X2_ENABLE
  5023. || X2_ENABLE_READ == X_ENABLE_ON
  5024. #endif
  5025. #if EXTRUDERS > 2
  5026. || E2_ENABLE_READ == E_ENABLE_ON
  5027. #if EXTRUDERS > 3
  5028. || E3_ENABLE_READ == E_ENABLE_ON
  5029. #endif
  5030. #endif
  5031. #endif
  5032. ) {
  5033. lastMotor = ms; //... set time to NOW so the fan will turn on
  5034. }
  5035. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5036. // allows digital or PWM fan output to be used (see M42 handling)
  5037. digitalWrite(CONTROLLERFAN_PIN, speed);
  5038. analogWrite(CONTROLLERFAN_PIN, speed);
  5039. }
  5040. }
  5041. #endif // HAS_CONTROLLERFAN
  5042. #ifdef SCARA
  5043. void calculate_SCARA_forward_Transform(float f_scara[3])
  5044. {
  5045. // Perform forward kinematics, and place results in delta[3]
  5046. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5047. float x_sin, x_cos, y_sin, y_cos;
  5048. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5049. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5050. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5051. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5052. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5053. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5054. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5055. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5056. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5057. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5058. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5059. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5060. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5061. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5062. }
  5063. void calculate_delta(float cartesian[3]){
  5064. //reverse kinematics.
  5065. // Perform reversed kinematics, and place results in delta[3]
  5066. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5067. float SCARA_pos[2];
  5068. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5069. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5070. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5071. #if (Linkage_1 == Linkage_2)
  5072. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5073. #else
  5074. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5075. #endif
  5076. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5077. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5078. SCARA_K2 = Linkage_2 * SCARA_S2;
  5079. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5080. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5081. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5082. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5083. delta[Z_AXIS] = cartesian[Z_AXIS];
  5084. /*
  5085. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5086. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5087. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5088. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5089. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5090. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5091. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5092. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5093. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5094. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5095. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5096. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5097. SERIAL_ECHOLN(" ");*/
  5098. }
  5099. #endif
  5100. #ifdef TEMP_STAT_LEDS
  5101. static bool red_led = false;
  5102. static millis_t next_status_led_update_ms = 0;
  5103. void handle_status_leds(void) {
  5104. float max_temp = 0.0;
  5105. if (millis() > next_status_led_update_ms) {
  5106. next_status_led_update_ms += 500; // Update every 0.5s
  5107. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5108. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5109. #if HAS_TEMP_BED
  5110. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5111. #endif
  5112. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5113. if (new_led != red_led) {
  5114. red_led = new_led;
  5115. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5116. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5117. }
  5118. }
  5119. }
  5120. #endif
  5121. void enable_all_steppers() {
  5122. enable_x();
  5123. enable_y();
  5124. enable_z();
  5125. enable_e0();
  5126. enable_e1();
