My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

UBL_G29.cpp 60KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. //#include "vector_3.h"
  25. //#include "qr_solve.h"
  26. #include "UBL.h"
  27. #include "Marlin.h"
  28. #include "hex_print_routines.h"
  29. #include "configuration_store.h"
  30. #include "planner.h"
  31. #include "ultralcd.h"
  32. #include <avr/io.h>
  33. void lcd_babystep_z();
  34. void lcd_return_to_status();
  35. bool lcd_clicked();
  36. void lcd_implementation_clear();
  37. extern float meshedit_done;
  38. extern long babysteps_done;
  39. extern float code_value_float();
  40. extern bool code_value_bool();
  41. extern bool code_has_value();
  42. extern float probe_pt(float x, float y, bool, int);
  43. extern float zprobe_zoffset;
  44. extern bool set_probe_deployed(bool);
  45. #define DEPLOY_PROBE() set_probe_deployed(true)
  46. #define STOW_PROBE() set_probe_deployed(false)
  47. bool ProbeStay = true;
  48. constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X,
  49. ubl_3_point_1_Y = UBL_PROBE_PT_1_Y,
  50. ubl_3_point_2_X = UBL_PROBE_PT_2_X,
  51. ubl_3_point_2_Y = UBL_PROBE_PT_2_Y,
  52. ubl_3_point_3_X = UBL_PROBE_PT_3_X,
  53. ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
  54. #define SIZE_OF_LITTLE_RAISE 0
  55. #define BIG_RAISE_NOT_NEEDED 0
  56. extern void lcd_quick_feedback();
  57. /**
  58. * G29: Unified Bed Leveling by Roxy
  59. *
  60. * Parameters understood by this leveling system:
  61. *
  62. * A Activate Activate the Unified Bed Leveling system.
  63. *
  64. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
  65. * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
  66. * as a shim that the nozzle will pinch as it is lowered. The idea is that you
  67. * can easily feel the nozzle getting to the same height by the amount of resistance
  68. * the business card exhibits to movement. You should try to achieve the same amount
  69. * of resistance on each probed point to facilitate accurate and repeatable measurements.
  70. * You should be very careful not to drive the nozzle into the bussiness card with a
  71. * lot of force as it is very possible to cause damage to your printer if your are
  72. * careless. If you use the B option with G29 P2 B you can leave the number parameter off
  73. * on its first use to enable measurement of the business card thickness. Subsequent usage
  74. * of the B parameter can have the number previously measured supplied to the command.
  75. * Incidently, you are much better off using something like a Spark Gap feeler gauge than
  76. * something that compresses like a Business Card.
  77. *
  78. * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
  79. * further refine the behaviour of several other commands. Issuing a G29 P1 C will
  80. * continue the generation of a partially constructed Mesh without invalidating what has
  81. * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
  82. * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
  83. * it indicates to use the current location instead of defaulting to the center of the print bed.
  84. *
  85. * D Disable Disable the Unified Bed Leveling system.
  86. *
  87. * E Stow_probe Stow the probe after each sampled point.
  88. *
  89. * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
  90. * specified height, no correction is applied and natural printer kenimatics take over. If no
  91. * number is specified for the command, 10mm is assumed to be reasonable.
  92. *
  93. * G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  94. *
  95. * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
  96. * default is 5mm.
  97. *
  98. * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
  99. * the X and Y parameter are used. If no number is specified, only the closest Mesh
  100. * point to the location is invalidated. The M parameter is available as well to produce
  101. * a map after the operation. This command is useful to invalidate a portion of the
  102. * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
  103. * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
  104. * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
  105. * the bed and use this feature to select the center of the area (or cell) you want to
  106. * invalidate.
  107. *
  108. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  109. * command literally performs a diff between two Meshes.
  110. *
  111. * L Load * Load Mesh from the previously activated location in the EEPROM.
  112. *
  113. * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
  114. * for subsequent Load and Store operations.
  115. *
  116. * O Map * Display the Mesh Map Topology.
  117. * The parameter can be specified alone (ie. G29 O) or in combination with many of the
  118. * other commands. The Mesh Map option works with all of the Phase
  119. * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O)
  120. *
  121. * N No Home G29 normally insists that a G28 has been performed. You can over rule this with an
  122. * N option. In general, you should not do this. This can only be done safely with
  123. * commands that do not move the nozzle.
  124. *
  125. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  126. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  127. * each additional Phase that processes it.
  128. *
  129. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  130. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  131. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  132. * a subsequent G or T leveling operation for backward compatability.
  133. *
  134. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  135. * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
  136. * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
  137. * generated. This will be handled in Phase 2. If the Phase 1 command is given the
  138. * C (Continue) parameter it does not invalidate the Mesh prior to automatically
  139. * probing needed locations. This allows you to invalidate portions of the Mesh but still
  140. * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
  141. * parameter can be given to prioritize where the command should be trying to measure points.
  142. * If the X and Y parameters are not specified the current probe position is used. Phase 1
  143. * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
  144. * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
  145. * It will suspend generation of the Mesh if it sees the user request that. (This check is
  146. * only done between probe points. You will need to press and hold the switch until the
  147. * Phase 1 command can detect it.)
  148. *
  149. * P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H
  150. * parameter to control the height between Mesh points. The default height for movement
  151. * between Mesh points is 5mm. A smaller number can be used to make this part of the
  152. * calibration less time consuming. You will be running the nozzle down until it just barely
  153. * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
  154. * Use caution and move slowly. It is possible to damage your printer if you are careless.
