My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 50KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "stepper.h"
  45. #ifdef __AVR__
  46. #include "speed_lookuptable.h"
  47. #endif
  48. #include "endstops.h"
  49. #include "planner.h"
  50. #include "motion.h"
  51. #include "../module/temperature.h"
  52. #include "../lcd/ultralcd.h"
  53. #include "../core/language.h"
  54. #include "../gcode/queue.h"
  55. #include "../sd/cardreader.h"
  56. #include "../Marlin.h"
  57. #if MB(ALLIGATOR)
  58. #include "../feature/dac/dac_dac084s085.h"
  59. #endif
  60. #if HAS_LEVELING
  61. #include "../feature/bedlevel/bedlevel.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. Stepper stepper; // Singleton
  67. // public:
  68. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  69. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  70. bool Stepper::abort_on_endstop_hit = false;
  71. #endif
  72. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  73. bool Stepper::performing_homing = false;
  74. #endif
  75. #if HAS_MOTOR_CURRENT_PWM
  76. uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
  77. #endif
  78. // private:
  79. uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  80. int16_t Stepper::cleaning_buffer_counter = 0;
  81. #if ENABLED(X_DUAL_ENDSTOPS)
  82. bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
  83. #endif
  84. #if ENABLED(Y_DUAL_ENDSTOPS)
  85. bool Stepper::locked_y_motor = false, Stepper::locked_y2_motor = false;
  86. #endif
  87. #if ENABLED(Z_DUAL_ENDSTOPS)
  88. bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false;
  89. #endif
  90. long Stepper::counter_X = 0,
  91. Stepper::counter_Y = 0,
  92. Stepper::counter_Z = 0,
  93. Stepper::counter_E = 0;
  94. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  95. #if ENABLED(LIN_ADVANCE)
  96. constexpr hal_timer_t ADV_NEVER = HAL_TIMER_TYPE_MAX;
  97. hal_timer_t Stepper::nextMainISR = 0,
  98. Stepper::nextAdvanceISR = ADV_NEVER,
  99. Stepper::eISR_Rate = ADV_NEVER;
  100. volatile int Stepper::e_steps[E_STEPPERS];
  101. int Stepper::final_estep_rate,
  102. Stepper::current_estep_rate[E_STEPPERS],
  103. Stepper::current_adv_steps[E_STEPPERS];
  104. /**
  105. * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
  106. *
  107. * This fix isn't perfect and may lose steps - but better than locking up completely
  108. * in future the planner should slow down if advance stepping rate would be too high
  109. */
  110. FORCE_INLINE hal_timer_t adv_rate(const int steps, const hal_timer_t timer, const uint8_t loops) {
  111. if (steps) {
  112. const hal_timer_t rate = (timer * loops) / abs(steps);
  113. //return constrain(rate, 1, ADV_NEVER - 1)
  114. return rate ? rate : 1;
  115. }
  116. return ADV_NEVER;
  117. }
  118. #endif // LIN_ADVANCE
  119. long Stepper::acceleration_time, Stepper::deceleration_time;
  120. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  121. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  122. #if ENABLED(MIXING_EXTRUDER)
  123. long Stepper::counter_m[MIXING_STEPPERS];
  124. #endif
  125. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  126. hal_timer_t Stepper::OCR1A_nominal,
  127. Stepper::acc_step_rate; // needed for deceleration start point
  128. volatile long Stepper::endstops_trigsteps[XYZ];
  129. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  130. #define LOCKED_X_MOTOR locked_x_motor
  131. #define LOCKED_Y_MOTOR locked_y_motor
  132. #define LOCKED_Z_MOTOR locked_z_motor
  133. #define LOCKED_X2_MOTOR locked_x2_motor
  134. #define LOCKED_Y2_MOTOR locked_y2_motor
  135. #define LOCKED_Z2_MOTOR locked_z2_motor
  136. #define DUAL_ENDSTOP_APPLY_STEP(AXIS,v) \
  137. if (performing_homing) { \
  138. if (AXIS##_HOME_DIR < 0) { \
  139. if (!(TEST(endstops.old_endstop_bits, AXIS##_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  140. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  141. } \
  142. else { \
  143. if (!(TEST(endstops.old_endstop_bits, AXIS##_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  144. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  145. } \
  146. } \
  147. else { \
  148. AXIS##_STEP_WRITE(v); \
  149. AXIS##2_STEP_WRITE(v); \
  150. }
  151. #endif
  152. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  153. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  154. #if ENABLED(X_DUAL_ENDSTOPS)
  155. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  156. #else
  157. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  158. #endif
  159. #elif ENABLED(DUAL_X_CARRIAGE)
  160. #define X_APPLY_DIR(v,ALWAYS) \
  161. if (extruder_duplication_enabled || ALWAYS) { \
  162. X_DIR_WRITE(v); \
  163. X2_DIR_WRITE(v); \
  164. } \
  165. else { \
  166. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  167. }
  168. #define X_APPLY_STEP(v,ALWAYS) \
  169. if (extruder_duplication_enabled || ALWAYS) { \
  170. X_STEP_WRITE(v); \
  171. X2_STEP_WRITE(v); \
  172. } \
  173. else { \
  174. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  175. }
  176. #else
  177. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  178. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  179. #endif
  180. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  181. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  182. #if ENABLED(Y_DUAL_ENDSTOPS)
  183. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  184. #else
  185. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  186. #endif
  187. #else
  188. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  189. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  190. #endif
  191. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  192. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  193. #if ENABLED(Z_DUAL_ENDSTOPS)
  194. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  195. #else
  196. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  197. #endif
  198. #else
  199. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  200. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  201. #endif
  202. #if DISABLED(MIXING_EXTRUDER)
  203. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  204. #endif
  205. /**
  206. * __________________________
  207. * /| |\ _________________ ^
  208. * / | | \ /| |\ |
  209. * / | | \ / | | \ s
  210. * / | | | | | \ p
  211. * / | | | | | \ e
  212. * +-----+------------------------+---+--+---------------+----+ e
  213. * | BLOCK 1 | BLOCK 2 | d
  214. *
  215. * time ----->
  216. *
  217. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  218. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  219. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  220. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  221. */
  222. void Stepper::wake_up() {
  223. // TCNT1 = 0;
  224. ENABLE_STEPPER_DRIVER_INTERRUPT();
  225. }
  226. /**
  227. * Set the stepper direction of each axis
  228. *
  229. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  230. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  231. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  232. */
  233. void Stepper::set_directions() {
  234. #define SET_STEP_DIR(AXIS) \
  235. if (motor_direction(AXIS ##_AXIS)) { \
  236. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  237. count_direction[AXIS ##_AXIS] = -1; \
  238. } \
  239. else { \
  240. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  241. count_direction[AXIS ##_AXIS] = 1; \
  242. }
  243. #if HAS_X_DIR
  244. SET_STEP_DIR(X); // A
  245. #endif
  246. #if HAS_Y_DIR
  247. SET_STEP_DIR(Y); // B
  248. #endif
  249. #if HAS_Z_DIR
  250. SET_STEP_DIR(Z); // C
  251. #endif
  252. #if DISABLED(LIN_ADVANCE)
  253. if (motor_direction(E_AXIS)) {
  254. REV_E_DIR();
  255. count_direction[E_AXIS] = -1;
  256. }
  257. else {
  258. NORM_E_DIR();
  259. count_direction[E_AXIS] = 1;
  260. }
  261. #endif // !LIN_ADVANCE
  262. }
  263. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  264. extern volatile uint8_t e_hit;
  265. #endif
  266. /**
  267. * Stepper Driver Interrupt
  268. *
  269. * Directly pulses the stepper motors at high frequency.
