My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 119KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float volumetric_multiplier[EXTRUDERS] = {1.0
  172. #if EXTRUDERS > 1
  173. , 1.0
  174. #if EXTRUDERS > 2
  175. , 1.0
  176. #endif
  177. #endif
  178. };
  179. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  180. float add_homeing[3]={0,0,0};
  181. #ifdef DELTA
  182. float endstop_adj[3]={0,0,0};
  183. #endif
  184. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  185. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  186. bool axis_known_position[3] = {false, false, false};
  187. float zprobe_zoffset;
  188. // Extruder offset
  189. #if EXTRUDERS > 1
  190. #ifndef DUAL_X_CARRIAGE
  191. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  192. #else
  193. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  194. #endif
  195. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  196. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  197. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  198. #endif
  199. };
  200. #endif
  201. uint8_t active_extruder = 0;
  202. int fanSpeed=0;
  203. #ifdef SERVO_ENDSTOPS
  204. int servo_endstops[] = SERVO_ENDSTOPS;
  205. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  206. #endif
  207. #ifdef BARICUDA
  208. int ValvePressure=0;
  209. int EtoPPressure=0;
  210. #endif
  211. #ifdef FWRETRACT
  212. bool autoretract_enabled=true;
  213. bool retracted=false;
  214. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  215. float retract_recover_length=0, retract_recover_feedrate=8*60;
  216. #endif
  217. #ifdef ULTIPANEL
  218. #ifdef PS_DEFAULT_OFF
  219. bool powersupply = false;
  220. #else
  221. bool powersupply = true;
  222. #endif
  223. #endif
  224. #ifdef DELTA
  225. float delta[3] = {0.0, 0.0, 0.0};
  226. #endif
  227. //===========================================================================
  228. //=============================private variables=============================
  229. //===========================================================================
  230. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  231. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  232. static float offset[3] = {0.0, 0.0, 0.0};
  233. static bool home_all_axis = true;
  234. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  235. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  236. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  237. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  238. static bool fromsd[BUFSIZE];
  239. static int bufindr = 0;
  240. static int bufindw = 0;
  241. static int buflen = 0;
  242. //static int i = 0;
  243. static char serial_char;
  244. static int serial_count = 0;
  245. static boolean comment_mode = false;
  246. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  247. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  248. //static float tt = 0;
  249. //static float bt = 0;
  250. //Inactivity shutdown variables
  251. static unsigned long previous_millis_cmd = 0;
  252. static unsigned long max_inactive_time = 0;
  253. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  254. unsigned long starttime=0;
  255. unsigned long stoptime=0;
  256. static uint8_t tmp_extruder;
  257. bool Stopped=false;
  258. #if NUM_SERVOS > 0
  259. Servo servos[NUM_SERVOS];
  260. #endif
  261. bool CooldownNoWait = true;
  262. bool target_direction;
  263. //===========================================================================
  264. //=============================ROUTINES=============================
  265. //===========================================================================
  266. void get_arc_coordinates();
  267. bool setTargetedHotend(int code);
  268. void serial_echopair_P(const char *s_P, float v)
  269. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  270. void serial_echopair_P(const char *s_P, double v)
  271. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  272. void serial_echopair_P(const char *s_P, unsigned long v)
  273. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  274. extern "C"{
  275. extern unsigned int __bss_end;
  276. extern unsigned int __heap_start;
  277. extern void *__brkval;
  278. int freeMemory() {
  279. int free_memory;
  280. if((int)__brkval == 0)
  281. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  282. else
  283. free_memory = ((int)&free_memory) - ((int)__brkval);
  284. return free_memory;
  285. }
  286. }
  287. //adds an command to the main command buffer
  288. //thats really done in a non-safe way.
  289. //needs overworking someday
  290. void enquecommand(const char *cmd)
  291. {
  292. if(buflen < BUFSIZE)
  293. {
  294. //this is dangerous if a mixing of serial and this happsens
  295. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  296. SERIAL_ECHO_START;
  297. SERIAL_ECHOPGM("enqueing \"");
  298. SERIAL_ECHO(cmdbuffer[bufindw]);
  299. SERIAL_ECHOLNPGM("\"");
  300. bufindw= (bufindw + 1)%BUFSIZE;
  301. buflen += 1;
  302. }
  303. }
  304. void enquecommand_P(const char *cmd)
  305. {
  306. if(buflen < BUFSIZE)
  307. {
  308. //this is dangerous if a mixing of serial and this happsens
  309. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  310. SERIAL_ECHO_START;
  311. SERIAL_ECHOPGM("enqueing \"");
  312. SERIAL_ECHO(cmdbuffer[bufindw]);
  313. SERIAL_ECHOLNPGM("\"");
  314. bufindw= (bufindw + 1)%BUFSIZE;
  315. buflen += 1;
  316. }
  317. }
  318. void setup_killpin()
  319. {
  320. #if defined(KILL_PIN) && KILL_PIN > -1
  321. pinMode(KILL_PIN,INPUT);
  322. WRITE(KILL_PIN,HIGH);
  323. #endif
  324. }
  325. void setup_photpin()
  326. {
  327. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  328. SET_OUTPUT(PHOTOGRAPH_PIN);
  329. WRITE(PHOTOGRAPH_PIN, LOW);
  330. #endif
  331. }
  332. void setup_powerhold()
  333. {
  334. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  335. SET_OUTPUT(SUICIDE_PIN);
  336. WRITE(SUICIDE_PIN, HIGH);
  337. #endif
  338. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  339. SET_OUTPUT(PS_ON_PIN);
  340. #if defined(PS_DEFAULT_OFF)
  341. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  342. #else
  343. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  344. #endif
  345. #endif
  346. }
  347. void suicide()
  348. {
  349. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  350. SET_OUTPUT(SUICIDE_PIN);
  351. WRITE(SUICIDE_PIN, LOW);
  352. #endif
  353. }
  354. void servo_init()
  355. {
  356. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  357. servos[0].attach(SERVO0_PIN);
  358. #endif
  359. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  360. servos[1].attach(SERVO1_PIN);
  361. #endif
  362. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  363. servos[2].attach(SERVO2_PIN);
  364. #endif
  365. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  366. servos[3].attach(SERVO3_PIN);
  367. #endif
  368. #if (NUM_SERVOS >= 5)
  369. #error "TODO: enter initalisation code for more servos"
  370. #endif
  371. // Set position of Servo Endstops that are defined
  372. #ifdef SERVO_ENDSTOPS
  373. for(int8_t i = 0; i < 3; i++)
  374. {
  375. if(servo_endstops[i] > -1) {
  376. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  377. }
  378. }
  379. #endif
  380. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  381. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  382. servos[servo_endstops[Z_AXIS]].detach();
  383. #endif
  384. }
  385. void setup()
  386. {
  387. setup_killpin();
  388. setup_powerhold();
  389. MYSERIAL.begin(BAUDRATE);
  390. SERIAL_PROTOCOLLNPGM("start");
  391. SERIAL_ECHO_START;
  392. // Check startup - does nothing if bootloader sets MCUSR to 0
  393. byte mcu = MCUSR;
  394. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  395. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  396. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  397. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  398. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  399. MCUSR=0;
  400. SERIAL_ECHOPGM(MSG_MARLIN);
  401. SERIAL_ECHOLNPGM(VERSION_STRING);
  402. #ifdef STRING_VERSION_CONFIG_H
  403. #ifdef STRING_CONFIG_H_AUTHOR
  404. SERIAL_ECHO_START;
  405. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  406. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  407. SERIAL_ECHOPGM(MSG_AUTHOR);
  408. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  409. SERIAL_ECHOPGM("Compiled: ");
  410. SERIAL_ECHOLNPGM(__DATE__);
  411. #endif
  412. #endif
  413. SERIAL_ECHO_START;
  414. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  415. SERIAL_ECHO(freeMemory());
  416. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  417. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  418. for(int8_t i = 0; i < BUFSIZE; i++)
  419. {
  420. fromsd[i] = false;
  421. }
  422. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  423. Config_RetrieveSettings();
  424. tp_init(); // Initialize temperature loop
  425. plan_init(); // Initialize planner;
  426. watchdog_init();
  427. st_init(); // Initialize stepper, this enables interrupts!