  155. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
  156. * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
  157. *
  158. * The H parameter can be set negative if your Mesh dips in a large area. You can press
  159. * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
  160. * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
  161. * area you are manually probing. Note that the command tries to start you in a corner
  162. * of the bed where movement will be predictable. You can force the location to be used in
  163. * the distance calculations by using the X and Y parameters. You may find it is helpful to
  164. * print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
  165. * the nozzle will need to move in order to complete the command. The C parameter is
  166. * available on the Phase 2 command also and indicates the search for points to measure should
  167. * be done based on the current location of the nozzle.
  168. *
  169. * A B parameter is also available for this command and described up above. It places the
  170. * manual probe subsystem into Business Card mode where the thickness of a business care is
  171. * measured and then used to accurately set the nozzle height in all manual probing for the
  172. * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
  173. * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
  174. * better results if you use a flexible Shim that does not compress very much. That makes it
  175. * easier for you to get the nozzle to press with similar amounts of force against the shim so you
  176. * can get accurate measurements. As you are starting to touch the nozzle against the shim try
  177. * to get it to grasp the shim with the same force as when you measured the thickness of the
  178. * shim at the start of the command.
  179. *
  180. * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
  181. * of the Mesh being built.
  182. *
  183. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is
  184. * used to specify the 'constant' value to fill all invalid areas of the Mesh. If no C parameter
  185. * is specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
  186. * of points to set. If the R parameter is specified the current nozzle position is used to
  187. * find the closest points to alter unless the X and Y parameter are used to specify the fill
  188. * location.
  189. *
  190. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
  191. * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
  192. * (More work and details on doing this later!)
  193. * The System will search for the closest Mesh Point to the nozzle. It will move the
  194. * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
  195. * so it is just barely touching the bed. When the user clicks the control, the System
  196. * will lock in that height for that point in the Mesh Compensation System.
  197. *
  198. * Phase 4 has several additional parameters that the user may find helpful. Phase 4
  199. * can be started at a specific location by specifying an X and Y parameter. Phase 4
  200. * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
  201. * parameter. If the Repetition count is not specified, it is assumed the user wishes
  202. * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
  203. * The command can be terminated early (or after the area of interest has been edited) by
  204. * pressing and holding the encoder wheel until the system recognizes the exit request.
  205. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
  206. *
  207. * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
  208. * information left on the printer's bed from the G26 command it is very straight forward
  209. * and easy to fine tune the Mesh. One concept that is important to remember and that
  210. * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
  211. * If you have too little clearance and not much plastic was extruded in an area, you want to
  212. * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
  213. * RAISE the Mesh Point at that location.
  214. *
  215. *
  216. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  217. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  218. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  219. * execute a G29 P6 C <mean height>.
  220. *
  221. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  222. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  223. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  224. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  225. * 0.000 at the Z Home location.
  226. *
  227. * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
  228. * command is not anticipated to be of much value to the typical user. It is intended
  229. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  230. *
  231. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  232. * current state of the Unified Bed Leveling system in the EEPROM.
  233. *
  234. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  235. * for subsequent Load and Store operations. It will also store the current state of
  236. * the Unified Bed Leveling system in the EEPROM.
  237. *
  238. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into
  239. * the system at a later date. The text generated can be saved and later sent by PronterFace or
  240. * Repetier Host to reconstruct the current mesh on another machine.
  241. *
  242. * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
  243. *
  244. * W What? Display valuable data the Unified Bed Leveling System knows.
  245. *
  246. * X # * * X Location for this line of commands
  247. *
  248. * Y # * * Y Location for this line of commands
  249. *
  250. * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
  251. * by just doing a G29 Z
  252. *
  253. * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
  254. * zprobe_zoffset is added to the calculation.
  255. *
  256. *
  257. * Release Notes:
  258. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  259. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  260. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  261. * respectively.)
  262. *
  263. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  264. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  265. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  266. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  267. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  268. * perform a small print and check out your settings quicker. You do not need to populate the
  269. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  270. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  271. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  272. *
  273. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  274. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  275. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  276. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  277. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  278. * this is going to be helpful to the users!)
  279. *
  280. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  281. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions
  282. * we now have the functionality and features of all three systems combined.
  283. */
  284. int ubl_eeprom_start = -1;
  285. bool ubl_has_control_of_lcd_panel = false;
  286. volatile uint8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update
  287. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
  288. static int g29_verbose_level = 0, phase_value = -1, repetition_cnt = 1,
  289. storage_slot = 0, test_pattern = 0;
  290. static bool repeat_flag = UBL_OK, c_flag = false, x_flag = UBL_OK, y_flag = UBL_OK, statistics_flag = UBL_OK, business_card_mode = false;
  291. static float x_pos = 0.0, y_pos = 0.0, height_value = 5.0, measured_z, card_thickness = 0.0, constant = 0.0;
  292. #if ENABLED(ULTRA_LCD)
  293. void lcd_setstatus(const char* message, bool persist);
  294. #endif
  295. void gcode_G29() {
  296. float Z1, Z2, Z3;
  297. g29_verbose_level = 0; // These may change, but let's get some reasonable values into them.
  298. repeat_flag = UBL_OK;
  299. repetition_cnt = 1;
  300. c_flag = false;
  301. SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start);
  302. if (ubl_eeprom_start < 0) {
  303. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  304. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  305. return;
  306. }
  307. if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
  308. gcode_G28();
  309. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  310. // Invalidate Mesh Points. This command is a little bit asymetrical because
  311. // it directly specifies the repetition count and does not use the 'R' parameter.