  270. *
  271. * AVR :
  272. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  273. *
  274. * OCR1A Frequency
  275. * 1 2 MHz
  276. * 50 40 KHz
  277. * 100 20 KHz - capped max rate
  278. * 200 10 KHz - nominal max rate
  279. * 2000 1 KHz - sleep rate
  280. * 4000 500 Hz - init rate
  281. */
  282. HAL_STEP_TIMER_ISR {
  283. HAL_timer_isr_prologue(STEP_TIMER_NUM);
  284. #if ENABLED(LIN_ADVANCE)
  285. Stepper::advance_isr_scheduler();
  286. #else
  287. Stepper::isr();
  288. #endif
  289. }
  290. void Stepper::isr() {
  291. #define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  292. #define OCR_VAL_TOLERANCE 500 * HAL_TICKS_PER_US // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  293. #if DISABLED(LIN_ADVANCE)
  294. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  295. DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR
  296. DISABLE_STEPPER_DRIVER_INTERRUPT();
  297. #ifndef CPU_32_BIT
  298. sei();
  299. #endif
  300. #endif
  301. hal_timer_t ocr_val;
  302. static uint32_t step_remaining = 0; // SPLIT function always runs. This allows 16 bit timers to be
  303. // used to generate the stepper ISR.
  304. #define SPLIT(L) do { \
  305. if (L > ENDSTOP_NOMINAL_OCR_VAL) { \
  306. const uint32_t remainder = (uint32_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  307. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  308. step_remaining = (uint32_t)L - ocr_val; \
  309. } \
  310. else \
  311. ocr_val = L;\
  312. }while(0)
  313. // Time remaining before the next step?
  314. if (step_remaining) {
  315. // Make sure endstops are updated
  316. if (ENDSTOPS_ENABLED) endstops.update();
  317. // Next ISR either for endstops or stepping
  318. ocr_val = step_remaining <= ENDSTOP_NOMINAL_OCR_VAL ? step_remaining : ENDSTOP_NOMINAL_OCR_VAL;
  319. step_remaining -= ocr_val;
  320. _NEXT_ISR(ocr_val);
  321. #if DISABLED(LIN_ADVANCE)
  322. #ifdef CPU_32_BIT
  323. HAL_timer_set_count(STEP_TIMER_NUM, ocr_val);
  324. #else
  325. NOLESS(OCR1A, TCNT1 + 16);
  326. #endif
  327. HAL_ENABLE_ISRs(); // re-enable ISRs
  328. #endif
  329. return;
  330. }
  331. //
  332. // When cleaning, discard the current block and run fast
  333. //
  334. if (cleaning_buffer_counter) {
  335. if (cleaning_buffer_counter < 0) { // Count up for endstop hit
  336. if (current_block) planner.discard_current_block(); // Discard the active block that led to the trigger
  337. if (!planner.discard_continued_block()) // Discard next CONTINUED block
  338. cleaning_buffer_counter = 0; // Keep discarding until non-CONTINUED
  339. }
  340. else {
  341. planner.discard_current_block();
  342. --cleaning_buffer_counter; // Count down for abort print
  343. #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
  344. if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  345. #endif
  346. }
  347. current_block = NULL; // Prep to get a new block after cleaning
  348. _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 10000); // Run at max speed - 10 KHz
  349. HAL_ENABLE_ISRs();
  350. return;
  351. }
  352. // If there is no current block, attempt to pop one from the buffer
  353. if (!current_block) {
  354. // Anything in the buffer?
  355. if ((current_block = planner.get_current_block())) {
  356. trapezoid_generator_reset();
  357. // Initialize Bresenham counters to 1/2 the ceiling
  358. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  359. #if ENABLED(MIXING_EXTRUDER)
  360. MIXING_STEPPERS_LOOP(i)
  361. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  362. #endif
  363. step_events_completed = 0;
  364. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  365. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  366. // No 'change' can be detected.
