My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 278KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  38. #include "qr_solve.h"
  39. #elif ENABLED(MESH_BED_LEVELING)
  40. #include "mesh_bed_leveling.h"
  41. #endif
  42. #if ENABLED(BEZIER_CURVE_SUPPORT)
  43. #include "planner_bezier.h"
  44. #endif
  45. #include "ultralcd.h"
  46. #include "planner.h"
  47. #include "stepper.h"
  48. #include "endstops.h"
  49. #include "temperature.h"
  50. #include "cardreader.h"
  51. #include "configuration_store.h"
  52. #include "language.h"
  53. #include "pins_arduino.h"
  54. #include "math.h"
  55. #include "nozzle.h"
  56. #include "duration_t.h"
  57. #include "types.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  244. * ************* SCARA End ***************
  245. *
  246. * ************ Custom codes - This can change to suit future G-code regulations
  247. * M100 - Watch Free Memory (For Debugging Only)
  248. * M928 - Start SD logging (M928 filename.g) - ended by M29
  249. * M999 - Restart after being stopped by error
  250. *
  251. * "T" Codes
  252. *
  253. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  254. *
  255. */
  256. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  257. void gcode_M100();
  258. #endif
  259. #if ENABLED(SDSUPPORT)
  260. CardReader card;
  261. #endif
  262. #if ENABLED(EXPERIMENTAL_I2CBUS)
  263. TWIBus i2c;
  264. #endif
  265. bool Running = true;
  266. uint8_t marlin_debug_flags = DEBUG_NONE;
  267. float current_position[NUM_AXIS] = { 0.0 };
  268. static float destination[NUM_AXIS] = { 0.0 };
  269. bool axis_known_position[XYZ] = { false };
  270. bool axis_homed[XYZ] = { false };
  271. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  272. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  273. static char* current_command, *current_command_args;
  274. static uint8_t cmd_queue_index_r = 0,
  275. cmd_queue_index_w = 0,
  276. commands_in_queue = 0;
  277. #if ENABLED(INCH_MODE_SUPPORT)
  278. float linear_unit_factor = 1.0;
  279. float volumetric_unit_factor = 1.0;
  280. #endif
  281. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  282. TempUnit input_temp_units = TEMPUNIT_C;
  283. #endif
  284. /**
  285. * Feed rates are often configured with mm/m
  286. * but the planner and stepper like mm/s units.
  287. */
  288. const float homing_feedrate_mm_s[] = {
  289. #if ENABLED(DELTA)
  290. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  291. #else
  292. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  293. #endif
  294. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  295. };
  296. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  297. int feedrate_percentage = 100, saved_feedrate_percentage;
  298. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  299. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  300. bool volumetric_enabled = false;
  301. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  302. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  303. // The distance that XYZ has been offset by G92. Reset by G28.
  304. float position_shift[XYZ] = { 0 };
  305. // This offset is added to the configured home position.
  306. // Set by M206, M428, or menu item. Saved to EEPROM.
  307. float home_offset[XYZ] = { 0 };
  308. // Software Endstops are based on the configured limits.
  309. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  310. bool soft_endstops_enabled = true;
  311. #endif
  312. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  313. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  314. #if FAN_COUNT > 0
  315. int fanSpeeds[FAN_COUNT] = { 0 };
  316. #endif
  317. // The active extruder (tool). Set with T<extruder> command.
  318. uint8_t active_extruder = 0;
  319. // Relative Mode. Enable with G91, disable with G90.
  320. static bool relative_mode = false;
  321. volatile bool wait_for_heatup = true;
  322. const char errormagic[] PROGMEM = "Error:";
  323. const char echomagic[] PROGMEM = "echo:";
  324. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  325. static int serial_count = 0;
  326. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  327. static char* seen_pointer;
  328. // Next Immediate GCode Command pointer. NULL if none.
  329. const char* queued_commands_P = NULL;
  330. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  331. // Inactivity shutdown
  332. millis_t previous_cmd_ms = 0;
  333. static millis_t max_inactive_time = 0;
  334. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  335. // Print Job Timer
  336. #if ENABLED(PRINTCOUNTER)
  337. PrintCounter print_job_timer = PrintCounter();
  338. #else
  339. Stopwatch print_job_timer = Stopwatch();
  340. #endif
  341. // Buzzer - I2C on the LCD or a BEEPER_PIN
  342. #if ENABLED(LCD_USE_I2C_BUZZER)
  343. #define BUZZ(d,f) lcd_buzz(d, f)
  344. #elif HAS_BUZZER
  345. Buzzer buzzer;
  346. #define BUZZ(d,f) buzzer.tone(d, f)
  347. #else
  348. #define BUZZ(d,f) NOOP
  349. #endif
  350. static uint8_t target_extruder;
  351. #if HAS_BED_PROBE
  352. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  353. #endif
  354. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  355. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  356. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  357. bool bed_leveling_in_progress = false;
  358. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  359. #elif defined(XY_PROBE_SPEED)
  360. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  361. #else
  362. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  363. #endif
  364. #if ENABLED(Z_DUAL_ENDSTOPS)
  365. float z_endstop_adj = 0;
  366. #endif
  367. // Extruder offsets
  368. #if HOTENDS > 1
  369. float hotend_offset[][HOTENDS] = {
  370. HOTEND_OFFSET_X,
  371. HOTEND_OFFSET_Y
  372. #ifdef HOTEND_OFFSET_Z
  373. , HOTEND_OFFSET_Z
  374. #endif
  375. };
  376. #endif
  377. #if HAS_Z_SERVO_ENDSTOP
  378. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  379. #endif
  380. #if ENABLED(BARICUDA)
  381. int baricuda_valve_pressure = 0;
  382. int baricuda_e_to_p_pressure = 0;
  383. #endif
  384. #if ENABLED(FWRETRACT)
  385. bool autoretract_enabled = false;
  386. bool retracted[EXTRUDERS] = { false };
  387. bool retracted_swap[EXTRUDERS] = { false };
  388. float retract_length = RETRACT_LENGTH;
  389. float retract_length_swap = RETRACT_LENGTH_SWAP;
  390. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  391. float retract_zlift = RETRACT_ZLIFT;
  392. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  393. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  394. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  395. #endif // FWRETRACT
  396. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  397. bool powersupply =
  398. #if ENABLED(PS_DEFAULT_OFF)
  399. false
  400. #else
  401. true
  402. #endif
  403. ;
  404. #endif
  405. #if ENABLED(DELTA)
  406. #define SIN_60 0.8660254037844386
  407. #define COS_60 0.5
  408. float delta[ABC],
  409. cartesian_position[XYZ] = { 0 },
  410. endstop_adj[ABC] = { 0 };
  411. // these are the default values, can be overriden with M665
  412. float delta_radius = DELTA_RADIUS,
  413. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  414. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  415. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  416. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  417. delta_tower3_x = 0, // back middle tower
  418. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  419. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  420. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  421. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  422. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  423. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  424. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  425. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  426. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  427. delta_clip_start_height = Z_MAX_POS;
  428. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  429. int delta_grid_spacing[2] = { 0, 0 };
  430. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  431. #endif
  432. float delta_safe_distance_from_top();
  433. void set_cartesian_from_steppers();
  434. #else
  435. static bool home_all_axis = true;
  436. #endif
  437. #if IS_SCARA
  438. // Float constants for SCARA calculations
  439. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  440. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  441. L2_2 = sq(float(L2));
  442. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  443. delta[ABC],
  444. axis_scaling[ABC] = { 1, 1, 1 }, // Build size scaling, default to 1
  445. cartesian_position[XYZ] = { 0 };
  446. void set_cartesian_from_steppers() { } // to be written later
  447. #endif
  448. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  449. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  450. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  451. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  452. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  453. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  454. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  455. #endif
  456. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  457. static bool filament_ran_out = false;
  458. #endif
  459. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  460. FilamentChangeMenuResponse filament_change_menu_response;
  461. #endif
  462. #if ENABLED(MIXING_EXTRUDER)
  463. float mixing_factor[MIXING_STEPPERS];
  464. #if MIXING_VIRTUAL_TOOLS > 1
  465. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  466. #endif
  467. #endif
  468. static bool send_ok[BUFSIZE];
  469. #if HAS_SERVOS
  470. Servo servo[NUM_SERVOS];
  471. #define MOVE_SERVO(I, P) servo[I].move(P)
  472. #if HAS_Z_SERVO_ENDSTOP
  473. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  474. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  475. #endif
  476. #endif
  477. #ifdef CHDK
  478. millis_t chdkHigh = 0;
  479. boolean chdkActive = false;
  480. #endif
  481. #if ENABLED(PID_EXTRUSION_SCALING)
  482. int lpq_len = 20;
  483. #endif
  484. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  485. static MarlinBusyState busy_state = NOT_BUSY;
  486. static millis_t next_busy_signal_ms = 0;
  487. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  488. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  489. #else
  490. #define host_keepalive() ;
  491. #define KEEPALIVE_STATE(n) ;
  492. #endif // HOST_KEEPALIVE_FEATURE
  493. #define DEFINE_PGM_READ_ANY(type, reader) \
  494. static inline type pgm_read_any(const type *p) \
  495. { return pgm_read_##reader##_near(p); }
  496. DEFINE_PGM_READ_ANY(float, float);
  497. DEFINE_PGM_READ_ANY(signed char, byte);
  498. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  499. static const PROGMEM type array##_P[XYZ] = \
  500. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  501. static inline type array(int axis) \
  502. { return pgm_read_any(&array##_P[axis]); }
  503. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  504. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  505. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  506. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  507. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  508. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  509. /**
  510. * ***************************************************************************
  511. * ******************************** FUNCTIONS ********************************
  512. * ***************************************************************************
  513. */
  514. void stop();
  515. void get_available_commands();
  516. void process_next_command();
  517. void prepare_move_to_destination();
  518. void set_current_from_steppers_for_axis(AxisEnum axis);
  519. #if ENABLED(ARC_SUPPORT)
  520. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  521. #endif
  522. #if ENABLED(BEZIER_CURVE_SUPPORT)
  523. void plan_cubic_move(const float offset[4]);
  524. #endif
  525. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  527. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  530. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  531. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  532. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  533. static void report_current_position();
  534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  535. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  536. serialprintPGM(prefix);
  537. SERIAL_ECHOPAIR("(", x);
  538. SERIAL_ECHOPAIR(", ", y);
  539. SERIAL_ECHOPAIR(", ", z);
  540. SERIAL_ECHOPGM(")");
  541. if (suffix) serialprintPGM(suffix);
  542. else SERIAL_EOL;
  543. }
  544. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  545. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  546. }
  547. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  548. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  549. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  550. }
  551. #endif
  552. #define DEBUG_POS(SUFFIX,VAR) do { \
  553. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  554. #endif
  555. /**
  556. * sync_plan_position
  557. * Set planner / stepper positions to the cartesian current_position.
  558. * The stepper code translates these coordinates into step units.
  559. * Allows translation between steps and millimeters for cartesian & core robots
  560. */
  561. inline void sync_plan_position() {
  562. #if ENABLED(DEBUG_LEVELING_FEATURE)
  563. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  564. #endif
  565. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  566. }
  567. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  568. #if IS_KINEMATIC
  569. inline void sync_plan_position_delta() {
  570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  571. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  572. #endif
  573. inverse_kinematics(current_position);
  574. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  575. }
  576. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  577. #else
  578. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  579. #endif
  580. #if ENABLED(SDSUPPORT)
  581. #include "SdFatUtil.h"
  582. int freeMemory() { return SdFatUtil::FreeRam(); }
  583. #else
  584. extern "C" {
  585. extern unsigned int __bss_end;
  586. extern unsigned int __heap_start;
  587. extern void* __brkval;
  588. int freeMemory() {
  589. int free_memory;
  590. if ((int)__brkval == 0)
  591. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  592. else
  593. free_memory = ((int)&free_memory) - ((int)__brkval);
  594. return free_memory;
  595. }
  596. }
  597. #endif //!SDSUPPORT
  598. #if ENABLED(DIGIPOT_I2C)
  599. extern void digipot_i2c_set_current(int channel, float current);
  600. extern void digipot_i2c_init();
  601. #endif
  602. /**
  603. * Inject the next "immediate" command, when possible.
  604. * Return true if any immediate commands remain to inject.
  605. */
  606. static bool drain_queued_commands_P() {
  607. if (queued_commands_P != NULL) {
  608. size_t i = 0;
  609. char c, cmd[30];
  610. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  611. cmd[sizeof(cmd) - 1] = '\0';
  612. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  613. cmd[i] = '\0';
  614. if (enqueue_and_echo_command(cmd)) { // success?
  615. if (c) // newline char?
  616. queued_commands_P += i + 1; // advance to the next command
  617. else
  618. queued_commands_P = NULL; // nul char? no more commands
  619. }
  620. }
  621. return (queued_commands_P != NULL); // return whether any more remain
  622. }
  623. /**
  624. * Record one or many commands to run from program memory.
  625. * Aborts the current queue, if any.
  626. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  627. */
  628. void enqueue_and_echo_commands_P(const char* pgcode) {
  629. queued_commands_P = pgcode;
  630. drain_queued_commands_P(); // first command executed asap (when possible)
  631. }
  632. void clear_command_queue() {
  633. cmd_queue_index_r = cmd_queue_index_w;
  634. commands_in_queue = 0;
  635. }
  636. /**
  637. * Once a new command is in the ring buffer, call this to commit it
  638. */
  639. inline void _commit_command(bool say_ok) {
  640. send_ok[cmd_queue_index_w] = say_ok;
  641. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  642. commands_in_queue++;
  643. }
  644. /**
  645. * Copy a command directly into the main command buffer, from RAM.
  646. * Returns true if successfully adds the command
  647. */
  648. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  649. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  650. strcpy(command_queue[cmd_queue_index_w], cmd);
  651. _commit_command(say_ok);
  652. return true;
  653. }
  654. void enqueue_and_echo_command_now(const char* cmd) {
  655. while (!enqueue_and_echo_command(cmd)) idle();
  656. }
  657. /**
  658. * Enqueue with Serial Echo
  659. */
  660. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  661. if (_enqueuecommand(cmd, say_ok)) {
  662. SERIAL_ECHO_START;
  663. SERIAL_ECHOPGM(MSG_Enqueueing);
  664. SERIAL_ECHO(cmd);
  665. SERIAL_ECHOLNPGM("\"");
  666. return true;
  667. }
  668. return false;
  669. }
  670. void setup_killpin() {
  671. #if HAS_KILL
  672. SET_INPUT(KILL_PIN);
  673. WRITE(KILL_PIN, HIGH);
  674. #endif
  675. }
  676. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  677. void setup_filrunoutpin() {
  678. pinMode(FIL_RUNOUT_PIN, INPUT);
  679. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  680. WRITE(FIL_RUNOUT_PIN, HIGH);
  681. #endif
  682. }
  683. #endif
  684. // Set home pin
  685. void setup_homepin(void) {
  686. #if HAS_HOME
  687. SET_INPUT(HOME_PIN);
  688. WRITE(HOME_PIN, HIGH);
  689. #endif
  690. }
  691. void setup_photpin() {
  692. #if HAS_PHOTOGRAPH
  693. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  694. #endif
  695. }
  696. void setup_powerhold() {
  697. #if HAS_SUICIDE
  698. OUT_WRITE(SUICIDE_PIN, HIGH);
  699. #endif
  700. #if HAS_POWER_SWITCH
  701. #if ENABLED(PS_DEFAULT_OFF)
  702. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  703. #else
  704. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  705. #endif
  706. #endif
  707. }
  708. void suicide() {
  709. #if HAS_SUICIDE
  710. OUT_WRITE(SUICIDE_PIN, LOW);
  711. #endif
  712. }
  713. void servo_init() {
  714. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  715. servo[0].attach(SERVO0_PIN);
  716. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  717. #endif
  718. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  719. servo[1].attach(SERVO1_PIN);
  720. servo[1].detach();
  721. #endif
  722. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  723. servo[2].attach(SERVO2_PIN);
  724. servo[2].detach();
  725. #endif
  726. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  727. servo[3].attach(SERVO3_PIN);
  728. servo[3].detach();
  729. #endif
  730. #if HAS_Z_SERVO_ENDSTOP
  731. /**
  732. * Set position of Z Servo Endstop
  733. *
  734. * The servo might be deployed and positioned too low to stow
  735. * when starting up the machine or rebooting the board.
  736. * There's no way to know where the nozzle is positioned until
  737. * homing has been done - no homing with z-probe without init!
  738. *
  739. */
  740. STOW_Z_SERVO();
  741. #endif
  742. }
  743. /**
  744. * Stepper Reset (RigidBoard, et.al.)
  745. */
  746. #if HAS_STEPPER_RESET
  747. void disableStepperDrivers() {
  748. pinMode(STEPPER_RESET_PIN, OUTPUT);
  749. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  750. }
  751. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  752. #endif
  753. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  754. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  755. i2c.receive(bytes);
  756. }
  757. void i2c_on_request() { // just send dummy data for now
  758. i2c.reply("Hello World!\n");
  759. }
  760. #endif
  761. void gcode_line_error(const char* err, bool doFlush = true) {
  762. SERIAL_ERROR_START;
  763. serialprintPGM(err);
  764. SERIAL_ERRORLN(gcode_LastN);
  765. //Serial.println(gcode_N);
  766. if (doFlush) FlushSerialRequestResend();
  767. serial_count = 0;
  768. }
  769. inline void get_serial_commands() {
  770. static char serial_line_buffer[MAX_CMD_SIZE];
  771. static boolean serial_comment_mode = false;
  772. // If the command buffer is empty for too long,
  773. // send "wait" to indicate Marlin is still waiting.
  774. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  775. static millis_t last_command_time = 0;
  776. millis_t ms = millis();
  777. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  778. SERIAL_ECHOLNPGM(MSG_WAIT);
  779. last_command_time = ms;
  780. }
  781. #endif
  782. /**
  783. * Loop while serial characters are incoming and the queue is not full
  784. */
  785. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  786. char serial_char = MYSERIAL.read();
  787. /**
  788. * If the character ends the line
  789. */
  790. if (serial_char == '\n' || serial_char == '\r') {
  791. serial_comment_mode = false; // end of line == end of comment
  792. if (!serial_count) continue; // skip empty lines
  793. serial_line_buffer[serial_count] = 0; // terminate string
  794. serial_count = 0; //reset buffer
  795. char* command = serial_line_buffer;
  796. while (*command == ' ') command++; // skip any leading spaces
  797. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  798. char* apos = strchr(command, '*');
  799. if (npos) {
  800. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  801. if (M110) {
  802. char* n2pos = strchr(command + 4, 'N');
  803. if (n2pos) npos = n2pos;
  804. }
  805. gcode_N = strtol(npos + 1, NULL, 10);
  806. if (gcode_N != gcode_LastN + 1 && !M110) {
  807. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  808. return;
  809. }
  810. if (apos) {
  811. byte checksum = 0, count = 0;
  812. while (command[count] != '*') checksum ^= command[count++];
  813. if (strtol(apos + 1, NULL, 10) != checksum) {
  814. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  815. return;
  816. }
  817. // if no errors, continue parsing
  818. }
  819. else {
  820. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  821. return;
  822. }
  823. gcode_LastN = gcode_N;
  824. // if no errors, continue parsing
  825. }
  826. else if (apos) { // No '*' without 'N'
  827. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  828. return;
  829. }
  830. // Movement commands alert when stopped
  831. if (IsStopped()) {
  832. char* gpos = strchr(command, 'G');
  833. if (gpos) {
  834. int codenum = strtol(gpos + 1, NULL, 10);
  835. switch (codenum) {
  836. case 0:
  837. case 1:
  838. case 2:
  839. case 3:
  840. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  841. LCD_MESSAGEPGM(MSG_STOPPED);
  842. break;
  843. }
  844. }
  845. }
  846. #if DISABLED(EMERGENCY_PARSER)
  847. // If command was e-stop process now
  848. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  849. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  850. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  851. #endif
  852. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  853. last_command_time = ms;
  854. #endif
  855. // Add the command to the queue
  856. _enqueuecommand(serial_line_buffer, true);
  857. }
  858. else if (serial_count >= MAX_CMD_SIZE - 1) {
  859. // Keep fetching, but ignore normal characters beyond the max length
  860. // The command will be injected when EOL is reached
  861. }
  862. else if (serial_char == '\\') { // Handle escapes
  863. if (MYSERIAL.available() > 0) {
  864. // if we have one more character, copy it over
  865. serial_char = MYSERIAL.read();
  866. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  867. }
  868. // otherwise do nothing
  869. }
  870. else { // it's not a newline, carriage return or escape char
  871. if (serial_char == ';') serial_comment_mode = true;
  872. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  873. }
  874. } // queue has space, serial has data
  875. }
  876. #if ENABLED(SDSUPPORT)
  877. inline void get_sdcard_commands() {
  878. static bool stop_buffering = false,
  879. sd_comment_mode = false;
  880. if (!card.sdprinting) return;
  881. /**
  882. * '#' stops reading from SD to the buffer prematurely, so procedural
  883. * macro calls are possible. If it occurs, stop_buffering is triggered
  884. * and the buffer is run dry; this character _can_ occur in serial com
  885. * due to checksums, however, no checksums are used in SD printing.
  886. */
  887. if (commands_in_queue == 0) stop_buffering = false;
  888. uint16_t sd_count = 0;
  889. bool card_eof = card.eof();
  890. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  891. int16_t n = card.get();
  892. char sd_char = (char)n;
  893. card_eof = card.eof();
  894. if (card_eof || n == -1
  895. || sd_char == '\n' || sd_char == '\r'
  896. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  897. ) {
  898. if (card_eof) {
  899. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  900. card.printingHasFinished();
  901. card.checkautostart(true);
  902. }
  903. else if (n == -1) {
  904. SERIAL_ERROR_START;
  905. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  906. }
  907. if (sd_char == '#') stop_buffering = true;
  908. sd_comment_mode = false; //for new command
  909. if (!sd_count) continue; //skip empty lines
  910. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  911. sd_count = 0; //clear buffer
  912. _commit_command(false);
  913. }
  914. else if (sd_count >= MAX_CMD_SIZE - 1) {
  915. /**
  916. * Keep fetching, but ignore normal characters beyond the max length
  917. * The command will be injected when EOL is reached
  918. */
  919. }
  920. else {
  921. if (sd_char == ';') sd_comment_mode = true;
  922. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  923. }
  924. }
  925. }
  926. #endif // SDSUPPORT
  927. /**
  928. * Add to the circular command queue the next command from:
  929. * - The command-injection queue (queued_commands_P)
  930. * - The active serial input (usually USB)
  931. * - The SD card file being actively printed
  932. */
  933. void get_available_commands() {
  934. // if any immediate commands remain, don't get other commands yet
  935. if (drain_queued_commands_P()) return;
  936. get_serial_commands();
  937. #if ENABLED(SDSUPPORT)
  938. get_sdcard_commands();
  939. #endif
  940. }
  941. inline bool code_has_value() {
  942. int i = 1;
  943. char c = seen_pointer[i];
  944. while (c == ' ') c = seen_pointer[++i];
  945. if (c == '-' || c == '+') c = seen_pointer[++i];
  946. if (c == '.') c = seen_pointer[++i];
  947. return NUMERIC(c);
  948. }
  949. inline float code_value_float() {
  950. float ret;
  951. char* e = strchr(seen_pointer, 'E');
  952. if (e) {
  953. *e = 0;
  954. ret = strtod(seen_pointer + 1, NULL);
  955. *e = 'E';
  956. }
  957. else
  958. ret = strtod(seen_pointer + 1, NULL);
  959. return ret;
  960. }
  961. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  962. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  963. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  964. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  965. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  966. inline bool code_value_bool() { return code_value_byte() > 0; }
  967. #if ENABLED(INCH_MODE_SUPPORT)
  968. inline void set_input_linear_units(LinearUnit units) {
  969. switch (units) {
  970. case LINEARUNIT_INCH:
  971. linear_unit_factor = 25.4;
  972. break;
  973. case LINEARUNIT_MM:
  974. default:
  975. linear_unit_factor = 1.0;
  976. break;
  977. }
  978. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  979. }
  980. inline float axis_unit_factor(int axis) {
  981. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  982. }
  983. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  984. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  985. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  986. #else
  987. inline float code_value_linear_units() { return code_value_float(); }
  988. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  989. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  990. #endif
  991. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  992. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  993. float code_value_temp_abs() {
  994. switch (input_temp_units) {
  995. case TEMPUNIT_C:
  996. return code_value_float();
  997. case TEMPUNIT_F:
  998. return (code_value_float() - 32) * 0.5555555556;
  999. case TEMPUNIT_K:
  1000. return code_value_float() - 272.15;
  1001. default:
  1002. return code_value_float();
  1003. }
  1004. }
  1005. float code_value_temp_diff() {
  1006. switch (input_temp_units) {
  1007. case TEMPUNIT_C:
  1008. case TEMPUNIT_K:
  1009. return code_value_float();
  1010. case TEMPUNIT_F:
  1011. return code_value_float() * 0.5555555556;
  1012. default:
  1013. return code_value_float();
  1014. }
  1015. }
  1016. #else
  1017. float code_value_temp_abs() { return code_value_float(); }
  1018. float code_value_temp_diff() { return code_value_float(); }
  1019. #endif
  1020. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1021. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1022. bool code_seen(char code) {
  1023. seen_pointer = strchr(current_command_args, code);
  1024. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1025. }
  1026. /**
  1027. * Set target_extruder from the T parameter or the active_extruder
  1028. *
  1029. * Returns TRUE if the target is invalid
  1030. */
  1031. bool get_target_extruder_from_command(int code) {
  1032. if (code_seen('T')) {
  1033. if (code_value_byte() >= EXTRUDERS) {
  1034. SERIAL_ECHO_START;
  1035. SERIAL_CHAR('M');
  1036. SERIAL_ECHO(code);
  1037. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1038. return true;
  1039. }
  1040. target_extruder = code_value_byte();
  1041. }
  1042. else
  1043. target_extruder = active_extruder;
  1044. return false;
  1045. }
  1046. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1047. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1048. #endif
  1049. #if ENABLED(DUAL_X_CARRIAGE)
  1050. #define DXC_FULL_CONTROL_MODE 0
  1051. #define DXC_AUTO_PARK_MODE 1
  1052. #define DXC_DUPLICATION_MODE 2
  1053. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1054. static float x_home_pos(int extruder) {
  1055. if (extruder == 0)
  1056. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1057. else
  1058. /**
  1059. * In dual carriage mode the extruder offset provides an override of the
  1060. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1061. * This allow soft recalibration of the second extruder offset position
  1062. * without firmware reflash (through the M218 command).
  1063. */
  1064. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1065. }
  1066. static int x_home_dir(int extruder) {
  1067. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1068. }
  1069. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1070. static bool active_extruder_parked = false; // used in mode 1 & 2
  1071. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1072. static millis_t delayed_move_time = 0; // used in mode 1
  1073. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1074. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1075. #endif //DUAL_X_CARRIAGE
  1076. /**
  1077. * Software endstops can be used to monitor the open end of
  1078. * an axis that has a hardware endstop on the other end. Or
  1079. * they can prevent axes from moving past endstops and grinding.
  1080. *
  1081. * To keep doing their job as the coordinate system changes,
  1082. * the software endstop positions must be refreshed to remain
  1083. * at the same positions relative to the machine.
  1084. */
  1085. void update_software_endstops(AxisEnum axis) {
  1086. float offs = LOGICAL_POSITION(0, axis);
  1087. #if ENABLED(DUAL_X_CARRIAGE)
  1088. if (axis == X_AXIS) {
  1089. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1090. if (active_extruder != 0) {
  1091. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1092. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1093. return;
  1094. }
  1095. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1096. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1097. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1098. return;
  1099. }
  1100. }
  1101. else
  1102. #endif
  1103. {
  1104. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1105. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1106. }
  1107. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1108. if (DEBUGGING(LEVELING)) {
  1109. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1110. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1111. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1112. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1113. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1114. }
  1115. #endif
  1116. #if ENABLED(DELTA)
  1117. if (axis == Z_AXIS)
  1118. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1119. #endif
  1120. }
  1121. /**
  1122. * Change the home offset for an axis, update the current
  1123. * position and the software endstops to retain the same
  1124. * relative distance to the new home.
  1125. *
  1126. * Since this changes the current_position, code should
  1127. * call sync_plan_position soon after this.