  312. if (code_seen('I')) {
  313. repetition_cnt = code_has_value() ? code_value_int() : 1;
  314. while (repetition_cnt--) {
  315. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL); // The '0' says we want to use the nozzle's position
  316. if (location.x_index < 0) {
  317. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  318. break; // No more invalid Mesh Points to populate
  319. }
  320. z_values[location.x_index][location.y_index] = NAN;
  321. }
  322. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  323. }
  324. if (code_seen('Q')) {
  325. if (code_has_value()) test_pattern = code_value_int();
  326. if (test_pattern < 0 || test_pattern > 4) {
  327. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-4)\n");
  328. return;
  329. }
  330. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  331. switch (test_pattern) {
  332. case 0:
  333. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a bowl shape. This is
  334. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // similar to what a user would see with
  335. Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x; // a poorly calibrated Delta.
  336. Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
  337. z_values[x][y] += 2.0 * HYPOT(Z1, Z2);
  338. }
  339. }
  340. break;
  341. case 1:
  342. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh
  343. z_values[x][x] += 9.999; // cells thick that is raised
  344. if (x < UBL_MESH_NUM_Y_POINTS - 1)
  345. z_values[x][x + 1] += 9.999; // We want the altered line several mesh points thick
  346. if (x > 0)
  347. z_values[x][x - 1] += 9.999; // We want the altered line several mesh points thick
  348. }
  349. break;
  350. case 2:
  351. // Allow the user to specify the height because 10mm is
  352. // a little bit extreme in some cases.
  353. for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in
  354. for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
  355. z_values[x][y] += code_seen('C') ? constant : 9.99;
  356. break;
  357. case 3:
  358. break;
  359. }
  360. }
  361. if (code_seen('P')) {
  362. phase_value = code_value_int();
  363. if (phase_value < 0 || phase_value > 7) {
  364. SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
  365. return;
  366. }
  367. switch (phase_value) {
  368. //
  369. // Zero Mesh Data
  370. //
  371. case 0:
  372. ubl.reset();
  373. SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
  374. break;
  375. //
  376. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  377. //
  378. case 1:
  379. if (!code_seen('C') ) {
  380. ubl.invalidate();
  381. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
  382. }
  383. if (g29_verbose_level > 1) {
  384. SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
  385. SERIAL_ECHO(x_pos);
  386. SERIAL_ECHOPAIR(",", y_pos);
  387. SERIAL_PROTOCOLLNPGM(")\n");
  388. }
  389. probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  390. code_seen('O') || code_seen('M'), code_seen('E'));
  391. break;
  392. //
  393. // Manually Probe Mesh in areas that can not be reached by the probe
  394. //
  395. case 2:
  396. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
  397. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  398. if (!x_flag && !y_flag) { // use a good default location for the path
  399. x_pos = X_MIN_POS;
  400. y_pos = Y_MIN_POS;
  401. if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is
  402. x_pos = X_MAX_POS; // intentional. It should cause the probed points to follow a
  403. if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to
  404. y_pos = Y_MAX_POS; // have Delta printers default to the center of the bed.
  405. } // For now, until that is decided, it can be forced with the X
  406. // and Y parameters.
  407. if (code_seen('C')) {
  408. x_pos = current_position[X_AXIS];
  409. y_pos = current_position[Y_AXIS];
  410. }
  411. height_value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
  412. if ((business_card_mode = code_seen('B'))) {
  413. card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height_value);
  414. if (fabs(card_thickness) > 1.5) {
  415. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n");
  416. return;
  417. }
  418. }
  419. manually_probe_remaining_mesh(x_pos, y_pos, height_value, card_thickness, code_seen('O') || code_seen('M'));
  420. break;
  421. //
  422. // Populate invalid Mesh areas with a constant
  423. //
  424. case 3:
  425. height_value = 0.0; // Assume 0.0 until proven otherwise
  426. if (code_seen('C')) height_value = constant;
  427. // If no repetition is specified, do the whole Mesh
  428. if (!repeat_flag) repetition_cnt = 9999;
  429. while (repetition_cnt--) {
  430. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL); // The '0' says we want to use the nozzle's position
  431. if (location.x_index < 0) break; // No more invalid Mesh Points to populate
  432. z_values[location.x_index][location.y_index] = height_value;
  433. }
  434. break;
  435. //
  436. // Fine Tune (Or Edit) the Mesh
  437. //
  438. case 4:
  439. fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
  440. break;
  441. case 5:
  442. find_mean_mesh_height();
  443. break;
  444. case 6:
  445. shift_mesh_height();
  446. break;
  447. case 10:
  448. // Debug code... Pay no attention to this stuff
  449. // it can be removed soon.
  450. SERIAL_ECHO_START;
  451. SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
  452. wait_for_user = true;
  453. while (wait_for_user) {
  454. idle();
  455. delay(250);
  456. SERIAL_ECHO((int)ubl_encoderDiff);
  457. ubl_encoderDiff = 0;
  458. SERIAL_EOL;
  459. }
  460. SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
  461. break;
  462. }
  463. }
  464. if (code_seen('T')) {
  465. Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
  466. Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
  467. Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
  468. // We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
  469. // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
  470. Z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
  471. Z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
  472. Z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
  473. do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
  474. tilt_mesh_based_on_3pts(Z1, Z2, Z3);
  475. }
  476. //
  477. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  478. // good to have the extra information. Soon... we prune this to just a few items
  479. //
  480. if (code_seen('W')) g29_what_command();
  481. //
  482. // When we are fully debugged, the EEPROM dump command will get deleted also. But
  483. // right now, it is good to have the extra information. Soon... we prune this.