  367. #endif
  368. #if ENABLED(Z_LATE_ENABLE)
  369. if (current_block->steps[Z_AXIS] > 0) {
  370. enable_Z();
  371. _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
  372. HAL_ENABLE_ISRs(); // re-enable ISRs
  373. return;
  374. }
  375. #endif
  376. }
  377. else {
  378. _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
  379. HAL_ENABLE_ISRs(); // re-enable ISRs
  380. return;
  381. }
  382. }
  383. // Update endstops state, if enabled
  384. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  385. if (e_hit && ENDSTOPS_ENABLED) {
  386. endstops.update();
  387. e_hit--;
  388. }
  389. #else
  390. if (ENDSTOPS_ENABLED) endstops.update();
  391. #endif
  392. // Take multiple steps per interrupt (For high speed moves)
  393. bool all_steps_done = false;
  394. for (uint8_t i = step_loops; i--;) {
  395. #if ENABLED(LIN_ADVANCE)
  396. counter_E += current_block->steps[E_AXIS];
  397. if (counter_E > 0) {
  398. counter_E -= current_block->step_event_count;
  399. #if DISABLED(MIXING_EXTRUDER)
  400. // Don't step E here for mixing extruder
  401. count_position[E_AXIS] += count_direction[E_AXIS];
  402. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  403. #endif
  404. }
  405. #if ENABLED(MIXING_EXTRUDER)
  406. // Step mixing steppers proportionally
  407. const bool dir = motor_direction(E_AXIS);
  408. MIXING_STEPPERS_LOOP(j) {
  409. counter_m[j] += current_block->steps[E_AXIS];
  410. if (counter_m[j] > 0) {
  411. counter_m[j] -= current_block->mix_event_count[j];
  412. dir ? --e_steps[j] : ++e_steps[j];
  413. }
  414. }
  415. #endif
  416. #endif // LIN_ADVANCE
  417. #define _COUNTER(AXIS) counter_## AXIS
  418. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  419. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  420. // Advance the Bresenham counter; start a pulse if the axis needs a step
  421. #define PULSE_START(AXIS) \
  422. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  423. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  424. // Stop an active pulse, reset the Bresenham counter, update the position
  425. #define PULSE_STOP(AXIS) \
  426. if (_COUNTER(AXIS) > 0) { \
  427. _COUNTER(AXIS) -= current_block->step_event_count; \
  428. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  429. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  430. }
  431. /**
  432. * Estimate the number of cycles that the stepper logic already takes
  433. * up between the start and stop of the X stepper pulse.
  434. *
  435. * Currently this uses very modest estimates of around 5 cycles.
  436. * True values may be derived by careful testing.
  437. *
  438. * Once any delay is added, the cost of the delay code itself
  439. * may be subtracted from this value to get a more accurate delay.
  440. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  441. * Longer delays use a loop. The resolution is 8 cycles.
  442. */
  443. #if HAS_X_STEP
  444. #define _CYCLE_APPROX_1 5
  445. #else
  446. #define _CYCLE_APPROX_1 0
  447. #endif
  448. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  449. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  450. #else
  451. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  452. #endif
  453. #if HAS_Y_STEP
  454. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  455. #else
  456. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  457. #endif
  458. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  459. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  460. #else
  461. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  462. #endif
  463. #if HAS_Z_STEP
  464. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  465. #else
  466. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  467. #endif
  468. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  469. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  470. #else
  471. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  472. #endif
  473. #if DISABLED(LIN_ADVANCE)
  474. #if ENABLED(MIXING_EXTRUDER)
  475. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  476. #else
  477. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  478. #endif
  479. #else
  480. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  481. #endif
  482. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  483. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  484. /**
  485. * If a minimum pulse time was specified get the timer 0 value.
  486. *
  487. * On AVR the TCNT0 timer has an 8x prescaler, so it increments every 8 cycles.
  488. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  489. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  490. * 10µs = 160 or 200 cycles.
  491. */
  492. #if EXTRA_CYCLES_XYZE > 20
  493. hal_timer_t pulse_start = HAL_timer_get_current_count(PULSE_TIMER_NUM);
  494. #endif
  495. #if HAS_X_STEP
  496. PULSE_START(X);
  497. #endif
  498. #if HAS_Y_STEP
  499. PULSE_START(Y);
  500. #endif
  501. #if HAS_Z_STEP
  502. PULSE_START(Z);
  503. #endif
  504. // For non-advance use linear interpolation for E also
  505. #if DISABLED(LIN_ADVANCE)
  506. #if ENABLED(MIXING_EXTRUDER)
  507. // Keep updating the single E axis
  508. counter_E += current_block->steps[E_AXIS];
  509. // Tick the counters used for this mix
  510. MIXING_STEPPERS_LOOP(j) {
  511. // Step mixing steppers (proportionally)
  512. counter_m[j] += current_block->steps[E_AXIS];
  513. // Step when the counter goes over zero
  514. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  515. }
  516. #else // !MIXING_EXTRUDER
  517. PULSE_START(E);
  518. #endif
  519. #endif // !LIN_ADVANCE
  520. // For minimum pulse time wait before stopping pulses
  521. #if EXTRA_CYCLES_XYZE > 20
  522. while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_current_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
  523. pulse_start = HAL_timer_get_current_count(PULSE_TIMER_NUM);
  524. #elif EXTRA_CYCLES_XYZE > 0
  525. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  526. #endif
  527. #if HAS_X_STEP
  528. PULSE_STOP(X);
  529. #endif
  530. #if HAS_Y_STEP
  531. PULSE_STOP(Y);
  532. #endif
  533. #if HAS_Z_STEP
  534. PULSE_STOP(Z);
  535. #endif
  536. #if DISABLED(LIN_ADVANCE)
  537. #if ENABLED(MIXING_EXTRUDER)
  538. // Always step the single E axis
  539. if (counter_E > 0) {
  540. counter_E -= current_block->step_event_count;
  541. count_position[E_AXIS] += count_direction[E_AXIS];
  542. }
  543. MIXING_STEPPERS_LOOP(j) {
  544. if (counter_m[j] > 0) {
  545. counter_m[j] -= current_block->mix_event_count[j];
  546. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  547. }
  548. }
  549. #else // !MIXING_EXTRUDER
  550. PULSE_STOP(E);
  551. #endif
  552. #endif // !LIN_ADVANCE
  553. if (++step_events_completed >= current_block->step_event_count) {
  554. all_steps_done = true;
  555. break;
  556. }
  557. // For minimum pulse time wait after stopping pulses also
  558. #if EXTRA_CYCLES_XYZE > 20
  559. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_current_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
  560. #elif EXTRA_CYCLES_XYZE > 0
  561. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  562. #endif
