My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.cpp 33KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. //===========================================================================
  42. //=============================public variables ============================
  43. //===========================================================================
  44. unsigned long minsegmenttime;
  45. float max_feedrate[4]; // set the max speeds
  46. float axis_steps_per_unit[4];
  47. unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
  48. float minimumfeedrate;
  49. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  50. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  51. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  52. float max_z_jerk;
  53. float mintravelfeedrate;
  54. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  55. // The current position of the tool in absolute steps
  56. long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  57. static float previous_speed[4]; // Speed of previous path line segment
  58. static float previous_nominal_speed; // Nominal speed of previous path line segment
  59. extern volatile int extrudemultiply; // Sets extrude multiply factor (in percent)
  60. #ifdef AUTOTEMP
  61. float autotemp_max=250;
  62. float autotemp_min=210;
  63. float autotemp_factor=0.1;
  64. bool autotemp_enabled=false;
  65. #endif
  66. //===========================================================================
  67. //=================semi-private variables, used in inline functions =====
  68. //===========================================================================
  69. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  70. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  71. volatile unsigned char block_buffer_tail; // Index of the block to process now
  72. //===========================================================================
  73. //=============================private variables ============================
  74. //===========================================================================
  75. #ifdef PREVENT_DANGEROUS_EXTRUDE
  76. bool allow_cold_extrude=false;
  77. #endif
  78. #ifdef XY_FREQUENCY_LIMIT
  79. // Used for the frequency limit
  80. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  81. static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
  82. static long y_segment_time[3]={0,0,0};
  83. #endif
  84. // Returns the index of the next block in the ring buffer
  85. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  86. static int8_t next_block_index(int8_t block_index) {
  87. block_index++;
  88. if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
  89. return(block_index);
  90. }
  91. // Returns the index of the previous block in the ring buffer
  92. static int8_t prev_block_index(int8_t block_index) {
  93. if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
  94. block_index--;
  95. return(block_index);
  96. }
  97. //===========================================================================
  98. //=============================functions ============================
  99. //===========================================================================
  100. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  101. // given acceleration:
  102. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  103. {
  104. if (acceleration!=0) {
  105. return((target_rate*target_rate-initial_rate*initial_rate)/
  106. (2.0*acceleration));
  107. }
  108. else {
  109. return 0.0; // acceleration was 0, set acceleration distance to 0
  110. }
  111. }
  112. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  113. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  114. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  115. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  116. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  117. {
  118. if (acceleration!=0) {
  119. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  120. (4.0*acceleration) );
  121. }
  122. else {
  123. return 0.0; // acceleration was 0, set intersection distance to 0
  124. }
  125. }
  126. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  127. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  128. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  129. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  130. // Limit minimal step rate (Otherwise the timer will overflow.)
  131. if(initial_rate <120) {initial_rate=120; }
  132. if(final_rate < 120) {final_rate=120; }
  133. long acceleration = block->acceleration_st;
  134. int32_t accelerate_steps =
  135. ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
  136. int32_t decelerate_steps =
  137. floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
  138. // Calculate the size of Plateau of Nominal Rate.
  139. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  140. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  141. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  142. // in order to reach the final_rate exactly at the end of this block.
  143. if (plateau_steps < 0) {
  144. accelerate_steps = ceil(
  145. intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
  146. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  147. accelerate_steps = min(accelerate_steps,block->step_event_count);
  148. plateau_steps = 0;
  149. }
  150. #ifdef ADVANCE
  151. volatile long initial_advance = block->advance*entry_factor*entry_factor;
  152. volatile long final_advance = block->advance*exit_factor*exit_factor;
  153. #endif // ADVANCE
  154. // block->accelerate_until = accelerate_steps;
  155. // block->decelerate_after = accelerate_steps+plateau_steps;
  156. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  157. if(block->busy == false) { // Don't update variables if block is busy.
  158. block->accelerate_until = accelerate_steps;
  159. block->decelerate_after = accelerate_steps+plateau_steps;
  160. block->initial_rate = initial_rate;
  161. block->final_rate = final_rate;
  162. #ifdef ADVANCE
  163. block->initial_advance = initial_advance;
  164. block->final_advance = final_advance;
  165. #endif //ADVANCE
  166. }
  167. CRITICAL_SECTION_END;
  168. }
  169. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  170. // acceleration within the allotted distance.