  484. //
  485. if (code_seen('J')) g29_eeprom_dump(); // EEPROM Dump
  486. //
  487. // When we are fully debugged, this may go away. But there are some valid
  488. // use cases for the users. So we can wait and see what to do with it.
  489. //
  490. if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  491. g29_compare_current_mesh_to_stored_mesh();
  492. //
  493. // Load a Mesh from the EEPROM
  494. //
  495. if (code_seen('L')) { // Load Current Mesh Data
  496. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  497. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values);
  498. if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) {
  499. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  500. return;
  501. }
  502. ubl.load_mesh(storage_slot);
  503. ubl.state.eeprom_storage_slot = storage_slot;
  504. if (storage_slot != ubl.state.eeprom_storage_slot)
  505. ubl.store_state();
  506. SERIAL_PROTOCOLLNPGM("Done.\n");
  507. }
  508. //
  509. // Store a Mesh in the EEPROM
  510. //
  511. if (code_seen('S')) { // Store (or Save) Current Mesh Data
  512. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  513. if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  514. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  515. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  516. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  517. if (!isnan(z_values[x][y])) {
  518. SERIAL_ECHOPAIR("M421 I ", x);
  519. SERIAL_ECHOPAIR(" J ", y);
  520. SERIAL_ECHOPGM(" Z ");
  521. SERIAL_ECHO_F(z_values[x][y], 6);
  522. SERIAL_EOL;
  523. }
  524. return;
  525. }
  526. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values);
  527. if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) {
  528. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  529. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
  530. goto LEAVE;
  531. }
  532. ubl.store_mesh(storage_slot);
  533. ubl.state.eeprom_storage_slot = storage_slot;
  534. //
  535. // if (storage_slot != ubl.state.eeprom_storage_slot)
  536. ubl.store_state(); // Always save an updated copy of the UBL State info
  537. SERIAL_PROTOCOLLNPGM("Done.\n");
  538. }
  539. if (code_seen('O') || code_seen('M'))
  540. ubl.display_map(code_has_value() ? code_value_int() : 0);
  541. if (code_seen('Z')) {
  542. if (code_has_value())
  543. ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
  544. else {
  545. save_ubl_active_state_and_disable();
  546. //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
  547. measured_z = 1.5;
  548. do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
  549. // The user is not going to be locking in a new Z-Offset very often so
  550. // it won't be that painful to spin the Encoder Wheel for 1.5mm
  551. lcd_implementation_clear();
  552. lcd_z_offset_edit_setup(measured_z);
  553. wait_for_user = true;
  554. do {
  555. measured_z = lcd_z_offset_edit();
  556. idle();
  557. do_blocking_move_to_z(measured_z);
  558. } while (wait_for_user);
  559. ubl_has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
  560. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  561. // or here. So, until we are done looking for a long Encoder Wheel Press,
  562. // we need to take control of the panel
  563. lcd_return_to_status();
  564. const millis_t nxt = millis() + 1500UL;
  565. while (ubl_lcd_clicked()) { // debounce and watch for abort
  566. idle();
  567. if (ELAPSED(millis(), nxt)) {
  568. SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
  569. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  570. lcd_setstatus("Z-Offset Stopped", true);
  571. ubl_has_control_of_lcd_panel = false;
  572. restore_ubl_active_state_and_leave();
  573. goto LEAVE;
  574. }
  575. }
  576. ubl_has_control_of_lcd_panel = false;
  577. delay(20); // We don't want any switch noise.
  578. ubl.state.z_offset = measured_z;
  579. lcd_implementation_clear();
  580. restore_ubl_active_state_and_leave();
  581. }
  582. }
  583. LEAVE:
  584. #if ENABLED(ULTRA_LCD)
  585. lcd_setstatus(" ", true);
  586. lcd_quick_feedback();
  587. #endif
  588. ubl_has_control_of_lcd_panel = false;
  589. }
  590. void find_mean_mesh_height() {
  591. uint8_t x, y;
  592. int n;
  593. float sum, sum_of_diff_squared, sigma, difference, mean;
  594. sum = sum_of_diff_squared = 0.0;
  595. n = 0;
  596. for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  597. for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  598. if (!isnan(z_values[x][y])) {
  599. sum += z_values[x][y];
  600. n++;
  601. }
  602. mean = sum / n;
  603. //
  604. // Now do the sumation of the squares of difference from mean
  605. //
  606. for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  607. for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  608. if (!isnan(z_values[x][y])) {
  609. difference = (z_values[x][y] - mean);
  610. sum_of_diff_squared += difference * difference;
  611. }
  612. SERIAL_ECHOLNPAIR("# of samples: ", n);
  613. SERIAL_ECHOPGM("Mean Mesh Height: ");
  614. SERIAL_ECHO_F(mean, 6);
  615. SERIAL_EOL;
  616. sigma = sqrt(sum_of_diff_squared / (n + 1));
  617. SERIAL_ECHOPGM("Standard Deviation: ");
  618. SERIAL_ECHO_F(sigma, 6);
  619. SERIAL_EOL;
  620. if (c_flag)
  621. for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  622. for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  623. if (!isnan(z_values[x][y]))
  624. z_values[x][y] -= mean + constant;
  625. }
  626. void shift_mesh_height() {
  627. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  628. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  629. if (!isnan(z_values[x][y]))
  630. z_values[x][y] += constant;
  631. }
  632. /**
  633. * Probe all invalidated locations of the mesh that can be reached by the probe.