  1128. */
  1129. static void set_home_offset(AxisEnum axis, float v) {
  1130. current_position[axis] += v - home_offset[axis];
  1131. home_offset[axis] = v;
  1132. update_software_endstops(axis);
  1133. }
  1134. static void set_axis_is_at_home(AxisEnum axis) {
  1135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1136. if (DEBUGGING(LEVELING)) {
  1137. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1138. SERIAL_ECHOLNPGM(")");
  1139. }
  1140. #endif
  1141. position_shift[axis] = 0;
  1142. #if ENABLED(DUAL_X_CARRIAGE)
  1143. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1144. if (active_extruder != 0)
  1145. current_position[X_AXIS] = x_home_pos(active_extruder);
  1146. else
  1147. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1148. update_software_endstops(X_AXIS);
  1149. return;
  1150. }
  1151. #endif
  1152. #if ENABLED(SCARA)
  1153. if (axis == X_AXIS || axis == Y_AXIS) {
  1154. float homeposition[XYZ];
  1155. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1156. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1157. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1158. /**
  1159. * Works out real Homeposition angles using inverse kinematics,
  1160. * and calculates homing offset using forward kinematics
  1161. */
  1162. inverse_kinematics(homeposition);
  1163. forward_kinematics_SCARA(delta);
  1164. // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
  1165. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1166. current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
  1167. /**
  1168. * SCARA home positions are based on configuration since the actual
  1169. * limits are determined by the inverse kinematic transform.
  1170. */
  1171. soft_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1172. soft_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1173. }
  1174. else
  1175. #endif
  1176. {
  1177. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1178. update_software_endstops(axis);
  1179. if (axis == Z_AXIS) {
  1180. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1181. #if HOMING_Z_WITH_PROBE
  1182. current_position[Z_AXIS] -= zprobe_zoffset;
  1183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1184. if (DEBUGGING(LEVELING)) {
  1185. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1186. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1187. }
  1188. #endif
  1189. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1190. if (DEBUGGING(LEVELING))
  1191. SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1192. #endif
  1193. #endif
  1194. }
  1195. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1196. if (DEBUGGING(LEVELING)) {
  1197. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1198. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1199. DEBUG_POS("", current_position);
  1200. }
  1201. #endif
  1202. }
  1203. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1204. if (DEBUGGING(LEVELING)) {
  1205. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1206. SERIAL_ECHOLNPGM(")");
  1207. }
  1208. #endif
  1209. axis_known_position[axis] = axis_homed[axis] = true;
  1210. }
  1211. /**
  1212. * Some planner shorthand inline functions
  1213. */
  1214. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1215. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1216. int hbd = homing_bump_divisor[axis];
  1217. if (hbd < 1) {
  1218. hbd = 10;
  1219. SERIAL_ECHO_START;
  1220. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1221. }
  1222. return homing_feedrate_mm_s[axis] / hbd;
  1223. }
  1224. //
  1225. // line_to_current_position
  1226. // Move the planner to the current position from wherever it last moved
  1227. // (or from wherever it has been told it is located).
  1228. //
  1229. inline void line_to_current_position() {
  1230. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1231. }
  1232. inline void line_to_z(float zPosition) {
  1233. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1234. }
  1235. //
  1236. // line_to_destination
  1237. // Move the planner, not necessarily synced with current_position
  1238. //
  1239. inline void line_to_destination(float fr_mm_s) {
  1240. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1241. }
  1242. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1243. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1244. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1245. #if ENABLED(DELTA)
  1246. /**
  1247. * Calculate delta, start a line, and set current_position to destination
  1248. */
  1249. void prepare_move_to_destination_raw() {
  1250. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1251. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1252. #endif
  1253. refresh_cmd_timeout();
  1254. inverse_kinematics(destination);
  1255. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1256. set_current_to_destination();
  1257. }
  1258. #endif
  1259. /**
  1260. * Plan a move to (X, Y, Z) and set the current_position
  1261. * The final current_position may not be the one that was requested
  1262. */
  1263. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1264. float old_feedrate_mm_s = feedrate_mm_s;
  1265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1266. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1267. #endif
  1268. #if ENABLED(DELTA)
  1269. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1270. set_destination_to_current(); // sync destination at the start
  1271. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1272. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1273. #endif
  1274. // when in the danger zone
  1275. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1276. if (z > delta_clip_start_height) { // staying in the danger zone
  1277. destination[X_AXIS] = x; // move directly (uninterpolated)
  1278. destination[Y_AXIS] = y;
  1279. destination[Z_AXIS] = z;
  1280. prepare_move_to_destination_raw(); // set_current_to_destination
  1281. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1282. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1283. #endif
  1284. return;
  1285. }
  1286. else {
  1287. destination[Z_AXIS] = delta_clip_start_height;
  1288. prepare_move_to_destination_raw(); // set_current_to_destination
  1289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1290. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1291. #endif
  1292. }
  1293. }
  1294. if (z > current_position[Z_AXIS]) { // raising?
  1295. destination[Z_AXIS] = z;
  1296. prepare_move_to_destination_raw(); // set_current_to_destination
  1297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1298. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1299. #endif
  1300. }
  1301. destination[X_AXIS] = x;
  1302. destination[Y_AXIS] = y;
  1303. prepare_move_to_destination(); // set_current_to_destination
  1304. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1305. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1306. #endif
  1307. if (z < current_position[Z_AXIS]) { // lowering?
  1308. destination[Z_AXIS] = z;
  1309. prepare_move_to_destination_raw(); // set_current_to_destination
  1310. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1311. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1312. #endif
  1313. }
  1314. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1315. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1316. #endif
  1317. #else
  1318. // If Z needs to raise, do it before moving XY
  1319. if (current_position[Z_AXIS] < z) {
  1320. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1321. current_position[Z_AXIS] = z;
  1322. line_to_current_position();
  1323. }
  1324. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1325. current_position[X_AXIS] = x;
  1326. current_position[Y_AXIS] = y;
  1327. line_to_current_position();
  1328. // If Z needs to lower, do it after moving XY
  1329. if (current_position[Z_AXIS] > z) {
  1330. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1331. current_position[Z_AXIS] = z;
  1332. line_to_current_position();
  1333. }
  1334. #endif
  1335. stepper.synchronize();
  1336. feedrate_mm_s = old_feedrate_mm_s;
  1337. }
  1338. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1339. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1340. }
  1341. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1342. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1343. }
  1344. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1345. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1346. }
  1347. //
  1348. // Prepare to do endstop or probe moves
  1349. // with custom feedrates.
  1350. //
  1351. // - Save current feedrates
  1352. // - Reset the rate multiplier
  1353. // - Reset the command timeout
  1354. // - Enable the endstops (for endstop moves)
  1355. //
  1356. static void setup_for_endstop_or_probe_move() {
  1357. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1358. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1359. #endif
  1360. saved_feedrate_mm_s = feedrate_mm_s;
  1361. saved_feedrate_percentage = feedrate_percentage;
  1362. feedrate_percentage = 100;
  1363. refresh_cmd_timeout();
  1364. }
  1365. static void clean_up_after_endstop_or_probe_move() {
  1366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1367. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1368. #endif
  1369. feedrate_mm_s = saved_feedrate_mm_s;
  1370. feedrate_percentage = saved_feedrate_percentage;
  1371. refresh_cmd_timeout();
  1372. }
  1373. #if HAS_BED_PROBE
  1374. /**
  1375. * Raise Z to a minimum height to make room for a probe to move
  1376. */
  1377. inline void do_probe_raise(float z_raise) {
  1378. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1379. if (DEBUGGING(LEVELING)) {
  1380. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1381. SERIAL_ECHOLNPGM(")");
  1382. }
  1383. #endif
  1384. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1385. if (z_dest > current_position[Z_AXIS])
  1386. do_blocking_move_to_z(z_dest);
  1387. }
  1388. #endif //HAS_BED_PROBE
  1389. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1390. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1391. const bool xx = x && !axis_homed[X_AXIS],
  1392. yy = y && !axis_homed[Y_AXIS],
  1393. zz = z && !axis_homed[Z_AXIS];
  1394. if (xx || yy || zz) {
  1395. SERIAL_ECHO_START;
  1396. SERIAL_ECHOPGM(MSG_HOME " ");
  1397. if (xx) SERIAL_ECHOPGM(MSG_X);
  1398. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1399. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1400. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1401. #if ENABLED(ULTRA_LCD)
  1402. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1403. strcat_P(message, PSTR(MSG_HOME " "));
  1404. if (xx) strcat_P(message, PSTR(MSG_X));
  1405. if (yy) strcat_P(message, PSTR(MSG_Y));
  1406. if (zz) strcat_P(message, PSTR(MSG_Z));
  1407. strcat_P(message, PSTR(" " MSG_FIRST));
  1408. lcd_setstatus(message);
  1409. #endif
  1410. return true;
  1411. }
  1412. return false;
  1413. }
  1414. #endif
  1415. #if ENABLED(Z_PROBE_SLED)
  1416. #ifndef SLED_DOCKING_OFFSET
  1417. #define SLED_DOCKING_OFFSET 0
  1418. #endif
  1419. /**
  1420. * Method to dock/undock a sled designed by Charles Bell.
  1421. *
  1422. * stow[in] If false, move to MAX_X and engage the solenoid
  1423. * If true, move to MAX_X and release the solenoid
  1424. */
  1425. static void dock_sled(bool stow) {
  1426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1427. if (DEBUGGING(LEVELING)) {
  1428. SERIAL_ECHOPAIR("dock_sled(", stow);
  1429. SERIAL_ECHOLNPGM(")");
  1430. }
  1431. #endif
  1432. // Dock sled a bit closer to ensure proper capturing
  1433. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1434. #if PIN_EXISTS(SLED)
  1435. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1436. #endif
  1437. }
  1438. #endif // Z_PROBE_SLED
  1439. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1440. void run_deploy_moves_script() {
  1441. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1442. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1443. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1444. #endif
  1445. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1446. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1447. #endif
  1448. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1449. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1450. #endif
  1451. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1452. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1453. #endif
  1454. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1455. #endif
  1456. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1457. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1458. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1459. #endif
  1460. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1461. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1462. #endif
  1463. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1464. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1465. #endif
  1466. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1467. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1468. #endif
  1469. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1470. #endif
  1471. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1472. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1473. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1474. #endif
  1475. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1476. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1477. #endif
  1478. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1479. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1480. #endif
  1481. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1482. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1483. #endif
  1484. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1485. #endif
  1486. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1487. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1488. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1489. #endif
  1490. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1491. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1492. #endif
  1493. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1494. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1495. #endif
  1496. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1497. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1498. #endif
  1499. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1500. #endif
  1501. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1502. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1503. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1504. #endif
  1505. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1506. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1507. #endif
  1508. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1509. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1510. #endif
  1511. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1512. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1513. #endif
  1514. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1515. #endif
  1516. }
  1517. void run_stow_moves_script() {
  1518. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1519. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1520. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1521. #endif
  1522. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1523. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1524. #endif
  1525. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1526. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1527. #endif
  1528. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1529. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1530. #endif
  1531. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1532. #endif
  1533. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1534. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1535. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1536. #endif
  1537. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1538. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1539. #endif
  1540. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1541. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1542. #endif
  1543. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1544. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1545. #endif
  1546. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1547. #endif
  1548. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1549. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1550. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1551. #endif
  1552. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1553. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1556. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1559. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1560. #endif
  1561. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1562. #endif
  1563. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1565. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1568. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1571. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1575. #endif
  1576. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1577. #endif
  1578. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1579. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1580. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1583. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1586. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1589. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1590. #endif
  1591. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1592. #endif
  1593. }
  1594. #endif
  1595. #if HAS_BED_PROBE
  1596. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1597. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1598. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1599. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1600. #else
  1601. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1602. #endif
  1603. #endif
  1604. #define DEPLOY_PROBE() set_probe_deployed(true)
  1605. #define STOW_PROBE() set_probe_deployed(false)
  1606. // returns false for ok and true for failure
  1607. static bool set_probe_deployed(bool deploy) {
  1608. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1609. if (DEBUGGING(LEVELING)) {
  1610. DEBUG_POS("set_probe_deployed", current_position);
  1611. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1612. }
  1613. #endif
  1614. if (endstops.z_probe_enabled == deploy) return false;
  1615. // Make room for probe
  1616. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1617. #if ENABLED(Z_PROBE_SLED)
  1618. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1619. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1620. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1621. #endif
  1622. float oldXpos = current_position[X_AXIS],
  1623. oldYpos = current_position[Y_AXIS];
  1624. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1625. // If endstop is already false, the Z probe is deployed
  1626. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1627. // Would a goto be less ugly?
  1628. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1629. // for a triggered when stowed manual probe.
  1630. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1631. // otherwise an Allen-Key probe can't be stowed.
  1632. #endif
  1633. #if ENABLED(Z_PROBE_SLED)
  1634. dock_sled(!deploy);
  1635. #elif HAS_Z_SERVO_ENDSTOP
  1636. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1637. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1638. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1639. #endif
  1640. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1641. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1642. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1643. if (IsRunning()) {
  1644. SERIAL_ERROR_START;
  1645. SERIAL_ERRORLNPGM("Z-Probe failed");
  1646. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1647. }
  1648. stop();
  1649. return true;
  1650. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1651. #endif
  1652. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1653. endstops.enable_z_probe(deploy);
  1654. return false;
  1655. }
  1656. static void do_probe_move(float z, float fr_mm_m) {
  1657. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1658. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1659. #endif
  1660. // Move down until probe triggered
  1661. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1662. // Clear endstop flags
  1663. endstops.hit_on_purpose();
  1664. // Get Z where the steppers were interrupted
  1665. set_current_from_steppers_for_axis(Z_AXIS);
  1666. // Tell the planner where we actually are
  1667. SYNC_PLAN_POSITION_KINEMATIC();
  1668. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1669. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1670. #endif
  1671. }
  1672. // Do a single Z probe and return with current_position[Z_AXIS]
  1673. // at the height where the probe triggered.
  1674. static float run_z_probe() {
  1675. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1676. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1677. #endif
  1678. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1679. refresh_cmd_timeout();
  1680. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1681. planner.bed_level_matrix.set_to_identity();
  1682. #endif
  1683. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1684. // Do a first probe at the fast speed
  1685. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1686. // move up by the bump distance
  1687. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1688. #else
  1689. // If the nozzle is above the travel height then
  1690. // move down quickly before doing the slow probe
  1691. float z = LOGICAL_Z_POSITION(Z_PROBE_TRAVEL_HEIGHT);
  1692. if (z < current_position[Z_AXIS])
  1693. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1694. #endif
  1695. // move down slowly to find bed
  1696. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1697. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1698. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1699. #endif
  1700. return current_position[Z_AXIS];
  1701. }
  1702. //
  1703. // - Move to the given XY
  1704. // - Deploy the probe, if not already deployed
  1705. // - Probe the bed, get the Z position
  1706. // - Depending on the 'stow' flag
  1707. // - Stow the probe, or
  1708. // - Raise to the BETWEEN height
  1709. // - Return the probed Z position
  1710. //
  1711. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1713. if (DEBUGGING(LEVELING)) {
  1714. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1715. SERIAL_ECHOPAIR(", ", y);
  1716. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1717. SERIAL_ECHOLNPGM(")");
  1718. DEBUG_POS("", current_position);
  1719. }
  1720. #endif
  1721. float old_feedrate_mm_s = feedrate_mm_s;
  1722. // Ensure a minimum height before moving the probe
  1723. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1724. // Move to the XY where we shall probe
  1725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1726. if (DEBUGGING(LEVELING)) {
  1727. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1728. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1729. SERIAL_ECHOLNPGM(")");
  1730. }
  1731. #endif
  1732. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1733. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1734. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1735. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1736. #endif
  1737. if (DEPLOY_PROBE()) return NAN;
  1738. float measured_z = run_z_probe();
  1739. if (stow) {
  1740. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1741. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1742. #endif
  1743. if (STOW_PROBE()) return NAN;
  1744. }
  1745. else {
  1746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1747. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1748. #endif
  1749. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1750. }
  1751. if (verbose_level > 2) {
  1752. SERIAL_PROTOCOLPGM("Bed X: ");
  1753. SERIAL_PROTOCOL_F(x, 3);
  1754. SERIAL_PROTOCOLPGM(" Y: ");
  1755. SERIAL_PROTOCOL_F(y, 3);
  1756. SERIAL_PROTOCOLPGM(" Z: ");
  1757. SERIAL_PROTOCOL_F(measured_z, 3);
  1758. SERIAL_EOL;
  1759. }
  1760. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1761. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1762. #endif
  1763. feedrate_mm_s = old_feedrate_mm_s;
  1764. return measured_z;
  1765. }
  1766. #endif // HAS_BED_PROBE
  1767. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1768. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1769. /**
  1770. * Get the stepper positions, apply the rotation matrix
  1771. * using the home XY and Z0 position as the fulcrum.
  1772. */
  1773. vector_3 untilted_stepper_position() {
  1774. vector_3 pos = vector_3(
  1775. RAW_X_POSITION(stepper.get_axis_position_mm(X_AXIS)) - X_TILT_FULCRUM,
  1776. RAW_Y_POSITION(stepper.get_axis_position_mm(Y_AXIS)) - Y_TILT_FULCRUM,
  1777. RAW_Z_POSITION(stepper.get_axis_position_mm(Z_AXIS))
  1778. );
  1779. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  1780. //pos.debug("untilted_stepper_position offset");
  1781. //bed_level_matrix.debug("untilted_stepper_position");
  1782. //inverse.debug("in untilted_stepper_position");
  1783. pos.apply_rotation(inverse);
  1784. pos.x = LOGICAL_X_POSITION(pos.x + X_TILT_FULCRUM);
  1785. pos.y = LOGICAL_Y_POSITION(pos.y + Y_TILT_FULCRUM);
  1786. pos.z = LOGICAL_Z_POSITION(pos.z);
  1787. //pos.debug("after rotation and reorientation");
  1788. return pos;
  1789. }
  1790. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1791. /**
  1792. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1793. */
  1794. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1795. if (bed_level[x][y] != 0.0) {
  1796. return; // Don't overwrite good values.
  1797. }
  1798. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1799. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1800. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1801. float median = c; // Median is robust (ignores outliers).
  1802. if (a < b) {
  1803. if (b < c) median = b;
  1804. if (c < a) median = a;
  1805. }
  1806. else { // b <= a
  1807. if (c < b) median = b;
  1808. if (a < c) median = a;
  1809. }
  1810. bed_level[x][y] = median;
  1811. }
  1812. /**
  1813. * Fill in the unprobed points (corners of circular print surface)
  1814. * using linear extrapolation, away from the center.
  1815. */
  1816. static void extrapolate_unprobed_bed_level() {
  1817. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1818. for (int y = 0; y <= half; y++) {
  1819. for (int x = 0; x <= half; x++) {
  1820. if (x + y < 3) continue;
  1821. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1822. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1823. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1824. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1825. }
  1826. }
  1827. }
  1828. /**
  1829. * Print calibration results for plotting or manual frame adjustment.
  1830. */
  1831. static void print_bed_level() {
  1832. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1833. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1834. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1835. SERIAL_PROTOCOLCHAR(' ');
  1836. }
  1837. SERIAL_EOL;
  1838. }
  1839. }
  1840. /**
  1841. * Reset calibration results to zero.
  1842. */
  1843. void reset_bed_level() {
  1844. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1845. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1846. #endif
  1847. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1848. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1849. bed_level[x][y] = 0.0;
  1850. }
  1851. }
  1852. }
  1853. #endif // DELTA
  1854. #endif // AUTO_BED_LEVELING_FEATURE
  1855. /**
  1856. * Home an individual axis
  1857. */
  1858. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  1859. current_position[axis] = 0;
  1860. sync_plan_position();
  1861. current_position[axis] = where;
  1862. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1863. stepper.synchronize();
  1864. endstops.hit_on_purpose();
  1865. }
  1866. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1867. static void homeaxis(AxisEnum axis) {
  1868. #define CAN_HOME(A) \
  1869. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1870. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1872. if (DEBUGGING(LEVELING)) {
  1873. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1874. SERIAL_ECHOLNPGM(")");
  1875. }
  1876. #endif
  1877. int axis_home_dir =
  1878. #if ENABLED(DUAL_X_CARRIAGE)
  1879. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1880. #endif
  1881. home_dir(axis);
  1882. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1883. #if HOMING_Z_WITH_PROBE
  1884. if (axis == Z_AXIS) {
  1885. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1886. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1887. #endif
  1888. if (DEPLOY_PROBE()) return;
  1889. }
  1890. #endif
  1891. // Set a flag for Z motor locking
  1892. #if ENABLED(Z_DUAL_ENDSTOPS)
  1893. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1894. #endif
  1895. // Move towards the endstop until an endstop is triggered
  1896. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1897. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1898. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 1st Home ", current_position[axis]);
  1899. #endif
  1900. // Move away from the endstop by the axis HOME_BUMP_MM
  1901. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  1902. // Move slowly towards the endstop until triggered
  1903. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  1904. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1905. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 2nd Home ", current_position[axis]);
  1906. #endif
  1907. #if ENABLED(Z_DUAL_ENDSTOPS)
  1908. if (axis == Z_AXIS) {
  1909. float adj = fabs(z_endstop_adj);
  1910. bool lockZ1;
  1911. if (axis_home_dir > 0) {
  1912. adj = -adj;
  1913. lockZ1 = (z_endstop_adj > 0);
  1914. }
  1915. else
  1916. lockZ1 = (z_endstop_adj < 0);
  1917. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1918. // Move to the adjusted endstop height
  1919. do_homing_move(axis, adj);
  1920. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1921. stepper.set_homing_flag(false);
  1922. } // Z_AXIS
  1923. #endif
  1924. // Delta has already moved all three towers up in G28
  1925. // so here it re-homes each tower in turn.
  1926. // Delta homing treats the axes as normal linear axes.
  1927. #if ENABLED(DELTA)
  1928. // retrace by the amount specified in endstop_adj
  1929. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1930. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1931. if (DEBUGGING(LEVELING)) {
  1932. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1933. DEBUG_POS("", current_position);
  1934. }
  1935. #endif
  1936. do_homing_move(axis, endstop_adj[axis]);
  1937. }
  1938. #else
  1939. // Set the axis position to its home position (plus home offsets)
  1940. set_axis_is_at_home(axis);
  1941. sync_plan_position();
  1942. destination[axis] = current_position[axis];
  1943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1944. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1945. #endif
  1946. #endif
  1947. // Put away the Z probe
  1948. #if HOMING_Z_WITH_PROBE
  1949. if (axis == Z_AXIS) {
  1950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1951. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1952. #endif
  1953. if (STOW_PROBE()) return;
  1954. }
  1955. #endif
  1956. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1957. if (DEBUGGING(LEVELING)) {
  1958. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  1959. SERIAL_ECHOLNPGM(")");
  1960. }
  1961. #endif
  1962. } // homeaxis()
  1963. #if ENABLED(FWRETRACT)
  1964. void retract(bool retracting, bool swapping = false) {
  1965. if (retracting == retracted[active_extruder]) return;
  1966. float old_feedrate_mm_s = feedrate_mm_s;
  1967. set_destination_to_current();
  1968. if (retracting) {
  1969. feedrate_mm_s = retract_feedrate_mm_s;
  1970. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1971. sync_plan_position_e();
  1972. prepare_move_to_destination();
  1973. if (retract_zlift > 0.01) {
  1974. current_position[Z_AXIS] -= retract_zlift;
  1975. SYNC_PLAN_POSITION_KINEMATIC();
  1976. prepare_move_to_destination();
  1977. }
  1978. }
  1979. else {
  1980. if (retract_zlift > 0.01) {
  1981. current_position[Z_AXIS] += retract_zlift;
  1982. SYNC_PLAN_POSITION_KINEMATIC();
  1983. }
  1984. feedrate_mm_s = retract_recover_feedrate_mm_s;
  1985. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1986. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1987. sync_plan_position_e();
  1988. prepare_move_to_destination();
  1989. }
  1990. feedrate_mm_s = old_feedrate_mm_s;
  1991. retracted[active_extruder] = retracting;
  1992. } // retract()
  1993. #endif // FWRETRACT
  1994. #if ENABLED(MIXING_EXTRUDER)
  1995. void normalize_mix() {
  1996. float mix_total = 0.0;
  1997. for (int i = 0; i < MIXING_STEPPERS; i++) {
  1998. float v = mixing_factor[i];
  1999. if (v < 0) v = mixing_factor[i] = 0;
  2000. mix_total += v;
  2001. }
  2002. // Scale all values if they don't add up to ~1.0
  2003. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2004. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2005. float mix_scale = 1.0 / mix_total;
  2006. for (int i = 0; i < MIXING_STEPPERS; i++)
  2007. mixing_factor[i] *= mix_scale;
  2008. }
  2009. }
  2010. #if ENABLED(DIRECT_MIXING_IN_G1)
  2011. // Get mixing parameters from the GCode
  2012. // Factors that are left out are set to 0
  2013. // The total "must" be 1.0 (but it will be normalized)
  2014. void gcode_get_mix() {
  2015. const char* mixing_codes = "ABCDHI";
  2016. for (int i = 0; i < MIXING_STEPPERS; i++)
  2017. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2018. normalize_mix();
  2019. }
  2020. #endif
  2021. #endif
  2022. /**
  2023. * ***************************************************************************
  2024. * ***************************** G-CODE HANDLING *****************************
  2025. * ***************************************************************************
  2026. */
  2027. /**
  2028. * Set XYZE destination and feedrate from the current GCode command
  2029. *
  2030. * - Set destination from included axis codes
  2031. * - Set to current for missing axis codes
  2032. * - Set the feedrate, if included
  2033. */
  2034. void gcode_get_destination() {
  2035. LOOP_XYZE(i) {
  2036. if (code_seen(axis_codes[i]))
  2037. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2038. else
  2039. destination[i] = current_position[i];
  2040. }
  2041. if (code_seen('F') && code_value_linear_units() > 0.0)
  2042. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2043. #if ENABLED(PRINTCOUNTER)
  2044. if (!DEBUGGING(DRYRUN))
  2045. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2046. #endif
  2047. // Get ABCDHI mixing factors
  2048. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2049. gcode_get_mix();
  2050. #endif
  2051. }
  2052. void unknown_command_error() {
  2053. SERIAL_ECHO_START;
  2054. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2055. SERIAL_ECHO(current_command);
  2056. SERIAL_ECHOLNPGM("\"");
  2057. }
  2058. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2059. /**
  2060. * Output a "busy" message at regular intervals
  2061. * while the machine is not accepting commands.
  2062. */
  2063. void host_keepalive() {
  2064. millis_t ms = millis();
  2065. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2066. if (PENDING(ms, next_busy_signal_ms)) return;
  2067. switch (busy_state) {
  2068. case IN_HANDLER:
  2069. case IN_PROCESS:
  2070. SERIAL_ECHO_START;
  2071. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2072. break;
  2073. case PAUSED_FOR_USER:
  2074. SERIAL_ECHO_START;
  2075. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2076. break;
  2077. case PAUSED_FOR_INPUT:
  2078. SERIAL_ECHO_START;
  2079. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2080. break;
  2081. default:
  2082. break;
  2083. }
  2084. }
  2085. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2086. }
  2087. #endif //HOST_KEEPALIVE_FEATURE
  2088. /**
  2089. * G0, G1: Coordinated movement of X Y Z E axes
  2090. */
  2091. inline void gcode_G0_G1() {
  2092. if (IsRunning()) {
  2093. gcode_get_destination(); // For X Y Z E F
  2094. #if ENABLED(FWRETRACT)
  2095. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2096. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2097. // Is this move an attempt to retract or recover?
