My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 255KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #include "buzzer.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - retract filament according to settings of M207
  98. * G11 - retract recover filament according to settings of M208
  99. * G28 - Home one or more axes
  100. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. * G30 - Single Z probe, probes bed at current XY location.
  102. * G31 - Dock sled (Z_PROBE_SLED only)
  103. * G32 - Undock sled (Z_PROBE_SLED only)
  104. * G90 - Use Absolute Coordinates
  105. * G91 - Use Relative Coordinates
  106. * G92 - Set current position to coordinates given
  107. *
  108. * "M" Codes
  109. *
  110. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. * M1 - Same as M0
  112. * M17 - Enable/Power all stepper motors
  113. * M18 - Disable all stepper motors; same as M84
  114. * M20 - List SD card
  115. * M21 - Init SD card
  116. * M22 - Release SD card
  117. * M23 - Select SD file (M23 filename.g)
  118. * M24 - Start/resume SD print
  119. * M25 - Pause SD print
  120. * M26 - Set SD position in bytes (M26 S12345)
  121. * M27 - Report SD print status
  122. * M28 - Start SD write (M28 filename.g)
  123. * M29 - Stop SD write
  124. * M30 - Delete file from SD (M30 filename.g)
  125. * M31 - Output time since last M109 or SD card start to serial
  126. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. * M33 - Get the longname version of a path
  131. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  132. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  133. * M75 - Start the print job timer
  134. * M76 - Pause the print job timer
  135. * M77 - Stop the print job timer
  136. * M78 - Show statistical information about the print jobs
  137. * M80 - Turn on Power Supply
  138. * M81 - Turn off Power Supply
  139. * M82 - Set E codes absolute (default)
  140. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  141. * M84 - Disable steppers until next move,
  142. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  143. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  144. * M92 - Set planner.axis_steps_per_unit - same syntax as G92
  145. * M104 - Set extruder target temp
  146. * M105 - Read current temp
  147. * M106 - Fan on
  148. * M107 - Fan off
  149. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  150. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  151. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  152. * M110 - Set the current line number
  153. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  154. * M112 - Emergency stop
  155. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  156. * M114 - Output current position to serial port
  157. * M115 - Capabilities string
  158. * M117 - Display a message on the controller screen
  159. * M119 - Output Endstop status to serial port
  160. * M120 - Enable endstop detection
  161. * M121 - Disable endstop detection
  162. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  163. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  164. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  165. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M140 - Set bed target temp
  167. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  168. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  169. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  170. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  171. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  172. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  173. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  174. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  175. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  176. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  177. * M206 - Set additional homing offset
  178. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  179. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  180. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  181. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  182. * M220 - Set speed factor override percentage: S<factor in percent>
  183. * M221 - Set extrude factor override percentage: S<factor in percent>
  184. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  185. * M240 - Trigger a camera to take a photograph
  186. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  187. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  188. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  189. * M301 - Set PID parameters P I and D
  190. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  191. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  192. * M304 - Set bed PID parameters P I and D
  193. * M380 - Activate solenoid on active extruder
  194. * M381 - Disable all solenoids
  195. * M400 - Finish all moves
  196. * M401 - Lower Z probe if present
  197. * M402 - Raise Z probe if present
  198. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  199. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  200. * M406 - Turn off Filament Sensor extrusion control
  201. * M407 - Display measured filament diameter
  202. * M410 - Quickstop. Abort all the planned moves
  203. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  204. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  205. * M428 - Set the home_offset logically based on the current_position
  206. * M500 - Store parameters in EEPROM
  207. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  208. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  209. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  210. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  211. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  212. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  213. * M666 - Set delta endstop adjustment
  214. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  215. * M907 - Set digital trimpot motor current using axis codes.
  216. * M908 - Control digital trimpot directly.
  217. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  218. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  219. * M350 - Set microstepping mode.
  220. * M351 - Toggle MS1 MS2 pins directly.
  221. *
  222. * ************ SCARA Specific - This can change to suit future G-code regulations
  223. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  224. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  225. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  226. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  227. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  228. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  229. * ************* SCARA End ***************
  230. *
  231. * ************ Custom codes - This can change to suit future G-code regulations
  232. * M100 - Watch Free Memory (For Debugging Only)
  233. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  234. * M928 - Start SD logging (M928 filename.g) - ended by M29
  235. * M999 - Restart after being stopped by error
  236. *
  237. * "T" Codes
  238. *
  239. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  240. *
  241. */
  242. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  243. void gcode_M100();
  244. #endif
  245. #if ENABLED(SDSUPPORT)
  246. CardReader card;
  247. #endif
  248. #if ENABLED(EXPERIMENTAL_I2CBUS)
  249. TWIBus i2c;
  250. #endif
  251. bool Running = true;
  252. uint8_t marlin_debug_flags = DEBUG_NONE;
  253. static float feedrate = 1500.0, saved_feedrate;
  254. float current_position[NUM_AXIS] = { 0.0 };
  255. static float destination[NUM_AXIS] = { 0.0 };
  256. bool axis_known_position[3] = { false };
  257. bool axis_homed[3] = { false };
  258. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  259. static char* current_command, *current_command_args;
  260. static int cmd_queue_index_r = 0;
  261. static int cmd_queue_index_w = 0;
  262. static int commands_in_queue = 0;
  263. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  264. const float homing_feedrate[] = HOMING_FEEDRATE;
  265. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  266. int feedrate_multiplier = 100; //100->1 200->2
  267. int saved_feedrate_multiplier;
  268. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  271. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  272. // The distance that XYZ has been offset by G92. Reset by G28.
  273. float position_shift[3] = { 0 };
  274. // This offset is added to the configured home position.
  275. // Set by M206, M428, or menu item. Saved to EEPROM.
  276. float home_offset[3] = { 0 };
  277. // Software Endstops. Default to configured limits.
  278. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  279. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  280. #if FAN_COUNT > 0
  281. int fanSpeeds[FAN_COUNT] = { 0 };
  282. #endif
  283. // The active extruder (tool). Set with T<extruder> command.
  284. uint8_t active_extruder = 0;
  285. // Relative Mode. Enable with G91, disable with G90.
  286. static bool relative_mode = false;
  287. bool cancel_heatup = false;
  288. const char errormagic[] PROGMEM = "Error:";
  289. const char echomagic[] PROGMEM = "echo:";
  290. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  291. static int serial_count = 0;
  292. // GCode parameter pointer used by code_seen(), code_value(), etc.
  293. static char* seen_pointer;
  294. // Next Immediate GCode Command pointer. NULL if none.
  295. const char* queued_commands_P = NULL;
  296. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  297. // Inactivity shutdown
  298. millis_t previous_cmd_ms = 0;
  299. static millis_t max_inactive_time = 0;
  300. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  301. // Print Job Timer
  302. #if ENABLED(PRINTCOUNTER)
  303. PrintCounter print_job_timer = PrintCounter();
  304. #else
  305. Stopwatch print_job_timer = Stopwatch();
  306. #endif
  307. static uint8_t target_extruder;
  308. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  309. int xy_travel_speed = XY_TRAVEL_SPEED;
  310. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  311. bool bed_leveling_in_progress = false;
  312. #endif
  313. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  314. float z_endstop_adj = 0;
  315. #endif
  316. // Extruder offsets
  317. #if EXTRUDERS > 1
  318. #ifndef EXTRUDER_OFFSET_X
  319. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  320. #endif
  321. #ifndef EXTRUDER_OFFSET_Y
  322. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  323. #endif
  324. float extruder_offset[][EXTRUDERS] = {
  325. EXTRUDER_OFFSET_X,
  326. EXTRUDER_OFFSET_Y
  327. #if ENABLED(DUAL_X_CARRIAGE)
  328. , { 0 } // Z offsets for each extruder
  329. #endif
  330. };
  331. #endif
  332. #if ENABLED(HAS_SERVO_ENDSTOPS)
  333. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  334. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  335. #endif
  336. #if ENABLED(BARICUDA)
  337. int baricuda_valve_pressure = 0;
  338. int baricuda_e_to_p_pressure = 0;
  339. #endif
  340. #if ENABLED(FWRETRACT)
  341. bool autoretract_enabled = false;
  342. bool retracted[EXTRUDERS] = { false };
  343. bool retracted_swap[EXTRUDERS] = { false };
  344. float retract_length = RETRACT_LENGTH;
  345. float retract_length_swap = RETRACT_LENGTH_SWAP;
  346. float retract_feedrate = RETRACT_FEEDRATE;
  347. float retract_zlift = RETRACT_ZLIFT;
  348. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  349. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  350. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  351. #endif // FWRETRACT
  352. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  353. bool powersupply =
  354. #if ENABLED(PS_DEFAULT_OFF)
  355. false
  356. #else
  357. true
  358. #endif
  359. ;
  360. #endif
  361. #if ENABLED(DELTA)
  362. #define TOWER_1 X_AXIS
  363. #define TOWER_2 Y_AXIS
  364. #define TOWER_3 Z_AXIS
  365. float delta[3] = { 0 };
  366. #define SIN_60 0.8660254037844386
  367. #define COS_60 0.5
  368. float endstop_adj[3] = { 0 };
  369. // these are the default values, can be overriden with M665
  370. float delta_radius = DELTA_RADIUS;
  371. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  372. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  373. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  374. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  375. float delta_tower3_x = 0; // back middle tower
  376. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  377. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  378. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  379. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  380. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  381. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  382. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  383. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  384. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  385. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  386. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  387. int delta_grid_spacing[2] = { 0, 0 };
  388. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  389. #endif
  390. #else
  391. static bool home_all_axis = true;
  392. #endif
  393. #if ENABLED(SCARA)
  394. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  395. static float delta[3] = { 0 };
  396. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  397. #endif
  398. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  399. //Variables for Filament Sensor input
  400. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  401. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  402. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  403. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  404. int filwidth_delay_index1 = 0; //index into ring buffer
  405. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  406. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  407. #endif
  408. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  409. static bool filament_ran_out = false;
  410. #endif
  411. static bool send_ok[BUFSIZE];
  412. #if HAS_SERVOS
  413. Servo servo[NUM_SERVOS];
  414. #endif
  415. #ifdef CHDK
  416. millis_t chdkHigh = 0;
  417. boolean chdkActive = false;
  418. #endif
  419. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  420. int lpq_len = 20;
  421. #endif
  422. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  423. // States for managing Marlin and host communication
  424. // Marlin sends messages if blocked or busy
  425. enum MarlinBusyState {
  426. NOT_BUSY, // Not in a handler
  427. IN_HANDLER, // Processing a GCode
  428. IN_PROCESS, // Known to be blocking command input (as in G29)
  429. PAUSED_FOR_USER, // Blocking pending any input
  430. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  431. };
  432. static MarlinBusyState busy_state = NOT_BUSY;
  433. static millis_t next_busy_signal_ms = 0;
  434. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  435. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  436. #else
  437. #define host_keepalive() ;
  438. #define KEEPALIVE_STATE(n) ;
  439. #endif // HOST_KEEPALIVE_FEATURE
  440. /**
  441. * ***************************************************************************
  442. * ******************************** FUNCTIONS ********************************
  443. * ***************************************************************************
  444. */
  445. void stop();
  446. void get_available_commands();
  447. void process_next_command();
  448. #if ENABLED(ARC_SUPPORT)
  449. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  450. #endif
  451. #if ENABLED(BEZIER_CURVE_SUPPORT)
  452. void plan_cubic_move(const float offset[4]);
  453. #endif
  454. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  456. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  457. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  458. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  459. static void report_current_position();
  460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  461. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  462. SERIAL_ECHO(prefix);
  463. SERIAL_ECHOPAIR(": (", x);
  464. SERIAL_ECHOPAIR(", ", y);
  465. SERIAL_ECHOPAIR(", ", z);
  466. SERIAL_ECHOLNPGM(")");
  467. }
  468. void print_xyz(const char* prefix, const float xyz[]) {
  469. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  470. }
  471. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  472. void print_xyz(const char* prefix, const vector_3 &xyz) {
  473. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  474. }
  475. #endif
  476. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  477. #endif
  478. #if ENABLED(DELTA) || ENABLED(SCARA)
  479. inline void sync_plan_position_delta() {
  480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  481. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  482. #endif
  483. calculate_delta(current_position);
  484. planner.set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  485. }
  486. #endif
  487. #if ENABLED(SDSUPPORT)
  488. #include "SdFatUtil.h"
  489. int freeMemory() { return SdFatUtil::FreeRam(); }
  490. #else
  491. extern "C" {
  492. extern unsigned int __bss_end;
  493. extern unsigned int __heap_start;
  494. extern void* __brkval;
  495. int freeMemory() {
  496. int free_memory;
  497. if ((int)__brkval == 0)
  498. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  499. else
  500. free_memory = ((int)&free_memory) - ((int)__brkval);
  501. return free_memory;
  502. }
  503. }
  504. #endif //!SDSUPPORT
  505. #if ENABLED(DIGIPOT_I2C)
  506. extern void digipot_i2c_set_current(int channel, float current);
  507. extern void digipot_i2c_init();
  508. #endif
  509. /**
  510. * Inject the next "immediate" command, when possible.
  511. * Return true if any immediate commands remain to inject.
  512. */
  513. static bool drain_queued_commands_P() {
  514. if (queued_commands_P != NULL) {
  515. size_t i = 0;
  516. char c, cmd[30];
  517. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  518. cmd[sizeof(cmd) - 1] = '\0';
  519. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  520. cmd[i] = '\0';
  521. if (enqueue_and_echo_command(cmd)) { // success?
  522. if (c) // newline char?
  523. queued_commands_P += i + 1; // advance to the next command
  524. else
  525. queued_commands_P = NULL; // nul char? no more commands
  526. }
  527. }
  528. return (queued_commands_P != NULL); // return whether any more remain
  529. }
  530. /**
  531. * Record one or many commands to run from program memory.
  532. * Aborts the current queue, if any.
  533. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  534. */
  535. void enqueue_and_echo_commands_P(const char* pgcode) {
  536. queued_commands_P = pgcode;
  537. drain_queued_commands_P(); // first command executed asap (when possible)
  538. }
  539. /**
  540. * Once a new command is in the ring buffer, call this to commit it
  541. */
  542. inline void _commit_command(bool say_ok) {
  543. send_ok[cmd_queue_index_w] = say_ok;
  544. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  545. commands_in_queue++;
  546. }
  547. /**
  548. * Copy a command directly into the main command buffer, from RAM.
  549. * Returns true if successfully adds the command
  550. */
  551. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  552. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  553. strcpy(command_queue[cmd_queue_index_w], cmd);
  554. _commit_command(say_ok);
  555. return true;
  556. }
  557. void enqueue_and_echo_command_now(const char* cmd) {
  558. while (!enqueue_and_echo_command(cmd)) idle();
  559. }
  560. /**
  561. * Enqueue with Serial Echo
  562. */
  563. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  564. if (_enqueuecommand(cmd, say_ok)) {
  565. SERIAL_ECHO_START;
  566. SERIAL_ECHOPGM(MSG_Enqueueing);
  567. SERIAL_ECHO(cmd);
  568. SERIAL_ECHOLNPGM("\"");
  569. return true;
  570. }
  571. return false;
  572. }
  573. void setup_killpin() {
  574. #if HAS_KILL
  575. SET_INPUT(KILL_PIN);
  576. WRITE(KILL_PIN, HIGH);
  577. #endif
  578. }
  579. void setup_filrunoutpin() {
  580. #if HAS_FILRUNOUT
  581. pinMode(FILRUNOUT_PIN, INPUT);
  582. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  583. WRITE(FILRUNOUT_PIN, HIGH);
  584. #endif
  585. #endif
  586. }
  587. // Set home pin
  588. void setup_homepin(void) {
  589. #if HAS_HOME
  590. SET_INPUT(HOME_PIN);
  591. WRITE(HOME_PIN, HIGH);
  592. #endif
  593. }
  594. void setup_photpin() {
  595. #if HAS_PHOTOGRAPH
  596. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  597. #endif
  598. }
  599. void setup_powerhold() {
  600. #if HAS_SUICIDE
  601. OUT_WRITE(SUICIDE_PIN, HIGH);
  602. #endif
  603. #if HAS_POWER_SWITCH
  604. #if ENABLED(PS_DEFAULT_OFF)
  605. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  606. #else
  607. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  608. #endif
  609. #endif
  610. }
  611. void suicide() {
  612. #if HAS_SUICIDE
  613. OUT_WRITE(SUICIDE_PIN, LOW);
  614. #endif
  615. }
  616. void servo_init() {
  617. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  618. servo[0].attach(SERVO0_PIN);
  619. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  620. #endif
  621. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  622. servo[1].attach(SERVO1_PIN);
  623. servo[1].detach();
  624. #endif
  625. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  626. servo[2].attach(SERVO2_PIN);
  627. servo[2].detach();
  628. #endif
  629. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  630. servo[3].attach(SERVO3_PIN);
  631. servo[3].detach();
  632. #endif
  633. #if ENABLED(HAS_SERVO_ENDSTOPS)
  634. endstops.enable_z_probe(false);
  635. /**
  636. * Set position of all defined Servo Endstops
  637. *
  638. * ** UNSAFE! - NEEDS UPDATE! **
  639. *
  640. * The servo might be deployed and positioned too low to stow
  641. * when starting up the machine or rebooting the board.
  642. * There's no way to know where the nozzle is positioned until
  643. * homing has been done - no homing with z-probe without init!
  644. *
  645. */
  646. for (int i = 0; i < 3; i++)
  647. if (servo_endstop_id[i] >= 0)
  648. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  649. #endif // HAS_SERVO_ENDSTOPS
  650. }
  651. /**
  652. * Stepper Reset (RigidBoard, et.al.)
  653. */
  654. #if HAS_STEPPER_RESET
  655. void disableStepperDrivers() {
  656. pinMode(STEPPER_RESET_PIN, OUTPUT);
  657. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  658. }
  659. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  660. #endif
  661. /**
  662. * Marlin entry-point: Set up before the program loop
  663. * - Set up the kill pin, filament runout, power hold
  664. * - Start the serial port
  665. * - Print startup messages and diagnostics
  666. * - Get EEPROM or default settings
  667. * - Initialize managers for:
  668. * • temperature
  669. * • planner
  670. * • watchdog
  671. * • stepper
  672. * • photo pin
  673. * • servos
  674. * • LCD controller
  675. * • Digipot I2C
  676. * • Z probe sled
  677. * • status LEDs
  678. */
  679. void setup() {
  680. #ifdef DISABLE_JTAG
  681. // Disable JTAG on AT90USB chips to free up pins for IO
  682. MCUCR = 0x80;
  683. MCUCR = 0x80;
  684. #endif
  685. setup_killpin();
  686. setup_filrunoutpin();
  687. setup_powerhold();
  688. #if HAS_STEPPER_RESET
  689. disableStepperDrivers();
  690. #endif
  691. MYSERIAL.begin(BAUDRATE);
  692. SERIAL_PROTOCOLLNPGM("start");
  693. SERIAL_ECHO_START;
  694. // Check startup - does nothing if bootloader sets MCUSR to 0
  695. byte mcu = MCUSR;
  696. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  697. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  698. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  699. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  700. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  701. MCUSR = 0;
  702. SERIAL_ECHOPGM(MSG_MARLIN);
  703. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  704. #ifdef STRING_DISTRIBUTION_DATE
  705. #ifdef STRING_CONFIG_H_AUTHOR
  706. SERIAL_ECHO_START;
  707. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  708. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  709. SERIAL_ECHOPGM(MSG_AUTHOR);
  710. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  711. SERIAL_ECHOPGM("Compiled: ");
  712. SERIAL_ECHOLNPGM(__DATE__);
  713. #endif // STRING_CONFIG_H_AUTHOR
  714. #endif // STRING_DISTRIBUTION_DATE
  715. SERIAL_ECHO_START;
  716. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  717. SERIAL_ECHO(freeMemory());
  718. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  719. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  720. // Send "ok" after commands by default
  721. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  722. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  723. Config_RetrieveSettings();
  724. lcd_init();
  725. thermalManager.init(); // Initialize temperature loop
  726. #if ENABLED(DELTA) || ENABLED(SCARA)
  727. // Vital to init kinematic equivalent for X0 Y0 Z0
  728. sync_plan_position_delta();
  729. #endif
  730. #if ENABLED(USE_WATCHDOG)
  731. watchdog_init();
  732. #endif
  733. stepper.init(); // Initialize stepper, this enables interrupts!
  734. setup_photpin();
  735. servo_init();
  736. #if HAS_CONTROLLERFAN
  737. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  738. #endif
  739. #if HAS_STEPPER_RESET
  740. enableStepperDrivers();
  741. #endif
  742. #if ENABLED(DIGIPOT_I2C)
  743. digipot_i2c_init();
  744. #endif
  745. #if ENABLED(DAC_STEPPER_CURRENT)
  746. dac_init();
  747. #endif
  748. #if ENABLED(Z_PROBE_SLED)
  749. pinMode(SLED_PIN, OUTPUT);
  750. digitalWrite(SLED_PIN, LOW); // turn it off
  751. #endif // Z_PROBE_SLED
  752. setup_homepin();
  753. #ifdef STAT_LED_RED
  754. pinMode(STAT_LED_RED, OUTPUT);
  755. digitalWrite(STAT_LED_RED, LOW); // turn it off
  756. #endif
  757. #ifdef STAT_LED_BLUE
  758. pinMode(STAT_LED_BLUE, OUTPUT);
  759. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  760. #endif
  761. }
  762. /**
  763. * The main Marlin program loop
  764. *
  765. * - Save or log commands to SD
  766. * - Process available commands (if not saving)
  767. * - Call heater manager
  768. * - Call inactivity manager
  769. * - Call endstop manager
  770. * - Call LCD update
  771. */
  772. void loop() {
  773. if (commands_in_queue < BUFSIZE) get_available_commands();
  774. #if ENABLED(SDSUPPORT)
  775. card.checkautostart(false);
  776. #endif
  777. if (commands_in_queue) {
  778. #if ENABLED(SDSUPPORT)
  779. if (card.saving) {
  780. char* command = command_queue[cmd_queue_index_r];
  781. if (strstr_P(command, PSTR("M29"))) {
  782. // M29 closes the file
  783. card.closefile();
  784. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  785. ok_to_send();
  786. }
  787. else {
  788. // Write the string from the read buffer to SD
  789. card.write_command(command);
  790. if (card.logging)
  791. process_next_command(); // The card is saving because it's logging
  792. else
  793. ok_to_send();
  794. }
  795. }
  796. else
  797. process_next_command();
  798. #else
  799. process_next_command();
  800. #endif // SDSUPPORT
  801. commands_in_queue--;
  802. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  803. }
  804. endstops.report_state();
  805. idle();
  806. }
  807. void gcode_line_error(const char* err, bool doFlush = true) {
  808. SERIAL_ERROR_START;
  809. serialprintPGM(err);
  810. SERIAL_ERRORLN(gcode_LastN);
  811. //Serial.println(gcode_N);
  812. if (doFlush) FlushSerialRequestResend();
  813. serial_count = 0;
  814. }
  815. inline void get_serial_commands() {
  816. static char serial_line_buffer[MAX_CMD_SIZE];
  817. static boolean serial_comment_mode = false;
  818. // If the command buffer is empty for too long,
  819. // send "wait" to indicate Marlin is still waiting.
  820. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  821. static millis_t last_command_time = 0;
  822. millis_t ms = millis();
  823. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  824. SERIAL_ECHOLNPGM(MSG_WAIT);
  825. last_command_time = ms;
  826. }
  827. #endif
  828. /**
  829. * Loop while serial characters are incoming and the queue is not full
  830. */
  831. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  832. char serial_char = MYSERIAL.read();
  833. /**
  834. * If the character ends the line
  835. */
  836. if (serial_char == '\n' || serial_char == '\r') {
  837. serial_comment_mode = false; // end of line == end of comment
  838. if (!serial_count) continue; // skip empty lines
  839. serial_line_buffer[serial_count] = 0; // terminate string
  840. serial_count = 0; //reset buffer
  841. char* command = serial_line_buffer;
  842. while (*command == ' ') command++; // skip any leading spaces
  843. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  844. char* apos = strchr(command, '*');
  845. if (npos) {
  846. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  847. if (M110) {
  848. char* n2pos = strchr(command + 4, 'N');
  849. if (n2pos) npos = n2pos;
  850. }
  851. gcode_N = strtol(npos + 1, NULL, 10);
  852. if (gcode_N != gcode_LastN + 1 && !M110) {
  853. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  854. return;
  855. }
  856. if (apos) {
  857. byte checksum = 0, count = 0;
  858. while (command[count] != '*') checksum ^= command[count++];
  859. if (strtol(apos + 1, NULL, 10) != checksum) {
  860. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  861. return;
  862. }
  863. // if no errors, continue parsing
  864. }
  865. else {
  866. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  867. return;
  868. }
  869. gcode_LastN = gcode_N;
  870. // if no errors, continue parsing
  871. }
  872. else if (apos) { // No '*' without 'N'
  873. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  874. return;
  875. }
  876. // Movement commands alert when stopped
  877. if (IsStopped()) {
  878. char* gpos = strchr(command, 'G');
  879. if (gpos) {
  880. int codenum = strtol(gpos + 1, NULL, 10);
  881. switch (codenum) {
  882. case 0:
  883. case 1:
  884. case 2:
  885. case 3:
  886. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  887. LCD_MESSAGEPGM(MSG_STOPPED);
  888. break;
  889. }
  890. }
  891. }
  892. // If command was e-stop process now
  893. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  894. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  895. last_command_time = ms;
  896. #endif
  897. // Add the command to the queue
  898. _enqueuecommand(serial_line_buffer, true);
  899. }
  900. else if (serial_count >= MAX_CMD_SIZE - 1) {
  901. // Keep fetching, but ignore normal characters beyond the max length
  902. // The command will be injected when EOL is reached
  903. }
  904. else if (serial_char == '\\') { // Handle escapes
  905. if (MYSERIAL.available() > 0) {
  906. // if we have one more character, copy it over
  907. serial_char = MYSERIAL.read();
  908. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  909. }
  910. // otherwise do nothing
  911. }
  912. else { // it's not a newline, carriage return or escape char
  913. if (serial_char == ';') serial_comment_mode = true;
  914. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  915. }
  916. } // queue has space, serial has data
  917. }
  918. #if ENABLED(SDSUPPORT)
  919. inline void get_sdcard_commands() {
  920. static bool stop_buffering = false,
  921. sd_comment_mode = false;
  922. if (!card.sdprinting) return;
  923. /**
  924. * '#' stops reading from SD to the buffer prematurely, so procedural
  925. * macro calls are possible. If it occurs, stop_buffering is triggered
  926. * and the buffer is run dry; this character _can_ occur in serial com
  927. * due to checksums, however, no checksums are used in SD printing.