  428. setup_photpin();
  429. servo_init();
  430. lcd_init();
  431. _delay_ms(1000); // wait 1sec to display the splash screen
  432. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  433. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  434. #endif
  435. #ifdef DIGIPOT_I2C
  436. digipot_i2c_init();
  437. #endif
  438. }
  439. void loop()
  440. {
  441. if(buflen < (BUFSIZE-1))
  442. get_command();
  443. #ifdef SDSUPPORT
  444. card.checkautostart(false);
  445. #endif
  446. if(buflen)
  447. {
  448. #ifdef SDSUPPORT
  449. if(card.saving)
  450. {
  451. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  452. {
  453. card.write_command(cmdbuffer[bufindr]);
  454. if(card.logging)
  455. {
  456. process_commands();
  457. }
  458. else
  459. {
  460. SERIAL_PROTOCOLLNPGM(MSG_OK);
  461. }
  462. }
  463. else
  464. {
  465. card.closefile();
  466. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  467. }
  468. }
  469. else
  470. {
  471. process_commands();
  472. }
  473. #else
  474. process_commands();
  475. #endif //SDSUPPORT
  476. buflen = (buflen-1);
  477. bufindr = (bufindr + 1)%BUFSIZE;
  478. }
  479. //check heater every n milliseconds
  480. manage_heater();
  481. manage_inactivity();
  482. checkHitEndstops();
  483. lcd_update();
  484. }
  485. void get_command()
  486. {
  487. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  488. serial_char = MYSERIAL.read();
  489. if(serial_char == '\n' ||
  490. serial_char == '\r' ||
  491. (serial_char == ':' && comment_mode == false) ||
  492. serial_count >= (MAX_CMD_SIZE - 1) )
  493. {
  494. if(!serial_count) { //if empty line
  495. comment_mode = false; //for new command
  496. return;
  497. }
  498. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  499. if(!comment_mode){
  500. comment_mode = false; //for new command
  501. fromsd[bufindw] = false;
  502. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  503. {
  504. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  505. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  506. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  507. SERIAL_ERROR_START;
  508. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  509. SERIAL_ERRORLN(gcode_LastN);
  510. //Serial.println(gcode_N);
  511. FlushSerialRequestResend();
  512. serial_count = 0;
  513. return;
  514. }
  515. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  516. {
  517. byte checksum = 0;
  518. byte count = 0;
  519. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  520. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  521. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  522. SERIAL_ERROR_START;
  523. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  524. SERIAL_ERRORLN(gcode_LastN);
  525. FlushSerialRequestResend();
  526. serial_count = 0;
  527. return;
  528. }
  529. //if no errors, continue parsing
  530. }
  531. else
  532. {
  533. SERIAL_ERROR_START;
  534. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  535. SERIAL_ERRORLN(gcode_LastN);
  536. FlushSerialRequestResend();
  537. serial_count = 0;
  538. return;
  539. }
  540. gcode_LastN = gcode_N;
  541. //if no errors, continue parsing
  542. }
  543. else // if we don't receive 'N' but still see '*'
  544. {
  545. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  546. {
  547. SERIAL_ERROR_START;
  548. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  549. SERIAL_ERRORLN(gcode_LastN);
  550. serial_count = 0;
  551. return;
  552. }
  553. }
  554. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  555. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  556. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  557. case 0:
  558. case 1:
  559. case 2:
  560. case 3:
  561. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  562. #ifdef SDSUPPORT
  563. if(card.saving)
  564. break;
  565. #endif //SDSUPPORT
  566. SERIAL_PROTOCOLLNPGM(MSG_OK);
  567. }
  568. else {
  569. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  570. LCD_MESSAGEPGM(MSG_STOPPED);
  571. }
  572. break;
  573. default:
  574. break;
  575. }
  576. }
  577. bufindw = (bufindw + 1)%BUFSIZE;
  578. buflen += 1;
  579. }
  580. serial_count = 0; //clear buffer
  581. }
  582. else
  583. {
  584. if(serial_char == ';') comment_mode = true;
  585. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  586. }
  587. }
  588. #ifdef SDSUPPORT
  589. if(!card.sdprinting || serial_count!=0){
  590. return;
  591. }
  592. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  593. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  594. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  595. static bool stop_buffering=false;
  596. if(buflen==0) stop_buffering=false;
  597. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  598. int16_t n=card.get();
  599. serial_char = (char)n;
  600. if(serial_char == '\n' ||
  601. serial_char == '\r' ||
  602. (serial_char == '#' && comment_mode == false) ||
  603. (serial_char == ':' && comment_mode == false) ||
  604. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  605. {
  606. if(card.eof()){
  607. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  608. stoptime=millis();
  609. char time[30];
  610. unsigned long t=(stoptime-starttime)/1000;
  611. int hours, minutes;
  612. minutes=(t/60)%60;
  613. hours=t/60/60;
  614. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  615. SERIAL_ECHO_START;
  616. SERIAL_ECHOLN(time);
  617. lcd_setstatus(time);
  618. card.printingHasFinished();
  619. card.checkautostart(true);
  620. }
  621. if(serial_char=='#')
  622. stop_buffering=true;
  623. if(!serial_count)
  624. {
  625. comment_mode = false; //for new command
  626. return; //if empty line
  627. }
  628. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  629. // if(!comment_mode){
  630. fromsd[bufindw] = true;
  631. buflen += 1;
  632. bufindw = (bufindw + 1)%BUFSIZE;
  633. // }
  634. comment_mode = false; //for new command
  635. serial_count = 0; //clear buffer
  636. }
  637. else
  638. {
  639. if(serial_char == ';') comment_mode = true;
  640. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  641. }
  642. }
  643. #endif //SDSUPPORT
  644. }
  645. float code_value()
  646. {
  647. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  648. }
  649. long code_value_long()
  650. {
  651. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  652. }
  653. bool code_seen(char code)
  654. {
  655. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  656. return (strchr_pointer != NULL); //Return True if a character was found
  657. }
  658. #define DEFINE_PGM_READ_ANY(type, reader) \
  659. static inline type pgm_read_any(const type *p) \
  660. { return pgm_read_##reader##_near(p); }
  661. DEFINE_PGM_READ_ANY(float, float);
  662. DEFINE_PGM_READ_ANY(signed char, byte);
  663. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  664. static const PROGMEM type array##_P[3] = \
  665. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  666. static inline type array(int axis) \
  667. { return pgm_read_any(&array##_P[axis]); }
  668. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  669. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  670. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  671. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  672. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  673. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  674. #ifdef DUAL_X_CARRIAGE
  675. #if EXTRUDERS == 1 || defined(COREXY) \
  676. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  677. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  678. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  679. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  680. #endif
  681. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  682. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  683. #endif
  684. #define DXC_FULL_CONTROL_MODE 0
  685. #define DXC_AUTO_PARK_MODE 1
  686. #define DXC_DUPLICATION_MODE 2
  687. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  688. static float x_home_pos(int extruder) {
  689. if (extruder == 0)
  690. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  691. else
  692. // In dual carriage mode the extruder offset provides an override of the
  693. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  694. // This allow soft recalibration of the second extruder offset position without firmware reflash
  695. // (through the M218 command).