  171. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  172. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  173. }
  174. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  175. // This method will calculate the junction jerk as the euclidean distance between the nominal
  176. // velocities of the respective blocks.
  177. //inline float junction_jerk(block_t *before, block_t *after) {
  178. // return sqrt(
  179. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  180. //}
  181. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  182. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  183. if(!current) { return; }
  184. if (next) {
  185. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  186. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  187. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  188. if (current->entry_speed != current->max_entry_speed) {
  189. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  190. // for max allowable speed if block is decelerating and nominal length is false.
  191. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  192. current->entry_speed = min( current->max_entry_speed,
  193. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  194. } else {
  195. current->entry_speed = current->max_entry_speed;
  196. }
  197. current->recalculate_flag = true;
  198. }
  199. } // Skip last block. Already initialized and set for recalculation.
  200. }
  201. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  202. // implements the reverse pass.
  203. void planner_reverse_pass() {
  204. uint8_t block_index = block_buffer_head;
  205. if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  206. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  207. block_t *block[3] = { NULL, NULL, NULL };
  208. while(block_index != block_buffer_tail) {
  209. block_index = prev_block_index(block_index);
  210. block[2]= block[1];
  211. block[1]= block[0];
  212. block[0] = &block_buffer[block_index];
  213. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  214. }
  215. }
  216. }
  217. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  218. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  219. if(!previous) { return; }
  220. // If the previous block is an acceleration block, but it is not long enough to complete the
  221. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  222. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  223. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  224. if (!previous->nominal_length_flag) {
  225. if (previous->entry_speed < current->entry_speed) {
  226. double entry_speed = min( current->entry_speed,
  227. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  228. // Check for junction speed change
  229. if (current->entry_speed != entry_speed) {
  230. current->entry_speed = entry_speed;
  231. current->recalculate_flag = true;
  232. }
  233. }
  234. }
  235. }
  236. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  237. // implements the forward pass.
  238. void planner_forward_pass() {
  239. uint8_t block_index = block_buffer_tail;
  240. block_t *block[3] = { NULL, NULL, NULL };
  241. while(block_index != block_buffer_head) {
  242. block[0] = block[1];
  243. block[1] = block[2];
  244. block[2] = &block_buffer[block_index];
  245. planner_forward_pass_kernel(block[0],block[1],block[2]);
  246. block_index = next_block_index(block_index);
  247. }
  248. planner_forward_pass_kernel(block[1], block[2], NULL);
  249. }
  250. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  251. // entry_factor for each junction. Must be called by planner_recalculate() after
  252. // updating the blocks.
  253. void planner_recalculate_trapezoids() {
  254. int8_t block_index = block_buffer_tail;
  255. block_t *current;
  256. block_t *next = NULL;
  257. while(block_index != block_buffer_head) {
  258. current = next;
  259. next = &block_buffer[block_index];
  260. if (current) {
  261. // Recalculate if current block entry or exit junction speed has changed.
  262. if (current->recalculate_flag || next->recalculate_flag) {
  263. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  264. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  265. next->entry_speed/current->nominal_speed);
  266. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  267. }
  268. }
  269. block_index = next_block_index( block_index );
  270. }
  271. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  272. if(next != NULL) {
  273. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  274. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  275. next->recalculate_flag = false;
  276. }
  277. }
  278. // Recalculates the motion plan according to the following algorithm:
  279. //
  280. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  281. // so that:
  282. // a. The junction jerk is within the set limit
  283. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  284. // acceleration.
  285. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  286. // a. The speed increase within one block would require faster accelleration than the one, true
  287. // constant acceleration.
  288. //
  289. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  290. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  291. // the set limit. Finally it will:
  292. //
  293. // 3. Recalculate trapezoids for all blocks.