  928. */
  929. if (commands_in_queue == 0) stop_buffering = false;
  930. uint16_t sd_count = 0;
  931. bool card_eof = card.eof();
  932. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  933. int16_t n = card.get();
  934. char sd_char = (char)n;
  935. card_eof = card.eof();
  936. if (card_eof || n == -1
  937. || sd_char == '\n' || sd_char == '\r'
  938. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  939. ) {
  940. if (card_eof) {
  941. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  942. print_job_timer.stop();
  943. char time[30];
  944. millis_t t = print_job_timer.duration();
  945. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  946. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  947. SERIAL_ECHO_START;
  948. SERIAL_ECHOLN(time);
  949. lcd_setstatus(time, true);
  950. card.printingHasFinished();
  951. card.checkautostart(true);
  952. }
  953. if (sd_char == '#') stop_buffering = true;
  954. sd_comment_mode = false; //for new command
  955. if (!sd_count) continue; //skip empty lines
  956. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  957. sd_count = 0; //clear buffer
  958. _commit_command(false);
  959. }
  960. else if (sd_count >= MAX_CMD_SIZE - 1) {
  961. /**
  962. * Keep fetching, but ignore normal characters beyond the max length
  963. * The command will be injected when EOL is reached
  964. */
  965. }
  966. else {
  967. if (sd_char == ';') sd_comment_mode = true;
  968. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  969. }
  970. }
  971. }
  972. #endif // SDSUPPORT
  973. /**
  974. * Add to the circular command queue the next command from:
  975. * - The command-injection queue (queued_commands_P)
  976. * - The active serial input (usually USB)
  977. * - The SD card file being actively printed
  978. */
  979. void get_available_commands() {
  980. // if any immediate commands remain, don't get other commands yet
  981. if (drain_queued_commands_P()) return;
  982. get_serial_commands();
  983. #if ENABLED(SDSUPPORT)
  984. get_sdcard_commands();
  985. #endif
  986. }
  987. bool code_has_value() {
  988. int i = 1;
  989. char c = seen_pointer[i];
  990. while (c == ' ') c = seen_pointer[++i];
  991. if (c == '-' || c == '+') c = seen_pointer[++i];
  992. if (c == '.') c = seen_pointer[++i];
  993. return NUMERIC(c);
  994. }
  995. float code_value() {
  996. float ret;
  997. char* e = strchr(seen_pointer, 'E');
  998. if (e) {
  999. *e = 0;
  1000. ret = strtod(seen_pointer + 1, NULL);
  1001. *e = 'E';
  1002. }
  1003. else
  1004. ret = strtod(seen_pointer + 1, NULL);
  1005. return ret;
  1006. }
  1007. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1008. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  1009. bool code_seen(char code) {
  1010. seen_pointer = strchr(current_command_args, code);
  1011. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1012. }
  1013. /**
  1014. * Set target_extruder from the T parameter or the active_extruder
  1015. *
  1016. * Returns TRUE if the target is invalid
  1017. */
  1018. bool get_target_extruder_from_command(int code) {
  1019. if (code_seen('T')) {
  1020. short t = code_value_short();
  1021. if (t >= EXTRUDERS) {
  1022. SERIAL_ECHO_START;
  1023. SERIAL_CHAR('M');
  1024. SERIAL_ECHO(code);
  1025. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1026. SERIAL_EOL;
  1027. return true;
  1028. }
  1029. target_extruder = t;
  1030. }
  1031. else
  1032. target_extruder = active_extruder;
  1033. return false;
  1034. }
  1035. #define DEFINE_PGM_READ_ANY(type, reader) \
  1036. static inline type pgm_read_any(const type *p) \
  1037. { return pgm_read_##reader##_near(p); }
  1038. DEFINE_PGM_READ_ANY(float, float);
  1039. DEFINE_PGM_READ_ANY(signed char, byte);
  1040. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1041. static const PROGMEM type array##_P[3] = \
  1042. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1043. static inline type array(int axis) \
  1044. { return pgm_read_any(&array##_P[axis]); }
  1045. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1046. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1047. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1048. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1049. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1050. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1051. #if ENABLED(DUAL_X_CARRIAGE)
  1052. #define DXC_FULL_CONTROL_MODE 0
  1053. #define DXC_AUTO_PARK_MODE 1
  1054. #define DXC_DUPLICATION_MODE 2
  1055. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1056. static float x_home_pos(int extruder) {
  1057. if (extruder == 0)
  1058. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1059. else
  1060. /**
  1061. * In dual carriage mode the extruder offset provides an override of the
  1062. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1063. * This allow soft recalibration of the second extruder offset position
  1064. * without firmware reflash (through the M218 command).
  1065. */
  1066. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1067. }
  1068. static int x_home_dir(int extruder) {
  1069. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1070. }
  1071. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1072. static bool active_extruder_parked = false; // used in mode 1 & 2
  1073. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1074. static millis_t delayed_move_time = 0; // used in mode 1
  1075. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1076. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1077. bool extruder_duplication_enabled = false; // used in mode 2
  1078. #endif //DUAL_X_CARRIAGE
  1079. /**
  1080. * Software endstops can be used to monitor the open end of
  1081. * an axis that has a hardware endstop on the other end. Or
  1082. * they can prevent axes from moving past endstops and grinding.
  1083. *
  1084. * To keep doing their job as the coordinate system changes,
  1085. * the software endstop positions must be refreshed to remain
  1086. * at the same positions relative to the machine.
  1087. */
  1088. static void update_software_endstops(AxisEnum axis) {
  1089. float offs = home_offset[axis] + position_shift[axis];
  1090. #if ENABLED(DUAL_X_CARRIAGE)
  1091. if (axis == X_AXIS) {
  1092. float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1093. if (active_extruder != 0) {
  1094. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1095. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1096. return;
  1097. }
  1098. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1099. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1100. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1101. return;
  1102. }
  1103. }
  1104. else
  1105. #endif
  1106. {
  1107. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1108. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1109. }
  1110. }
  1111. /**
  1112. * Change the home offset for an axis, update the current
  1113. * position and the software endstops to retain the same
  1114. * relative distance to the new home.
  1115. *
  1116. * Since this changes the current_position, code should
  1117. * call sync_plan_position soon after this.
  1118. */
  1119. static void set_home_offset(AxisEnum axis, float v) {
  1120. current_position[axis] += v - home_offset[axis];
  1121. home_offset[axis] = v;
  1122. update_software_endstops(axis);
  1123. }
  1124. static void set_axis_is_at_home(AxisEnum axis) {
  1125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1126. if (DEBUGGING(LEVELING)) {
  1127. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1128. SERIAL_ECHOLNPGM(") >>>");
  1129. }
  1130. #endif
  1131. position_shift[axis] = 0;
  1132. #if ENABLED(DUAL_X_CARRIAGE)
  1133. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1134. if (active_extruder != 0)
  1135. current_position[X_AXIS] = x_home_pos(active_extruder);
  1136. else
  1137. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1138. update_software_endstops(X_AXIS);
  1139. return;
  1140. }
  1141. #endif
  1142. #if ENABLED(SCARA)
  1143. if (axis == X_AXIS || axis == Y_AXIS) {
  1144. float homeposition[3];
  1145. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1146. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1147. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1148. /**
  1149. * Works out real Homeposition angles using inverse kinematics,
  1150. * and calculates homing offset using forward kinematics
  1151. */
  1152. calculate_delta(homeposition);
  1153. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1154. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1155. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1156. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1157. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1158. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1159. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1160. calculate_SCARA_forward_Transform(delta);
  1161. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1162. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1163. current_position[axis] = delta[axis];
  1164. /**
  1165. * SCARA home positions are based on configuration since the actual
  1166. * limits are determined by the inverse kinematic transform.
  1167. */
  1168. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1169. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1170. }
  1171. else
  1172. #endif
  1173. {
  1174. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1175. update_software_endstops(axis);
  1176. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1177. if (axis == Z_AXIS) {
  1178. current_position[Z_AXIS] -= zprobe_zoffset;
  1179. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1180. if (DEBUGGING(LEVELING)) {
  1181. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1182. SERIAL_EOL;
  1183. }
  1184. #endif
  1185. }
  1186. #endif
  1187. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1188. if (DEBUGGING(LEVELING)) {
  1189. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1190. DEBUG_POS("", current_position);
  1191. }
  1192. #endif
  1193. }
  1194. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1195. if (DEBUGGING(LEVELING)) {
  1196. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1197. SERIAL_ECHOLNPGM(")");
  1198. }
  1199. #endif
  1200. }
  1201. /**
  1202. * Some planner shorthand inline functions
  1203. */
  1204. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1205. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1206. int hbd = homing_bump_divisor[axis];
  1207. if (hbd < 1) {
  1208. hbd = 10;
  1209. SERIAL_ECHO_START;
  1210. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1211. }
  1212. feedrate = homing_feedrate[axis] / hbd;
  1213. }
  1214. //
  1215. // line_to_current_position
  1216. // Move the planner to the current position from wherever it last moved
  1217. // (or from wherever it has been told it is located).
  1218. //
  1219. inline void line_to_current_position() {
  1220. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1221. }
  1222. inline void line_to_z(float zPosition) {
  1223. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1224. }
  1225. //
  1226. // line_to_destination
  1227. // Move the planner, not necessarily synced with current_position
  1228. //
  1229. inline void line_to_destination(float mm_m) {
  1230. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1231. }
  1232. inline void line_to_destination() {
  1233. line_to_destination(feedrate);
  1234. }
  1235. /**
  1236. * sync_plan_position
  1237. * Set planner / stepper positions to the cartesian current_position.
  1238. * The stepper code translates these coordinates into step units.
  1239. * Allows translation between steps and units (mm) for cartesian & core robots
  1240. */
  1241. inline void sync_plan_position() {
  1242. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1243. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1244. #endif
  1245. planner.set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1246. }
  1247. inline void sync_plan_position_e() { planner.set_e_position(current_position[E_AXIS]); }
  1248. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1249. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1250. static void setup_for_endstop_move() {
  1251. saved_feedrate = feedrate;
  1252. saved_feedrate_multiplier = feedrate_multiplier;
  1253. feedrate_multiplier = 100;
  1254. refresh_cmd_timeout();
  1255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1256. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
  1257. #endif
  1258. endstops.enable();
  1259. }
  1260. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1261. #if ENABLED(DELTA)
  1262. /**
  1263. * Calculate delta, start a line, and set current_position to destination
  1264. */
  1265. void prepare_move_raw() {
  1266. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1267. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1268. #endif
  1269. refresh_cmd_timeout();
  1270. calculate_delta(destination);
  1271. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1272. set_current_to_destination();
  1273. }
  1274. #endif
  1275. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1276. #if DISABLED(DELTA)
  1277. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1278. //planner.bed_level_matrix.debug("bed level before");
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. planner.bed_level_matrix.set_to_identity();
  1281. if (DEBUGGING(LEVELING)) {
  1282. vector_3 uncorrected_position = planner.adjusted_position();
  1283. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1284. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1285. }
  1286. #endif
  1287. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1288. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1289. vector_3 corrected_position = planner.adjusted_position();
  1290. current_position[X_AXIS] = corrected_position.x;
  1291. current_position[Y_AXIS] = corrected_position.y;
  1292. current_position[Z_AXIS] = corrected_position.z;
  1293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1294. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1295. #endif
  1296. sync_plan_position();
  1297. }
  1298. #endif // !DELTA
  1299. #else // !AUTO_BED_LEVELING_GRID
  1300. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1301. planner.bed_level_matrix.set_to_identity();
  1302. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1303. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1304. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1305. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1306. if (planeNormal.z < 0) {
  1307. planeNormal.x = -planeNormal.x;
  1308. planeNormal.y = -planeNormal.y;
  1309. planeNormal.z = -planeNormal.z;
  1310. }
  1311. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1312. vector_3 corrected_position = planner.adjusted_position();
  1313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1314. if (DEBUGGING(LEVELING)) {
  1315. vector_3 uncorrected_position = corrected_position;
  1316. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1317. }
  1318. #endif
  1319. current_position[X_AXIS] = corrected_position.x;
  1320. current_position[Y_AXIS] = corrected_position.y;
  1321. current_position[Z_AXIS] = corrected_position.z;
  1322. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1323. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1324. #endif
  1325. sync_plan_position();
  1326. }
  1327. #endif // !AUTO_BED_LEVELING_GRID
  1328. static void run_z_probe() {
  1329. /**
  1330. * To prevent stepper_inactive_time from running out and
  1331. * EXTRUDER_RUNOUT_PREVENT from extruding
  1332. */
  1333. refresh_cmd_timeout();
  1334. #if ENABLED(DELTA)
  1335. float start_z = current_position[Z_AXIS];
  1336. long start_steps = stepper.position(Z_AXIS);
  1337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1338. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1339. #endif
  1340. // move down slowly until you find the bed
  1341. feedrate = homing_feedrate[Z_AXIS] / 4;
  1342. destination[Z_AXIS] = -10;
  1343. prepare_move_raw(); // this will also set_current_to_destination
  1344. stepper.synchronize();
  1345. endstops.hit_on_purpose(); // clear endstop hit flags
  1346. /**
  1347. * We have to let the planner know where we are right now as it
  1348. * is not where we said to go.
  1349. */
  1350. long stop_steps = stepper.position(Z_AXIS);
  1351. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_unit[Z_AXIS];
  1352. current_position[Z_AXIS] = mm;
  1353. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1354. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1355. #endif
  1356. sync_plan_position_delta();
  1357. #else // !DELTA
  1358. planner.bed_level_matrix.set_to_identity();
  1359. feedrate = homing_feedrate[Z_AXIS];
  1360. // Move down until the Z probe (or endstop?) is triggered
  1361. float zPosition = -(Z_MAX_LENGTH + 10);
  1362. line_to_z(zPosition);
  1363. stepper.synchronize();
  1364. // Tell the planner where we ended up - Get this from the stepper handler
  1365. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1366. planner.set_position(
  1367. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1368. current_position[E_AXIS]
  1369. );
  1370. // move up the retract distance
  1371. zPosition += home_bump_mm(Z_AXIS);
  1372. line_to_z(zPosition);
  1373. stepper.synchronize();
  1374. endstops.hit_on_purpose(); // clear endstop hit flags
  1375. // move back down slowly to find bed
  1376. set_homing_bump_feedrate(Z_AXIS);
  1377. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1378. line_to_z(zPosition);
  1379. stepper.synchronize();
  1380. endstops.hit_on_purpose(); // clear endstop hit flags
  1381. // Get the current stepper position after bumping an endstop
  1382. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1383. sync_plan_position();
  1384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1385. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1386. #endif
  1387. #endif // !DELTA
  1388. }
  1389. /**
  1390. * Plan a move to (X, Y, Z) and set the current_position
  1391. * The final current_position may not be the one that was requested
  1392. */
  1393. static void do_blocking_move_to(float x, float y, float z) {
  1394. float oldFeedRate = feedrate;
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1397. #endif
  1398. #if ENABLED(DELTA)
  1399. feedrate = XY_TRAVEL_SPEED;
  1400. destination[X_AXIS] = x;
  1401. destination[Y_AXIS] = y;
  1402. destination[Z_AXIS] = z;
  1403. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1404. prepare_move_raw(); // this will also set_current_to_destination
  1405. else
  1406. prepare_move(); // this will also set_current_to_destination
  1407. stepper.synchronize();
  1408. #else
  1409. feedrate = homing_feedrate[Z_AXIS];
  1410. current_position[Z_AXIS] = z;
  1411. line_to_current_position();
  1412. stepper.synchronize();
  1413. feedrate = xy_travel_speed;
  1414. current_position[X_AXIS] = x;
  1415. current_position[Y_AXIS] = y;
  1416. line_to_current_position();
  1417. stepper.synchronize();
  1418. #endif
  1419. feedrate = oldFeedRate;
  1420. }
  1421. inline void do_blocking_move_to_xy(float x, float y) {
  1422. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1423. }
  1424. inline void do_blocking_move_to_x(float x) {
  1425. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1426. }
  1427. inline void do_blocking_move_to_z(float z) {
  1428. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1429. }
  1430. inline void raise_z_after_probing() {
  1431. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1432. }
  1433. static void clean_up_after_endstop_move() {
  1434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1435. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
  1436. #endif
  1437. endstops.not_homing();
  1438. feedrate = saved_feedrate;
  1439. feedrate_multiplier = saved_feedrate_multiplier;
  1440. refresh_cmd_timeout();
  1441. }
  1442. #if HAS_BED_PROBE
  1443. static void deploy_z_probe() {
  1444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1445. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1446. #endif
  1447. if (endstops.z_probe_enabled) return;
  1448. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1449. // Engage Z Servo endstop if enabled
  1450. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1451. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1452. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1453. // If endstop is already false, the Z probe is deployed
  1454. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1455. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1456. if (z_probe_endstop)
  1457. #else
  1458. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1459. if (z_min_endstop)
  1460. #endif
  1461. {
  1462. // Move to the start position to initiate deployment
  1463. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1464. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1465. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1466. prepare_move_raw(); // this will also set_current_to_destination
  1467. // Move to engage deployment
  1468. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1469. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1470. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1471. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1472. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1473. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1474. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1475. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1476. prepare_move_raw();
  1477. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1478. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1479. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1480. // Move to trigger deployment
  1481. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1482. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1483. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1484. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1485. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1486. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1487. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1488. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1489. prepare_move_raw();
  1490. #endif
  1491. }
  1492. // Partially Home X,Y for safety
  1493. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1494. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1495. prepare_move_raw(); // this will also set_current_to_destination
  1496. stepper.synchronize();
  1497. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1498. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1499. if (z_probe_endstop)
  1500. #else
  1501. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1502. if (z_min_endstop)
  1503. #endif
  1504. {
  1505. if (IsRunning()) {
  1506. SERIAL_ERROR_START;
  1507. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1508. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1509. }
  1510. stop();
  1511. }
  1512. #endif // Z_PROBE_ALLEN_KEY
  1513. #if ENABLED(FIX_MOUNTED_PROBE)
  1514. // Noting to be done. Just set endstops.z_probe_enabled
  1515. #endif
  1516. endstops.enable_z_probe();
  1517. }
  1518. static void stow_z_probe(bool doRaise = true) {
  1519. #if !(ENABLED(HAS_SERVO_ENDSTOPS) && (Z_RAISE_AFTER_PROBING > 0))
  1520. UNUSED(doRaise);
  1521. #endif
  1522. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1523. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1524. #endif
  1525. if (!endstops.z_probe_enabled) return;
  1526. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1527. // Retract Z Servo endstop if enabled
  1528. if (servo_endstop_id[Z_AXIS] >= 0) {
  1529. #if Z_RAISE_AFTER_PROBING > 0
  1530. if (doRaise) {
  1531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1532. if (DEBUGGING(LEVELING)) {
  1533. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1534. SERIAL_EOL;
  1535. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1536. SERIAL_EOL;
  1537. }
  1538. #endif
  1539. raise_z_after_probing(); // this also updates current_position
  1540. stepper.synchronize();
  1541. }
  1542. #endif
  1543. // Change the Z servo angle
  1544. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1545. }
  1546. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1547. // Move up for safety
  1548. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1549. #if Z_RAISE_AFTER_PROBING > 0
  1550. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1551. prepare_move_raw(); // this will also set_current_to_destination
  1552. #endif
  1553. // Move to the start position to initiate retraction
  1554. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1555. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1556. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1557. prepare_move_raw();
  1558. // Move the nozzle down to push the Z probe into retracted position
  1559. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1560. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1561. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1562. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1563. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1564. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1565. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1566. prepare_move_raw();
  1567. // Move up for safety
  1568. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1569. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1570. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1571. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1572. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1573. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1574. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1575. prepare_move_raw();
  1576. // Home XY for safety
  1577. feedrate = homing_feedrate[X_AXIS] / 2;
  1578. destination[X_AXIS] = 0;
  1579. destination[Y_AXIS] = 0;
  1580. prepare_move_raw(); // this will also set_current_to_destination
  1581. stepper.synchronize();
  1582. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1583. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1584. if (!z_probe_endstop)
  1585. #else
  1586. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1587. if (!z_min_endstop)
  1588. #endif
  1589. {
  1590. if (IsRunning()) {
  1591. SERIAL_ERROR_START;
  1592. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1593. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1594. }
  1595. stop();
  1596. }
  1597. #endif // Z_PROBE_ALLEN_KEY
  1598. #if ENABLED(FIX_MOUNTED_PROBE)
  1599. // Nothing to do here. Just clear endstops.z_probe_enabled
  1600. #endif
  1601. endstops.enable_z_probe(false);
  1602. }
  1603. #endif // HAS_BED_PROBE
  1604. enum ProbeAction {
  1605. ProbeStay = 0,
  1606. ProbeDeploy = _BV(0),
  1607. ProbeStow = _BV(1),
  1608. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1609. };
  1610. // Probe bed height at position (x,y), returns the measured z value
  1611. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1612. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1613. if (DEBUGGING(LEVELING)) {
  1614. SERIAL_ECHOLNPGM("probe_pt >>>");
  1615. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1616. SERIAL_EOL;
  1617. DEBUG_POS("", current_position);
  1618. }
  1619. #endif
  1620. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1621. if (DEBUGGING(LEVELING)) {
  1622. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1623. SERIAL_EOL;
  1624. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1625. SERIAL_EOL;
  1626. }
  1627. #endif
  1628. // Move Z up to the z_before height, then move the Z probe to the given XY
  1629. do_blocking_move_to_z(z_before); // this also updates current_position
  1630. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1631. if (DEBUGGING(LEVELING)) {
  1632. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1633. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1634. SERIAL_EOL;
  1635. }
  1636. #endif
  1637. // this also updates current_position
  1638. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1639. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1640. if (probe_action & ProbeDeploy) {
  1641. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1642. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1643. #endif
  1644. deploy_z_probe();
  1645. }
  1646. #endif
  1647. run_z_probe();
  1648. float measured_z = current_position[Z_AXIS];
  1649. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1650. if (probe_action & ProbeStow) {
  1651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1652. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1653. #endif
  1654. stow_z_probe();
  1655. }
  1656. #endif
  1657. if (verbose_level > 2) {
  1658. SERIAL_PROTOCOLPGM("Bed X: ");
  1659. SERIAL_PROTOCOL_F(x, 3);
  1660. SERIAL_PROTOCOLPGM(" Y: ");
  1661. SERIAL_PROTOCOL_F(y, 3);
  1662. SERIAL_PROTOCOLPGM(" Z: ");
  1663. SERIAL_PROTOCOL_F(measured_z, 3);
  1664. SERIAL_EOL;
  1665. }
  1666. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1667. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1668. #endif
  1669. return measured_z;
  1670. }
  1671. #if ENABLED(DELTA)
  1672. /**
  1673. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1674. */
  1675. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1676. if (bed_level[x][y] != 0.0) {
  1677. return; // Don't overwrite good values.
  1678. }
  1679. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1680. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1681. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1682. float median = c; // Median is robust (ignores outliers).
  1683. if (a < b) {
  1684. if (b < c) median = b;
  1685. if (c < a) median = a;
  1686. }
  1687. else { // b <= a
  1688. if (c < b) median = b;
  1689. if (a < c) median = a;
  1690. }
  1691. bed_level[x][y] = median;
  1692. }
  1693. /**
  1694. * Fill in the unprobed points (corners of circular print surface)
  1695. * using linear extrapolation, away from the center.
  1696. */
  1697. static void extrapolate_unprobed_bed_level() {
  1698. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1699. for (int y = 0; y <= half; y++) {
  1700. for (int x = 0; x <= half; x++) {
  1701. if (x + y < 3) continue;
  1702. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1703. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1704. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1705. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1706. }
  1707. }
  1708. }
  1709. /**
  1710. * Print calibration results for plotting or manual frame adjustment.
  1711. */
  1712. static void print_bed_level() {
  1713. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1714. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1715. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1716. SERIAL_PROTOCOLCHAR(' ');
  1717. }
  1718. SERIAL_EOL;
  1719. }
  1720. }
  1721. /**
  1722. * Reset calibration results to zero.
  1723. */
  1724. void reset_bed_level() {
  1725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1726. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1727. #endif
  1728. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1729. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1730. bed_level[x][y] = 0.0;
  1731. }
  1732. }
  1733. }
  1734. #endif // DELTA
  1735. #if ENABLED(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_SLED)
  1736. void raise_z_for_servo() {
  1737. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1738. /**
  1739. * The zprobe_zoffset is negative any switch below the nozzle, so
  1740. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1741. */
  1742. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1743. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1744. }
  1745. #endif
  1746. #endif // AUTO_BED_LEVELING_FEATURE
  1747. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1748. static void axis_unhomed_error(bool xyz=false) {
  1749. if (xyz) {
  1750. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1751. SERIAL_ECHO_START;
  1752. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1753. }
  1754. else {
  1755. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1756. SERIAL_ECHO_START;
  1757. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1758. }
  1759. }
  1760. #endif
  1761. #if ENABLED(Z_PROBE_SLED)
  1762. #ifndef SLED_DOCKING_OFFSET
  1763. #define SLED_DOCKING_OFFSET 0
  1764. #endif
  1765. /**
  1766. * Method to dock/undock a sled designed by Charles Bell.
  1767. *
  1768. * dock[in] If true, move to MAX_X and engage the electromagnet
  1769. * offset[in] The additional distance to move to adjust docking location
  1770. */
  1771. static void dock_sled(bool dock, int offset = 0) {
  1772. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1773. if (DEBUGGING(LEVELING)) {
  1774. SERIAL_ECHOPAIR("dock_sled(", dock);
  1775. SERIAL_ECHOLNPGM(")");
  1776. }
  1777. #endif
  1778. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1779. axis_unhomed_error(true);
  1780. return;
  1781. }
  1782. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1783. float oldXpos = current_position[X_AXIS]; // save x position
  1784. if (dock) {
  1785. #if Z_RAISE_AFTER_PROBING > 0
  1786. raise_z_after_probing(); // raise Z
  1787. #endif
  1788. // Dock sled a bit closer to ensure proper capturing
  1789. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1790. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1791. }
  1792. else {
  1793. float z_loc = current_position[Z_AXIS];
  1794. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1795. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1796. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1797. }
  1798. do_blocking_move_to_x(oldXpos); // return to position before docking
  1799. endstops.enable_z_probe(!dock); // logically disable docked probe
  1800. }
  1801. #endif // Z_PROBE_SLED
  1802. /**
  1803. * Home an individual axis
  1804. */
  1805. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1806. static void homeaxis(AxisEnum axis) {
  1807. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1808. if (DEBUGGING(LEVELING)) {
  1809. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1810. SERIAL_ECHOLNPGM(")");
  1811. }
  1812. #endif
  1813. #define HOMEAXIS_DO(LETTER) \
  1814. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1815. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1816. int axis_home_dir =
  1817. #if ENABLED(DUAL_X_CARRIAGE)
  1818. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1819. #endif
  1820. home_dir(axis);
  1821. // Set the axis position as setup for the move
  1822. current_position[axis] = 0;
  1823. sync_plan_position();
  1824. #if ENABLED(Z_PROBE_SLED)
  1825. #define _Z_SERVO_TEST (axis != Z_AXIS) // already deployed Z
  1826. #define _Z_SERVO_SUBTEST false // Z will never be invoked
  1827. #define _Z_DEPLOY (dock_sled(false))
  1828. #define _Z_STOW (dock_sled(true))
  1829. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1830. #define _Z_SERVO_TEST (axis != Z_AXIS) // already deployed Z
  1831. #define _Z_SERVO_SUBTEST false // Z will never be invoked
  1832. #define _Z_DEPLOY (deploy_z_probe())
  1833. #define _Z_STOW (stow_z_probe())
  1834. #elif ENABLED(HAS_SERVO_ENDSTOPS)
  1835. #define _Z_SERVO_TEST true // Z not deployed yet
  1836. #define _Z_SERVO_SUBTEST (axis == Z_AXIS) // Z is a probe
  1837. #endif
  1838. // If there's a Z probe that needs deployment...