  696. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  697. }
  698. static int x_home_dir(int extruder) {
  699. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  700. }
  701. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  702. static bool active_extruder_parked = false; // used in mode 1 & 2
  703. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  704. static unsigned long delayed_move_time = 0; // used in mode 1
  705. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  706. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  707. bool extruder_duplication_enabled = false; // used in mode 2
  708. #endif //DUAL_X_CARRIAGE
  709. static void axis_is_at_home(int axis) {
  710. #ifdef DUAL_X_CARRIAGE
  711. if (axis == X_AXIS) {
  712. if (active_extruder != 0) {
  713. current_position[X_AXIS] = x_home_pos(active_extruder);
  714. min_pos[X_AXIS] = X2_MIN_POS;
  715. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  716. return;
  717. }
  718. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  719. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  720. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  721. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  722. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  723. return;
  724. }
  725. }
  726. #endif
  727. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  728. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  729. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  730. }
  731. #ifdef ENABLE_AUTO_BED_LEVELING
  732. #ifdef ACCURATE_BED_LEVELING
  733. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  734. {
  735. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  736. planeNormal.debug("planeNormal");
  737. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  738. //bedLevel.debug("bedLevel");
  739. //plan_bed_level_matrix.debug("bed level before");
  740. //vector_3 uncorrected_position = plan_get_position_mm();
  741. //uncorrected_position.debug("position before");
  742. vector_3 corrected_position = plan_get_position();
  743. // corrected_position.debug("position after");
  744. current_position[X_AXIS] = corrected_position.x;
  745. current_position[Y_AXIS] = corrected_position.y;
  746. current_position[Z_AXIS] = corrected_position.z;
  747. // but the bed at 0 so we don't go below it.
  748. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  749. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  750. }
  751. #else
  752. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  753. plan_bed_level_matrix.set_to_identity();
  754. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  755. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  756. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  757. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  758. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  759. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  760. //planeNormal.debug("planeNormal");
  761. //yPositive.debug("yPositive");
  762. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  763. //bedLevel.debug("bedLevel");
  764. //plan_bed_level_matrix.debug("bed level before");
  765. //vector_3 uncorrected_position = plan_get_position_mm();
  766. //uncorrected_position.debug("position before");
  767. // and set our bed level equation to do the right thing
  768. //plan_bed_level_matrix.debug("bed level after");
  769. vector_3 corrected_position = plan_get_position();
  770. //corrected_position.debug("position after");
  771. current_position[X_AXIS] = corrected_position.x;
  772. current_position[Y_AXIS] = corrected_position.y;
  773. current_position[Z_AXIS] = corrected_position.z;
  774. // but the bed at 0 so we don't go below it.
  775. current_position[Z_AXIS] = zprobe_zoffset;
  776. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  777. }
  778. #endif // ACCURATE_BED_LEVELING
  779. static void run_z_probe() {
  780. plan_bed_level_matrix.set_to_identity();
  781. feedrate = homing_feedrate[Z_AXIS];
  782. // move down until you find the bed
  783. float zPosition = -10;
  784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  785. st_synchronize();
  786. // we have to let the planner know where we are right now as it is not where we said to go.
  787. zPosition = st_get_position_mm(Z_AXIS);
  788. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  789. // move up the retract distance
  790. zPosition += home_retract_mm(Z_AXIS);
  791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  792. st_synchronize();
  793. // move back down slowly to find bed
  794. feedrate = homing_feedrate[Z_AXIS]/4;
  795. zPosition -= home_retract_mm(Z_AXIS) * 2;
  796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  797. st_synchronize();
  798. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  799. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  800. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  801. }
  802. static void do_blocking_move_to(float x, float y, float z) {
  803. float oldFeedRate = feedrate;
  804. feedrate = XY_TRAVEL_SPEED;
  805. current_position[X_AXIS] = x;
  806. current_position[Y_AXIS] = y;
  807. current_position[Z_AXIS] = z;
  808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  809. st_synchronize();
  810. feedrate = oldFeedRate;
  811. }
  812. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  813. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  814. }
  815. static void setup_for_endstop_move() {
  816. saved_feedrate = feedrate;
  817. saved_feedmultiply = feedmultiply;
  818. feedmultiply = 100;
  819. previous_millis_cmd = millis();
  820. enable_endstops(true);
  821. }
  822. static void clean_up_after_endstop_move() {
  823. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  824. enable_endstops(false);
  825. #endif
  826. feedrate = saved_feedrate;
  827. feedmultiply = saved_feedmultiply;
  828. previous_millis_cmd = millis();
  829. }
  830. static void engage_z_probe() {
  831. // Engage Z Servo endstop if enabled
  832. #ifdef SERVO_ENDSTOPS
  833. if (servo_endstops[Z_AXIS] > -1) {
  834. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  835. servos[servo_endstops[Z_AXIS]].attach(0);
  836. #endif
  837. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  838. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  839. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  840. servos[servo_endstops[Z_AXIS]].detach();
  841. #endif
  842. }
  843. #endif
  844. }
  845. static void retract_z_probe() {
  846. // Retract Z Servo endstop if enabled
  847. #ifdef SERVO_ENDSTOPS
  848. if (servo_endstops[Z_AXIS] > -1) {
  849. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  850. servos[servo_endstops[Z_AXIS]].attach(0);
  851. #endif
  852. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  853. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  854. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  855. servos[servo_endstops[Z_AXIS]].detach();
  856. #endif
  857. }
  858. #endif
  859. }
  860. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  861. static void homeaxis(int axis) {
  862. #define HOMEAXIS_DO(LETTER) \
  863. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  864. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  865. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  866. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  867. 0) {
  868. int axis_home_dir = home_dir(axis);
  869. #ifdef DUAL_X_CARRIAGE
  870. if (axis == X_AXIS)
  871. axis_home_dir = x_home_dir(active_extruder);
  872. #endif
  873. current_position[axis] = 0;
  874. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  875. // Engage Servo endstop if enabled
  876. #ifdef SERVO_ENDSTOPS
  877. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  878. if (axis==Z_AXIS) {
  879. engage_z_probe();
  880. }
  881. else
  882. #endif
  883. if (servo_endstops[axis] > -1) {
  884. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  885. }
  886. #endif
  887. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  888. feedrate = homing_feedrate[axis];
  889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  890. st_synchronize();
  891. current_position[axis] = 0;
  892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  893. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  894. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  895. st_synchronize();
  896. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  897. #ifdef DELTA