  2098. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2099. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2100. sync_plan_position_e(); // AND from the planner
  2101. retract(!retracted[active_extruder]);
  2102. return;
  2103. }
  2104. }
  2105. #endif //FWRETRACT
  2106. prepare_move_to_destination();
  2107. }
  2108. }
  2109. /**
  2110. * G2: Clockwise Arc
  2111. * G3: Counterclockwise Arc
  2112. */
  2113. #if ENABLED(ARC_SUPPORT)
  2114. inline void gcode_G2_G3(bool clockwise) {
  2115. if (IsRunning()) {
  2116. #if ENABLED(SF_ARC_FIX)
  2117. bool relative_mode_backup = relative_mode;
  2118. relative_mode = true;
  2119. #endif
  2120. gcode_get_destination();
  2121. #if ENABLED(SF_ARC_FIX)
  2122. relative_mode = relative_mode_backup;
  2123. #endif
  2124. // Center of arc as offset from current_position
  2125. float arc_offset[2] = {
  2126. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2127. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2128. };
  2129. // Send an arc to the planner
  2130. plan_arc(destination, arc_offset, clockwise);
  2131. refresh_cmd_timeout();
  2132. }
  2133. }
  2134. #endif
  2135. /**
  2136. * G4: Dwell S<seconds> or P<milliseconds>
  2137. */
  2138. inline void gcode_G4() {
  2139. millis_t dwell_ms = 0;
  2140. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2141. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2142. stepper.synchronize();
  2143. refresh_cmd_timeout();
  2144. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2145. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2146. while (PENDING(millis(), dwell_ms)) idle();
  2147. }
  2148. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2149. /**
  2150. * Parameters interpreted according to:
  2151. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2152. * However I, J omission is not supported at this point; all
  2153. * parameters can be omitted and default to zero.
  2154. */
  2155. /**
  2156. * G5: Cubic B-spline
  2157. */
  2158. inline void gcode_G5() {
  2159. if (IsRunning()) {
  2160. gcode_get_destination();
  2161. float offset[] = {
  2162. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2163. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2164. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2165. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2166. };
  2167. plan_cubic_move(offset);
  2168. }
  2169. }
  2170. #endif // BEZIER_CURVE_SUPPORT
  2171. #if ENABLED(FWRETRACT)
  2172. /**
  2173. * G10 - Retract filament according to settings of M207
  2174. * G11 - Recover filament according to settings of M208
  2175. */
  2176. inline void gcode_G10_G11(bool doRetract=false) {
  2177. #if EXTRUDERS > 1
  2178. if (doRetract) {
  2179. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2180. }
  2181. #endif
  2182. retract(doRetract
  2183. #if EXTRUDERS > 1
  2184. , retracted_swap[active_extruder]
  2185. #endif
  2186. );
  2187. }
  2188. #endif //FWRETRACT
  2189. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2190. /**
  2191. * G12: Clean the nozzle
  2192. */
  2193. inline void gcode_G12() {
  2194. // Don't allow nozzle cleaning without homing first
  2195. if (axis_unhomed_error(true, true, true)) { return; }
  2196. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2197. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2198. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2199. Nozzle::clean(pattern, strokes, objects);
  2200. }
  2201. #endif
  2202. #if ENABLED(INCH_MODE_SUPPORT)
  2203. /**
  2204. * G20: Set input mode to inches
  2205. */
  2206. inline void gcode_G20() {
  2207. set_input_linear_units(LINEARUNIT_INCH);
  2208. }
  2209. /**
  2210. * G21: Set input mode to millimeters
  2211. */
  2212. inline void gcode_G21() {
  2213. set_input_linear_units(LINEARUNIT_MM);
  2214. }
  2215. #endif
  2216. #if ENABLED(NOZZLE_PARK_FEATURE)
  2217. /**
  2218. * G27: Park the nozzle
  2219. */
  2220. inline void gcode_G27() {
  2221. // Don't allow nozzle parking without homing first
  2222. if (axis_unhomed_error(true, true, true)) { return; }
  2223. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2224. Nozzle::park(z_action);
  2225. }
  2226. #endif // NOZZLE_PARK_FEATURE
  2227. #if ENABLED(QUICK_HOME)
  2228. static void quick_home_xy() {
  2229. // Pretend the current position is 0,0
  2230. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2231. sync_plan_position();
  2232. int x_axis_home_dir =
  2233. #if ENABLED(DUAL_X_CARRIAGE)
  2234. x_home_dir(active_extruder)
  2235. #else
  2236. home_dir(X_AXIS)
  2237. #endif
  2238. ;
  2239. float mlx = max_length(X_AXIS),
  2240. mly = max_length(Y_AXIS),
  2241. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2242. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2243. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2244. endstops.hit_on_purpose(); // clear endstop hit flags
  2245. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2246. }
  2247. #endif // QUICK_HOME
  2248. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2249. void log_machine_info() {
  2250. SERIAL_ECHOPGM("Machine Type: ");
  2251. #if ENABLED(DELTA)
  2252. SERIAL_ECHOLNPGM("Delta");
  2253. #elif IS_SCARA
  2254. SERIAL_ECHOLNPGM("SCARA");
  2255. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2256. SERIAL_ECHOLNPGM("Core");
  2257. #else
  2258. SERIAL_ECHOLNPGM("Cartesian");
  2259. #endif
  2260. SERIAL_ECHOPGM("Probe: ");
  2261. #if ENABLED(FIX_MOUNTED_PROBE)
  2262. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2263. #elif HAS_Z_SERVO_ENDSTOP
  2264. SERIAL_ECHOLNPGM("SERVO PROBE");
  2265. #elif ENABLED(BLTOUCH)
  2266. SERIAL_ECHOLNPGM("BLTOUCH");
  2267. #elif ENABLED(Z_PROBE_SLED)
  2268. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2269. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2270. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2271. #else
  2272. SERIAL_ECHOLNPGM("NONE");
  2273. #endif
  2274. #if HAS_BED_PROBE
  2275. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2276. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2277. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2278. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2279. SERIAL_ECHOPGM(" (Right");
  2280. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2281. SERIAL_ECHOPGM(" (Left");
  2282. #endif
  2283. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2284. SERIAL_ECHOPGM("-Back");
  2285. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2286. SERIAL_ECHOPGM("-Front");
  2287. #endif
  2288. if (zprobe_zoffset < 0)
  2289. SERIAL_ECHOPGM(" & Below");
  2290. else if (zprobe_zoffset > 0)
  2291. SERIAL_ECHOPGM(" & Above");
  2292. else
  2293. SERIAL_ECHOPGM(" & Same Z as");
  2294. SERIAL_ECHOLNPGM(" Nozzle)");
  2295. #endif
  2296. }
  2297. #endif // DEBUG_LEVELING_FEATURE
  2298. #if ENABLED(DELTA)
  2299. /**
  2300. * A delta can only safely home all axes at the same time
  2301. * This is like quick_home_xy() but for 3 towers.
  2302. */
  2303. inline void home_delta() {
  2304. // Init the current position of all carriages to 0,0,0
  2305. memset(current_position, 0, sizeof(current_position));
  2306. sync_plan_position();
  2307. // Move all carriages together linearly until an endstop is hit.
  2308. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2309. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2310. line_to_current_position();
  2311. stepper.synchronize();
  2312. endstops.hit_on_purpose(); // clear endstop hit flags
  2313. // Probably not needed. Double-check this line:
  2314. memset(current_position, 0, sizeof(current_position));
  2315. // At least one carriage has reached the top.
  2316. // Now back off and re-home each carriage separately.
  2317. HOMEAXIS(A);
  2318. HOMEAXIS(B);
  2319. HOMEAXIS(C);
  2320. // Set all carriages to their home positions
  2321. // Do this here all at once for Delta, because
  2322. // XYZ isn't ABC. Applying this per-tower would
  2323. // give the impression that they are the same.
  2324. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2325. SYNC_PLAN_POSITION_KINEMATIC();
  2326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2327. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2328. #endif
  2329. }
  2330. #endif // DELTA
  2331. #if ENABLED(Z_SAFE_HOMING)
  2332. inline void home_z_safely() {
  2333. // Disallow Z homing if X or Y are unknown
  2334. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2335. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2336. SERIAL_ECHO_START;
  2337. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2338. return;
  2339. }
  2340. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2341. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2342. #endif
  2343. SYNC_PLAN_POSITION_KINEMATIC();
  2344. /**
  2345. * Move the Z probe (or just the nozzle) to the safe homing point
  2346. */
  2347. float cpx = Z_SAFE_HOMING_X_POINT, cpy = Z_SAFE_HOMING_Y_POINT;
  2348. #if HAS_BED_PROBE
  2349. cpx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2350. cpy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2351. #endif
  2352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2353. if (DEBUGGING(LEVELING)) {
  2354. SERIAL_ECHOPAIR("Z_SAFE_HOMING X:", cpx);
  2355. SERIAL_ECHOLNPAIR(" Y:", cpy);
  2356. }
  2357. #endif
  2358. if (cpx >= X_MIN_POS && cpx <= X_MAX_POS && cpy >= Y_MIN_POS && cpy <= Y_MAX_POS) {
  2359. do_blocking_move_to_xy(LOGICAL_X_POSITION(destination[X_AXIS]), LOGICAL_Y_POSITION(destination[Y_AXIS]));
  2360. HOMEAXIS(Z);
  2361. }
  2362. else {
  2363. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2364. SERIAL_ECHO_START;
  2365. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2366. }
  2367. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2368. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2369. #endif
  2370. }
  2371. #endif // Z_SAFE_HOMING
  2372. /**
  2373. * G28: Home all axes according to settings
  2374. *
  2375. * Parameters
  2376. *
  2377. * None Home to all axes with no parameters.
  2378. * With QUICK_HOME enabled XY will home together, then Z.
  2379. *
  2380. * Cartesian parameters
  2381. *
  2382. * X Home to the X endstop
  2383. * Y Home to the Y endstop
  2384. * Z Home to the Z endstop
  2385. *
  2386. */
  2387. inline void gcode_G28() {
  2388. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2389. if (DEBUGGING(LEVELING)) {
  2390. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2391. log_machine_info();
  2392. }
  2393. #endif
  2394. // Wait for planner moves to finish!
  2395. stepper.synchronize();
  2396. // For auto bed leveling, clear the level matrix
  2397. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2398. planner.bed_level_matrix.set_to_identity();
  2399. #endif
  2400. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2401. reset_bed_level();
  2402. #endif
  2403. // Always home with tool 0 active
  2404. #if HOTENDS > 1
  2405. uint8_t old_tool_index = active_extruder;
  2406. tool_change(0, 0, true);
  2407. #endif
  2408. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2409. extruder_duplication_enabled = false;
  2410. #endif
  2411. /**
  2412. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2413. * on again when homing all axis
  2414. */
  2415. #if ENABLED(MESH_BED_LEVELING)
  2416. float pre_home_z = MESH_HOME_SEARCH_Z;
  2417. if (mbl.active()) {
  2418. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2419. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2420. #endif
  2421. // Save known Z position if already homed
  2422. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2423. pre_home_z = current_position[Z_AXIS];
  2424. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2425. }
  2426. mbl.set_active(false);
  2427. current_position[Z_AXIS] = pre_home_z;
  2428. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2429. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2430. #endif
  2431. }
  2432. #endif
  2433. setup_for_endstop_or_probe_move();
  2434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2435. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2436. #endif
  2437. endstops.enable(true); // Enable endstops for next homing move
  2438. #if ENABLED(DELTA)
  2439. home_delta();
  2440. #else // NOT DELTA
  2441. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2442. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2443. set_destination_to_current();
  2444. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2445. if (home_all_axis || homeZ) {
  2446. HOMEAXIS(Z);
  2447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2448. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2449. #endif
  2450. }
  2451. #else
  2452. if (home_all_axis || homeX || homeY) {
  2453. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2454. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2455. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2457. if (DEBUGGING(LEVELING))
  2458. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2459. #endif
  2460. do_blocking_move_to_z(destination[Z_AXIS]);
  2461. }
  2462. }
  2463. #endif
  2464. #if ENABLED(QUICK_HOME)
  2465. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2466. #endif
  2467. #if ENABLED(HOME_Y_BEFORE_X)
  2468. // Home Y
  2469. if (home_all_axis || homeY) {
  2470. HOMEAXIS(Y);
  2471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2472. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2473. #endif
  2474. }
  2475. #endif
  2476. // Home X
  2477. if (home_all_axis || homeX) {
  2478. #if ENABLED(DUAL_X_CARRIAGE)
  2479. int tmp_extruder = active_extruder;
  2480. active_extruder = !active_extruder;
  2481. HOMEAXIS(X);
  2482. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2483. active_extruder = tmp_extruder;
  2484. HOMEAXIS(X);
  2485. // reset state used by the different modes
  2486. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2487. delayed_move_time = 0;
  2488. active_extruder_parked = true;
  2489. #else
  2490. HOMEAXIS(X);
  2491. #endif
  2492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2493. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2494. #endif
  2495. }
  2496. #if DISABLED(HOME_Y_BEFORE_X)
  2497. // Home Y
  2498. if (home_all_axis || homeY) {
  2499. HOMEAXIS(Y);
  2500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2501. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2502. #endif
  2503. }
  2504. #endif
  2505. // Home Z last if homing towards the bed
  2506. #if Z_HOME_DIR < 0
  2507. if (home_all_axis || homeZ) {
  2508. #if ENABLED(Z_SAFE_HOMING)
  2509. home_z_safely();
  2510. #else
  2511. HOMEAXIS(Z);
  2512. #endif
  2513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2514. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2515. #endif
  2516. } // home_all_axis || homeZ
  2517. #endif // Z_HOME_DIR < 0
  2518. SYNC_PLAN_POSITION_KINEMATIC();
  2519. #endif // !DELTA (gcode_G28)
  2520. endstops.not_homing();
  2521. // Enable mesh leveling again
  2522. #if ENABLED(MESH_BED_LEVELING)
  2523. if (mbl.has_mesh()) {
  2524. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2525. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2526. #endif
  2527. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2528. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2529. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2530. #endif
  2531. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2532. #if Z_HOME_DIR > 0
  2533. + Z_MAX_POS
  2534. #endif
  2535. ;
  2536. SYNC_PLAN_POSITION_KINEMATIC();
  2537. mbl.set_active(true);
  2538. #if ENABLED(MESH_G28_REST_ORIGIN)
  2539. current_position[Z_AXIS] = 0.0;
  2540. set_destination_to_current();
  2541. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2542. line_to_destination();
  2543. stepper.synchronize();
  2544. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2545. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2546. #endif
  2547. #else
  2548. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2549. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2550. #if Z_HOME_DIR > 0
  2551. + Z_MAX_POS
  2552. #endif
  2553. ;
  2554. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2555. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2556. #endif
  2557. #endif
  2558. }
  2559. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2560. current_position[Z_AXIS] = pre_home_z;
  2561. SYNC_PLAN_POSITION_KINEMATIC();
  2562. mbl.set_active(true);
  2563. current_position[Z_AXIS] = pre_home_z -
  2564. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2565. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2566. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2567. #endif
  2568. }
  2569. }
  2570. #endif
  2571. #if ENABLED(DELTA)
  2572. // move to a height where we can use the full xy-area
  2573. do_blocking_move_to_z(delta_clip_start_height);
  2574. #endif
  2575. clean_up_after_endstop_or_probe_move();
  2576. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2577. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2578. #endif
  2579. // Restore the active tool after homing
  2580. #if HOTENDS > 1
  2581. tool_change(old_tool_index, 0, true);
  2582. #endif
  2583. report_current_position();
  2584. }
  2585. #if HAS_PROBING_PROCEDURE
  2586. void out_of_range_error(const char* p_edge) {
  2587. SERIAL_PROTOCOLPGM("?Probe ");
  2588. serialprintPGM(p_edge);
  2589. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2590. }
  2591. #endif
  2592. #if ENABLED(MESH_BED_LEVELING)
  2593. inline void _mbl_goto_xy(float x, float y) {
  2594. float old_feedrate_mm_s = feedrate_mm_s;
  2595. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2596. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2597. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2598. + Z_PROBE_TRAVEL_HEIGHT
  2599. #elif Z_HOMING_HEIGHT > 0
  2600. + Z_HOMING_HEIGHT
  2601. #endif
  2602. ;
  2603. line_to_current_position();
  2604. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2605. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2606. line_to_current_position();
  2607. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2608. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2609. line_to_current_position();
  2610. #endif
  2611. feedrate_mm_s = old_feedrate_mm_s;
  2612. stepper.synchronize();
  2613. }
  2614. /**
  2615. * G29: Mesh-based Z probe, probes a grid and produces a
  2616. * mesh to compensate for variable bed height
  2617. *
  2618. * Parameters With MESH_BED_LEVELING:
  2619. *
  2620. * S0 Produce a mesh report
  2621. * S1 Start probing mesh points
  2622. * S2 Probe the next mesh point
  2623. * S3 Xn Yn Zn.nn Manually modify a single point
  2624. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2625. * S5 Reset and disable mesh
  2626. *
  2627. * The S0 report the points as below
  2628. *
  2629. * +----> X-axis 1-n
  2630. * |
  2631. * |
  2632. * v Y-axis 1-n
  2633. *
  2634. */
  2635. inline void gcode_G29() {
  2636. static int probe_point = -1;
  2637. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2638. if (state < 0 || state > 5) {
  2639. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2640. return;
  2641. }
  2642. int8_t px, py;
  2643. switch (state) {
  2644. case MeshReport:
  2645. if (mbl.has_mesh()) {
  2646. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2647. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2648. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2649. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2650. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2651. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2652. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2653. SERIAL_PROTOCOLPGM(" ");
  2654. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2655. }
  2656. SERIAL_EOL;
  2657. }
  2658. }
  2659. else
  2660. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2661. break;
  2662. case MeshStart:
  2663. mbl.reset();
  2664. probe_point = 0;
  2665. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2666. break;
  2667. case MeshNext:
  2668. if (probe_point < 0) {
  2669. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2670. return;
  2671. }
  2672. // For each G29 S2...
  2673. if (probe_point == 0) {
  2674. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2675. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2676. #if Z_HOME_DIR > 0
  2677. + Z_MAX_POS
  2678. #endif
  2679. ;
  2680. SYNC_PLAN_POSITION_KINEMATIC();
  2681. }
  2682. else {
  2683. // For G29 S2 after adjusting Z.
  2684. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2685. }
  2686. // If there's another point to sample, move there with optional lift.
  2687. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2688. mbl.zigzag(probe_point, px, py);
  2689. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2690. probe_point++;
  2691. }
  2692. else {
  2693. // One last "return to the bed" (as originally coded) at completion
  2694. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2695. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2696. + Z_PROBE_TRAVEL_HEIGHT
  2697. #elif Z_HOMING_HEIGHT > 0
  2698. + Z_HOMING_HEIGHT
  2699. #endif
  2700. ;
  2701. line_to_current_position();
  2702. stepper.synchronize();
  2703. // After recording the last point, activate the mbl and home
  2704. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2705. probe_point = -1;
  2706. mbl.set_has_mesh(true);
  2707. enqueue_and_echo_commands_P(PSTR("G28"));
  2708. }
  2709. break;
  2710. case MeshSet:
  2711. if (code_seen('X')) {
  2712. px = code_value_int() - 1;
  2713. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2714. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2715. return;
  2716. }
  2717. }
  2718. else {
  2719. SERIAL_PROTOCOLLNPGM("X not entered.");
  2720. return;
  2721. }
  2722. if (code_seen('Y')) {
  2723. py = code_value_int() - 1;
  2724. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2725. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2726. return;
  2727. }
  2728. }
  2729. else {
  2730. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2731. return;
  2732. }
  2733. if (code_seen('Z')) {
  2734. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2735. }
  2736. else {
  2737. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2738. return;
  2739. }
  2740. break;
  2741. case MeshSetZOffset:
  2742. if (code_seen('Z')) {
  2743. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2744. }
  2745. else {
  2746. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2747. return;
  2748. }
  2749. break;
  2750. case MeshReset:
  2751. if (mbl.active()) {
  2752. current_position[Z_AXIS] +=
  2753. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2754. mbl.reset();
  2755. SYNC_PLAN_POSITION_KINEMATIC();
  2756. }
  2757. else
  2758. mbl.reset();
  2759. } // switch(state)
  2760. report_current_position();
  2761. }
  2762. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2763. /**
  2764. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2765. * Will fail if the printer has not been homed with G28.
  2766. *
  2767. * Enhanced G29 Auto Bed Leveling Probe Routine
  2768. *
  2769. * Parameters With AUTO_BED_LEVELING_GRID:
  2770. *
  2771. * P Set the size of the grid that will be probed (P x P points).
  2772. * Not supported by non-linear delta printer bed leveling.
  2773. * Example: "G29 P4"
  2774. *
  2775. * S Set the XY travel speed between probe points (in units/min)
  2776. *
  2777. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2778. * or clean the rotation Matrix. Useful to check the topology
  2779. * after a first run of G29.
  2780. *
  2781. * V Set the verbose level (0-4). Example: "G29 V3"
  2782. *
  2783. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2784. * This is useful for manual bed leveling and finding flaws in the bed (to
  2785. * assist with part placement).
  2786. * Not supported by non-linear delta printer bed leveling.
  2787. *
  2788. * F Set the Front limit of the probing grid
  2789. * B Set the Back limit of the probing grid
  2790. * L Set the Left limit of the probing grid
  2791. * R Set the Right limit of the probing grid
  2792. *
  2793. * Global Parameters:
  2794. *
  2795. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2796. * Include "E" to engage/disengage the Z probe for each sample.
  2797. * There's no extra effect if you have a fixed Z probe.
  2798. * Usage: "G29 E" or "G29 e"
  2799. *
  2800. */
  2801. inline void gcode_G29() {
  2802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2803. if (DEBUGGING(LEVELING)) {
  2804. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2805. DEBUG_POS("", current_position);
  2806. log_machine_info();
  2807. }
  2808. #endif
  2809. // Don't allow auto-leveling without homing first
  2810. if (axis_unhomed_error(true, true, true)) return;
  2811. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2812. if (verbose_level < 0 || verbose_level > 4) {
  2813. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2814. return;
  2815. }
  2816. bool dryrun = code_seen('D');
  2817. bool stow_probe_after_each = code_seen('E');
  2818. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2819. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2820. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2821. #endif
  2822. if (verbose_level > 0) {
  2823. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2824. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2825. }
  2826. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2827. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2828. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2829. if (auto_bed_leveling_grid_points < 2) {
  2830. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2831. return;
  2832. }
  2833. #endif
  2834. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2835. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2836. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2837. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2838. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2839. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2840. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2841. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2842. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2843. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2844. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2845. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2846. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2847. if (left_out || right_out || front_out || back_out) {
  2848. if (left_out) {
  2849. out_of_range_error(PSTR("(L)eft"));
  2850. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2851. }
  2852. if (right_out) {
  2853. out_of_range_error(PSTR("(R)ight"));
  2854. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2855. }
  2856. if (front_out) {
  2857. out_of_range_error(PSTR("(F)ront"));
  2858. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2859. }
  2860. if (back_out) {
  2861. out_of_range_error(PSTR("(B)ack"));
  2862. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2863. }
  2864. return;
  2865. }
  2866. #endif // AUTO_BED_LEVELING_GRID
  2867. stepper.synchronize();
  2868. if (!dryrun) {
  2869. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2870. // Reset the bed_level_matrix because leveling
  2871. // needs to be done without leveling enabled.
  2872. planner.bed_level_matrix.set_to_identity();
  2873. #endif
  2874. //
  2875. // Re-orient the current position without leveling
  2876. // based on where the steppers are positioned.
  2877. //
  2878. #if IS_KINEMATIC
  2879. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2880. reset_bed_level();
  2881. #endif
  2882. // For DELTA/SCARA we need to apply forward kinematics.
  2883. // This returns raw positions and we remap to the space.
  2884. set_cartesian_from_steppers();
  2885. LOOP_XYZ(i) current_position[i] = LOGICAL_POSITION(cartesian_position[i], i);
  2886. #else
  2887. // For cartesian/core the steppers are already mapped to
  2888. // the coordinate space by design.
  2889. LOOP_XYZ(i) current_position[i] = stepper.get_axis_position_mm((AxisEnum)i);
  2890. #endif // !DELTA
  2891. // Inform the planner about the new coordinates
  2892. // (This is probably not needed here)
  2893. SYNC_PLAN_POSITION_KINEMATIC();
  2894. }
  2895. setup_for_endstop_or_probe_move();
  2896. // Deploy the probe. Probe will raise if needed.
  2897. if (DEPLOY_PROBE()) return;
  2898. bed_leveling_in_progress = true;
  2899. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2900. // probe at the points of a lattice grid
  2901. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2902. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2903. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2904. delta_grid_spacing[X_AXIS] = xGridSpacing;
  2905. delta_grid_spacing[Y_AXIS] = yGridSpacing;
  2906. float zoffset = zprobe_zoffset;
  2907. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2908. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  2909. /**
  2910. * solve the plane equation ax + by + d = z
  2911. * A is the matrix with rows [x y 1] for all the probed points
  2912. * B is the vector of the Z positions
  2913. * the normal vector to the plane is formed by the coefficients of the
  2914. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2915. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2916. */
  2917. int abl2 = sq(auto_bed_leveling_grid_points);
  2918. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2919. eqnBVector[abl2], // "B" vector of Z points
  2920. mean = 0.0;
  2921. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2922. #endif // AUTO_BED_LEVELING_LINEAR
  2923. int probePointCounter = 0;
  2924. bool zig = auto_bed_leveling_grid_points & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2925. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2926. float yBase = front_probe_bed_position + yGridSpacing * yCount,
  2927. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  2928. int xStart, xStop, xInc;
  2929. if (zig) {
  2930. xStart = 0;
  2931. xStop = auto_bed_leveling_grid_points;
  2932. xInc = 1;
  2933. }
  2934. else {
  2935. xStart = auto_bed_leveling_grid_points - 1;
  2936. xStop = -1;
  2937. xInc = -1;
  2938. }
  2939. zig = !zig;
  2940. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2941. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  2942. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  2943. #if ENABLED(DELTA)
  2944. // Avoid probing outside the round or hexagonal area of a delta printer
  2945. if (sq(xProbe) + sq(yProbe) > sq(DELTA_PROBEABLE_RADIUS) + 0.1) continue;
  2946. #endif
  2947. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2948. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2949. mean += measured_z;
  2950. eqnBVector[probePointCounter] = measured_z;
  2951. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2952. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2953. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2954. indexIntoAB[xCount][yCount] = probePointCounter;
  2955. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2956. bed_level[xCount][yCount] = measured_z + zoffset;
  2957. #endif
  2958. probePointCounter++;
  2959. idle();
  2960. } //xProbe
  2961. } //yProbe
  2962. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2963. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2964. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2965. #endif
  2966. // Probe at 3 arbitrary points
  2967. float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X),
  2968. LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y),
  2969. stow_probe_after_each, verbose_level),
  2970. z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X),
  2971. LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y),
  2972. stow_probe_after_each, verbose_level),
  2973. z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X),
  2974. LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y),
  2975. stow_probe_after_each, verbose_level);
  2976. if (!dryrun) {
  2977. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1),
  2978. pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2),
  2979. pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  2980. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  2981. if (planeNormal.z < 0) {
  2982. planeNormal.x *= -1;
  2983. planeNormal.y *= -1;
  2984. planeNormal.z *= -1;
  2985. }
  2986. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  2987. }
  2988. #endif // !AUTO_BED_LEVELING_GRID
  2989. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  2990. if (STOW_PROBE()) return;
  2991. // Restore state after probing
  2992. clean_up_after_endstop_or_probe_move();
  2993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2994. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2995. #endif
  2996. // Calculate leveling, print reports, correct the position
  2997. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2998. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2999. if (!dryrun) extrapolate_unprobed_bed_level();
  3000. print_bed_level();
  3001. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3002. // solve lsq problem
  3003. double plane_equation_coefficients[3];
  3004. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3005. mean /= abl2;
  3006. if (verbose_level) {
  3007. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3008. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3009. SERIAL_PROTOCOLPGM(" b: ");
  3010. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3011. SERIAL_PROTOCOLPGM(" d: ");
  3012. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3013. SERIAL_EOL;
  3014. if (verbose_level > 2) {
  3015. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3016. SERIAL_PROTOCOL_F(mean, 8);
  3017. SERIAL_EOL;
  3018. }
  3019. }
  3020. // Create the matrix but don't correct the position yet
  3021. if (!dryrun) {
  3022. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3023. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3024. );
  3025. }
  3026. // Show the Topography map if enabled
  3027. if (do_topography_map) {
  3028. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3029. " +--- BACK --+\n"
  3030. " | |\n"
  3031. " L | (+) | R\n"
  3032. " E | | I\n"
  3033. " F | (-) N (+) | G\n"
  3034. " T | | H\n"
  3035. " | (-) | T\n"
  3036. " | |\n"
  3037. " O-- FRONT --+\n"
  3038. " (0,0)");
  3039. float min_diff = 999;
  3040. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3041. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3042. int ind = indexIntoAB[xx][yy];
  3043. float diff = eqnBVector[ind] - mean;
  3044. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3045. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3046. z_tmp = 0;
  3047. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3048. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3049. if (diff >= 0.0)
  3050. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3051. else
  3052. SERIAL_PROTOCOLCHAR(' ');
  3053. SERIAL_PROTOCOL_F(diff, 5);
  3054. } // xx
  3055. SERIAL_EOL;
  3056. } // yy
  3057. SERIAL_EOL;
  3058. if (verbose_level > 3) {
  3059. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3060. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3061. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3062. int ind = indexIntoAB[xx][yy];
  3063. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3064. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3065. z_tmp = 0;
  3066. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3067. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3068. if (diff >= 0.0)
  3069. SERIAL_PROTOCOLPGM(" +");
  3070. // Include + for column alignment
  3071. else
  3072. SERIAL_PROTOCOLCHAR(' ');
  3073. SERIAL_PROTOCOL_F(diff, 5);
  3074. } // xx
  3075. SERIAL_EOL;
  3076. } // yy
  3077. SERIAL_EOL;
  3078. }
  3079. } //do_topography_map
  3080. #endif // AUTO_BED_LEVELING_LINEAR
  3081. #endif // AUTO_BED_LEVELING_GRID
  3082. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3083. if (verbose_level > 0)
  3084. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3085. if (!dryrun) {
  3086. //
  3087. // Correct the current XYZ position based on the tilted plane.