  1839. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1840. // ...and homing Z towards the bed? Deploy it.
  1841. if (axis == Z_AXIS && axis_home_dir < 0) {
  1842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1843. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_DEPLOY));
  1844. #endif
  1845. _Z_DEPLOY;
  1846. }
  1847. #endif
  1848. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1849. // Engage an X, Y (or Z) Servo endstop if enabled
  1850. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1851. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1852. if (_Z_SERVO_SUBTEST) endstops.z_probe_enabled = true;
  1853. }
  1854. #endif
  1855. // Set a flag for Z motor locking
  1856. #if ENABLED(Z_DUAL_ENDSTOPS)
  1857. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1858. #endif
  1859. // Move towards the endstop until an endstop is triggered
  1860. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1861. feedrate = homing_feedrate[axis];
  1862. line_to_destination();
  1863. stepper.synchronize();
  1864. // Set the axis position as setup for the move
  1865. current_position[axis] = 0;
  1866. sync_plan_position();
  1867. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1868. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1869. #endif
  1870. endstops.enable(false); // Disable endstops while moving away
  1871. // Move away from the endstop by the axis HOME_BUMP_MM
  1872. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1873. line_to_destination();
  1874. stepper.synchronize();
  1875. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1876. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1877. #endif
  1878. endstops.enable(true); // Enable endstops for next homing move
  1879. // Slow down the feedrate for the next move
  1880. set_homing_bump_feedrate(axis);
  1881. // Move slowly towards the endstop until triggered
  1882. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1883. line_to_destination();
  1884. stepper.synchronize();
  1885. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1886. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1887. #endif
  1888. #if ENABLED(Z_DUAL_ENDSTOPS)
  1889. if (axis == Z_AXIS) {
  1890. float adj = fabs(z_endstop_adj);
  1891. bool lockZ1;
  1892. if (axis_home_dir > 0) {
  1893. adj = -adj;
  1894. lockZ1 = (z_endstop_adj > 0);
  1895. }
  1896. else
  1897. lockZ1 = (z_endstop_adj < 0);
  1898. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1899. sync_plan_position();
  1900. // Move to the adjusted endstop height
  1901. feedrate = homing_feedrate[axis];
  1902. destination[Z_AXIS] = adj;
  1903. line_to_destination();
  1904. stepper.synchronize();
  1905. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1906. stepper.set_homing_flag(false);
  1907. } // Z_AXIS
  1908. #endif
  1909. #if ENABLED(DELTA)
  1910. // retrace by the amount specified in endstop_adj
  1911. if (endstop_adj[axis] * axis_home_dir < 0) {
  1912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1913. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1914. #endif
  1915. endstops.enable(false); // Disable endstops while moving away
  1916. sync_plan_position();
  1917. destination[axis] = endstop_adj[axis];
  1918. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1919. if (DEBUGGING(LEVELING)) {
  1920. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1921. DEBUG_POS("", destination);
  1922. }
  1923. #endif
  1924. line_to_destination();
  1925. stepper.synchronize();
  1926. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1927. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1928. #endif
  1929. endstops.enable(true); // Enable endstops for next homing move
  1930. }
  1931. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1932. else {
  1933. if (DEBUGGING(LEVELING)) {
  1934. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1935. SERIAL_EOL;
  1936. }
  1937. }
  1938. #endif
  1939. #endif
  1940. // Set the axis position to its home position (plus home offsets)
  1941. set_axis_is_at_home(axis);
  1942. sync_plan_position();
  1943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1944. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1945. #endif
  1946. destination[axis] = current_position[axis];
  1947. feedrate = 0.0;
  1948. endstops.hit_on_purpose(); // clear endstop hit flags
  1949. axis_known_position[axis] = true;
  1950. axis_homed[axis] = true;
  1951. // Put away the Z probe with a function
  1952. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1953. if (axis == Z_AXIS && axis_home_dir < 0) {
  1954. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1955. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1956. #endif
  1957. _Z_STOW;
  1958. }
  1959. #endif
  1960. // Retract X, Y (or Z) Servo endstop if enabled
  1961. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1962. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1963. // Raise the servo probe before stow outside ABL context.
  1964. // This is a workaround to allow use of a Servo Probe without
  1965. // ABL until more global probe handling is implemented.
  1966. #if Z_RAISE_AFTER_PROBING > 0
  1967. if (axis == Z_AXIS) {
  1968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1969. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1970. #endif
  1971. current_position[Z_AXIS] = Z_RAISE_AFTER_PROBING;
  1972. feedrate = homing_feedrate[Z_AXIS];
  1973. line_to_current_position();
  1974. stepper.synchronize();
  1975. }
  1976. #endif
  1977. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1978. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1979. #endif
  1980. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1981. if (_Z_SERVO_SUBTEST) endstops.enable_z_probe(false);
  1982. }
  1983. #endif // HAS_SERVO_ENDSTOPS
  1984. }
  1985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1986. if (DEBUGGING(LEVELING)) {
  1987. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1988. SERIAL_ECHOLNPGM(")");
  1989. }
  1990. #endif
  1991. }
  1992. #if ENABLED(FWRETRACT)
  1993. void retract(bool retracting, bool swapping = false) {
  1994. if (retracting == retracted[active_extruder]) return;
  1995. float oldFeedrate = feedrate;
  1996. set_destination_to_current();
  1997. if (retracting) {
  1998. feedrate = retract_feedrate * 60;
  1999. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2000. sync_plan_position_e();
  2001. prepare_move();
  2002. if (retract_zlift > 0.01) {
  2003. current_position[Z_AXIS] -= retract_zlift;
  2004. #if ENABLED(DELTA)
  2005. sync_plan_position_delta();
  2006. #else
  2007. sync_plan_position();
  2008. #endif
  2009. prepare_move();
  2010. }
  2011. }
  2012. else {
  2013. if (retract_zlift > 0.01) {
  2014. current_position[Z_AXIS] += retract_zlift;
  2015. #if ENABLED(DELTA)
  2016. sync_plan_position_delta();
  2017. #else
  2018. sync_plan_position();
  2019. #endif
  2020. }
  2021. feedrate = retract_recover_feedrate * 60;
  2022. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2023. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2024. sync_plan_position_e();
  2025. prepare_move();
  2026. }
  2027. feedrate = oldFeedrate;
  2028. retracted[active_extruder] = retracting;
  2029. } // retract()
  2030. #endif // FWRETRACT
  2031. /**
  2032. * ***************************************************************************
  2033. * ***************************** G-CODE HANDLING *****************************
  2034. * ***************************************************************************
  2035. */
  2036. /**
  2037. * Set XYZE destination and feedrate from the current GCode command
  2038. *
  2039. * - Set destination from included axis codes
  2040. * - Set to current for missing axis codes
  2041. * - Set the feedrate, if included
  2042. */
  2043. void gcode_get_destination() {
  2044. for (int i = 0; i < NUM_AXIS; i++) {
  2045. if (code_seen(axis_codes[i]))
  2046. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2047. else
  2048. destination[i] = current_position[i];
  2049. }
  2050. if (code_seen('F')) {
  2051. float next_feedrate = code_value();
  2052. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2053. }
  2054. }
  2055. void unknown_command_error() {
  2056. SERIAL_ECHO_START;
  2057. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2058. SERIAL_ECHO(current_command);
  2059. SERIAL_ECHOPGM("\"\n");
  2060. }
  2061. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2062. /**
  2063. * Output a "busy" message at regular intervals
  2064. * while the machine is not accepting commands.
  2065. */
  2066. void host_keepalive() {
  2067. millis_t ms = millis();
  2068. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2069. if (PENDING(ms, next_busy_signal_ms)) return;
  2070. switch (busy_state) {
  2071. case IN_HANDLER:
  2072. case IN_PROCESS:
  2073. SERIAL_ECHO_START;
  2074. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2075. break;
  2076. case PAUSED_FOR_USER:
  2077. SERIAL_ECHO_START;
  2078. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2079. break;
  2080. case PAUSED_FOR_INPUT:
  2081. SERIAL_ECHO_START;
  2082. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2083. break;
  2084. default:
  2085. break;
  2086. }
  2087. }
  2088. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2089. }
  2090. #endif //HOST_KEEPALIVE_FEATURE
  2091. /**
  2092. * G0, G1: Coordinated movement of X Y Z E axes
  2093. */
  2094. inline void gcode_G0_G1() {
  2095. if (IsRunning()) {
  2096. gcode_get_destination(); // For X Y Z E F
  2097. #if ENABLED(FWRETRACT)
  2098. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2099. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2100. // Is this move an attempt to retract or recover?
  2101. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2102. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2103. sync_plan_position_e(); // AND from the planner
  2104. retract(!retracted[active_extruder]);
  2105. return;
  2106. }
  2107. }
  2108. #endif //FWRETRACT
  2109. prepare_move();
  2110. }
  2111. }
  2112. /**
  2113. * G2: Clockwise Arc
  2114. * G3: Counterclockwise Arc
  2115. */
  2116. #if ENABLED(ARC_SUPPORT)
  2117. inline void gcode_G2_G3(bool clockwise) {
  2118. if (IsRunning()) {
  2119. #if ENABLED(SF_ARC_FIX)
  2120. bool relative_mode_backup = relative_mode;
  2121. relative_mode = true;
  2122. #endif
  2123. gcode_get_destination();
  2124. #if ENABLED(SF_ARC_FIX)
  2125. relative_mode = relative_mode_backup;
  2126. #endif
  2127. // Center of arc as offset from current_position
  2128. float arc_offset[2] = {
  2129. code_seen('I') ? code_value() : 0,
  2130. code_seen('J') ? code_value() : 0
  2131. };
  2132. // Send an arc to the planner
  2133. plan_arc(destination, arc_offset, clockwise);
  2134. refresh_cmd_timeout();
  2135. }
  2136. }
  2137. #endif
  2138. /**
  2139. * G4: Dwell S<seconds> or P<milliseconds>
  2140. */
  2141. inline void gcode_G4() {
  2142. millis_t codenum = 0;
  2143. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2144. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2145. stepper.synchronize();
  2146. refresh_cmd_timeout();
  2147. codenum += previous_cmd_ms; // keep track of when we started waiting
  2148. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2149. while (PENDING(millis(), codenum)) idle();
  2150. }
  2151. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2152. /**
  2153. * Parameters interpreted according to:
  2154. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2155. * However I, J omission is not supported at this point; all
  2156. * parameters can be omitted and default to zero.
  2157. */
  2158. /**
  2159. * G5: Cubic B-spline
  2160. */
  2161. inline void gcode_G5() {
  2162. if (IsRunning()) {
  2163. gcode_get_destination();
  2164. float offset[] = {
  2165. code_seen('I') ? code_value() : 0.0,
  2166. code_seen('J') ? code_value() : 0.0,
  2167. code_seen('P') ? code_value() : 0.0,
  2168. code_seen('Q') ? code_value() : 0.0
  2169. };
  2170. plan_cubic_move(offset);
  2171. }
  2172. }
  2173. #endif // BEZIER_CURVE_SUPPORT
  2174. #if ENABLED(FWRETRACT)
  2175. /**
  2176. * G10 - Retract filament according to settings of M207
  2177. * G11 - Recover filament according to settings of M208
  2178. */
  2179. inline void gcode_G10_G11(bool doRetract=false) {
  2180. #if EXTRUDERS > 1
  2181. if (doRetract) {
  2182. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2183. }
  2184. #endif
  2185. retract(doRetract
  2186. #if EXTRUDERS > 1
  2187. , retracted_swap[active_extruder]
  2188. #endif
  2189. );
  2190. }
  2191. #endif //FWRETRACT
  2192. /**
  2193. * G28: Home all axes according to settings
  2194. *
  2195. * Parameters
  2196. *
  2197. * None Home to all axes with no parameters.
  2198. * With QUICK_HOME enabled XY will home together, then Z.
  2199. *
  2200. * Cartesian parameters
  2201. *
  2202. * X Home to the X endstop
  2203. * Y Home to the Y endstop
  2204. * Z Home to the Z endstop
  2205. *
  2206. */
  2207. inline void gcode_G28() {
  2208. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2209. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2210. #endif
  2211. // Wait for planner moves to finish!
  2212. stepper.synchronize();
  2213. // For auto bed leveling, clear the level matrix
  2214. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2215. planner.bed_level_matrix.set_to_identity();
  2216. #if ENABLED(DELTA)
  2217. reset_bed_level();
  2218. #endif
  2219. #endif
  2220. /**
  2221. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2222. * on again when homing all axis
  2223. */
  2224. #if ENABLED(MESH_BED_LEVELING)
  2225. uint8_t mbl_was_active = mbl.active;
  2226. mbl.active = false;
  2227. #endif
  2228. setup_for_endstop_move();
  2229. /**
  2230. * Directly after a reset this is all 0. Later we get a hint if we have
  2231. * to raise z or not.
  2232. */
  2233. set_destination_to_current();
  2234. feedrate = 0.0;
  2235. #if ENABLED(DELTA)
  2236. /**
  2237. * A delta can only safely home all axis at the same time
  2238. * all axis have to home at the same time
  2239. */
  2240. // Pretend the current position is 0,0,0
  2241. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2242. sync_plan_position();
  2243. // Move all carriages up together until the first endstop is hit.
  2244. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2245. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2246. line_to_destination();
  2247. stepper.synchronize();
  2248. endstops.hit_on_purpose(); // clear endstop hit flags
  2249. // Destination reached
  2250. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2251. // take care of back off and rehome now we are all at the top
  2252. HOMEAXIS(X);
  2253. HOMEAXIS(Y);
  2254. HOMEAXIS(Z);
  2255. sync_plan_position_delta();
  2256. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2257. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2258. #endif
  2259. #else // NOT DELTA
  2260. bool homeX = code_seen(axis_codes[X_AXIS]),
  2261. homeY = code_seen(axis_codes[Y_AXIS]),
  2262. homeZ = code_seen(axis_codes[Z_AXIS]);
  2263. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2264. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2265. if (home_all_axis || homeZ) {
  2266. HOMEAXIS(Z);
  2267. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2268. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2269. #endif
  2270. }
  2271. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2272. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2273. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2274. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2275. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2276. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2277. if (DEBUGGING(LEVELING)) {
  2278. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2279. SERIAL_EOL;
  2280. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2281. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2282. }
  2283. #endif
  2284. line_to_destination();
  2285. stepper.synchronize();
  2286. /**
  2287. * Update the current Z position even if it currently not real from
  2288. * Z-home otherwise each call to line_to_destination() will want to
  2289. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2290. */
  2291. current_position[Z_AXIS] = destination[Z_AXIS];
  2292. }
  2293. #endif
  2294. #if ENABLED(QUICK_HOME)
  2295. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2296. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2297. #if ENABLED(DUAL_X_CARRIAGE)
  2298. int x_axis_home_dir = x_home_dir(active_extruder);
  2299. extruder_duplication_enabled = false;
  2300. #else
  2301. int x_axis_home_dir = home_dir(X_AXIS);
  2302. #endif
  2303. sync_plan_position();
  2304. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2305. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2306. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2307. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2308. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2309. line_to_destination();
  2310. stepper.synchronize();
  2311. set_axis_is_at_home(X_AXIS);
  2312. set_axis_is_at_home(Y_AXIS);
  2313. sync_plan_position();
  2314. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2315. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2316. #endif
  2317. destination[X_AXIS] = current_position[X_AXIS];
  2318. destination[Y_AXIS] = current_position[Y_AXIS];
  2319. line_to_destination();
  2320. feedrate = 0.0;
  2321. stepper.synchronize();
  2322. endstops.hit_on_purpose(); // clear endstop hit flags
  2323. current_position[X_AXIS] = destination[X_AXIS];
  2324. current_position[Y_AXIS] = destination[Y_AXIS];
  2325. #if DISABLED(SCARA)
  2326. current_position[Z_AXIS] = destination[Z_AXIS];
  2327. #endif
  2328. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2329. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2330. #endif
  2331. }
  2332. #endif // QUICK_HOME
  2333. #if ENABLED(HOME_Y_BEFORE_X)
  2334. // Home Y
  2335. if (home_all_axis || homeY) HOMEAXIS(Y);
  2336. #endif
  2337. // Home X
  2338. if (home_all_axis || homeX) {
  2339. #if ENABLED(DUAL_X_CARRIAGE)
  2340. int tmp_extruder = active_extruder;
  2341. extruder_duplication_enabled = false;
  2342. active_extruder = !active_extruder;
  2343. HOMEAXIS(X);
  2344. inactive_extruder_x_pos = current_position[X_AXIS];
  2345. active_extruder = tmp_extruder;
  2346. HOMEAXIS(X);
  2347. // reset state used by the different modes
  2348. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2349. delayed_move_time = 0;
  2350. active_extruder_parked = true;
  2351. #else
  2352. HOMEAXIS(X);
  2353. #endif
  2354. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2355. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2356. #endif
  2357. }
  2358. #if DISABLED(HOME_Y_BEFORE_X)
  2359. // Home Y
  2360. if (home_all_axis || homeY) {
  2361. HOMEAXIS(Y);
  2362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2363. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2364. #endif
  2365. }
  2366. #endif
  2367. // Home Z last if homing towards the bed
  2368. #if Z_HOME_DIR < 0
  2369. if (home_all_axis || homeZ) {
  2370. #if ENABLED(Z_SAFE_HOMING)
  2371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2372. if (DEBUGGING(LEVELING)) {
  2373. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2374. }
  2375. #endif
  2376. if (home_all_axis) {
  2377. /**
  2378. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2379. * No need to move Z any more as this height should already be safe
  2380. * enough to reach Z_SAFE_HOMING XY positions.
  2381. * Just make sure the planner is in sync.
  2382. */
  2383. sync_plan_position();
  2384. /**
  2385. * Set the Z probe (or just the nozzle) destination to the safe
  2386. * homing point
  2387. */
  2388. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2389. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2390. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2391. feedrate = XY_TRAVEL_SPEED;
  2392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2393. if (DEBUGGING(LEVELING)) {
  2394. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2395. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2396. }
  2397. #endif
  2398. // Move in the XY plane
  2399. line_to_destination();
  2400. stepper.synchronize();
  2401. /**
  2402. * Update the current positions for XY, Z is still at least at
  2403. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2404. */
  2405. current_position[X_AXIS] = destination[X_AXIS];
  2406. current_position[Y_AXIS] = destination[Y_AXIS];
  2407. // Home the Z axis
  2408. HOMEAXIS(Z);
  2409. }
  2410. else if (homeZ) { // Don't need to Home Z twice
  2411. // Let's see if X and Y are homed
  2412. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2413. /**
  2414. * Make sure the Z probe is within the physical limits
  2415. * NOTE: This doesn't necessarily ensure the Z probe is also
  2416. * within the bed!
  2417. */
  2418. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2419. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2420. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2421. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2422. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2423. // Home the Z axis
  2424. HOMEAXIS(Z);
  2425. }
  2426. else {
  2427. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2428. SERIAL_ECHO_START;
  2429. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2430. }
  2431. }
  2432. else {
  2433. axis_unhomed_error();
  2434. }
  2435. } // !home_all_axes && homeZ
  2436. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2437. if (DEBUGGING(LEVELING)) {
  2438. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2439. }
  2440. #endif
  2441. #else // !Z_SAFE_HOMING
  2442. HOMEAXIS(Z);
  2443. #endif // !Z_SAFE_HOMING
  2444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2445. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2446. #endif
  2447. } // home_all_axis || homeZ
  2448. #endif // Z_HOME_DIR < 0
  2449. sync_plan_position();
  2450. #endif // else DELTA
  2451. #if ENABLED(SCARA)
  2452. sync_plan_position_delta();
  2453. #endif
  2454. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2455. endstops.enable(false);
  2456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2457. if (DEBUGGING(LEVELING)) {
  2458. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
  2459. }
  2460. #endif
  2461. #endif
  2462. // Enable mesh leveling again
  2463. #if ENABLED(MESH_BED_LEVELING)
  2464. if (mbl_was_active && home_all_axis) {
  2465. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2466. sync_plan_position();
  2467. mbl.active = 1;
  2468. #if ENABLED(MESH_G28_REST_ORIGIN)
  2469. current_position[Z_AXIS] = 0.0;
  2470. set_destination_to_current();
  2471. feedrate = homing_feedrate[Z_AXIS];
  2472. line_to_destination();
  2473. stepper.synchronize();
  2474. #endif
  2475. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2476. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2477. #endif
  2478. }
  2479. #endif
  2480. feedrate = saved_feedrate;
  2481. feedrate_multiplier = saved_feedrate_multiplier;
  2482. refresh_cmd_timeout();
  2483. endstops.hit_on_purpose(); // clear endstop hit flags
  2484. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2485. if (DEBUGGING(LEVELING)) {
  2486. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2487. }
  2488. #endif
  2489. report_current_position();
  2490. }
  2491. #if ENABLED(MESH_BED_LEVELING)
  2492. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2493. inline void _mbl_goto_xy(float x, float y) {
  2494. saved_feedrate = feedrate;
  2495. feedrate = homing_feedrate[X_AXIS];
  2496. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2497. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2498. + MIN_Z_HEIGHT_FOR_HOMING
  2499. #endif
  2500. ;
  2501. line_to_current_position();
  2502. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2503. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2504. line_to_current_position();
  2505. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2506. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2507. line_to_current_position();
  2508. #endif
  2509. feedrate = saved_feedrate;
  2510. stepper.synchronize();
  2511. }
  2512. /**
  2513. * G29: Mesh-based Z probe, probes a grid and produces a
  2514. * mesh to compensate for variable bed height
  2515. *
  2516. * Parameters With MESH_BED_LEVELING:
  2517. *
  2518. * S0 Produce a mesh report
  2519. * S1 Start probing mesh points
  2520. * S2 Probe the next mesh point
  2521. * S3 Xn Yn Zn.nn Manually modify a single point
  2522. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2523. *
  2524. * The S0 report the points as below
  2525. *
  2526. * +----> X-axis 1-n
  2527. * |
  2528. * |
  2529. * v Y-axis 1-n
  2530. *
  2531. */
  2532. inline void gcode_G29() {
  2533. static int probe_point = -1;
  2534. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2535. if (state < 0 || state > 4) {
  2536. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2537. return;
  2538. }
  2539. int8_t px, py;
  2540. float z;
  2541. switch (state) {
  2542. case MeshReport:
  2543. if (mbl.active) {
  2544. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2545. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2546. SERIAL_PROTOCOLCHAR(',');
  2547. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2548. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2549. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2550. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2551. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2552. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2553. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2554. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2555. SERIAL_PROTOCOLPGM(" ");
  2556. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2557. }
  2558. SERIAL_EOL;
  2559. }
  2560. }
  2561. else
  2562. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2563. break;
  2564. case MeshStart:
  2565. mbl.reset();
  2566. probe_point = 0;
  2567. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2568. break;
  2569. case MeshNext:
  2570. if (probe_point < 0) {
  2571. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2572. return;
  2573. }
  2574. // For each G29 S2...
  2575. if (probe_point == 0) {
  2576. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2577. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2578. sync_plan_position();
  2579. }
  2580. else {
  2581. // For G29 S2 after adjusting Z.
  2582. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2583. }
  2584. // If there's another point to sample, move there with optional lift.
  2585. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2586. mbl.zigzag(probe_point, px, py);
  2587. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2588. probe_point++;
  2589. }
  2590. else {
  2591. // One last "return to the bed" (as originally coded) at completion
  2592. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2593. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2594. + MIN_Z_HEIGHT_FOR_HOMING
  2595. #endif
  2596. ;
  2597. line_to_current_position();
  2598. stepper.synchronize();
  2599. // After recording the last point, activate the mbl and home
  2600. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2601. probe_point = -1;
  2602. mbl.active = true;
  2603. enqueue_and_echo_commands_P(PSTR("G28"));
  2604. }
  2605. break;
  2606. case MeshSet:
  2607. if (code_seen('X')) {
  2608. px = code_value_long() - 1;
  2609. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2610. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2611. return;
  2612. }
  2613. }
  2614. else {
  2615. SERIAL_PROTOCOLPGM("X not entered.\n");
  2616. return;
  2617. }
  2618. if (code_seen('Y')) {
  2619. py = code_value_long() - 1;
  2620. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2621. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2622. return;
  2623. }
  2624. }
  2625. else {
  2626. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2627. return;
  2628. }
  2629. if (code_seen('Z')) {
  2630. z = code_value();
  2631. }
  2632. else {
  2633. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2634. return;
  2635. }
  2636. mbl.z_values[py][px] = z;
  2637. break;
  2638. case MeshSetZOffset:
  2639. if (code_seen('Z')) {
  2640. z = code_value();
  2641. }
  2642. else {
  2643. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2644. return;
  2645. }
  2646. mbl.z_offset = z;
  2647. } // switch(state)
  2648. report_current_position();
  2649. }
  2650. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2651. void out_of_range_error(const char* p_edge) {
  2652. SERIAL_PROTOCOLPGM("?Probe ");
  2653. serialprintPGM(p_edge);
  2654. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2655. }
  2656. /**
  2657. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2658. * Will fail if the printer has not been homed with G28.
  2659. *
  2660. * Enhanced G29 Auto Bed Leveling Probe Routine
  2661. *
  2662. * Parameters With AUTO_BED_LEVELING_GRID:
  2663. *
  2664. * P Set the size of the grid that will be probed (P x P points).
  2665. * Not supported by non-linear delta printer bed leveling.
  2666. * Example: "G29 P4"
  2667. *
  2668. * S Set the XY travel speed between probe points (in mm/min)
  2669. *
  2670. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2671. * or clean the rotation Matrix. Useful to check the topology
  2672. * after a first run of G29.