  634. * This attempts to fill in locations closest to the nozzle's start location first.
  635. */
  636. void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe) {
  637. mesh_index_pair location;
  638. ubl_has_control_of_lcd_panel++;
  639. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  640. DEPLOY_PROBE();
  641. wait_for_user = true;
  642. do {
  643. if (!wait_for_user) {
  644. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  645. lcd_quick_feedback();
  646. ubl_has_control_of_lcd_panel = false;
  647. STOW_PROBE();
  648. restore_ubl_active_state_and_leave();
  649. return;
  650. }
  651. location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL); // the '1' says we want the location to be relative to the probe
  652. if (location.x_index >= 0 && location.y_index >= 0) {
  653. const float xProbe = ubl.map_x_index_to_bed_location(location.x_index),
  654. yProbe = ubl.map_y_index_to_bed_location(location.y_index);
  655. if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) {
  656. SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
  657. ubl_has_control_of_lcd_panel = false;
  658. goto LEAVE;
  659. }
  660. const float measured_z = probe_pt(xProbe, yProbe, stow_probe, g29_verbose_level);
  661. z_values[location.x_index][location.y_index] = measured_z + Z_PROBE_OFFSET_FROM_EXTRUDER;
  662. }
  663. if (do_ubl_mesh_map) ubl.display_map(1);
  664. } while (location.x_index >= 0 && location.y_index >= 0);
  665. LEAVE:
  666. wait_for_user = false;
  667. STOW_PROBE();
  668. restore_ubl_active_state_and_leave();
  669. do_blocking_move_to_xy(
  670. constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS),
  671. constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS)
  672. );
  673. }
  674. vector_3 tilt_mesh_based_on_3pts(const float &pt1, const float &pt2, const float &pt3) {
  675. float c, d, t;
  676. int i, j;
  677. vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X),
  678. (ubl_3_point_1_Y - ubl_3_point_2_Y),
  679. (pt1 - pt2) ),
  680. v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X),
  681. (ubl_3_point_3_Y - ubl_3_point_2_Y),
  682. (pt3 - pt2) ),
  683. normal = vector_3::cross(v1, v2);
  684. // printf("[%f,%f,%f] ", normal.x, normal.y, normal.z);
  685. /**
  686. * This code does two things. This vector is normal to the tilted plane.
  687. * However, we don't know its direction. We need it to point up. So if
  688. * Z is negative, we need to invert the sign of all components of the vector
  689. * We also need Z to be unity because we are going to be treating this triangle
  690. * as the sin() and cos() of the bed's tilt
  691. */
  692. const float inv_z = 1.0 / normal.z;
  693. normal.x *= inv_z;
  694. normal.y *= inv_z;
  695. normal.z = 1.0;
  696. //
  697. // All of 3 of these points should give us the same d constant
  698. //
  699. t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y;
  700. d = t + normal.z * pt1;
  701. c = d - t;
  702. SERIAL_ECHOPGM("d from 1st point: ");
  703. SERIAL_ECHO_F(d, 6);
  704. SERIAL_ECHOPGM(" c: ");
  705. SERIAL_ECHO_F(c, 6);
  706. SERIAL_EOL;
  707. t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y;
  708. d = t + normal.z * pt2;
  709. c = d - t;
  710. SERIAL_ECHOPGM("d from 2nd point: ");
  711. SERIAL_ECHO_F(d, 6);
  712. SERIAL_ECHOPGM(" c: ");
  713. SERIAL_ECHO_F(c, 6);
  714. SERIAL_EOL;
  715. t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y;
  716. d = t + normal.z * pt3;
  717. c = d - t;
  718. SERIAL_ECHOPGM("d from 3rd point: ");
  719. SERIAL_ECHO_F(d, 6);
  720. SERIAL_ECHOPGM(" c: ");
  721. SERIAL_ECHO_F(c, 6);
  722. SERIAL_EOL;
  723. for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  724. for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  725. c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
  726. z_values[i][j] += c;
  727. }
  728. }
  729. return normal;
  730. }
  731. float use_encoder_wheel_to_measure_point() {
  732. wait_for_user = true;
  733. while (wait_for_user) { // we need the loop to move the nozzle based on the encoder wheel here!
  734. idle();
  735. if (ubl_encoderDiff) {
  736. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl_encoderDiff));
  737. ubl_encoderDiff = 0;
  738. }
  739. }
  740. return current_position[Z_AXIS];
  741. }
  742. float measure_business_card_thickness(const float &height_value) {
  743. ubl_has_control_of_lcd_panel++;
  744. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  745. SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
  746. do_blocking_move_to_z(height_value);
  747. do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
  748. //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
  749. const float Z1 = use_encoder_wheel_to_measure_point();
  750. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  751. ubl_has_control_of_lcd_panel = false;
  752. SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
  753. const float Z2 = use_encoder_wheel_to_measure_point();
  754. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  755. if (g29_verbose_level > 1) {
  756. SERIAL_PROTOCOLPGM("Business Card is: ");
  757. SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6);
  758. SERIAL_PROTOCOLLNPGM("mm thick.");
  759. }
  760. restore_ubl_active_state_and_leave();
  761. return abs(Z1 - Z2);
  762. }
  763. void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
  764. ubl_has_control_of_lcd_panel++;
  765. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  766. do_blocking_move_to_z(z_clearance);
  767. do_blocking_move_to_xy(lx, ly);
  768. float last_x = -9999.99, last_y = -9999.99;
  769. mesh_index_pair location;
  770. do {
  771. if (do_ubl_mesh_map) ubl.display_map(1);
  772. location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL); // The '0' says we want to use the nozzle's position
  773. // It doesn't matter if the probe can not reach the
  774. // NAN location. This is a manual probe.