  3088. //
  3089. // Get the distance from the reference point to the current position
  3090. // The current XY is in sync with the planner/steppers at this point
  3091. // but the current Z is only known to the steppers.
  3092. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3093. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3094. z_real = RAW_Z_POSITION(stepper.get_axis_position_mm(Z_AXIS));
  3095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3096. if (DEBUGGING(LEVELING)) {
  3097. SERIAL_ECHOPAIR("BEFORE ROTATION ... x_dist:", x_dist);
  3098. SERIAL_ECHOPAIR("y_dist:", y_dist);
  3099. SERIAL_ECHOPAIR("z_real:", z_real);
  3100. }
  3101. #endif
  3102. // Apply the matrix to the distance from the reference point to XY,
  3103. // and from the homed Z to the current Z.
  3104. apply_rotation_xyz(planner.bed_level_matrix, x_dist, y_dist, z_real);
  3105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3106. if (DEBUGGING(LEVELING)) {
  3107. SERIAL_ECHOPAIR("AFTER ROTATION ... x_dist:", x_dist);
  3108. SERIAL_ECHOPAIR("y_dist:", y_dist);
  3109. SERIAL_ECHOPAIR("z_real:", z_real);
  3110. }
  3111. #endif
  3112. // Apply the rotated distance and Z to the current position
  3113. current_position[X_AXIS] = LOGICAL_X_POSITION(X_TILT_FULCRUM + x_dist);
  3114. current_position[Y_AXIS] = LOGICAL_Y_POSITION(Y_TILT_FULCRUM + y_dist);
  3115. current_position[Z_AXIS] = LOGICAL_Z_POSITION(z_real);
  3116. SYNC_PLAN_POSITION_KINEMATIC();
  3117. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3118. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected XYZ in G29", current_position);
  3119. #endif
  3120. }
  3121. #endif // !DELTA
  3122. #ifdef Z_PROBE_END_SCRIPT
  3123. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3124. if (DEBUGGING(LEVELING)) {
  3125. SERIAL_ECHOPGM("Z Probe End Script: ");
  3126. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3127. }
  3128. #endif
  3129. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3130. stepper.synchronize();
  3131. #endif
  3132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3133. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3134. #endif
  3135. bed_leveling_in_progress = false;
  3136. report_current_position();
  3137. KEEPALIVE_STATE(IN_HANDLER);
  3138. }
  3139. #endif //AUTO_BED_LEVELING_FEATURE
  3140. #if HAS_BED_PROBE
  3141. /**
  3142. * G30: Do a single Z probe at the current XY
  3143. */
  3144. inline void gcode_G30() {
  3145. setup_for_endstop_or_probe_move();
  3146. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3147. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3148. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3149. true, 1);
  3150. SERIAL_PROTOCOLPGM("Bed X: ");
  3151. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3152. SERIAL_PROTOCOLPGM(" Y: ");
  3153. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3154. SERIAL_PROTOCOLPGM(" Z: ");
  3155. SERIAL_PROTOCOL(measured_z + 0.0001);
  3156. SERIAL_EOL;
  3157. clean_up_after_endstop_or_probe_move();
  3158. report_current_position();
  3159. }
  3160. #if ENABLED(Z_PROBE_SLED)
  3161. /**
  3162. * G31: Deploy the Z probe
  3163. */
  3164. inline void gcode_G31() { DEPLOY_PROBE(); }
  3165. /**
  3166. * G32: Stow the Z probe
  3167. */
  3168. inline void gcode_G32() { STOW_PROBE(); }
  3169. #endif // Z_PROBE_SLED
  3170. #endif // HAS_BED_PROBE
  3171. /**
  3172. * G92: Set current position to given X Y Z E
  3173. */
  3174. inline void gcode_G92() {
  3175. bool didE = code_seen('E');
  3176. if (!didE) stepper.synchronize();
  3177. bool didXYZ = false;
  3178. LOOP_XYZE(i) {
  3179. if (code_seen(axis_codes[i])) {
  3180. float p = current_position[i],
  3181. v = code_value_axis_units(i);
  3182. current_position[i] = v;
  3183. if (i != E_AXIS) {
  3184. position_shift[i] += v - p; // Offset the coordinate space
  3185. update_software_endstops((AxisEnum)i);
  3186. didXYZ = true;
  3187. }
  3188. }
  3189. }
  3190. if (didXYZ)
  3191. SYNC_PLAN_POSITION_KINEMATIC();
  3192. else if (didE)
  3193. sync_plan_position_e();
  3194. }
  3195. #if ENABLED(ULTIPANEL)
  3196. /**
  3197. * M0: Unconditional stop - Wait for user button press on LCD
  3198. * M1: Conditional stop - Wait for user button press on LCD
  3199. */
  3200. inline void gcode_M0_M1() {
  3201. char* args = current_command_args;
  3202. millis_t codenum = 0;
  3203. bool hasP = false, hasS = false;
  3204. if (code_seen('P')) {
  3205. codenum = code_value_millis(); // milliseconds to wait
  3206. hasP = codenum > 0;
  3207. }
  3208. if (code_seen('S')) {
  3209. codenum = code_value_millis_from_seconds(); // seconds to wait
  3210. hasS = codenum > 0;
  3211. }
  3212. if (!hasP && !hasS && *args != '\0')
  3213. lcd_setstatus(args, true);
  3214. else {
  3215. LCD_MESSAGEPGM(MSG_USERWAIT);
  3216. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3217. dontExpireStatus();
  3218. #endif
  3219. }
  3220. lcd_ignore_click();
  3221. stepper.synchronize();
  3222. refresh_cmd_timeout();
  3223. if (codenum > 0) {
  3224. codenum += previous_cmd_ms; // wait until this time for a click
  3225. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3226. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3227. KEEPALIVE_STATE(IN_HANDLER);
  3228. lcd_ignore_click(false);
  3229. }
  3230. else {
  3231. if (!lcd_detected()) return;
  3232. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3233. while (!lcd_clicked()) idle();
  3234. KEEPALIVE_STATE(IN_HANDLER);
  3235. }
  3236. if (IS_SD_PRINTING)
  3237. LCD_MESSAGEPGM(MSG_RESUMING);
  3238. else
  3239. LCD_MESSAGEPGM(WELCOME_MSG);
  3240. }
  3241. #endif // ULTIPANEL
  3242. /**
  3243. * M17: Enable power on all stepper motors
  3244. */
  3245. inline void gcode_M17() {
  3246. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3247. enable_all_steppers();
  3248. }
  3249. #if ENABLED(SDSUPPORT)
  3250. /**
  3251. * M20: List SD card to serial output
  3252. */
  3253. inline void gcode_M20() {
  3254. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3255. card.ls();
  3256. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3257. }
  3258. /**
  3259. * M21: Init SD Card
  3260. */
  3261. inline void gcode_M21() {
  3262. card.initsd();
  3263. }
  3264. /**
  3265. * M22: Release SD Card
  3266. */
  3267. inline void gcode_M22() {
  3268. card.release();
  3269. }
  3270. /**
  3271. * M23: Open a file
  3272. */
  3273. inline void gcode_M23() {
  3274. card.openFile(current_command_args, true);
  3275. }
  3276. /**
  3277. * M24: Start SD Print
  3278. */
  3279. inline void gcode_M24() {
  3280. card.startFileprint();
  3281. print_job_timer.start();
  3282. }
  3283. /**
  3284. * M25: Pause SD Print
  3285. */
  3286. inline void gcode_M25() {
  3287. card.pauseSDPrint();
  3288. }
  3289. /**
  3290. * M26: Set SD Card file index
  3291. */
  3292. inline void gcode_M26() {
  3293. if (card.cardOK && code_seen('S'))
  3294. card.setIndex(code_value_long());
  3295. }
  3296. /**
  3297. * M27: Get SD Card status
  3298. */
  3299. inline void gcode_M27() {
  3300. card.getStatus();
  3301. }
  3302. /**
  3303. * M28: Start SD Write
  3304. */
  3305. inline void gcode_M28() {
  3306. card.openFile(current_command_args, false);
  3307. }
  3308. /**
  3309. * M29: Stop SD Write
  3310. * Processed in write to file routine above
  3311. */
  3312. inline void gcode_M29() {
  3313. // card.saving = false;
  3314. }
  3315. /**
  3316. * M30 <filename>: Delete SD Card file
  3317. */
  3318. inline void gcode_M30() {
  3319. if (card.cardOK) {
  3320. card.closefile();
  3321. card.removeFile(current_command_args);
  3322. }
  3323. }
  3324. #endif //SDSUPPORT
  3325. /**
  3326. * M31: Get the time since the start of SD Print (or last M109)
  3327. */
  3328. inline void gcode_M31() {
  3329. char buffer[21];
  3330. duration_t elapsed = print_job_timer.duration();
  3331. elapsed.toString(buffer);
  3332. lcd_setstatus(buffer);
  3333. SERIAL_ECHO_START;
  3334. SERIAL_ECHOPGM("Print time: ");
  3335. SERIAL_ECHOLN(buffer);
  3336. thermalManager.autotempShutdown();
  3337. }
  3338. #if ENABLED(SDSUPPORT)
  3339. /**
  3340. * M32: Select file and start SD Print
  3341. */
  3342. inline void gcode_M32() {
  3343. if (card.sdprinting)
  3344. stepper.synchronize();
  3345. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3346. if (!namestartpos)
  3347. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3348. else
  3349. namestartpos++; //to skip the '!'
  3350. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3351. if (card.cardOK) {
  3352. card.openFile(namestartpos, true, call_procedure);
  3353. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3354. card.setIndex(code_value_long());
  3355. card.startFileprint();
  3356. // Procedure calls count as normal print time.
  3357. if (!call_procedure) print_job_timer.start();
  3358. }
  3359. }
  3360. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3361. /**
  3362. * M33: Get the long full path of a file or folder
  3363. *
  3364. * Parameters:
  3365. * <dospath> Case-insensitive DOS-style path to a file or folder
  3366. *
  3367. * Example:
  3368. * M33 miscel~1/armchair/armcha~1.gco
  3369. *
  3370. * Output:
  3371. * /Miscellaneous/Armchair/Armchair.gcode
  3372. */
  3373. inline void gcode_M33() {
  3374. card.printLongPath(current_command_args);
  3375. }
  3376. #endif
  3377. /**
  3378. * M928: Start SD Write
  3379. */
  3380. inline void gcode_M928() {
  3381. card.openLogFile(current_command_args);
  3382. }
  3383. #endif // SDSUPPORT
  3384. /**
  3385. * M42: Change pin status via GCode
  3386. *
  3387. * P<pin> Pin number (LED if omitted)
  3388. * S<byte> Pin status from 0 - 255
  3389. */
  3390. inline void gcode_M42() {
  3391. if (!code_seen('S')) return;
  3392. int pin_status = code_value_int();
  3393. if (pin_status < 0 || pin_status > 255) return;
  3394. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3395. if (pin_number < 0) return;
  3396. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3397. if (pin_number == sensitive_pins[i]) return;
  3398. pinMode(pin_number, OUTPUT);
  3399. digitalWrite(pin_number, pin_status);
  3400. analogWrite(pin_number, pin_status);
  3401. #if FAN_COUNT > 0
  3402. switch (pin_number) {
  3403. #if HAS_FAN0
  3404. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3405. #endif
  3406. #if HAS_FAN1
  3407. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3408. #endif
  3409. #if HAS_FAN2
  3410. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3411. #endif
  3412. }
  3413. #endif
  3414. }
  3415. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3416. /**
  3417. * M48: Z probe repeatability measurement function.
  3418. *
  3419. * Usage:
  3420. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3421. * P = Number of sampled points (4-50, default 10)
  3422. * X = Sample X position
  3423. * Y = Sample Y position
  3424. * V = Verbose level (0-4, default=1)
  3425. * E = Engage Z probe for each reading
  3426. * L = Number of legs of movement before probe
  3427. * S = Schizoid (Or Star if you prefer)
  3428. *
  3429. * This function assumes the bed has been homed. Specifically, that a G28 command
  3430. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3431. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3432. * regenerated.
  3433. */
  3434. inline void gcode_M48() {
  3435. if (axis_unhomed_error(true, true, true)) return;
  3436. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3437. if (verbose_level < 0 || verbose_level > 4) {
  3438. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3439. return;
  3440. }
  3441. if (verbose_level > 0)
  3442. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3443. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3444. if (n_samples < 4 || n_samples > 50) {
  3445. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3446. return;
  3447. }
  3448. float X_current = current_position[X_AXIS],
  3449. Y_current = current_position[Y_AXIS];
  3450. bool stow_probe_after_each = code_seen('E');
  3451. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3452. #if DISABLED(DELTA)
  3453. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3454. out_of_range_error(PSTR("X"));
  3455. return;
  3456. }
  3457. #endif
  3458. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3459. #if DISABLED(DELTA)
  3460. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3461. out_of_range_error(PSTR("Y"));
  3462. return;
  3463. }
  3464. #else
  3465. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3466. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3467. return;
  3468. }
  3469. #endif
  3470. bool seen_L = code_seen('L');
  3471. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3472. if (n_legs > 15) {
  3473. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3474. return;
  3475. }
  3476. if (n_legs == 1) n_legs = 2;
  3477. bool schizoid_flag = code_seen('S');
  3478. if (schizoid_flag && !seen_L) n_legs = 7;
  3479. /**
  3480. * Now get everything to the specified probe point So we can safely do a
  3481. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3482. * we don't want to use that as a starting point for each probe.
  3483. */
  3484. if (verbose_level > 2)
  3485. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3486. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3487. // we don't do bed level correction in M48 because we want the raw data when we probe
  3488. reset_bed_level();
  3489. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3490. // we don't do bed level correction in M48 because we want the raw data when we probe
  3491. planner.bed_level_matrix.set_to_identity();
  3492. #endif
  3493. setup_for_endstop_or_probe_move();
  3494. // Move to the first point, deploy, and probe
  3495. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3496. randomSeed(millis());
  3497. double mean = 0, sigma = 0, sample_set[n_samples];
  3498. for (uint8_t n = 0; n < n_samples; n++) {
  3499. if (n_legs) {
  3500. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3501. float angle = random(0.0, 360.0),
  3502. radius = random(
  3503. #if ENABLED(DELTA)
  3504. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3505. #else
  3506. 5, X_MAX_LENGTH / 8
  3507. #endif
  3508. );
  3509. if (verbose_level > 3) {
  3510. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3511. SERIAL_ECHOPAIR(" angle: ", angle);
  3512. SERIAL_ECHOPGM(" Direction: ");
  3513. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3514. SERIAL_ECHOLNPGM("Clockwise");
  3515. }
  3516. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3517. double delta_angle;
  3518. if (schizoid_flag)
  3519. // The points of a 5 point star are 72 degrees apart. We need to
  3520. // skip a point and go to the next one on the star.
  3521. delta_angle = dir * 2.0 * 72.0;
  3522. else
  3523. // If we do this line, we are just trying to move further
  3524. // around the circle.
  3525. delta_angle = dir * (float) random(25, 45);
  3526. angle += delta_angle;
  3527. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3528. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3529. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3530. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3531. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3532. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3533. #if DISABLED(DELTA)
  3534. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3535. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3536. #else
  3537. // If we have gone out too far, we can do a simple fix and scale the numbers
  3538. // back in closer to the origin.
  3539. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3540. X_current /= 1.25;
  3541. Y_current /= 1.25;
  3542. if (verbose_level > 3) {
  3543. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3544. SERIAL_ECHOLNPAIR(", ", Y_current);
  3545. }
  3546. }
  3547. #endif
  3548. if (verbose_level > 3) {
  3549. SERIAL_PROTOCOLPGM("Going to:");
  3550. SERIAL_ECHOPAIR(" X", X_current);
  3551. SERIAL_ECHOPAIR(" Y", Y_current);
  3552. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3553. }
  3554. do_blocking_move_to_xy(X_current, Y_current);
  3555. } // n_legs loop
  3556. } // n_legs
  3557. // Probe a single point
  3558. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3559. /**
  3560. * Get the current mean for the data points we have so far
  3561. */
  3562. double sum = 0.0;
  3563. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3564. mean = sum / (n + 1);
  3565. /**
  3566. * Now, use that mean to calculate the standard deviation for the
  3567. * data points we have so far
  3568. */
  3569. sum = 0.0;
  3570. for (uint8_t j = 0; j <= n; j++)
  3571. sum += sq(sample_set[j] - mean);
  3572. sigma = sqrt(sum / (n + 1));
  3573. if (verbose_level > 0) {
  3574. if (verbose_level > 1) {
  3575. SERIAL_PROTOCOL(n + 1);
  3576. SERIAL_PROTOCOLPGM(" of ");
  3577. SERIAL_PROTOCOL((int)n_samples);
  3578. SERIAL_PROTOCOLPGM(" z: ");
  3579. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3580. if (verbose_level > 2) {
  3581. SERIAL_PROTOCOLPGM(" mean: ");
  3582. SERIAL_PROTOCOL_F(mean, 6);
  3583. SERIAL_PROTOCOLPGM(" sigma: ");
  3584. SERIAL_PROTOCOL_F(sigma, 6);
  3585. }
  3586. }
  3587. SERIAL_EOL;
  3588. }
  3589. } // End of probe loop
  3590. if (STOW_PROBE()) return;
  3591. if (verbose_level > 0) {
  3592. SERIAL_PROTOCOLPGM("Mean: ");
  3593. SERIAL_PROTOCOL_F(mean, 6);
  3594. SERIAL_EOL;
  3595. }
  3596. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3597. SERIAL_PROTOCOL_F(sigma, 6);
  3598. SERIAL_EOL; SERIAL_EOL;
  3599. clean_up_after_endstop_or_probe_move();
  3600. report_current_position();
  3601. }
  3602. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3603. /**
  3604. * M75: Start print timer
  3605. */
  3606. inline void gcode_M75() { print_job_timer.start(); }
  3607. /**
  3608. * M76: Pause print timer
  3609. */
  3610. inline void gcode_M76() { print_job_timer.pause(); }
  3611. /**
  3612. * M77: Stop print timer
  3613. */
  3614. inline void gcode_M77() { print_job_timer.stop(); }
  3615. #if ENABLED(PRINTCOUNTER)
  3616. /**
  3617. * M78: Show print statistics
  3618. */
  3619. inline void gcode_M78() {
  3620. // "M78 S78" will reset the statistics
  3621. if (code_seen('S') && code_value_int() == 78)
  3622. print_job_timer.initStats();
  3623. else print_job_timer.showStats();
  3624. }
  3625. #endif
  3626. /**
  3627. * M104: Set hot end temperature
  3628. */
  3629. inline void gcode_M104() {
  3630. if (get_target_extruder_from_command(104)) return;
  3631. if (DEBUGGING(DRYRUN)) return;
  3632. #if ENABLED(SINGLENOZZLE)
  3633. if (target_extruder != active_extruder) return;
  3634. #endif
  3635. if (code_seen('S')) {
  3636. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3637. #if ENABLED(DUAL_X_CARRIAGE)
  3638. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3639. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3640. #endif
  3641. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3642. /**
  3643. * Stop the timer at the end of print, starting is managed by
  3644. * 'heat and wait' M109.
  3645. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3646. * stand by mode, for instance in a dual extruder setup, without affecting
  3647. * the running print timer.
  3648. */
  3649. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3650. print_job_timer.stop();
  3651. LCD_MESSAGEPGM(WELCOME_MSG);
  3652. }
  3653. #endif
  3654. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3655. }
  3656. }
  3657. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3658. void print_heaterstates() {
  3659. #if HAS_TEMP_HOTEND
  3660. SERIAL_PROTOCOLPGM(" T:");
  3661. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3662. SERIAL_PROTOCOLPGM(" /");
  3663. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3664. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3665. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3666. SERIAL_CHAR(')');
  3667. #endif
  3668. #endif
  3669. #if HAS_TEMP_BED
  3670. SERIAL_PROTOCOLPGM(" B:");
  3671. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3672. SERIAL_PROTOCOLPGM(" /");
  3673. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3674. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3675. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3676. SERIAL_CHAR(')');
  3677. #endif
  3678. #endif
  3679. #if HOTENDS > 1
  3680. HOTEND_LOOP() {
  3681. SERIAL_PROTOCOLPAIR(" T", e);
  3682. SERIAL_PROTOCOLCHAR(':');
  3683. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3684. SERIAL_PROTOCOLPGM(" /");
  3685. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3686. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3687. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3688. SERIAL_CHAR(')');
  3689. #endif
  3690. }
  3691. #endif
  3692. SERIAL_PROTOCOLPGM(" @:");
  3693. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3694. #if HAS_TEMP_BED
  3695. SERIAL_PROTOCOLPGM(" B@:");
  3696. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3697. #endif
  3698. #if HOTENDS > 1
  3699. HOTEND_LOOP() {
  3700. SERIAL_PROTOCOLPAIR(" @", e);
  3701. SERIAL_PROTOCOLCHAR(':');
  3702. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3703. }
  3704. #endif
  3705. }
  3706. #endif
  3707. /**
  3708. * M105: Read hot end and bed temperature
  3709. */
  3710. inline void gcode_M105() {
  3711. if (get_target_extruder_from_command(105)) return;
  3712. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3713. SERIAL_PROTOCOLPGM(MSG_OK);
  3714. print_heaterstates();
  3715. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3716. SERIAL_ERROR_START;
  3717. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3718. #endif
  3719. SERIAL_EOL;
  3720. }
  3721. #if FAN_COUNT > 0
  3722. /**
  3723. * M106: Set Fan Speed
  3724. *
  3725. * S<int> Speed between 0-255
  3726. * P<index> Fan index, if more than one fan
  3727. */
  3728. inline void gcode_M106() {
  3729. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3730. p = code_seen('P') ? code_value_ushort() : 0;
  3731. NOMORE(s, 255);
  3732. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3733. }
  3734. /**
  3735. * M107: Fan Off
  3736. */
  3737. inline void gcode_M107() {
  3738. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3739. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3740. }
  3741. #endif // FAN_COUNT > 0
  3742. #if DISABLED(EMERGENCY_PARSER)
  3743. /**
  3744. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3745. */
  3746. inline void gcode_M108() { wait_for_heatup = false; }
  3747. /**
  3748. * M112: Emergency Stop
  3749. */
  3750. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3751. /**
  3752. * M410: Quickstop - Abort all planned moves
  3753. *
  3754. * This will stop the carriages mid-move, so most likely they
  3755. * will be out of sync with the stepper position after this.
  3756. */
  3757. inline void gcode_M410() { quickstop_stepper(); }
  3758. #endif
  3759. #ifndef MIN_COOLING_SLOPE_DEG
  3760. #define MIN_COOLING_SLOPE_DEG 1.50
  3761. #endif
  3762. #ifndef MIN_COOLING_SLOPE_TIME
  3763. #define MIN_COOLING_SLOPE_TIME 60
  3764. #endif
  3765. /**
  3766. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3767. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3768. */
  3769. inline void gcode_M109() {
  3770. if (get_target_extruder_from_command(109)) return;
  3771. if (DEBUGGING(DRYRUN)) return;
  3772. #if ENABLED(SINGLENOZZLE)
  3773. if (target_extruder != active_extruder) return;
  3774. #endif
  3775. bool no_wait_for_cooling = code_seen('S');
  3776. if (no_wait_for_cooling || code_seen('R')) {
  3777. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3778. #if ENABLED(DUAL_X_CARRIAGE)
  3779. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3780. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3781. #endif
  3782. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3783. /**
  3784. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3785. * stand by mode, for instance in a dual extruder setup, without affecting
  3786. * the running print timer.
  3787. */
  3788. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3789. print_job_timer.stop();
  3790. LCD_MESSAGEPGM(WELCOME_MSG);
  3791. }
  3792. /**
  3793. * We do not check if the timer is already running because this check will
  3794. * be done for us inside the Stopwatch::start() method thus a running timer
  3795. * will not restart.
  3796. */
  3797. else print_job_timer.start();
  3798. #endif
  3799. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3800. }
  3801. #if ENABLED(AUTOTEMP)
  3802. planner.autotemp_M109();
  3803. #endif
  3804. #if TEMP_RESIDENCY_TIME > 0
  3805. millis_t residency_start_ms = 0;
  3806. // Loop until the temperature has stabilized
  3807. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3808. #else
  3809. // Loop until the temperature is very close target
  3810. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3811. #endif //TEMP_RESIDENCY_TIME > 0
  3812. float theTarget = -1.0, old_temp = 9999.0;
  3813. bool wants_to_cool = false;
  3814. wait_for_heatup = true;
  3815. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3816. KEEPALIVE_STATE(NOT_BUSY);
  3817. do {
  3818. // Target temperature might be changed during the loop
  3819. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3820. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3821. theTarget = thermalManager.degTargetHotend(target_extruder);
  3822. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3823. if (no_wait_for_cooling && wants_to_cool) break;
  3824. }
  3825. now = millis();
  3826. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3827. next_temp_ms = now + 1000UL;
  3828. print_heaterstates();
  3829. #if TEMP_RESIDENCY_TIME > 0
  3830. SERIAL_PROTOCOLPGM(" W:");
  3831. if (residency_start_ms) {
  3832. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3833. SERIAL_PROTOCOLLN(rem);
  3834. }
  3835. else {
  3836. SERIAL_PROTOCOLLNPGM("?");
  3837. }
  3838. #else
  3839. SERIAL_EOL;
  3840. #endif
  3841. }
  3842. idle();
  3843. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3844. float temp = thermalManager.degHotend(target_extruder);
  3845. #if TEMP_RESIDENCY_TIME > 0
  3846. float temp_diff = fabs(theTarget - temp);
  3847. if (!residency_start_ms) {
  3848. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3849. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3850. }
  3851. else if (temp_diff > TEMP_HYSTERESIS) {
  3852. // Restart the timer whenever the temperature falls outside the hysteresis.
  3853. residency_start_ms = now;
  3854. }
  3855. #endif //TEMP_RESIDENCY_TIME > 0
  3856. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3857. if (wants_to_cool) {
  3858. // break after MIN_COOLING_SLOPE_TIME seconds
  3859. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3860. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3861. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3862. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3863. old_temp = temp;
  3864. }
  3865. }
  3866. } while (wait_for_heatup && TEMP_CONDITIONS);
  3867. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3868. KEEPALIVE_STATE(IN_HANDLER);
  3869. }
  3870. #if HAS_TEMP_BED
  3871. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3872. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3873. #endif
  3874. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3875. #define MIN_COOLING_SLOPE_TIME_BED 60
  3876. #endif
  3877. /**
  3878. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3879. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3880. */
  3881. inline void gcode_M190() {
  3882. if (DEBUGGING(DRYRUN)) return;
  3883. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3884. bool no_wait_for_cooling = code_seen('S');
  3885. if (no_wait_for_cooling || code_seen('R')) {
  3886. thermalManager.setTargetBed(code_value_temp_abs());
  3887. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3888. if (code_value_temp_abs() > BED_MINTEMP) {
  3889. /**
  3890. * We start the timer when 'heating and waiting' command arrives, LCD
  3891. * functions never wait. Cooling down managed by extruders.
