My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 111KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #endif // ENABLE_AUTO_BED_LEVELING
  27. #include "ultralcd.h"
  28. #include "planner.h"
  29. #include "stepper.h"
  30. #include "temperature.h"
  31. #include "motion_control.h"
  32. #include "cardreader.h"
  33. #include "watchdog.h"
  34. #include "ConfigurationStore.h"
  35. #include "language.h"
  36. #include "pins_arduino.h"
  37. #include "math.h"
  38. #ifdef BLINKM
  39. #include "BlinkM.h"
  40. #include "Wire.h"
  41. #endif
  42. #if NUM_SERVOS > 0
  43. #include "Servo.h"
  44. #endif
  45. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  46. #include <SPI.h>
  47. #endif
  48. #define VERSION_STRING "1.0.0"
  49. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  50. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  51. //Implemented Codes
  52. //-------------------
  53. // G0 -> G1
  54. // G1 - Coordinated Movement X Y Z E
  55. // G2 - CW ARC
  56. // G3 - CCW ARC
  57. // G4 - Dwell S<seconds> or P<milliseconds>
  58. // G10 - retract filament according to settings of M207
  59. // G11 - retract recover filament according to settings of M208
  60. // G28 - Home all Axis
  61. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  62. // G30 - Single Z Probe, probes bed at current XY location.
  63. // G90 - Use Absolute Coordinates
  64. // G91 - Use Relative Coordinates
  65. // G92 - Set current position to cordinates given
  66. // M Codes
  67. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  68. // M1 - Same as M0
  69. // M17 - Enable/Power all stepper motors
  70. // M18 - Disable all stepper motors; same as M84
  71. // M20 - List SD card
  72. // M21 - Init SD card
  73. // M22 - Release SD card
  74. // M23 - Select SD file (M23 filename.g)
  75. // M24 - Start/resume SD print
  76. // M25 - Pause SD print
  77. // M26 - Set SD position in bytes (M26 S12345)
  78. // M27 - Report SD print status
  79. // M28 - Start SD write (M28 filename.g)
  80. // M29 - Stop SD write
  81. // M30 - Delete file from SD (M30 filename.g)
  82. // M31 - Output time since last M109 or SD card start to serial
  83. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  84. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  85. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  86. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  87. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  88. // M80 - Turn on Power Supply
  89. // M81 - Turn off Power Supply
  90. // M82 - Set E codes absolute (default)
  91. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  92. // M84 - Disable steppers until next move,
  93. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  94. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  95. // M92 - Set axis_steps_per_unit - same syntax as G92
  96. // M104 - Set extruder target temp
  97. // M105 - Read current temp
  98. // M106 - Fan on
  99. // M107 - Fan off
  100. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  101. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  102. // M114 - Output current position to serial port
  103. // M115 - Capabilities string
  104. // M117 - display message
  105. // M119 - Output Endstop status to serial port
  106. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  107. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  108. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  109. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  110. // M140 - Set bed target temp
  111. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  112. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  113. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  114. // M200 - Set filament diameter
  115. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  116. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  117. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  118. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  119. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  120. // M206 - set additional homeing offset
  121. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  122. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  123. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  124. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  125. // M220 S<factor in percent>- set speed factor override percentage
  126. // M221 S<factor in percent>- set extrude factor override percentage
  127. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  128. // M240 - Trigger a camera to take a photograph
  129. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  130. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  131. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  132. // M301 - Set PID parameters P I and D
  133. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  134. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  135. // M304 - Set bed PID parameters P I and D
  136. // M400 - Finish all moves
  137. // M401 - Lower z-probe if present
  138. // M402 - Raise z-probe if present
  139. // M500 - stores paramters in EEPROM
  140. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  141. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  142. // M503 - print the current settings (from memory not from eeprom)
  143. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  144. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  145. // M666 - set delta endstop adjustemnt
  146. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  147. // M907 - Set digital trimpot motor current using axis codes.
  148. // M908 - Control digital trimpot directly.
  149. // M350 - Set microstepping mode.
  150. // M351 - Toggle MS1 MS2 pins directly.
  151. // M928 - Start SD logging (M928 filename.g) - ended by M29
  152. // M999 - Restart after being stopped by error
  153. //Stepper Movement Variables
  154. //===========================================================================
  155. //=============================imported variables============================
  156. //===========================================================================
  157. //===========================================================================
  158. //=============================public variables=============================
  159. //===========================================================================
  160. #ifdef SDSUPPORT
  161. CardReader card;
  162. #endif
  163. float homing_feedrate[] = HOMING_FEEDRATE;
  164. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  165. int feedmultiply=100; //100->1 200->2
  166. int saved_feedmultiply;
  167. int extrudemultiply=100; //100->1 200->2
  168. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  169. float add_homeing[3]={0,0,0};
  170. #ifdef DELTA
  171. float endstop_adj[3]={0,0,0};
  172. #endif
  173. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  174. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  175. bool axis_known_position[3] = {false, false, false};
  176. // Extruder offset
  177. #if EXTRUDERS > 1
  178. #ifndef DUAL_X_CARRIAGE
  179. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  180. #else
  181. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  182. #endif
  183. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  184. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  185. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  186. #endif
  187. };
  188. #endif
  189. uint8_t active_extruder = 0;
  190. int fanSpeed=0;
  191. #ifdef SERVO_ENDSTOPS
  192. int servo_endstops[] = SERVO_ENDSTOPS;
  193. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  194. #endif
  195. #ifdef BARICUDA
  196. int ValvePressure=0;
  197. int EtoPPressure=0;
  198. #endif
  199. #ifdef FWRETRACT
  200. bool autoretract_enabled=true;
  201. bool retracted=false;
  202. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  203. float retract_recover_length=0, retract_recover_feedrate=8*60;
  204. #endif
  205. #ifdef ULTIPANEL
  206. bool powersupply = true;
  207. #endif
  208. #ifdef DELTA
  209. float delta[3] = {0.0, 0.0, 0.0};
  210. #endif
  211. //===========================================================================
  212. //=============================private variables=============================
  213. //===========================================================================
  214. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  215. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  216. static float offset[3] = {0.0, 0.0, 0.0};
  217. static bool home_all_axis = true;
  218. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  219. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  220. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  221. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  222. static bool fromsd[BUFSIZE];
  223. static int bufindr = 0;
  224. static int bufindw = 0;
  225. static int buflen = 0;
  226. //static int i = 0;
  227. static char serial_char;
  228. static int serial_count = 0;
  229. static boolean comment_mode = false;
  230. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  231. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  232. //static float tt = 0;
  233. //static float bt = 0;
  234. //Inactivity shutdown variables
  235. static unsigned long previous_millis_cmd = 0;
  236. static unsigned long max_inactive_time = 0;
  237. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  238. unsigned long starttime=0;
  239. unsigned long stoptime=0;
  240. static uint8_t tmp_extruder;
  241. bool Stopped=false;
  242. #if NUM_SERVOS > 0
  243. Servo servos[NUM_SERVOS];
  244. #endif
  245. bool CooldownNoWait = true;
  246. bool target_direction;
  247. //===========================================================================
  248. //=============================ROUTINES=============================
  249. //===========================================================================
  250. void get_arc_coordinates();
  251. bool setTargetedHotend(int code);
  252. void serial_echopair_P(const char *s_P, float v)
  253. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  254. void serial_echopair_P(const char *s_P, double v)
  255. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  256. void serial_echopair_P(const char *s_P, unsigned long v)
  257. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  258. extern "C"{
  259. extern unsigned int __bss_end;
  260. extern unsigned int __heap_start;
  261. extern void *__brkval;
  262. int freeMemory() {
  263. int free_memory;
  264. if((int)__brkval == 0)
  265. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  266. else
  267. free_memory = ((int)&free_memory) - ((int)__brkval);
  268. return free_memory;
  269. }
  270. }
  271. //adds an command to the main command buffer
  272. //thats really done in a non-safe way.
  273. //needs overworking someday
  274. void enquecommand(const char *cmd)
  275. {
  276. if(buflen < BUFSIZE)
  277. {
  278. //this is dangerous if a mixing of serial and this happsens
  279. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  280. SERIAL_ECHO_START;
  281. SERIAL_ECHOPGM("enqueing \"");
  282. SERIAL_ECHO(cmdbuffer[bufindw]);
  283. SERIAL_ECHOLNPGM("\"");
  284. bufindw= (bufindw + 1)%BUFSIZE;
  285. buflen += 1;
  286. }
  287. }
  288. void enquecommand_P(const char *cmd)
  289. {
  290. if(buflen < BUFSIZE)
  291. {
  292. //this is dangerous if a mixing of serial and this happsens
  293. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  294. SERIAL_ECHO_START;
  295. SERIAL_ECHOPGM("enqueing \"");
  296. SERIAL_ECHO(cmdbuffer[bufindw]);
  297. SERIAL_ECHOLNPGM("\"");
  298. bufindw= (bufindw + 1)%BUFSIZE;
  299. buflen += 1;
  300. }
  301. }
  302. void setup_killpin()
  303. {
  304. #if defined(KILL_PIN) && KILL_PIN > -1
  305. pinMode(KILL_PIN,INPUT);
  306. WRITE(KILL_PIN,HIGH);
  307. #endif
  308. }
  309. void setup_photpin()
  310. {
  311. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  312. SET_OUTPUT(PHOTOGRAPH_PIN);
  313. WRITE(PHOTOGRAPH_PIN, LOW);
  314. #endif
  315. }
  316. void setup_powerhold()
  317. {
  318. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  319. SET_OUTPUT(SUICIDE_PIN);
  320. WRITE(SUICIDE_PIN, HIGH);
  321. #endif
  322. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  323. SET_OUTPUT(PS_ON_PIN);
  324. #if defined(PS_DEFAULT_OFF)
  325. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  326. #else
  327. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  328. #endif
  329. #endif
  330. }
  331. void suicide()
  332. {
  333. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  334. SET_OUTPUT(SUICIDE_PIN);
  335. WRITE(SUICIDE_PIN, LOW);
  336. #endif
  337. }
  338. void servo_init()
  339. {
  340. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  341. servos[0].attach(SERVO0_PIN);
  342. #endif
  343. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  344. servos[1].attach(SERVO1_PIN);
  345. #endif
  346. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  347. servos[2].attach(SERVO2_PIN);
  348. #endif
  349. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  350. servos[3].attach(SERVO3_PIN);
  351. #endif
  352. #if (NUM_SERVOS >= 5)
  353. #error "TODO: enter initalisation code for more servos"
  354. #endif
  355. // Set position of Servo Endstops that are defined
  356. #ifdef SERVO_ENDSTOPS
  357. for(int8_t i = 0; i < 3; i++)
  358. {
  359. if(servo_endstops[i] > -1) {
  360. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  361. }
  362. }
  363. #endif
  364. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  365. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  366. servos[servo_endstops[Z_AXIS]].detach();
  367. #endif
  368. }
  369. void setup()
  370. {
  371. setup_killpin();
  372. setup_powerhold();
  373. MYSERIAL.begin(BAUDRATE);
  374. SERIAL_PROTOCOLLNPGM("start");
  375. SERIAL_ECHO_START;
  376. // Check startup - does nothing if bootloader sets MCUSR to 0
  377. byte mcu = MCUSR;
  378. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  379. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  380. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  381. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  382. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  383. MCUSR=0;
  384. SERIAL_ECHOPGM(MSG_MARLIN);
  385. SERIAL_ECHOLNPGM(VERSION_STRING);
  386. #ifdef STRING_VERSION_CONFIG_H
  387. #ifdef STRING_CONFIG_H_AUTHOR
  388. SERIAL_ECHO_START;
  389. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  390. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  391. SERIAL_ECHOPGM(MSG_AUTHOR);
  392. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  393. SERIAL_ECHOPGM("Compiled: ");
  394. SERIAL_ECHOLNPGM(__DATE__);
  395. #endif
  396. #endif
  397. SERIAL_ECHO_START;
  398. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  399. SERIAL_ECHO(freeMemory());
  400. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  401. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  402. for(int8_t i = 0; i < BUFSIZE; i++)
  403. {
  404. fromsd[i] = false;
  405. }
  406. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  407. Config_RetrieveSettings();
  408. tp_init(); // Initialize temperature loop
  409. plan_init(); // Initialize planner;
  410. watchdog_init();
  411. st_init(); // Initialize stepper, this enables interrupts!