  2673. *
  2674. * V Set the verbose level (0-4). Example: "G29 V3"
  2675. *
  2676. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2677. * This is useful for manual bed leveling and finding flaws in the bed (to
  2678. * assist with part placement).
  2679. * Not supported by non-linear delta printer bed leveling.
  2680. *
  2681. * F Set the Front limit of the probing grid
  2682. * B Set the Back limit of the probing grid
  2683. * L Set the Left limit of the probing grid
  2684. * R Set the Right limit of the probing grid
  2685. *
  2686. * Global Parameters:
  2687. *
  2688. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2689. * Include "E" to engage/disengage the Z probe for each sample.
  2690. * There's no extra effect if you have a fixed Z probe.
  2691. * Usage: "G29 E" or "G29 e"
  2692. *
  2693. */
  2694. inline void gcode_G29() {
  2695. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2696. if (DEBUGGING(LEVELING)) {
  2697. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2698. DEBUG_POS("", current_position);
  2699. }
  2700. #endif
  2701. // Don't allow auto-leveling without homing first
  2702. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2703. axis_unhomed_error(true);
  2704. return;
  2705. }
  2706. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2707. if (verbose_level < 0 || verbose_level > 4) {
  2708. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2709. return;
  2710. }
  2711. bool dryrun = code_seen('D'),
  2712. deploy_probe_for_each_reading = code_seen('E');
  2713. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2714. #if DISABLED(DELTA)
  2715. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2716. #endif
  2717. if (verbose_level > 0) {
  2718. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2719. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2720. }
  2721. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2722. #if DISABLED(DELTA)
  2723. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2724. if (auto_bed_leveling_grid_points < 2) {
  2725. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2726. return;
  2727. }
  2728. #endif
  2729. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2730. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2731. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2732. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2733. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2734. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2735. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2736. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2737. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2738. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2739. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2740. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2741. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2742. if (left_out || right_out || front_out || back_out) {
  2743. if (left_out) {
  2744. out_of_range_error(PSTR("(L)eft"));
  2745. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2746. }
  2747. if (right_out) {
  2748. out_of_range_error(PSTR("(R)ight"));
  2749. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2750. }
  2751. if (front_out) {
  2752. out_of_range_error(PSTR("(F)ront"));
  2753. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2754. }
  2755. if (back_out) {
  2756. out_of_range_error(PSTR("(B)ack"));
  2757. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2758. }
  2759. return;
  2760. }
  2761. #endif // AUTO_BED_LEVELING_GRID
  2762. if (!dryrun) {
  2763. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2764. if (DEBUGGING(LEVELING)) {
  2765. vector_3 corrected_position = planner.adjusted_position();
  2766. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2767. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2768. }
  2769. #endif
  2770. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2771. planner.bed_level_matrix.set_to_identity();
  2772. #if ENABLED(DELTA)
  2773. reset_bed_level();
  2774. #else //!DELTA
  2775. //vector_3 corrected_position = planner.adjusted_position();
  2776. //corrected_position.debug("position before G29");
  2777. vector_3 uncorrected_position = planner.adjusted_position();
  2778. //uncorrected_position.debug("position during G29");
  2779. current_position[X_AXIS] = uncorrected_position.x;
  2780. current_position[Y_AXIS] = uncorrected_position.y;
  2781. current_position[Z_AXIS] = uncorrected_position.z;
  2782. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2783. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2784. #endif
  2785. sync_plan_position();
  2786. #endif // !DELTA
  2787. }
  2788. #if ENABLED(Z_PROBE_SLED)
  2789. dock_sled(false); // engage (un-dock) the Z probe
  2790. #elif ENABLED(FIX_MOUNTED_PROBE) || ENABLED(MECHANICAL_PROBE) || ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2791. deploy_z_probe();
  2792. #endif
  2793. stepper.synchronize();
  2794. setup_for_endstop_move();
  2795. feedrate = homing_feedrate[Z_AXIS];
  2796. bed_leveling_in_progress = true;
  2797. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2798. // probe at the points of a lattice grid
  2799. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2800. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2801. #if ENABLED(DELTA)
  2802. delta_grid_spacing[0] = xGridSpacing;
  2803. delta_grid_spacing[1] = yGridSpacing;
  2804. float zoffset = zprobe_zoffset;
  2805. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2806. #else // !DELTA
  2807. /**
  2808. * solve the plane equation ax + by + d = z
  2809. * A is the matrix with rows [x y 1] for all the probed points
  2810. * B is the vector of the Z positions
  2811. * the normal vector to the plane is formed by the coefficients of the
  2812. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2813. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2814. */
  2815. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2816. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2817. eqnBVector[abl2], // "B" vector of Z points
  2818. mean = 0.0;
  2819. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2820. #endif // !DELTA
  2821. int probePointCounter = 0;
  2822. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2823. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2824. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2825. int xStart, xStop, xInc;
  2826. if (zig) {
  2827. xStart = 0;
  2828. xStop = auto_bed_leveling_grid_points;
  2829. xInc = 1;
  2830. }
  2831. else {
  2832. xStart = auto_bed_leveling_grid_points - 1;
  2833. xStop = -1;
  2834. xInc = -1;
  2835. }
  2836. zig = !zig;
  2837. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2838. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2839. // raise extruder
  2840. float measured_z,
  2841. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2842. if (probePointCounter) {
  2843. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2844. if (DEBUGGING(LEVELING)) {
  2845. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2846. SERIAL_EOL;
  2847. }
  2848. #endif
  2849. }
  2850. else {
  2851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2852. if (DEBUGGING(LEVELING)) {
  2853. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2854. SERIAL_EOL;
  2855. }
  2856. #endif
  2857. }
  2858. #if ENABLED(DELTA)
  2859. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2860. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2861. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2862. #endif //DELTA
  2863. ProbeAction act;
  2864. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2865. act = ProbeDeployAndStow;
  2866. else if (yCount == 0 && xCount == xStart)
  2867. act = ProbeDeploy;
  2868. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2869. act = ProbeStow;
  2870. else
  2871. act = ProbeStay;
  2872. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2873. #if DISABLED(DELTA)
  2874. mean += measured_z;
  2875. eqnBVector[probePointCounter] = measured_z;
  2876. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2877. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2878. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2879. indexIntoAB[xCount][yCount] = probePointCounter;
  2880. #else
  2881. bed_level[xCount][yCount] = measured_z + zoffset;
  2882. #endif
  2883. probePointCounter++;
  2884. idle();
  2885. } //xProbe
  2886. } //yProbe
  2887. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2888. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2889. #endif
  2890. clean_up_after_endstop_move();
  2891. #if ENABLED(DELTA)
  2892. if (!dryrun) extrapolate_unprobed_bed_level();
  2893. print_bed_level();
  2894. #else // !DELTA
  2895. // solve lsq problem
  2896. double plane_equation_coefficients[3];
  2897. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2898. mean /= abl2;
  2899. if (verbose_level) {
  2900. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2901. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2902. SERIAL_PROTOCOLPGM(" b: ");
  2903. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2904. SERIAL_PROTOCOLPGM(" d: ");
  2905. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2906. SERIAL_EOL;
  2907. if (verbose_level > 2) {
  2908. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2909. SERIAL_PROTOCOL_F(mean, 8);
  2910. SERIAL_EOL;
  2911. }
  2912. }
  2913. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2914. // Show the Topography map if enabled
  2915. if (do_topography_map) {
  2916. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2917. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2918. SERIAL_PROTOCOLPGM(" | |\n");
  2919. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2920. SERIAL_PROTOCOLPGM(" E | | I\n");
  2921. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2922. SERIAL_PROTOCOLPGM(" T | | H\n");
  2923. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2924. SERIAL_PROTOCOLPGM(" | |\n");
  2925. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2926. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2927. float min_diff = 999;
  2928. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2929. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2930. int ind = indexIntoAB[xx][yy];
  2931. float diff = eqnBVector[ind] - mean;
  2932. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2933. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2934. z_tmp = 0;
  2935. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2936. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2937. if (diff >= 0.0)
  2938. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2939. else
  2940. SERIAL_PROTOCOLCHAR(' ');
  2941. SERIAL_PROTOCOL_F(diff, 5);
  2942. } // xx
  2943. SERIAL_EOL;
  2944. } // yy
  2945. SERIAL_EOL;
  2946. if (verbose_level > 3) {
  2947. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2948. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2949. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2950. int ind = indexIntoAB[xx][yy];
  2951. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2952. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2953. z_tmp = 0;
  2954. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2955. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2956. if (diff >= 0.0)
  2957. SERIAL_PROTOCOLPGM(" +");
  2958. // Include + for column alignment
  2959. else
  2960. SERIAL_PROTOCOLCHAR(' ');
  2961. SERIAL_PROTOCOL_F(diff, 5);
  2962. } // xx
  2963. SERIAL_EOL;
  2964. } // yy
  2965. SERIAL_EOL;
  2966. }
  2967. } //do_topography_map
  2968. #endif //!DELTA
  2969. #else // !AUTO_BED_LEVELING_GRID
  2970. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2971. if (DEBUGGING(LEVELING)) {
  2972. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2973. }
  2974. #endif
  2975. // Actions for each probe
  2976. ProbeAction p1, p2, p3;
  2977. if (deploy_probe_for_each_reading)
  2978. p1 = p2 = p3 = ProbeDeployAndStow;
  2979. else
  2980. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2981. // Probe at 3 arbitrary points
  2982. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2983. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2984. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2985. p1, verbose_level),
  2986. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2987. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2988. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2989. p2, verbose_level),
  2990. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2991. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2992. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2993. p3, verbose_level);
  2994. clean_up_after_endstop_move();
  2995. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2996. #endif // !AUTO_BED_LEVELING_GRID
  2997. #if ENABLED(DELTA)
  2998. // Allen Key Probe for Delta
  2999. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  3000. stow_z_probe();
  3001. #elif Z_RAISE_AFTER_PROBING > 0
  3002. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  3003. #endif
  3004. #else // !DELTA
  3005. if (verbose_level > 0)
  3006. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  3007. if (!dryrun) {
  3008. /**
  3009. * Correct the Z height difference from Z probe position and nozzle tip position.
  3010. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3011. * from the nozzle. When the bed is uneven, this height must be corrected.
  3012. */
  3013. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3014. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3015. z_tmp = current_position[Z_AXIS],
  3016. real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3017. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3018. if (DEBUGGING(LEVELING)) {
  3019. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  3020. SERIAL_EOL;
  3021. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  3022. SERIAL_EOL;
  3023. }
  3024. #endif
  3025. // Apply the correction sending the Z probe offset
  3026. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3027. /*
  3028. * Get the current Z position and send it to the planner.
  3029. *
  3030. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  3031. * (most recent planner.set_position/sync_plan_position)
  3032. *
  3033. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  3034. * (set by default, M851, EEPROM, or Menu)
  3035. *
  3036. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  3037. * after the last probe
  3038. *
  3039. * >> Should home_offset[Z_AXIS] be included?
  3040. *
  3041. *
  3042. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  3043. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  3044. * not actually "homing" Z... then perhaps it should not be included
  3045. * here. The purpose of home_offset[] is to adjust for inaccurate
  3046. * endstops, not for reasonably accurate probes. If it were added
  3047. * here, it could be seen as a compensating factor for the Z probe.
  3048. */
  3049. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3050. if (DEBUGGING(LEVELING)) {
  3051. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3052. SERIAL_EOL;
  3053. }
  3054. #endif
  3055. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  3056. #if ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  3057. + Z_RAISE_AFTER_PROBING
  3058. #endif
  3059. ;
  3060. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  3061. sync_plan_position();
  3062. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3063. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3064. #endif
  3065. }
  3066. // Sled assembly for Cartesian bots
  3067. #if ENABLED(Z_PROBE_SLED)
  3068. dock_sled(true); // dock the sled
  3069. #elif Z_RAISE_AFTER_PROBING > 0
  3070. // Raise Z axis for non-delta and non servo based probes
  3071. #if DISABLED(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  3072. raise_z_after_probing();
  3073. #endif
  3074. #endif
  3075. #endif // !DELTA
  3076. #if ENABLED(MECHANICAL_PROBE)
  3077. stow_z_probe();
  3078. #endif
  3079. #ifdef Z_PROBE_END_SCRIPT
  3080. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3081. if (DEBUGGING(LEVELING)) {
  3082. SERIAL_ECHO("Z Probe End Script: ");
  3083. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3084. }
  3085. #endif
  3086. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3087. #if HAS_BED_PROBE
  3088. endstops.enable_z_probe(false);
  3089. #endif
  3090. stepper.synchronize();
  3091. #endif
  3092. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3093. if (DEBUGGING(LEVELING)) {
  3094. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3095. }
  3096. #endif
  3097. bed_leveling_in_progress = false;
  3098. report_current_position();
  3099. KEEPALIVE_STATE(IN_HANDLER);
  3100. }
  3101. #if DISABLED(Z_PROBE_SLED) // could be avoided
  3102. /**
  3103. * G30: Do a single Z probe at the current XY
  3104. */
  3105. inline void gcode_G30() {
  3106. #if ENABLED(HAS_SERVO_ENDSTOPS)
  3107. raise_z_for_servo();
  3108. #endif
  3109. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3110. stepper.synchronize();
  3111. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3112. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3113. feedrate = homing_feedrate[Z_AXIS];
  3114. run_z_probe();
  3115. SERIAL_PROTOCOLPGM("Bed X: ");
  3116. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3117. SERIAL_PROTOCOLPGM(" Y: ");
  3118. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3119. SERIAL_PROTOCOLPGM(" Z: ");
  3120. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3121. SERIAL_EOL;
  3122. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3123. #if ENABLED(HAS_SERVO_ENDSTOPS)
  3124. raise_z_for_servo();
  3125. #endif
  3126. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3127. report_current_position();
  3128. }
  3129. #endif //!Z_PROBE_SLED
  3130. #endif //AUTO_BED_LEVELING_FEATURE
  3131. /**
  3132. * G92: Set current position to given X Y Z E
  3133. */
  3134. inline void gcode_G92() {
  3135. bool didE = code_seen(axis_codes[E_AXIS]);
  3136. if (!didE) stepper.synchronize();
  3137. bool didXYZ = false;
  3138. for (int i = 0; i < NUM_AXIS; i++) {
  3139. if (code_seen(axis_codes[i])) {
  3140. float p = current_position[i],
  3141. v = code_value();
  3142. current_position[i] = v;
  3143. if (i != E_AXIS) {
  3144. position_shift[i] += v - p; // Offset the coordinate space
  3145. update_software_endstops((AxisEnum)i);
  3146. didXYZ = true;
  3147. }
  3148. }
  3149. }
  3150. if (didXYZ) {
  3151. #if ENABLED(DELTA) || ENABLED(SCARA)
  3152. sync_plan_position_delta();
  3153. #else
  3154. sync_plan_position();
  3155. #endif
  3156. }
  3157. else if (didE) {
  3158. sync_plan_position_e();
  3159. }
  3160. }
  3161. #if ENABLED(ULTIPANEL)
  3162. /**
  3163. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3164. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3165. */
  3166. inline void gcode_M0_M1() {
  3167. char* args = current_command_args;
  3168. uint8_t test_value = 12;
  3169. SERIAL_ECHOPAIR("TEST", test_value);
  3170. millis_t codenum = 0;
  3171. bool hasP = false, hasS = false;
  3172. if (code_seen('P')) {
  3173. codenum = code_value_short(); // milliseconds to wait
  3174. hasP = codenum > 0;
  3175. }
  3176. if (code_seen('S')) {
  3177. codenum = code_value() * 1000UL; // seconds to wait
  3178. hasS = codenum > 0;
  3179. }
  3180. if (!hasP && !hasS && *args != '\0')
  3181. lcd_setstatus(args, true);
  3182. else {
  3183. LCD_MESSAGEPGM(MSG_USERWAIT);
  3184. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3185. dontExpireStatus();
  3186. #endif
  3187. }
  3188. lcd_ignore_click();
  3189. stepper.synchronize();
  3190. refresh_cmd_timeout();
  3191. if (codenum > 0) {
  3192. codenum += previous_cmd_ms; // wait until this time for a click
  3193. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3194. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3195. KEEPALIVE_STATE(IN_HANDLER);
  3196. lcd_ignore_click(false);
  3197. }
  3198. else {
  3199. if (!lcd_detected()) return;
  3200. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3201. while (!lcd_clicked()) idle();
  3202. KEEPALIVE_STATE(IN_HANDLER);
  3203. }
  3204. if (IS_SD_PRINTING)
  3205. LCD_MESSAGEPGM(MSG_RESUMING);
  3206. else
  3207. LCD_MESSAGEPGM(WELCOME_MSG);
  3208. }
  3209. #endif // ULTIPANEL
  3210. /**
  3211. * M17: Enable power on all stepper motors
  3212. */
  3213. inline void gcode_M17() {
  3214. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3215. enable_all_steppers();
  3216. }
  3217. #if ENABLED(SDSUPPORT)
  3218. /**
  3219. * M20: List SD card to serial output
  3220. */
  3221. inline void gcode_M20() {
  3222. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3223. card.ls();
  3224. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3225. }
  3226. /**
  3227. * M21: Init SD Card
  3228. */
  3229. inline void gcode_M21() {
  3230. card.initsd();
  3231. }
  3232. /**
  3233. * M22: Release SD Card
  3234. */
  3235. inline void gcode_M22() {
  3236. card.release();
  3237. }
  3238. /**
  3239. * M23: Open a file
  3240. */
  3241. inline void gcode_M23() {
  3242. card.openFile(current_command_args, true);
  3243. }
  3244. /**
  3245. * M24: Start SD Print
  3246. */
  3247. inline void gcode_M24() {
  3248. card.startFileprint();
  3249. print_job_timer.start();
  3250. }
  3251. /**
  3252. * M25: Pause SD Print
  3253. */
  3254. inline void gcode_M25() {
  3255. card.pauseSDPrint();
  3256. }
  3257. /**
  3258. * M26: Set SD Card file index
  3259. */
  3260. inline void gcode_M26() {
  3261. if (card.cardOK && code_seen('S'))
  3262. card.setIndex(code_value_long());
  3263. }
  3264. /**
  3265. * M27: Get SD Card status
  3266. */
  3267. inline void gcode_M27() {
  3268. card.getStatus();
  3269. }
  3270. /**
  3271. * M28: Start SD Write
  3272. */
  3273. inline void gcode_M28() {
  3274. card.openFile(current_command_args, false);
  3275. }
  3276. /**
  3277. * M29: Stop SD Write
  3278. * Processed in write to file routine above
  3279. */
  3280. inline void gcode_M29() {
  3281. // card.saving = false;
  3282. }
  3283. /**
  3284. * M30 <filename>: Delete SD Card file
  3285. */
  3286. inline void gcode_M30() {
  3287. if (card.cardOK) {
  3288. card.closefile();
  3289. card.removeFile(current_command_args);
  3290. }
  3291. }
  3292. #endif //SDSUPPORT
  3293. /**
  3294. * M31: Get the time since the start of SD Print (or last M109)
  3295. */
  3296. inline void gcode_M31() {
  3297. millis_t t = print_job_timer.duration();
  3298. int min = t / 60, sec = t % 60;
  3299. char time[30];
  3300. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3301. SERIAL_ECHO_START;
  3302. SERIAL_ECHOLN(time);
  3303. lcd_setstatus(time);
  3304. thermalManager.autotempShutdown();
  3305. }
  3306. #if ENABLED(SDSUPPORT)
  3307. /**
  3308. * M32: Select file and start SD Print
  3309. */
  3310. inline void gcode_M32() {
  3311. if (card.sdprinting)
  3312. stepper.synchronize();
  3313. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3314. if (!namestartpos)
  3315. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3316. else
  3317. namestartpos++; //to skip the '!'
  3318. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3319. if (card.cardOK) {
  3320. card.openFile(namestartpos, true, call_procedure);
  3321. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3322. card.setIndex(code_value_long());
  3323. card.startFileprint();
  3324. // Procedure calls count as normal print time.
  3325. if (!call_procedure) print_job_timer.start();
  3326. }
  3327. }
  3328. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3329. /**
  3330. * M33: Get the long full path of a file or folder
  3331. *
  3332. * Parameters:
  3333. * <dospath> Case-insensitive DOS-style path to a file or folder
  3334. *
  3335. * Example:
  3336. * M33 miscel~1/armchair/armcha~1.gco
  3337. *
  3338. * Output:
  3339. * /Miscellaneous/Armchair/Armchair.gcode
  3340. */
  3341. inline void gcode_M33() {
  3342. card.printLongPath(current_command_args);
  3343. }
  3344. #endif
  3345. /**
  3346. * M928: Start SD Write
  3347. */
  3348. inline void gcode_M928() {
  3349. card.openLogFile(current_command_args);
  3350. }
  3351. #endif // SDSUPPORT
  3352. /**
  3353. * M42: Change pin status via GCode
  3354. *
  3355. * P<pin> Pin number (LED if omitted)
  3356. * S<byte> Pin status from 0 - 255
  3357. */
  3358. inline void gcode_M42() {
  3359. if (code_seen('S')) {
  3360. int pin_status = code_value_short();
  3361. if (pin_status < 0 || pin_status > 255) return;
  3362. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3363. if (pin_number < 0) return;
  3364. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3365. if (pin_number == sensitive_pins[i]) return;
  3366. pinMode(pin_number, OUTPUT);
  3367. digitalWrite(pin_number, pin_status);
  3368. analogWrite(pin_number, pin_status);
  3369. #if FAN_COUNT > 0
  3370. switch (pin_number) {
  3371. #if HAS_FAN0
  3372. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3373. #endif
  3374. #if HAS_FAN1
  3375. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3376. #endif
  3377. #if HAS_FAN2
  3378. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3379. #endif
  3380. }
  3381. #endif
  3382. } // code_seen('S')
  3383. }
  3384. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3385. /**
  3386. * This is redundant since the SanityCheck.h already checks for a valid
  3387. * Z_MIN_PROBE_PIN, but here for clarity.
  3388. */
  3389. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3390. #if !HAS_Z_MIN_PROBE_PIN
  3391. #error "You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation."
  3392. #endif
  3393. #elif !HAS_Z_MIN
  3394. #error "You must define Z_MIN_PIN to enable Z probe repeatability calculation."
  3395. #endif
  3396. /**
  3397. * M48: Z probe repeatability measurement function.
  3398. *
  3399. * Usage:
  3400. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3401. * P = Number of sampled points (4-50, default 10)
  3402. * X = Sample X position
  3403. * Y = Sample Y position
  3404. * V = Verbose level (0-4, default=1)
  3405. * E = Engage Z probe for each reading
  3406. * L = Number of legs of movement before probe
  3407. * S = Schizoid (Or Star if you prefer)
  3408. *
  3409. * This function assumes the bed has been homed. Specifically, that a G28 command
  3410. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3411. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3412. * regenerated.
  3413. */
  3414. inline void gcode_M48() {
  3415. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3416. axis_unhomed_error(true);
  3417. return;
  3418. }
  3419. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3420. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3421. if (code_seen('V')) {
  3422. verbose_level = code_value_short();
  3423. if (verbose_level < 0 || verbose_level > 4) {
  3424. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3425. return;
  3426. }
  3427. }
  3428. if (verbose_level > 0)
  3429. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3430. if (code_seen('P')) {
  3431. n_samples = code_value_short();
  3432. if (n_samples < 4 || n_samples > 50) {
  3433. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3434. return;
  3435. }
  3436. }
  3437. float X_current = current_position[X_AXIS],
  3438. Y_current = current_position[Y_AXIS],
  3439. Z_current = current_position[Z_AXIS],
  3440. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3441. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3442. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3443. bool deploy_probe_for_each_reading = code_seen('E');
  3444. if (code_seen('X')) {
  3445. X_probe_location = code_value();
  3446. #if DISABLED(DELTA)
  3447. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3448. out_of_range_error(PSTR("X"));
  3449. return;
  3450. }
  3451. #endif
  3452. }
  3453. if (code_seen('Y')) {
  3454. Y_probe_location = code_value();
  3455. #if DISABLED(DELTA)
  3456. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3457. out_of_range_error(PSTR("Y"));
  3458. return;
  3459. }
  3460. #endif
  3461. }
  3462. #if ENABLED(DELTA)
  3463. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3464. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3465. return;
  3466. }
  3467. #endif
  3468. bool seen_L = code_seen('L');
  3469. if (seen_L) {
  3470. n_legs = code_value_short();
  3471. if (n_legs < 0 || n_legs > 15) {
  3472. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3473. return;
  3474. }
  3475. if (n_legs == 1) n_legs = 2;
  3476. }
  3477. if (code_seen('S')) {
  3478. schizoid_flag++;
  3479. if (!seen_L) n_legs = 7;
  3480. }
  3481. /**
  3482. * Now get everything to the specified probe point So we can safely do a
  3483. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3484. * we don't want to use that as a starting point for each probe.
  3485. */
  3486. if (verbose_level > 2)
  3487. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3488. #if ENABLED(DELTA)
  3489. // we don't do bed level correction in M48 because we want the raw data when we probe
  3490. reset_bed_level();
  3491. #else
  3492. // we don't do bed level correction in M48 because we want the raw data when we probe
  3493. planner.bed_level_matrix.set_to_identity();
  3494. #endif
  3495. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3496. do_blocking_move_to_z(Z_start_location);
  3497. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3498. /**
  3499. * OK, do the initial probe to get us close to the bed.
  3500. * Then retrace the right amount and use that in subsequent probes
  3501. */
  3502. setup_for_endstop_move();
  3503. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3504. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3505. verbose_level);
  3506. raise_z_after_probing();
  3507. for (uint8_t n = 0; n < n_samples; n++) {
  3508. randomSeed(millis());
  3509. delay(500);
  3510. if (n_legs) {
  3511. float radius, angle = random(0.0, 360.0);
  3512. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3513. radius = random(
  3514. #if ENABLED(DELTA)
  3515. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3516. #else
  3517. 5, X_MAX_LENGTH / 8
  3518. #endif
  3519. );
  3520. if (verbose_level > 3) {
  3521. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3522. SERIAL_ECHOPAIR(" angle: ", angle);
  3523. delay(100);
  3524. if (dir > 0)
  3525. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3526. else
  3527. SERIAL_ECHO(" Direction: Clockwise \n");
  3528. delay(100);
  3529. }
  3530. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3531. double delta_angle;
  3532. if (schizoid_flag)
  3533. // The points of a 5 point star are 72 degrees apart. We need to
  3534. // skip a point and go to the next one on the star.
  3535. delta_angle = dir * 2.0 * 72.0;
  3536. else
  3537. // If we do this line, we are just trying to move further
  3538. // around the circle.