  3892. *
  3893. * We do not check if the timer is already running because this check will
  3894. * be done for us inside the Stopwatch::start() method thus a running timer
  3895. * will not restart.
  3896. */
  3897. print_job_timer.start();
  3898. }
  3899. #endif
  3900. }
  3901. #if TEMP_BED_RESIDENCY_TIME > 0
  3902. millis_t residency_start_ms = 0;
  3903. // Loop until the temperature has stabilized
  3904. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3905. #else
  3906. // Loop until the temperature is very close target
  3907. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3908. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3909. float theTarget = -1.0, old_temp = 9999.0;
  3910. bool wants_to_cool = false;
  3911. wait_for_heatup = true;
  3912. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3913. KEEPALIVE_STATE(NOT_BUSY);
  3914. target_extruder = active_extruder; // for print_heaterstates
  3915. do {
  3916. // Target temperature might be changed during the loop
  3917. if (theTarget != thermalManager.degTargetBed()) {
  3918. wants_to_cool = thermalManager.isCoolingBed();
  3919. theTarget = thermalManager.degTargetBed();
  3920. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3921. if (no_wait_for_cooling && wants_to_cool) break;
  3922. }
  3923. now = millis();
  3924. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3925. next_temp_ms = now + 1000UL;
  3926. print_heaterstates();
  3927. #if TEMP_BED_RESIDENCY_TIME > 0
  3928. SERIAL_PROTOCOLPGM(" W:");
  3929. if (residency_start_ms) {
  3930. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3931. SERIAL_PROTOCOLLN(rem);
  3932. }
  3933. else {
  3934. SERIAL_PROTOCOLLNPGM("?");
  3935. }
  3936. #else
  3937. SERIAL_EOL;
  3938. #endif
  3939. }
  3940. idle();
  3941. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3942. float temp = thermalManager.degBed();
  3943. #if TEMP_BED_RESIDENCY_TIME > 0
  3944. float temp_diff = fabs(theTarget - temp);
  3945. if (!residency_start_ms) {
  3946. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3947. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3948. }
  3949. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3950. // Restart the timer whenever the temperature falls outside the hysteresis.
  3951. residency_start_ms = now;
  3952. }
  3953. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3954. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3955. if (wants_to_cool) {
  3956. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  3957. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  3958. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3959. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  3960. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  3961. old_temp = temp;
  3962. }
  3963. }
  3964. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  3965. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  3966. KEEPALIVE_STATE(IN_HANDLER);
  3967. }
  3968. #endif // HAS_TEMP_BED
  3969. /**
  3970. * M110: Set Current Line Number
  3971. */
  3972. inline void gcode_M110() {
  3973. if (code_seen('N')) gcode_N = code_value_long();
  3974. }
  3975. /**
  3976. * M111: Set the debug level
  3977. */
  3978. inline void gcode_M111() {
  3979. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  3980. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3981. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3982. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3983. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3984. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3986. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3987. #endif
  3988. const static char* const debug_strings[] PROGMEM = {
  3989. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3990. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3991. str_debug_32
  3992. #endif
  3993. };
  3994. SERIAL_ECHO_START;
  3995. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3996. if (marlin_debug_flags) {
  3997. uint8_t comma = 0;
  3998. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3999. if (TEST(marlin_debug_flags, i)) {
  4000. if (comma++) SERIAL_CHAR(',');
  4001. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4002. }
  4003. }
  4004. }
  4005. else {
  4006. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4007. }
  4008. SERIAL_EOL;
  4009. }
  4010. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4011. /**
  4012. * M113: Get or set Host Keepalive interval (0 to disable)
  4013. *
  4014. * S<seconds> Optional. Set the keepalive interval.
  4015. */
  4016. inline void gcode_M113() {
  4017. if (code_seen('S')) {
  4018. host_keepalive_interval = code_value_byte();
  4019. NOMORE(host_keepalive_interval, 60);
  4020. }
  4021. else {
  4022. SERIAL_ECHO_START;
  4023. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4024. }
  4025. }
  4026. #endif
  4027. #if ENABLED(BARICUDA)
  4028. #if HAS_HEATER_1
  4029. /**
  4030. * M126: Heater 1 valve open
  4031. */
  4032. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4033. /**
  4034. * M127: Heater 1 valve close
  4035. */
  4036. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4037. #endif
  4038. #if HAS_HEATER_2
  4039. /**
  4040. * M128: Heater 2 valve open
  4041. */
  4042. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4043. /**
  4044. * M129: Heater 2 valve close
  4045. */
  4046. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4047. #endif
  4048. #endif //BARICUDA
  4049. /**
  4050. * M140: Set bed temperature
  4051. */
  4052. inline void gcode_M140() {
  4053. if (DEBUGGING(DRYRUN)) return;
  4054. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4055. }
  4056. #if ENABLED(ULTIPANEL)
  4057. /**
  4058. * M145: Set the heatup state for a material in the LCD menu
  4059. * S<material> (0=PLA, 1=ABS)
  4060. * H<hotend temp>
  4061. * B<bed temp>
  4062. * F<fan speed>
  4063. */
  4064. inline void gcode_M145() {
  4065. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4066. if (material < 0 || material > 1) {
  4067. SERIAL_ERROR_START;
  4068. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4069. }
  4070. else {
  4071. int v;
  4072. switch (material) {
  4073. case 0:
  4074. if (code_seen('H')) {
  4075. v = code_value_int();
  4076. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4077. }
  4078. if (code_seen('F')) {
  4079. v = code_value_int();
  4080. preheatFanSpeed1 = constrain(v, 0, 255);
  4081. }
  4082. #if TEMP_SENSOR_BED != 0
  4083. if (code_seen('B')) {
  4084. v = code_value_int();
  4085. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4086. }
  4087. #endif
  4088. break;
  4089. case 1:
  4090. if (code_seen('H')) {
  4091. v = code_value_int();
  4092. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4093. }
  4094. if (code_seen('F')) {
  4095. v = code_value_int();
  4096. preheatFanSpeed2 = constrain(v, 0, 255);
  4097. }
  4098. #if TEMP_SENSOR_BED != 0
  4099. if (code_seen('B')) {
  4100. v = code_value_int();
  4101. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4102. }
  4103. #endif
  4104. break;
  4105. }
  4106. }
  4107. }
  4108. #endif
  4109. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4110. /**
  4111. * M149: Set temperature units
  4112. */
  4113. inline void gcode_M149() {
  4114. if (code_seen('C')) {
  4115. set_input_temp_units(TEMPUNIT_C);
  4116. } else if (code_seen('K')) {
  4117. set_input_temp_units(TEMPUNIT_K);
  4118. } else if (code_seen('F')) {
  4119. set_input_temp_units(TEMPUNIT_F);
  4120. }
  4121. }
  4122. #endif
  4123. #if HAS_POWER_SWITCH
  4124. /**
  4125. * M80: Turn on Power Supply
  4126. */
  4127. inline void gcode_M80() {
  4128. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4129. /**
  4130. * If you have a switch on suicide pin, this is useful
  4131. * if you want to start another print with suicide feature after
  4132. * a print without suicide...
  4133. */
  4134. #if HAS_SUICIDE
  4135. OUT_WRITE(SUICIDE_PIN, HIGH);
  4136. #endif
  4137. #if ENABLED(ULTIPANEL)
  4138. powersupply = true;
  4139. LCD_MESSAGEPGM(WELCOME_MSG);
  4140. lcd_update();
  4141. #endif
  4142. }
  4143. #endif // HAS_POWER_SWITCH
  4144. /**
  4145. * M81: Turn off Power, including Power Supply, if there is one.
  4146. *
  4147. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4148. */
  4149. inline void gcode_M81() {
  4150. thermalManager.disable_all_heaters();
  4151. stepper.finish_and_disable();
  4152. #if FAN_COUNT > 0
  4153. #if FAN_COUNT > 1
  4154. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4155. #else
  4156. fanSpeeds[0] = 0;
  4157. #endif
  4158. #endif
  4159. delay(1000); // Wait 1 second before switching off
  4160. #if HAS_SUICIDE
  4161. stepper.synchronize();
  4162. suicide();
  4163. #elif HAS_POWER_SWITCH
  4164. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4165. #endif
  4166. #if ENABLED(ULTIPANEL)
  4167. #if HAS_POWER_SWITCH
  4168. powersupply = false;
  4169. #endif
  4170. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4171. lcd_update();
  4172. #endif
  4173. }
  4174. /**
  4175. * M82: Set E codes absolute (default)
  4176. */
  4177. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4178. /**
  4179. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4180. */
  4181. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4182. /**
  4183. * M18, M84: Disable all stepper motors
  4184. */
  4185. inline void gcode_M18_M84() {
  4186. if (code_seen('S')) {
  4187. stepper_inactive_time = code_value_millis_from_seconds();
  4188. }
  4189. else {
  4190. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4191. if (all_axis) {
  4192. stepper.finish_and_disable();
  4193. }
  4194. else {
  4195. stepper.synchronize();
  4196. if (code_seen('X')) disable_x();
  4197. if (code_seen('Y')) disable_y();
  4198. if (code_seen('Z')) disable_z();
  4199. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4200. if (code_seen('E')) {
  4201. disable_e0();
  4202. disable_e1();
  4203. disable_e2();
  4204. disable_e3();
  4205. }
  4206. #endif
  4207. }
  4208. }
  4209. }
  4210. /**
  4211. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4212. */
  4213. inline void gcode_M85() {
  4214. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4215. }
  4216. /**
  4217. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4218. * (Follows the same syntax as G92)
  4219. */
  4220. inline void gcode_M92() {
  4221. LOOP_XYZE(i) {
  4222. if (code_seen(axis_codes[i])) {
  4223. if (i == E_AXIS) {
  4224. float value = code_value_per_axis_unit(i);
  4225. if (value < 20.0) {
  4226. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4227. planner.max_e_jerk *= factor;
  4228. planner.max_feedrate_mm_s[i] *= factor;
  4229. planner.max_acceleration_steps_per_s2[i] *= factor;
  4230. }
  4231. planner.axis_steps_per_mm[i] = value;
  4232. }
  4233. else {
  4234. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4235. }
  4236. }
  4237. }
  4238. planner.refresh_positioning();
  4239. }
  4240. /**
  4241. * Output the current position to serial
  4242. */
  4243. static void report_current_position() {
  4244. SERIAL_PROTOCOLPGM("X:");
  4245. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4246. SERIAL_PROTOCOLPGM(" Y:");
  4247. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4248. SERIAL_PROTOCOLPGM(" Z:");
  4249. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4250. SERIAL_PROTOCOLPGM(" E:");
  4251. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4252. stepper.report_positions();
  4253. #if ENABLED(SCARA)
  4254. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4255. SERIAL_PROTOCOL(delta[X_AXIS]);
  4256. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4257. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4258. SERIAL_EOL;
  4259. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4260. SERIAL_PROTOCOL(delta[X_AXIS]);
  4261. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4262. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
  4263. SERIAL_EOL;
  4264. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4265. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4266. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4267. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4268. SERIAL_EOL; SERIAL_EOL;
  4269. #endif
  4270. }
  4271. /**
  4272. * M114: Output current position to serial port
  4273. */
  4274. inline void gcode_M114() { report_current_position(); }
  4275. /**
  4276. * M115: Capabilities string
  4277. */
  4278. inline void gcode_M115() {
  4279. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4280. }
  4281. /**
  4282. * M117: Set LCD Status Message
  4283. */
  4284. inline void gcode_M117() {
  4285. lcd_setstatus(current_command_args);
  4286. }
  4287. /**
  4288. * M119: Output endstop states to serial output
  4289. */
  4290. inline void gcode_M119() { endstops.M119(); }
  4291. /**
  4292. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4293. */
  4294. inline void gcode_M120() { endstops.enable_globally(true); }
  4295. /**
  4296. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4297. */
  4298. inline void gcode_M121() { endstops.enable_globally(false); }
  4299. #if ENABLED(BLINKM)
  4300. /**
  4301. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4302. */
  4303. inline void gcode_M150() {
  4304. SendColors(
  4305. code_seen('R') ? code_value_byte() : 0,
  4306. code_seen('U') ? code_value_byte() : 0,
  4307. code_seen('B') ? code_value_byte() : 0
  4308. );
  4309. }
  4310. #endif // BLINKM
  4311. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4312. /**
  4313. * M155: Send data to a I2C slave device
  4314. *
  4315. * This is a PoC, the formating and arguments for the GCODE will
  4316. * change to be more compatible, the current proposal is:
  4317. *
  4318. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4319. *
  4320. * M155 B<byte-1 value in base 10>
  4321. * M155 B<byte-2 value in base 10>
  4322. * M155 B<byte-3 value in base 10>
  4323. *
  4324. * M155 S1 ; Send the buffered data and reset the buffer
  4325. * M155 R1 ; Reset the buffer without sending data
  4326. *
  4327. */
  4328. inline void gcode_M155() {
  4329. // Set the target address
  4330. if (code_seen('A')) i2c.address(code_value_byte());
  4331. // Add a new byte to the buffer
  4332. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4333. // Flush the buffer to the bus
  4334. if (code_seen('S')) i2c.send();
  4335. // Reset and rewind the buffer
  4336. else if (code_seen('R')) i2c.reset();
  4337. }
  4338. /**
  4339. * M156: Request X bytes from I2C slave device
  4340. *
  4341. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4342. */
  4343. inline void gcode_M156() {
  4344. if (code_seen('A')) i2c.address(code_value_byte());
  4345. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4346. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4347. i2c.relay(bytes);
  4348. }
  4349. else {
  4350. SERIAL_ERROR_START;
  4351. SERIAL_ERRORLN("Bad i2c request");
  4352. }
  4353. }
  4354. #endif // EXPERIMENTAL_I2CBUS
  4355. /**
  4356. * M200: Set filament diameter and set E axis units to cubic units
  4357. *
  4358. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4359. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4360. */
  4361. inline void gcode_M200() {
  4362. if (get_target_extruder_from_command(200)) return;
  4363. if (code_seen('D')) {
  4364. // setting any extruder filament size disables volumetric on the assumption that
  4365. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4366. // for all extruders
  4367. volumetric_enabled = (code_value_linear_units() != 0.0);
  4368. if (volumetric_enabled) {
  4369. filament_size[target_extruder] = code_value_linear_units();
  4370. // make sure all extruders have some sane value for the filament size
  4371. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4372. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4373. }
  4374. }
  4375. else {
  4376. //reserved for setting filament diameter via UFID or filament measuring device
  4377. return;
  4378. }
  4379. calculate_volumetric_multipliers();
  4380. }
  4381. /**
  4382. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4383. */
  4384. inline void gcode_M201() {
  4385. LOOP_XYZE(i) {
  4386. if (code_seen(axis_codes[i])) {
  4387. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4388. }
  4389. }
  4390. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4391. planner.reset_acceleration_rates();
  4392. }
  4393. #if 0 // Not used for Sprinter/grbl gen6
  4394. inline void gcode_M202() {
  4395. LOOP_XYZE(i) {
  4396. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4397. }
  4398. }
  4399. #endif
  4400. /**
  4401. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4402. */
  4403. inline void gcode_M203() {
  4404. LOOP_XYZE(i)
  4405. if (code_seen(axis_codes[i]))
  4406. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4407. }
  4408. /**
  4409. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4410. *
  4411. * P = Printing moves
  4412. * R = Retract only (no X, Y, Z) moves
  4413. * T = Travel (non printing) moves
  4414. *
  4415. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4416. */
  4417. inline void gcode_M204() {
  4418. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4419. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4420. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4421. }
  4422. if (code_seen('P')) {
  4423. planner.acceleration = code_value_linear_units();
  4424. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4425. }
  4426. if (code_seen('R')) {
  4427. planner.retract_acceleration = code_value_linear_units();
  4428. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4429. }
  4430. if (code_seen('T')) {
  4431. planner.travel_acceleration = code_value_linear_units();
  4432. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4433. }
  4434. }
  4435. /**
  4436. * M205: Set Advanced Settings
  4437. *
  4438. * S = Min Feed Rate (units/s)
  4439. * T = Min Travel Feed Rate (units/s)
  4440. * B = Min Segment Time (µs)
  4441. * X = Max XY Jerk (units/sec^2)
  4442. * Z = Max Z Jerk (units/sec^2)
  4443. * E = Max E Jerk (units/sec^2)
  4444. */
  4445. inline void gcode_M205() {
  4446. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4447. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4448. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4449. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4450. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4451. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4452. }
  4453. /**
  4454. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4455. */
  4456. inline void gcode_M206() {
  4457. LOOP_XYZ(i)
  4458. if (code_seen(axis_codes[i]))
  4459. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4460. #if ENABLED(SCARA)
  4461. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4462. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4463. #endif
  4464. SYNC_PLAN_POSITION_KINEMATIC();
  4465. report_current_position();
  4466. }
  4467. #if ENABLED(DELTA)
  4468. /**
  4469. * M665: Set delta configurations
  4470. *
  4471. * L = diagonal rod
  4472. * R = delta radius
  4473. * S = segments per second
  4474. * A = Alpha (Tower 1) diagonal rod trim
  4475. * B = Beta (Tower 2) diagonal rod trim
  4476. * C = Gamma (Tower 3) diagonal rod trim
  4477. */
  4478. inline void gcode_M665() {
  4479. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4480. if (code_seen('R')) delta_radius = code_value_linear_units();
  4481. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4482. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4483. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4484. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4485. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4486. }
  4487. /**
  4488. * M666: Set delta endstop adjustment
  4489. */
  4490. inline void gcode_M666() {
  4491. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4492. if (DEBUGGING(LEVELING)) {
  4493. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4494. }
  4495. #endif
  4496. LOOP_XYZ(i) {
  4497. if (code_seen(axis_codes[i])) {
  4498. endstop_adj[i] = code_value_axis_units(i);
  4499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4500. if (DEBUGGING(LEVELING)) {
  4501. SERIAL_ECHOPGM("endstop_adj[");
  4502. SERIAL_ECHO(axis_codes[i]);
  4503. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4504. }
  4505. #endif
  4506. }
  4507. }
  4508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4509. if (DEBUGGING(LEVELING)) {
  4510. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4511. }
  4512. #endif
  4513. }
  4514. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4515. /**
  4516. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4517. */
  4518. inline void gcode_M666() {
  4519. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4520. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4521. }
  4522. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4523. #if ENABLED(FWRETRACT)
  4524. /**
  4525. * M207: Set firmware retraction values
  4526. *
  4527. * S[+units] retract_length
  4528. * W[+units] retract_length_swap (multi-extruder)
  4529. * F[units/min] retract_feedrate_mm_s
  4530. * Z[units] retract_zlift
  4531. */
  4532. inline void gcode_M207() {
  4533. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4534. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4535. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4536. #if EXTRUDERS > 1
  4537. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4538. #endif
  4539. }
  4540. /**
  4541. * M208: Set firmware un-retraction values
  4542. *
  4543. * S[+units] retract_recover_length (in addition to M207 S*)
  4544. * W[+units] retract_recover_length_swap (multi-extruder)
  4545. * F[units/min] retract_recover_feedrate_mm_s
  4546. */
  4547. inline void gcode_M208() {
  4548. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4549. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4550. #if EXTRUDERS > 1
  4551. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4552. #endif
  4553. }
  4554. /**
  4555. * M209: Enable automatic retract (M209 S1)
  4556. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4557. */
  4558. inline void gcode_M209() {
  4559. if (code_seen('S')) {
  4560. autoretract_enabled = code_value_bool();
  4561. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4562. }
  4563. }
  4564. #endif // FWRETRACT
  4565. /**
  4566. * M211: Enable, Disable, and/or Report software endstops
  4567. *
  4568. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4569. */
  4570. inline void gcode_M211() {
  4571. SERIAL_ECHO_START;
  4572. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4573. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4574. #endif
  4575. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4576. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": ");
  4577. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4578. #else
  4579. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": " MSG_OFF);
  4580. #endif
  4581. SERIAL_ECHOPGM(" " MSG_SOFT_MIN ": ");
  4582. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4583. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4584. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4585. SERIAL_ECHOPGM(" " MSG_SOFT_MAX ": ");
  4586. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4587. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4588. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4589. }
  4590. #if HOTENDS > 1
  4591. /**
  4592. * M218 - set hotend offset (in linear units)
  4593. *
  4594. * T<tool>
  4595. * X<xoffset>
  4596. * Y<yoffset>
  4597. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4598. */
  4599. inline void gcode_M218() {
  4600. if (get_target_extruder_from_command(218)) return;
  4601. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4602. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4603. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4604. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4605. #endif
  4606. SERIAL_ECHO_START;
  4607. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4608. HOTEND_LOOP() {
  4609. SERIAL_CHAR(' ');
  4610. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4611. SERIAL_CHAR(',');
  4612. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4613. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4614. SERIAL_CHAR(',');
  4615. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4616. #endif
  4617. }
  4618. SERIAL_EOL;
  4619. }
  4620. #endif // HOTENDS > 1
  4621. /**
  4622. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4623. */
  4624. inline void gcode_M220() {
  4625. if (code_seen('S')) feedrate_percentage = code_value_int();
  4626. }
  4627. /**
  4628. * M221: Set extrusion percentage (M221 T0 S95)
  4629. */
  4630. inline void gcode_M221() {
  4631. if (get_target_extruder_from_command(221)) return;
  4632. if (code_seen('S'))
  4633. flow_percentage[target_extruder] = code_value_int();
  4634. }
  4635. /**
  4636. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4637. */
  4638. inline void gcode_M226() {
  4639. if (code_seen('P')) {
  4640. int pin_number = code_value_int();
  4641. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4642. if (pin_state >= -1 && pin_state <= 1) {
  4643. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4644. if (sensitive_pins[i] == pin_number) {
  4645. pin_number = -1;
  4646. break;
  4647. }
  4648. }
  4649. if (pin_number > -1) {
  4650. int target = LOW;
  4651. stepper.synchronize();
  4652. pinMode(pin_number, INPUT);
  4653. switch (pin_state) {
  4654. case 1:
  4655. target = HIGH;
  4656. break;
  4657. case 0:
  4658. target = LOW;
  4659. break;
  4660. case -1:
  4661. target = !digitalRead(pin_number);
  4662. break;
  4663. }
  4664. while (digitalRead(pin_number) != target) idle();
  4665. } // pin_number > -1
  4666. } // pin_state -1 0 1
  4667. } // code_seen('P')
  4668. }
  4669. #if HAS_SERVOS
  4670. /**
  4671. * M280: Get or set servo position. P<index> [S<angle>]
  4672. */
  4673. inline void gcode_M280() {
  4674. if (!code_seen('P')) return;
  4675. int servo_index = code_value_int();
  4676. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4677. if (code_seen('S'))
  4678. MOVE_SERVO(servo_index, code_value_int());
  4679. else {
  4680. SERIAL_ECHO_START;
  4681. SERIAL_ECHOPGM(" Servo ");
  4682. SERIAL_ECHO(servo_index);
  4683. SERIAL_ECHOPGM(": ");
  4684. SERIAL_ECHOLN(servo[servo_index].read());
  4685. }
  4686. }
  4687. else {
  4688. SERIAL_ERROR_START;
  4689. SERIAL_ERROR("Servo ");
  4690. SERIAL_ERROR(servo_index);
  4691. SERIAL_ERRORLN(" out of range");
  4692. }
  4693. }
  4694. #endif // HAS_SERVOS
  4695. #if HAS_BUZZER
  4696. /**
  4697. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4698. */
  4699. inline void gcode_M300() {
  4700. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4701. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4702. // Limits the tone duration to 0-5 seconds.