  898. feedrate = homing_feedrate[axis]/10;
  899. #else
  900. feedrate = homing_feedrate[axis]/2 ;
  901. #endif
  902. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  903. st_synchronize();
  904. #ifdef DELTA
  905. // retrace by the amount specified in endstop_adj
  906. if (endstop_adj[axis] * axis_home_dir < 0) {
  907. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  908. destination[axis] = endstop_adj[axis];
  909. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  910. st_synchronize();
  911. }
  912. #endif
  913. axis_is_at_home(axis);
  914. destination[axis] = current_position[axis];
  915. feedrate = 0.0;
  916. endstops_hit_on_purpose();
  917. axis_known_position[axis] = true;
  918. // Retract Servo endstop if enabled
  919. #ifdef SERVO_ENDSTOPS
  920. if (servo_endstops[axis] > -1) {
  921. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  922. }
  923. #endif
  924. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  925. if (axis==Z_AXIS) retract_z_probe();
  926. #endif
  927. }
  928. }
  929. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  930. void process_commands()
  931. {
  932. unsigned long codenum; //throw away variable
  933. char *starpos = NULL;
  934. #ifdef ENABLE_AUTO_BED_LEVELING
  935. float x_tmp, y_tmp, z_tmp, real_z;
  936. #endif
  937. if(code_seen('G'))
  938. {
  939. switch((int)code_value())
  940. {
  941. case 0: // G0 -> G1
  942. case 1: // G1
  943. if(Stopped == false) {
  944. get_coordinates(); // For X Y Z E F
  945. prepare_move();
  946. //ClearToSend();
  947. return;
  948. }
  949. //break;
  950. case 2: // G2 - CW ARC
  951. if(Stopped == false) {
  952. get_arc_coordinates();
  953. prepare_arc_move(true);
  954. return;
  955. }
  956. case 3: // G3 - CCW ARC
  957. if(Stopped == false) {
  958. get_arc_coordinates();
  959. prepare_arc_move(false);
  960. return;
  961. }
  962. case 4: // G4 dwell
  963. LCD_MESSAGEPGM(MSG_DWELL);
  964. codenum = 0;
  965. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  966. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  967. st_synchronize();
  968. codenum += millis(); // keep track of when we started waiting
  969. previous_millis_cmd = millis();
  970. while(millis() < codenum ){
  971. manage_heater();
  972. manage_inactivity();
  973. lcd_update();
  974. }
  975. break;
  976. #ifdef FWRETRACT
  977. case 10: // G10 retract
  978. if(!retracted)
  979. {
  980. destination[X_AXIS]=current_position[X_AXIS];
  981. destination[Y_AXIS]=current_position[Y_AXIS];
  982. destination[Z_AXIS]=current_position[Z_AXIS];
  983. current_position[Z_AXIS]+=-retract_zlift;
  984. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  985. feedrate=retract_feedrate;
  986. retracted=true;
  987. prepare_move();
  988. }
  989. break;
  990. case 11: // G11 retract_recover
  991. if(retracted)
  992. {
  993. destination[X_AXIS]=current_position[X_AXIS];
  994. destination[Y_AXIS]=current_position[Y_AXIS];
  995. destination[Z_AXIS]=current_position[Z_AXIS];
  996. current_position[Z_AXIS]+=retract_zlift;
  997. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  998. feedrate=retract_recover_feedrate;
  999. retracted=false;
  1000. prepare_move();
  1001. }
  1002. break;
  1003. #endif //FWRETRACT
  1004. case 28: //G28 Home all Axis one at a time
  1005. #ifdef ENABLE_AUTO_BED_LEVELING
  1006. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1007. #endif //ENABLE_AUTO_BED_LEVELING
  1008. saved_feedrate = feedrate;
  1009. saved_feedmultiply = feedmultiply;
  1010. feedmultiply = 100;
  1011. previous_millis_cmd = millis();
  1012. enable_endstops(true);
  1013. for(int8_t i=0; i < NUM_AXIS; i++) {
  1014. destination[i] = current_position[i];
  1015. }
  1016. feedrate = 0.0;
  1017. #ifdef DELTA
  1018. // A delta can only safely home all axis at the same time
  1019. // all axis have to home at the same time
  1020. // Move all carriages up together until the first endstop is hit.
  1021. current_position[X_AXIS] = 0;
  1022. current_position[Y_AXIS] = 0;
  1023. current_position[Z_AXIS] = 0;
  1024. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1025. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1026. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1027. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1028. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1029. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1030. st_synchronize();
  1031. endstops_hit_on_purpose();
  1032. current_position[X_AXIS] = destination[X_AXIS];
  1033. current_position[Y_AXIS] = destination[Y_AXIS];
  1034. current_position[Z_AXIS] = destination[Z_AXIS];
  1035. // take care of back off and rehome now we are all at the top
  1036. HOMEAXIS(X);
  1037. HOMEAXIS(Y);
  1038. HOMEAXIS(Z);
  1039. calculate_delta(current_position);
  1040. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1041. #else // NOT DELTA
  1042. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1043. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1044. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1045. HOMEAXIS(Z);
  1046. }
  1047. #endif
  1048. #ifdef QUICK_HOME
  1049. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1050. {
  1051. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1052. #ifndef DUAL_X_CARRIAGE
  1053. int x_axis_home_dir = home_dir(X_AXIS);
  1054. #else
  1055. int x_axis_home_dir = x_home_dir(active_extruder);
  1056. extruder_duplication_enabled = false;
  1057. #endif
  1058. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1059. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1060. feedrate = homing_feedrate[X_AXIS];
  1061. if(homing_feedrate[Y_AXIS]<feedrate)
  1062. feedrate =homing_feedrate[Y_AXIS];
  1063. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1064. st_synchronize();
  1065. axis_is_at_home(X_AXIS);
  1066. axis_is_at_home(Y_AXIS);
  1067. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1068. destination[X_AXIS] = current_position[X_AXIS];
  1069. destination[Y_AXIS] = current_position[Y_AXIS];
  1070. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1071. feedrate = 0.0;
  1072. st_synchronize();
  1073. endstops_hit_on_purpose();
  1074. current_position[X_AXIS] = destination[X_AXIS];
  1075. current_position[Y_AXIS] = destination[Y_AXIS];
  1076. current_position[Z_AXIS] = destination[Z_AXIS];
  1077. }
  1078. #endif
  1079. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1080. {
  1081. #ifdef DUAL_X_CARRIAGE
  1082. int tmp_extruder = active_extruder;
  1083. extruder_duplication_enabled = false;
  1084. active_extruder = !active_extruder;
  1085. HOMEAXIS(X);
  1086. inactive_extruder_x_pos = current_position[X_AXIS];
  1087. active_extruder = tmp_extruder;
  1088. HOMEAXIS(X);
  1089. // reset state used by the different modes
  1090. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1091. delayed_move_time = 0;
  1092. active_extruder_parked = true;
  1093. #else
  1094. HOMEAXIS(X);
  1095. #endif
  1096. }
  1097. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1098. HOMEAXIS(Y);
  1099. }
  1100. if(code_seen(axis_codes[X_AXIS]))
  1101. {
  1102. if(code_value_long() != 0) {
  1103. current_position[X_AXIS]=code_value()+add_homeing[0];
  1104. }
  1105. }
  1106. if(code_seen(axis_codes[Y_AXIS])) {
  1107. if(code_value_long() != 0) {
  1108. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1109. }
  1110. }
  1111. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1112. #ifndef Z_SAFE_HOMING
  1113. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1114. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1115. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1116. feedrate = max_feedrate[Z_AXIS];
  1117. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1118. st_synchronize();
  1119. #endif
  1120. HOMEAXIS(Z);
  1121. }
  1122. #else // Z Safe mode activated.
  1123. if(home_all_axis) {
  1124. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1125. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1126. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1127. feedrate = XY_TRAVEL_SPEED;
  1128. current_position[Z_AXIS] = 0;
  1129. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1130. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1131. st_synchronize();
  1132. current_position[X_AXIS] = destination[X_AXIS];
  1133. current_position[Y_AXIS] = destination[Y_AXIS];
  1134. HOMEAXIS(Z);
  1135. }
  1136. // Let's see if X and Y are homed and probe is inside bed area.