  563. } // steps_loop
  564. #if ENABLED(LIN_ADVANCE)
  565. if (current_block->use_advance_lead) {
  566. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  567. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  568. #if ENABLED(MIXING_EXTRUDER)
  569. // Mixing extruders apply advance lead proportionally
  570. MIXING_STEPPERS_LOOP(j)
  571. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  572. #else
  573. // For most extruders, advance the single E stepper
  574. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  575. #endif
  576. }
  577. // If we have esteps to execute, fire the next advance_isr "now"
  578. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  579. #endif // LIN_ADVANCE
  580. // Calculate new timer value
  581. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  582. #ifdef CPU_32_BIT
  583. MultiU32X24toH32(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  584. #else
  585. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  586. #endif
  587. acc_step_rate += current_block->initial_rate;
  588. // upper limit
  589. NOMORE(acc_step_rate, current_block->nominal_rate);
  590. // step_rate to timer interval
  591. const hal_timer_t interval = calc_timer_interval(acc_step_rate);
  592. SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  593. _NEXT_ISR(ocr_val);
  594. acceleration_time += interval;
  595. #if ENABLED(LIN_ADVANCE)
  596. if (current_block->use_advance_lead) {
  597. #if ENABLED(MIXING_EXTRUDER)
  598. MIXING_STEPPERS_LOOP(j)
  599. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  600. #else
  601. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  602. #endif
  603. }
  604. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], interval, step_loops);
  605. #endif // LIN_ADVANCE
  606. }
  607. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  608. hal_timer_t step_rate;
  609. #ifdef CPU_32_BIT
  610. MultiU32X24toH32(step_rate, deceleration_time, current_block->acceleration_rate);
  611. #else
  612. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  613. #endif
  614. if (step_rate < acc_step_rate) { // Still decelerating?
  615. step_rate = acc_step_rate - step_rate;
  616. NOLESS(step_rate, current_block->final_rate);
  617. }
  618. else
  619. step_rate = current_block->final_rate;
  620. // step_rate to timer interval
  621. const hal_timer_t interval = calc_timer_interval(step_rate);
  622. SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  623. _NEXT_ISR(ocr_val);
  624. deceleration_time += interval;
  625. #if ENABLED(LIN_ADVANCE)
  626. if (current_block->use_advance_lead) {
  627. #if ENABLED(MIXING_EXTRUDER)
  628. MIXING_STEPPERS_LOOP(j)
  629. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  630. #else
  631. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  632. #endif
  633. }
  634. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], interval, step_loops);
  635. #endif // LIN_ADVANCE
  636. }
  637. else {
  638. #if ENABLED(LIN_ADVANCE)
  639. if (current_block->use_advance_lead)
  640. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  641. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
  642. #endif
  643. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  644. _NEXT_ISR(ocr_val);
  645. // ensure we're running at the correct step rate, even if we just came off an acceleration
  646. step_loops = step_loops_nominal;
  647. }
  648. #if DISABLED(LIN_ADVANCE)
  649. #ifdef CPU_32_BIT
  650. // Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room
  651. hal_timer_t stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM),
  652. stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US;
  653. HAL_timer_set_count(STEP_TIMER_NUM, max(stepper_timer_count, stepper_timer_current_count));
  654. #else
  655. NOLESS(OCR1A, TCNT1 + 16);
  656. #endif
  657. #endif
  658. // If current block is finished, reset pointer
  659. if (all_steps_done) {
  660. current_block = NULL;
  661. planner.discard_current_block();
  662. }
  663. #if DISABLED(LIN_ADVANCE)
  664. HAL_ENABLE_ISRs(); // re-enable ISRs
  665. #endif
  666. }
  667. #if ENABLED(LIN_ADVANCE)
  668. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  669. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  670. // Timer interrupt for E. e_steps is set in the main routine;
  671. void Stepper::advance_isr() {
  672. nextAdvanceISR = eISR_Rate;
  673. #if ENABLED(MK2_MULTIPLEXER)
  674. // Even-numbered steppers are reversed
  675. #define SET_E_STEP_DIR(INDEX) \
  676. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
  677. #else
  678. #define SET_E_STEP_DIR(INDEX) \
  679. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  680. #endif
  681. #define START_E_PULSE(INDEX) \
  682. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  683. #define STOP_E_PULSE(INDEX) \
  684. if (e_steps[INDEX]) { \
  685. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  686. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  687. }
  688. SET_E_STEP_DIR(0);
  689. #if E_STEPPERS > 1
  690. SET_E_STEP_DIR(1);
  691. #if E_STEPPERS > 2
  692. SET_E_STEP_DIR(2);
  693. #if E_STEPPERS > 3
  694. SET_E_STEP_DIR(3);
  695. #if E_STEPPERS > 4
  696. SET_E_STEP_DIR(4);
  697. #endif
  698. #endif
  699. #endif
  700. #endif
  701. // Step all E steppers that have steps
  702. for (uint8_t i = step_loops; i--;) {
  703. #if EXTRA_CYCLES_E > 20
  704. hal_timer_t pulse_start = HAL_timer_get_current_count(PULSE_TIMER_NUM);
  705. #endif
  706. START_E_PULSE(0);
  707. #if E_STEPPERS > 1
  708. START_E_PULSE(1);
  709. #if E_STEPPERS > 2
  710. START_E_PULSE(2);
  711. #if E_STEPPERS > 3
  712. START_E_PULSE(3);
  713. #if E_STEPPERS > 4
  714. START_E_PULSE(4);
  715. #endif
  716. #endif
  717. #endif
  718. #endif
  719. // For minimum pulse time wait before stopping pulses
  720. #if EXTRA_CYCLES_E > 20
  721. while (EXTRA_CYCLES_E > (hal_timer_t)(HAL_timer_get_current_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
  722. pulse_start = HAL_timer_get_current_count(PULSE_TIMER_NUM);
  723. #elif EXTRA_CYCLES_E > 0
  724. DELAY_NOPS(EXTRA_CYCLES_E);
  725. #endif
  726. STOP_E_PULSE(0);
  727. #if E_STEPPERS > 1
  728. STOP_E_PULSE(1);
  729. #if E_STEPPERS > 2
  730. STOP_E_PULSE(2);
  731. #if E_STEPPERS > 3
  732. STOP_E_PULSE(3);
  733. #if E_STEPPERS > 4
  734. STOP_E_PULSE(4);
  735. #endif
  736. #endif
  737. #endif
  738. #endif
  739. // For minimum pulse time wait before looping
  740. #if EXTRA_CYCLES_E > 20
  741. if (i) while (EXTRA_CYCLES_E > (hal_timer_t)(HAL_timer_get_current_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
  742. #elif EXTRA_CYCLES_E > 0
  743. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  744. #endif
  745. } // steps_loop
  746. }
  747. void Stepper::advance_isr_scheduler() {
  748. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  749. DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR
  750. DISABLE_STEPPER_DRIVER_INTERRUPT();
  751. sei();
  752. // Run main stepping ISR if flagged
  753. if (!nextMainISR) isr();
  754. // Run Advance stepping ISR if flagged
  755. if (!nextAdvanceISR) advance_isr();
  756. // Is the next advance ISR scheduled before the next main ISR?