  412. setup_photpin();
  413. servo_init();
  414. lcd_init();
  415. _delay_ms(1000); // wait 1sec to display the splash screen
  416. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  417. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  418. #endif
  419. }
  420. void loop()
  421. {
  422. if(buflen < (BUFSIZE-1))
  423. get_command();
  424. #ifdef SDSUPPORT
  425. card.checkautostart(false);
  426. #endif
  427. if(buflen)
  428. {
  429. #ifdef SDSUPPORT
  430. if(card.saving)
  431. {
  432. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  433. {
  434. card.write_command(cmdbuffer[bufindr]);
  435. if(card.logging)
  436. {
  437. process_commands();
  438. }
  439. else
  440. {
  441. SERIAL_PROTOCOLLNPGM(MSG_OK);
  442. }
  443. }
  444. else
  445. {
  446. card.closefile();
  447. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  448. }
  449. }
  450. else
  451. {
  452. process_commands();
  453. }
  454. #else
  455. process_commands();
  456. #endif //SDSUPPORT
  457. buflen = (buflen-1);
  458. bufindr = (bufindr + 1)%BUFSIZE;
  459. }
  460. //check heater every n milliseconds
  461. manage_heater();
  462. manage_inactivity();
  463. checkHitEndstops();
  464. lcd_update();
  465. }
  466. void get_command()
  467. {
  468. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  469. serial_char = MYSERIAL.read();
  470. if(serial_char == '\n' ||
  471. serial_char == '\r' ||
  472. (serial_char == ':' && comment_mode == false) ||
  473. serial_count >= (MAX_CMD_SIZE - 1) )
  474. {
  475. if(!serial_count) { //if empty line
  476. comment_mode = false; //for new command
  477. return;
  478. }
  479. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  480. if(!comment_mode){
  481. comment_mode = false; //for new command
  482. fromsd[bufindw] = false;
  483. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  484. {
  485. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  486. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  487. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  488. SERIAL_ERROR_START;
  489. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  490. SERIAL_ERRORLN(gcode_LastN);
  491. //Serial.println(gcode_N);
  492. FlushSerialRequestResend();
  493. serial_count = 0;
  494. return;
  495. }
  496. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  497. {
  498. byte checksum = 0;
  499. byte count = 0;
  500. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  501. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  502. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  503. SERIAL_ERROR_START;
  504. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  505. SERIAL_ERRORLN(gcode_LastN);
  506. FlushSerialRequestResend();
  507. serial_count = 0;
  508. return;
  509. }
  510. //if no errors, continue parsing
  511. }
  512. else
  513. {
  514. SERIAL_ERROR_START;
  515. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  516. SERIAL_ERRORLN(gcode_LastN);
  517. FlushSerialRequestResend();
  518. serial_count = 0;
  519. return;
  520. }
  521. gcode_LastN = gcode_N;
  522. //if no errors, continue parsing
  523. }
  524. else // if we don't receive 'N' but still see '*'
  525. {
  526. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  527. {
  528. SERIAL_ERROR_START;
  529. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  530. SERIAL_ERRORLN(gcode_LastN);
  531. serial_count = 0;
  532. return;
  533. }
  534. }
  535. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  536. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  537. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  538. case 0:
  539. case 1:
  540. case 2:
  541. case 3:
  542. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  543. #ifdef SDSUPPORT
  544. if(card.saving)
  545. break;
  546. #endif //SDSUPPORT
  547. SERIAL_PROTOCOLLNPGM(MSG_OK);
  548. }
  549. else {
  550. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  551. LCD_MESSAGEPGM(MSG_STOPPED);
  552. }
  553. break;
  554. default:
  555. break;
  556. }
  557. }
  558. bufindw = (bufindw + 1)%BUFSIZE;
  559. buflen += 1;
  560. }
  561. serial_count = 0; //clear buffer
  562. }
  563. else
  564. {
  565. if(serial_char == ';') comment_mode = true;
  566. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  567. }
  568. }
  569. #ifdef SDSUPPORT
  570. if(!card.sdprinting || serial_count!=0){
  571. return;
  572. }
  573. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  574. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  575. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  576. static bool stop_buffering=false;
  577. if(buflen==0) stop_buffering=false;
  578. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  579. int16_t n=card.get();
  580. serial_char = (char)n;
  581. if(serial_char == '\n' ||
  582. serial_char == '\r' ||
  583. (serial_char == '#' && comment_mode == false) ||
  584. (serial_char == ':' && comment_mode == false) ||
  585. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  586. {
  587. if(card.eof()){
  588. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  589. stoptime=millis();
  590. char time[30];
  591. unsigned long t=(stoptime-starttime)/1000;
  592. int hours, minutes;
  593. minutes=(t/60)%60;
  594. hours=t/60/60;
  595. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  596. SERIAL_ECHO_START;
  597. SERIAL_ECHOLN(time);
  598. lcd_setstatus(time);
  599. card.printingHasFinished();
  600. card.checkautostart(true);
  601. }
  602. if(serial_char=='#')
  603. stop_buffering=true;
  604. if(!serial_count)
  605. {
  606. comment_mode = false; //for new command
  607. return; //if empty line
  608. }
  609. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  610. // if(!comment_mode){
  611. fromsd[bufindw] = true;
  612. buflen += 1;
  613. bufindw = (bufindw + 1)%BUFSIZE;
  614. // }
  615. comment_mode = false; //for new command
  616. serial_count = 0; //clear buffer
  617. }
  618. else
  619. {
  620. if(serial_char == ';') comment_mode = true;
  621. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  622. }
  623. }
  624. #endif //SDSUPPORT
  625. }
  626. float code_value()
  627. {
  628. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  629. }
  630. long code_value_long()
  631. {
  632. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  633. }
  634. bool code_seen(char code)
  635. {
  636. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  637. return (strchr_pointer != NULL); //Return True if a character was found
  638. }
  639. #define DEFINE_PGM_READ_ANY(type, reader) \
  640. static inline type pgm_read_any(const type *p) \
  641. { return pgm_read_##reader##_near(p); }
  642. DEFINE_PGM_READ_ANY(float, float);
  643. DEFINE_PGM_READ_ANY(signed char, byte);
  644. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  645. static const PROGMEM type array##_P[3] = \
  646. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  647. static inline type array(int axis) \
  648. { return pgm_read_any(&array##_P[axis]); }
  649. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  650. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  651. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  652. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  653. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  654. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  655. #ifdef DUAL_X_CARRIAGE
  656. #if EXTRUDERS == 1 || defined(COREXY) \
  657. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  658. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  659. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  660. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  661. #endif
  662. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  663. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  664. #endif
  665. #define DXC_FULL_CONTROL_MODE 0
  666. #define DXC_AUTO_PARK_MODE 1
  667. #define DXC_DUPLICATION_MODE 2
  668. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  669. static float x_home_pos(int extruder) {
  670. if (extruder == 0)
  671. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  672. else
  673. // In dual carriage mode the extruder offset provides an override of the
  674. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  675. // This allow soft recalibration of the second extruder offset position without firmware reflash
  676. // (through the M218 command).
  677. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  678. }
  679. static int x_home_dir(int extruder) {
  680. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  681. }
  682. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  683. static bool active_extruder_parked = false; // used in mode 1 & 2
  684. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  685. static unsigned long delayed_move_time = 0; // used in mode 1
  686. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  687. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  688. bool extruder_duplication_enabled = false; // used in mode 2
  689. #endif //DUAL_X_CARRIAGE
  690. static void axis_is_at_home(int axis) {
  691. #ifdef DUAL_X_CARRIAGE
  692. if (axis == X_AXIS) {
  693. if (active_extruder != 0) {
  694. current_position[X_AXIS] = x_home_pos(active_extruder);
  695. min_pos[X_AXIS] = X2_MIN_POS;
  696. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  697. return;
  698. }
  699. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  700. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  701. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  702. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  703. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  704. return;
  705. }
  706. }
  707. #endif
  708. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  709. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  710. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  711. }
  712. #ifdef ENABLE_AUTO_BED_LEVELING
  713. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  714. plan_bed_level_matrix.set_to_identity();
  715. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  716. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  717. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  718. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  719. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  720. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  721. //planeNormal.debug("planeNormal");
  722. //yPositive.debug("yPositive");
  723. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  724. //bedLevel.debug("bedLevel");
  725. //plan_bed_level_matrix.debug("bed level before");
  726. //vector_3 uncorrected_position = plan_get_position_mm();
  727. //uncorrected_position.debug("position before");
  728. // and set our bed level equation to do the right thing
  729. //plan_bed_level_matrix.debug("bed level after");
  730. vector_3 corrected_position = plan_get_position();
  731. //corrected_position.debug("position after");
  732. current_position[X_AXIS] = corrected_position.x;
  733. current_position[Y_AXIS] = corrected_position.y;
  734. current_position[Z_AXIS] = corrected_position.z;
  735. // but the bed at 0 so we don't go below it.
  736. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  737. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  738. }
  739. static void run_z_probe() {
  740. plan_bed_level_matrix.set_to_identity();
  741. feedrate = homing_feedrate[Z_AXIS];
  742. // move down until you find the bed
  743. float zPosition = -10;
  744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  745. st_synchronize();
  746. // we have to let the planner know where we are right now as it is not where we said to go.