  294. void planner_recalculate() {
  295. planner_reverse_pass();
  296. planner_forward_pass();
  297. planner_recalculate_trapezoids();
  298. }
  299. void plan_init() {
  300. block_buffer_head = 0;
  301. block_buffer_tail = 0;
  302. memset(position, 0, sizeof(position)); // clear position
  303. previous_speed[0] = 0.0;
  304. previous_speed[1] = 0.0;
  305. previous_speed[2] = 0.0;
  306. previous_speed[3] = 0.0;
  307. previous_nominal_speed = 0.0;
  308. }
  309. #ifdef AUTOTEMP
  310. void getHighESpeed()
  311. {
  312. static float oldt=0;
  313. if(!autotemp_enabled)
  314. return;
  315. if(degTargetHotend0()+2<autotemp_min) //probably temperature set to zero.
  316. return; //do nothing
  317. float high=0;
  318. uint8_t block_index = block_buffer_tail;
  319. while(block_index != block_buffer_head) {
  320. float se=block_buffer[block_index].steps_e/float(block_buffer[block_index].step_event_count)*block_buffer[block_index].nominal_rate;
  321. //se; units steps/sec;
  322. if(se>high)
  323. {
  324. high=se;
  325. }
  326. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  327. }
  328. float g=autotemp_min+high*autotemp_factor;
  329. float t=g;
  330. if(t<autotemp_min)
  331. t=autotemp_min;
  332. if(t>autotemp_max)
  333. t=autotemp_max;
  334. if(oldt>t)
  335. {
  336. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  337. }
  338. oldt=t;
  339. setTargetHotend0(t);
  340. // SERIAL_ECHO_START;
  341. // SERIAL_ECHOPAIR("highe",high);
  342. // SERIAL_ECHOPAIR(" t",t);
  343. // SERIAL_ECHOLN("");
  344. }
  345. #endif
  346. void check_axes_activity() {
  347. unsigned char x_active = 0;
  348. unsigned char y_active = 0;
  349. unsigned char z_active = 0;
  350. unsigned char e_active = 0;
  351. block_t *block;
  352. if(block_buffer_tail != block_buffer_head) {
  353. uint8_t block_index = block_buffer_tail;
  354. while(block_index != block_buffer_head) {
  355. block = &block_buffer[block_index];
  356. if(block->steps_x != 0) x_active++;
  357. if(block->steps_y != 0) y_active++;
  358. if(block->steps_z != 0) z_active++;
  359. if(block->steps_e != 0) e_active++;
  360. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  361. }
  362. }
  363. if((DISABLE_X) && (x_active == 0)) disable_x();
  364. if((DISABLE_Y) && (y_active == 0)) disable_y();
  365. if((DISABLE_Z) && (z_active == 0)) disable_z();
  366. if((DISABLE_E) && (e_active == 0)) { disable_e0();disable_e1();disable_e2(); }
  367. }
  368. float junction_deviation = 0.1;
  369. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  370. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  371. // calculation the caller must also provide the physical length of the line in millimeters.
  372. void plan_buffer_line(float &x, float &y, float &z, float &e, float feed_rate, uint8_t &extruder)
  373. {
  374. // Calculate the buffer head after we push this byte
  375. int next_buffer_head = next_block_index(block_buffer_head);
  376. // If the buffer is full: good! That means we are well ahead of the robot.
  377. // Rest here until there is room in the buffer.