  775. if (location.x_index < 0 && location.y_index < 0) continue;
  776. const float xProbe = ubl.map_x_index_to_bed_location(location.x_index),
  777. yProbe = ubl.map_y_index_to_bed_location(location.y_index);
  778. // Modify to use if (position_is_reachable(pos[XYZ]))
  779. if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) {
  780. SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
  781. ubl_has_control_of_lcd_panel = false;
  782. goto LEAVE;
  783. }
  784. const float dx = xProbe - last_x,
  785. dy = yProbe - last_y;
  786. if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
  787. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  788. else
  789. do_blocking_move_to_z(z_clearance);
  790. do_blocking_move_to_xy(xProbe, yProbe);
  791. last_x = xProbe;
  792. last_y = yProbe;
  793. wait_for_user = true;
  794. while (wait_for_user) { // we need the loop to move the nozzle based on the encoder wheel here!
  795. idle();
  796. if (ubl_encoderDiff) {
  797. do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0);
  798. ubl_encoderDiff = 0;
  799. }
  800. }
  801. const millis_t nxt = millis() + 1500L;
  802. while (ubl_lcd_clicked()) { // debounce and watch for abort
  803. idle();
  804. if (ELAPSED(millis(), nxt)) {
  805. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  806. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  807. lcd_quick_feedback();
  808. while (ubl_lcd_clicked()) idle();
  809. ubl_has_control_of_lcd_panel = false;
  810. restore_ubl_active_state_and_leave();
  811. return;
  812. }
  813. }
  814. z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
  815. if (g29_verbose_level > 2) {
  816. SERIAL_PROTOCOL("Mesh Point Measured at: ");
  817. SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
  818. SERIAL_EOL;
  819. }
  820. } while (location.x_index >= 0 && location.y_index >= 0);
  821. if (do_ubl_mesh_map) ubl.display_map(1);
  822. LEAVE:
  823. restore_ubl_active_state_and_leave();
  824. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  825. do_blocking_move_to_xy(lx, ly);
  826. }
  827. bool g29_parameter_parsing() {
  828. #if ENABLED(ULTRA_LCD)
  829. lcd_setstatus("Doing G29 UBL !", true);
  830. lcd_quick_feedback();
  831. #endif
  832. x_pos = current_position[X_AXIS];
  833. y_pos = current_position[Y_AXIS];
  834. x_flag = y_flag = repeat_flag = false;
  835. constant = 0.0;
  836. repetition_cnt = 1;
  837. if ((x_flag = code_seen('X'))) {
  838. x_pos = code_value_float();
  839. if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) {
  840. SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
  841. return UBL_ERR;
  842. }
  843. }
  844. if ((y_flag = code_seen('Y'))) {
  845. y_pos = code_value_float();
  846. if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) {
  847. SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
  848. return UBL_ERR;
  849. }
  850. }
  851. if (x_flag != y_flag) {
  852. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  853. return UBL_ERR;
  854. }
  855. g29_verbose_level = 0;
  856. if (code_seen('V')) {
  857. g29_verbose_level = code_value_int();
  858. if (g29_verbose_level < 0 || g29_verbose_level > 4) {
  859. SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
  860. return UBL_ERR;
  861. }
  862. }
  863. if (code_seen('A')) { // Activate the Unified Bed Leveling System
  864. ubl.state.active = 1;
  865. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
  866. ubl.store_state();
  867. }
  868. if ((c_flag = code_seen('C') && code_has_value()))
  869. constant = code_value_float();
  870. if (code_seen('D')) { // Disable the Unified Bed Leveling System
  871. ubl.state.active = 0;
  872. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
  873. ubl.store_state();
  874. }
  875. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  876. if (code_seen('F') && code_has_value()) {
  877. const float fh = code_value_float();
  878. if (fh < 0.0 || fh > 100.0) {
  879. SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
  880. return UBL_ERR;
  881. }
  882. ubl.state.g29_correction_fade_height = fh;
  883. ubl.state.g29_fade_height_multiplier = 1.0 / fh;
  884. }
  885. #endif
  886. if ((repeat_flag = code_seen('R'))) {
  887. repetition_cnt = code_has_value() ? code_value_int() : 9999;
  888. if (repetition_cnt < 1) {
  889. SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
  890. return UBL_ERR;
  891. }
  892. }
  893. return UBL_OK;
  894. }
  895. /**
  896. * This function goes away after G29 debug is complete. But for right now, it is a handy
  897. * routine to dump binary data structures.