  747. zPosition = st_get_position_mm(Z_AXIS);
  748. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  749. // move up the retract distance
  750. zPosition += home_retract_mm(Z_AXIS);
  751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  752. st_synchronize();
  753. // move back down slowly to find bed
  754. feedrate = homing_feedrate[Z_AXIS]/4;
  755. zPosition -= home_retract_mm(Z_AXIS) * 2;
  756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  757. st_synchronize();
  758. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  759. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  760. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  761. }
  762. static void do_blocking_move_to(float x, float y, float z) {
  763. float oldFeedRate = feedrate;
  764. feedrate = XY_TRAVEL_SPEED;
  765. current_position[X_AXIS] = x;
  766. current_position[Y_AXIS] = y;
  767. current_position[Z_AXIS] = z;
  768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  769. st_synchronize();
  770. feedrate = oldFeedRate;
  771. }
  772. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  773. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  774. }
  775. static void setup_for_endstop_move() {
  776. saved_feedrate = feedrate;
  777. saved_feedmultiply = feedmultiply;
  778. feedmultiply = 100;
  779. previous_millis_cmd = millis();
  780. enable_endstops(true);
  781. }
  782. static void clean_up_after_endstop_move() {
  783. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  784. enable_endstops(false);
  785. #endif
  786. feedrate = saved_feedrate;
  787. feedmultiply = saved_feedmultiply;
  788. previous_millis_cmd = millis();
  789. }
  790. static void engage_z_probe() {
  791. // Engage Z Servo endstop if enabled
  792. #ifdef SERVO_ENDSTOPS
  793. if (servo_endstops[Z_AXIS] > -1) {
  794. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  795. servos[servo_endstops[Z_AXIS]].attach(0);
  796. #endif
  797. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  798. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  799. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  800. servos[servo_endstops[Z_AXIS]].detach();
  801. #endif
  802. }
  803. #endif
  804. }
  805. static void retract_z_probe() {
  806. // Retract Z Servo endstop if enabled
  807. #ifdef SERVO_ENDSTOPS
  808. if (servo_endstops[Z_AXIS] > -1) {
  809. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  810. servos[servo_endstops[Z_AXIS]].attach(0);
  811. #endif
  812. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  813. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  814. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  815. servos[servo_endstops[Z_AXIS]].detach();
  816. #endif
  817. }
  818. #endif
  819. }
  820. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  821. static void homeaxis(int axis) {
  822. #define HOMEAXIS_DO(LETTER) \
  823. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  824. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  825. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  826. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  827. 0) {
  828. int axis_home_dir = home_dir(axis);
  829. #ifdef DUAL_X_CARRIAGE
  830. if (axis == X_AXIS)
  831. axis_home_dir = x_home_dir(active_extruder);
  832. #endif
  833. current_position[axis] = 0;
  834. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  835. // Engage Servo endstop if enabled
  836. #ifdef SERVO_ENDSTOPS
  837. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  838. if (axis==Z_AXIS) {
  839. engage_z_probe();
  840. }
  841. else
  842. #endif
  843. if (servo_endstops[axis] > -1) {
  844. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  845. }
  846. #endif
  847. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  848. feedrate = homing_feedrate[axis];
  849. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  850. st_synchronize();
  851. current_position[axis] = 0;
  852. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  853. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  854. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  855. st_synchronize();
  856. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  857. #ifdef DELTA
  858. feedrate = homing_feedrate[axis]/10;
  859. #else
  860. feedrate = homing_feedrate[axis]/2 ;
  861. #endif
  862. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  863. st_synchronize();
  864. #ifdef DELTA
  865. // retrace by the amount specified in endstop_adj
  866. if (endstop_adj[axis] * axis_home_dir < 0) {
  867. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  868. destination[axis] = endstop_adj[axis];
  869. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  870. st_synchronize();
  871. }
  872. #endif
  873. axis_is_at_home(axis);
  874. destination[axis] = current_position[axis];
  875. feedrate = 0.0;
  876. endstops_hit_on_purpose();
  877. axis_known_position[axis] = true;
  878. // Retract Servo endstop if enabled
  879. #ifdef SERVO_ENDSTOPS
  880. if (servo_endstops[axis] > -1) {
  881. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  882. }
  883. #endif
  884. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  885. if (axis==Z_AXIS) retract_z_probe();
  886. #endif
  887. }
  888. }
  889. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  890. void process_commands()
  891. {
  892. unsigned long codenum; //throw away variable
  893. char *starpos = NULL;
  894. #ifdef ENABLE_AUTO_BED_LEVELING
  895. float x_tmp, y_tmp, z_tmp, real_z;
  896. #endif
  897. if(code_seen('G'))
  898. {
  899. switch((int)code_value())
  900. {
  901. case 0: // G0 -> G1
  902. case 1: // G1
  903. if(Stopped == false) {
  904. get_coordinates(); // For X Y Z E F
  905. prepare_move();
  906. //ClearToSend();
  907. return;
  908. }
  909. //break;
  910. case 2: // G2 - CW ARC
  911. if(Stopped == false) {
  912. get_arc_coordinates();
  913. prepare_arc_move(true);
  914. return;
  915. }
  916. case 3: // G3 - CCW ARC
  917. if(Stopped == false) {
  918. get_arc_coordinates();
  919. prepare_arc_move(false);
  920. return;
  921. }
  922. case 4: // G4 dwell
  923. LCD_MESSAGEPGM(MSG_DWELL);
  924. codenum = 0;
  925. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  926. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  927. st_synchronize();
  928. codenum += millis(); // keep track of when we started waiting
  929. previous_millis_cmd = millis();
  930. while(millis() < codenum ){
  931. manage_heater();
  932. manage_inactivity();
  933. lcd_update();
  934. }
  935. break;
  936. #ifdef FWRETRACT
  937. case 10: // G10 retract
  938. if(!retracted)
  939. {
  940. destination[X_AXIS]=current_position[X_AXIS];
  941. destination[Y_AXIS]=current_position[Y_AXIS];
  942. destination[Z_AXIS]=current_position[Z_AXIS];
  943. current_position[Z_AXIS]+=-retract_zlift;
  944. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  945. feedrate=retract_feedrate;
  946. retracted=true;
  947. prepare_move();
  948. }
  949. break;
  950. case 11: // G11 retract_recover
  951. if(retracted)
  952. {
  953. destination[X_AXIS]=current_position[X_AXIS];
  954. destination[Y_AXIS]=current_position[Y_AXIS];
  955. destination[Z_AXIS]=current_position[Z_AXIS];
  956. current_position[Z_AXIS]+=retract_zlift;
  957. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  958. feedrate=retract_recover_feedrate;
  959. retracted=false;
  960. prepare_move();
  961. }
  962. break;
  963. #endif //FWRETRACT
  964. case 28: //G28 Home all Axis one at a time
  965. #ifdef ENABLE_AUTO_BED_LEVELING
  966. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  967. #endif //ENABLE_AUTO_BED_LEVELING
  968. saved_feedrate = feedrate;
  969. saved_feedmultiply = feedmultiply;
  970. feedmultiply = 100;
  971. previous_millis_cmd = millis();
  972. enable_endstops(true);
  973. for(int8_t i=0; i < NUM_AXIS; i++) {
  974. destination[i] = current_position[i];
  975. }
  976. feedrate = 0.0;
  977. #ifdef DELTA
  978. // A delta can only safely home all axis at the same time
  979. // all axis have to home at the same time
  980. // Move all carriages up together until the first endstop is hit.
  981. current_position[X_AXIS] = 0;
  982. current_position[Y_AXIS] = 0;
  983. current_position[Z_AXIS] = 0;
  984. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  985. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  986. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  987. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  988. feedrate = 1.732 * homing_feedrate[X_AXIS];
  989. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  990. st_synchronize();
  991. endstops_hit_on_purpose();
  992. current_position[X_AXIS] = destination[X_AXIS];
  993. current_position[Y_AXIS] = destination[Y_AXIS];
  994. current_position[Z_AXIS] = destination[Z_AXIS];
  995. // take care of back off and rehome now we are all at the top
  996. HOMEAXIS(X);
  997. HOMEAXIS(Y);
  998. HOMEAXIS(Z);
  999. calculate_delta(current_position);
  1000. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1001. #else // NOT DELTA
  1002. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1003. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1004. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1005. HOMEAXIS(Z);
  1006. }
  1007. #endif
  1008. #ifdef QUICK_HOME
  1009. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1010. {
  1011. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1012. #ifndef DUAL_X_CARRIAGE
  1013. int x_axis_home_dir = home_dir(X_AXIS);
  1014. #else
  1015. int x_axis_home_dir = x_home_dir(active_extruder);
  1016. extruder_duplication_enabled = false;
  1017. #endif
  1018. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1019. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1020. feedrate = homing_feedrate[X_AXIS];
  1021. if(homing_feedrate[Y_AXIS]<feedrate)
  1022. feedrate =homing_feedrate[Y_AXIS];
  1023. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1024. st_synchronize();
  1025. axis_is_at_home(X_AXIS);
  1026. axis_is_at_home(Y_AXIS);
  1027. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1028. destination[X_AXIS] = current_position[X_AXIS];
  1029. destination[Y_AXIS] = current_position[Y_AXIS];
  1030. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1031. feedrate = 0.0;
  1032. st_synchronize();
  1033. endstops_hit_on_purpose();
  1034. current_position[X_AXIS] = destination[X_AXIS];
  1035. current_position[Y_AXIS] = destination[Y_AXIS];
  1036. current_position[Z_AXIS] = destination[Z_AXIS];
  1037. }
  1038. #endif
  1039. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1040. {
  1041. #ifdef DUAL_X_CARRIAGE
  1042. int tmp_extruder = active_extruder;
  1043. extruder_duplication_enabled = false;
  1044. active_extruder = !active_extruder;
  1045. HOMEAXIS(X);
  1046. inactive_extruder_x_pos = current_position[X_AXIS];
  1047. active_extruder = tmp_extruder;
  1048. HOMEAXIS(X);
  1049. // reset state used by the different modes
  1050. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1051. delayed_move_time = 0;
  1052. active_extruder_parked = true;
  1053. #else
  1054. HOMEAXIS(X);
  1055. #endif
  1056. }
  1057. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1058. HOMEAXIS(Y);
  1059. }
  1060. if(code_seen(axis_codes[X_AXIS]))
  1061. {
  1062. if(code_value_long() != 0) {
  1063. current_position[X_AXIS]=code_value()+add_homeing[0];
  1064. }
  1065. }
  1066. if(code_seen(axis_codes[Y_AXIS])) {
  1067. if(code_value_long() != 0) {
  1068. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1069. }
  1070. }
  1071. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1072. #ifndef Z_SAFE_HOMING
  1073. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1074. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1075. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1076. feedrate = max_feedrate[Z_AXIS];
  1077. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1078. st_synchronize();
  1079. #endif
  1080. HOMEAXIS(Z);
  1081. }
  1082. #else // Z Safe mode activated.
  1083. if(home_all_axis) {
  1084. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1085. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1086. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1087. feedrate = XY_TRAVEL_SPEED;
  1088. current_position[Z_AXIS] = 0;
  1089. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1090. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1091. st_synchronize();
  1092. current_position[X_AXIS] = destination[X_AXIS];
  1093. current_position[Y_AXIS] = destination[Y_AXIS];
  1094. HOMEAXIS(Z);
  1095. }
  1096. // Let's see if X and Y are homed and probe is inside bed area.