  378. while(block_buffer_tail == next_buffer_head) {
  379. manage_heater();
  380. manage_inactivity(1);
  381. LCD_STATUS;
  382. }
  383. // The target position of the tool in absolute steps
  384. // Calculate target position in absolute steps
  385. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  386. long target[4];
  387. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  388. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  389. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  390. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  391. #ifdef PREVENT_DANGEROUS_EXTRUDE
  392. if(target[E_AXIS]!=position[E_AXIS])
  393. if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
  394. {
  395. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  396. SERIAL_ECHO_START;
  397. SERIAL_ECHOLNPGM(" cold extrusion prevented");
  398. }
  399. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  400. {
  401. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  402. SERIAL_ECHO_START;
  403. SERIAL_ECHOLNPGM(" too long extrusion prevented");
  404. }
  405. #endif
  406. // Prepare to set up new block
  407. block_t *block = &block_buffer[block_buffer_head];
  408. // Mark block as not busy (Not executed by the stepper interrupt)
  409. block->busy = false;
  410. // Number of steps for each axis
  411. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  412. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  413. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  414. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  415. block->steps_e *= extrudemultiply;
  416. block->steps_e /= 100;
  417. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  418. // Bail if this is a zero-length block
  419. if (block->step_event_count <=dropsegments) { return; };
  420. // Compute direction bits for this block
  421. block->direction_bits = 0;
  422. if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
  423. if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
  424. if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
  425. if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
  426. block->active_extruder = extruder;
  427. //enable active axes
  428. if(block->steps_x != 0) enable_x();
  429. if(block->steps_y != 0) enable_y();
  430. #ifndef Z_LATE_ENABLE
  431. if(block->steps_z != 0) enable_z();
  432. #endif
  433. // Enable all
  434. if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); }
  435. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  436. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  437. #ifdef SLOWDOWN
  438. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  439. #endif
  440. float delta_mm[4];
  441. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  442. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  443. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  444. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
  445. if ( block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0 ) {
  446. block->millimeters = abs(delta_mm[E_AXIS]);
  447. } else {
  448. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  449. }
  450. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  451. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  452. float inverse_second = feed_rate * inverse_millimeters;
  453. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  454. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  455. if (block->steps_e == 0) {
  456. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  457. }
  458. else {
  459. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  460. }
  461. /*
  462. // segment time im micro seconds
  463. long segment_time = lround(1000000.0/inverse_second);
  464. if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
  465. if (segment_time<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  466. segment_time=segment_time+lround(2*(minsegmenttime-segment_time)/blockcount);
  467. }
  468. }
  469. else {
  470. if (segment_time<minsegmenttime) segment_time=minsegmenttime;
  471. }
  472. // END OF SLOW DOWN SECTION
  473. */
  474. // Calculate speed in mm/sec for each axis
  475. float current_speed[4];
  476. for(int i=0; i < 4; i++) {
  477. current_speed[i] = delta_mm[i] * inverse_second;
  478. }
  479. // Limit speed per axis
  480. float speed_factor = 1.0; //factor <=1 do decrease speed
  481. for(int i=0; i < 4; i++) {
  482. if(abs(current_speed[i]) > max_feedrate[i])
  483. speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
  484. }
  485. // Max segement time in us.
  486. #ifdef XY_FREQUENCY_LIMIT
  487. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  488. // Check and limit the xy direction change frequency
  489. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  490. old_direction_bits = block->direction_bits;
  491. if((direction_change & (1<<X_AXIS)) == 0) {
  492. x_segment_time[0] += segment_time;
  493. }
  494. else {
  495. x_segment_time[2] = x_segment_time[1];
  496. x_segment_time[1] = x_segment_time[0];
  497. x_segment_time[0] = segment_time;
  498. }
  499. if((direction_change & (1<<Y_AXIS)) == 0) {
  500. y_segment_time[0] += segment_time;
  501. }
  502. else {
  503. y_segment_time[2] = y_segment_time[1];
  504. y_segment_time[1] = y_segment_time[0];
  505. y_segment_time[0] = segment_time;
  506. }
  507. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  508. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  509. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  510. if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  511. #endif
  512. // Correct the speed
  513. if( speed_factor < 1.0) {
  514. // Serial.print("speed factor : "); Serial.println(speed_factor);
  515. for(int i=0; i < 4; i++) {
  516. if(abs(current_speed[i]) > max_feedrate[i])
  517. speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
  518. /*
  519. if(speed_factor < 0.1) {
  520. Serial.print("speed factor : "); Serial.println(speed_factor);
  521. Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
  522. }
  523. */
  524. }
  525. for(unsigned char i=0; i < 4; i++) {
  526. current_speed[i] *= speed_factor;
  527. }
  528. block->nominal_speed *= speed_factor;
  529. block->nominal_rate *= speed_factor;
  530. }
  531. // Compute and limit the acceleration rate for the trapezoid generator.
  532. float steps_per_mm = block->step_event_count/block->millimeters;
  533. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
  534. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  535. }
  536. else {
  537. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  538. // Limit acceleration per axis
  539. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  540. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  541. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  542. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  543. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  544. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  545. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  546. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  547. }
  548. block->acceleration = block->acceleration_st / steps_per_mm;
  549. block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
  550. #if 0 // Use old jerk for now
  551. // Compute path unit vector
  552. double unit_vec[3];
  553. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  554. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  555. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  556. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  557. // Let a circle be tangent to both previous and current path line segments, where the junction
  558. // deviation is defined as the distance from the junction to the closest edge of the circle,
  559. // colinear with the circle center. The circular segment joining the two paths represents the
  560. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  561. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  562. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  563. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  564. // nonlinearities of both the junction angle and junction velocity.