  757. if (nextAdvanceISR <= nextMainISR) {
  758. // Set up the next interrupt
  759. HAL_timer_set_count(STEP_TIMER_NUM, nextAdvanceISR);
  760. // New interval for the next main ISR
  761. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  762. // Will call Stepper::advance_isr on the next interrupt
  763. nextAdvanceISR = 0;
  764. }
  765. else {
  766. // The next main ISR comes first
  767. HAL_timer_set_count(STEP_TIMER_NUM, nextMainISR);
  768. // New interval for the next advance ISR, if any
  769. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  770. nextAdvanceISR -= nextMainISR;
  771. // Will call Stepper::isr on the next interrupt
  772. nextMainISR = 0;
  773. }
  774. // Don't run the ISR faster than possible
  775. #ifdef CPU_32_BIT
  776. // Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room
  777. uint32_t stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM),
  778. stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US;
  779. HAL_timer_set_count(STEP_TIMER_NUM, max(stepper_timer_count, stepper_timer_current_count));
  780. #else
  781. NOLESS(OCR1A, TCNT1 + 16);
  782. #endif
  783. // Restore original ISR settings
  784. HAL_ENABLE_ISRs();
  785. }
  786. #endif // LIN_ADVANCE
  787. void Stepper::init() {
  788. // Init Digipot Motor Current
  789. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  790. digipot_init();
  791. #endif
  792. #if MB(ALLIGATOR)
  793. const float motor_current[] = MOTOR_CURRENT;
  794. unsigned int digipot_motor = 0;
  795. for (uint8_t i = 0; i < 3 + EXTRUDERS; i++) {
  796. digipot_motor = 255 * (motor_current[i] / 2.5);
  797. dac084s085::setValue(i, digipot_motor);
  798. }
  799. #endif//MB(ALLIGATOR)
  800. // Init Microstepping Pins
  801. #if HAS_MICROSTEPS
  802. microstep_init();
  803. #endif
  804. // Init TMC Steppers
  805. #if ENABLED(HAVE_TMCDRIVER)
  806. tmc_init();
  807. #endif
  808. // Init TMC2130 Steppers
  809. #if ENABLED(HAVE_TMC2130)
  810. tmc2130_init();
  811. #endif
  812. // Init TMC2208 Steppers
  813. #if ENABLED(HAVE_TMC2208)
  814. tmc2208_init();
  815. #endif
  816. // TRAMS, TMC2130 and TMC2208 advanced settings
  817. #if HAS_TRINAMIC
  818. TMC_ADV()
  819. #endif
  820. // Init L6470 Steppers
  821. #if ENABLED(HAVE_L6470DRIVER)
  822. L6470_init();
  823. #endif
  824. // Init Dir Pins
  825. #if HAS_X_DIR
  826. X_DIR_INIT;
  827. #endif
  828. #if HAS_X2_DIR
  829. X2_DIR_INIT;
  830. #endif
  831. #if HAS_Y_DIR
  832. Y_DIR_INIT;
  833. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  834. Y2_DIR_INIT;
  835. #endif
  836. #endif
  837. #if HAS_Z_DIR
  838. Z_DIR_INIT;
  839. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  840. Z2_DIR_INIT;
  841. #endif
  842. #endif
  843. #if HAS_E0_DIR
  844. E0_DIR_INIT;
  845. #endif
  846. #if HAS_E1_DIR
  847. E1_DIR_INIT;
  848. #endif
  849. #if HAS_E2_DIR
  850. E2_DIR_INIT;
  851. #endif
  852. #if HAS_E3_DIR
  853. E3_DIR_INIT;
  854. #endif
  855. #if HAS_E4_DIR
  856. E4_DIR_INIT;
  857. #endif
  858. // Init Enable Pins - steppers default to disabled.