  1097. if(code_seen(axis_codes[Z_AXIS])) {
  1098. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1099. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1100. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1101. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1102. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1103. current_position[Z_AXIS] = 0;
  1104. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1105. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1106. feedrate = max_feedrate[Z_AXIS];
  1107. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1108. st_synchronize();
  1109. HOMEAXIS(Z);
  1110. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1111. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1112. SERIAL_ECHO_START;
  1113. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1114. } else {
  1115. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1116. SERIAL_ECHO_START;
  1117. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1118. }
  1119. }
  1120. #endif
  1121. #endif
  1122. if(code_seen(axis_codes[Z_AXIS])) {
  1123. if(code_value_long() != 0) {
  1124. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1125. }
  1126. }
  1127. #ifdef ENABLE_AUTO_BED_LEVELING
  1128. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1129. current_position[Z_AXIS] -= Z_PROBE_OFFSET_FROM_EXTRUDER; //Add Z_Probe offset (the distance is negative)
  1130. }
  1131. #endif
  1132. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1133. #endif // else DELTA
  1134. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1135. enable_endstops(false);
  1136. #endif
  1137. feedrate = saved_feedrate;
  1138. feedmultiply = saved_feedmultiply;
  1139. previous_millis_cmd = millis();
  1140. endstops_hit_on_purpose();
  1141. break;
  1142. #ifdef ENABLE_AUTO_BED_LEVELING
  1143. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1144. {
  1145. #if Z_MIN_PIN == -1
  1146. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1147. #endif
  1148. st_synchronize();
  1149. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1150. //vector_3 corrected_position = plan_get_position_mm();
  1151. //corrected_position.debug("position before G29");
  1152. plan_bed_level_matrix.set_to_identity();
  1153. vector_3 uncorrected_position = plan_get_position();
  1154. //uncorrected_position.debug("position durring G29");
  1155. current_position[X_AXIS] = uncorrected_position.x;
  1156. current_position[Y_AXIS] = uncorrected_position.y;
  1157. current_position[Z_AXIS] = uncorrected_position.z;
  1158. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1159. setup_for_endstop_move();
  1160. feedrate = homing_feedrate[Z_AXIS];
  1161. // prob 1
  1162. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1163. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1164. engage_z_probe(); // Engage Z Servo endstop if available
  1165. run_z_probe();
  1166. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1167. retract_z_probe();
  1168. SERIAL_PROTOCOLPGM("Bed x: ");
  1169. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1170. SERIAL_PROTOCOLPGM(" y: ");
  1171. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1172. SERIAL_PROTOCOLPGM(" z: ");
  1173. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1174. SERIAL_PROTOCOLPGM("\n");
  1175. // prob 2
  1176. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1177. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1178. engage_z_probe(); // Engage Z Servo endstop if available
  1179. run_z_probe();
  1180. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1181. retract_z_probe();
  1182. SERIAL_PROTOCOLPGM("Bed x: ");
  1183. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1184. SERIAL_PROTOCOLPGM(" y: ");
  1185. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1186. SERIAL_PROTOCOLPGM(" z: ");
  1187. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1188. SERIAL_PROTOCOLPGM("\n");
  1189. // prob 3
  1190. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1191. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1192. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1193. engage_z_probe(); // Engage Z Servo endstop if available
  1194. run_z_probe();
  1195. float z_at_xRight_yFront = current_position[Z_AXIS];
  1196. retract_z_probe(); // Retract Z Servo endstop if available
  1197. SERIAL_PROTOCOLPGM("Bed x: ");
  1198. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1199. SERIAL_PROTOCOLPGM(" y: ");
  1200. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1201. SERIAL_PROTOCOLPGM(" z: ");
  1202. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1203. SERIAL_PROTOCOLPGM("\n");
  1204. clean_up_after_endstop_move();
  1205. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1206. st_synchronize();
  1207. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1208. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1209. // When the bed is uneven, this height must be corrected.
  1210. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1211. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1212. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1213. z_tmp = current_position[Z_AXIS];
  1214. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1215. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1216. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1217. }
  1218. break;
  1219. case 30: // G30 Single Z Probe
  1220. {
  1221. engage_z_probe(); // Engage Z Servo endstop if available
  1222. st_synchronize();
  1223. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1224. setup_for_endstop_move();
  1225. feedrate = homing_feedrate[Z_AXIS];
  1226. run_z_probe();
  1227. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1228. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1229. SERIAL_PROTOCOLPGM(" Y: ");
  1230. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1231. SERIAL_PROTOCOLPGM(" Z: ");
  1232. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1233. SERIAL_PROTOCOLPGM("\n");
  1234. clean_up_after_endstop_move();
  1235. retract_z_probe(); // Retract Z Servo endstop if available
  1236. }
  1237. break;
  1238. #endif // ENABLE_AUTO_BED_LEVELING
  1239. case 90: // G90
  1240. relative_mode = false;
  1241. break;
  1242. case 91: // G91
  1243. relative_mode = true;
  1244. break;
  1245. case 92: // G92
  1246. if(!code_seen(axis_codes[E_AXIS]))
  1247. st_synchronize();
  1248. for(int8_t i=0; i < NUM_AXIS; i++) {
  1249. if(code_seen(axis_codes[i])) {
  1250. if(i == E_AXIS) {
  1251. current_position[i] = code_value();
  1252. plan_set_e_position(current_position[E_AXIS]);
  1253. }
  1254. else {
  1255. current_position[i] = code_value()+add_homeing[i];
  1256. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1257. }
  1258. }
  1259. }
  1260. break;
  1261. }
  1262. }
  1263. else if(code_seen('M'))
  1264. {
  1265. switch( (int)code_value() )
  1266. {
  1267. #ifdef ULTIPANEL
  1268. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1269. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1270. {
  1271. LCD_MESSAGEPGM(MSG_USERWAIT);
  1272. codenum = 0;
  1273. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1274. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1275. st_synchronize();
  1276. previous_millis_cmd = millis();
  1277. if (codenum > 0){
  1278. codenum += millis(); // keep track of when we started waiting
  1279. while(millis() < codenum && !lcd_clicked()){
  1280. manage_heater();
  1281. manage_inactivity();
  1282. lcd_update();
  1283. }
  1284. }else{
  1285. while(!lcd_clicked()){
  1286. manage_heater();
  1287. manage_inactivity();
  1288. lcd_update();
  1289. }
  1290. }
  1291. LCD_MESSAGEPGM(MSG_RESUMING);
  1292. }
  1293. break;
  1294. #endif
  1295. case 17:
  1296. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1297. enable_x();
  1298. enable_y();
  1299. enable_z();
  1300. enable_e0();
  1301. enable_e1();
  1302. enable_e2();
  1303. break;
  1304. #ifdef SDSUPPORT
  1305. case 20: // M20 - list SD card
  1306. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1307. card.ls();
  1308. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1309. break;
  1310. case 21: // M21 - init SD card
  1311. card.initsd();
  1312. break;
  1313. case 22: //M22 - release SD card
  1314. card.release();
  1315. break;
  1316. case 23: //M23 - Select file
  1317. starpos = (strchr(strchr_pointer + 4,'*'));
  1318. if(starpos!=NULL)
  1319. *(starpos-1)='\0';
  1320. card.openFile(strchr_pointer + 4,true);
  1321. break;
  1322. case 24: //M24 - Start SD print
  1323. card.startFileprint();
  1324. starttime=millis();
  1325. break;
  1326. case 25: //M25 - Pause SD print
  1327. card.pauseSDPrint();
  1328. break;
  1329. case 26: //M26 - Set SD index
  1330. if(card.cardOK && code_seen('S')) {
  1331. card.setIndex(code_value_long());
  1332. }
  1333. break;
  1334. case 27: //M27 - Get SD status
  1335. card.getStatus();
  1336. break;
  1337. case 28: //M28 - Start SD write
  1338. starpos = (strchr(strchr_pointer + 4,'*'));
  1339. if(starpos != NULL){
  1340. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1341. strchr_pointer = strchr(npos,' ') + 1;
  1342. *(starpos-1) = '\0';
  1343. }
  1344. card.openFile(strchr_pointer+4,false);
  1345. break;
  1346. case 29: //M29 - Stop SD write
  1347. //processed in write to file routine above
  1348. //card,saving = false;
  1349. break;
  1350. case 30: //M30 <filename> Delete File
  1351. if (card.cardOK){
  1352. card.closefile();
  1353. starpos = (strchr(strchr_pointer + 4,'*'));
  1354. if(starpos != NULL){
  1355. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1356. strchr_pointer = strchr(npos,' ') + 1;
  1357. *(starpos-1) = '\0';
  1358. }
  1359. card.removeFile(strchr_pointer + 4);
  1360. }
  1361. break;
  1362. case 32: //M32 - Select file and start SD print
  1363. {
  1364. if(card.sdprinting) {
  1365. st_synchronize();
  1366. }
  1367. starpos = (strchr(strchr_pointer + 4,'*'));
  1368. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1369. if(namestartpos==NULL)
  1370. {
  1371. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1372. }
  1373. else
  1374. namestartpos++; //to skip the '!'
  1375. if(starpos!=NULL)
  1376. *(starpos-1)='\0';
  1377. bool call_procedure=(code_seen('P'));
  1378. if(strchr_pointer>namestartpos)
  1379. call_procedure=false; //false alert, 'P' found within filename
  1380. if( card.cardOK )
  1381. {
  1382. card.openFile(namestartpos,true,!call_procedure);
  1383. if(code_seen('S'))
  1384. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1385. card.setIndex(code_value_long());
  1386. card.startFileprint();
  1387. if(!call_procedure)
  1388. starttime=millis(); //procedure calls count as normal print time.
  1389. }
  1390. } break;
  1391. case 928: //M928 - Start SD write
  1392. starpos = (strchr(strchr_pointer + 5,'*'));
  1393. if(starpos != NULL){
  1394. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1395. strchr_pointer = strchr(npos,' ') + 1;
  1396. *(starpos-1) = '\0';
  1397. }
  1398. card.openLogFile(strchr_pointer+5);
  1399. break;
  1400. #endif //SDSUPPORT
  1401. case 31: //M31 take time since the start of the SD print or an M109 command
  1402. {
  1403. stoptime=millis();
  1404. char time[30];
  1405. unsigned long t=(stoptime-starttime)/1000;
  1406. int sec,min;
  1407. min=t/60;
  1408. sec=t%60;
  1409. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1410. SERIAL_ECHO_START;
  1411. SERIAL_ECHOLN(time);
  1412. lcd_setstatus(time);
  1413. autotempShutdown();
  1414. }
  1415. break;
  1416. case 42: //M42 -Change pin status via gcode
  1417. if (code_seen('S'))
  1418. {
  1419. int pin_status = code_value();
  1420. int pin_number = LED_PIN;
  1421. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1422. pin_number = code_value();
  1423. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1424. {
  1425. if (sensitive_pins[i] == pin_number)
  1426. {
  1427. pin_number = -1;
  1428. break;
  1429. }
  1430. }
  1431. #if defined(FAN_PIN) && FAN_PIN > -1
  1432. if (pin_number == FAN_PIN)
  1433. fanSpeed = pin_status;
  1434. #endif
  1435. if (pin_number > -1)
  1436. {
  1437. pinMode(pin_number, OUTPUT);
  1438. digitalWrite(pin_number, pin_status);
  1439. analogWrite(pin_number, pin_status);
  1440. }
  1441. }
  1442. break;
  1443. case 104: // M104
  1444. if(setTargetedHotend(104)){
  1445. break;
  1446. }
  1447. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1448. #ifdef DUAL_X_CARRIAGE
  1449. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1450. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1451. #endif
  1452. setWatch();
  1453. break;
  1454. case 140: // M140 set bed temp
  1455. if (code_seen('S')) setTargetBed(code_value());
  1456. break;
  1457. case 105 : // M105
  1458. if(setTargetedHotend(105)){
  1459. break;
  1460. }
  1461. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1462. SERIAL_PROTOCOLPGM("ok T:");
  1463. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1464. SERIAL_PROTOCOLPGM(" /");
  1465. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1466. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1467. SERIAL_PROTOCOLPGM(" B:");
  1468. SERIAL_PROTOCOL_F(degBed(),1);
  1469. SERIAL_PROTOCOLPGM(" /");
  1470. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1471. #endif //TEMP_BED_PIN
  1472. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1473. SERIAL_PROTOCOLPGM(" T");
  1474. SERIAL_PROTOCOL(cur_extruder);
  1475. SERIAL_PROTOCOLPGM(":");
  1476. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1477. SERIAL_PROTOCOLPGM(" /");
  1478. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1479. }
  1480. #else
  1481. SERIAL_ERROR_START;
  1482. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1483. #endif
  1484. SERIAL_PROTOCOLPGM(" @:");
  1485. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1486. SERIAL_PROTOCOLPGM(" B@:");
  1487. SERIAL_PROTOCOL(getHeaterPower(-1));
  1488. #ifdef SHOW_TEMP_ADC_VALUES
  1489. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1490. SERIAL_PROTOCOLPGM(" ADC B:");
  1491. SERIAL_PROTOCOL_F(degBed(),1);
  1492. SERIAL_PROTOCOLPGM("C->");
  1493. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1494. #endif
  1495. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1496. SERIAL_PROTOCOLPGM(" T");
  1497. SERIAL_PROTOCOL(cur_extruder);
  1498. SERIAL_PROTOCOLPGM(":");
  1499. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1500. SERIAL_PROTOCOLPGM("C->");
  1501. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1502. }
  1503. #endif
  1504. SERIAL_PROTOCOLLN("");
  1505. return;
  1506. break;
  1507. case 109:
  1508. {// M109 - Wait for extruder heater to reach target.