  898. */
  899. void dump(char * const str, const float &f) {
  900. char *ptr;
  901. SERIAL_PROTOCOL(str);
  902. SERIAL_PROTOCOL_F(f, 8);
  903. SERIAL_PROTOCOL(" ");
  904. ptr = (char*)&f;
  905. for (uint8_t i = 0; i < 4; i++) {
  906. SERIAL_PROTOCOL(" ");
  907. prt_hex_byte(*ptr++);
  908. }
  909. SERIAL_PROTOCOL(" isnan()=");
  910. SERIAL_PROTOCOL(isnan(f));
  911. SERIAL_PROTOCOL(" isinf()=");
  912. SERIAL_PROTOCOL(isinf(f));
  913. constexpr float g = INFINITY;
  914. if (f == -g)
  915. SERIAL_PROTOCOL(" Minus Infinity detected.");
  916. SERIAL_EOL;
  917. }
  918. static int ubl_state_at_invocation = 0,
  919. ubl_state_recursion_chk = 0;
  920. void save_ubl_active_state_and_disable() {
  921. ubl_state_recursion_chk++;
  922. if (ubl_state_recursion_chk != 1) {
  923. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  924. lcd_setstatus("save_UBL_active() error", true);
  925. lcd_quick_feedback();
  926. return;
  927. }
  928. ubl_state_at_invocation = ubl.state.active;
  929. ubl.state.active = 0;
  930. }
  931. void restore_ubl_active_state_and_leave() {
  932. if (--ubl_state_recursion_chk) {
  933. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  934. lcd_setstatus("restore_UBL_active() error", true);
  935. lcd_quick_feedback();
  936. return;
  937. }
  938. ubl.state.active = ubl_state_at_invocation;
  939. }
  940. /**
  941. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  942. * good to have the extra information. Soon... we prune this to just a few items
  943. */
  944. void g29_what_command() {
  945. const uint16_t k = E2END - ubl_eeprom_start;
  946. statistics_flag++;
  947. SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 ");
  948. ubl.state.active ? SERIAL_PROTOCOLCHAR('A') : SERIAL_PROTOCOLPGM("In");
  949. SERIAL_PROTOCOLLNPGM("ctive.\n");
  950. delay(50);
  951. if (ubl.state.eeprom_storage_slot == -1)
  952. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  953. else {
  954. SERIAL_PROTOCOLPGM("Mesh: ");
  955. prt_hex_word(ubl.state.eeprom_storage_slot);
  956. SERIAL_PROTOCOLPGM(" Loaded.");
  957. }
  958. SERIAL_EOL;
  959. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  960. SERIAL_PROTOCOLPAIR("g29_correction_fade_height : ", ubl.state.g29_correction_fade_height);
  961. SERIAL_EOL;
  962. #endif
  963. SERIAL_PROTOCOLPGM("z_offset: ");
  964. SERIAL_PROTOCOL_F(ubl.state.z_offset, 6);
  965. SERIAL_EOL;
  966. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  967. for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  968. SERIAL_PROTOCOL_F( ubl.map_x_index_to_bed_location(i), 1);
  969. SERIAL_PROTOCOLPGM(" ");
  970. }
  971. SERIAL_EOL;
  972. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  973. for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
  974. SERIAL_PROTOCOL_F( ubl.map_y_index_to_bed_location(i), 1);
  975. SERIAL_PROTOCOLPGM(" ");
  976. }
  977. SERIAL_EOL;
  978. #if HAS_KILL
  979. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  980. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  981. #endif
  982. SERIAL_EOL;
  983. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  984. SERIAL_EOL;
  985. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  986. SERIAL_EOL;
  987. SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x");
  988. prt_hex_word(ubl_eeprom_start);
  989. SERIAL_EOL;
  990. SERIAL_PROTOCOLPGM("end of EEPROM : ");
  991. prt_hex_word(E2END);
  992. SERIAL_EOL;
  993. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  994. SERIAL_EOL;
  995. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
  996. SERIAL_EOL;
  997. SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x");
  998. prt_hex_word(k);
  999. SERIAL_EOL;
  1000. SERIAL_PROTOCOLPGM("EEPROM can hold 0x");
  1001. prt_hex_word(k / sizeof(z_values));
  1002. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1003. SERIAL_PROTOCOLPGM("sizeof(ubl.state) :");
  1004. prt_hex_word(sizeof(ubl.state));
  1005. SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
  1006. SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
  1007. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
  1008. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
  1009. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
  1010. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
  1011. SERIAL_PROTOCOLPGM("\nMESH_X_DIST ");
  1012. SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
  1013. SERIAL_PROTOCOLPGM("\nMESH_Y_DIST ");
  1014. SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
  1015. SERIAL_EOL;
  1016. if (!ubl.sanity_check())
  1017. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
  1018. }
  1019. /**
  1020. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1021. * right now, it is good to have the extra information. Soon... we prune this.
  1022. */
  1023. void g29_eeprom_dump() {
  1024. unsigned char cccc;
  1025. uint16_t kkkk;
  1026. SERIAL_ECHO_START;
  1027. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1028. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1029. if (!(i & 0x3)) idle();
  1030. prt_hex_word(i);
  1031. SERIAL_ECHOPGM(": ");
  1032. for (uint16_t j = 0; j < 16; j++) {
  1033. kkkk = i + j;
  1034. eeprom_read_block(&cccc, (void *)kkkk, 1);
  1035. prt_hex_byte(cccc);
  1036. SERIAL_ECHO(' ');
  1037. }
  1038. SERIAL_EOL;
  1039. }
  1040. SERIAL_EOL;
  1041. }
  1042. /**
  1043. * When we are fully debugged, this may go away. But there are some valid
  1044. * use cases for the users. So we can wait and see what to do with it.
  1045. */
  1046. void g29_compare_current_mesh_to_stored_mesh() {
  1047. float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
  1048. if (!code_has_value()) {
  1049. SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
  1050. return;
  1051. }
  1052. storage_slot = code_value_int();
  1053. int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(tmp_z_values);
  1054. if (storage_slot < 0 || storage_slot > j || ubl_eeprom_start <= 0) {
  1055. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  1056. return;
  1057. }
  1058. j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
  1059. eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
  1060. SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
  1061. SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing
  1062. prt_hex_word(j); // the address in the EEPROM where the Mesh is stored.