  3539. delta_angle = dir * (float) random(25, 45);
  3540. angle += delta_angle;
  3541. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3542. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3543. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3544. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3545. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3546. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3547. #if DISABLED(DELTA)
  3548. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3549. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3550. #else
  3551. // If we have gone out too far, we can do a simple fix and scale the numbers
  3552. // back in closer to the origin.
  3553. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3554. X_current /= 1.25;
  3555. Y_current /= 1.25;
  3556. if (verbose_level > 3) {
  3557. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3558. SERIAL_ECHOPAIR(", ", Y_current);
  3559. SERIAL_EOL;
  3560. delay(50);
  3561. }
  3562. }
  3563. #endif
  3564. if (verbose_level > 3) {
  3565. SERIAL_PROTOCOL("Going to:");
  3566. SERIAL_ECHOPAIR("x: ", X_current);
  3567. SERIAL_ECHOPAIR("y: ", Y_current);
  3568. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3569. SERIAL_EOL;
  3570. delay(55);
  3571. }
  3572. do_blocking_move_to_xy(X_current, Y_current);
  3573. } // n_legs loop
  3574. } // n_legs
  3575. /**
  3576. * We don't really have to do this move, but if we don't we can see a
  3577. * funny shift in the Z Height because the user might not have the
  3578. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3579. * height. This gets us back to the probe location at the same height that
  3580. * we have been running around the circle at.
  3581. */
  3582. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3583. if (deploy_probe_for_each_reading)
  3584. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3585. else {
  3586. if (n == n_samples - 1)
  3587. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3588. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3589. }
  3590. /**
  3591. * Get the current mean for the data points we have so far
  3592. */
  3593. sum = 0.0;
  3594. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3595. mean = sum / (n + 1);
  3596. /**
  3597. * Now, use that mean to calculate the standard deviation for the
  3598. * data points we have so far
  3599. */
  3600. sum = 0.0;
  3601. for (uint8_t j = 0; j <= n; j++) {
  3602. float ss = sample_set[j] - mean;
  3603. sum += ss * ss;
  3604. }
  3605. sigma = sqrt(sum / (n + 1));
  3606. if (verbose_level > 1) {
  3607. SERIAL_PROTOCOL(n + 1);
  3608. SERIAL_PROTOCOLPGM(" of ");
  3609. SERIAL_PROTOCOL((int)n_samples);
  3610. SERIAL_PROTOCOLPGM(" z: ");
  3611. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3612. delay(50);
  3613. if (verbose_level > 2) {
  3614. SERIAL_PROTOCOLPGM(" mean: ");
  3615. SERIAL_PROTOCOL_F(mean, 6);
  3616. SERIAL_PROTOCOLPGM(" sigma: ");
  3617. SERIAL_PROTOCOL_F(sigma, 6);
  3618. }
  3619. }
  3620. if (verbose_level > 0) SERIAL_EOL;
  3621. delay(50);
  3622. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3623. } // End of probe loop code
  3624. // raise_z_after_probing();
  3625. if (verbose_level > 0) {
  3626. SERIAL_PROTOCOLPGM("Mean: ");
  3627. SERIAL_PROTOCOL_F(mean, 6);
  3628. SERIAL_EOL;
  3629. delay(25);
  3630. }
  3631. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3632. SERIAL_PROTOCOL_F(sigma, 6);
  3633. SERIAL_EOL; SERIAL_EOL;
  3634. delay(25);
  3635. clean_up_after_endstop_move();
  3636. report_current_position();
  3637. }
  3638. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3639. /**
  3640. * M75: Start print timer
  3641. */
  3642. inline void gcode_M75() { print_job_timer.start(); }
  3643. /**
  3644. * M76: Pause print timer
  3645. */
  3646. inline void gcode_M76() { print_job_timer.pause(); }
  3647. /**
  3648. * M77: Stop print timer
  3649. */
  3650. inline void gcode_M77() { print_job_timer.stop(); }
  3651. #if ENABLED(PRINTCOUNTER)
  3652. /*+
  3653. * M78: Show print statistics
  3654. */
  3655. inline void gcode_M78() {
  3656. // "M78 S78" will reset the statistics
  3657. if (code_seen('S') && code_value_short() == 78)
  3658. print_job_timer.initStats();
  3659. else print_job_timer.showStats();
  3660. }
  3661. #endif
  3662. /**
  3663. * M104: Set hot end temperature
  3664. */
  3665. inline void gcode_M104() {
  3666. if (get_target_extruder_from_command(104)) return;
  3667. if (DEBUGGING(DRYRUN)) return;
  3668. if (code_seen('S')) {
  3669. float temp = code_value();
  3670. thermalManager.setTargetHotend(temp, target_extruder);
  3671. #if ENABLED(DUAL_X_CARRIAGE)
  3672. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3673. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3674. #endif
  3675. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3676. /**
  3677. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3678. * stand by mode, for instance in a dual extruder setup, without affecting
  3679. * the running print timer.
  3680. */
  3681. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3682. print_job_timer.stop();
  3683. LCD_MESSAGEPGM(WELCOME_MSG);
  3684. }
  3685. /**
  3686. * We do not check if the timer is already running because this check will
  3687. * be done for us inside the Stopwatch::start() method thus a running timer
  3688. * will not restart.
  3689. */
  3690. else print_job_timer.start();
  3691. #endif
  3692. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3693. }
  3694. }
  3695. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3696. void print_heaterstates() {
  3697. #if HAS_TEMP_HOTEND
  3698. SERIAL_PROTOCOLPGM(" T:");
  3699. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3700. SERIAL_PROTOCOLPGM(" /");
  3701. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3702. #endif
  3703. #if HAS_TEMP_BED
  3704. SERIAL_PROTOCOLPGM(" B:");
  3705. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3706. SERIAL_PROTOCOLPGM(" /");
  3707. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3708. #endif
  3709. #if EXTRUDERS > 1
  3710. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3711. SERIAL_PROTOCOLPGM(" T");
  3712. SERIAL_PROTOCOL(e);
  3713. SERIAL_PROTOCOLCHAR(':');
  3714. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3715. SERIAL_PROTOCOLPGM(" /");
  3716. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3717. }
  3718. #endif
  3719. #if HAS_TEMP_BED
  3720. SERIAL_PROTOCOLPGM(" B@:");
  3721. #ifdef BED_WATTS
  3722. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3723. SERIAL_PROTOCOLCHAR('W');
  3724. #else
  3725. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3726. #endif
  3727. #endif
  3728. SERIAL_PROTOCOLPGM(" @:");
  3729. #ifdef EXTRUDER_WATTS
  3730. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3731. SERIAL_PROTOCOLCHAR('W');
  3732. #else
  3733. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3734. #endif
  3735. #if EXTRUDERS > 1
  3736. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3737. SERIAL_PROTOCOLPGM(" @");
  3738. SERIAL_PROTOCOL(e);
  3739. SERIAL_PROTOCOLCHAR(':');
  3740. #ifdef EXTRUDER_WATTS
  3741. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3742. SERIAL_PROTOCOLCHAR('W');
  3743. #else
  3744. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3745. #endif
  3746. }
  3747. #endif
  3748. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3749. #if HAS_TEMP_BED
  3750. SERIAL_PROTOCOLPGM(" ADC B:");
  3751. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3752. SERIAL_PROTOCOLPGM("C->");
  3753. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3754. #endif
  3755. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3756. SERIAL_PROTOCOLPGM(" T");
  3757. SERIAL_PROTOCOL(cur_extruder);
  3758. SERIAL_PROTOCOLCHAR(':');
  3759. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_extruder), 1);
  3760. SERIAL_PROTOCOLPGM("C->");
  3761. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3762. }
  3763. #endif
  3764. }
  3765. #endif
  3766. /**
  3767. * M105: Read hot end and bed temperature
  3768. */
  3769. inline void gcode_M105() {
  3770. if (get_target_extruder_from_command(105)) return;
  3771. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3772. SERIAL_PROTOCOLPGM(MSG_OK);
  3773. print_heaterstates();
  3774. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3775. SERIAL_ERROR_START;
  3776. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3777. #endif
  3778. SERIAL_EOL;
  3779. }
  3780. #if FAN_COUNT > 0
  3781. /**
  3782. * M106: Set Fan Speed
  3783. *
  3784. * S<int> Speed between 0-255
  3785. * P<index> Fan index, if more than one fan
  3786. */
  3787. inline void gcode_M106() {
  3788. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3789. p = code_seen('P') ? code_value_short() : 0;
  3790. NOMORE(s, 255);
  3791. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3792. }
  3793. /**
  3794. * M107: Fan Off
  3795. */
  3796. inline void gcode_M107() {
  3797. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3798. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3799. }
  3800. #endif // FAN_COUNT > 0
  3801. /**
  3802. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3803. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3804. */
  3805. inline void gcode_M109() {
  3806. if (get_target_extruder_from_command(109)) return;
  3807. if (DEBUGGING(DRYRUN)) return;
  3808. bool no_wait_for_cooling = code_seen('S');
  3809. if (no_wait_for_cooling || code_seen('R')) {
  3810. float temp = code_value();
  3811. thermalManager.setTargetHotend(temp, target_extruder);
  3812. #if ENABLED(DUAL_X_CARRIAGE)
  3813. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3814. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3815. #endif
  3816. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3817. /**
  3818. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3819. * stand by mode, for instance in a dual extruder setup, without affecting
  3820. * the running print timer.
  3821. */
  3822. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3823. print_job_timer.stop();
  3824. LCD_MESSAGEPGM(WELCOME_MSG);
  3825. }
  3826. /**
  3827. * We do not check if the timer is already running because this check will
  3828. * be done for us inside the Stopwatch::start() method thus a running timer
  3829. * will not restart.
  3830. */
  3831. else print_job_timer.start();
  3832. #endif
  3833. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3834. }
  3835. #if ENABLED(AUTOTEMP)
  3836. planner.autotemp_M109();
  3837. #endif
  3838. #if TEMP_RESIDENCY_TIME > 0
  3839. millis_t residency_start_ms = 0;
  3840. // Loop until the temperature has stabilized
  3841. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3842. #else
  3843. // Loop until the temperature is very close target
  3844. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3845. #endif //TEMP_RESIDENCY_TIME > 0
  3846. float theTarget = -1;
  3847. bool wants_to_cool;
  3848. cancel_heatup = false;
  3849. millis_t now, next_temp_ms = 0;
  3850. KEEPALIVE_STATE(NOT_BUSY);
  3851. do {
  3852. now = millis();
  3853. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3854. next_temp_ms = now + 1000UL;
  3855. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3856. print_heaterstates();
  3857. #endif
  3858. #if TEMP_RESIDENCY_TIME > 0
  3859. SERIAL_PROTOCOLPGM(" W:");
  3860. if (residency_start_ms) {
  3861. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3862. SERIAL_PROTOCOLLN(rem);
  3863. }
  3864. else {
  3865. SERIAL_PROTOCOLLNPGM("?");
  3866. }
  3867. #else
  3868. SERIAL_EOL;
  3869. #endif
  3870. }
  3871. // Target temperature might be changed during the loop
  3872. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3873. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3874. theTarget = thermalManager.degTargetHotend(target_extruder);
  3875. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3876. if (no_wait_for_cooling && wants_to_cool) break;
  3877. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3878. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3879. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3880. }
  3881. idle();
  3882. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3883. #if TEMP_RESIDENCY_TIME > 0
  3884. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  3885. if (!residency_start_ms) {
  3886. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3887. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3888. }
  3889. else if (temp_diff > TEMP_HYSTERESIS) {
  3890. // Restart the timer whenever the temperature falls outside the hysteresis.
  3891. residency_start_ms = millis();
  3892. }
  3893. #endif //TEMP_RESIDENCY_TIME > 0
  3894. } while (!cancel_heatup && TEMP_CONDITIONS);
  3895. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3896. KEEPALIVE_STATE(IN_HANDLER);
  3897. }
  3898. #if HAS_TEMP_BED
  3899. /**
  3900. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3901. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3902. */
  3903. inline void gcode_M190() {
  3904. if (DEBUGGING(DRYRUN)) return;
  3905. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3906. bool no_wait_for_cooling = code_seen('S');
  3907. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value());
  3908. #if TEMP_BED_RESIDENCY_TIME > 0
  3909. millis_t residency_start_ms = 0;
  3910. // Loop until the temperature has stabilized
  3911. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3912. #else
  3913. // Loop until the temperature is very close target
  3914. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3915. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3916. float theTarget = -1;
  3917. bool wants_to_cool;
  3918. cancel_heatup = false;
  3919. millis_t now, next_temp_ms = 0;
  3920. KEEPALIVE_STATE(NOT_BUSY);
  3921. do {
  3922. now = millis();
  3923. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3924. next_temp_ms = now + 1000UL;
  3925. print_heaterstates();
  3926. #if TEMP_BED_RESIDENCY_TIME > 0
  3927. SERIAL_PROTOCOLPGM(" W:");
  3928. if (residency_start_ms) {
  3929. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3930. SERIAL_PROTOCOLLN(rem);
  3931. }
  3932. else {
  3933. SERIAL_PROTOCOLLNPGM("?");
  3934. }
  3935. #else
  3936. SERIAL_EOL;
  3937. #endif
  3938. }
  3939. // Target temperature might be changed during the loop
  3940. if (theTarget != thermalManager.degTargetBed()) {
  3941. wants_to_cool = thermalManager.isCoolingBed();
  3942. theTarget = thermalManager.degTargetBed();
  3943. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3944. if (no_wait_for_cooling && wants_to_cool) break;
  3945. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3946. // Simply don't wait to cool a bed under 30C
  3947. if (wants_to_cool && theTarget < 30) break;
  3948. }
  3949. idle();
  3950. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3951. #if TEMP_BED_RESIDENCY_TIME > 0
  3952. float temp_diff = fabs(theTarget - thermalManager.degBed());
  3953. if (!residency_start_ms) {
  3954. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3955. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  3956. }
  3957. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3958. // Restart the timer whenever the temperature falls outside the hysteresis.
  3959. residency_start_ms = millis();
  3960. }
  3961. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3962. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3963. LCD_MESSAGEPGM(MSG_BED_DONE);
  3964. KEEPALIVE_STATE(IN_HANDLER);
  3965. }
  3966. #endif // HAS_TEMP_BED
  3967. /**
  3968. * M110: Set Current Line Number
  3969. */
  3970. inline void gcode_M110() {
  3971. if (code_seen('N')) gcode_N = code_value_long();
  3972. }
  3973. /**
  3974. * M111: Set the debug level
  3975. */
  3976. inline void gcode_M111() {
  3977. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3978. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3979. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3980. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3981. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3982. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3983. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3984. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3985. #endif
  3986. const static char* const debug_strings[] PROGMEM = {
  3987. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3988. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3989. str_debug_32
  3990. #endif
  3991. };
  3992. SERIAL_ECHO_START;
  3993. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3994. if (marlin_debug_flags) {
  3995. uint8_t comma = 0;
  3996. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3997. if (TEST(marlin_debug_flags, i)) {
  3998. if (comma++) SERIAL_CHAR(',');
  3999. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4000. }
  4001. }
  4002. }
  4003. else {
  4004. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4005. }
  4006. SERIAL_EOL;
  4007. }
  4008. /**
  4009. * M112: Emergency Stop
  4010. */
  4011. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4012. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4013. /**
  4014. * M113: Get or set Host Keepalive interval (0 to disable)
  4015. *
  4016. * S<seconds> Optional. Set the keepalive interval.
  4017. */
  4018. inline void gcode_M113() {
  4019. if (code_seen('S')) {
  4020. host_keepalive_interval = (uint8_t)code_value_short();
  4021. NOMORE(host_keepalive_interval, 60);
  4022. }
  4023. else {
  4024. SERIAL_ECHO_START;
  4025. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4026. SERIAL_EOL;
  4027. }
  4028. }
  4029. #endif
  4030. #if ENABLED(BARICUDA)
  4031. #if HAS_HEATER_1
  4032. /**
  4033. * M126: Heater 1 valve open
  4034. */
  4035. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  4036. /**
  4037. * M127: Heater 1 valve close
  4038. */
  4039. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4040. #endif
  4041. #if HAS_HEATER_2
  4042. /**
  4043. * M128: Heater 2 valve open
  4044. */
  4045. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  4046. /**
  4047. * M129: Heater 2 valve close
  4048. */
  4049. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4050. #endif
  4051. #endif //BARICUDA
  4052. /**
  4053. * M140: Set bed temperature
  4054. */
  4055. inline void gcode_M140() {
  4056. if (DEBUGGING(DRYRUN)) return;
  4057. if (code_seen('S')) thermalManager.setTargetBed(code_value());
  4058. }
  4059. #if ENABLED(ULTIPANEL)
  4060. /**
  4061. * M145: Set the heatup state for a material in the LCD menu
  4062. * S<material> (0=PLA, 1=ABS)
  4063. * H<hotend temp>
  4064. * B<bed temp>
  4065. * F<fan speed>
  4066. */
  4067. inline void gcode_M145() {
  4068. int8_t material = code_seen('S') ? code_value_short() : 0;
  4069. if (material < 0 || material > 1) {
  4070. SERIAL_ERROR_START;
  4071. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4072. }
  4073. else {
  4074. int v;
  4075. switch (material) {
  4076. case 0:
  4077. if (code_seen('H')) {
  4078. v = code_value_short();
  4079. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4080. }
  4081. if (code_seen('F')) {
  4082. v = code_value_short();
  4083. plaPreheatFanSpeed = constrain(v, 0, 255);
  4084. }
  4085. #if TEMP_SENSOR_BED != 0
  4086. if (code_seen('B')) {
  4087. v = code_value_short();
  4088. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4089. }
  4090. #endif
  4091. break;
  4092. case 1:
  4093. if (code_seen('H')) {
  4094. v = code_value_short();
  4095. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4096. }
  4097. if (code_seen('F')) {
  4098. v = code_value_short();
  4099. absPreheatFanSpeed = constrain(v, 0, 255);
  4100. }
  4101. #if TEMP_SENSOR_BED != 0
  4102. if (code_seen('B')) {
  4103. v = code_value_short();
  4104. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4105. }
  4106. #endif
  4107. break;
  4108. }
  4109. }
  4110. }
  4111. #endif
  4112. #if HAS_POWER_SWITCH
  4113. /**
  4114. * M80: Turn on Power Supply
  4115. */
  4116. inline void gcode_M80() {
  4117. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4118. /**
  4119. * If you have a switch on suicide pin, this is useful
  4120. * if you want to start another print with suicide feature after
  4121. * a print without suicide...
  4122. */
  4123. #if HAS_SUICIDE
  4124. OUT_WRITE(SUICIDE_PIN, HIGH);
  4125. #endif
  4126. #if ENABLED(ULTIPANEL)
  4127. powersupply = true;
  4128. LCD_MESSAGEPGM(WELCOME_MSG);
  4129. lcd_update();
  4130. #endif
  4131. }
  4132. #endif // HAS_POWER_SWITCH
  4133. /**
  4134. * M81: Turn off Power, including Power Supply, if there is one.