  1137. if(code_seen(axis_codes[Z_AXIS])) {
  1138. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1139. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1140. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1141. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1142. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1143. current_position[Z_AXIS] = 0;
  1144. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1145. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1146. feedrate = max_feedrate[Z_AXIS];
  1147. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1148. st_synchronize();
  1149. HOMEAXIS(Z);
  1150. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1151. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1152. SERIAL_ECHO_START;
  1153. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1154. } else {
  1155. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1156. SERIAL_ECHO_START;
  1157. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1158. }
  1159. }
  1160. #endif
  1161. #endif
  1162. if(code_seen(axis_codes[Z_AXIS])) {
  1163. if(code_value_long() != 0) {
  1164. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1165. }
  1166. }
  1167. #ifdef ENABLE_AUTO_BED_LEVELING
  1168. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1169. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1170. }
  1171. #endif
  1172. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1173. #endif // else DELTA
  1174. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1175. enable_endstops(false);
  1176. #endif
  1177. feedrate = saved_feedrate;
  1178. feedmultiply = saved_feedmultiply;
  1179. previous_millis_cmd = millis();
  1180. endstops_hit_on_purpose();
  1181. break;
  1182. #ifdef ENABLE_AUTO_BED_LEVELING
  1183. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1184. {
  1185. #if Z_MIN_PIN == -1
  1186. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1187. #endif
  1188. st_synchronize();
  1189. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1190. //vector_3 corrected_position = plan_get_position_mm();
  1191. //corrected_position.debug("position before G29");
  1192. plan_bed_level_matrix.set_to_identity();
  1193. vector_3 uncorrected_position = plan_get_position();
  1194. //uncorrected_position.debug("position durring G29");
  1195. current_position[X_AXIS] = uncorrected_position.x;
  1196. current_position[Y_AXIS] = uncorrected_position.y;
  1197. current_position[Z_AXIS] = uncorrected_position.z;
  1198. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1199. setup_for_endstop_move();
  1200. feedrate = homing_feedrate[Z_AXIS];
  1201. #ifdef ACCURATE_BED_LEVELING
  1202. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1203. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1204. // solve the plane equation ax + by + d = z
  1205. // A is the matrix with rows [x y 1] for all the probed points
  1206. // B is the vector of the Z positions
  1207. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1208. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1209. // "A" matrix of the linear system of equations
  1210. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1211. // "B" vector of Z points
  1212. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1213. int probePointCounter = 0;
  1214. bool zig = true;
  1215. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1216. {
  1217. int xProbe, xInc;
  1218. if (zig)
  1219. {
  1220. xProbe = LEFT_PROBE_BED_POSITION;
  1221. //xEnd = RIGHT_PROBE_BED_POSITION;
  1222. xInc = xGridSpacing;
  1223. zig = false;
  1224. } else // zag
  1225. {
  1226. xProbe = RIGHT_PROBE_BED_POSITION;
  1227. //xEnd = LEFT_PROBE_BED_POSITION;
  1228. xInc = -xGridSpacing;
  1229. zig = true;
  1230. }
  1231. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1232. {
  1233. if (probePointCounter == 0)
  1234. {
  1235. // raise before probing
  1236. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1237. } else
  1238. {
  1239. // raise extruder
  1240. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1241. }
  1242. do_blocking_move_to(xProbe - X_PROBE_OFFSET_FROM_EXTRUDER, yProbe - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1243. engage_z_probe(); // Engage Z Servo endstop if available
  1244. run_z_probe();
  1245. eqnBVector[probePointCounter] = current_position[Z_AXIS];
  1246. retract_z_probe();
  1247. SERIAL_PROTOCOLPGM("Bed x: ");
  1248. SERIAL_PROTOCOL(xProbe);
  1249. SERIAL_PROTOCOLPGM(" y: ");
  1250. SERIAL_PROTOCOL(yProbe);
  1251. SERIAL_PROTOCOLPGM(" z: ");
  1252. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1253. SERIAL_PROTOCOLPGM("\n");
  1254. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1255. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1256. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1257. probePointCounter++;
  1258. xProbe += xInc;
  1259. }
  1260. }
  1261. clean_up_after_endstop_move();
  1262. // solve lsq problem
  1263. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1264. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1265. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1266. SERIAL_PROTOCOLPGM(" b: ");
  1267. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1268. SERIAL_PROTOCOLPGM(" d: ");
  1269. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1270. set_bed_level_equation_lsq(plane_equation_coefficients);
  1271. free(plane_equation_coefficients);
  1272. #else // ACCURATE_BED_LEVELING not defined
  1273. // prob 1
  1274. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1275. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1276. engage_z_probe(); // Engage Z Servo endstop if available
  1277. run_z_probe();
  1278. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1279. retract_z_probe();
  1280. SERIAL_PROTOCOLPGM("Bed x: ");
  1281. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1282. SERIAL_PROTOCOLPGM(" y: ");
  1283. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1284. SERIAL_PROTOCOLPGM(" z: ");
  1285. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1286. SERIAL_PROTOCOLPGM("\n");
  1287. // prob 2
  1288. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1289. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1290. engage_z_probe(); // Engage Z Servo endstop if available
  1291. run_z_probe();
  1292. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1293. retract_z_probe();
  1294. SERIAL_PROTOCOLPGM("Bed x: ");
  1295. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1296. SERIAL_PROTOCOLPGM(" y: ");
  1297. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1298. SERIAL_PROTOCOLPGM(" z: ");
  1299. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1300. SERIAL_PROTOCOLPGM("\n");
  1301. // prob 3
  1302. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1303. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1304. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1305. engage_z_probe(); // Engage Z Servo endstop if available
  1306. run_z_probe();
  1307. float z_at_xRight_yFront = current_position[Z_AXIS];
  1308. retract_z_probe(); // Retract Z Servo endstop if available
  1309. SERIAL_PROTOCOLPGM("Bed x: ");
  1310. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1311. SERIAL_PROTOCOLPGM(" y: ");
  1312. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1313. SERIAL_PROTOCOLPGM(" z: ");
  1314. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1315. SERIAL_PROTOCOLPGM("\n");
  1316. clean_up_after_endstop_move();
  1317. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1318. #endif // ACCURATE_BED_LEVELING
  1319. st_synchronize();
  1320. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1321. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1322. // When the bed is uneven, this height must be corrected.