  1509. if(setTargetedHotend(109)){
  1510. break;
  1511. }
  1512. LCD_MESSAGEPGM(MSG_HEATING);
  1513. #ifdef AUTOTEMP
  1514. autotemp_enabled=false;
  1515. #endif
  1516. if (code_seen('S')) {
  1517. setTargetHotend(code_value(), tmp_extruder);
  1518. #ifdef DUAL_X_CARRIAGE
  1519. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1520. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1521. #endif
  1522. CooldownNoWait = true;
  1523. } else if (code_seen('R')) {
  1524. setTargetHotend(code_value(), tmp_extruder);
  1525. #ifdef DUAL_X_CARRIAGE
  1526. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1527. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1528. #endif
  1529. CooldownNoWait = false;
  1530. }
  1531. #ifdef AUTOTEMP
  1532. if (code_seen('S')) autotemp_min=code_value();
  1533. if (code_seen('B')) autotemp_max=code_value();
  1534. if (code_seen('F'))
  1535. {
  1536. autotemp_factor=code_value();
  1537. autotemp_enabled=true;
  1538. }
  1539. #endif
  1540. setWatch();
  1541. codenum = millis();
  1542. /* See if we are heating up or cooling down */
  1543. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1544. #ifdef TEMP_RESIDENCY_TIME
  1545. long residencyStart;
  1546. residencyStart = -1;
  1547. /* continue to loop until we have reached the target temp
  1548. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1549. while((residencyStart == -1) ||
  1550. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1551. #else
  1552. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1553. #endif //TEMP_RESIDENCY_TIME
  1554. if( (millis() - codenum) > 1000UL )
  1555. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1556. SERIAL_PROTOCOLPGM("T:");
  1557. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1558. SERIAL_PROTOCOLPGM(" E:");
  1559. SERIAL_PROTOCOL((int)tmp_extruder);
  1560. #ifdef TEMP_RESIDENCY_TIME
  1561. SERIAL_PROTOCOLPGM(" W:");
  1562. if(residencyStart > -1)
  1563. {
  1564. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1565. SERIAL_PROTOCOLLN( codenum );
  1566. }
  1567. else
  1568. {
  1569. SERIAL_PROTOCOLLN( "?" );
  1570. }
  1571. #else
  1572. SERIAL_PROTOCOLLN("");
  1573. #endif
  1574. codenum = millis();
  1575. }
  1576. manage_heater();
  1577. manage_inactivity();
  1578. lcd_update();
  1579. #ifdef TEMP_RESIDENCY_TIME
  1580. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1581. or when current temp falls outside the hysteresis after target temp was reached */
  1582. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1583. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1584. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1585. {
  1586. residencyStart = millis();
  1587. }
  1588. #endif //TEMP_RESIDENCY_TIME
  1589. }
  1590. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1591. starttime=millis();
  1592. previous_millis_cmd = millis();
  1593. }
  1594. break;
  1595. case 190: // M190 - Wait for bed heater to reach target.
  1596. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1597. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1598. if (code_seen('S')) {
  1599. setTargetBed(code_value());
  1600. CooldownNoWait = true;
  1601. } else if (code_seen('R')) {
  1602. setTargetBed(code_value());
  1603. CooldownNoWait = false;
  1604. }
  1605. codenum = millis();
  1606. target_direction = isHeatingBed(); // true if heating, false if cooling
  1607. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1608. {
  1609. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1610. {
  1611. float tt=degHotend(active_extruder);
  1612. SERIAL_PROTOCOLPGM("T:");
  1613. SERIAL_PROTOCOL(tt);
  1614. SERIAL_PROTOCOLPGM(" E:");
  1615. SERIAL_PROTOCOL((int)active_extruder);
  1616. SERIAL_PROTOCOLPGM(" B:");
  1617. SERIAL_PROTOCOL_F(degBed(),1);
  1618. SERIAL_PROTOCOLLN("");
  1619. codenum = millis();
  1620. }
  1621. manage_heater();
  1622. manage_inactivity();
  1623. lcd_update();
  1624. }
  1625. LCD_MESSAGEPGM(MSG_BED_DONE);
  1626. previous_millis_cmd = millis();
  1627. #endif
  1628. break;
  1629. #if defined(FAN_PIN) && FAN_PIN > -1
  1630. case 106: //M106 Fan On
  1631. if (code_seen('S')){
  1632. fanSpeed=constrain(code_value(),0,255);
  1633. }
  1634. else {
  1635. fanSpeed=255;
  1636. }
  1637. break;
  1638. case 107: //M107 Fan Off
  1639. fanSpeed = 0;
  1640. break;
  1641. #endif //FAN_PIN
  1642. #ifdef BARICUDA
  1643. // PWM for HEATER_1_PIN
  1644. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1645. case 126: //M126 valve open
  1646. if (code_seen('S')){
  1647. ValvePressure=constrain(code_value(),0,255);
  1648. }
  1649. else {
  1650. ValvePressure=255;
  1651. }
  1652. break;
  1653. case 127: //M127 valve closed
  1654. ValvePressure = 0;
  1655. break;
  1656. #endif //HEATER_1_PIN
  1657. // PWM for HEATER_2_PIN
  1658. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1659. case 128: //M128 valve open
  1660. if (code_seen('S')){
  1661. EtoPPressure=constrain(code_value(),0,255);
  1662. }
  1663. else {
  1664. EtoPPressure=255;
  1665. }
  1666. break;
  1667. case 129: //M129 valve closed
  1668. EtoPPressure = 0;
  1669. break;
  1670. #endif //HEATER_2_PIN
  1671. #endif
  1672. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1673. case 80: // M80 - Turn on Power Supply
  1674. SET_OUTPUT(PS_ON_PIN); //GND
  1675. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1676. // If you have a switch on suicide pin, this is useful
  1677. // if you want to start another print with suicide feature after
  1678. // a print without suicide...
  1679. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1680. SET_OUTPUT(SUICIDE_PIN);
  1681. WRITE(SUICIDE_PIN, HIGH);
  1682. #endif
  1683. #ifdef ULTIPANEL
  1684. powersupply = true;
  1685. LCD_MESSAGEPGM(WELCOME_MSG);
  1686. lcd_update();
  1687. #endif
  1688. break;
  1689. #endif
  1690. case 81: // M81 - Turn off Power Supply
  1691. disable_heater();
  1692. st_synchronize();
  1693. disable_e0();
  1694. disable_e1();
  1695. disable_e2();
  1696. finishAndDisableSteppers();
  1697. fanSpeed = 0;
  1698. delay(1000); // Wait a little before to switch off
  1699. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1700. st_synchronize();
  1701. suicide();
  1702. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1703. SET_OUTPUT(PS_ON_PIN);
  1704. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1705. #endif
  1706. #ifdef ULTIPANEL
  1707. powersupply = false;
  1708. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1709. lcd_update();
  1710. #endif
  1711. break;
  1712. case 82:
  1713. axis_relative_modes[3] = false;
  1714. break;
  1715. case 83:
  1716. axis_relative_modes[3] = true;
  1717. break;
  1718. case 18: //compatibility
  1719. case 84: // M84
  1720. if(code_seen('S')){
  1721. stepper_inactive_time = code_value() * 1000;
  1722. }
  1723. else
  1724. {
  1725. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1726. if(all_axis)
  1727. {
  1728. st_synchronize();
  1729. disable_e0();
  1730. disable_e1();
  1731. disable_e2();
  1732. finishAndDisableSteppers();
  1733. }
  1734. else
  1735. {
  1736. st_synchronize();
  1737. if(code_seen('X')) disable_x();
  1738. if(code_seen('Y')) disable_y();
  1739. if(code_seen('Z')) disable_z();
  1740. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1741. if(code_seen('E')) {
  1742. disable_e0();
  1743. disable_e1();
  1744. disable_e2();
  1745. }
  1746. #endif
  1747. }
  1748. }
  1749. break;
  1750. case 85: // M85
  1751. code_seen('S');
  1752. max_inactive_time = code_value() * 1000;
  1753. break;
  1754. case 92: // M92
  1755. for(int8_t i=0; i < NUM_AXIS; i++)
  1756. {
  1757. if(code_seen(axis_codes[i]))
  1758. {
  1759. if(i == 3) { // E
  1760. float value = code_value();
  1761. if(value < 20.0) {
  1762. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1763. max_e_jerk *= factor;
  1764. max_feedrate[i] *= factor;
  1765. axis_steps_per_sqr_second[i] *= factor;
  1766. }
  1767. axis_steps_per_unit[i] = value;
  1768. }
  1769. else {
  1770. axis_steps_per_unit[i] = code_value();
  1771. }
  1772. }
  1773. }
  1774. break;
  1775. case 115: // M115
  1776. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1777. break;
  1778. case 117: // M117 display message
  1779. starpos = (strchr(strchr_pointer + 5,'*'));
  1780. if(starpos!=NULL)
  1781. *(starpos-1)='\0';
  1782. lcd_setstatus(strchr_pointer + 5);
  1783. break;
  1784. case 114: // M114
  1785. SERIAL_PROTOCOLPGM("X:");
  1786. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1787. SERIAL_PROTOCOLPGM("Y:");
  1788. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1789. SERIAL_PROTOCOLPGM("Z:");
  1790. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1791. SERIAL_PROTOCOLPGM("E:");
  1792. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1793. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1794. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1795. SERIAL_PROTOCOLPGM("Y:");
  1796. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1797. SERIAL_PROTOCOLPGM("Z:");
  1798. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1799. SERIAL_PROTOCOLLN("");
  1800. break;
  1801. case 120: // M120
  1802. enable_endstops(false) ;
  1803. break;
  1804. case 121: // M121
  1805. enable_endstops(true) ;
  1806. break;
  1807. case 119: // M119
  1808. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1809. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1810. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1811. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1812. #endif
  1813. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1814. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1815. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1816. #endif
  1817. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1818. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1819. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1820. #endif
  1821. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1822. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1823. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1824. #endif
  1825. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1826. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1827. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1828. #endif
  1829. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1830. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1831. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1832. #endif
  1833. break;
  1834. //TODO: update for all axis, use for loop
  1835. #ifdef BLINKM
  1836. case 150: // M150
  1837. {
  1838. byte red;
  1839. byte grn;
  1840. byte blu;
  1841. if(code_seen('R')) red = code_value();
  1842. if(code_seen('U')) grn = code_value();
  1843. if(code_seen('B')) blu = code_value();
  1844. SendColors(red,grn,blu);
  1845. }
  1846. break;
  1847. #endif //BLINKM
  1848. case 201: // M201
  1849. for(int8_t i=0; i < NUM_AXIS; i++)
  1850. {
  1851. if(code_seen(axis_codes[i]))
  1852. {
  1853. max_acceleration_units_per_sq_second[i] = code_value();
  1854. }
  1855. }