  4135. *
  4136. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4137. */
  4138. inline void gcode_M81() {
  4139. thermalManager.disable_all_heaters();
  4140. stepper.finish_and_disable();
  4141. #if FAN_COUNT > 0
  4142. #if FAN_COUNT > 1
  4143. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4144. #else
  4145. fanSpeeds[0] = 0;
  4146. #endif
  4147. #endif
  4148. delay(1000); // Wait 1 second before switching off
  4149. #if HAS_SUICIDE
  4150. stepper.synchronize();
  4151. suicide();
  4152. #elif HAS_POWER_SWITCH
  4153. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4154. #endif
  4155. #if ENABLED(ULTIPANEL)
  4156. #if HAS_POWER_SWITCH
  4157. powersupply = false;
  4158. #endif
  4159. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4160. lcd_update();
  4161. #endif
  4162. }
  4163. /**
  4164. * M82: Set E codes absolute (default)
  4165. */
  4166. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4167. /**
  4168. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4169. */
  4170. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4171. /**
  4172. * M18, M84: Disable all stepper motors
  4173. */
  4174. inline void gcode_M18_M84() {
  4175. if (code_seen('S')) {
  4176. stepper_inactive_time = code_value() * 1000UL;
  4177. }
  4178. else {
  4179. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4180. if (all_axis) {
  4181. stepper.finish_and_disable();
  4182. }
  4183. else {
  4184. stepper.synchronize();
  4185. if (code_seen('X')) disable_x();
  4186. if (code_seen('Y')) disable_y();
  4187. if (code_seen('Z')) disable_z();
  4188. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4189. if (code_seen('E')) {
  4190. disable_e0();
  4191. disable_e1();
  4192. disable_e2();
  4193. disable_e3();
  4194. }
  4195. #endif
  4196. }
  4197. }
  4198. }
  4199. /**
  4200. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4201. */
  4202. inline void gcode_M85() {
  4203. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  4204. }
  4205. /**
  4206. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4207. * (Follows the same syntax as G92)
  4208. */
  4209. inline void gcode_M92() {
  4210. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4211. if (code_seen(axis_codes[i])) {
  4212. if (i == E_AXIS) {
  4213. float value = code_value();
  4214. if (value < 20.0) {
  4215. float factor = planner.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4216. planner.max_e_jerk *= factor;
  4217. planner.max_feedrate[i] *= factor;
  4218. planner.axis_steps_per_sqr_second[i] *= factor;
  4219. }
  4220. planner.axis_steps_per_unit[i] = value;
  4221. }
  4222. else {
  4223. planner.axis_steps_per_unit[i] = code_value();
  4224. }
  4225. }
  4226. }
  4227. }
  4228. /**
  4229. * Output the current position to serial
  4230. */
  4231. static void report_current_position() {
  4232. SERIAL_PROTOCOLPGM("X:");
  4233. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4234. SERIAL_PROTOCOLPGM(" Y:");
  4235. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4236. SERIAL_PROTOCOLPGM(" Z:");
  4237. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4238. SERIAL_PROTOCOLPGM(" E:");
  4239. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4240. stepper.report_positions();
  4241. #if ENABLED(SCARA)
  4242. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4243. SERIAL_PROTOCOL(delta[X_AXIS]);
  4244. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4245. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4246. SERIAL_EOL;
  4247. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4248. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4249. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4250. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4251. SERIAL_EOL;
  4252. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4253. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_unit[X_AXIS]);
  4254. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4255. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_unit[Y_AXIS]);
  4256. SERIAL_EOL; SERIAL_EOL;
  4257. #endif
  4258. }
  4259. /**
  4260. * M114: Output current position to serial port
  4261. */
  4262. inline void gcode_M114() { report_current_position(); }
  4263. /**
  4264. * M115: Capabilities string
  4265. */
  4266. inline void gcode_M115() {
  4267. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4268. }
  4269. /**
  4270. * M117: Set LCD Status Message
  4271. */
  4272. inline void gcode_M117() {
  4273. lcd_setstatus(current_command_args);
  4274. }
  4275. /**
  4276. * M119: Output endstop states to serial output
  4277. */
  4278. inline void gcode_M119() { endstops.M119(); }
  4279. /**
  4280. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4281. */
  4282. inline void gcode_M120() { endstops.enable_globally(true); }
  4283. /**
  4284. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4285. */
  4286. inline void gcode_M121() { endstops.enable_globally(false); }
  4287. #if ENABLED(BLINKM)
  4288. /**
  4289. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4290. */
  4291. inline void gcode_M150() {
  4292. SendColors(
  4293. code_seen('R') ? (byte)code_value_short() : 0,
  4294. code_seen('U') ? (byte)code_value_short() : 0,
  4295. code_seen('B') ? (byte)code_value_short() : 0
  4296. );
  4297. }
  4298. #endif // BLINKM
  4299. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4300. /**
  4301. * M155: Send data to a I2C slave device
  4302. *
  4303. * This is a PoC, the formating and arguments for the GCODE will
  4304. * change to be more compatible, the current proposal is:
  4305. *
  4306. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4307. *
  4308. * M155 B<byte-1 value in base 10>
  4309. * M155 B<byte-2 value in base 10>
  4310. * M155 B<byte-3 value in base 10>
  4311. *
  4312. * M155 S1 ; Send the buffered data and reset the buffer
  4313. * M155 R1 ; Reset the buffer without sending data
  4314. *
  4315. */
  4316. inline void gcode_M155() {
  4317. // Set the target address
  4318. if (code_seen('A'))
  4319. i2c.address((uint8_t) code_value_short());
  4320. // Add a new byte to the buffer
  4321. else if (code_seen('B'))
  4322. i2c.addbyte((int) code_value_short());
  4323. // Flush the buffer to the bus
  4324. else if (code_seen('S')) i2c.send();
  4325. // Reset and rewind the buffer
  4326. else if (code_seen('R')) i2c.reset();
  4327. }
  4328. /**
  4329. * M156: Request X bytes from I2C slave device
  4330. *
  4331. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4332. */
  4333. inline void gcode_M156() {
  4334. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4335. int bytes = code_seen('B') ? code_value_short() : 1;
  4336. if (addr && bytes > 0 && bytes <= 32) {
  4337. i2c.address(addr);
  4338. i2c.reqbytes(bytes);
  4339. }
  4340. else {
  4341. SERIAL_ERROR_START;
  4342. SERIAL_ERRORLN("Bad i2c request");
  4343. }
  4344. }
  4345. #endif //EXPERIMENTAL_I2CBUS
  4346. /**
  4347. * M200: Set filament diameter and set E axis units to cubic millimeters
  4348. *
  4349. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4350. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4351. */
  4352. inline void gcode_M200() {
  4353. if (get_target_extruder_from_command(200)) return;
  4354. if (code_seen('D')) {
  4355. float diameter = code_value();
  4356. // setting any extruder filament size disables volumetric on the assumption that
  4357. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4358. // for all extruders
  4359. volumetric_enabled = (diameter != 0.0);
  4360. if (volumetric_enabled) {
  4361. filament_size[target_extruder] = diameter;
  4362. // make sure all extruders have some sane value for the filament size
  4363. for (int i = 0; i < EXTRUDERS; i++)
  4364. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4365. }
  4366. }
  4367. else {
  4368. //reserved for setting filament diameter via UFID or filament measuring device
  4369. return;
  4370. }
  4371. calculate_volumetric_multipliers();
  4372. }
  4373. /**
  4374. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4375. */
  4376. inline void gcode_M201() {
  4377. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4378. if (code_seen(axis_codes[i])) {
  4379. planner.max_acceleration_units_per_sq_second[i] = code_value();
  4380. }
  4381. }
  4382. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4383. planner.reset_acceleration_rates();
  4384. }
  4385. #if 0 // Not used for Sprinter/grbl gen6
  4386. inline void gcode_M202() {
  4387. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4388. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * planner.axis_steps_per_unit[i];
  4389. }
  4390. }
  4391. #endif
  4392. /**
  4393. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4394. */
  4395. inline void gcode_M203() {
  4396. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4397. if (code_seen(axis_codes[i])) {
  4398. planner.max_feedrate[i] = code_value();
  4399. }
  4400. }
  4401. }
  4402. /**
  4403. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4404. *
  4405. * P = Printing moves
  4406. * R = Retract only (no X, Y, Z) moves
  4407. * T = Travel (non printing) moves
  4408. *
  4409. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4410. */
  4411. inline void gcode_M204() {
  4412. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4413. planner.travel_acceleration = planner.acceleration = code_value();
  4414. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4415. SERIAL_EOL;
  4416. }
  4417. if (code_seen('P')) {
  4418. planner.acceleration = code_value();
  4419. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4420. SERIAL_EOL;
  4421. }
  4422. if (code_seen('R')) {
  4423. planner.retract_acceleration = code_value();
  4424. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4425. SERIAL_EOL;
  4426. }
  4427. if (code_seen('T')) {
  4428. planner.travel_acceleration = code_value();
  4429. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4430. SERIAL_EOL;
  4431. }
  4432. }
  4433. /**
  4434. * M205: Set Advanced Settings
  4435. *
  4436. * S = Min Feed Rate (mm/s)
  4437. * T = Min Travel Feed Rate (mm/s)
  4438. * B = Min Segment Time (µs)
  4439. * X = Max XY Jerk (mm/s/s)
  4440. * Z = Max Z Jerk (mm/s/s)
  4441. * E = Max E Jerk (mm/s/s)
  4442. */
  4443. inline void gcode_M205() {
  4444. if (code_seen('S')) planner.min_feedrate = code_value();
  4445. if (code_seen('T')) planner.min_travel_feedrate = code_value();
  4446. if (code_seen('B')) planner.min_segment_time = code_value();
  4447. if (code_seen('X')) planner.max_xy_jerk = code_value();
  4448. if (code_seen('Z')) planner.max_z_jerk = code_value();
  4449. if (code_seen('E')) planner.max_e_jerk = code_value();
  4450. }
  4451. /**
  4452. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4453. */
  4454. inline void gcode_M206() {
  4455. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4456. if (code_seen(axis_codes[i]))
  4457. set_home_offset((AxisEnum)i, code_value());
  4458. #if ENABLED(SCARA)
  4459. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4460. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4461. #endif
  4462. sync_plan_position();
  4463. report_current_position();
  4464. }
  4465. #if ENABLED(DELTA)
  4466. /**
  4467. * M665: Set delta configurations
  4468. *
  4469. * L = diagonal rod
  4470. * R = delta radius
  4471. * S = segments per second
  4472. * A = Alpha (Tower 1) diagonal rod trim
  4473. * B = Beta (Tower 2) diagonal rod trim
  4474. * C = Gamma (Tower 3) diagonal rod trim
  4475. */
  4476. inline void gcode_M665() {
  4477. if (code_seen('L')) delta_diagonal_rod = code_value();
  4478. if (code_seen('R')) delta_radius = code_value();
  4479. if (code_seen('S')) delta_segments_per_second = code_value();
  4480. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4481. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4482. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4483. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4484. }
  4485. /**
  4486. * M666: Set delta endstop adjustment
  4487. */
  4488. inline void gcode_M666() {
  4489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4490. if (DEBUGGING(LEVELING)) {
  4491. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4492. }
  4493. #endif
  4494. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4495. if (code_seen(axis_codes[i])) {
  4496. endstop_adj[i] = code_value();
  4497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4498. if (DEBUGGING(LEVELING)) {
  4499. SERIAL_ECHOPGM("endstop_adj[");
  4500. SERIAL_ECHO(axis_codes[i]);
  4501. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4502. SERIAL_EOL;
  4503. }
  4504. #endif
  4505. }
  4506. }
  4507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4508. if (DEBUGGING(LEVELING)) {
  4509. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4510. }
  4511. #endif
  4512. }
  4513. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4514. /**
  4515. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4516. */
  4517. inline void gcode_M666() {
  4518. if (code_seen('Z')) z_endstop_adj = code_value();
  4519. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4520. SERIAL_EOL;
  4521. }
  4522. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4523. #if ENABLED(FWRETRACT)
  4524. /**
  4525. * M207: Set firmware retraction values
  4526. *
  4527. * S[+mm] retract_length
  4528. * W[+mm] retract_length_swap (multi-extruder)
  4529. * F[mm/min] retract_feedrate
  4530. * Z[mm] retract_zlift
  4531. */
  4532. inline void gcode_M207() {
  4533. if (code_seen('S')) retract_length = code_value();
  4534. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4535. if (code_seen('Z')) retract_zlift = code_value();
  4536. #if EXTRUDERS > 1
  4537. if (code_seen('W')) retract_length_swap = code_value();
  4538. #endif
  4539. }
  4540. /**
  4541. * M208: Set firmware un-retraction values
  4542. *
  4543. * S[+mm] retract_recover_length (in addition to M207 S*)
  4544. * W[+mm] retract_recover_length_swap (multi-extruder)
  4545. * F[mm/min] retract_recover_feedrate
  4546. */
  4547. inline void gcode_M208() {
  4548. if (code_seen('S')) retract_recover_length = code_value();
  4549. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4550. #if EXTRUDERS > 1
  4551. if (code_seen('W')) retract_recover_length_swap = code_value();
  4552. #endif
  4553. }
  4554. /**
  4555. * M209: Enable automatic retract (M209 S1)
  4556. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4557. */
  4558. inline void gcode_M209() {
  4559. if (code_seen('S')) {
  4560. int t = code_value_short();
  4561. switch (t) {
  4562. case 0:
  4563. autoretract_enabled = false;
  4564. break;
  4565. case 1:
  4566. autoretract_enabled = true;
  4567. break;
  4568. default:
  4569. unknown_command_error();
  4570. return;
  4571. }
  4572. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4573. }
  4574. }
  4575. #endif // FWRETRACT
  4576. #if EXTRUDERS > 1
  4577. /**
  4578. * M218 - set hotend offset (in mm)
  4579. *
  4580. * T<tool>
  4581. * X<xoffset>
  4582. * Y<yoffset>
  4583. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4584. */
  4585. inline void gcode_M218() {
  4586. if (get_target_extruder_from_command(218)) return;
  4587. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4588. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4589. #if ENABLED(DUAL_X_CARRIAGE)
  4590. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4591. #endif
  4592. SERIAL_ECHO_START;
  4593. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4594. for (int e = 0; e < EXTRUDERS; e++) {
  4595. SERIAL_CHAR(' ');
  4596. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4597. SERIAL_CHAR(',');
  4598. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4599. #if ENABLED(DUAL_X_CARRIAGE)
  4600. SERIAL_CHAR(',');
  4601. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4602. #endif
  4603. }
  4604. SERIAL_EOL;
  4605. }
  4606. #endif // EXTRUDERS > 1
  4607. /**
  4608. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4609. */
  4610. inline void gcode_M220() {
  4611. if (code_seen('S')) feedrate_multiplier = code_value();
  4612. }
  4613. /**
  4614. * M221: Set extrusion percentage (M221 T0 S95)
  4615. */
  4616. inline void gcode_M221() {
  4617. if (code_seen('S')) {
  4618. int sval = code_value();
  4619. if (get_target_extruder_from_command(221)) return;
  4620. extruder_multiplier[target_extruder] = sval;
  4621. }
  4622. }
  4623. /**
  4624. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4625. */
  4626. inline void gcode_M226() {
  4627. if (code_seen('P')) {
  4628. int pin_number = code_value();
  4629. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4630. if (pin_state >= -1 && pin_state <= 1) {
  4631. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4632. if (sensitive_pins[i] == pin_number) {
  4633. pin_number = -1;
  4634. break;
  4635. }
  4636. }
  4637. if (pin_number > -1) {
  4638. int target = LOW;
  4639. stepper.synchronize();
  4640. pinMode(pin_number, INPUT);
  4641. switch (pin_state) {
  4642. case 1:
  4643. target = HIGH;
  4644. break;
  4645. case 0:
  4646. target = LOW;
  4647. break;
  4648. case -1:
  4649. target = !digitalRead(pin_number);
  4650. break;
  4651. }
  4652. while (digitalRead(pin_number) != target) idle();
  4653. } // pin_number > -1
  4654. } // pin_state -1 0 1
  4655. } // code_seen('P')
  4656. }
  4657. #if HAS_SERVOS
  4658. /**
  4659. * M280: Get or set servo position. P<index> S<angle>
  4660. */
  4661. inline void gcode_M280() {
  4662. int servo_index = code_seen('P') ? code_value_short() : -1;
  4663. int servo_position = 0;
  4664. if (code_seen('S')) {
  4665. servo_position = code_value_short();
  4666. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4667. servo[servo_index].move(servo_position);
  4668. else {
  4669. SERIAL_ERROR_START;
  4670. SERIAL_ERROR("Servo ");
  4671. SERIAL_ERROR(servo_index);
  4672. SERIAL_ERRORLN(" out of range");
  4673. }
  4674. }
  4675. else if (servo_index >= 0) {
  4676. SERIAL_ECHO_START;
  4677. SERIAL_ECHO(" Servo ");
  4678. SERIAL_ECHO(servo_index);
  4679. SERIAL_ECHO(": ");
  4680. SERIAL_ECHOLN(servo[servo_index].read());
  4681. }
  4682. }
  4683. #endif // HAS_SERVOS
  4684. #if HAS_BUZZER
  4685. /**
  4686. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4687. */
  4688. inline void gcode_M300() {
  4689. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4690. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4691. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4692. buzz(beepP, beepS);
  4693. }
  4694. #endif // HAS_BUZZER
  4695. #if ENABLED(PIDTEMP)
  4696. /**
  4697. * M301: Set PID parameters P I D (and optionally C, L)
  4698. *
  4699. * P[float] Kp term
  4700. * I[float] Ki term (unscaled)
  4701. * D[float] Kd term (unscaled)
  4702. *
  4703. * With PID_ADD_EXTRUSION_RATE:
  4704. *
  4705. * C[float] Kc term
  4706. * L[float] LPQ length
  4707. */
  4708. inline void gcode_M301() {
  4709. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4710. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4711. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4712. if (e < EXTRUDERS) { // catch bad input value
  4713. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4714. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4715. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4716. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4717. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4718. if (code_seen('L')) lpq_len = code_value();
  4719. NOMORE(lpq_len, LPQ_MAX_LEN);
  4720. #endif
  4721. thermalManager.updatePID();
  4722. SERIAL_ECHO_START;
  4723. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4724. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4725. SERIAL_ECHO(e);
  4726. #endif // PID_PARAMS_PER_EXTRUDER
  4727. SERIAL_ECHO(" p:");
  4728. SERIAL_ECHO(PID_PARAM(Kp, e));
  4729. SERIAL_ECHO(" i:");
  4730. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4731. SERIAL_ECHO(" d:");
  4732. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4733. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4734. SERIAL_ECHO(" c:");
  4735. //Kc does not have scaling applied above, or in resetting defaults
  4736. SERIAL_ECHO(PID_PARAM(Kc, e));
  4737. #endif
  4738. SERIAL_EOL;
  4739. }
  4740. else {
  4741. SERIAL_ERROR_START;
  4742. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4743. }
  4744. }
  4745. #endif // PIDTEMP
  4746. #if ENABLED(PIDTEMPBED)
  4747. inline void gcode_M304() {
  4748. if (code_seen('P')) thermalManager.bedKp = code_value();
  4749. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value());
  4750. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value());
  4751. thermalManager.updatePID();
  4752. SERIAL_ECHO_START;
  4753. SERIAL_ECHO(" p:");
  4754. SERIAL_ECHO(thermalManager.bedKp);
  4755. SERIAL_ECHO(" i:");
  4756. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4757. SERIAL_ECHO(" d:");
  4758. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4759. }
  4760. #endif // PIDTEMPBED
  4761. #if defined(CHDK) || HAS_PHOTOGRAPH
  4762. /**
  4763. * M240: Trigger a camera by emulating a Canon RC-1
  4764. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4765. */
  4766. inline void gcode_M240() {
  4767. #ifdef CHDK
  4768. OUT_WRITE(CHDK, HIGH);
  4769. chdkHigh = millis();
  4770. chdkActive = true;
  4771. #elif HAS_PHOTOGRAPH
  4772. const uint8_t NUM_PULSES = 16;
  4773. const float PULSE_LENGTH = 0.01524;
  4774. for (int i = 0; i < NUM_PULSES; i++) {
  4775. WRITE(PHOTOGRAPH_PIN, HIGH);
  4776. _delay_ms(PULSE_LENGTH);
  4777. WRITE(PHOTOGRAPH_PIN, LOW);
  4778. _delay_ms(PULSE_LENGTH);
  4779. }
  4780. delay(7.33);
  4781. for (int i = 0; i < NUM_PULSES; i++) {
  4782. WRITE(PHOTOGRAPH_PIN, HIGH);
  4783. _delay_ms(PULSE_LENGTH);
  4784. WRITE(PHOTOGRAPH_PIN, LOW);
  4785. _delay_ms(PULSE_LENGTH);
  4786. }
  4787. #endif // !CHDK && HAS_PHOTOGRAPH
  4788. }
  4789. #endif // CHDK || PHOTOGRAPH_PIN
  4790. #if HAS_LCD_CONTRAST
  4791. /**
  4792. * M250: Read and optionally set the LCD contrast
  4793. */
  4794. inline void gcode_M250() {
  4795. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4796. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4797. SERIAL_PROTOCOL(lcd_contrast);
  4798. SERIAL_EOL;
  4799. }
  4800. #endif // HAS_LCD_CONTRAST
  4801. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4802. /**
  4803. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4804. */
  4805. inline void gcode_M302() {
  4806. thermalManager.extrude_min_temp = code_seen('S') ? code_value() : 0;
  4807. }
  4808. #endif // PREVENT_DANGEROUS_EXTRUDE
  4809. /**
  4810. * M303: PID relay autotune
  4811. *
  4812. * S<temperature> sets the target temperature. (default 150C)
  4813. * E<extruder> (-1 for the bed) (default 0)
  4814. * C<cycles>
  4815. * U<bool> with a non-zero value will apply the result to current settings
  4816. */
  4817. inline void gcode_M303() {
  4818. #if HAS_PID_HEATING
  4819. int e = code_seen('E') ? code_value_short() : 0;
  4820. int c = code_seen('C') ? code_value_short() : 5;
  4821. bool u = code_seen('U') && code_value_short() != 0;
  4822. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4823. if (e >= 0 && e < EXTRUDERS)
  4824. target_extruder = e;
  4825. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4826. thermalManager.PID_autotune(temp, e, c, u);
  4827. KEEPALIVE_STATE(IN_HANDLER);
  4828. #else
  4829. SERIAL_ERROR_START;
  4830. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4831. #endif
  4832. }
  4833. #if ENABLED(SCARA)
  4834. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4835. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4836. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4837. if (IsRunning()) {
  4838. //gcode_get_destination(); // For X Y Z E F
  4839. delta[X_AXIS] = delta_x;
  4840. delta[Y_AXIS] = delta_y;
  4841. calculate_SCARA_forward_Transform(delta);
  4842. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4843. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4844. prepare_move();
  4845. //ok_to_send();
  4846. return true;
  4847. }
  4848. return false;
  4849. }
  4850. /**
  4851. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4852. */
  4853. inline bool gcode_M360() {
  4854. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4855. return SCARA_move_to_cal(0, 120);
  4856. }
  4857. /**
  4858. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4859. */
  4860. inline bool gcode_M361() {
  4861. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4862. return SCARA_move_to_cal(90, 130);
  4863. }
  4864. /**
  4865. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4866. */
  4867. inline bool gcode_M362() {
  4868. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4869. return SCARA_move_to_cal(60, 180);
  4870. }
  4871. /**
  4872. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4873. */
  4874. inline bool gcode_M363() {
  4875. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4876. return SCARA_move_to_cal(50, 90);
  4877. }
  4878. /**
  4879. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4880. */
  4881. inline bool gcode_M364() {
  4882. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4883. return SCARA_move_to_cal(45, 135);
  4884. }
  4885. /**
  4886. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4887. */
  4888. inline void gcode_M365() {
  4889. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4890. if (code_seen(axis_codes[i])) {
  4891. axis_scaling[i] = code_value();
  4892. }
  4893. }
  4894. }
  4895. #endif // SCARA
  4896. #if ENABLED(EXT_SOLENOID)
  4897. void enable_solenoid(uint8_t num) {
  4898. switch (num) {
  4899. case 0:
  4900. OUT_WRITE(SOL0_PIN, HIGH);
  4901. break;
  4902. #if HAS_SOLENOID_1
  4903. case 1:
  4904. OUT_WRITE(SOL1_PIN, HIGH);
  4905. break;
  4906. #endif
  4907. #if HAS_SOLENOID_2
  4908. case 2:
  4909. OUT_WRITE(SOL2_PIN, HIGH);
  4910. break;
  4911. #endif
  4912. #if HAS_SOLENOID_3
  4913. case 3:
  4914. OUT_WRITE(SOL3_PIN, HIGH);
  4915. break;
  4916. #endif
  4917. default:
  4918. SERIAL_ECHO_START;
  4919. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4920. break;
  4921. }
  4922. }
  4923. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4924. void disable_all_solenoids() {
  4925. OUT_WRITE(SOL0_PIN, LOW);
  4926. OUT_WRITE(SOL1_PIN, LOW);
  4927. OUT_WRITE(SOL2_PIN, LOW);
  4928. OUT_WRITE(SOL3_PIN, LOW);
  4929. }
  4930. /**
  4931. * M380: Enable solenoid on the active extruder
  4932. */
  4933. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4934. /**
  4935. * M381: Disable all solenoids
  4936. */
  4937. inline void gcode_M381() { disable_all_solenoids(); }
  4938. #endif // EXT_SOLENOID
  4939. /**
  4940. * M400: Finish all moves
  4941. */
  4942. inline void gcode_M400() { stepper.synchronize(); }
  4943. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY))
  4944. /**
  4945. * M401: Engage Z Servo endstop if available
  4946. */
  4947. inline void gcode_M401() {
  4948. #if ENABLED(HAS_SERVO_ENDSTOPS)
  4949. raise_z_for_servo();
  4950. #endif
  4951. deploy_z_probe();
  4952. }
  4953. /**
  4954. * M402: Retract Z Servo endstop if enabled
  4955. */
  4956. inline void gcode_M402() {
  4957. #if ENABLED(HAS_SERVO_ENDSTOPS)
  4958. raise_z_for_servo();
  4959. #endif
  4960. stow_z_probe(false);
  4961. }
  4962. #endif // AUTO_BED_LEVELING_FEATURE && (ENABLED(HAS_SERVO_ENDSTOPS) || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4963. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4964. /**
  4965. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4966. */
  4967. inline void gcode_M404() {
  4968. if (code_seen('W')) {
  4969. filament_width_nominal = code_value();
  4970. }
  4971. else {
  4972. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4973. SERIAL_PROTOCOLLN(filament_width_nominal);
  4974. }
  4975. }
  4976. /**
  4977. * M405: Turn on filament sensor for control
  4978. */
  4979. inline void gcode_M405() {
  4980. if (code_seen('D')) meas_delay_cm = code_value();
  4981. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4982. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4983. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  4984. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4985. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4986. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4987. }
  4988. filament_sensor = true;
  4989. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4990. //SERIAL_PROTOCOL(filament_width_meas);
  4991. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4992. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4993. }
  4994. /**
  4995. * M406: Turn off filament sensor for control
  4996. */
  4997. inline void gcode_M406() { filament_sensor = false; }
  4998. /**
  4999. * M407: Get measured filament diameter on serial output
  5000. */
  5001. inline void gcode_M407() {
  5002. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5003. SERIAL_PROTOCOLLN(filament_width_meas);
  5004. }
  5005. #endif // FILAMENT_WIDTH_SENSOR
  5006. /**
  5007. * M410: Quickstop - Abort all planned moves
  5008. *
  5009. * This will stop the carriages mid-move, so most likely they
  5010. * will be out of sync with the stepper position after this.
  5011. */
  5012. inline void gcode_M410() { stepper.quick_stop(); }
  5013. #if ENABLED(MESH_BED_LEVELING)
  5014. /**
  5015. * M420: Enable/Disable Mesh Bed Leveling
  5016. */
  5017. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  5018. /**
  5019. * M421: Set a single Mesh Bed Leveling Z coordinate
  5020. * Use either 'M421 X<mm> Y<mm> Z<mm>' or 'M421 I<xindex> J<yindex> Z<mm>'
  5021. */
  5022. inline void gcode_M421() {
  5023. int8_t px, py;
  5024. float z = 0;
  5025. bool hasX, hasY, hasZ, hasI, hasJ;
  5026. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value());
  5027. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value());
  5028. if ((hasI = code_seen('I'))) px = code_value();
  5029. if ((hasJ = code_seen('J'))) py = code_value();
  5030. if ((hasZ = code_seen('Z'))) z = code_value();
  5031. if (hasX && hasY && hasZ) {
  5032. if (px >= 0 && py >= 0)
  5033. mbl.set_z(px, py, z);
  5034. else {
  5035. SERIAL_ERROR_START;
  5036. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5037. }
  5038. }
  5039. else if (hasI && hasJ && hasZ) {
  5040. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5041. mbl.set_z(px, py, z);
  5042. else {
  5043. SERIAL_ERROR_START;
  5044. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5045. }
  5046. }
  5047. else {
  5048. SERIAL_ERROR_START;
  5049. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5050. }
  5051. }
  5052. #endif
  5053. /**
  5054. * M428: Set home_offset based on the distance between the
  5055. * current_position and the nearest "reference point."
  5056. * If an axis is past center its endstop position
  5057. * is the reference-point. Otherwise it uses 0. This allows
  5058. * the Z offset to be set near the bed when using a max endstop.
  5059. *
  5060. * M428 can't be used more than 2cm away from 0 or an endstop.
  5061. *
  5062. * Use M206 to set these values directly.
  5063. */
  5064. inline void gcode_M428() {
  5065. bool err = false;
  5066. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5067. if (axis_homed[i]) {
  5068. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5069. diff = current_position[i] - base;
  5070. if (diff > -20 && diff < 20) {
  5071. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5072. }
  5073. else {
  5074. SERIAL_ERROR_START;
  5075. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5076. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5077. #if HAS_BUZZER
  5078. buzz(200, 40);
  5079. #endif
  5080. err = true;
  5081. break;
  5082. }
  5083. }
  5084. }
  5085. if (!err) {
  5086. sync_plan_position();
  5087. report_current_position();
  5088. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5089. #if HAS_BUZZER
  5090. buzz(200, 659);
  5091. buzz(200, 698);
  5092. #endif
  5093. }
  5094. }
  5095. /**
  5096. * M500: Store settings in EEPROM
  5097. */
  5098. inline void gcode_M500() {
  5099. Config_StoreSettings();
  5100. }
  5101. /**
  5102. * M501: Read settings from EEPROM
  5103. */
  5104. inline void gcode_M501() {
  5105. Config_RetrieveSettings();
  5106. }
  5107. /**
  5108. * M502: Revert to default settings
  5109. */
  5110. inline void gcode_M502() {
  5111. Config_ResetDefault();
  5112. }
  5113. /**
  5114. * M503: print settings currently in memory
  5115. */
  5116. inline void gcode_M503() {
  5117. Config_PrintSettings(code_seen('S') && code_value() == 0);
  5118. }
  5119. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5120. /**
  5121. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5122. */
  5123. inline void gcode_M540() {
  5124. if (code_seen('S')) stepper.abort_on_endstop_hit = (code_value() > 0);
  5125. }
  5126. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5127. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5128. inline void gcode_SET_Z_PROBE_OFFSET() {
  5129. SERIAL_ECHO_START;
  5130. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5131. SERIAL_CHAR(' ');
  5132. if (code_seen('Z')) {
  5133. float value = code_value();
  5134. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5135. zprobe_zoffset = value;
  5136. SERIAL_ECHO(zprobe_zoffset);
  5137. }
  5138. else {
  5139. SERIAL_ECHOPGM(MSG_Z_MIN);
  5140. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5141. SERIAL_ECHOPGM(MSG_Z_MAX);
  5142. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5143. }
  5144. }
  5145. else {
  5146. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5147. }
  5148. SERIAL_EOL;
  5149. }
  5150. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5151. #if ENABLED(FILAMENTCHANGEENABLE)
  5152. /**
  5153. * M600: Pause for filament change
  5154. *
  5155. * E[distance] - Retract the filament this far (negative value)
  5156. * Z[distance] - Move the Z axis by this distance
  5157. * X[position] - Move to this X position, with Y
  5158. * Y[position] - Move to this Y position, with X
  5159. * L[distance] - Retract distance for removal (manual reload)
  5160. *
  5161. * Default values are used for omitted arguments.
  5162. *
  5163. */
  5164. inline void gcode_M600() {
  5165. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5166. SERIAL_ERROR_START;
  5167. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5168. return;
  5169. }
  5170. float lastpos[NUM_AXIS];
  5171. #if ENABLED(DELTA)
  5172. float fr60 = feedrate / 60;
  5173. #endif
  5174. for (int i = 0; i < NUM_AXIS; i++)
  5175. lastpos[i] = destination[i] = current_position[i];
  5176. #if ENABLED(DELTA)
  5177. #define RUNPLAN calculate_delta(destination); \
  5178. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5179. #else
  5180. #define RUNPLAN line_to_destination();
  5181. #endif
  5182. //retract by E
  5183. if (code_seen('E')) destination[E_AXIS] += code_value();
  5184. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5185. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5186. #endif
  5187. RUNPLAN;
  5188. //lift Z
  5189. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  5190. #ifdef FILAMENTCHANGE_ZADD
  5191. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5192. #endif
  5193. RUNPLAN;
  5194. //move xy
  5195. if (code_seen('X')) destination[X_AXIS] = code_value();
  5196. #ifdef FILAMENTCHANGE_XPOS
  5197. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5198. #endif
  5199. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5200. #ifdef FILAMENTCHANGE_YPOS
  5201. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5202. #endif
  5203. RUNPLAN;
  5204. if (code_seen('L')) destination[E_AXIS] += code_value();
  5205. #ifdef FILAMENTCHANGE_FINALRETRACT
  5206. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5207. #endif
  5208. RUNPLAN;
  5209. //finish moves
  5210. stepper.synchronize();
  5211. //disable extruder steppers so filament can be removed
  5212. disable_e0();
  5213. disable_e1();
  5214. disable_e2();
  5215. disable_e3();
  5216. delay(100);
  5217. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5218. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5219. millis_t next_tick = 0;
  5220. #endif
  5221. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5222. while (!lcd_clicked()) {
  5223. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5224. millis_t ms = millis();
  5225. if (ELAPSED(ms, next_tick)) {
  5226. lcd_quick_feedback();
  5227. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5228. }
  5229. idle(true);
  5230. #else
  5231. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5232. destination[E_AXIS] = current_position[E_AXIS];
  5233. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5234. stepper.synchronize();
  5235. #endif
  5236. } // while(!lcd_clicked)
  5237. KEEPALIVE_STATE(IN_HANDLER);
  5238. lcd_quick_feedback(); // click sound feedback
  5239. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5240. current_position[E_AXIS] = 0;
  5241. stepper.synchronize();
  5242. #endif
  5243. //return to normal
  5244. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5245. #ifdef FILAMENTCHANGE_FINALRETRACT
  5246. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5247. #endif
  5248. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5249. sync_plan_position_e();
  5250. RUNPLAN; //should do nothing
  5251. lcd_reset_alert_level();
  5252. #if ENABLED(DELTA)
  5253. // Move XYZ to starting position, then E
  5254. calculate_delta(lastpos);
  5255. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5256. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5257. #else
  5258. // Move XY to starting position, then Z, then E
  5259. destination[X_AXIS] = lastpos[X_AXIS];
  5260. destination[Y_AXIS] = lastpos[Y_AXIS];
  5261. line_to_destination();
  5262. destination[Z_AXIS] = lastpos[Z_AXIS];
  5263. line_to_destination();
  5264. destination[E_AXIS] = lastpos[E_AXIS];
  5265. line_to_destination();
  5266. #endif
  5267. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5268. filament_ran_out = false;
  5269. #endif
  5270. }
  5271. #endif // FILAMENTCHANGEENABLE
  5272. #if ENABLED(DUAL_X_CARRIAGE)
  5273. /**
  5274. * M605: Set dual x-carriage movement mode
  5275. *
  5276. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5277. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5278. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5279. * millimeters x-offset and an optional differential hotend temperature of
  5280. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5281. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5282. *
  5283. * Note: the X axis should be homed after changing dual x-carriage mode.