  1323. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1324. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1325. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1326. z_tmp = current_position[Z_AXIS];
  1327. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1328. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1329. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1330. }
  1331. break;
  1332. case 30: // G30 Single Z Probe
  1333. {
  1334. engage_z_probe(); // Engage Z Servo endstop if available
  1335. st_synchronize();
  1336. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1337. setup_for_endstop_move();
  1338. feedrate = homing_feedrate[Z_AXIS];
  1339. run_z_probe();
  1340. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1341. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1342. SERIAL_PROTOCOLPGM(" Y: ");
  1343. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1344. SERIAL_PROTOCOLPGM(" Z: ");
  1345. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1346. SERIAL_PROTOCOLPGM("\n");
  1347. clean_up_after_endstop_move();
  1348. retract_z_probe(); // Retract Z Servo endstop if available
  1349. }
  1350. break;
  1351. #endif // ENABLE_AUTO_BED_LEVELING
  1352. case 90: // G90
  1353. relative_mode = false;
  1354. break;
  1355. case 91: // G91
  1356. relative_mode = true;
  1357. break;
  1358. case 92: // G92
  1359. if(!code_seen(axis_codes[E_AXIS]))
  1360. st_synchronize();
  1361. for(int8_t i=0; i < NUM_AXIS; i++) {
  1362. if(code_seen(axis_codes[i])) {
  1363. if(i == E_AXIS) {
  1364. current_position[i] = code_value();
  1365. plan_set_e_position(current_position[E_AXIS]);
  1366. }
  1367. else {
  1368. current_position[i] = code_value()+add_homeing[i];
  1369. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1370. }
  1371. }
  1372. }
  1373. break;
  1374. }
  1375. }
  1376. else if(code_seen('M'))
  1377. {
  1378. switch( (int)code_value() )
  1379. {
  1380. #ifdef ULTIPANEL
  1381. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1382. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1383. {
  1384. LCD_MESSAGEPGM(MSG_USERWAIT);
  1385. codenum = 0;
  1386. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1387. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1388. st_synchronize();
  1389. previous_millis_cmd = millis();
  1390. if (codenum > 0){
  1391. codenum += millis(); // keep track of when we started waiting
  1392. while(millis() < codenum && !lcd_clicked()){
  1393. manage_heater();
  1394. manage_inactivity();
  1395. lcd_update();
  1396. }
  1397. }else{
  1398. while(!lcd_clicked()){
  1399. manage_heater();
  1400. manage_inactivity();
  1401. lcd_update();
  1402. }
  1403. }
  1404. LCD_MESSAGEPGM(MSG_RESUMING);
  1405. }
  1406. break;
  1407. #endif
  1408. case 17:
  1409. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1410. enable_x();
  1411. enable_y();
  1412. enable_z();
  1413. enable_e0();
  1414. enable_e1();
  1415. enable_e2();
  1416. break;
  1417. #ifdef SDSUPPORT
  1418. case 20: // M20 - list SD card
  1419. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1420. card.ls();
  1421. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1422. break;
  1423. case 21: // M21 - init SD card
  1424. card.initsd();
  1425. break;
  1426. case 22: //M22 - release SD card
  1427. card.release();
  1428. break;
  1429. case 23: //M23 - Select file
  1430. starpos = (strchr(strchr_pointer + 4,'*'));
  1431. if(starpos!=NULL)
  1432. *(starpos-1)='\0';
  1433. card.openFile(strchr_pointer + 4,true);
  1434. break;
  1435. case 24: //M24 - Start SD print
  1436. card.startFileprint();
  1437. starttime=millis();
  1438. break;
  1439. case 25: //M25 - Pause SD print
  1440. card.pauseSDPrint();
  1441. break;
  1442. case 26: //M26 - Set SD index
  1443. if(card.cardOK && code_seen('S')) {
  1444. card.setIndex(code_value_long());
  1445. }
  1446. break;
  1447. case 27: //M27 - Get SD status
  1448. card.getStatus();
  1449. break;
  1450. case 28: //M28 - Start SD write
  1451. starpos = (strchr(strchr_pointer + 4,'*'));
  1452. if(starpos != NULL){
  1453. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1454. strchr_pointer = strchr(npos,' ') + 1;
  1455. *(starpos-1) = '\0';
  1456. }
  1457. card.openFile(strchr_pointer+4,false);
  1458. break;
  1459. case 29: //M29 - Stop SD write
  1460. //processed in write to file routine above
  1461. //card,saving = false;
  1462. break;
  1463. case 30: //M30 <filename> Delete File
  1464. if (card.cardOK){
  1465. card.closefile();
  1466. starpos = (strchr(strchr_pointer + 4,'*'));
  1467. if(starpos != NULL){
  1468. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1469. strchr_pointer = strchr(npos,' ') + 1;
  1470. *(starpos-1) = '\0';
  1471. }
  1472. card.removeFile(strchr_pointer + 4);
  1473. }
  1474. break;
  1475. case 32: //M32 - Select file and start SD print
  1476. {
  1477. if(card.sdprinting) {
  1478. st_synchronize();
  1479. }
  1480. starpos = (strchr(strchr_pointer + 4,'*'));
  1481. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1482. if(namestartpos==NULL)
  1483. {
  1484. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1485. }
  1486. else
  1487. namestartpos++; //to skip the '!'
  1488. if(starpos!=NULL)
  1489. *(starpos-1)='\0';
  1490. bool call_procedure=(code_seen('P'));
  1491. if(strchr_pointer>namestartpos)
  1492. call_procedure=false; //false alert, 'P' found within filename
  1493. if( card.cardOK )
  1494. {
  1495. card.openFile(namestartpos,true,!call_procedure);
  1496. if(code_seen('S'))
  1497. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1498. card.setIndex(code_value_long());
  1499. card.startFileprint();
  1500. if(!call_procedure)
  1501. starttime=millis(); //procedure calls count as normal print time.
  1502. }
  1503. } break;
  1504. case 928: //M928 - Start SD write
  1505. starpos = (strchr(strchr_pointer + 5,'*'));
  1506. if(starpos != NULL){
  1507. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1508. strchr_pointer = strchr(npos,' ') + 1;
  1509. *(starpos-1) = '\0';
  1510. }
  1511. card.openLogFile(strchr_pointer+5);
  1512. break;
  1513. #endif //SDSUPPORT
  1514. case 31: //M31 take time since the start of the SD print or an M109 command
  1515. {
  1516. stoptime=millis();
  1517. char time[30];
  1518. unsigned long t=(stoptime-starttime)/1000;
  1519. int sec,min;
  1520. min=t/60;
  1521. sec=t%60;
  1522. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1523. SERIAL_ECHO_START;
  1524. SERIAL_ECHOLN(time);
  1525. lcd_setstatus(time);
  1526. autotempShutdown();
  1527. }
  1528. break;
  1529. case 42: //M42 -Change pin status via gcode
  1530. if (code_seen('S'))
  1531. {
  1532. int pin_status = code_value();
  1533. int pin_number = LED_PIN;
  1534. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1535. pin_number = code_value();
  1536. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1537. {
  1538. if (sensitive_pins[i] == pin_number)
  1539. {
  1540. pin_number = -1;
  1541. break;
  1542. }
  1543. }
  1544. #if defined(FAN_PIN) && FAN_PIN > -1
  1545. if (pin_number == FAN_PIN)
  1546. fanSpeed = pin_status;
  1547. #endif
  1548. if (pin_number > -1)
  1549. {
  1550. pinMode(pin_number, OUTPUT);
  1551. digitalWrite(pin_number, pin_status);
  1552. analogWrite(pin_number, pin_status);
  1553. }
  1554. }
  1555. break;
  1556. case 104: // M104
  1557. if(setTargetedHotend(104)){
  1558. break;
  1559. }
  1560. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1561. #ifdef DUAL_X_CARRIAGE
  1562. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1563. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1564. #endif
  1565. setWatch();
  1566. break;
  1567. case 140: // M140 set bed temp
  1568. if (code_seen('S')) setTargetBed(code_value());
  1569. break;
  1570. case 105 : // M105
  1571. if(setTargetedHotend(105)){
  1572. break;
  1573. }
  1574. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1575. SERIAL_PROTOCOLPGM("ok T:");
  1576. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1577. SERIAL_PROTOCOLPGM(" /");
  1578. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1579. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1580. SERIAL_PROTOCOLPGM(" B:");
  1581. SERIAL_PROTOCOL_F(degBed(),1);
  1582. SERIAL_PROTOCOLPGM(" /");
  1583. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1584. #endif //TEMP_BED_PIN
  1585. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1586. SERIAL_PROTOCOLPGM(" T");
  1587. SERIAL_PROTOCOL(cur_extruder);
  1588. SERIAL_PROTOCOLPGM(":");
  1589. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1590. SERIAL_PROTOCOLPGM(" /");
  1591. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1592. }
  1593. #else
  1594. SERIAL_ERROR_START;
  1595. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1596. #endif
  1597. SERIAL_PROTOCOLPGM(" @:");
  1598. #ifdef EXTRUDER_WATTS
  1599. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1600. SERIAL_PROTOCOLPGM("W");
  1601. #else
  1602. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1603. #endif
  1604. SERIAL_PROTOCOLPGM(" B@:");
  1605. #ifdef BED_WATTS
  1606. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1607. SERIAL_PROTOCOLPGM("W");
  1608. #else
  1609. SERIAL_PROTOCOL(getHeaterPower(-1));
  1610. #endif
  1611. #ifdef SHOW_TEMP_ADC_VALUES
  1612. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1613. SERIAL_PROTOCOLPGM(" ADC B:");
  1614. SERIAL_PROTOCOL_F(degBed(),1);
  1615. SERIAL_PROTOCOLPGM("C->");
  1616. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1617. #endif
  1618. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1619. SERIAL_PROTOCOLPGM(" T");
  1620. SERIAL_PROTOCOL(cur_extruder);
  1621. SERIAL_PROTOCOLPGM(":");
  1622. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1623. SERIAL_PROTOCOLPGM("C->");
  1624. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1625. }
  1626. #endif
  1627. SERIAL_PROTOCOLLN("");
  1628. return;
  1629. break;
  1630. case 109:
  1631. {// M109 - Wait for extruder heater to reach target.