  4703. NOMORE(duration, 5000);
  4704. BUZZ(duration, frequency);
  4705. }
  4706. #endif // HAS_BUZZER
  4707. #if ENABLED(PIDTEMP)
  4708. /**
  4709. * M301: Set PID parameters P I D (and optionally C, L)
  4710. *
  4711. * P[float] Kp term
  4712. * I[float] Ki term (unscaled)
  4713. * D[float] Kd term (unscaled)
  4714. *
  4715. * With PID_EXTRUSION_SCALING:
  4716. *
  4717. * C[float] Kc term
  4718. * L[float] LPQ length
  4719. */
  4720. inline void gcode_M301() {
  4721. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4722. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4723. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4724. if (e < HOTENDS) { // catch bad input value
  4725. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4726. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4727. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4728. #if ENABLED(PID_EXTRUSION_SCALING)
  4729. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4730. if (code_seen('L')) lpq_len = code_value_float();
  4731. NOMORE(lpq_len, LPQ_MAX_LEN);
  4732. #endif
  4733. thermalManager.updatePID();
  4734. SERIAL_ECHO_START;
  4735. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4736. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4737. SERIAL_ECHO(e);
  4738. #endif // PID_PARAMS_PER_HOTEND
  4739. SERIAL_ECHOPGM(" p:");
  4740. SERIAL_ECHO(PID_PARAM(Kp, e));
  4741. SERIAL_ECHOPGM(" i:");
  4742. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4743. SERIAL_ECHOPGM(" d:");
  4744. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4745. #if ENABLED(PID_EXTRUSION_SCALING)
  4746. SERIAL_ECHOPGM(" c:");
  4747. //Kc does not have scaling applied above, or in resetting defaults
  4748. SERIAL_ECHO(PID_PARAM(Kc, e));
  4749. #endif
  4750. SERIAL_EOL;
  4751. }
  4752. else {
  4753. SERIAL_ERROR_START;
  4754. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4755. }
  4756. }
  4757. #endif // PIDTEMP
  4758. #if ENABLED(PIDTEMPBED)
  4759. inline void gcode_M304() {
  4760. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4761. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4762. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4763. thermalManager.updatePID();
  4764. SERIAL_ECHO_START;
  4765. SERIAL_ECHOPGM(" p:");
  4766. SERIAL_ECHO(thermalManager.bedKp);
  4767. SERIAL_ECHOPGM(" i:");
  4768. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4769. SERIAL_ECHOPGM(" d:");
  4770. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4771. }
  4772. #endif // PIDTEMPBED
  4773. #if defined(CHDK) || HAS_PHOTOGRAPH
  4774. /**
  4775. * M240: Trigger a camera by emulating a Canon RC-1
  4776. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4777. */
  4778. inline void gcode_M240() {
  4779. #ifdef CHDK
  4780. OUT_WRITE(CHDK, HIGH);
  4781. chdkHigh = millis();
  4782. chdkActive = true;
  4783. #elif HAS_PHOTOGRAPH
  4784. const uint8_t NUM_PULSES = 16;
  4785. const float PULSE_LENGTH = 0.01524;
  4786. for (int i = 0; i < NUM_PULSES; i++) {
  4787. WRITE(PHOTOGRAPH_PIN, HIGH);
  4788. _delay_ms(PULSE_LENGTH);
  4789. WRITE(PHOTOGRAPH_PIN, LOW);
  4790. _delay_ms(PULSE_LENGTH);
  4791. }
  4792. delay(7.33);
  4793. for (int i = 0; i < NUM_PULSES; i++) {
  4794. WRITE(PHOTOGRAPH_PIN, HIGH);
  4795. _delay_ms(PULSE_LENGTH);
  4796. WRITE(PHOTOGRAPH_PIN, LOW);
  4797. _delay_ms(PULSE_LENGTH);
  4798. }
  4799. #endif // !CHDK && HAS_PHOTOGRAPH
  4800. }
  4801. #endif // CHDK || PHOTOGRAPH_PIN
  4802. #if HAS_LCD_CONTRAST
  4803. /**
  4804. * M250: Read and optionally set the LCD contrast
  4805. */
  4806. inline void gcode_M250() {
  4807. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4808. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4809. SERIAL_PROTOCOL(lcd_contrast);
  4810. SERIAL_EOL;
  4811. }
  4812. #endif // HAS_LCD_CONTRAST
  4813. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4814. /**
  4815. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4816. *
  4817. * S<temperature> sets the minimum extrude temperature
  4818. * P<bool> enables (1) or disables (0) cold extrusion
  4819. *
  4820. * Examples:
  4821. *
  4822. * M302 ; report current cold extrusion state
  4823. * M302 P0 ; enable cold extrusion checking
  4824. * M302 P1 ; disables cold extrusion checking
  4825. * M302 S0 ; always allow extrusion (disables checking)
  4826. * M302 S170 ; only allow extrusion above 170
  4827. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4828. */
  4829. inline void gcode_M302() {
  4830. bool seen_S = code_seen('S');
  4831. if (seen_S) {
  4832. thermalManager.extrude_min_temp = code_value_temp_abs();
  4833. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4834. }
  4835. if (code_seen('P'))
  4836. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4837. else if (!seen_S) {
  4838. // Report current state
  4839. SERIAL_ECHO_START;
  4840. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4841. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4842. SERIAL_ECHOLNPGM("C)");
  4843. }
  4844. }
  4845. #endif // PREVENT_COLD_EXTRUSION
  4846. /**
  4847. * M303: PID relay autotune
  4848. *
  4849. * S<temperature> sets the target temperature. (default 150C)
  4850. * E<extruder> (-1 for the bed) (default 0)
  4851. * C<cycles>
  4852. * U<bool> with a non-zero value will apply the result to current settings
  4853. */
  4854. inline void gcode_M303() {
  4855. #if HAS_PID_HEATING
  4856. int e = code_seen('E') ? code_value_int() : 0;
  4857. int c = code_seen('C') ? code_value_int() : 5;
  4858. bool u = code_seen('U') && code_value_bool();
  4859. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4860. if (e >= 0 && e < HOTENDS)
  4861. target_extruder = e;
  4862. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4863. thermalManager.PID_autotune(temp, e, c, u);
  4864. KEEPALIVE_STATE(IN_HANDLER);
  4865. #else
  4866. SERIAL_ERROR_START;
  4867. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4868. #endif
  4869. }
  4870. #if ENABLED(SCARA)
  4871. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4872. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4873. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4874. if (IsRunning()) {
  4875. //gcode_get_destination(); // For X Y Z E F
  4876. delta[X_AXIS] = delta_x;
  4877. delta[Y_AXIS] = delta_y;
  4878. forward_kinematics_SCARA(delta);
  4879. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4880. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4881. prepare_move_to_destination();
  4882. //ok_to_send();
  4883. return true;
  4884. }
  4885. return false;
  4886. }
  4887. /**
  4888. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4889. */
  4890. inline bool gcode_M360() {
  4891. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4892. return SCARA_move_to_cal(0, 120);
  4893. }
  4894. /**
  4895. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4896. */
  4897. inline bool gcode_M361() {
  4898. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4899. return SCARA_move_to_cal(90, 130);
  4900. }
  4901. /**
  4902. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4903. */
  4904. inline bool gcode_M362() {
  4905. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4906. return SCARA_move_to_cal(60, 180);
  4907. }
  4908. /**
  4909. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4910. */
  4911. inline bool gcode_M363() {
  4912. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4913. return SCARA_move_to_cal(50, 90);
  4914. }
  4915. /**
  4916. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4917. */
  4918. inline bool gcode_M364() {
  4919. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4920. return SCARA_move_to_cal(45, 135);
  4921. }
  4922. /**
  4923. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4924. */
  4925. inline void gcode_M365() {
  4926. LOOP_XYZ(i)
  4927. if (code_seen(axis_codes[i]))
  4928. axis_scaling[i] = code_value_float();
  4929. }
  4930. #endif // SCARA
  4931. #if ENABLED(EXT_SOLENOID)
  4932. void enable_solenoid(uint8_t num) {
  4933. switch (num) {
  4934. case 0:
  4935. OUT_WRITE(SOL0_PIN, HIGH);
  4936. break;
  4937. #if HAS_SOLENOID_1
  4938. case 1:
  4939. OUT_WRITE(SOL1_PIN, HIGH);
  4940. break;
  4941. #endif
  4942. #if HAS_SOLENOID_2
  4943. case 2:
  4944. OUT_WRITE(SOL2_PIN, HIGH);
  4945. break;
  4946. #endif
  4947. #if HAS_SOLENOID_3
  4948. case 3:
  4949. OUT_WRITE(SOL3_PIN, HIGH);
  4950. break;
  4951. #endif
  4952. default:
  4953. SERIAL_ECHO_START;
  4954. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4955. break;
  4956. }
  4957. }
  4958. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4959. void disable_all_solenoids() {
  4960. OUT_WRITE(SOL0_PIN, LOW);
  4961. OUT_WRITE(SOL1_PIN, LOW);
  4962. OUT_WRITE(SOL2_PIN, LOW);
  4963. OUT_WRITE(SOL3_PIN, LOW);
  4964. }
  4965. /**
  4966. * M380: Enable solenoid on the active extruder
  4967. */
  4968. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4969. /**
  4970. * M381: Disable all solenoids
  4971. */
  4972. inline void gcode_M381() { disable_all_solenoids(); }
  4973. #endif // EXT_SOLENOID
  4974. /**
  4975. * M400: Finish all moves
  4976. */
  4977. inline void gcode_M400() { stepper.synchronize(); }
  4978. #if HAS_BED_PROBE
  4979. /**
  4980. * M401: Engage Z Servo endstop if available
  4981. */
  4982. inline void gcode_M401() { DEPLOY_PROBE(); }
  4983. /**
  4984. * M402: Retract Z Servo endstop if enabled
  4985. */
  4986. inline void gcode_M402() { STOW_PROBE(); }
  4987. #endif // HAS_BED_PROBE
  4988. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4989. /**
  4990. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  4991. */
  4992. inline void gcode_M404() {
  4993. if (code_seen('W')) {
  4994. filament_width_nominal = code_value_linear_units();
  4995. }
  4996. else {
  4997. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4998. SERIAL_PROTOCOLLN(filament_width_nominal);
  4999. }
  5000. }
  5001. /**
  5002. * M405: Turn on filament sensor for control
  5003. */
  5004. inline void gcode_M405() {
  5005. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5006. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5007. if (code_seen('D')) meas_delay_cm = code_value_int();
  5008. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5009. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5010. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5011. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5012. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5013. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5014. }
  5015. filament_sensor = true;
  5016. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5017. //SERIAL_PROTOCOL(filament_width_meas);
  5018. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5019. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5020. }
  5021. /**
  5022. * M406: Turn off filament sensor for control
  5023. */
  5024. inline void gcode_M406() { filament_sensor = false; }
  5025. /**
  5026. * M407: Get measured filament diameter on serial output
  5027. */
  5028. inline void gcode_M407() {
  5029. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5030. SERIAL_PROTOCOLLN(filament_width_meas);
  5031. }
  5032. #endif // FILAMENT_WIDTH_SENSOR
  5033. void quickstop_stepper() {
  5034. stepper.quick_stop();
  5035. #if DISABLED(SCARA)
  5036. stepper.synchronize();
  5037. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5038. SYNC_PLAN_POSITION_KINEMATIC();
  5039. #endif
  5040. }
  5041. #if ENABLED(MESH_BED_LEVELING)
  5042. /**
  5043. * M420: Enable/Disable Mesh Bed Leveling
  5044. */
  5045. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5046. /**
  5047. * M421: Set a single Mesh Bed Leveling Z coordinate
  5048. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5049. */
  5050. inline void gcode_M421() {
  5051. int8_t px = 0, py = 0;
  5052. float z = 0;
  5053. bool hasX, hasY, hasZ, hasI, hasJ;
  5054. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5055. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5056. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5057. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5058. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5059. if (hasX && hasY && hasZ) {
  5060. if (px >= 0 && py >= 0)
  5061. mbl.set_z(px, py, z);
  5062. else {
  5063. SERIAL_ERROR_START;
  5064. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5065. }
  5066. }
  5067. else if (hasI && hasJ && hasZ) {
  5068. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5069. mbl.set_z(px, py, z);
  5070. else {
  5071. SERIAL_ERROR_START;
  5072. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5073. }
  5074. }
  5075. else {
  5076. SERIAL_ERROR_START;
  5077. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5078. }
  5079. }
  5080. #endif
  5081. /**
  5082. * M428: Set home_offset based on the distance between the
  5083. * current_position and the nearest "reference point."
  5084. * If an axis is past center its endstop position
  5085. * is the reference-point. Otherwise it uses 0. This allows
  5086. * the Z offset to be set near the bed when using a max endstop.
  5087. *
  5088. * M428 can't be used more than 2cm away from 0 or an endstop.
  5089. *
  5090. * Use M206 to set these values directly.
  5091. */
  5092. inline void gcode_M428() {
  5093. bool err = false;
  5094. LOOP_XYZ(i) {
  5095. if (axis_homed[i]) {
  5096. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5097. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5098. if (diff > -20 && diff < 20) {
  5099. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5100. }
  5101. else {
  5102. SERIAL_ERROR_START;
  5103. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5104. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5105. BUZZ(200, 40);
  5106. err = true;
  5107. break;
  5108. }
  5109. }
  5110. }
  5111. if (!err) {
  5112. SYNC_PLAN_POSITION_KINEMATIC();
  5113. report_current_position();
  5114. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5115. BUZZ(200, 659);
  5116. BUZZ(200, 698);
  5117. }
  5118. }
  5119. /**
  5120. * M500: Store settings in EEPROM
  5121. */
  5122. inline void gcode_M500() {
  5123. Config_StoreSettings();
  5124. }
  5125. /**
  5126. * M501: Read settings from EEPROM
  5127. */
  5128. inline void gcode_M501() {
  5129. Config_RetrieveSettings();
  5130. }
  5131. /**
  5132. * M502: Revert to default settings
  5133. */
  5134. inline void gcode_M502() {
  5135. Config_ResetDefault();
  5136. }
  5137. /**
  5138. * M503: print settings currently in memory
  5139. */
  5140. inline void gcode_M503() {
  5141. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5142. }
  5143. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5144. /**
  5145. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5146. */
  5147. inline void gcode_M540() {
  5148. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5149. }
  5150. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5151. #if HAS_BED_PROBE
  5152. inline void gcode_M851() {
  5153. SERIAL_ECHO_START;
  5154. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5155. SERIAL_CHAR(' ');
  5156. if (code_seen('Z')) {
  5157. float value = code_value_axis_units(Z_AXIS);
  5158. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5159. zprobe_zoffset = value;
  5160. SERIAL_ECHO(zprobe_zoffset);
  5161. }
  5162. else {
  5163. SERIAL_ECHOPGM(MSG_Z_MIN);
  5164. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5165. SERIAL_CHAR(' ');
  5166. SERIAL_ECHOPGM(MSG_Z_MAX);
  5167. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5168. }
  5169. }
  5170. else {
  5171. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5172. }
  5173. SERIAL_EOL;
  5174. }
  5175. #endif // HAS_BED_PROBE
  5176. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5177. /**
  5178. * M600: Pause for filament change
  5179. *
  5180. * E[distance] - Retract the filament this far (negative value)
  5181. * Z[distance] - Move the Z axis by this distance
  5182. * X[position] - Move to this X position, with Y
  5183. * Y[position] - Move to this Y position, with X
  5184. * L[distance] - Retract distance for removal (manual reload)
  5185. *
  5186. * Default values are used for omitted arguments.
  5187. *
  5188. */
  5189. inline void gcode_M600() {
  5190. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5191. SERIAL_ERROR_START;
  5192. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5193. return;
  5194. }
  5195. // Show initial message and wait for synchronize steppers
  5196. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5197. stepper.synchronize();
  5198. float lastpos[NUM_AXIS];
  5199. // Save current position of all axes
  5200. LOOP_XYZE(i)
  5201. lastpos[i] = destination[i] = current_position[i];
  5202. // Define runplan for move axes
  5203. #if IS_KINEMATIC
  5204. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5205. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5206. #else
  5207. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5208. #endif
  5209. KEEPALIVE_STATE(IN_HANDLER);
  5210. // Initial retract before move to filament change position
  5211. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5212. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5213. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5214. #endif
  5215. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5216. // Lift Z axis
  5217. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5218. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5219. FILAMENT_CHANGE_Z_ADD
  5220. #else
  5221. 0
  5222. #endif
  5223. ;
  5224. if (z_lift > 0) {
  5225. destination[Z_AXIS] += z_lift;
  5226. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5227. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5228. }
  5229. // Move XY axes to filament exchange position
  5230. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5231. #ifdef FILAMENT_CHANGE_X_POS
  5232. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5233. #endif
  5234. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5235. #ifdef FILAMENT_CHANGE_Y_POS
  5236. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5237. #endif
  5238. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5239. stepper.synchronize();
  5240. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5241. // Unload filament
  5242. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5243. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5244. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5245. #endif
  5246. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5247. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5248. stepper.synchronize();
  5249. disable_e0();
  5250. disable_e1();
  5251. disable_e2();
  5252. disable_e3();
  5253. delay(100);
  5254. #if HAS_BUZZER
  5255. millis_t next_tick = 0;
  5256. #endif
  5257. // Wait for filament insert by user and press button
  5258. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5259. while (!lcd_clicked()) {
  5260. #if HAS_BUZZER
  5261. millis_t ms = millis();
  5262. if (ms >= next_tick) {
  5263. BUZZ(300, 2000);
  5264. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5265. }
  5266. #endif
  5267. idle(true);
  5268. }
  5269. delay(100);
  5270. while (lcd_clicked()) idle(true);
  5271. delay(100);
  5272. // Show load message
  5273. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5274. // Load filament
  5275. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5276. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5277. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5278. #endif
  5279. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5280. stepper.synchronize();
  5281. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5282. do {
  5283. // Extrude filament to get into hotend
  5284. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5285. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5286. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5287. stepper.synchronize();
  5288. // Ask user if more filament should be extruded
  5289. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5290. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5291. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5292. KEEPALIVE_STATE(IN_HANDLER);
  5293. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5294. #endif
  5295. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5296. KEEPALIVE_STATE(IN_HANDLER);
  5297. // Set extruder to saved position
  5298. current_position[E_AXIS] = lastpos[E_AXIS];
  5299. destination[E_AXIS] = lastpos[E_AXIS];
  5300. planner.set_e_position_mm(current_position[E_AXIS]);
  5301. #if IS_KINEMATIC
  5302. // Move XYZ to starting position, then E
  5303. inverse_kinematics(lastpos);
  5304. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5305. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5306. #else
  5307. // Move XY to starting position, then Z, then E
  5308. destination[X_AXIS] = lastpos[X_AXIS];
  5309. destination[Y_AXIS] = lastpos[Y_AXIS];
  5310. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5311. destination[Z_AXIS] = lastpos[Z_AXIS];
  5312. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5313. #endif
  5314. stepper.synchronize();
  5315. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5316. filament_ran_out = false;
  5317. #endif
  5318. // Show status screen
  5319. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5320. }
  5321. #endif // FILAMENT_CHANGE_FEATURE
  5322. #if ENABLED(DUAL_X_CARRIAGE)
  5323. /**
  5324. * M605: Set dual x-carriage movement mode
  5325. *
  5326. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5327. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5328. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5329. * units x-offset and an optional differential hotend temperature of
  5330. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5331. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5332. *
  5333. * Note: the X axis should be homed after changing dual x-carriage mode.
  5334. */
  5335. inline void gcode_M605() {
  5336. stepper.synchronize();
  5337. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5338. switch (dual_x_carriage_mode) {
  5339. case DXC_DUPLICATION_MODE:
  5340. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5341. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5342. SERIAL_ECHO_START;
  5343. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5344. SERIAL_CHAR(' ');
  5345. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5346. SERIAL_CHAR(',');
  5347. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5348. SERIAL_CHAR(' ');
  5349. SERIAL_ECHO(duplicate_extruder_x_offset);
  5350. SERIAL_CHAR(',');
  5351. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5352. break;
  5353. case DXC_FULL_CONTROL_MODE:
  5354. case DXC_AUTO_PARK_MODE:
  5355. break;
  5356. default:
  5357. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5358. break;
  5359. }
  5360. active_extruder_parked = false;
  5361. extruder_duplication_enabled = false;
  5362. delayed_move_time = 0;
  5363. }
  5364. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5365. inline void gcode_M605() {
  5366. stepper.synchronize();
  5367. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5368. SERIAL_ECHO_START;
  5369. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5370. }
  5371. #endif // M605
  5372. #if ENABLED(LIN_ADVANCE)
  5373. /**
  5374. * M905: Set advance factor
  5375. */
  5376. inline void gcode_M905() {
  5377. stepper.synchronize();
  5378. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5379. }
  5380. #endif
  5381. /**
  5382. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5383. */
  5384. inline void gcode_M907() {
  5385. #if HAS_DIGIPOTSS
  5386. LOOP_XYZE(i)
  5387. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5388. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5389. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5390. #endif
  5391. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5392. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5393. #endif
  5394. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5395. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5396. #endif
  5397. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5398. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5399. #endif
  5400. #if ENABLED(DIGIPOT_I2C)
  5401. // this one uses actual amps in floating point
  5402. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5403. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5404. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5405. #endif
  5406. #if ENABLED(DAC_STEPPER_CURRENT)
  5407. if (code_seen('S')) {
  5408. float dac_percent = code_value_float();
  5409. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5410. }
  5411. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5412. #endif
  5413. }
  5414. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5415. /**
  5416. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5417. */
  5418. inline void gcode_M908() {
  5419. #if HAS_DIGIPOTSS
  5420. stepper.digitalPotWrite(
  5421. code_seen('P') ? code_value_int() : 0,
  5422. code_seen('S') ? code_value_int() : 0
  5423. );
  5424. #endif
  5425. #ifdef DAC_STEPPER_CURRENT
  5426. dac_current_raw(
  5427. code_seen('P') ? code_value_byte() : -1,
  5428. code_seen('S') ? code_value_ushort() : 0
  5429. );
  5430. #endif
  5431. }
  5432. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5433. inline void gcode_M909() { dac_print_values(); }
  5434. inline void gcode_M910() { dac_commit_eeprom(); }
  5435. #endif
  5436. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5437. #if HAS_MICROSTEPS
  5438. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5439. inline void gcode_M350() {
  5440. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5441. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5442. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5443. stepper.microstep_readings();
  5444. }
  5445. /**
  5446. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5447. * S# determines MS1 or MS2, X# sets the pin high/low.
  5448. */
  5449. inline void gcode_M351() {
  5450. if (code_seen('S')) switch (code_value_byte()) {
  5451. case 1:
  5452. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5453. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5454. break;
  5455. case 2:
  5456. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5457. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5458. break;
  5459. }
  5460. stepper.microstep_readings();
  5461. }
  5462. #endif // HAS_MICROSTEPS
  5463. #if ENABLED(MIXING_EXTRUDER)
  5464. /**
  5465. * M163: Set a single mix factor for a mixing extruder
  5466. * This is called "weight" by some systems.
  5467. *
  5468. * S[index] The channel index to set
  5469. * P[float] The mix value
  5470. *
  5471. */
  5472. inline void gcode_M163() {
  5473. int mix_index = code_seen('S') ? code_value_int() : 0;
  5474. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5475. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5476. }
  5477. #if MIXING_VIRTUAL_TOOLS > 1
  5478. /**
  5479. * M164: Store the current mix factors as a virtual tool.
  5480. *
  5481. * S[index] The virtual tool to store
  5482. *
  5483. */
  5484. inline void gcode_M164() {
  5485. int tool_index = code_seen('S') ? code_value_int() : 0;
  5486. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5487. normalize_mix();
  5488. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5489. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5490. }
  5491. }
  5492. #endif
  5493. #if ENABLED(DIRECT_MIXING_IN_G1)
  5494. /**
  5495. * M165: Set multiple mix factors for a mixing extruder.
  5496. * Factors that are left out will be set to 0.
  5497. * All factors together must add up to 1.0.
  5498. *
  5499. * A[factor] Mix factor for extruder stepper 1
  5500. * B[factor] Mix factor for extruder stepper 2
  5501. * C[factor] Mix factor for extruder stepper 3
  5502. * D[factor] Mix factor for extruder stepper 4
  5503. * H[factor] Mix factor for extruder stepper 5
  5504. * I[factor] Mix factor for extruder stepper 6
  5505. *
  5506. */
  5507. inline void gcode_M165() { gcode_get_mix(); }
  5508. #endif
  5509. #endif // MIXING_EXTRUDER
  5510. /**
  5511. * M999: Restart after being stopped
  5512. *
  5513. * Default behaviour is to flush the serial buffer and request
  5514. * a resend to the host starting on the last N line received.
  5515. *
  5516. * Sending "M999 S1" will resume printing without flushing the
  5517. * existing command buffer.
  5518. *
  5519. */
  5520. inline void gcode_M999() {
  5521. Running = true;
  5522. lcd_reset_alert_level();
  5523. if (code_seen('S') && code_value_bool()) return;
  5524. // gcode_LastN = Stopped_gcode_LastN;
  5525. FlushSerialRequestResend();
  5526. }
  5527. #if ENABLED(SWITCHING_EXTRUDER)
  5528. inline void move_extruder_servo(uint8_t e) {
  5529. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5530. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5531. }
  5532. #endif
  5533. inline void invalid_extruder_error(const uint8_t &e) {
  5534. SERIAL_ECHO_START;
  5535. SERIAL_CHAR('T');
  5536. SERIAL_PROTOCOL_F(e, DEC);
  5537. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5538. }
  5539. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5540. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5541. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5542. invalid_extruder_error(tmp_extruder);
  5543. return;
  5544. }
  5545. // T0-Tnnn: Switch virtual tool by changing the mix
  5546. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5547. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5548. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5549. #if HOTENDS > 1
  5550. if (tmp_extruder >= EXTRUDERS) {
  5551. invalid_extruder_error(tmp_extruder);
  5552. return;
  5553. }
  5554. float old_feedrate_mm_s = feedrate_mm_s;
  5555. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5556. if (tmp_extruder != active_extruder) {
  5557. if (!no_move && axis_unhomed_error(true, true, true)) {
  5558. SERIAL_ECHOLNPGM("No move on toolchange");
  5559. no_move = true;
  5560. }
  5561. // Save current position to destination, for use later
  5562. set_destination_to_current();
  5563. #if ENABLED(DUAL_X_CARRIAGE)
  5564. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5565. if (DEBUGGING(LEVELING)) {
  5566. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5567. switch (dual_x_carriage_mode) {
  5568. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5569. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5570. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5571. }
  5572. }
  5573. #endif
  5574. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5575. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5576. ) {
  5577. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5578. if (DEBUGGING(LEVELING)) {
  5579. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5580. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5581. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5582. }
  5583. #endif
  5584. // Park old head: 1) raise 2) move to park position 3) lower
  5585. for (uint8_t i = 0; i < 3; i++)
  5586. planner.buffer_line(
  5587. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5588. current_position[Y_AXIS],
  5589. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5590. current_position[E_AXIS],
  5591. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5592. active_extruder
  5593. );
  5594. stepper.synchronize();
  5595. }
  5596. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5597. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5598. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5599. active_extruder = tmp_extruder;
  5600. // This function resets the max/min values - the current position may be overwritten below.
  5601. set_axis_is_at_home(X_AXIS);
  5602. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5603. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5604. #endif
  5605. switch (dual_x_carriage_mode) {
  5606. case DXC_FULL_CONTROL_MODE:
  5607. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5608. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5609. break;
  5610. case DXC_DUPLICATION_MODE:
  5611. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5612. if (active_extruder_parked)
  5613. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5614. else
  5615. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5616. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5617. extruder_duplication_enabled = false;
  5618. break;
  5619. default:
  5620. // record raised toolhead position for use by unpark
  5621. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5622. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5623. active_extruder_parked = true;
  5624. delayed_move_time = 0;
  5625. break;
  5626. }
  5627. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5628. if (DEBUGGING(LEVELING)) {
  5629. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5630. DEBUG_POS("New extruder (parked)", current_position);
  5631. }
  5632. #endif
  5633. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5634. #else // !DUAL_X_CARRIAGE
  5635. #if ENABLED(SWITCHING_EXTRUDER)
  5636. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5637. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5638. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5639. // Always raise by some amount
  5640. planner.buffer_line(
  5641. current_position[X_AXIS],
  5642. current_position[Y_AXIS],
  5643. current_position[Z_AXIS] + z_raise,
  5644. current_position[E_AXIS],
  5645. planner.max_feedrate_mm_s[Z_AXIS],
  5646. active_extruder
  5647. );
  5648. stepper.synchronize();
  5649. move_extruder_servo(active_extruder);
  5650. delay(500);
  5651. // Move back down, if needed
  5652. if (z_raise != z_diff) {
  5653. planner.buffer_line(
  5654. current_position[X_AXIS],
  5655. current_position[Y_AXIS],
  5656. current_position[Z_AXIS] + z_diff,
  5657. current_position[E_AXIS],
  5658. planner.max_feedrate_mm_s[Z_AXIS],
  5659. active_extruder
  5660. );
  5661. stepper.synchronize();
  5662. }
  5663. #endif
  5664. /**
  5665. * Set current_position to the position of the new nozzle.
  5666. * Offsets are based on linear distance, so we need to get
  5667. * the resulting position in coordinate space.
  5668. *
  5669. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5670. * - With mesh leveling, update Z for the new position
  5671. * - Otherwise, just use the raw linear distance
  5672. *
  5673. * Software endstops are altered here too. Consider a case where:
  5674. * E0 at X=0 ... E1 at X=10
  5675. * When we switch to E1 now X=10, but E1 can't move left.
  5676. * To express this we apply the change in XY to the software endstops.
  5677. * E1 can move farther right than E0, so the right limit is extended.
  5678. *
  5679. * Note that we don't adjust the Z software endstops. Why not?
  5680. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5681. * because the bed is 1mm lower at the new position. As long as
  5682. * the first nozzle is out of the way, the carriage should be
  5683. * allowed to move 1mm lower. This technically "breaks" the
  5684. * Z software endstop. But this is technically correct (and
  5685. * there is no viable alternative).
  5686. */
  5687. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  5688. // Offset extruder, make sure to apply the bed level rotation matrix
  5689. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5690. hotend_offset[Y_AXIS][tmp_extruder],
  5691. 0),
  5692. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5693. hotend_offset[Y_AXIS][active_extruder],
  5694. 0),
  5695. offset_vec = tmp_offset_vec - act_offset_vec;
  5696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5697. if (DEBUGGING(LEVELING)) {
  5698. tmp_offset_vec.debug("tmp_offset_vec");
  5699. act_offset_vec.debug("act_offset_vec");
  5700. offset_vec.debug("offset_vec (BEFORE)");
  5701. }
  5702. #endif
  5703. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5704. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5705. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5706. #endif
  5707. // Adjustments to the current position
  5708. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5709. current_position[Z_AXIS] += offset_vec.z;
  5710. #else // !AUTO_BED_LEVELING_FEATURE
  5711. float xydiff[2] = {
  5712. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5713. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5714. };
  5715. #if ENABLED(MESH_BED_LEVELING)
  5716. if (mbl.active()) {
  5717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5718. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5719. #endif
  5720. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5721. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5722. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5724. if (DEBUGGING(LEVELING))
  5725. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5726. #endif
  5727. }
  5728. #endif // MESH_BED_LEVELING
  5729. #endif // !AUTO_BED_LEVELING_FEATURE
  5730. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5731. if (DEBUGGING(LEVELING)) {
  5732. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5733. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5734. SERIAL_ECHOLNPGM(" }");
  5735. }
  5736. #endif
  5737. // The newly-selected extruder XY is actually at...