  5284. */
  5285. inline void gcode_M605() {
  5286. stepper.synchronize();
  5287. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5288. switch (dual_x_carriage_mode) {
  5289. case DXC_DUPLICATION_MODE:
  5290. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5291. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5292. SERIAL_ECHO_START;
  5293. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5294. SERIAL_CHAR(' ');
  5295. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5296. SERIAL_CHAR(',');
  5297. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5298. SERIAL_CHAR(' ');
  5299. SERIAL_ECHO(duplicate_extruder_x_offset);
  5300. SERIAL_CHAR(',');
  5301. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5302. break;
  5303. case DXC_FULL_CONTROL_MODE:
  5304. case DXC_AUTO_PARK_MODE:
  5305. break;
  5306. default:
  5307. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5308. break;
  5309. }
  5310. active_extruder_parked = false;
  5311. extruder_duplication_enabled = false;
  5312. delayed_move_time = 0;
  5313. }
  5314. #endif // DUAL_X_CARRIAGE
  5315. /**
  5316. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5317. */
  5318. inline void gcode_M907() {
  5319. #if HAS_DIGIPOTSS
  5320. for (int i = 0; i < NUM_AXIS; i++)
  5321. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value());
  5322. if (code_seen('B')) stepper.digipot_current(4, code_value());
  5323. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value());
  5324. #endif
  5325. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5326. if (code_seen('X')) stepper.digipot_current(0, code_value());
  5327. #endif
  5328. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5329. if (code_seen('Z')) stepper.digipot_current(1, code_value());
  5330. #endif
  5331. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5332. if (code_seen('E')) stepper.digipot_current(2, code_value());
  5333. #endif
  5334. #if ENABLED(DIGIPOT_I2C)
  5335. // this one uses actual amps in floating point
  5336. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5337. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5338. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5339. #endif
  5340. #if ENABLED(DAC_STEPPER_CURRENT)
  5341. if (code_seen('S')) {
  5342. float dac_percent = code_value();
  5343. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5344. }
  5345. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5346. #endif
  5347. }
  5348. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5349. /**
  5350. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5351. */
  5352. inline void gcode_M908() {
  5353. #if HAS_DIGIPOTSS
  5354. stepper.digitalPotWrite(
  5355. code_seen('P') ? code_value() : 0,
  5356. code_seen('S') ? code_value() : 0
  5357. );
  5358. #endif
  5359. #ifdef DAC_STEPPER_CURRENT
  5360. dac_current_raw(
  5361. code_seen('P') ? code_value_long() : -1,
  5362. code_seen('S') ? code_value_short() : 0
  5363. );
  5364. #endif
  5365. }
  5366. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5367. inline void gcode_M909() { dac_print_values(); }
  5368. inline void gcode_M910() { dac_commit_eeprom(); }
  5369. #endif
  5370. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5371. #if HAS_MICROSTEPS
  5372. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5373. inline void gcode_M350() {
  5374. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value());
  5375. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, (uint8_t)code_value());
  5376. if (code_seen('B')) stepper.microstep_mode(4, code_value());
  5377. stepper.microstep_readings();
  5378. }
  5379. /**
  5380. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5381. * S# determines MS1 or MS2, X# sets the pin high/low.
  5382. */
  5383. inline void gcode_M351() {
  5384. if (code_seen('S')) switch (code_value_short()) {
  5385. case 1:
  5386. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value(), -1);
  5387. if (code_seen('B')) stepper.microstep_ms(4, code_value(), -1);
  5388. break;
  5389. case 2:
  5390. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value());
  5391. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value());
  5392. break;
  5393. }
  5394. stepper.microstep_readings();
  5395. }
  5396. #endif // HAS_MICROSTEPS
  5397. /**
  5398. * M999: Restart after being stopped
  5399. *
  5400. * Default behaviour is to flush the serial buffer and request
  5401. * a resend to the host starting on the last N line received.
  5402. *
  5403. * Sending "M999 S1" will resume printing without flushing the
  5404. * existing command buffer.
  5405. *
  5406. */
  5407. inline void gcode_M999() {
  5408. Running = true;
  5409. lcd_reset_alert_level();
  5410. if (code_seen('S') && code_value_short() == 1) return;
  5411. // gcode_LastN = Stopped_gcode_LastN;
  5412. FlushSerialRequestResend();
  5413. }
  5414. /**
  5415. * T0-T3: Switch tool, usually switching extruders
  5416. *
  5417. * F[mm/min] Set the movement feedrate
  5418. */
  5419. inline void gcode_T(uint8_t tmp_extruder) {
  5420. if (tmp_extruder >= EXTRUDERS) {
  5421. SERIAL_ECHO_START;
  5422. SERIAL_CHAR('T');
  5423. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5424. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5425. return;
  5426. }
  5427. float stored_feedrate = feedrate;
  5428. if (code_seen('F')) {
  5429. float next_feedrate = code_value();
  5430. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5431. }
  5432. else {
  5433. #ifdef XY_TRAVEL_SPEED
  5434. feedrate = XY_TRAVEL_SPEED;
  5435. #else
  5436. feedrate = min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]);
  5437. #endif
  5438. }
  5439. #if EXTRUDERS > 1
  5440. if (tmp_extruder != active_extruder) {
  5441. // Save current position to return to after applying extruder offset
  5442. set_destination_to_current();
  5443. #if ENABLED(DUAL_X_CARRIAGE)
  5444. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5445. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5446. // Park old head: 1) raise 2) move to park position 3) lower
  5447. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5448. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5449. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5450. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5451. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5452. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5453. stepper.synchronize();
  5454. }
  5455. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5456. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5457. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5458. active_extruder = tmp_extruder;
  5459. // This function resets the max/min values - the current position may be overwritten below.
  5460. set_axis_is_at_home(X_AXIS);
  5461. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5462. current_position[X_AXIS] = inactive_extruder_x_pos;
  5463. inactive_extruder_x_pos = destination[X_AXIS];
  5464. }
  5465. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5466. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5467. if (active_extruder_parked)
  5468. current_position[X_AXIS] = inactive_extruder_x_pos;
  5469. else
  5470. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5471. inactive_extruder_x_pos = destination[X_AXIS];
  5472. extruder_duplication_enabled = false;
  5473. }
  5474. else {
  5475. // record raised toolhead position for use by unpark
  5476. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5477. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5478. active_extruder_parked = true;
  5479. delayed_move_time = 0;
  5480. }
  5481. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5482. #else // !DUAL_X_CARRIAGE
  5483. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5484. // Offset extruder, make sure to apply the bed level rotation matrix
  5485. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5486. extruder_offset[Y_AXIS][tmp_extruder],
  5487. 0),
  5488. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5489. extruder_offset[Y_AXIS][active_extruder],
  5490. 0),
  5491. offset_vec = tmp_offset_vec - act_offset_vec;
  5492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5493. if (DEBUGGING(LEVELING)) {
  5494. SERIAL_ECHOLNPGM(">>> gcode_T");
  5495. tmp_offset_vec.debug("tmp_offset_vec");
  5496. act_offset_vec.debug("act_offset_vec");
  5497. offset_vec.debug("offset_vec (BEFORE)");
  5498. DEBUG_POS("BEFORE rotation", current_position);
  5499. }
  5500. #endif
  5501. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5502. current_position[X_AXIS] += offset_vec.x;
  5503. current_position[Y_AXIS] += offset_vec.y;
  5504. current_position[Z_AXIS] += offset_vec.z;
  5505. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5506. if (DEBUGGING(LEVELING)) {
  5507. offset_vec.debug("offset_vec (AFTER)");
  5508. DEBUG_POS("AFTER rotation", current_position);
  5509. SERIAL_ECHOLNPGM("<<< gcode_T");
  5510. }
  5511. #endif
  5512. #else // !AUTO_BED_LEVELING_FEATURE
  5513. // The newly-selected extruder is actually at...
  5514. for (int i=X_AXIS; i<=Y_AXIS; i++) {
  5515. float diff = extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5516. current_position[i] += diff;
  5517. position_shift[i] += diff; // Offset the coordinate space
  5518. update_software_endstops((AxisEnum)i);
  5519. }
  5520. #endif // !AUTO_BED_LEVELING_FEATURE
  5521. // Set the new active extruder
  5522. active_extruder = tmp_extruder;
  5523. #endif // !DUAL_X_CARRIAGE
  5524. // Tell the planner the new "current position"
  5525. #if ENABLED(DELTA)
  5526. sync_plan_position_delta();
  5527. #else
  5528. sync_plan_position();
  5529. #endif
  5530. // Move to the "old position" (move the extruder into place)
  5531. if (IsRunning()) prepare_move();
  5532. } // (tmp_extruder != active_extruder)
  5533. #if ENABLED(EXT_SOLENOID)
  5534. stepper.synchronize();
  5535. disable_all_solenoids();
  5536. enable_solenoid_on_active_extruder();
  5537. #endif // EXT_SOLENOID
  5538. #endif // EXTRUDERS > 1
  5539. feedrate = stored_feedrate;
  5540. SERIAL_ECHO_START;
  5541. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5542. SERIAL_PROTOCOLLN((int)active_extruder);
  5543. }
  5544. /**
  5545. * Process a single command and dispatch it to its handler
  5546. * This is called from the main loop()
  5547. */
  5548. void process_next_command() {
  5549. current_command = command_queue[cmd_queue_index_r];
  5550. if (DEBUGGING(ECHO)) {
  5551. SERIAL_ECHO_START;
  5552. SERIAL_ECHOLN(current_command);
  5553. }
  5554. // Sanitize the current command:
  5555. // - Skip leading spaces
  5556. // - Bypass N[-0-9][0-9]*[ ]*
  5557. // - Overwrite * with nul to mark the end
  5558. while (*current_command == ' ') ++current_command;
  5559. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5560. current_command += 2; // skip N[-0-9]
  5561. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5562. while (*current_command == ' ') ++current_command; // skip [ ]*
  5563. }
  5564. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5565. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5566. char *cmd_ptr = current_command;
  5567. // Get the command code, which must be G, M, or T
  5568. char command_code = *cmd_ptr++;
  5569. // Skip spaces to get the numeric part
  5570. while (*cmd_ptr == ' ') cmd_ptr++;
  5571. uint16_t codenum = 0; // define ahead of goto
  5572. // Bail early if there's no code
  5573. bool code_is_good = NUMERIC(*cmd_ptr);
  5574. if (!code_is_good) goto ExitUnknownCommand;
  5575. // Get and skip the code number
  5576. do {
  5577. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5578. cmd_ptr++;
  5579. } while (NUMERIC(*cmd_ptr));
  5580. // Skip all spaces to get to the first argument, or nul
  5581. while (*cmd_ptr == ' ') cmd_ptr++;
  5582. // The command's arguments (if any) start here, for sure!
  5583. current_command_args = cmd_ptr;
  5584. KEEPALIVE_STATE(IN_HANDLER);
  5585. // Handle a known G, M, or T
  5586. switch (command_code) {
  5587. case 'G': switch (codenum) {
  5588. // G0, G1
  5589. case 0:
  5590. case 1:
  5591. gcode_G0_G1();
  5592. break;
  5593. // G2, G3
  5594. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5595. case 2: // G2 - CW ARC
  5596. case 3: // G3 - CCW ARC
  5597. gcode_G2_G3(codenum == 2);
  5598. break;
  5599. #endif
  5600. // G4 Dwell
  5601. case 4:
  5602. gcode_G4();
  5603. break;
  5604. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5605. // G5
  5606. case 5: // G5 - Cubic B_spline
  5607. gcode_G5();
  5608. break;
  5609. #endif // BEZIER_CURVE_SUPPORT
  5610. #if ENABLED(FWRETRACT)
  5611. case 10: // G10: retract
  5612. case 11: // G11: retract_recover
  5613. gcode_G10_G11(codenum == 10);
  5614. break;
  5615. #endif // FWRETRACT
  5616. case 28: // G28: Home all axes, one at a time
  5617. gcode_G28();
  5618. break;
  5619. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5620. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5621. gcode_G29();
  5622. break;
  5623. #endif
  5624. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5625. #if DISABLED(Z_PROBE_SLED)
  5626. case 30: // G30 Single Z probe
  5627. gcode_G30();
  5628. break;
  5629. #else // Z_PROBE_SLED
  5630. case 31: // G31: dock the sled
  5631. case 32: // G32: undock the sled
  5632. dock_sled(codenum == 31);
  5633. break;
  5634. #endif // Z_PROBE_SLED
  5635. #endif // AUTO_BED_LEVELING_FEATURE
  5636. case 90: // G90
  5637. relative_mode = false;
  5638. break;
  5639. case 91: // G91
  5640. relative_mode = true;
  5641. break;
  5642. case 92: // G92
  5643. gcode_G92();
  5644. break;
  5645. }
  5646. break;
  5647. case 'M': switch (codenum) {
  5648. #if ENABLED(ULTIPANEL)
  5649. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5650. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5651. gcode_M0_M1();
  5652. break;
  5653. #endif // ULTIPANEL
  5654. case 17:
  5655. gcode_M17();
  5656. break;
  5657. #if ENABLED(SDSUPPORT)
  5658. case 20: // M20 - list SD card
  5659. gcode_M20(); break;
  5660. case 21: // M21 - init SD card
  5661. gcode_M21(); break;
  5662. case 22: //M22 - release SD card
  5663. gcode_M22(); break;
  5664. case 23: //M23 - Select file
  5665. gcode_M23(); break;
  5666. case 24: //M24 - Start SD print
  5667. gcode_M24(); break;
  5668. case 25: //M25 - Pause SD print
  5669. gcode_M25(); break;
  5670. case 26: //M26 - Set SD index
  5671. gcode_M26(); break;
  5672. case 27: //M27 - Get SD status
  5673. gcode_M27(); break;
  5674. case 28: //M28 - Start SD write
  5675. gcode_M28(); break;
  5676. case 29: //M29 - Stop SD write
  5677. gcode_M29(); break;
  5678. case 30: //M30 <filename> Delete File
  5679. gcode_M30(); break;
  5680. case 32: //M32 - Select file and start SD print
  5681. gcode_M32(); break;
  5682. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5683. case 33: //M33 - Get the long full path to a file or folder
  5684. gcode_M33(); break;
  5685. #endif // LONG_FILENAME_HOST_SUPPORT
  5686. case 928: //M928 - Start SD write
  5687. gcode_M928(); break;
  5688. #endif //SDSUPPORT
  5689. case 31: //M31 take time since the start of the SD print or an M109 command
  5690. gcode_M31();
  5691. break;
  5692. case 42: //M42 -Change pin status via gcode
  5693. gcode_M42();
  5694. break;
  5695. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5696. case 48: // M48 Z probe repeatability
  5697. gcode_M48();
  5698. break;
  5699. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5700. case 75: // Start print timer
  5701. gcode_M75();
  5702. break;
  5703. case 76: // Pause print timer
  5704. gcode_M76();
  5705. break;
  5706. case 77: // Stop print timer
  5707. gcode_M77();
  5708. break;
  5709. #if ENABLED(PRINTCOUNTER)
  5710. case 78: // Show print statistics
  5711. gcode_M78();
  5712. break;
  5713. #endif
  5714. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5715. case 100:
  5716. gcode_M100();
  5717. break;
  5718. #endif
  5719. case 104: // M104
  5720. gcode_M104();
  5721. break;
  5722. case 110: // M110: Set Current Line Number
  5723. gcode_M110();
  5724. break;
  5725. case 111: // M111: Set debug level
  5726. gcode_M111();
  5727. break;
  5728. case 112: // M112: Emergency Stop
  5729. gcode_M112();
  5730. break;
  5731. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5732. case 113: // M113: Set Host Keepalive interval
  5733. gcode_M113();
  5734. break;
  5735. #endif
  5736. case 140: // M140: Set bed temp
  5737. gcode_M140();
  5738. break;
  5739. case 105: // M105: Read current temperature
  5740. gcode_M105();
  5741. KEEPALIVE_STATE(NOT_BUSY);
  5742. return; // "ok" already printed
  5743. case 109: // M109: Wait for temperature
  5744. gcode_M109();
  5745. break;
  5746. #if HAS_TEMP_BED
  5747. case 190: // M190: Wait for bed heater to reach target
  5748. gcode_M190();
  5749. break;
  5750. #endif // HAS_TEMP_BED
  5751. #if FAN_COUNT > 0
  5752. case 106: // M106: Fan On
  5753. gcode_M106();
  5754. break;
  5755. case 107: // M107: Fan Off
  5756. gcode_M107();
  5757. break;
  5758. #endif // FAN_COUNT > 0
  5759. #if ENABLED(BARICUDA)
  5760. // PWM for HEATER_1_PIN
  5761. #if HAS_HEATER_1
  5762. case 126: // M126: valve open
  5763. gcode_M126();
  5764. break;
  5765. case 127: // M127: valve closed
  5766. gcode_M127();
  5767. break;
  5768. #endif // HAS_HEATER_1
  5769. // PWM for HEATER_2_PIN
  5770. #if HAS_HEATER_2
  5771. case 128: // M128: valve open
  5772. gcode_M128();
  5773. break;
  5774. case 129: // M129: valve closed
  5775. gcode_M129();
  5776. break;
  5777. #endif // HAS_HEATER_2
  5778. #endif // BARICUDA
  5779. #if HAS_POWER_SWITCH
  5780. case 80: // M80: Turn on Power Supply
  5781. gcode_M80();
  5782. break;
  5783. #endif // HAS_POWER_SWITCH
  5784. case 81: // M81: Turn off Power, including Power Supply, if possible
  5785. gcode_M81();
  5786. break;
  5787. case 82:
  5788. gcode_M82();
  5789. break;
  5790. case 83:
  5791. gcode_M83();
  5792. break;
  5793. case 18: // (for compatibility)
  5794. case 84: // M84
  5795. gcode_M18_M84();
  5796. break;
  5797. case 85: // M85
  5798. gcode_M85();
  5799. break;
  5800. case 92: // M92: Set the steps-per-unit for one or more axes
  5801. gcode_M92();
  5802. break;
  5803. case 115: // M115: Report capabilities
  5804. gcode_M115();
  5805. break;
  5806. case 117: // M117: Set LCD message text, if possible
  5807. gcode_M117();
  5808. break;
  5809. case 114: // M114: Report current position
  5810. gcode_M114();
  5811. break;
  5812. case 120: // M120: Enable endstops
  5813. gcode_M120();
  5814. break;
  5815. case 121: // M121: Disable endstops
  5816. gcode_M121();
  5817. break;
  5818. case 119: // M119: Report endstop states
  5819. gcode_M119();
  5820. break;
  5821. #if ENABLED(ULTIPANEL)
  5822. case 145: // M145: Set material heatup parameters
  5823. gcode_M145();
  5824. break;
  5825. #endif
  5826. #if ENABLED(BLINKM)
  5827. case 150: // M150
  5828. gcode_M150();
  5829. break;
  5830. #endif //BLINKM
  5831. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5832. case 155:
  5833. gcode_M155();
  5834. break;
  5835. case 156:
  5836. gcode_M156();
  5837. break;
  5838. #endif //EXPERIMENTAL_I2CBUS
  5839. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5840. gcode_M200();
  5841. break;
  5842. case 201: // M201
  5843. gcode_M201();
  5844. break;
  5845. #if 0 // Not used for Sprinter/grbl gen6
  5846. case 202: // M202
  5847. gcode_M202();
  5848. break;
  5849. #endif
  5850. case 203: // M203 max feedrate mm/sec
  5851. gcode_M203();
  5852. break;
  5853. case 204: // M204 acclereration S normal moves T filmanent only moves
  5854. gcode_M204();
  5855. break;
  5856. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5857. gcode_M205();
  5858. break;
  5859. case 206: // M206 additional homing offset
  5860. gcode_M206();
  5861. break;
  5862. #if ENABLED(DELTA)
  5863. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5864. gcode_M665();
  5865. break;
  5866. #endif
  5867. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5868. case 666: // M666 set delta / dual endstop adjustment
  5869. gcode_M666();
  5870. break;
  5871. #endif
  5872. #if ENABLED(FWRETRACT)
  5873. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5874. gcode_M207();
  5875. break;
  5876. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5877. gcode_M208();
  5878. break;
  5879. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5880. gcode_M209();
  5881. break;
  5882. #endif // FWRETRACT
  5883. #if EXTRUDERS > 1
  5884. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5885. gcode_M218();
  5886. break;
  5887. #endif
  5888. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5889. gcode_M220();
  5890. break;
  5891. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5892. gcode_M221();
  5893. break;
  5894. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5895. gcode_M226();
  5896. break;
  5897. #if HAS_SERVOS
  5898. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5899. gcode_M280();
  5900. break;
  5901. #endif // HAS_SERVOS
  5902. #if HAS_BUZZER
  5903. case 300: // M300 - Play beep tone
  5904. gcode_M300();
  5905. break;
  5906. #endif // HAS_BUZZER
  5907. #if ENABLED(PIDTEMP)
  5908. case 301: // M301
  5909. gcode_M301();
  5910. break;
  5911. #endif // PIDTEMP
  5912. #if ENABLED(PIDTEMPBED)
  5913. case 304: // M304
  5914. gcode_M304();
  5915. break;
  5916. #endif // PIDTEMPBED
  5917. #if defined(CHDK) || HAS_PHOTOGRAPH
  5918. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5919. gcode_M240();
  5920. break;
  5921. #endif // CHDK || PHOTOGRAPH_PIN
  5922. #if HAS_LCD_CONTRAST
  5923. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5924. gcode_M250();
  5925. break;
  5926. #endif // HAS_LCD_CONTRAST
  5927. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5928. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5929. gcode_M302();
  5930. break;
  5931. #endif // PREVENT_DANGEROUS_EXTRUDE
  5932. case 303: // M303 PID autotune
  5933. gcode_M303();
  5934. break;
  5935. #if ENABLED(SCARA)
  5936. case 360: // M360 SCARA Theta pos1
  5937. if (gcode_M360()) return;
  5938. break;
  5939. case 361: // M361 SCARA Theta pos2
  5940. if (gcode_M361()) return;
  5941. break;
  5942. case 362: // M362 SCARA Psi pos1
  5943. if (gcode_M362()) return;
  5944. break;
  5945. case 363: // M363 SCARA Psi pos2
  5946. if (gcode_M363()) return;
  5947. break;
  5948. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5949. if (gcode_M364()) return;
  5950. break;
  5951. case 365: // M365 Set SCARA scaling for X Y Z
  5952. gcode_M365();
  5953. break;
  5954. #endif // SCARA
  5955. case 400: // M400 finish all moves
  5956. gcode_M400();
  5957. break;
  5958. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5959. case 401:
  5960. gcode_M401();
  5961. break;
  5962. case 402:
  5963. gcode_M402();
  5964. break;
  5965. #endif // AUTO_BED_LEVELING_FEATURE && (ENABLED(HAS_SERVO_ENDSTOPS) || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5966. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5967. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5968. gcode_M404();
  5969. break;
  5970. case 405: //M405 Turn on filament sensor for control
  5971. gcode_M405();
  5972. break;
  5973. case 406: //M406 Turn off filament sensor for control
  5974. gcode_M406();
  5975. break;
  5976. case 407: //M407 Display measured filament diameter
  5977. gcode_M407();
  5978. break;
  5979. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5980. case 410: // M410 quickstop - Abort all the planned moves.
  5981. gcode_M410();
  5982. break;
  5983. #if ENABLED(MESH_BED_LEVELING)
  5984. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5985. gcode_M420();
  5986. break;
  5987. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5988. gcode_M421();
  5989. break;
  5990. #endif
  5991. case 428: // M428 Apply current_position to home_offset
  5992. gcode_M428();
  5993. break;
  5994. case 500: // M500 Store settings in EEPROM
  5995. gcode_M500();
  5996. break;
  5997. case 501: // M501 Read settings from EEPROM
  5998. gcode_M501();
  5999. break;
  6000. case 502: // M502 Revert to default settings
  6001. gcode_M502();
  6002. break;
  6003. case 503: // M503 print settings currently in memory
  6004. gcode_M503();
  6005. break;
  6006. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6007. case 540:
  6008. gcode_M540();
  6009. break;
  6010. #endif
  6011. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6012. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6013. gcode_SET_Z_PROBE_OFFSET();
  6014. break;
  6015. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6016. #if ENABLED(FILAMENTCHANGEENABLE)
  6017. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6018. gcode_M600();
  6019. break;
  6020. #endif // FILAMENTCHANGEENABLE
  6021. #if ENABLED(DUAL_X_CARRIAGE)
  6022. case 605:
  6023. gcode_M605();
  6024. break;
  6025. #endif // DUAL_X_CARRIAGE
  6026. case 907: // M907 Set digital trimpot motor current using axis codes.
  6027. gcode_M907();
  6028. break;
  6029. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6030. case 908: // M908 Control digital trimpot directly.