  1856. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1857. reset_acceleration_rates();
  1858. break;
  1859. #if 0 // Not used for Sprinter/grbl gen6
  1860. case 202: // M202
  1861. for(int8_t i=0; i < NUM_AXIS; i++) {
  1862. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1863. }
  1864. break;
  1865. #endif
  1866. case 203: // M203 max feedrate mm/sec
  1867. for(int8_t i=0; i < NUM_AXIS; i++) {
  1868. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1869. }
  1870. break;
  1871. case 204: // M204 acclereration S normal moves T filmanent only moves
  1872. {
  1873. if(code_seen('S')) acceleration = code_value() ;
  1874. if(code_seen('T')) retract_acceleration = code_value() ;
  1875. }
  1876. break;
  1877. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1878. {
  1879. if(code_seen('S')) minimumfeedrate = code_value();
  1880. if(code_seen('T')) mintravelfeedrate = code_value();
  1881. if(code_seen('B')) minsegmenttime = code_value() ;
  1882. if(code_seen('X')) max_xy_jerk = code_value() ;
  1883. if(code_seen('Z')) max_z_jerk = code_value() ;
  1884. if(code_seen('E')) max_e_jerk = code_value() ;
  1885. }
  1886. break;
  1887. case 206: // M206 additional homeing offset
  1888. for(int8_t i=0; i < 3; i++)
  1889. {
  1890. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1891. }
  1892. break;
  1893. #ifdef DELTA
  1894. case 666: // M666 set delta endstop adjustemnt
  1895. for(int8_t i=0; i < 3; i++)
  1896. {
  1897. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1898. }
  1899. break;
  1900. #endif
  1901. #ifdef FWRETRACT
  1902. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1903. {
  1904. if(code_seen('S'))
  1905. {
  1906. retract_length = code_value() ;
  1907. }
  1908. if(code_seen('F'))
  1909. {
  1910. retract_feedrate = code_value() ;
  1911. }
  1912. if(code_seen('Z'))
  1913. {
  1914. retract_zlift = code_value() ;
  1915. }
  1916. }break;
  1917. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1918. {
  1919. if(code_seen('S'))
  1920. {
  1921. retract_recover_length = code_value() ;
  1922. }
  1923. if(code_seen('F'))
  1924. {
  1925. retract_recover_feedrate = code_value() ;
  1926. }
  1927. }break;
  1928. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1929. {
  1930. if(code_seen('S'))
  1931. {
  1932. int t= code_value() ;
  1933. switch(t)
  1934. {
  1935. case 0: autoretract_enabled=false;retracted=false;break;
  1936. case 1: autoretract_enabled=true;retracted=false;break;
  1937. default:
  1938. SERIAL_ECHO_START;
  1939. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1940. SERIAL_ECHO(cmdbuffer[bufindr]);
  1941. SERIAL_ECHOLNPGM("\"");
  1942. }
  1943. }
  1944. }break;
  1945. #endif // FWRETRACT
  1946. #if EXTRUDERS > 1
  1947. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1948. {
  1949. if(setTargetedHotend(218)){
  1950. break;
  1951. }
  1952. if(code_seen('X'))
  1953. {
  1954. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1955. }
  1956. if(code_seen('Y'))
  1957. {
  1958. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1959. }
  1960. #ifdef DUAL_X_CARRIAGE
  1961. if(code_seen('Z'))
  1962. {
  1963. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  1964. }
  1965. #endif
  1966. SERIAL_ECHO_START;
  1967. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1968. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1969. {
  1970. SERIAL_ECHO(" ");
  1971. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1972. SERIAL_ECHO(",");
  1973. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1974. #ifdef DUAL_X_CARRIAGE
  1975. SERIAL_ECHO(",");
  1976. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  1977. #endif
  1978. }
  1979. SERIAL_ECHOLN("");
  1980. }break;
  1981. #endif
  1982. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1983. {
  1984. if(code_seen('S'))
  1985. {
  1986. feedmultiply = code_value() ;
  1987. }
  1988. }
  1989. break;
  1990. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1991. {
  1992. if(code_seen('S'))
  1993. {
  1994. extrudemultiply = code_value() ;
  1995. }
  1996. }
  1997. break;
  1998. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  1999. {
  2000. if(code_seen('P')){
  2001. int pin_number = code_value(); // pin number
  2002. int pin_state = -1; // required pin state - default is inverted
  2003. if(code_seen('S')) pin_state = code_value(); // required pin state
  2004. if(pin_state >= -1 && pin_state <= 1){
  2005. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2006. {
  2007. if (sensitive_pins[i] == pin_number)
  2008. {
  2009. pin_number = -1;
  2010. break;
  2011. }
  2012. }
  2013. if (pin_number > -1)
  2014. {
  2015. st_synchronize();
  2016. pinMode(pin_number, INPUT);
  2017. int target;
  2018. switch(pin_state){
  2019. case 1:
  2020. target = HIGH;
  2021. break;
  2022. case 0:
  2023. target = LOW;
  2024. break;
  2025. case -1:
  2026. target = !digitalRead(pin_number);
  2027. break;
  2028. }
  2029. while(digitalRead(pin_number) != target){
  2030. manage_heater();
  2031. manage_inactivity();
  2032. lcd_update();
  2033. }
  2034. }
  2035. }
  2036. }
  2037. }
  2038. break;
  2039. #if NUM_SERVOS > 0
  2040. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2041. {
  2042. int servo_index = -1;
  2043. int servo_position = 0;
  2044. if (code_seen('P'))
  2045. servo_index = code_value();
  2046. if (code_seen('S')) {
  2047. servo_position = code_value();
  2048. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2049. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2050. servos[servo_index].attach(0);
  2051. #endif
  2052. servos[servo_index].write(servo_position);
  2053. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2054. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2055. servos[servo_index].detach();
  2056. #endif
  2057. }
  2058. else {
  2059. SERIAL_ECHO_START;
  2060. SERIAL_ECHO("Servo ");
  2061. SERIAL_ECHO(servo_index);
  2062. SERIAL_ECHOLN(" out of range");
  2063. }
  2064. }
  2065. else if (servo_index >= 0) {
  2066. SERIAL_PROTOCOL(MSG_OK);
  2067. SERIAL_PROTOCOL(" Servo ");
  2068. SERIAL_PROTOCOL(servo_index);
  2069. SERIAL_PROTOCOL(": ");
  2070. SERIAL_PROTOCOL(servos[servo_index].read());
  2071. SERIAL_PROTOCOLLN("");
  2072. }
  2073. }
  2074. break;
  2075. #endif // NUM_SERVOS > 0
  2076. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  2077. case 300: // M300
  2078. {
  2079. int beepS = code_seen('S') ? code_value() : 110;
  2080. int beepP = code_seen('P') ? code_value() : 1000;
  2081. if (beepS > 0)
  2082. {
  2083. #if BEEPER > 0
  2084. tone(BEEPER, beepS);
  2085. delay(beepP);
  2086. noTone(BEEPER);
  2087. #elif defined(ULTRALCD)
  2088. lcd_buzz(beepS, beepP);
  2089. #endif
  2090. }
  2091. else
  2092. {
  2093. delay(beepP);
  2094. }
  2095. }
  2096. break;
  2097. #endif // M300
  2098. #ifdef PIDTEMP
  2099. case 301: // M301
  2100. {
  2101. if(code_seen('P')) Kp = code_value();
  2102. if(code_seen('I')) Ki = scalePID_i(code_value());
  2103. if(code_seen('D')) Kd = scalePID_d(code_value());
  2104. #ifdef PID_ADD_EXTRUSION_RATE
  2105. if(code_seen('C')) Kc = code_value();
  2106. #endif
  2107. updatePID();
  2108. SERIAL_PROTOCOL(MSG_OK);
  2109. SERIAL_PROTOCOL(" p:");
  2110. SERIAL_PROTOCOL(Kp);
  2111. SERIAL_PROTOCOL(" i:");
  2112. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2113. SERIAL_PROTOCOL(" d:");
  2114. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2115. #ifdef PID_ADD_EXTRUSION_RATE
  2116. SERIAL_PROTOCOL(" c:");
  2117. //Kc does not have scaling applied above, or in resetting defaults
  2118. SERIAL_PROTOCOL(Kc);
  2119. #endif
  2120. SERIAL_PROTOCOLLN("");
  2121. }
  2122. break;
  2123. #endif //PIDTEMP
  2124. #ifdef PIDTEMPBED
  2125. case 304: // M304
  2126. {
  2127. if(code_seen('P')) bedKp = code_value();
  2128. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2129. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2130. updatePID();
  2131. SERIAL_PROTOCOL(MSG_OK);
  2132. SERIAL_PROTOCOL(" p:");
  2133. SERIAL_PROTOCOL(bedKp);
  2134. SERIAL_PROTOCOL(" i:");
  2135. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2136. SERIAL_PROTOCOL(" d:");
  2137. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2138. SERIAL_PROTOCOLLN("");
  2139. }
  2140. break;
  2141. #endif //PIDTEMP
  2142. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2143. {
  2144. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2145. const uint8_t NUM_PULSES=16;
  2146. const float PULSE_LENGTH=0.01524;
  2147. for(int i=0; i < NUM_PULSES; i++) {
  2148. WRITE(PHOTOGRAPH_PIN, HIGH);
  2149. _delay_ms(PULSE_LENGTH);
  2150. WRITE(PHOTOGRAPH_PIN, LOW);
  2151. _delay_ms(PULSE_LENGTH);
  2152. }
  2153. delay(7.33);
  2154. for(int i=0; i < NUM_PULSES; i++) {
  2155. WRITE(PHOTOGRAPH_PIN, HIGH);
  2156. _delay_ms(PULSE_LENGTH);
  2157. WRITE(PHOTOGRAPH_PIN, LOW);
  2158. _delay_ms(PULSE_LENGTH);
  2159. }
  2160. #endif
  2161. }
  2162. break;
  2163. #ifdef DOGLCD
  2164. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2165. {
  2166. if (code_seen('C')) {
  2167. lcd_setcontrast( ((int)code_value())&63 );
  2168. }
  2169. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2170. SERIAL_PROTOCOL(lcd_contrast);
  2171. SERIAL_PROTOCOLLN("");
  2172. }
  2173. break;
  2174. #endif
  2175. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2176. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2177. {
  2178. float temp = .0;
  2179. if (code_seen('S')) temp=code_value();
  2180. set_extrude_min_temp(temp);
  2181. }
  2182. break;
  2183. #endif
  2184. case 303: // M303 PID autotune
  2185. {
  2186. float temp = 150.0;
  2187. int e=0;
  2188. int c=5;
  2189. if (code_seen('E')) e=code_value();
  2190. if (e<0)
  2191. temp=70;
  2192. if (code_seen('S')) temp=code_value();
  2193. if (code_seen('C')) c=code_value();
  2194. PID_autotune(temp, e, c);
  2195. }
  2196. break;
  2197. case 400: // M400 finish all moves
  2198. {
  2199. st_synchronize();
  2200. }
  2201. break;
  2202. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2203. case 401:
  2204. {
  2205. engage_z_probe(); // Engage Z Servo endstop if available
  2206. }
  2207. break;
  2208. case 402:
  2209. {
  2210. retract_z_probe(); // Retract Z Servo endstop if enabled
  2211. }
  2212. break;
  2213. #endif
  2214. case 500: // M500 Store settings in EEPROM
  2215. {
  2216. Config_StoreSettings();
  2217. }
  2218. break;
  2219. case 501: // M501 Read settings from EEPROM
  2220. {
  2221. Config_RetrieveSettings();
  2222. }
  2223. break;
  2224. case 502: // M502 Revert to default settings
  2225. {
  2226. Config_ResetDefault();
  2227. }
  2228. break;
  2229. case 503: // M503 print settings currently in memory
  2230. {
  2231. Config_PrintSettings();
  2232. }
  2233. break;
  2234. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2235. case 540:
  2236. {
  2237. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2238. }
  2239. break;
  2240. #endif
  2241. #ifdef FILAMENTCHANGEENABLE
  2242. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2243. {
  2244. float target[4];
  2245. float lastpos[4];
  2246. target[X_AXIS]=current_position[X_AXIS];