  859. #if HAS_X_ENABLE
  860. X_ENABLE_INIT;
  861. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  862. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  863. X2_ENABLE_INIT;
  864. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  865. #endif
  866. #endif
  867. #if HAS_Y_ENABLE
  868. Y_ENABLE_INIT;
  869. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  870. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  871. Y2_ENABLE_INIT;
  872. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  873. #endif
  874. #endif
  875. #if HAS_Z_ENABLE
  876. Z_ENABLE_INIT;
  877. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  878. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  879. Z2_ENABLE_INIT;
  880. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  881. #endif
  882. #endif
  883. #if HAS_E0_ENABLE
  884. E0_ENABLE_INIT;
  885. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  886. #endif
  887. #if HAS_E1_ENABLE
  888. E1_ENABLE_INIT;
  889. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  890. #endif
  891. #if HAS_E2_ENABLE
  892. E2_ENABLE_INIT;
  893. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  894. #endif
  895. #if HAS_E3_ENABLE
  896. E3_ENABLE_INIT;
  897. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  898. #endif
  899. #if HAS_E4_ENABLE
  900. E4_ENABLE_INIT;
  901. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  902. #endif
  903. // Init endstops and pullups
  904. endstops.init();
  905. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  906. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  907. #define _DISABLE(AXIS) disable_## AXIS()
  908. #define AXIS_INIT(AXIS, PIN) \
  909. _STEP_INIT(AXIS); \
  910. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  911. _DISABLE(AXIS)
  912. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  913. // Init Step Pins
  914. #if HAS_X_STEP
  915. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  916. X2_STEP_INIT;
  917. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  918. #endif
  919. AXIS_INIT(X, X);
  920. #endif
  921. #if HAS_Y_STEP
  922. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  923. Y2_STEP_INIT;
  924. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  925. #endif
  926. AXIS_INIT(Y, Y);
  927. #endif
  928. #if HAS_Z_STEP
  929. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  930. Z2_STEP_INIT;
  931. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  932. #endif
  933. AXIS_INIT(Z, Z);
  934. #endif
  935. #if HAS_E0_STEP
  936. E_AXIS_INIT(0);
  937. #endif
  938. #if HAS_E1_STEP
  939. E_AXIS_INIT(1);
  940. #endif
  941. #if HAS_E2_STEP
  942. E_AXIS_INIT(2);
  943. #endif
  944. #if HAS_E3_STEP
  945. E_AXIS_INIT(3);
  946. #endif
  947. #if HAS_E4_STEP
  948. E_AXIS_INIT(4);
  949. #endif
  950. #ifdef __AVR__
  951. // waveform generation = 0100 = CTC
  952. SET_WGM(1, CTC_OCRnA);
  953. // output mode = 00 (disconnected)
  954. SET_COMA(1, NORMAL);
  955. // Set the timer pre-scaler
  956. // Generally we use a divider of 8, resulting in a 2MHz timer
  957. // frequency on a 16MHz MCU. If you are going to change this, be
  958. // sure to regenerate speed_lookuptable.h with
  959. // create_speed_lookuptable.py
  960. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  961. // Init Stepper ISR to 122 Hz for quick starting
  962. OCR1A = 0x4000;
  963. TCNT1 = 0;
  964. #else
  965. // Init Stepper ISR to 122 Hz for quick starting
  966. HAL_timer_start(STEP_TIMER_NUM, 122);
  967. #endif
  968. ENABLE_STEPPER_DRIVER_INTERRUPT();
  969. #if ENABLED(LIN_ADVANCE)
  970. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  971. ZERO(current_adv_steps);
  972. #endif
  973. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  974. sei();
  975. set_directions(); // Init directions to last_direction_bits = 0
  976. }
  977. /**
  978. * Block until all buffered steps are executed / cleaned
  979. */
  980. void Stepper::synchronize() { while (planner.blocks_queued() || cleaning_buffer_counter) idle(); }
  981. /**
  982. * Set the stepper positions directly in steps
  983. *
  984. * The input is based on the typical per-axis XYZ steps.
  985. * For CORE machines XYZ needs to be translated to ABC.
  986. *
  987. * This allows get_axis_position_mm to correctly
  988. * derive the current XYZ position later on.
  989. */
  990. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  991. synchronize(); // Bad to set stepper counts in the middle of a move
  992. CRITICAL_SECTION_START;
  993. #if CORE_IS_XY
  994. // corexy positioning
  995. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  996. count_position[A_AXIS] = a + b;
  997. count_position[B_AXIS] = CORESIGN(a - b);
  998. count_position[Z_AXIS] = c;
  999. #elif CORE_IS_XZ
  1000. // corexz planning
  1001. count_position[A_AXIS] = a + c;
  1002. count_position[Y_AXIS] = b;
  1003. count_position[C_AXIS] = CORESIGN(a - c);
  1004. #elif CORE_IS_YZ
  1005. // coreyz planning
  1006. count_position[X_AXIS] = a;
  1007. count_position[B_AXIS] = b + c;
  1008. count_position[C_AXIS] = CORESIGN(b - c);
  1009. #else
  1010. // default non-h-bot planning
  1011. count_position[X_AXIS] = a;
  1012. count_position[Y_AXIS] = b;
  1013. count_position[Z_AXIS] = c;
  1014. #endif
  1015. count_position[E_AXIS] = e;
  1016. CRITICAL_SECTION_END;
  1017. }
  1018. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  1019. CRITICAL_SECTION_START;
  1020. count_position[axis] = v;
  1021. CRITICAL_SECTION_END;
  1022. }
  1023. void Stepper::set_e_position(const long &e) {
  1024. CRITICAL_SECTION_START;
  1025. count_position[E_AXIS] = e;
  1026. CRITICAL_SECTION_END;
  1027. }
  1028. /**
  1029. * Get a stepper's position in steps.
  1030. */
  1031. long Stepper::position(const AxisEnum axis) {
  1032. CRITICAL_SECTION_START;
  1033. const long count_pos = count_position[axis];
  1034. CRITICAL_SECTION_END;
  1035. return count_pos;
  1036. }
  1037. /**
  1038. * Get an axis position according to stepper position(s)
  1039. * For CORE machines apply translation from ABC to XYZ.
  1040. */
  1041. float Stepper::get_axis_position_mm(const AxisEnum axis) {
  1042. float axis_steps;
  1043. #if IS_CORE
  1044. // Requesting one of the "core" axes?