  6031. gcode_M908();
  6032. break;
  6033. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6034. case 909: // M909 Print digipot/DAC current value
  6035. gcode_M909();
  6036. break;
  6037. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6038. gcode_M910();
  6039. break;
  6040. #endif
  6041. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6042. #if HAS_MICROSTEPS
  6043. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6044. gcode_M350();
  6045. break;
  6046. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6047. gcode_M351();
  6048. break;
  6049. #endif // HAS_MICROSTEPS
  6050. case 999: // M999: Restart after being Stopped
  6051. gcode_M999();
  6052. break;
  6053. }
  6054. break;
  6055. case 'T':
  6056. gcode_T(codenum);
  6057. break;
  6058. default: code_is_good = false;
  6059. }
  6060. KEEPALIVE_STATE(NOT_BUSY);
  6061. ExitUnknownCommand:
  6062. // Still unknown command? Throw an error
  6063. if (!code_is_good) unknown_command_error();
  6064. ok_to_send();
  6065. }
  6066. void FlushSerialRequestResend() {
  6067. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6068. MYSERIAL.flush();
  6069. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6070. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6071. ok_to_send();
  6072. }
  6073. void ok_to_send() {
  6074. refresh_cmd_timeout();
  6075. if (!send_ok[cmd_queue_index_r]) return;
  6076. SERIAL_PROTOCOLPGM(MSG_OK);
  6077. #if ENABLED(ADVANCED_OK)
  6078. char* p = command_queue[cmd_queue_index_r];
  6079. if (*p == 'N') {
  6080. SERIAL_PROTOCOL(' ');
  6081. SERIAL_ECHO(*p++);
  6082. while (NUMERIC_SIGNED(*p))
  6083. SERIAL_ECHO(*p++);
  6084. }
  6085. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6086. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6087. #endif
  6088. SERIAL_EOL;
  6089. }
  6090. void clamp_to_software_endstops(float target[3]) {
  6091. if (min_software_endstops) {
  6092. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6093. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6094. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6095. }
  6096. if (max_software_endstops) {
  6097. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6098. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6099. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6100. }
  6101. }
  6102. #if ENABLED(DELTA)
  6103. void recalc_delta_settings(float radius, float diagonal_rod) {
  6104. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6105. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6106. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6107. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6108. delta_tower3_x = 0.0; // back middle tower
  6109. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6110. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6111. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6112. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6113. }
  6114. void calculate_delta(float cartesian[3]) {
  6115. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6116. - sq(delta_tower1_x - cartesian[X_AXIS])
  6117. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6118. ) + cartesian[Z_AXIS];
  6119. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6120. - sq(delta_tower2_x - cartesian[X_AXIS])
  6121. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6122. ) + cartesian[Z_AXIS];
  6123. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6124. - sq(delta_tower3_x - cartesian[X_AXIS])
  6125. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6126. ) + cartesian[Z_AXIS];
  6127. /**
  6128. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6129. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6130. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6131. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6132. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6133. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6134. */
  6135. }
  6136. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6137. // Adjust print surface height by linear interpolation over the bed_level array.
  6138. void adjust_delta(float cartesian[3]) {
  6139. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6140. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6141. float h1 = 0.001 - half, h2 = half - 0.001,
  6142. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6143. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6144. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6145. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6146. z1 = bed_level[floor_x + half][floor_y + half],
  6147. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6148. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6149. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6150. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6151. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6152. offset = (1 - ratio_x) * left + ratio_x * right;
  6153. delta[X_AXIS] += offset;
  6154. delta[Y_AXIS] += offset;
  6155. delta[Z_AXIS] += offset;
  6156. /**
  6157. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6158. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6159. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6160. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6161. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6162. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6163. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6164. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6165. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6166. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6167. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6168. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6169. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6170. */
  6171. }
  6172. #endif // AUTO_BED_LEVELING_FEATURE
  6173. #endif // DELTA
  6174. #if ENABLED(MESH_BED_LEVELING)
  6175. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6176. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6177. if (!mbl.active) {
  6178. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6179. set_current_to_destination();
  6180. return;
  6181. }
  6182. int pcx = mbl.cel_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
  6183. int pcy = mbl.cel_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6184. int cx = mbl.cel_index_x(x - home_offset[X_AXIS]);
  6185. int cy = mbl.cel_index_y(y - home_offset[Y_AXIS]);
  6186. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6187. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6188. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6189. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6190. if (pcx == cx && pcy == cy) {
  6191. // Start and end on same mesh square
  6192. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6193. set_current_to_destination();
  6194. return;
  6195. }
  6196. float nx, ny, nz, ne, normalized_dist;
  6197. if (cx > pcx && TEST(x_splits, cx)) {
  6198. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6199. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6200. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6201. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6202. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6203. CBI(x_splits, cx);
  6204. }
  6205. else if (cx < pcx && TEST(x_splits, pcx)) {
  6206. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6207. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6208. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6209. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6210. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6211. CBI(x_splits, pcx);
  6212. }
  6213. else if (cy > pcy && TEST(y_splits, cy)) {
  6214. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6215. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6216. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6217. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6218. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6219. CBI(y_splits, cy);
  6220. }
  6221. else if (cy < pcy && TEST(y_splits, pcy)) {
  6222. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6223. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6224. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6225. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6226. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6227. CBI(y_splits, pcy);
  6228. }
  6229. else {
  6230. // Already split on a border
  6231. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6232. set_current_to_destination();
  6233. return;
  6234. }
  6235. // Do the split and look for more borders
  6236. destination[X_AXIS] = nx;
  6237. destination[Y_AXIS] = ny;
  6238. destination[Z_AXIS] = nz;
  6239. destination[E_AXIS] = ne;
  6240. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6241. destination[X_AXIS] = x;
  6242. destination[Y_AXIS] = y;
  6243. destination[Z_AXIS] = z;
  6244. destination[E_AXIS] = e;
  6245. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6246. }
  6247. #endif // MESH_BED_LEVELING
  6248. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6249. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6250. if (DEBUGGING(DRYRUN)) return;
  6251. float de = dest_e - curr_e;
  6252. if (de) {
  6253. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6254. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6255. SERIAL_ECHO_START;
  6256. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6257. }
  6258. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6259. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6260. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6261. SERIAL_ECHO_START;
  6262. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6263. }
  6264. #endif
  6265. }
  6266. }
  6267. #endif // PREVENT_DANGEROUS_EXTRUDE
  6268. #if ENABLED(DELTA) || ENABLED(SCARA)
  6269. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6270. float difference[NUM_AXIS];
  6271. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6272. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6273. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6274. if (cartesian_mm < 0.000001) return false;
  6275. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6276. float seconds = cartesian_mm / _feedrate;
  6277. int steps = max(1, int(delta_segments_per_second * seconds));
  6278. float inv_steps = 1.0/steps;
  6279. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6280. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6281. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6282. for (int s = 1; s <= steps; s++) {
  6283. float fraction = float(s) * inv_steps;
  6284. for (int8_t i = 0; i < NUM_AXIS; i++)
  6285. target[i] = current_position[i] + difference[i] * fraction;
  6286. calculate_delta(target);
  6287. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6288. if (!bed_leveling_in_progress) adjust_delta(target);
  6289. #endif
  6290. //DEBUG_POS("prepare_move_delta", target);
  6291. //DEBUG_POS("prepare_move_delta", delta);
  6292. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6293. }
  6294. return true;
  6295. }
  6296. #endif // DELTA || SCARA
  6297. #if ENABLED(SCARA)
  6298. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6299. #endif
  6300. #if ENABLED(DUAL_X_CARRIAGE)
  6301. inline bool prepare_move_dual_x_carriage() {
  6302. if (active_extruder_parked) {
  6303. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6304. // move duplicate extruder into correct duplication position.
  6305. planner.set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6306. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6307. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6308. sync_plan_position();
  6309. stepper.synchronize();
  6310. extruder_duplication_enabled = true;
  6311. active_extruder_parked = false;
  6312. }
  6313. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6314. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6315. // This is a travel move (with no extrusion)
  6316. // Skip it, but keep track of the current position
  6317. // (so it can be used as the start of the next non-travel move)
  6318. if (delayed_move_time != 0xFFFFFFFFUL) {
  6319. set_current_to_destination();
  6320. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6321. delayed_move_time = millis();
  6322. return false;
  6323. }
  6324. }
  6325. delayed_move_time = 0;
  6326. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6327. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6328. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
  6329. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6330. active_extruder_parked = false;
  6331. }
  6332. }
  6333. return true;
  6334. }
  6335. #endif // DUAL_X_CARRIAGE
  6336. #if DISABLED(DELTA) && DISABLED(SCARA)
  6337. inline bool prepare_move_cartesian() {
  6338. // Do not use feedrate_multiplier for E or Z only moves
  6339. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6340. line_to_destination();
  6341. }
  6342. else {
  6343. #if ENABLED(MESH_BED_LEVELING)
  6344. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6345. return false;
  6346. #else
  6347. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6348. #endif
  6349. }
  6350. return true;
  6351. }
  6352. #endif // !DELTA && !SCARA
  6353. /**
  6354. * Prepare a single move and get ready for the next one
  6355. *
  6356. * (This may call planner.buffer_line several times to put
  6357. * smaller moves into the planner for DELTA or SCARA.)
  6358. */
  6359. void prepare_move() {
  6360. clamp_to_software_endstops(destination);
  6361. refresh_cmd_timeout();
  6362. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6363. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6364. #endif
  6365. #if ENABLED(SCARA)
  6366. if (!prepare_move_scara(destination)) return;
  6367. #elif ENABLED(DELTA)
  6368. if (!prepare_move_delta(destination)) return;
  6369. #else
  6370. #if ENABLED(DUAL_X_CARRIAGE)
  6371. if (!prepare_move_dual_x_carriage()) return;
  6372. #endif
  6373. if (!prepare_move_cartesian()) return;
  6374. #endif
  6375. set_current_to_destination();
  6376. }
  6377. #if ENABLED(ARC_SUPPORT)
  6378. /**
  6379. * Plan an arc in 2 dimensions
  6380. *
  6381. * The arc is approximated by generating many small linear segments.
  6382. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6383. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6384. * larger segments will tend to be more efficient. Your slicer should have
  6385. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6386. */
  6387. void plan_arc(
  6388. float target[NUM_AXIS], // Destination position
  6389. float* offset, // Center of rotation relative to current_position
  6390. uint8_t clockwise // Clockwise?
  6391. ) {
  6392. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6393. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6394. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6395. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6396. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6397. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6398. r_Y = -offset[Y_AXIS],
  6399. rt_X = target[X_AXIS] - center_X,
  6400. rt_Y = target[Y_AXIS] - center_Y;
  6401. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6402. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6403. if (angular_travel < 0) angular_travel += RADIANS(360);
  6404. if (clockwise) angular_travel -= RADIANS(360);
  6405. // Make a circle if the angular rotation is 0
  6406. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6407. angular_travel += RADIANS(360);
  6408. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6409. if (mm_of_travel < 0.001) return;
  6410. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6411. if (segments == 0) segments = 1;
  6412. float theta_per_segment = angular_travel / segments;
  6413. float linear_per_segment = linear_travel / segments;
  6414. float extruder_per_segment = extruder_travel / segments;
  6415. /**
  6416. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6417. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6418. * r_T = [cos(phi) -sin(phi);
  6419. * sin(phi) cos(phi] * r ;
  6420. *
  6421. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6422. * defined from the circle center to the initial position. Each line segment is formed by successive
  6423. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6424. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6425. * all double numbers are single precision on the Arduino. (True double precision will not have
  6426. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6427. * tool precision in some cases. Therefore, arc path correction is implemented.
  6428. *
  6429. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6430. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6431. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6432. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6433. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6434. * issue for CNC machines with the single precision Arduino calculations.
  6435. *
  6436. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6437. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6438. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6439. * This is important when there are successive arc motions.
  6440. */
  6441. // Vector rotation matrix values
  6442. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6443. float sin_T = theta_per_segment;
  6444. float arc_target[NUM_AXIS];
  6445. float sin_Ti, cos_Ti, r_new_Y;
  6446. uint16_t i;
  6447. int8_t count = 0;
  6448. // Initialize the linear axis
  6449. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6450. // Initialize the extruder axis
  6451. arc_target[E_AXIS] = current_position[E_AXIS];
  6452. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6453. millis_t next_idle_ms = millis() + 200UL;
  6454. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6455. thermalManager.manage_heater();
  6456. millis_t now = millis();
  6457. if (ELAPSED(now, next_idle_ms)) {
  6458. next_idle_ms = now + 200UL;
  6459. idle();
  6460. }
  6461. if (++count < N_ARC_CORRECTION) {
  6462. // Apply vector rotation matrix to previous r_X / 1
  6463. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6464. r_X = r_X * cos_T - r_Y * sin_T;
  6465. r_Y = r_new_Y;
  6466. }
  6467. else {
  6468. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6469. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6470. // To reduce stuttering, the sin and cos could be computed at different times.
  6471. // For now, compute both at the same time.
  6472. cos_Ti = cos(i * theta_per_segment);
  6473. sin_Ti = sin(i * theta_per_segment);
  6474. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6475. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6476. count = 0;
  6477. }
  6478. // Update arc_target location
  6479. arc_target[X_AXIS] = center_X + r_X;
  6480. arc_target[Y_AXIS] = center_Y + r_Y;
  6481. arc_target[Z_AXIS] += linear_per_segment;
  6482. arc_target[E_AXIS] += extruder_per_segment;
  6483. clamp_to_software_endstops(arc_target);
  6484. #if ENABLED(DELTA) || ENABLED(SCARA)
  6485. calculate_delta(arc_target);
  6486. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6487. adjust_delta(arc_target);
  6488. #endif
  6489. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6490. #else
  6491. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6492. #endif
  6493. }
  6494. // Ensure last segment arrives at target location.
  6495. #if ENABLED(DELTA) || ENABLED(SCARA)
  6496. calculate_delta(target);
  6497. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6498. adjust_delta(target);
  6499. #endif
  6500. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6501. #else
  6502. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6503. #endif
  6504. // As far as the parser is concerned, the position is now == target. In reality the
  6505. // motion control system might still be processing the action and the real tool position
  6506. // in any intermediate location.
  6507. set_current_to_destination();
  6508. }
  6509. #endif
  6510. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6511. void plan_cubic_move(const float offset[4]) {
  6512. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6513. // As far as the parser is concerned, the position is now == target. In reality the
  6514. // motion control system might still be processing the action and the real tool position
  6515. // in any intermediate location.
  6516. set_current_to_destination();
  6517. }
  6518. #endif // BEZIER_CURVE_SUPPORT
  6519. #if HAS_CONTROLLERFAN
  6520. void controllerFan() {
  6521. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6522. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6523. millis_t ms = millis();
  6524. if (ELAPSED(ms, nextMotorCheck)) {
  6525. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6526. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6527. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6528. #if EXTRUDERS > 1
  6529. || E1_ENABLE_READ == E_ENABLE_ON
  6530. #if HAS_X2_ENABLE
  6531. || X2_ENABLE_READ == X_ENABLE_ON
  6532. #endif
  6533. #if EXTRUDERS > 2
  6534. || E2_ENABLE_READ == E_ENABLE_ON
  6535. #if EXTRUDERS > 3
  6536. || E3_ENABLE_READ == E_ENABLE_ON
  6537. #endif
  6538. #endif
  6539. #endif
  6540. ) {
  6541. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6542. }
  6543. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6544. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6545. // allows digital or PWM fan output to be used (see M42 handling)
  6546. digitalWrite(CONTROLLERFAN_PIN, speed);
  6547. analogWrite(CONTROLLERFAN_PIN, speed);
  6548. }
  6549. }
  6550. #endif // HAS_CONTROLLERFAN
  6551. #if ENABLED(SCARA)
  6552. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6553. // Perform forward kinematics, and place results in delta[3]
  6554. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6555. float x_sin, x_cos, y_sin, y_cos;
  6556. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6557. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6558. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6559. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6560. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6561. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6562. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6563. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6564. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6565. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6566. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6567. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6568. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6569. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6570. }
  6571. void calculate_delta(float cartesian[3]) {
  6572. //reverse kinematics.
  6573. // Perform reversed kinematics, and place results in delta[3]
  6574. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6575. float SCARA_pos[2];
  6576. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6577. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6578. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6579. #if (Linkage_1 == Linkage_2)
  6580. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6581. #else
  6582. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6583. #endif
  6584. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6585. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6586. SCARA_K2 = Linkage_2 * SCARA_S2;
  6587. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6588. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6589. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6590. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6591. delta[Z_AXIS] = cartesian[Z_AXIS];
  6592. /**
  6593. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6594. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6595. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6596. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6597. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6598. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6599. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6600. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6601. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6602. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6603. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6604. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6605. SERIAL_EOL;
  6606. */
  6607. }
  6608. #endif // SCARA
  6609. #if ENABLED(TEMP_STAT_LEDS)
  6610. static bool red_led = false;
  6611. static millis_t next_status_led_update_ms = 0;
  6612. void handle_status_leds(void) {
  6613. float max_temp = 0.0;
  6614. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6615. next_status_led_update_ms += 500; // Update every 0.5s
  6616. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6617. max_temp = max(max(max_temp, thermalManager.degHotend(cur_extruder)), thermalManager.degTargetHotend(cur_extruder));
  6618. #if HAS_TEMP_BED
  6619. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6620. #endif
  6621. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6622. if (new_led != red_led) {
  6623. red_led = new_led;
  6624. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6625. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6626. }
  6627. }
  6628. }
  6629. #endif
  6630. void enable_all_steppers() {
  6631. enable_x();
  6632. enable_y();
  6633. enable_z();
  6634. enable_e0();
  6635. enable_e1();
  6636. enable_e2();
  6637. enable_e3();
  6638. }
  6639. void disable_all_steppers() {
  6640. disable_x();
  6641. disable_y();
  6642. disable_z();
  6643. disable_e0();
  6644. disable_e1();
  6645. disable_e2();
  6646. disable_e3();
  6647. }
  6648. /**
  6649. * Standard idle routine keeps the machine alive
  6650. */
  6651. void idle(
  6652. #if ENABLED(FILAMENTCHANGEENABLE)
  6653. bool no_stepper_sleep/*=false*/
  6654. #endif
  6655. ) {
  6656. thermalManager.manage_heater();
  6657. manage_inactivity(
  6658. #if ENABLED(FILAMENTCHANGEENABLE)
  6659. no_stepper_sleep
  6660. #endif
  6661. );
  6662. host_keepalive();
  6663. lcd_update();
  6664. #if ENABLED(PRINTCOUNTER)
  6665. print_job_timer.tick();
  6666. #endif
  6667. }
  6668. /**
  6669. * Manage several activities:
  6670. * - Check for Filament Runout
  6671. * - Keep the command buffer full
  6672. * - Check for maximum inactive time between commands
  6673. * - Check for maximum inactive time between stepper commands
  6674. * - Check if pin CHDK needs to go LOW
  6675. * - Check for KILL button held down
  6676. * - Check for HOME button held down
  6677. * - Check if cooling fan needs to be switched on
  6678. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6679. */
  6680. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6681. #if HAS_FILRUNOUT
  6682. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6683. handle_filament_runout();
  6684. #endif
  6685. if (commands_in_queue < BUFSIZE) get_available_commands();
  6686. millis_t ms = millis();
  6687. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6688. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6689. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6690. #if ENABLED(DISABLE_INACTIVE_X)
  6691. disable_x();
  6692. #endif
  6693. #if ENABLED(DISABLE_INACTIVE_Y)
  6694. disable_y();
  6695. #endif
  6696. #if ENABLED(DISABLE_INACTIVE_Z)
  6697. disable_z();
  6698. #endif
  6699. #if ENABLED(DISABLE_INACTIVE_E)
  6700. disable_e0();
  6701. disable_e1();
  6702. disable_e2();
  6703. disable_e3();
  6704. #endif
  6705. }
  6706. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6707. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6708. chdkActive = false;
  6709. WRITE(CHDK, LOW);
  6710. }
  6711. #endif
  6712. #if HAS_KILL
  6713. // Check if the kill button was pressed and wait just in case it was an accidental
  6714. // key kill key press
  6715. // -------------------------------------------------------------------------------
  6716. static int killCount = 0; // make the inactivity button a bit less responsive
  6717. const int KILL_DELAY = 750;
  6718. if (!READ(KILL_PIN))
  6719. killCount++;
  6720. else if (killCount > 0)
  6721. killCount--;
  6722. // Exceeded threshold and we can confirm that it was not accidental
  6723. // KILL the machine
  6724. // ----------------------------------------------------------------
  6725. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6726. #endif
  6727. #if HAS_HOME
  6728. // Check to see if we have to home, use poor man's debouncer
  6729. // ---------------------------------------------------------
  6730. static int homeDebounceCount = 0; // poor man's debouncing count
  6731. const int HOME_DEBOUNCE_DELAY = 2500;
  6732. if (!READ(HOME_PIN)) {
  6733. if (!homeDebounceCount) {
  6734. enqueue_and_echo_commands_P(PSTR("G28"));
  6735. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6736. }
  6737. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6738. homeDebounceCount++;
  6739. else
  6740. homeDebounceCount = 0;
  6741. }
  6742. #endif
  6743. #if HAS_CONTROLLERFAN
  6744. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6745. #endif
  6746. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6747. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6748. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6749. bool oldstatus;
  6750. switch (active_extruder) {
  6751. case 0:
  6752. oldstatus = E0_ENABLE_READ;
  6753. enable_e0();
  6754. break;
  6755. #if EXTRUDERS > 1
  6756. case 1:
  6757. oldstatus = E1_ENABLE_READ;
  6758. enable_e1();
  6759. break;
  6760. #if EXTRUDERS > 2
  6761. case 2:
  6762. oldstatus = E2_ENABLE_READ;
  6763. enable_e2();
  6764. break;
  6765. #if EXTRUDERS > 3
  6766. case 3:
  6767. oldstatus = E3_ENABLE_READ;
  6768. enable_e3();
  6769. break;
  6770. #endif
  6771. #endif
  6772. #endif
  6773. }
  6774. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6775. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6776. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS],
  6777. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS], active_extruder);
  6778. current_position[E_AXIS] = oldepos;
  6779. destination[E_AXIS] = oldedes;
  6780. planner.set_e_position(oldepos);
  6781. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6782. stepper.synchronize();
  6783. switch (active_extruder) {
  6784. case 0:
  6785. E0_ENABLE_WRITE(oldstatus);
  6786. break;
  6787. #if EXTRUDERS > 1
  6788. case 1:
  6789. E1_ENABLE_WRITE(oldstatus);
  6790. break;
  6791. #if EXTRUDERS > 2
  6792. case 2:
  6793. E2_ENABLE_WRITE(oldstatus);
  6794. break;
  6795. #if EXTRUDERS > 3
  6796. case 3:
  6797. E3_ENABLE_WRITE(oldstatus);
  6798. break;
  6799. #endif
  6800. #endif
  6801. #endif
  6802. }
  6803. }
  6804. #endif
  6805. #if ENABLED(DUAL_X_CARRIAGE)
  6806. // handle delayed move timeout
  6807. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6808. // travel moves have been received so enact them
  6809. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6810. set_destination_to_current();
  6811. prepare_move();
  6812. }
  6813. #endif
  6814. #if ENABLED(TEMP_STAT_LEDS)
  6815. handle_status_leds();
  6816. #endif
  6817. planner.check_axes_activity();
  6818. }
  6819. void kill(const char* lcd_msg) {
  6820. #if ENABLED(ULTRA_LCD)
  6821. lcd_setalertstatuspgm(lcd_msg);
  6822. #else
  6823. UNUSED(lcd_msg);
  6824. #endif
  6825. cli(); // Stop interrupts
  6826. thermalManager.disable_all_heaters();
  6827. disable_all_steppers();
  6828. #if HAS_POWER_SWITCH
  6829. pinMode(PS_ON_PIN, INPUT);
  6830. #endif
  6831. SERIAL_ERROR_START;
  6832. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6833. // FMC small patch to update the LCD before ending
  6834. sei(); // enable interrupts
  6835. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6836. cli(); // disable interrupts
  6837. suicide();
  6838. while (1) {
  6839. #if ENABLED(USE_WATCHDOG)
  6840. watchdog_reset();
  6841. #endif
  6842. } // Wait for reset
  6843. }
  6844. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6845. void handle_filament_runout() {
  6846. if (!filament_ran_out) {
  6847. filament_ran_out = true;
  6848. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6849. stepper.synchronize();
  6850. }
  6851. }
  6852. #endif // FILAMENT_RUNOUT_SENSOR
  6853. #if ENABLED(FAST_PWM_FAN)
  6854. void setPwmFrequency(uint8_t pin, int val) {
  6855. val &= 0x07;
  6856. switch (digitalPinToTimer(pin)) {
  6857. #if defined(TCCR0A)
  6858. case TIMER0A:
  6859. case TIMER0B:
  6860. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6861. // TCCR0B |= val;
  6862. break;
  6863. #endif
  6864. #if defined(TCCR1A)
  6865. case TIMER1A:
  6866. case TIMER1B:
  6867. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6868. // TCCR1B |= val;
  6869. break;
  6870. #endif
  6871. #if defined(TCCR2)
  6872. case TIMER2:
  6873. case TIMER2:
  6874. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6875. TCCR2 |= val;
  6876. break;
  6877. #endif
  6878. #if defined(TCCR2A)
  6879. case TIMER2A:
  6880. case TIMER2B:
  6881. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6882. TCCR2B |= val;
  6883. break;
  6884. #endif
  6885. #if defined(TCCR3A)
  6886. case TIMER3A:
  6887. case TIMER3B:
  6888. case TIMER3C:
  6889. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6890. TCCR3B |= val;
  6891. break;
  6892. #endif
  6893. #if defined(TCCR4A)
  6894. case TIMER4A:
  6895. case TIMER4B:
  6896. case TIMER4C:
  6897. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6898. TCCR4B |= val;
  6899. break;
  6900. #endif
  6901. #if defined(TCCR5A)
  6902. case TIMER5A:
  6903. case TIMER5B:
  6904. case TIMER5C:
  6905. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6906. TCCR5B |= val;
  6907. break;
  6908. #endif
  6909. }
  6910. }
  6911. #endif // FAST_PWM_FAN
  6912. void stop() {
  6913. thermalManager.disable_all_heaters();
  6914. if (IsRunning()) {
  6915. Running = false;
  6916. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6917. SERIAL_ERROR_START;
  6918. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6919. LCD_MESSAGEPGM(MSG_STOPPED);
  6920. }
  6921. }
  6922. float calculate_volumetric_multiplier(float diameter) {
  6923. if (!volumetric_enabled || diameter == 0) return 1.0;
  6924. float d2 = diameter * 0.5;
  6925. return 1.0 / (M_PI * d2 * d2);
  6926. }
  6927. void calculate_volumetric_multipliers() {
  6928. for (int i = 0; i < EXTRUDERS; i++)
  6929. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6930. }