  565. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  566. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  567. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  568. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  569. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  570. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  571. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  572. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  573. // Skip and use default max junction speed for 0 degree acute junction.
  574. if (cos_theta < 0.95) {
  575. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  576. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  577. if (cos_theta > -0.95) {
  578. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  579. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  580. vmax_junction = min(vmax_junction,
  581. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  582. }
  583. }
  584. }
  585. #endif
  586. // Start with a safe speed
  587. float vmax_junction = max_xy_jerk/2;
  588. if(abs(current_speed[Z_AXIS]) > max_z_jerk/2)
  589. vmax_junction = max_z_jerk/2;
  590. vmax_junction = min(vmax_junction, block->nominal_speed);
  591. if ((moves_queued > 1) && (previous_nominal_speed > 0.0)) {
  592. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  593. if((previous_speed[X_AXIS] != 0.0) || (previous_speed[Y_AXIS] != 0.0)) {
  594. vmax_junction = block->nominal_speed;
  595. }
  596. if (jerk > max_xy_jerk) {
  597. vmax_junction *= (max_xy_jerk/jerk);
  598. }
  599. if(abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  600. vmax_junction *= (max_z_jerk/abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
  601. }
  602. }
  603. block->max_entry_speed = vmax_junction;
  604. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  605. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  606. block->entry_speed = min(vmax_junction, v_allowable);
  607. // Initialize planner efficiency flags
  608. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  609. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  610. // the current block and next block junction speeds are guaranteed to always be at their maximum
  611. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  612. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  613. // the reverse and forward planners, the corresponding block junction speed will always be at the
  614. // the maximum junction speed and may always be ignored for any speed reduction checks.
  615. if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
  616. else { block->nominal_length_flag = false; }
  617. block->recalculate_flag = true; // Always calculate trapezoid for new block
  618. // Update previous path unit_vector and nominal speed
  619. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  620. previous_nominal_speed = block->nominal_speed;
  621. #ifdef ADVANCE
  622. // Calculate advance rate
  623. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  624. block->advance_rate = 0;
  625. block->advance = 0;
  626. }
  627. else {
  628. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  629. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  630. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
  631. block->advance = advance;
  632. if(acc_dist == 0) {
  633. block->advance_rate = 0;
  634. }
  635. else {
  636. block->advance_rate = advance / (float)acc_dist;
  637. }
  638. }
  639. /*
  640. SERIAL_ECHO_START;
  641. SERIAL_ECHOPGM("advance :");
  642. SERIAL_ECHO(block->advance/256.0);
  643. SERIAL_ECHOPGM("advance rate :");
  644. SERIAL_ECHOLN(block->advance_rate/256.0);
  645. */
  646. #endif // ADVANCE
  647. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  648. MINIMUM_PLANNER_SPEED/block->nominal_speed);
  649. // Move buffer head
  650. block_buffer_head = next_buffer_head;
  651. // Update position
  652. memcpy(position, target, sizeof(target)); // position[] = target[]
  653. planner_recalculate();
  654. #ifdef AUTOTEMP
  655. getHighESpeed();
  656. #endif
  657. st_wake_up();
  658. }
  659. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  660. {
  661. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  662. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  663. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  664. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  665. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  666. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  667. previous_speed[0] = 0.0;
  668. previous_speed[1] = 0.0;
  669. previous_speed[2] = 0.0;
  670. previous_speed[3] = 0.0;
  671. }
  672. void plan_set_e_position(const float &e)
  673. {
  674. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  675. st_set_e_position(position[E_AXIS]);
  676. }
  677. uint8_t movesplanned()
  678. {
  679. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  680. }
  681. void allow_cold_extrudes(bool allow)
  682. {
  683. #ifdef PREVENT_DANGEROUS_EXTRUDE
  684. allow_cold_extrude=allow;
  685. #endif
  686. }