  1045. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1046. CRITICAL_SECTION_START;
  1047. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1048. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1049. axis_steps = 0.5f * (
  1050. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1051. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1052. );
  1053. CRITICAL_SECTION_END;
  1054. }
  1055. else
  1056. axis_steps = position(axis);
  1057. #else
  1058. axis_steps = position(axis);
  1059. #endif
  1060. return axis_steps * planner.steps_to_mm[axis];
  1061. }
  1062. void Stepper::finish_and_disable() {
  1063. synchronize();
  1064. disable_all_steppers();
  1065. }
  1066. void Stepper::quick_stop() {
  1067. cleaning_buffer_counter = 5000;
  1068. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1069. while (planner.blocks_queued()) planner.discard_current_block();
  1070. current_block = NULL;
  1071. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1072. #if ENABLED(ULTRA_LCD)
  1073. planner.clear_block_buffer_runtime();
  1074. #endif
  1075. }
  1076. void Stepper::endstop_triggered(const AxisEnum axis) {
  1077. #if IS_CORE
  1078. endstops_trigsteps[axis] = 0.5f * (
  1079. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1080. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1081. );
  1082. #else // !COREXY && !COREXZ && !COREYZ
  1083. endstops_trigsteps[axis] = count_position[axis];
  1084. #endif // !COREXY && !COREXZ && !COREYZ
  1085. kill_current_block();
  1086. cleaning_buffer_counter = -1; // Discard the rest of the move
  1087. }
  1088. void Stepper::report_positions() {
  1089. CRITICAL_SECTION_START;
  1090. const long xpos = count_position[X_AXIS],
  1091. ypos = count_position[Y_AXIS],
  1092. zpos = count_position[Z_AXIS];
  1093. CRITICAL_SECTION_END;
  1094. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1095. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1096. #else
  1097. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1098. #endif
  1099. SERIAL_PROTOCOL(xpos);
  1100. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1101. SERIAL_PROTOCOLPGM(" B:");
  1102. #else
  1103. SERIAL_PROTOCOLPGM(" Y:");
  1104. #endif
  1105. SERIAL_PROTOCOL(ypos);
  1106. #if CORE_IS_XZ || CORE_IS_YZ
  1107. SERIAL_PROTOCOLPGM(" C:");
  1108. #else
  1109. SERIAL_PROTOCOLPGM(" Z:");
  1110. #endif
  1111. SERIAL_PROTOCOL(zpos);
  1112. SERIAL_EOL();
  1113. }
  1114. #if ENABLED(BABYSTEPPING)
  1115. #if ENABLED(DELTA)
  1116. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1117. #else
  1118. #define CYCLES_EATEN_BABYSTEP 0
  1119. #endif
  1120. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1121. #define _ENABLE(AXIS) enable_## AXIS()
  1122. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1123. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1124. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1125. #if EXTRA_CYCLES_BABYSTEP > 20
  1126. #define _SAVE_START const hal_timer_t pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM)
  1127. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_current_count(STEP_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
  1128. #else
  1129. #define _SAVE_START NOOP
  1130. #if EXTRA_CYCLES_BABYSTEP > 0
  1131. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1132. #elif STEP_PULSE_CYCLES > 0
  1133. #define _PULSE_WAIT NOOP
  1134. #elif ENABLED(DELTA)
  1135. #define _PULSE_WAIT delayMicroseconds(2);
  1136. #else
  1137. #define _PULSE_WAIT delayMicroseconds(4);
  1138. #endif
  1139. #endif
  1140. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1141. const uint8_t old_dir = _READ_DIR(AXIS); \
  1142. _ENABLE(AXIS); \
  1143. _SAVE_START; \
  1144. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1145. _PULSE_WAIT; \
  1146. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1147. _PULSE_WAIT; \
  1148. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1149. _APPLY_DIR(AXIS, old_dir); \
  1150. }
  1151. // MUST ONLY BE CALLED BY AN ISR,
  1152. // No other ISR should ever interrupt this!
  1153. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1154. cli();
  1155. switch (axis) {
  1156. #if ENABLED(BABYSTEP_XY)
  1157. case X_AXIS:
  1158. BABYSTEP_AXIS(X, false);
  1159. break;
  1160. case Y_AXIS:
  1161. BABYSTEP_AXIS(Y, false);
  1162. break;
  1163. #endif
  1164. case Z_AXIS: {
  1165. #if DISABLED(DELTA)
  1166. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1167. #else // DELTA
  1168. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1169. enable_X();
  1170. enable_Y();
  1171. enable_Z();
  1172. const uint8_t old_x_dir_pin = X_DIR_READ,
  1173. old_y_dir_pin = Y_DIR_READ,
  1174. old_z_dir_pin = Z_DIR_READ;
  1175. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1176. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1177. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1178. _SAVE_START;
  1179. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1180. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1181. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1182. _PULSE_WAIT;
  1183. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1184. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1185. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1186. // Restore direction bits
  1187. X_DIR_WRITE(old_x_dir_pin);
  1188. Y_DIR_WRITE(old_y_dir_pin);
  1189. Z_DIR_WRITE(old_z_dir_pin);
  1190. #endif
  1191. } break;
  1192. default: break;
  1193. }
  1194. sei();
  1195. }
  1196. #endif // BABYSTEPPING
  1197. /**
  1198. * Software-controlled Stepper Motor Current
  1199. */
  1200. #if HAS_DIGIPOTSS
  1201. // From Arduino DigitalPotControl example
  1202. void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
  1203. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  1204. SPI.transfer(address); // Send the address and value via SPI
  1205. SPI.transfer(value);
  1206. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  1207. //delay(10);
  1208. }
  1209. #endif // HAS_DIGIPOTSS
  1210. #if HAS_MOTOR_CURRENT_PWM
  1211. void Stepper::refresh_motor_power() {
  1212. for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
  1213. switch (i) {
  1214. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1215. case 0:
  1216. #endif
  1217. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1218. case 1:
  1219. #endif
  1220. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1221. case 2:
  1222. #endif
  1223. digipot_current(i, motor_current_setting[i]);
  1224. default: break;
  1225. }
  1226. }
  1227. }
  1228. #endif // HAS_MOTOR_CURRENT_PWM
  1229. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1230. void Stepper::digipot_current(const uint8_t driver, const int current) {