  5127. enable_e2();
  5128. enable_e3();
  5129. }
  5130. void disable_all_steppers() {
  5131. disable_x();
  5132. disable_y();
  5133. disable_z();
  5134. disable_e0();
  5135. disable_e1();
  5136. disable_e2();
  5137. disable_e3();
  5138. }
  5139. /**
  5140. * Manage several activities:
  5141. * - Check for Filament Runout
  5142. * - Keep the command buffer full
  5143. * - Check for maximum inactive time between commands
  5144. * - Check for maximum inactive time between stepper commands
  5145. * - Check if pin CHDK needs to go LOW
  5146. * - Check for KILL button held down
  5147. * - Check for HOME button held down
  5148. * - Check if cooling fan needs to be switched on
  5149. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5150. */
  5151. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5152. #if HAS_FILRUNOUT
  5153. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5154. filrunout();
  5155. #endif
  5156. if (commands_in_queue < BUFSIZE - 1) get_command();
  5157. millis_t ms = millis();
  5158. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  5159. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5160. && !ignore_stepper_queue && !blocks_queued())
  5161. disable_all_steppers();
  5162. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5163. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5164. chdkActive = false;
  5165. WRITE(CHDK, LOW);
  5166. }
  5167. #endif
  5168. #if HAS_KILL
  5169. // Check if the kill button was pressed and wait just in case it was an accidental
  5170. // key kill key press
  5171. // -------------------------------------------------------------------------------
  5172. static int killCount = 0; // make the inactivity button a bit less responsive
  5173. const int KILL_DELAY = 750;
  5174. if (!READ(KILL_PIN))
  5175. killCount++;
  5176. else if (killCount > 0)
  5177. killCount--;
  5178. // Exceeded threshold and we can confirm that it was not accidental
  5179. // KILL the machine
  5180. // ----------------------------------------------------------------
  5181. if (killCount >= KILL_DELAY) kill();
  5182. #endif
  5183. #if HAS_HOME
  5184. // Check to see if we have to home, use poor man's debouncer
  5185. // ---------------------------------------------------------
  5186. static int homeDebounceCount = 0; // poor man's debouncing count
  5187. const int HOME_DEBOUNCE_DELAY = 750;
  5188. if (!READ(HOME_PIN)) {
  5189. if (!homeDebounceCount) {
  5190. enqueuecommands_P(PSTR("G28"));
  5191. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5192. }
  5193. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5194. homeDebounceCount++;
  5195. else
  5196. homeDebounceCount = 0;
  5197. }
  5198. #endif
  5199. #if HAS_CONTROLLERFAN
  5200. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5201. #endif
  5202. #ifdef EXTRUDER_RUNOUT_PREVENT
  5203. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5204. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5205. bool oldstatus;
  5206. switch(active_extruder) {
  5207. case 0:
  5208. oldstatus = E0_ENABLE_READ;
  5209. enable_e0();
  5210. break;
  5211. #if EXTRUDERS > 1
  5212. case 1:
  5213. oldstatus = E1_ENABLE_READ;
  5214. enable_e1();
  5215. break;
  5216. #if EXTRUDERS > 2
  5217. case 2:
  5218. oldstatus = E2_ENABLE_READ;
  5219. enable_e2();
  5220. break;
  5221. #if EXTRUDERS > 3
  5222. case 3:
  5223. oldstatus = E3_ENABLE_READ;
  5224. enable_e3();
  5225. break;
  5226. #endif
  5227. #endif
  5228. #endif
  5229. }
  5230. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5231. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5232. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5233. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5234. current_position[E_AXIS] = oldepos;
  5235. destination[E_AXIS] = oldedes;
  5236. plan_set_e_position(oldepos);
  5237. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5238. st_synchronize();
  5239. switch(active_extruder) {
  5240. case 0:
  5241. E0_ENABLE_WRITE(oldstatus);
  5242. break;
  5243. #if EXTRUDERS > 1
  5244. case 1:
  5245. E1_ENABLE_WRITE(oldstatus);
  5246. break;
  5247. #if EXTRUDERS > 2
  5248. case 2:
  5249. E2_ENABLE_WRITE(oldstatus);
  5250. break;
  5251. #if EXTRUDERS > 3
  5252. case 3:
  5253. E3_ENABLE_WRITE(oldstatus);
  5254. break;
  5255. #endif
  5256. #endif
  5257. #endif
  5258. }