  1632. if(setTargetedHotend(109)){
  1633. break;
  1634. }
  1635. LCD_MESSAGEPGM(MSG_HEATING);
  1636. #ifdef AUTOTEMP
  1637. autotemp_enabled=false;
  1638. #endif
  1639. if (code_seen('S')) {
  1640. setTargetHotend(code_value(), tmp_extruder);
  1641. #ifdef DUAL_X_CARRIAGE
  1642. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1643. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1644. #endif
  1645. CooldownNoWait = true;
  1646. } else if (code_seen('R')) {
  1647. setTargetHotend(code_value(), tmp_extruder);
  1648. #ifdef DUAL_X_CARRIAGE
  1649. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1650. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1651. #endif
  1652. CooldownNoWait = false;
  1653. }
  1654. #ifdef AUTOTEMP
  1655. if (code_seen('S')) autotemp_min=code_value();
  1656. if (code_seen('B')) autotemp_max=code_value();
  1657. if (code_seen('F'))
  1658. {
  1659. autotemp_factor=code_value();
  1660. autotemp_enabled=true;
  1661. }
  1662. #endif
  1663. setWatch();
  1664. codenum = millis();
  1665. /* See if we are heating up or cooling down */
  1666. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1667. #ifdef TEMP_RESIDENCY_TIME
  1668. long residencyStart;
  1669. residencyStart = -1;
  1670. /* continue to loop until we have reached the target temp
  1671. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1672. while((residencyStart == -1) ||
  1673. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1674. #else
  1675. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1676. #endif //TEMP_RESIDENCY_TIME
  1677. if( (millis() - codenum) > 1000UL )
  1678. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1679. SERIAL_PROTOCOLPGM("T:");
  1680. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1681. SERIAL_PROTOCOLPGM(" E:");
  1682. SERIAL_PROTOCOL((int)tmp_extruder);
  1683. #ifdef TEMP_RESIDENCY_TIME
  1684. SERIAL_PROTOCOLPGM(" W:");
  1685. if(residencyStart > -1)
  1686. {
  1687. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1688. SERIAL_PROTOCOLLN( codenum );
  1689. }
  1690. else
  1691. {
  1692. SERIAL_PROTOCOLLN( "?" );
  1693. }
  1694. #else
  1695. SERIAL_PROTOCOLLN("");
  1696. #endif
  1697. codenum = millis();
  1698. }
  1699. manage_heater();
  1700. manage_inactivity();
  1701. lcd_update();
  1702. #ifdef TEMP_RESIDENCY_TIME
  1703. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1704. or when current temp falls outside the hysteresis after target temp was reached */
  1705. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1706. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1707. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1708. {
  1709. residencyStart = millis();
  1710. }
  1711. #endif //TEMP_RESIDENCY_TIME
  1712. }
  1713. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1714. starttime=millis();
  1715. previous_millis_cmd = millis();
  1716. }
  1717. break;
  1718. case 190: // M190 - Wait for bed heater to reach target.
  1719. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1720. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1721. if (code_seen('S')) {
  1722. setTargetBed(code_value());
  1723. CooldownNoWait = true;
  1724. } else if (code_seen('R')) {
  1725. setTargetBed(code_value());
  1726. CooldownNoWait = false;
  1727. }
  1728. codenum = millis();
  1729. target_direction = isHeatingBed(); // true if heating, false if cooling
  1730. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1731. {
  1732. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1733. {
  1734. float tt=degHotend(active_extruder);
  1735. SERIAL_PROTOCOLPGM("T:");
  1736. SERIAL_PROTOCOL(tt);
  1737. SERIAL_PROTOCOLPGM(" E:");
  1738. SERIAL_PROTOCOL((int)active_extruder);
  1739. SERIAL_PROTOCOLPGM(" B:");
  1740. SERIAL_PROTOCOL_F(degBed(),1);
  1741. SERIAL_PROTOCOLLN("");
  1742. codenum = millis();
  1743. }
  1744. manage_heater();
  1745. manage_inactivity();
  1746. lcd_update();
  1747. }
  1748. LCD_MESSAGEPGM(MSG_BED_DONE);
  1749. previous_millis_cmd = millis();
  1750. #endif
  1751. break;
  1752. #if defined(FAN_PIN) && FAN_PIN > -1
  1753. case 106: //M106 Fan On
  1754. if (code_seen('S')){
  1755. fanSpeed=constrain(code_value(),0,255);
  1756. }
  1757. else {
  1758. fanSpeed=255;
  1759. }
  1760. break;
  1761. case 107: //M107 Fan Off
  1762. fanSpeed = 0;
  1763. break;
  1764. #endif //FAN_PIN
  1765. #ifdef BARICUDA
  1766. // PWM for HEATER_1_PIN
  1767. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1768. case 126: //M126 valve open
  1769. if (code_seen('S')){
  1770. ValvePressure=constrain(code_value(),0,255);
  1771. }
  1772. else {
  1773. ValvePressure=255;
  1774. }
  1775. break;
  1776. case 127: //M127 valve closed
  1777. ValvePressure = 0;
  1778. break;
  1779. #endif //HEATER_1_PIN
  1780. // PWM for HEATER_2_PIN
  1781. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1782. case 128: //M128 valve open
  1783. if (code_seen('S')){
  1784. EtoPPressure=constrain(code_value(),0,255);
  1785. }
  1786. else {
  1787. EtoPPressure=255;
  1788. }
  1789. break;
  1790. case 129: //M129 valve closed
  1791. EtoPPressure = 0;
  1792. break;
  1793. #endif //HEATER_2_PIN
  1794. #endif
  1795. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1796. case 80: // M80 - Turn on Power Supply
  1797. SET_OUTPUT(PS_ON_PIN); //GND
  1798. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1799. // If you have a switch on suicide pin, this is useful
  1800. // if you want to start another print with suicide feature after
  1801. // a print without suicide...