  5738. current_position[X_AXIS] += xydiff[X_AXIS];
  5739. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5740. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5741. position_shift[i] += xydiff[i];
  5742. update_software_endstops((AxisEnum)i);
  5743. }
  5744. // Set the new active extruder
  5745. active_extruder = tmp_extruder;
  5746. #endif // !DUAL_X_CARRIAGE
  5747. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5748. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5749. #endif
  5750. // Tell the planner the new "current position"
  5751. SYNC_PLAN_POSITION_KINEMATIC();
  5752. // Move to the "old position" (move the extruder into place)
  5753. if (!no_move && IsRunning()) {
  5754. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5755. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5756. #endif
  5757. prepare_move_to_destination();
  5758. }
  5759. } // (tmp_extruder != active_extruder)
  5760. stepper.synchronize();
  5761. #if ENABLED(EXT_SOLENOID)
  5762. disable_all_solenoids();
  5763. enable_solenoid_on_active_extruder();
  5764. #endif // EXT_SOLENOID
  5765. feedrate_mm_s = old_feedrate_mm_s;
  5766. #else // HOTENDS <= 1
  5767. // Set the new active extruder
  5768. active_extruder = tmp_extruder;
  5769. UNUSED(fr_mm_s);
  5770. UNUSED(no_move);
  5771. #endif // HOTENDS <= 1
  5772. SERIAL_ECHO_START;
  5773. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5774. SERIAL_PROTOCOLLN((int)active_extruder);
  5775. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5776. }
  5777. /**
  5778. * T0-T3: Switch tool, usually switching extruders
  5779. *
  5780. * F[units/min] Set the movement feedrate
  5781. * S1 Don't move the tool in XY after change
  5782. */
  5783. inline void gcode_T(uint8_t tmp_extruder) {
  5784. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5785. if (DEBUGGING(LEVELING)) {
  5786. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5787. SERIAL_ECHOLNPGM(")");
  5788. DEBUG_POS("BEFORE", current_position);
  5789. }
  5790. #endif
  5791. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5792. tool_change(tmp_extruder);
  5793. #elif HOTENDS > 1
  5794. tool_change(
  5795. tmp_extruder,
  5796. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5797. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5798. );
  5799. #endif
  5800. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5801. if (DEBUGGING(LEVELING)) {
  5802. DEBUG_POS("AFTER", current_position);
  5803. SERIAL_ECHOLNPGM("<<< gcode_T");
  5804. }
  5805. #endif
  5806. }
  5807. /**
  5808. * Process a single command and dispatch it to its handler
  5809. * This is called from the main loop()
  5810. */
  5811. void process_next_command() {
  5812. current_command = command_queue[cmd_queue_index_r];
  5813. if (DEBUGGING(ECHO)) {
  5814. SERIAL_ECHO_START;
  5815. SERIAL_ECHOLN(current_command);
  5816. }
  5817. // Sanitize the current command:
  5818. // - Skip leading spaces
  5819. // - Bypass N[-0-9][0-9]*[ ]*
  5820. // - Overwrite * with nul to mark the end
  5821. while (*current_command == ' ') ++current_command;
  5822. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5823. current_command += 2; // skip N[-0-9]
  5824. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5825. while (*current_command == ' ') ++current_command; // skip [ ]*
  5826. }
  5827. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5828. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5829. char *cmd_ptr = current_command;
  5830. // Get the command code, which must be G, M, or T
  5831. char command_code = *cmd_ptr++;
  5832. // Skip spaces to get the numeric part
  5833. while (*cmd_ptr == ' ') cmd_ptr++;
  5834. uint16_t codenum = 0; // define ahead of goto
  5835. // Bail early if there's no code
  5836. bool code_is_good = NUMERIC(*cmd_ptr);
  5837. if (!code_is_good) goto ExitUnknownCommand;
  5838. // Get and skip the code number
  5839. do {
  5840. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5841. cmd_ptr++;
  5842. } while (NUMERIC(*cmd_ptr));
  5843. // Skip all spaces to get to the first argument, or nul
  5844. while (*cmd_ptr == ' ') cmd_ptr++;
  5845. // The command's arguments (if any) start here, for sure!
  5846. current_command_args = cmd_ptr;
  5847. KEEPALIVE_STATE(IN_HANDLER);
  5848. // Handle a known G, M, or T
  5849. switch (command_code) {
  5850. case 'G': switch (codenum) {
  5851. // G0, G1
  5852. case 0:
  5853. case 1:
  5854. gcode_G0_G1();
  5855. break;
  5856. // G2, G3
  5857. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5858. case 2: // G2 - CW ARC
  5859. case 3: // G3 - CCW ARC
  5860. gcode_G2_G3(codenum == 2);
  5861. break;
  5862. #endif
  5863. // G4 Dwell
  5864. case 4:
  5865. gcode_G4();
  5866. break;
  5867. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5868. // G5
  5869. case 5: // G5 - Cubic B_spline
  5870. gcode_G5();
  5871. break;
  5872. #endif // BEZIER_CURVE_SUPPORT
  5873. #if ENABLED(FWRETRACT)
  5874. case 10: // G10: retract
  5875. case 11: // G11: retract_recover
  5876. gcode_G10_G11(codenum == 10);
  5877. break;
  5878. #endif // FWRETRACT
  5879. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5880. case 12:
  5881. gcode_G12(); // G12: Nozzle Clean
  5882. break;
  5883. #endif // NOZZLE_CLEAN_FEATURE
  5884. #if ENABLED(INCH_MODE_SUPPORT)
  5885. case 20: //G20: Inch Mode
  5886. gcode_G20();
  5887. break;
  5888. case 21: //G21: MM Mode
  5889. gcode_G21();
  5890. break;
  5891. #endif // INCH_MODE_SUPPORT
  5892. #if ENABLED(NOZZLE_PARK_FEATURE)
  5893. case 27: // G27: Nozzle Park
  5894. gcode_G27();
  5895. break;
  5896. #endif // NOZZLE_PARK_FEATURE
  5897. case 28: // G28: Home all axes, one at a time
  5898. gcode_G28();
  5899. break;
  5900. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5901. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5902. gcode_G29();
  5903. break;
  5904. #endif // AUTO_BED_LEVELING_FEATURE
  5905. #if HAS_BED_PROBE
  5906. case 30: // G30 Single Z probe
  5907. gcode_G30();
  5908. break;
  5909. #if ENABLED(Z_PROBE_SLED)
  5910. case 31: // G31: dock the sled
  5911. gcode_G31();
  5912. break;
  5913. case 32: // G32: undock the sled
  5914. gcode_G32();
  5915. break;
  5916. #endif // Z_PROBE_SLED
  5917. #endif // HAS_BED_PROBE
  5918. case 90: // G90
  5919. relative_mode = false;
  5920. break;
  5921. case 91: // G91
  5922. relative_mode = true;
  5923. break;
  5924. case 92: // G92
  5925. gcode_G92();
  5926. break;
  5927. }
  5928. break;
  5929. case 'M': switch (codenum) {
  5930. #if ENABLED(ULTIPANEL)
  5931. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5932. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5933. gcode_M0_M1();
  5934. break;
  5935. #endif // ULTIPANEL
  5936. case 17:
  5937. gcode_M17();
  5938. break;
  5939. #if ENABLED(SDSUPPORT)
  5940. case 20: // M20 - list SD card
  5941. gcode_M20(); break;
  5942. case 21: // M21 - init SD card
  5943. gcode_M21(); break;
  5944. case 22: //M22 - release SD card
  5945. gcode_M22(); break;
  5946. case 23: //M23 - Select file
  5947. gcode_M23(); break;
  5948. case 24: //M24 - Start SD print
  5949. gcode_M24(); break;
  5950. case 25: //M25 - Pause SD print
  5951. gcode_M25(); break;
  5952. case 26: //M26 - Set SD index
  5953. gcode_M26(); break;
  5954. case 27: //M27 - Get SD status
  5955. gcode_M27(); break;
  5956. case 28: //M28 - Start SD write
  5957. gcode_M28(); break;
  5958. case 29: //M29 - Stop SD write
  5959. gcode_M29(); break;
  5960. case 30: //M30 <filename> Delete File
  5961. gcode_M30(); break;
  5962. case 32: //M32 - Select file and start SD print
  5963. gcode_M32(); break;
  5964. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5965. case 33: //M33 - Get the long full path to a file or folder
  5966. gcode_M33(); break;
  5967. #endif // LONG_FILENAME_HOST_SUPPORT
  5968. case 928: //M928 - Start SD write
  5969. gcode_M928(); break;
  5970. #endif //SDSUPPORT
  5971. case 31: //M31 take time since the start of the SD print or an M109 command
  5972. gcode_M31();
  5973. break;
  5974. case 42: //M42 -Change pin status via gcode
  5975. gcode_M42();
  5976. break;
  5977. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5978. case 48: // M48 Z probe repeatability
  5979. gcode_M48();
  5980. break;
  5981. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5982. case 75: // Start print timer
  5983. gcode_M75();
  5984. break;
  5985. case 76: // Pause print timer
  5986. gcode_M76();
  5987. break;
  5988. case 77: // Stop print timer
  5989. gcode_M77();
  5990. break;
  5991. #if ENABLED(PRINTCOUNTER)
  5992. case 78: // Show print statistics
  5993. gcode_M78();
  5994. break;
  5995. #endif
  5996. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5997. case 100:
  5998. gcode_M100();
  5999. break;
  6000. #endif
  6001. case 104: // M104
  6002. gcode_M104();
  6003. break;
  6004. case 110: // M110: Set Current Line Number
  6005. gcode_M110();
  6006. break;
  6007. case 111: // M111: Set debug level
  6008. gcode_M111();
  6009. break;
  6010. #if DISABLED(EMERGENCY_PARSER)
  6011. case 108: // M108: Cancel Waiting
  6012. gcode_M108();
  6013. break;
  6014. case 112: // M112: Emergency Stop
  6015. gcode_M112();
  6016. break;
  6017. case 410: // M410 quickstop - Abort all the planned moves.
  6018. gcode_M410();
  6019. break;
  6020. #endif
  6021. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6022. case 113: // M113: Set Host Keepalive interval
  6023. gcode_M113();
  6024. break;
  6025. #endif
  6026. case 140: // M140: Set bed temp
  6027. gcode_M140();
  6028. break;
  6029. case 105: // M105: Read current temperature
  6030. gcode_M105();
  6031. KEEPALIVE_STATE(NOT_BUSY);
  6032. return; // "ok" already printed
  6033. case 109: // M109: Wait for temperature
  6034. gcode_M109();
  6035. break;
  6036. #if HAS_TEMP_BED
  6037. case 190: // M190: Wait for bed heater to reach target
  6038. gcode_M190();
  6039. break;
  6040. #endif // HAS_TEMP_BED
  6041. #if FAN_COUNT > 0
  6042. case 106: // M106: Fan On
  6043. gcode_M106();
  6044. break;
  6045. case 107: // M107: Fan Off
  6046. gcode_M107();
  6047. break;
  6048. #endif // FAN_COUNT > 0
  6049. #if ENABLED(BARICUDA)
  6050. // PWM for HEATER_1_PIN
  6051. #if HAS_HEATER_1
  6052. case 126: // M126: valve open
  6053. gcode_M126();
  6054. break;
  6055. case 127: // M127: valve closed
  6056. gcode_M127();
  6057. break;
  6058. #endif // HAS_HEATER_1
  6059. // PWM for HEATER_2_PIN
  6060. #if HAS_HEATER_2
  6061. case 128: // M128: valve open
  6062. gcode_M128();
  6063. break;
  6064. case 129: // M129: valve closed
  6065. gcode_M129();
  6066. break;
  6067. #endif // HAS_HEATER_2
  6068. #endif // BARICUDA
  6069. #if HAS_POWER_SWITCH
  6070. case 80: // M80: Turn on Power Supply
  6071. gcode_M80();
  6072. break;
  6073. #endif // HAS_POWER_SWITCH
  6074. case 81: // M81: Turn off Power, including Power Supply, if possible
  6075. gcode_M81();
  6076. break;
  6077. case 82:
  6078. gcode_M82();
  6079. break;
  6080. case 83:
  6081. gcode_M83();
  6082. break;
  6083. case 18: // (for compatibility)
  6084. case 84: // M84
  6085. gcode_M18_M84();
  6086. break;
  6087. case 85: // M85
  6088. gcode_M85();
  6089. break;
  6090. case 92: // M92: Set the steps-per-unit for one or more axes
  6091. gcode_M92();
  6092. break;
  6093. case 115: // M115: Report capabilities
  6094. gcode_M115();
  6095. break;
  6096. case 117: // M117: Set LCD message text, if possible
  6097. gcode_M117();
  6098. break;
  6099. case 114: // M114: Report current position
  6100. gcode_M114();
  6101. break;
  6102. case 120: // M120: Enable endstops
  6103. gcode_M120();
  6104. break;
  6105. case 121: // M121: Disable endstops
  6106. gcode_M121();
  6107. break;
  6108. case 119: // M119: Report endstop states
  6109. gcode_M119();
  6110. break;
  6111. #if ENABLED(ULTIPANEL)
  6112. case 145: // M145: Set material heatup parameters
  6113. gcode_M145();
  6114. break;
  6115. #endif
  6116. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6117. case 149:
  6118. gcode_M149();
  6119. break;
  6120. #endif
  6121. #if ENABLED(BLINKM)
  6122. case 150: // M150
  6123. gcode_M150();
  6124. break;
  6125. #endif //BLINKM
  6126. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6127. case 155:
  6128. gcode_M155();
  6129. break;
  6130. case 156:
  6131. gcode_M156();
  6132. break;
  6133. #endif //EXPERIMENTAL_I2CBUS
  6134. #if ENABLED(MIXING_EXTRUDER)
  6135. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6136. gcode_M163();
  6137. break;
  6138. #if MIXING_VIRTUAL_TOOLS > 1
  6139. case 164: // M164 S<int> save current mix as a virtual extruder
  6140. gcode_M164();
  6141. break;
  6142. #endif
  6143. #if ENABLED(DIRECT_MIXING_IN_G1)
  6144. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6145. gcode_M165();
  6146. break;
  6147. #endif
  6148. #endif
  6149. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6150. gcode_M200();
  6151. break;
  6152. case 201: // M201
  6153. gcode_M201();
  6154. break;
  6155. #if 0 // Not used for Sprinter/grbl gen6
  6156. case 202: // M202
  6157. gcode_M202();
  6158. break;
  6159. #endif
  6160. case 203: // M203 max feedrate units/sec
  6161. gcode_M203();
  6162. break;
  6163. case 204: // M204 acclereration S normal moves T filmanent only moves
  6164. gcode_M204();
  6165. break;
  6166. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6167. gcode_M205();
  6168. break;
  6169. case 206: // M206 additional homing offset
  6170. gcode_M206();
  6171. break;
  6172. #if ENABLED(DELTA)
  6173. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6174. gcode_M665();
  6175. break;
  6176. #endif
  6177. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6178. case 666: // M666 set delta / dual endstop adjustment
  6179. gcode_M666();
  6180. break;
  6181. #endif
  6182. #if ENABLED(FWRETRACT)
  6183. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6184. gcode_M207();
  6185. break;
  6186. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6187. gcode_M208();
  6188. break;
  6189. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6190. gcode_M209();
  6191. break;
  6192. #endif // FWRETRACT
  6193. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6194. gcode_M211();
  6195. break;
  6196. #if HOTENDS > 1
  6197. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6198. gcode_M218();
  6199. break;
  6200. #endif
  6201. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6202. gcode_M220();
  6203. break;
  6204. case 221: // M221 - Set Flow Percentage: S<percent>
  6205. gcode_M221();
  6206. break;
  6207. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6208. gcode_M226();
  6209. break;
  6210. #if HAS_SERVOS
  6211. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6212. gcode_M280();
  6213. break;
  6214. #endif // HAS_SERVOS
  6215. #if HAS_BUZZER
  6216. case 300: // M300 - Play beep tone
  6217. gcode_M300();
  6218. break;
  6219. #endif // HAS_BUZZER
  6220. #if ENABLED(PIDTEMP)
  6221. case 301: // M301
  6222. gcode_M301();
  6223. break;
  6224. #endif // PIDTEMP
  6225. #if ENABLED(PIDTEMPBED)
  6226. case 304: // M304
  6227. gcode_M304();
  6228. break;
  6229. #endif // PIDTEMPBED
  6230. #if defined(CHDK) || HAS_PHOTOGRAPH
  6231. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6232. gcode_M240();
  6233. break;
  6234. #endif // CHDK || PHOTOGRAPH_PIN
  6235. #if HAS_LCD_CONTRAST
  6236. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6237. gcode_M250();
  6238. break;
  6239. #endif // HAS_LCD_CONTRAST
  6240. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6241. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6242. gcode_M302();
  6243. break;
  6244. #endif // PREVENT_COLD_EXTRUSION
  6245. case 303: // M303 PID autotune
  6246. gcode_M303();
  6247. break;
  6248. #if ENABLED(SCARA)
  6249. case 360: // M360 SCARA Theta pos1
  6250. if (gcode_M360()) return;
  6251. break;
  6252. case 361: // M361 SCARA Theta pos2
  6253. if (gcode_M361()) return;
  6254. break;
  6255. case 362: // M362 SCARA Psi pos1
  6256. if (gcode_M362()) return;
  6257. break;
  6258. case 363: // M363 SCARA Psi pos2
  6259. if (gcode_M363()) return;
  6260. break;
  6261. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6262. if (gcode_M364()) return;
  6263. break;
  6264. case 365: // M365 Set SCARA scaling for X Y Z
  6265. gcode_M365();
  6266. break;
  6267. #endif // SCARA
  6268. case 400: // M400 finish all moves
  6269. gcode_M400();
  6270. break;
  6271. #if HAS_BED_PROBE
  6272. case 401:
  6273. gcode_M401();
  6274. break;
  6275. case 402:
  6276. gcode_M402();
  6277. break;
  6278. #endif // HAS_BED_PROBE
  6279. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6280. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6281. gcode_M404();
  6282. break;
  6283. case 405: //M405 Turn on filament sensor for control
  6284. gcode_M405();
  6285. break;
  6286. case 406: //M406 Turn off filament sensor for control
  6287. gcode_M406();
  6288. break;
  6289. case 407: //M407 Display measured filament diameter
  6290. gcode_M407();
  6291. break;
  6292. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6293. #if ENABLED(MESH_BED_LEVELING)
  6294. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6295. gcode_M420();
  6296. break;
  6297. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6298. gcode_M421();
  6299. break;
  6300. #endif
  6301. case 428: // M428 Apply current_position to home_offset
  6302. gcode_M428();
  6303. break;
  6304. case 500: // M500 Store settings in EEPROM
  6305. gcode_M500();
  6306. break;
  6307. case 501: // M501 Read settings from EEPROM
  6308. gcode_M501();
  6309. break;
  6310. case 502: // M502 Revert to default settings
  6311. gcode_M502();
  6312. break;
  6313. case 503: // M503 print settings currently in memory
  6314. gcode_M503();
  6315. break;
  6316. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6317. case 540:
  6318. gcode_M540();
  6319. break;
  6320. #endif
  6321. #if HAS_BED_PROBE
  6322. case 851:
  6323. gcode_M851();
  6324. break;
  6325. #endif // HAS_BED_PROBE
  6326. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6327. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6328. gcode_M600();
  6329. break;
  6330. #endif // FILAMENT_CHANGE_FEATURE
  6331. #if ENABLED(DUAL_X_CARRIAGE)
  6332. case 605:
  6333. gcode_M605();
  6334. break;
  6335. #endif // DUAL_X_CARRIAGE
  6336. #if ENABLED(LIN_ADVANCE)
  6337. case 905: // M905 Set advance factor.
  6338. gcode_M905();
  6339. break;
  6340. #endif
  6341. case 907: // M907 Set digital trimpot motor current using axis codes.
  6342. gcode_M907();
  6343. break;
  6344. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6345. case 908: // M908 Control digital trimpot directly.
  6346. gcode_M908();
  6347. break;
  6348. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6349. case 909: // M909 Print digipot/DAC current value
  6350. gcode_M909();
  6351. break;
  6352. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6353. gcode_M910();
  6354. break;
  6355. #endif
  6356. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6357. #if HAS_MICROSTEPS
  6358. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6359. gcode_M350();
  6360. break;
  6361. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6362. gcode_M351();
  6363. break;
  6364. #endif // HAS_MICROSTEPS
  6365. case 999: // M999: Restart after being Stopped
  6366. gcode_M999();
  6367. break;
  6368. }
  6369. break;
  6370. case 'T':
  6371. gcode_T(codenum);
  6372. break;
  6373. default: code_is_good = false;
  6374. }
  6375. KEEPALIVE_STATE(NOT_BUSY);
  6376. ExitUnknownCommand:
  6377. // Still unknown command? Throw an error
  6378. if (!code_is_good) unknown_command_error();
  6379. ok_to_send();
  6380. }
  6381. void FlushSerialRequestResend() {
  6382. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6383. MYSERIAL.flush();
  6384. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6385. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6386. ok_to_send();
  6387. }
  6388. void ok_to_send() {
  6389. refresh_cmd_timeout();
  6390. if (!send_ok[cmd_queue_index_r]) return;
  6391. SERIAL_PROTOCOLPGM(MSG_OK);
  6392. #if ENABLED(ADVANCED_OK)
  6393. char* p = command_queue[cmd_queue_index_r];
  6394. if (*p == 'N') {
  6395. SERIAL_PROTOCOL(' ');
  6396. SERIAL_ECHO(*p++);
  6397. while (NUMERIC_SIGNED(*p))
  6398. SERIAL_ECHO(*p++);
  6399. }
  6400. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6401. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6402. #endif
  6403. SERIAL_EOL;
  6404. }
  6405. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6406. void clamp_to_software_endstops(float target[XYZ]) {
  6407. #if ENABLED(min_software_endstops)
  6408. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6409. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6410. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6411. #endif
  6412. #if ENABLED(max_software_endstops)
  6413. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6414. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6415. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6416. #endif
  6417. }
  6418. #endif
  6419. #if ENABLED(DELTA)
  6420. void recalc_delta_settings(float radius, float diagonal_rod) {
  6421. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6422. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6423. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6424. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6425. delta_tower3_x = 0.0; // back middle tower
  6426. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6427. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6428. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6429. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6430. }
  6431. void inverse_kinematics(const float in_cartesian[XYZ]) {
  6432. const float cartesian[XYZ] = {
  6433. RAW_X_POSITION(in_cartesian[X_AXIS]),
  6434. RAW_Y_POSITION(in_cartesian[Y_AXIS]),
  6435. RAW_Z_POSITION(in_cartesian[Z_AXIS])
  6436. };
  6437. delta[A_AXIS] = sqrt(delta_diagonal_rod_2_tower_1
  6438. - sq(delta_tower1_x - cartesian[X_AXIS])
  6439. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6440. ) + cartesian[Z_AXIS];
  6441. delta[B_AXIS] = sqrt(delta_diagonal_rod_2_tower_2
  6442. - sq(delta_tower2_x - cartesian[X_AXIS])
  6443. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6444. ) + cartesian[Z_AXIS];
  6445. delta[C_AXIS] = sqrt(delta_diagonal_rod_2_tower_3
  6446. - sq(delta_tower3_x - cartesian[X_AXIS])
  6447. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6448. ) + cartesian[Z_AXIS];
  6449. /**
  6450. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6451. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6452. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6453. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[A_AXIS]);
  6454. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[B_AXIS]);
  6455. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[C_AXIS]);
  6456. */
  6457. }
  6458. float delta_safe_distance_from_top() {
  6459. float cartesian[XYZ] = {
  6460. LOGICAL_X_POSITION(0),
  6461. LOGICAL_Y_POSITION(0),
  6462. LOGICAL_Z_POSITION(0)
  6463. };
  6464. inverse_kinematics(cartesian);
  6465. float distance = delta[A_AXIS];
  6466. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6467. inverse_kinematics(cartesian);
  6468. return abs(distance - delta[A_AXIS]);
  6469. }
  6470. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6471. //As discussed in Wikipedia "Trilateration"
  6472. //we are establishing a new coordinate
  6473. //system in the plane of the three carriage points.
  6474. //This system will have the origin at tower1 and
  6475. //tower2 is on the x axis. tower3 is in the X-Y
  6476. //plane with a Z component of zero. We will define unit
  6477. //vectors in this coordinate system in our original
  6478. //coordinate system. Then when we calculate the
  6479. //Xnew, Ynew and Znew values, we can translate back into
  6480. //the original system by moving along those unit vectors
  6481. //by the corresponding values.
  6482. // https://en.wikipedia.org/wiki/Trilateration
  6483. // Variable names matched to Marlin, c-version
  6484. // and avoiding a vector library
  6485. // by Andreas Hardtung 2016-06-7
  6486. // based on a Java function from
  6487. // "Delta Robot Kinematics by Steve Graves" V3
  6488. // Result is in cartesian_position[].
  6489. //Create a vector in old coordinates along x axis of new coordinate
  6490. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6491. //Get the Magnitude of vector.
  6492. float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
  6493. //Create unit vector by dividing by magnitude.
  6494. float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
  6495. //Now find vector from the origin of the new system to the third point.
  6496. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6497. //Now use dot product to find the component of this vector on the X axis.
  6498. float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
  6499. //Now create a vector along the x axis that represents the x component of p13.
  6500. float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i };
  6501. //Now subtract the X component away from the original vector leaving only the Y component. We use the
  6502. //variable that will be the unit vector after we scale it.
  6503. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
  6504. //The magnitude of Y component
  6505. float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
  6506. //Now make vector a unit vector
  6507. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6508. //The cross product of the unit x and y is the unit z
  6509. //float[] ez = vectorCrossProd(ex, ey);
  6510. float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
  6511. //Now we have the d, i and j values defined in Wikipedia.
  6512. //We can plug them into the equations defined in
  6513. //Wikipedia for Xnew, Ynew and Znew
  6514. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
  6515. float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
  6516. float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
  6517. //Now we can start from the origin in the old coords and
  6518. //add vectors in the old coords that represent the
  6519. //Xnew, Ynew and Znew to find the point in the old system
  6520. cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
  6521. cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
  6522. cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
  6523. };
  6524. void forward_kinematics_DELTA(float point[ABC]) {
  6525. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6526. }
  6527. void set_cartesian_from_steppers() {
  6528. forward_kinematics_DELTA(stepper.get_axis_position_mm(A_AXIS),
  6529. stepper.get_axis_position_mm(B_AXIS),
  6530. stepper.get_axis_position_mm(C_AXIS));
  6531. }
  6532. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6533. // Adjust print surface height by linear interpolation over the bed_level array.
  6534. void adjust_delta(float cartesian[XYZ]) {
  6535. if (delta_grid_spacing[X_AXIS] == 0 || delta_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
  6536. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6537. float h1 = 0.001 - half, h2 = half - 0.001,
  6538. grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[X_AXIS])),
  6539. grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[Y_AXIS]));
  6540. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6541. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6542. z1 = bed_level[floor_x + half][floor_y + half],
  6543. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6544. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6545. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6546. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6547. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6548. offset = (1 - ratio_x) * left + ratio_x * right;
  6549. delta[X_AXIS] += offset;
  6550. delta[Y_AXIS] += offset;
  6551. delta[Z_AXIS] += offset;
  6552. /**
  6553. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6554. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6555. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6556. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6557. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6558. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6559. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6560. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6561. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6562. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6563. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6564. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6565. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6566. */
  6567. }
  6568. #endif // AUTO_BED_LEVELING_NONLINEAR
  6569. #endif // DELTA
  6570. void set_current_from_steppers_for_axis(AxisEnum axis) {
  6571. #if ENABLED(DELTA)
  6572. set_cartesian_from_steppers();
  6573. current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
  6574. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  6575. vector_3 pos = untilted_stepper_position();
  6576. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6577. #else
  6578. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6579. #endif
  6580. }
  6581. #if ENABLED(MESH_BED_LEVELING)
  6582. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6583. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6584. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6585. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6586. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6587. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6588. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6589. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6590. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6591. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6592. if (cx1 == cx2 && cy1 == cy2) {
  6593. // Start and end on same mesh square
  6594. line_to_destination(fr_mm_s);
  6595. set_current_to_destination();
  6596. return;
  6597. }
  6598. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6599. float normalized_dist, end[NUM_AXIS];
  6600. // Split at the left/front border of the right/top square
  6601. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6602. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6603. memcpy(end, destination, sizeof(end));
  6604. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6605. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6606. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6607. CBI(x_splits, gcx);
  6608. }
  6609. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6610. memcpy(end, destination, sizeof(end));
  6611. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6612. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6613. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6614. CBI(y_splits, gcy);
  6615. }
  6616. else {
  6617. // Already split on a border
  6618. line_to_destination(fr_mm_s);
  6619. set_current_to_destination();
  6620. return;
  6621. }
  6622. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6623. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6624. // Do the split and look for more borders
  6625. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6626. // Restore destination from stack
  6627. memcpy(destination, end, sizeof(end));
  6628. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6629. }
  6630. #endif // MESH_BED_LEVELING
  6631. #if IS_KINEMATIC
  6632. inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
  6633. float difference[NUM_AXIS];
  6634. LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
  6635. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6636. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6637. if (cartesian_mm < 0.000001) return false;
  6638. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6639. float seconds = cartesian_mm / _feedrate_mm_s;
  6640. int steps = max(1, int(delta_segments_per_second * seconds));
  6641. float inv_steps = 1.0/steps;
  6642. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6643. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6644. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6645. for (int s = 1; s <= steps; s++) {
  6646. float fraction = float(s) * inv_steps;
  6647. LOOP_XYZE(i)
  6648. target[i] = current_position[i] + difference[i] * fraction;
  6649. inverse_kinematics(target);
  6650. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6651. if (!bed_leveling_in_progress) adjust_delta(target);
  6652. #endif
  6653. //DEBUG_POS("prepare_kinematic_move_to", target);
  6654. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6655. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6656. }
  6657. return true;
  6658. }
  6659. #endif // IS_KINEMATIC
  6660. #if ENABLED(DUAL_X_CARRIAGE)
  6661. inline bool prepare_move_to_destination_dualx() {
  6662. if (active_extruder_parked) {
  6663. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6664. // move duplicate extruder into correct duplication position.