  2247. target[Y_AXIS]=current_position[Y_AXIS];
  2248. target[Z_AXIS]=current_position[Z_AXIS];
  2249. target[E_AXIS]=current_position[E_AXIS];
  2250. lastpos[X_AXIS]=current_position[X_AXIS];
  2251. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2252. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2253. lastpos[E_AXIS]=current_position[E_AXIS];
  2254. //retract by E
  2255. if(code_seen('E'))
  2256. {
  2257. target[E_AXIS]+= code_value();
  2258. }
  2259. else
  2260. {
  2261. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2262. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2263. #endif
  2264. }
  2265. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2266. //lift Z
  2267. if(code_seen('Z'))
  2268. {
  2269. target[Z_AXIS]+= code_value();
  2270. }
  2271. else
  2272. {
  2273. #ifdef FILAMENTCHANGE_ZADD
  2274. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2275. #endif
  2276. }
  2277. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2278. //move xy
  2279. if(code_seen('X'))
  2280. {
  2281. target[X_AXIS]+= code_value();
  2282. }
  2283. else
  2284. {
  2285. #ifdef FILAMENTCHANGE_XPOS
  2286. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2287. #endif
  2288. }
  2289. if(code_seen('Y'))
  2290. {
  2291. target[Y_AXIS]= code_value();
  2292. }
  2293. else
  2294. {
  2295. #ifdef FILAMENTCHANGE_YPOS
  2296. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2297. #endif
  2298. }
  2299. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2300. if(code_seen('L'))
  2301. {
  2302. target[E_AXIS]+= code_value();
  2303. }
  2304. else
  2305. {
  2306. #ifdef FILAMENTCHANGE_FINALRETRACT
  2307. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2308. #endif
  2309. }
  2310. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2311. //finish moves
  2312. st_synchronize();
  2313. //disable extruder steppers so filament can be removed
  2314. disable_e0();
  2315. disable_e1();
  2316. disable_e2();
  2317. delay(100);
  2318. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2319. uint8_t cnt=0;
  2320. while(!lcd_clicked()){
  2321. cnt++;
  2322. manage_heater();
  2323. manage_inactivity();
  2324. lcd_update();
  2325. if(cnt==0)
  2326. {
  2327. #if BEEPER > 0
  2328. SET_OUTPUT(BEEPER);
  2329. WRITE(BEEPER,HIGH);
  2330. delay(3);
  2331. WRITE(BEEPER,LOW);
  2332. delay(3);
  2333. #else
  2334. lcd_buzz(1000/6,100);
  2335. #endif
  2336. }
  2337. }
  2338. //return to normal
  2339. if(code_seen('L'))
  2340. {
  2341. target[E_AXIS]+= -code_value();
  2342. }
  2343. else
  2344. {
  2345. #ifdef FILAMENTCHANGE_FINALRETRACT
  2346. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2347. #endif
  2348. }
  2349. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2350. plan_set_e_position(current_position[E_AXIS]);
  2351. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2352. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2353. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2354. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2355. }
  2356. break;
  2357. #endif //FILAMENTCHANGEENABLE
  2358. #ifdef DUAL_X_CARRIAGE
  2359. case 605: // Set dual x-carriage movement mode:
  2360. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2361. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2362. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2363. // millimeters x-offset and an optional differential hotend temperature of
  2364. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2365. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2366. //
  2367. // Note: the X axis should be homed after changing dual x-carriage mode.
  2368. {
  2369. st_synchronize();
  2370. if (code_seen('S'))
  2371. dual_x_carriage_mode = code_value();
  2372. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2373. {
  2374. if (code_seen('X'))
  2375. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2376. if (code_seen('R'))
  2377. duplicate_extruder_temp_offset = code_value();
  2378. SERIAL_ECHO_START;
  2379. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2380. SERIAL_ECHO(" ");
  2381. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2382. SERIAL_ECHO(",");
  2383. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2384. SERIAL_ECHO(" ");
  2385. SERIAL_ECHO(duplicate_extruder_x_offset);
  2386. SERIAL_ECHO(",");
  2387. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2388. }
  2389. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2390. {
  2391. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2392. }
  2393. active_extruder_parked = false;
  2394. extruder_duplication_enabled = false;
  2395. delayed_move_time = 0;
  2396. }
  2397. break;
  2398. #endif //DUAL_X_CARRIAGE
  2399. case 907: // M907 Set digital trimpot motor current using axis codes.
  2400. {
  2401. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2402. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2403. if(code_seen('B')) digipot_current(4,code_value());
  2404. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2405. #endif
  2406. }
  2407. break;
  2408. case 908: // M908 Control digital trimpot directly.
  2409. {
  2410. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2411. uint8_t channel,current;
  2412. if(code_seen('P')) channel=code_value();
  2413. if(code_seen('S')) current=code_value();
  2414. digitalPotWrite(channel, current);
  2415. #endif
  2416. }
  2417. break;
  2418. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2419. {
  2420. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2421. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2422. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2423. if(code_seen('B')) microstep_mode(4,code_value());
  2424. microstep_readings();
  2425. #endif
  2426. }
  2427. break;
  2428. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2429. {
  2430. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2431. if(code_seen('S')) switch((int)code_value())
  2432. {
  2433. case 1:
  2434. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2435. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2436. break;
  2437. case 2:
  2438. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2439. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2440. break;
  2441. }
  2442. microstep_readings();
  2443. #endif
  2444. }
  2445. break;
  2446. case 999: // M999: Restart after being stopped
  2447. Stopped = false;
  2448. lcd_reset_alert_level();
  2449. gcode_LastN = Stopped_gcode_LastN;
  2450. FlushSerialRequestResend();
  2451. break;
  2452. }
  2453. }
  2454. else if(code_seen('T'))
  2455. {
  2456. tmp_extruder = code_value();
  2457. if(tmp_extruder >= EXTRUDERS) {
  2458. SERIAL_ECHO_START;
  2459. SERIAL_ECHO("T");
  2460. SERIAL_ECHO(tmp_extruder);
  2461. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2462. }
  2463. else {
  2464. boolean make_move = false;
  2465. if(code_seen('F')) {
  2466. make_move = true;
  2467. next_feedrate = code_value();
  2468. if(next_feedrate > 0.0) {
  2469. feedrate = next_feedrate;
  2470. }
  2471. }
  2472. #if EXTRUDERS > 1
  2473. if(tmp_extruder != active_extruder) {
  2474. // Save current position to return to after applying extruder offset
  2475. memcpy(destination, current_position, sizeof(destination));
  2476. #ifdef DUAL_X_CARRIAGE
  2477. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2478. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2479. {
  2480. // Park old head: 1) raise 2) move to park position 3) lower
  2481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2482. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2483. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2484. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2485. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2486. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2487. st_synchronize();
  2488. }
  2489. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2490. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2491. extruder_offset[Y_AXIS][active_extruder] +
  2492. extruder_offset[Y_AXIS][tmp_extruder];
  2493. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2494. extruder_offset[Z_AXIS][active_extruder] +
  2495. extruder_offset[Z_AXIS][tmp_extruder];
  2496. active_extruder = tmp_extruder;
  2497. // This function resets the max/min values - the current position may be overwritten below.
  2498. axis_is_at_home(X_AXIS);
  2499. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2500. {
  2501. current_position[X_AXIS] = inactive_extruder_x_pos;
  2502. inactive_extruder_x_pos = destination[X_AXIS];
  2503. }
  2504. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2505. {
  2506. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2507. if (active_extruder == 0 || active_extruder_parked)
  2508. current_position[X_AXIS] = inactive_extruder_x_pos;
  2509. else
  2510. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2511. inactive_extruder_x_pos = destination[X_AXIS];
  2512. extruder_duplication_enabled = false;
  2513. }
  2514. else
  2515. {
  2516. // record raised toolhead position for use by unpark
  2517. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2518. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2519. active_extruder_parked = true;
  2520. delayed_move_time = 0;
  2521. }
  2522. #else
  2523. // Offset extruder (only by XY)
  2524. int i;
  2525. for(i = 0; i < 2; i++) {
  2526. current_position[i] = current_position[i] -
  2527. extruder_offset[i][active_extruder] +
  2528. extruder_offset[i][tmp_extruder];
  2529. }
  2530. // Set the new active extruder and position
  2531. active_extruder = tmp_extruder;
  2532. #endif //else DUAL_X_CARRIAGE
  2533. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2534. // Move to the old position if 'F' was in the parameters
  2535. if(make_move && Stopped == false) {
  2536. prepare_move();
  2537. }
  2538. }
  2539. #endif
  2540. SERIAL_ECHO_START;
  2541. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2542. SERIAL_PROTOCOLLN((int)active_extruder);
  2543. }
  2544. }
  2545. else
  2546. {
  2547. SERIAL_ECHO_START;
  2548. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2549. SERIAL_ECHO(cmdbuffer[bufindr]);
  2550. SERIAL_ECHOLNPGM("\"");
  2551. }
  2552. ClearToSend();
  2553. }
  2554. void FlushSerialRequestResend()
  2555. {
  2556. //char cmdbuffer[bufindr][100]="Resend:";
  2557. MYSERIAL.flush();
  2558. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2559. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2560. ClearToSend();
  2561. }
  2562. void ClearToSend()
  2563. {
  2564. previous_millis_cmd = millis();
  2565. #ifdef SDSUPPORT
  2566. if(fromsd[bufindr])
  2567. return;
  2568. #endif //SDSUPPORT
  2569. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2570. }
  2571. void get_coordinates()
  2572. {
  2573. bool seen[4]={false,false,false,false};
  2574. for(int8_t i=0; i < NUM_AXIS; i++) {
  2575. if(code_seen(axis_codes[i]))
  2576. {
  2577. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2578. seen[i]=true;
  2579. }
  2580. else destination[i] = current_position[i]; //Are these else lines really needed?