  5259. }
  5260. #endif
  5261. #ifdef DUAL_X_CARRIAGE
  5262. // handle delayed move timeout
  5263. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5264. // travel moves have been received so enact them
  5265. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5266. set_destination_to_current();
  5267. prepare_move();
  5268. }
  5269. #endif
  5270. #ifdef TEMP_STAT_LEDS
  5271. handle_status_leds();
  5272. #endif
  5273. check_axes_activity();
  5274. }
  5275. void kill()
  5276. {
  5277. cli(); // Stop interrupts
  5278. disable_all_heaters();
  5279. disable_all_steppers();
  5280. #if HAS_POWER_SWITCH
  5281. pinMode(PS_ON_PIN, INPUT);
  5282. #endif
  5283. SERIAL_ERROR_START;
  5284. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5285. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5286. // FMC small patch to update the LCD before ending
  5287. sei(); // enable interrupts
  5288. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5289. cli(); // disable interrupts
  5290. suicide();
  5291. while(1) { /* Intentionally left empty */ } // Wait for reset
  5292. }
  5293. #ifdef FILAMENT_RUNOUT_SENSOR
  5294. void filrunout() {
  5295. if (!filrunoutEnqueued) {
  5296. filrunoutEnqueued = true;
  5297. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5298. st_synchronize();
  5299. }
  5300. }
  5301. #endif
  5302. void Stop() {
  5303. disable_all_heaters();
  5304. if (IsRunning()) {
  5305. Running = false;
  5306. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5307. SERIAL_ERROR_START;
  5308. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5309. LCD_MESSAGEPGM(MSG_STOPPED);
  5310. }
  5311. }
  5312. #ifdef FAST_PWM_FAN
  5313. void setPwmFrequency(uint8_t pin, int val)
  5314. {
  5315. val &= 0x07;
  5316. switch(digitalPinToTimer(pin))
  5317. {
  5318. #if defined(TCCR0A)
  5319. case TIMER0A:
  5320. case TIMER0B:
  5321. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5322. // TCCR0B |= val;
  5323. break;
  5324. #endif
  5325. #if defined(TCCR1A)
  5326. case TIMER1A:
  5327. case TIMER1B:
  5328. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5329. // TCCR1B |= val;
  5330. break;
  5331. #endif
  5332. #if defined(TCCR2)
  5333. case TIMER2:
  5334. case TIMER2:
  5335. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5336. TCCR2 |= val;
  5337. break;
  5338. #endif
  5339. #if defined(TCCR2A)
  5340. case TIMER2A:
  5341. case TIMER2B:
  5342. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5343. TCCR2B |= val;
  5344. break;
  5345. #endif
  5346. #if defined(TCCR3A)
  5347. case TIMER3A:
  5348. case TIMER3B:
  5349. case TIMER3C:
  5350. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5351. TCCR3B |= val;
  5352. break;
  5353. #endif
  5354. #if defined(TCCR4A)
  5355. case TIMER4A:
  5356. case TIMER4B:
  5357. case TIMER4C:
  5358. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5359. TCCR4B |= val;
  5360. break;
  5361. #endif
  5362. #if defined(TCCR5A)
  5363. case TIMER5A:
  5364. case TIMER5B:
  5365. case TIMER5C:
  5366. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5367. TCCR5B |= val;
  5368. break;
  5369. #endif
  5370. }
  5371. }
  5372. #endif //FAST_PWM_FAN
  5373. bool setTargetedHotend(int code){
  5374. target_extruder = active_extruder;
  5375. if (code_seen('T')) {
  5376. target_extruder = code_value_short();
  5377. if (target_extruder >= EXTRUDERS) {
  5378. SERIAL_ECHO_START;
  5379. switch(code){
  5380. case 104:
  5381. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5382. break;
  5383. case 105:
  5384. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5385. break;
  5386. case 109:
  5387. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5388. break;
  5389. case 218:
  5390. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5391. break;
  5392. case 221:
  5393. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5394. break;
  5395. }
  5396. SERIAL_ECHOLN(target_extruder);
  5397. return true;
  5398. }
  5399. }
  5400. return false;
  5401. }
  5402. float calculate_volumetric_multiplier(float diameter) {
  5403. if (!volumetric_enabled || diameter == 0) return 1.0;
  5404. float d2 = diameter * 0.5;
  5405. return 1.0 / (M_PI * d2 * d2);
  5406. }
  5407. void calculate_volumetric_multipliers() {
  5408. for (int i=0; i<EXTRUDERS; i++)
  5409. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5410. }