  6665. planner.set_position_mm(
  6666. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6667. current_position[Y_AXIS],
  6668. current_position[Z_AXIS],
  6669. current_position[E_AXIS]
  6670. );
  6671. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6672. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6673. SYNC_PLAN_POSITION_KINEMATIC();
  6674. stepper.synchronize();
  6675. extruder_duplication_enabled = true;
  6676. active_extruder_parked = false;
  6677. }
  6678. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6679. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6680. // This is a travel move (with no extrusion)
  6681. // Skip it, but keep track of the current position
  6682. // (so it can be used as the start of the next non-travel move)
  6683. if (delayed_move_time != 0xFFFFFFFFUL) {
  6684. set_current_to_destination();
  6685. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6686. delayed_move_time = millis();
  6687. return false;
  6688. }
  6689. }
  6690. delayed_move_time = 0;
  6691. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6692. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6693. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6694. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6695. active_extruder_parked = false;
  6696. }
  6697. }
  6698. return true;
  6699. }
  6700. #endif // DUAL_X_CARRIAGE
  6701. #if !IS_KINEMATIC
  6702. inline bool prepare_move_to_destination_cartesian() {
  6703. // Do not use feedrate_percentage for E or Z only moves
  6704. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6705. line_to_destination();
  6706. }
  6707. else {
  6708. #if ENABLED(MESH_BED_LEVELING)
  6709. if (mbl.active()) {
  6710. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6711. return false;
  6712. }
  6713. else
  6714. #endif
  6715. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6716. }
  6717. return true;
  6718. }
  6719. #endif // !IS_KINEMATIC
  6720. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6721. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6722. if (DEBUGGING(DRYRUN)) return;
  6723. float de = dest_e - curr_e;
  6724. if (de) {
  6725. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6726. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6727. SERIAL_ECHO_START;
  6728. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6729. }
  6730. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6731. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6732. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6733. SERIAL_ECHO_START;
  6734. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6735. }
  6736. #endif
  6737. }
  6738. }
  6739. #endif // PREVENT_COLD_EXTRUSION
  6740. /**
  6741. * Prepare a single move and get ready for the next one
  6742. *
  6743. * (This may call planner.buffer_line several times to put
  6744. * smaller moves into the planner for DELTA or SCARA.)
  6745. */
  6746. void prepare_move_to_destination() {
  6747. clamp_to_software_endstops(destination);
  6748. refresh_cmd_timeout();
  6749. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6750. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6751. #endif
  6752. #if IS_KINEMATIC
  6753. if (!prepare_kinematic_move_to(destination)) return;
  6754. #else
  6755. #if ENABLED(DUAL_X_CARRIAGE)
  6756. if (!prepare_move_to_destination_dualx()) return;
  6757. #endif
  6758. if (!prepare_move_to_destination_cartesian()) return;
  6759. #endif
  6760. set_current_to_destination();
  6761. }
  6762. #if ENABLED(ARC_SUPPORT)
  6763. /**
  6764. * Plan an arc in 2 dimensions
  6765. *
  6766. * The arc is approximated by generating many small linear segments.
  6767. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6768. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6769. * larger segments will tend to be more efficient. Your slicer should have
  6770. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6771. */
  6772. void plan_arc(
  6773. float target[NUM_AXIS], // Destination position
  6774. float* offset, // Center of rotation relative to current_position
  6775. uint8_t clockwise // Clockwise?
  6776. ) {
  6777. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6778. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6779. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6780. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6781. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6782. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6783. r_Y = -offset[Y_AXIS],
  6784. rt_X = target[X_AXIS] - center_X,
  6785. rt_Y = target[Y_AXIS] - center_Y;
  6786. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6787. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6788. if (angular_travel < 0) angular_travel += RADIANS(360);
  6789. if (clockwise) angular_travel -= RADIANS(360);
  6790. // Make a circle if the angular rotation is 0
  6791. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6792. angular_travel += RADIANS(360);
  6793. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6794. if (mm_of_travel < 0.001) return;
  6795. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6796. if (segments == 0) segments = 1;
  6797. float theta_per_segment = angular_travel / segments;
  6798. float linear_per_segment = linear_travel / segments;
  6799. float extruder_per_segment = extruder_travel / segments;
  6800. /**
  6801. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6802. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6803. * r_T = [cos(phi) -sin(phi);
  6804. * sin(phi) cos(phi] * r ;
  6805. *
  6806. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6807. * defined from the circle center to the initial position. Each line segment is formed by successive
  6808. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6809. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6810. * all double numbers are single precision on the Arduino. (True double precision will not have
  6811. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6812. * tool precision in some cases. Therefore, arc path correction is implemented.
  6813. *
  6814. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6815. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6816. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6817. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6818. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6819. * issue for CNC machines with the single precision Arduino calculations.
  6820. *
  6821. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6822. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6823. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6824. * This is important when there are successive arc motions.
  6825. */
  6826. // Vector rotation matrix values
  6827. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6828. float sin_T = theta_per_segment;
  6829. float arc_target[NUM_AXIS];
  6830. float sin_Ti, cos_Ti, r_new_Y;
  6831. uint16_t i;
  6832. int8_t count = 0;
  6833. // Initialize the linear axis
  6834. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6835. // Initialize the extruder axis
  6836. arc_target[E_AXIS] = current_position[E_AXIS];
  6837. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  6838. millis_t next_idle_ms = millis() + 200UL;
  6839. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6840. thermalManager.manage_heater();
  6841. millis_t now = millis();
  6842. if (ELAPSED(now, next_idle_ms)) {
  6843. next_idle_ms = now + 200UL;
  6844. idle();
  6845. }
  6846. if (++count < N_ARC_CORRECTION) {
  6847. // Apply vector rotation matrix to previous r_X / 1
  6848. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6849. r_X = r_X * cos_T - r_Y * sin_T;
  6850. r_Y = r_new_Y;
  6851. }
  6852. else {
  6853. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6854. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6855. // To reduce stuttering, the sin and cos could be computed at different times.
  6856. // For now, compute both at the same time.
  6857. cos_Ti = cos(i * theta_per_segment);
  6858. sin_Ti = sin(i * theta_per_segment);
  6859. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6860. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6861. count = 0;
  6862. }
  6863. // Update arc_target location
  6864. arc_target[X_AXIS] = center_X + r_X;
  6865. arc_target[Y_AXIS] = center_Y + r_Y;
  6866. arc_target[Z_AXIS] += linear_per_segment;
  6867. arc_target[E_AXIS] += extruder_per_segment;
  6868. clamp_to_software_endstops(arc_target);
  6869. #if IS_KINEMATIC
  6870. inverse_kinematics(arc_target);
  6871. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6872. adjust_delta(arc_target);
  6873. #endif
  6874. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6875. #else
  6876. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6877. #endif
  6878. }
  6879. // Ensure last segment arrives at target location.
  6880. #if IS_KINEMATIC
  6881. inverse_kinematics(target);
  6882. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6883. adjust_delta(target);
  6884. #endif
  6885. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6886. #else
  6887. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6888. #endif
  6889. // As far as the parser is concerned, the position is now == target. In reality the
  6890. // motion control system might still be processing the action and the real tool position
  6891. // in any intermediate location.
  6892. set_current_to_destination();
  6893. }
  6894. #endif
  6895. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6896. void plan_cubic_move(const float offset[4]) {
  6897. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  6898. // As far as the parser is concerned, the position is now == target. In reality the
  6899. // motion control system might still be processing the action and the real tool position
  6900. // in any intermediate location.
  6901. set_current_to_destination();
  6902. }
  6903. #endif // BEZIER_CURVE_SUPPORT
  6904. #if HAS_CONTROLLERFAN
  6905. void controllerFan() {
  6906. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6907. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6908. millis_t ms = millis();
  6909. if (ELAPSED(ms, nextMotorCheck)) {
  6910. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6911. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6912. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6913. #if E_STEPPERS > 1
  6914. || E1_ENABLE_READ == E_ENABLE_ON
  6915. #if HAS_X2_ENABLE
  6916. || X2_ENABLE_READ == X_ENABLE_ON
  6917. #endif
  6918. #if E_STEPPERS > 2
  6919. || E2_ENABLE_READ == E_ENABLE_ON
  6920. #if E_STEPPERS > 3
  6921. || E3_ENABLE_READ == E_ENABLE_ON
  6922. #endif
  6923. #endif
  6924. #endif
  6925. ) {
  6926. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6927. }
  6928. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6929. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6930. // allows digital or PWM fan output to be used (see M42 handling)
  6931. digitalWrite(CONTROLLERFAN_PIN, speed);
  6932. analogWrite(CONTROLLERFAN_PIN, speed);
  6933. }
  6934. }
  6935. #endif // HAS_CONTROLLERFAN
  6936. #if ENABLED(SCARA)
  6937. void forward_kinematics_SCARA(float f_scara[ABC]) {
  6938. // Perform forward kinematics, and place results in delta[]
  6939. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6940. float x_sin, x_cos, y_sin, y_cos;
  6941. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6942. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6943. x_sin = sin(RADIANS(f_scara[X_AXIS])) * L1;
  6944. x_cos = cos(RADIANS(f_scara[X_AXIS])) * L1;
  6945. y_sin = sin(RADIANS(f_scara[Y_AXIS])) * L2;
  6946. y_cos = cos(RADIANS(f_scara[Y_AXIS])) * L2;
  6947. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6948. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6949. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6950. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6951. delta[X_AXIS] = x_cos + y_cos + SCARA_OFFSET_X; //theta
  6952. delta[Y_AXIS] = x_sin + y_sin + SCARA_OFFSET_Y; //theta+phi
  6953. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6954. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6955. }
  6956. void inverse_kinematics(const float cartesian[XYZ]) {
  6957. // Inverse kinematics.
  6958. // Perform SCARA IK and place results in delta[].
  6959. // The maths and first version were done by QHARLEY.
  6960. // Integrated, tweaked by Joachim Cerny in June 2014.
  6961. static float C2, S2, SK1, SK2, THETA, PSI;
  6962. float sx = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_OFFSET_X, //Translate SCARA to standard X Y
  6963. sy = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.
  6964. #if (L1 == L2)
  6965. C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1;
  6966. #else
  6967. C2 = (HYPOT2(sx, sy) - L1_2 - L2_2) / 45000;
  6968. #endif
  6969. S2 = sqrt(1 - sq(C2));
  6970. SK1 = L1 + L2 * C2;
  6971. SK2 = L2 * S2;
  6972. THETA = (atan2(sx, sy) - atan2(SK1, SK2)) * -1;
  6973. PSI = atan2(S2, C2);
  6974. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  6975. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  6976. delta[Z_AXIS] = cartesian[Z_AXIS];
  6977. /**
  6978. DEBUG_POS("SCARA IK", cartesian);
  6979. DEBUG_POS("SCARA IK", delta);
  6980. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  6981. SERIAL_ECHOPAIR(",", sy);
  6982. SERIAL_ECHOPAIR(" C2=", C2);
  6983. SERIAL_ECHOPAIR(" S2=", S2);
  6984. SERIAL_ECHOPAIR(" Theta=", THETA);
  6985. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  6986. //*/
  6987. }
  6988. #endif // MORGAN_SCARA
  6989. #if ENABLED(TEMP_STAT_LEDS)
  6990. static bool red_led = false;
  6991. static millis_t next_status_led_update_ms = 0;
  6992. void handle_status_leds(void) {
  6993. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6994. next_status_led_update_ms += 500; // Update every 0.5s
  6995. float max_temp = 0.0;
  6996. #if HAS_TEMP_BED
  6997. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  6998. #endif
  6999. HOTEND_LOOP() {
  7000. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7001. }
  7002. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7003. if (new_led != red_led) {
  7004. red_led = new_led;
  7005. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7006. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7007. }
  7008. }
  7009. }
  7010. #endif
  7011. void enable_all_steppers() {
  7012. enable_x();
  7013. enable_y();
  7014. enable_z();
  7015. enable_e0();
  7016. enable_e1();
  7017. enable_e2();
  7018. enable_e3();
  7019. }
  7020. void disable_all_steppers() {
  7021. disable_x();
  7022. disable_y();
  7023. disable_z();
  7024. disable_e0();
  7025. disable_e1();
  7026. disable_e2();
  7027. disable_e3();
  7028. }
  7029. /**
  7030. * Standard idle routine keeps the machine alive
  7031. */
  7032. void idle(
  7033. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7034. bool no_stepper_sleep/*=false*/
  7035. #endif
  7036. ) {
  7037. lcd_update();
  7038. host_keepalive();
  7039. manage_inactivity(
  7040. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7041. no_stepper_sleep
  7042. #endif
  7043. );
  7044. thermalManager.manage_heater();
  7045. #if ENABLED(PRINTCOUNTER)
  7046. print_job_timer.tick();
  7047. #endif
  7048. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7049. buzzer.tick();
  7050. #endif
  7051. }
  7052. /**
  7053. * Manage several activities:
  7054. * - Check for Filament Runout
  7055. * - Keep the command buffer full
  7056. * - Check for maximum inactive time between commands
  7057. * - Check for maximum inactive time between stepper commands
  7058. * - Check if pin CHDK needs to go LOW
  7059. * - Check for KILL button held down
  7060. * - Check for HOME button held down
  7061. * - Check if cooling fan needs to be switched on
  7062. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7063. */
  7064. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7065. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7066. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7067. handle_filament_runout();
  7068. #endif
  7069. if (commands_in_queue < BUFSIZE) get_available_commands();
  7070. millis_t ms = millis();
  7071. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7072. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7073. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7074. #if ENABLED(DISABLE_INACTIVE_X)
  7075. disable_x();
  7076. #endif
  7077. #if ENABLED(DISABLE_INACTIVE_Y)
  7078. disable_y();
  7079. #endif
  7080. #if ENABLED(DISABLE_INACTIVE_Z)
  7081. disable_z();
  7082. #endif
  7083. #if ENABLED(DISABLE_INACTIVE_E)
  7084. disable_e0();
  7085. disable_e1();
  7086. disable_e2();
  7087. disable_e3();
  7088. #endif
  7089. }
  7090. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7091. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7092. chdkActive = false;
  7093. WRITE(CHDK, LOW);
  7094. }
  7095. #endif
  7096. #if HAS_KILL
  7097. // Check if the kill button was pressed and wait just in case it was an accidental
  7098. // key kill key press
  7099. // -------------------------------------------------------------------------------
  7100. static int killCount = 0; // make the inactivity button a bit less responsive
  7101. const int KILL_DELAY = 750;
  7102. if (!READ(KILL_PIN))
  7103. killCount++;
  7104. else if (killCount > 0)
  7105. killCount--;
  7106. // Exceeded threshold and we can confirm that it was not accidental
  7107. // KILL the machine
  7108. // ----------------------------------------------------------------
  7109. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7110. #endif
  7111. #if HAS_HOME
  7112. // Check to see if we have to home, use poor man's debouncer
  7113. // ---------------------------------------------------------
  7114. static int homeDebounceCount = 0; // poor man's debouncing count
  7115. const int HOME_DEBOUNCE_DELAY = 2500;
  7116. if (!READ(HOME_PIN)) {
  7117. if (!homeDebounceCount) {
  7118. enqueue_and_echo_commands_P(PSTR("G28"));
  7119. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7120. }
  7121. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7122. homeDebounceCount++;
  7123. else
  7124. homeDebounceCount = 0;
  7125. }
  7126. #endif
  7127. #if HAS_CONTROLLERFAN
  7128. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7129. #endif
  7130. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7131. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7132. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7133. #if ENABLED(SWITCHING_EXTRUDER)
  7134. bool oldstatus = E0_ENABLE_READ;
  7135. enable_e0();
  7136. #else // !SWITCHING_EXTRUDER
  7137. bool oldstatus;
  7138. switch (active_extruder) {
  7139. case 0:
  7140. oldstatus = E0_ENABLE_READ;
  7141. enable_e0();
  7142. break;
  7143. #if E_STEPPERS > 1
  7144. case 1:
  7145. oldstatus = E1_ENABLE_READ;
  7146. enable_e1();
  7147. break;
  7148. #if E_STEPPERS > 2
  7149. case 2:
  7150. oldstatus = E2_ENABLE_READ;
  7151. enable_e2();
  7152. break;
  7153. #if E_STEPPERS > 3
  7154. case 3:
  7155. oldstatus = E3_ENABLE_READ;
  7156. enable_e3();
  7157. break;
  7158. #endif
  7159. #endif
  7160. #endif
  7161. }
  7162. #endif // !SWITCHING_EXTRUDER
  7163. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7164. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7165. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS],
  7166. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS], active_extruder);
  7167. current_position[E_AXIS] = oldepos;
  7168. destination[E_AXIS] = oldedes;
  7169. planner.set_e_position_mm(oldepos);
  7170. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7171. stepper.synchronize();
  7172. #if ENABLED(SWITCHING_EXTRUDER)
  7173. E0_ENABLE_WRITE(oldstatus);
  7174. #else
  7175. switch (active_extruder) {
  7176. case 0:
  7177. E0_ENABLE_WRITE(oldstatus);
  7178. break;
  7179. #if E_STEPPERS > 1
  7180. case 1:
  7181. E1_ENABLE_WRITE(oldstatus);
  7182. break;
  7183. #if E_STEPPERS > 2
  7184. case 2:
  7185. E2_ENABLE_WRITE(oldstatus);
  7186. break;
  7187. #if E_STEPPERS > 3
  7188. case 3:
  7189. E3_ENABLE_WRITE(oldstatus);
  7190. break;
  7191. #endif
  7192. #endif
  7193. #endif
  7194. }
  7195. #endif // !SWITCHING_EXTRUDER
  7196. }
  7197. #endif // EXTRUDER_RUNOUT_PREVENT
  7198. #if ENABLED(DUAL_X_CARRIAGE)
  7199. // handle delayed move timeout
  7200. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7201. // travel moves have been received so enact them
  7202. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7203. set_destination_to_current();
  7204. prepare_move_to_destination();
  7205. }
  7206. #endif
  7207. #if ENABLED(TEMP_STAT_LEDS)
  7208. handle_status_leds();
  7209. #endif
  7210. planner.check_axes_activity();
  7211. }
  7212. void kill(const char* lcd_msg) {
  7213. SERIAL_ERROR_START;
  7214. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7215. #if ENABLED(ULTRA_LCD)
  7216. kill_screen(lcd_msg);
  7217. #else
  7218. UNUSED(lcd_msg);
  7219. #endif
  7220. delay(500); // Wait a short time
  7221. cli(); // Stop interrupts
  7222. thermalManager.disable_all_heaters();
  7223. disable_all_steppers();
  7224. #if HAS_POWER_SWITCH
  7225. pinMode(PS_ON_PIN, INPUT);
  7226. #endif
  7227. suicide();
  7228. while (1) {
  7229. #if ENABLED(USE_WATCHDOG)
  7230. watchdog_reset();
  7231. #endif
  7232. } // Wait for reset
  7233. }
  7234. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7235. void handle_filament_runout() {
  7236. if (!filament_ran_out) {
  7237. filament_ran_out = true;
  7238. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7239. stepper.synchronize();
  7240. }
  7241. }
  7242. #endif // FILAMENT_RUNOUT_SENSOR
  7243. #if ENABLED(FAST_PWM_FAN)
  7244. void setPwmFrequency(uint8_t pin, int val) {
  7245. val &= 0x07;
  7246. switch (digitalPinToTimer(pin)) {
  7247. #if defined(TCCR0A)
  7248. case TIMER0A:
  7249. case TIMER0B:
  7250. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7251. // TCCR0B |= val;
  7252. break;
  7253. #endif
  7254. #if defined(TCCR1A)
  7255. case TIMER1A:
  7256. case TIMER1B:
  7257. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7258. // TCCR1B |= val;
  7259. break;
  7260. #endif
  7261. #if defined(TCCR2)
  7262. case TIMER2:
  7263. case TIMER2:
  7264. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7265. TCCR2 |= val;
  7266. break;
  7267. #endif
  7268. #if defined(TCCR2A)
  7269. case TIMER2A:
  7270. case TIMER2B:
  7271. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7272. TCCR2B |= val;
  7273. break;
  7274. #endif
  7275. #if defined(TCCR3A)
  7276. case TIMER3A:
  7277. case TIMER3B:
  7278. case TIMER3C:
  7279. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7280. TCCR3B |= val;
  7281. break;
  7282. #endif
  7283. #if defined(TCCR4A)
  7284. case TIMER4A:
  7285. case TIMER4B:
  7286. case TIMER4C:
  7287. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7288. TCCR4B |= val;
  7289. break;
  7290. #endif
  7291. #if defined(TCCR5A)
  7292. case TIMER5A:
  7293. case TIMER5B:
  7294. case TIMER5C:
  7295. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7296. TCCR5B |= val;
  7297. break;
  7298. #endif
  7299. }
  7300. }
  7301. #endif // FAST_PWM_FAN
  7302. void stop() {
  7303. thermalManager.disable_all_heaters();
  7304. if (IsRunning()) {
  7305. Running = false;
  7306. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7307. SERIAL_ERROR_START;
  7308. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7309. LCD_MESSAGEPGM(MSG_STOPPED);
  7310. }
  7311. }
  7312. float calculate_volumetric_multiplier(float diameter) {
  7313. if (!volumetric_enabled || diameter == 0) return 1.0;
  7314. float d2 = diameter * 0.5;
  7315. return 1.0 / (M_PI * d2 * d2);
  7316. }
  7317. void calculate_volumetric_multipliers() {
  7318. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7319. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7320. }
  7321. /**
  7322. * Marlin entry-point: Set up before the program loop
  7323. * - Set up the kill pin, filament runout, power hold
  7324. * - Start the serial port
  7325. * - Print startup messages and diagnostics
  7326. * - Get EEPROM or default settings
  7327. * - Initialize managers for:
  7328. * • temperature
  7329. * • planner
  7330. * • watchdog
  7331. * • stepper
  7332. * • photo pin
  7333. * • servos
  7334. * • LCD controller
  7335. * • Digipot I2C
  7336. * • Z probe sled
  7337. * • status LEDs
  7338. */
  7339. void setup() {
  7340. #ifdef DISABLE_JTAG
  7341. // Disable JTAG on AT90USB chips to free up pins for IO
  7342. MCUCR = 0x80;
  7343. MCUCR = 0x80;
  7344. #endif
  7345. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7346. setup_filrunoutpin();
  7347. #endif
  7348. setup_killpin();
  7349. setup_powerhold();
  7350. #if HAS_STEPPER_RESET
  7351. disableStepperDrivers();
  7352. #endif
  7353. MYSERIAL.begin(BAUDRATE);
  7354. SERIAL_PROTOCOLLNPGM("start");
  7355. SERIAL_ECHO_START;
  7356. // Check startup - does nothing if bootloader sets MCUSR to 0
  7357. byte mcu = MCUSR;
  7358. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7359. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7360. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7361. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7362. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7363. MCUSR = 0;
  7364. SERIAL_ECHOPGM(MSG_MARLIN);
  7365. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  7366. #ifdef STRING_DISTRIBUTION_DATE
  7367. #ifdef STRING_CONFIG_H_AUTHOR
  7368. SERIAL_ECHO_START;
  7369. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7370. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7371. SERIAL_ECHOPGM(MSG_AUTHOR);
  7372. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  7373. SERIAL_ECHOPGM("Compiled: ");
  7374. SERIAL_ECHOLNPGM(__DATE__);
  7375. #endif // STRING_CONFIG_H_AUTHOR
  7376. #endif // STRING_DISTRIBUTION_DATE
  7377. SERIAL_ECHO_START;
  7378. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  7379. SERIAL_ECHO(freeMemory());
  7380. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  7381. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7382. // Send "ok" after commands by default
  7383. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7384. // Load data from EEPROM if available (or use defaults)
  7385. // This also updates variables in the planner, elsewhere
  7386. Config_RetrieveSettings();
  7387. // Initialize current position based on home_offset
  7388. memcpy(current_position, home_offset, sizeof(home_offset));
  7389. // Vital to init stepper/planner equivalent for current_position
  7390. SYNC_PLAN_POSITION_KINEMATIC();
  7391. thermalManager.init(); // Initialize temperature loop
  7392. #if ENABLED(USE_WATCHDOG)
  7393. watchdog_init();
  7394. #endif
  7395. stepper.init(); // Initialize stepper, this enables interrupts!
  7396. setup_photpin();
  7397. servo_init();
  7398. #if HAS_BED_PROBE
  7399. endstops.enable_z_probe(false);
  7400. #endif
  7401. #if HAS_CONTROLLERFAN
  7402. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7403. #endif
  7404. #if HAS_STEPPER_RESET
  7405. enableStepperDrivers();
  7406. #endif
  7407. #if ENABLED(DIGIPOT_I2C)
  7408. digipot_i2c_init();
  7409. #endif
  7410. #if ENABLED(DAC_STEPPER_CURRENT)
  7411. dac_init();
  7412. #endif
  7413. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7414. pinMode(SLED_PIN, OUTPUT);
  7415. digitalWrite(SLED_PIN, LOW); // turn it off
  7416. #endif // Z_PROBE_SLED
  7417. setup_homepin();
  7418. #ifdef STAT_LED_RED
  7419. pinMode(STAT_LED_RED, OUTPUT);
  7420. digitalWrite(STAT_LED_RED, LOW); // turn it off
  7421. #endif
  7422. #ifdef STAT_LED_BLUE
  7423. pinMode(STAT_LED_BLUE, OUTPUT);
  7424. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  7425. #endif
  7426. lcd_init();
  7427. #if ENABLED(SHOW_BOOTSCREEN)
  7428. #if ENABLED(DOGLCD)
  7429. safe_delay(BOOTSCREEN_TIMEOUT);
  7430. #elif ENABLED(ULTRA_LCD)
  7431. bootscreen();
  7432. lcd_init();
  7433. #endif
  7434. #endif
  7435. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7436. // Initialize mixing to 100% color 1
  7437. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7438. mixing_factor[i] = (i == 0) ? 1 : 0;
  7439. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7440. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7441. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7442. #endif
  7443. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7444. i2c.onReceive(i2c_on_receive);
  7445. i2c.onRequest(i2c_on_request);
  7446. #endif
  7447. }
  7448. /**
  7449. * The main Marlin program loop
  7450. *
  7451. * - Save or log commands to SD
  7452. * - Process available commands (if not saving)
  7453. * - Call heater manager
  7454. * - Call inactivity manager
  7455. * - Call endstop manager
  7456. * - Call LCD update
  7457. */
  7458. void loop() {
  7459. if (commands_in_queue < BUFSIZE) get_available_commands();
  7460. #if ENABLED(SDSUPPORT)
  7461. card.checkautostart(false);
  7462. #endif
  7463. if (commands_in_queue) {
  7464. #if ENABLED(SDSUPPORT)
  7465. if (card.saving) {
  7466. char* command = command_queue[cmd_queue_index_r];
  7467. if (strstr_P(command, PSTR("M29"))) {
  7468. // M29 closes the file
  7469. card.closefile();
  7470. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7471. ok_to_send();
  7472. }
  7473. else {
  7474. // Write the string from the read buffer to SD
  7475. card.write_command(command);
  7476. if (card.logging)
  7477. process_next_command(); // The card is saving because it's logging
  7478. else
  7479. ok_to_send();
  7480. }
  7481. }
  7482. else
  7483. process_next_command();
  7484. #else
  7485. process_next_command();
  7486. #endif // SDSUPPORT
  7487. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7488. if (commands_in_queue) {
  7489. --commands_in_queue;
  7490. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7491. }
  7492. }
  7493. endstops.report_state();
  7494. idle();
  7495. }