  2581. }
  2582. if(code_seen('F')) {
  2583. next_feedrate = code_value();
  2584. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2585. }
  2586. #ifdef FWRETRACT
  2587. if(autoretract_enabled)
  2588. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2589. {
  2590. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2591. if(echange<-MIN_RETRACT) //retract
  2592. {
  2593. if(!retracted)
  2594. {
  2595. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2596. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2597. float correctede=-echange-retract_length;
  2598. //to generate the additional steps, not the destination is changed, but inversely the current position
  2599. current_position[E_AXIS]+=-correctede;
  2600. feedrate=retract_feedrate;
  2601. retracted=true;
  2602. }
  2603. }
  2604. else
  2605. if(echange>MIN_RETRACT) //retract_recover
  2606. {
  2607. if(retracted)
  2608. {
  2609. //current_position[Z_AXIS]+=-retract_zlift;
  2610. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2611. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2612. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2613. feedrate=retract_recover_feedrate;
  2614. retracted=false;
  2615. }
  2616. }
  2617. }
  2618. #endif //FWRETRACT
  2619. }
  2620. void get_arc_coordinates()
  2621. {
  2622. #ifdef SF_ARC_FIX
  2623. bool relative_mode_backup = relative_mode;
  2624. relative_mode = true;
  2625. #endif
  2626. get_coordinates();
  2627. #ifdef SF_ARC_FIX
  2628. relative_mode=relative_mode_backup;
  2629. #endif
  2630. if(code_seen('I')) {
  2631. offset[0] = code_value();
  2632. }
  2633. else {
  2634. offset[0] = 0.0;
  2635. }
  2636. if(code_seen('J')) {
  2637. offset[1] = code_value();
  2638. }
  2639. else {
  2640. offset[1] = 0.0;
  2641. }
  2642. }
  2643. void clamp_to_software_endstops(float target[3])
  2644. {
  2645. if (min_software_endstops) {
  2646. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2647. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2648. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2649. }
  2650. if (max_software_endstops) {
  2651. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2652. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2653. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2654. }
  2655. }
  2656. #ifdef DELTA
  2657. void calculate_delta(float cartesian[3])
  2658. {
  2659. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2660. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2661. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2662. ) + cartesian[Z_AXIS];
  2663. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2664. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2665. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2666. ) + cartesian[Z_AXIS];
  2667. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2668. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2669. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2670. ) + cartesian[Z_AXIS];
  2671. /*
  2672. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2673. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2674. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2675. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2676. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2677. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2678. */
  2679. }
  2680. #endif
  2681. void prepare_move()
  2682. {
  2683. clamp_to_software_endstops(destination);
  2684. previous_millis_cmd = millis();
  2685. #ifdef DELTA
  2686. float difference[NUM_AXIS];
  2687. for (int8_t i=0; i < NUM_AXIS; i++) {
  2688. difference[i] = destination[i] - current_position[i];
  2689. }
  2690. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2691. sq(difference[Y_AXIS]) +
  2692. sq(difference[Z_AXIS]));
  2693. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2694. if (cartesian_mm < 0.000001) { return; }
  2695. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2696. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2697. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2698. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2699. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2700. for (int s = 1; s <= steps; s++) {
  2701. float fraction = float(s) / float(steps);
  2702. for(int8_t i=0; i < NUM_AXIS; i++) {
  2703. destination[i] = current_position[i] + difference[i] * fraction;
  2704. }
  2705. calculate_delta(destination);
  2706. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2707. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2708. active_extruder);
  2709. }
  2710. #else
  2711. #ifdef DUAL_X_CARRIAGE
  2712. if (active_extruder_parked)
  2713. {
  2714. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2715. {
  2716. // move duplicate extruder into correct duplication position.
  2717. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2718. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2719. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2720. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2721. st_synchronize();
  2722. extruder_duplication_enabled = true;
  2723. active_extruder_parked = false;
  2724. }
  2725. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2726. {
  2727. if (current_position[E_AXIS] == destination[E_AXIS])
  2728. {
  2729. // this is a travel move - skit it but keep track of current position (so that it can later
  2730. // be used as start of first non-travel move)
  2731. if (delayed_move_time != 0xFFFFFFFFUL)
  2732. {
  2733. memcpy(current_position, destination, sizeof(current_position));
  2734. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2735. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2736. delayed_move_time = millis();
  2737. return;
  2738. }
  2739. }
  2740. delayed_move_time = 0;
  2741. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2742. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2744. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2746. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2747. active_extruder_parked = false;
  2748. }
  2749. }
  2750. #endif //DUAL_X_CARRIAGE
  2751. // Do not use feedmultiply for E or Z only moves
  2752. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2753. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2754. }
  2755. else {
  2756. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2757. }
  2758. #endif //else DELTA
  2759. for(int8_t i=0; i < NUM_AXIS; i++) {
  2760. current_position[i] = destination[i];
  2761. }
  2762. }
  2763. void prepare_arc_move(char isclockwise) {
  2764. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2765. // Trace the arc
  2766. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2767. // As far as the parser is concerned, the position is now == target. In reality the
  2768. // motion control system might still be processing the action and the real tool position
  2769. // in any intermediate location.
  2770. for(int8_t i=0; i < NUM_AXIS; i++) {
  2771. current_position[i] = destination[i];
  2772. }
  2773. previous_millis_cmd = millis();
  2774. }
  2775. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2776. #if defined(FAN_PIN)
  2777. #if CONTROLLERFAN_PIN == FAN_PIN
  2778. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2779. #endif
  2780. #endif
  2781. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2782. unsigned long lastMotorCheck = 0;
  2783. void controllerFan()
  2784. {
  2785. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2786. {
  2787. lastMotorCheck = millis();
  2788. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2789. #if EXTRUDERS > 2
  2790. || !READ(E2_ENABLE_PIN)
  2791. #endif
  2792. #if EXTRUDER > 1
  2793. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2794. || !READ(X2_ENABLE_PIN)
  2795. #endif
  2796. || !READ(E1_ENABLE_PIN)
  2797. #endif
  2798. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2799. {
  2800. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2801. }
  2802. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2803. {
  2804. digitalWrite(CONTROLLERFAN_PIN, 0);
  2805. analogWrite(CONTROLLERFAN_PIN, 0);
  2806. }
  2807. else
  2808. {
  2809. // allows digital or PWM fan output to be used (see M42 handling)
  2810. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2811. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2812. }
  2813. }
  2814. }
  2815. #endif
  2816. #ifdef TEMP_STAT_LEDS
  2817. static bool blue_led = false;
  2818. static bool red_led = false;
  2819. static uint32_t stat_update = 0;
  2820. void handle_status_leds(void) {
  2821. float max_temp = 0.0;
  2822. if(millis() > stat_update) {
  2823. stat_update += 500; // Update every 0.5s
  2824. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2825. max_temp = max(max_temp, degHotend(cur_extruder));
  2826. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2827. }
  2828. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2829. max_temp = max(max_temp, degTargetBed());
  2830. max_temp = max(max_temp, degBed());
  2831. #endif
  2832. if((max_temp > 55.0) && (red_led == false)) {
  2833. digitalWrite(STAT_LED_RED, 1);
  2834. digitalWrite(STAT_LED_BLUE, 0);
  2835. red_led = true;
  2836. blue_led = false;
  2837. }
  2838. if((max_temp < 54.0) && (blue_led == false)) {
  2839. digitalWrite(STAT_LED_RED, 0);
  2840. digitalWrite(STAT_LED_BLUE, 1);
  2841. red_led = false;
  2842. blue_led = true;
  2843. }
  2844. }
  2845. }
  2846. #endif
  2847. void manage_inactivity()
  2848. {
  2849. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2850. if(max_inactive_time)
  2851. kill();
  2852. if(stepper_inactive_time) {
  2853. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2854. {
  2855. if(blocks_queued() == false) {
  2856. disable_x();
  2857. disable_y();
  2858. disable_z();
  2859. disable_e0();
  2860. disable_e1();
  2861. disable_e2();
  2862. }
  2863. }
  2864. }
  2865. #if defined(KILL_PIN) && KILL_PIN > -1
  2866. if( 0 == READ(KILL_PIN) )
  2867. kill();
  2868. #endif
  2869. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2870. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2871. #endif
  2872. #ifdef EXTRUDER_RUNOUT_PREVENT
  2873. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2874. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2875. {
  2876. bool oldstatus=READ(E0_ENABLE_PIN);
  2877. enable_e0();
  2878. float oldepos=current_position[E_AXIS];
  2879. float oldedes=destination[E_AXIS];
  2880. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2881. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2882. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2883. current_position[E_AXIS]=oldepos;
  2884. destination[E_AXIS]=oldedes;
  2885. plan_set_e_position(oldepos);
  2886. previous_millis_cmd=millis();
  2887. st_synchronize();
  2888. WRITE(E0_ENABLE_PIN,oldstatus);
  2889. }
  2890. #endif
  2891. #if defined(DUAL_X_CARRIAGE)
  2892. // handle delayed move timeout
  2893. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2894. {
  2895. // travel moves have been received so enact them
  2896. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2897. memcpy(destination,current_position,sizeof(destination));
  2898. prepare_move();
  2899. }
  2900. #endif
  2901. #ifdef TEMP_STAT_LEDS
  2902. handle_status_leds();
  2903. #endif
  2904. check_axes_activity();
  2905. }
  2906. void kill()
  2907. {
  2908. cli(); // Stop interrupts
  2909. disable_heater();
  2910. disable_x();
  2911. disable_y();
  2912. disable_z();
  2913. disable_e0();
  2914. disable_e1();
  2915. disable_e2();
  2916. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2917. pinMode(PS_ON_PIN,INPUT);
  2918. #endif
  2919. SERIAL_ERROR_START;
  2920. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2921. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2922. suicide();
  2923. while(1) { /* Intentionally left empty */ } // Wait for reset
  2924. }
  2925. void Stop()
  2926. {
  2927. disable_heater();
  2928. if(Stopped == false) {
  2929. Stopped = true;
  2930. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2931. SERIAL_ERROR_START;
  2932. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2933. LCD_MESSAGEPGM(MSG_STOPPED);
  2934. }
  2935. }
  2936. bool IsStopped() { return Stopped; };
  2937. #ifdef FAST_PWM_FAN
  2938. void setPwmFrequency(uint8_t pin, int val)
  2939. {
  2940. val &= 0x07;
  2941. switch(digitalPinToTimer(pin))
  2942. {
  2943. #if defined(TCCR0A)
  2944. case TIMER0A:
  2945. case TIMER0B:
  2946. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2947. // TCCR0B |= val;
  2948. break;
  2949. #endif
  2950. #if defined(TCCR1A)
  2951. case TIMER1A:
  2952. case TIMER1B:
  2953. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2954. // TCCR1B |= val;
  2955. break;
  2956. #endif
  2957. #if defined(TCCR2)
  2958. case TIMER2:
  2959. case TIMER2:
  2960. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2961. TCCR2 |= val;
  2962. break;
  2963. #endif
  2964. #if defined(TCCR2A)
  2965. case TIMER2A:
  2966. case TIMER2B:
  2967. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2968. TCCR2B |= val;
  2969. break;
  2970. #endif
  2971. #if defined(TCCR3A)
  2972. case TIMER3A:
  2973. case TIMER3B:
  2974. case TIMER3C:
  2975. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2976. TCCR3B |= val;
  2977. break;
  2978. #endif
  2979. #if defined(TCCR4A)
  2980. case TIMER4A:
  2981. case TIMER4B:
  2982. case TIMER4C:
  2983. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2984. TCCR4B |= val;
  2985. break;
  2986. #endif
  2987. #if defined(TCCR5A)
  2988. case TIMER5A:
  2989. case TIMER5B:
  2990. case TIMER5C:
  2991. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2992. TCCR5B |= val;
  2993. break;
  2994. #endif
  2995. }
  2996. }
  2997. #endif //FAST_PWM_FAN
  2998. bool setTargetedHotend(int code){
  2999. tmp_extruder = active_extruder;
  3000. if(code_seen('T')) {
  3001. tmp_extruder = code_value();
  3002. if(tmp_extruder >= EXTRUDERS) {
  3003. SERIAL_ECHO_START;
  3004. switch(code){
  3005. case 104:
  3006. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3007. break;
  3008. case 105:
  3009. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3010. break;
  3011. case 109:
  3012. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3013. break;
  3014. case 218:
  3015. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3016. break;
  3017. }
  3018. SERIAL_ECHOLN(tmp_extruder);
  3019. return true;
  3020. }
  3021. }
  3022. return false;
  3023. }