  1063. SERIAL_EOL;
  1064. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  1065. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  1066. z_values[x][y] = z_values[x][y] - tmp_z_values[x][y];
  1067. }
  1068. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16]) {
  1069. int i, j;
  1070. float closest = 99999.99;
  1071. mesh_index_pair return_val;
  1072. return_val.x_index = return_val.y_index = -1;
  1073. const float current_x = current_position[X_AXIS],
  1074. current_y = current_position[Y_AXIS];
  1075. // Get our reference position. Either the nozzle or probe location.
  1076. const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1077. py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1078. for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  1079. for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  1080. if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
  1081. || (type == REAL && !isnan(z_values[i][j]))
  1082. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1083. ) {
  1084. // We only get here if we found a Mesh Point of the specified type
  1085. const float mx = LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), // Check if we can probe this mesh location
  1086. my = LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(j));
  1087. // If we are using the probe as the reference there are some locations we can't get to.
  1088. // We prune these out of the list and ignore them until the next Phase where we do the
  1089. // manual nozzle probing.
  1090. if (probe_as_reference &&
  1091. (mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X) || my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y))
  1092. ) continue;
  1093. // We can get to it. Let's see if it is the closest location to the nozzle.
  1094. // Add in a weighting factor that considers the current location of the nozzle.
  1095. const float distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.01;
  1096. if (distance < closest) {
  1097. closest = distance; // We found a closer location with
  1098. return_val.x_index = i; // the specified type of mesh value.
  1099. return_val.y_index = j;
  1100. return_val.distance = closest;
  1101. }
  1102. }
  1103. }
  1104. }
  1105. return return_val;
  1106. }
  1107. void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
  1108. mesh_index_pair location;
  1109. uint16_t not_done[16];
  1110. int32_t round_off;
  1111. save_ubl_active_state_and_disable();
  1112. memset(not_done, 0xFF, sizeof(not_done));
  1113. #if ENABLED(ULTRA_LCD)
  1114. lcd_setstatus("Fine Tuning Mesh.", true);
  1115. #endif
  1116. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1117. do_blocking_move_to_xy(lx, ly);
  1118. do {
  1119. if (do_ubl_mesh_map) ubl.display_map(1);
  1120. location = find_closest_mesh_point_of_type( SET_IN_BITMAP, lx, ly, 0, not_done); // The '0' says we want to use the nozzle's position
  1121. // It doesn't matter if the probe can not reach this
  1122. // location. This is a manual edit of the Mesh Point.
  1123. if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
  1124. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1125. // different location the next time through the loop
  1126. const float xProbe = ubl.map_x_index_to_bed_location(location.x_index),
  1127. yProbe = ubl.map_y_index_to_bed_location(location.y_index);
  1128. if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check.
  1129. SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now,
  1130. ubl_has_control_of_lcd_panel = false; // Let's do the check.
  1131. goto FINE_TUNE_EXIT;
  1132. }
  1133. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
  1134. do_blocking_move_to_xy(xProbe, yProbe);
  1135. float new_z = z_values[location.x_index][location.y_index] + 0.001;
  1136. round_off = (int32_t)(new_z * 1000.0 + 2.5); // we chop off the last digits just to be clean. We are rounding to the
  1137. round_off -= (round_off % 5L); // closest 0 or 5 at the 3rd decimal place.
  1138. new_z = float(round_off) / 1000.0;
  1139. //SERIAL_ECHOPGM("Mesh Point Currently At: ");
  1140. //SERIAL_PROTOCOL_F(new_z, 6);
  1141. //SERIAL_EOL;
  1142. lcd_implementation_clear();
  1143. lcd_mesh_edit_setup(new_z);
  1144. wait_for_user = true;
  1145. do {
  1146. new_z = lcd_mesh_edit();
  1147. idle();
  1148. } while (wait_for_user);
  1149. lcd_return_to_status();
  1150. ubl_has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
  1151. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  1152. // or here.
  1153. const millis_t nxt = millis() + 1500UL;
  1154. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1155. idle();
  1156. if (ELAPSED(millis(), nxt)) {
  1157. lcd_return_to_status();
  1158. SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
  1159. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1160. lcd_setstatus("Mesh Editing Stopped", true);
  1161. while (ubl_lcd_clicked()) idle();
  1162. ubl_has_control_of_lcd_panel = false;
  1163. goto FINE_TUNE_EXIT;
  1164. }
  1165. }
  1166. delay(20); // We don't want any switch noise.
  1167. z_values[location.x_index][location.y_index] = new_z;
  1168. lcd_implementation_clear();
  1169. } while (location.x_index >= 0 && location.y_index >= 0 && --repetition_cnt);
  1170. FINE_TUNE_EXIT:
  1171. ubl_has_control_of_lcd_panel = false;
  1172. if (do_ubl_mesh_map) ubl.display_map(1);
  1173. restore_ubl_active_state_and_leave();
  1174. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1175. do_blocking_move_to_xy(lx, ly);
  1176. #if ENABLED(ULTRA_LCD)
  1177. lcd_setstatus("Done Editing Mesh", true);
  1178. #endif
  1179. SERIAL_ECHOLNPGM("Done Editing Mesh.");
  1180. }
  1181. #endif // AUTO_BED_LEVELING_UBL