  1231. #if HAS_DIGIPOTSS
  1232. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1233. digitalPotWrite(digipot_ch[driver], current);
  1234. #elif HAS_MOTOR_CURRENT_PWM
  1235. if (WITHIN(driver, 0, 2))
  1236. motor_current_setting[driver] = current; // update motor_current_setting
  1237. #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1238. switch (driver) {
  1239. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1240. case 0: _WRITE_CURRENT_PWM(XY); break;
  1241. #endif
  1242. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1243. case 1: _WRITE_CURRENT_PWM(Z); break;
  1244. #endif
  1245. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1246. case 2: _WRITE_CURRENT_PWM(E); break;
  1247. #endif
  1248. }
  1249. #endif
  1250. }
  1251. void Stepper::digipot_init() {
  1252. #if HAS_DIGIPOTSS
  1253. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1254. SPI.begin();
  1255. SET_OUTPUT(DIGIPOTSS_PIN);
  1256. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1257. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1258. digipot_current(i, digipot_motor_current[i]);
  1259. }
  1260. #elif HAS_MOTOR_CURRENT_PWM
  1261. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1262. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1263. #endif
  1264. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1265. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1266. #endif
  1267. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1268. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1269. #endif
  1270. refresh_motor_power();
  1271. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1272. SET_CS5(PRESCALER_1);
  1273. #endif
  1274. }
  1275. #endif
  1276. #if HAS_MICROSTEPS
  1277. /**
  1278. * Software-controlled Microstepping
  1279. */
  1280. void Stepper::microstep_init() {
  1281. SET_OUTPUT(X_MS1_PIN);
  1282. SET_OUTPUT(X_MS2_PIN);
  1283. #if HAS_Y_MICROSTEPS
  1284. SET_OUTPUT(Y_MS1_PIN);
  1285. SET_OUTPUT(Y_MS2_PIN);
  1286. #endif
  1287. #if HAS_Z_MICROSTEPS
  1288. SET_OUTPUT(Z_MS1_PIN);
  1289. SET_OUTPUT(Z_MS2_PIN);
  1290. #endif
  1291. #if HAS_E0_MICROSTEPS
  1292. SET_OUTPUT(E0_MS1_PIN);
  1293. SET_OUTPUT(E0_MS2_PIN);
  1294. #endif
  1295. #if HAS_E1_MICROSTEPS
  1296. SET_OUTPUT(E1_MS1_PIN);
  1297. SET_OUTPUT(E1_MS2_PIN);
  1298. #endif
  1299. #if HAS_E2_MICROSTEPS
  1300. SET_OUTPUT(E2_MS1_PIN);
  1301. SET_OUTPUT(E2_MS2_PIN);
  1302. #endif
  1303. #if HAS_E3_MICROSTEPS
  1304. SET_OUTPUT(E3_MS1_PIN);
  1305. SET_OUTPUT(E3_MS2_PIN);
  1306. #endif
  1307. #if HAS_E4_MICROSTEPS
  1308. SET_OUTPUT(E4_MS1_PIN);
  1309. SET_OUTPUT(E4_MS2_PIN);
  1310. #endif
  1311. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1312. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1313. microstep_mode(i, microstep_modes[i]);
  1314. }
  1315. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
  1316. if (ms1 >= 0) switch (driver) {
  1317. case 0: WRITE(X_MS1_PIN, ms1); break;
  1318. #if HAS_Y_MICROSTEPS
  1319. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1320. #endif
  1321. #if HAS_Z_MICROSTEPS
  1322. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1323. #endif
  1324. #if HAS_E0_MICROSTEPS
  1325. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1326. #endif
  1327. #if HAS_E1_MICROSTEPS
  1328. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1329. #endif
  1330. #if HAS_E2_MICROSTEPS
  1331. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1332. #endif
  1333. #if HAS_E3_MICROSTEPS
  1334. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1335. #endif
  1336. #if HAS_E4_MICROSTEPS
  1337. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1338. #endif
  1339. }
  1340. if (ms2 >= 0) switch (driver) {
  1341. case 0: WRITE(X_MS2_PIN, ms2); break;
  1342. #if HAS_Y_MICROSTEPS
  1343. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1344. #endif
  1345. #if HAS_Z_MICROSTEPS
  1346. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1347. #endif
  1348. #if HAS_E0_MICROSTEPS
  1349. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1350. #endif
  1351. #if HAS_E1_MICROSTEPS
  1352. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1353. #endif
  1354. #if HAS_E2_MICROSTEPS
  1355. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1356. #endif
  1357. #if HAS_E3_MICROSTEPS
  1358. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1359. #endif
  1360. #if HAS_E4_MICROSTEPS
  1361. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1362. #endif
  1363. }
  1364. }
  1365. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  1366. switch (stepping_mode) {
  1367. case 1: microstep_ms(driver, MICROSTEP1); break;
  1368. case 2: microstep_ms(driver, MICROSTEP2); break;
  1369. case 4: microstep_ms(driver, MICROSTEP4); break;
  1370. case 8: microstep_ms(driver, MICROSTEP8); break;
  1371. case 16: microstep_ms(driver, MICROSTEP16); break;
  1372. #if MB(ALLIGATOR)
  1373. case 32: microstep_ms(driver, MICROSTEP32); break;
  1374. #endif
  1375. }
  1376. }
  1377. void Stepper::microstep_readings() {
  1378. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1379. SERIAL_PROTOCOLPGM("X: ");
  1380. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1381. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1382. #if HAS_Y_MICROSTEPS
  1383. SERIAL_PROTOCOLPGM("Y: ");
  1384. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1385. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1386. #endif
  1387. #if HAS_Z_MICROSTEPS
  1388. SERIAL_PROTOCOLPGM("Z: ");
  1389. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1390. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1391. #endif
  1392. #if HAS_E0_MICROSTEPS
  1393. SERIAL_PROTOCOLPGM("E0: ");
  1394. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1395. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1396. #endif
  1397. #if HAS_E1_MICROSTEPS
  1398. SERIAL_PROTOCOLPGM("E1: ");
  1399. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1400. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1401. #endif
  1402. #if HAS_E2_MICROSTEPS
  1403. SERIAL_PROTOCOLPGM("E2: ");
  1404. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1405. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1406. #endif
  1407. #if HAS_E3_MICROSTEPS
  1408. SERIAL_PROTOCOLPGM("E3: ");
  1409. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1410. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1411. #endif
  1412. #if HAS_E4_MICROSTEPS
  1413. SERIAL_PROTOCOLPGM("E4: ");
  1414. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1415. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1416. #endif
  1417. }
  1418. #endif // HAS_MICROSTEPS