  1802. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1803. SET_OUTPUT(SUICIDE_PIN);
  1804. WRITE(SUICIDE_PIN, HIGH);
  1805. #endif
  1806. #ifdef ULTIPANEL
  1807. powersupply = true;
  1808. LCD_MESSAGEPGM(WELCOME_MSG);
  1809. lcd_update();
  1810. #endif
  1811. break;
  1812. #endif
  1813. case 81: // M81 - Turn off Power Supply
  1814. disable_heater();
  1815. st_synchronize();
  1816. disable_e0();
  1817. disable_e1();
  1818. disable_e2();
  1819. finishAndDisableSteppers();
  1820. fanSpeed = 0;
  1821. delay(1000); // Wait a little before to switch off
  1822. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1823. st_synchronize();
  1824. suicide();
  1825. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1826. SET_OUTPUT(PS_ON_PIN);
  1827. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1828. #endif
  1829. #ifdef ULTIPANEL
  1830. powersupply = false;
  1831. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1832. lcd_update();
  1833. #endif
  1834. break;
  1835. case 82:
  1836. axis_relative_modes[3] = false;
  1837. break;
  1838. case 83:
  1839. axis_relative_modes[3] = true;
  1840. break;
  1841. case 18: //compatibility
  1842. case 84: // M84
  1843. if(code_seen('S')){
  1844. stepper_inactive_time = code_value() * 1000;
  1845. }
  1846. else
  1847. {
  1848. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1849. if(all_axis)
  1850. {
  1851. st_synchronize();
  1852. disable_e0();
  1853. disable_e1();
  1854. disable_e2();
  1855. finishAndDisableSteppers();
  1856. }
  1857. else
  1858. {
  1859. st_synchronize();
  1860. if(code_seen('X')) disable_x();
  1861. if(code_seen('Y')) disable_y();
  1862. if(code_seen('Z')) disable_z();
  1863. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1864. if(code_seen('E')) {
  1865. disable_e0();
  1866. disable_e1();
  1867. disable_e2();
  1868. }
  1869. #endif
  1870. }
  1871. }
  1872. break;
  1873. case 85: // M85
  1874. code_seen('S');
  1875. max_inactive_time = code_value() * 1000;
  1876. break;
  1877. case 92: // M92
  1878. for(int8_t i=0; i < NUM_AXIS; i++)
  1879. {
  1880. if(code_seen(axis_codes[i]))
  1881. {
  1882. if(i == 3) { // E
  1883. float value = code_value();
  1884. if(value < 20.0) {
  1885. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1886. max_e_jerk *= factor;
  1887. max_feedrate[i] *= factor;
  1888. axis_steps_per_sqr_second[i] *= factor;
  1889. }
  1890. axis_steps_per_unit[i] = value;
  1891. }
  1892. else {
  1893. axis_steps_per_unit[i] = code_value();
  1894. }
  1895. }
  1896. }
  1897. break;
  1898. case 115: // M115
  1899. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1900. break;
  1901. case 117: // M117 display message
  1902. starpos = (strchr(strchr_pointer + 5,'*'));
  1903. if(starpos!=NULL)
  1904. *(starpos-1)='\0';
  1905. lcd_setstatus(strchr_pointer + 5);
  1906. break;
  1907. case 114: // M114
  1908. SERIAL_PROTOCOLPGM("X:");
  1909. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1910. SERIAL_PROTOCOLPGM("Y:");
  1911. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1912. SERIAL_PROTOCOLPGM("Z:");
  1913. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1914. SERIAL_PROTOCOLPGM("E:");
  1915. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1916. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1917. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1918. SERIAL_PROTOCOLPGM("Y:");
  1919. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1920. SERIAL_PROTOCOLPGM("Z:");
  1921. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1922. SERIAL_PROTOCOLLN("");
  1923. break;
  1924. case 120: // M120
  1925. enable_endstops(false) ;
  1926. break;
  1927. case 121: // M121
  1928. enable_endstops(true) ;
  1929. break;
  1930. case 119: // M119
  1931. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1932. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1933. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1934. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1935. #endif
  1936. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1937. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1938. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1939. #endif
  1940. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1941. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1942. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1943. #endif
  1944. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1945. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1946. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1947. #endif
  1948. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1949. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1950. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1951. #endif
  1952. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1953. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1954. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1955. #endif
  1956. break;
  1957. //TODO: update for all axis, use for loop
  1958. #ifdef BLINKM
  1959. case 150: // M150
  1960. {
  1961. byte red;
  1962. byte grn;
  1963. byte blu;
  1964. if(code_seen('R')) red = code_value();
  1965. if(code_seen('U')) grn = code_value();
  1966. if(code_seen('B')) blu = code_value();
  1967. SendColors(red,grn,blu);
  1968. }
  1969. break;
  1970. #endif //BLINKM
  1971. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  1972. {
  1973. float area = .0;
  1974. float radius = .0;
  1975. if(code_seen('D')) {
  1976. radius = (float)code_value() * .5;
  1977. if(radius == 0) {
  1978. area = 1;
  1979. } else {
  1980. area = M_PI * pow(radius, 2);
  1981. }
  1982. } else {
  1983. //reserved for setting filament diameter via UFID or filament measuring device
  1984. break;
  1985. }
  1986. tmp_extruder = active_extruder;
  1987. if(code_seen('T')) {
  1988. tmp_extruder = code_value();
  1989. if(tmp_extruder >= EXTRUDERS) {
  1990. SERIAL_ECHO_START;
  1991. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  1992. }
  1993. SERIAL_ECHOLN(tmp_extruder);
  1994. break;
  1995. }
  1996. volumetric_multiplier[tmp_extruder] = 1 / area;
  1997. }
  1998. break;
  1999. case 201: // M201
  2000. for(int8_t i=0; i < NUM_AXIS; i++)
  2001. {
  2002. if(code_seen(axis_codes[i]))
  2003. {
  2004. max_acceleration_units_per_sq_second[i] = code_value();
  2005. }
  2006. }
  2007. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2008. reset_acceleration_rates();
  2009. break;
  2010. #if 0 // Not used for Sprinter/grbl gen6
  2011. case 202: // M202
  2012. for(int8_t i=0; i < NUM_AXIS; i++) {
  2013. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2014. }
  2015. break;
  2016. #endif
  2017. case 203: // M203 max feedrate mm/sec
  2018. for(int8_t i=0; i < NUM_AXIS; i++) {
  2019. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2020. }
  2021. break;
  2022. case 204: // M204 acclereration S normal moves T filmanent only moves
  2023. {
  2024. if(code_seen('S')) acceleration = code_value() ;
  2025. if(code_seen('T')) retract_acceleration = code_value() ;
  2026. }
  2027. break;
  2028. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2029. {
  2030. if(code_seen('S')) minimumfeedrate = code_value();
  2031. if(code_seen('T')) mintravelfeedrate = code_value();
  2032. if(code_seen('B')) minsegmenttime = code_value() ;
  2033. if(code_seen('X')) max_xy_jerk = code_value() ;
  2034. if(code_seen('Z')) max_z_jerk = code_value() ;
  2035. if(code_seen('E')) max_e_jerk = code_value() ;
  2036. }
  2037. break;
  2038. case 206: // M206 additional homeing offset
  2039. for(int8_t i=0; i < 3; i++)
  2040. {
  2041. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2042. }
  2043. break;
  2044. #ifdef DELTA
  2045. case 666: // M666 set delta endstop adjustemnt
  2046. for(int8_t i=0; i < 3; i++)
  2047. {
  2048. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2049. }
  2050. break;
  2051. #endif
  2052. #ifdef FWRETRACT
  2053. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2054. {
  2055. if(code_seen('S'))
  2056. {
  2057. retract_length = code_value() ;
  2058. }
  2059. if(code_seen('F'))
  2060. {
  2061. retract_feedrate = code_value() ;
  2062. }
  2063. if(code_seen('Z'))
  2064. {
  2065. retract_zlift = code_value() ;
  2066. }
  2067. }break;
  2068. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2069. {
  2070. if(code_seen('S'))
  2071. {
  2072. retract_recover_length = code_value() ;
  2073. }
  2074. if(code_seen('F'))
  2075. {
  2076. retract_recover_feedrate = code_value() ;
  2077. }
  2078. }break;
  2079. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2080. {
  2081. if(code_seen('S'))
  2082. {
  2083. int t= code_value() ;
  2084. switch(t)
  2085. {
  2086. case 0: autoretract_enabled=false;retracted=false;break;
  2087. case 1: autoretract_enabled=true;retracted=false;break;
  2088. default:
  2089. SERIAL_ECHO_START;
  2090. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2091. SERIAL_ECHO(cmdbuffer[bufindr]);
  2092. SERIAL_ECHOLNPGM("\"");
  2093. }
  2094. }
  2095. }break;
  2096. #endif // FWRETRACT
  2097. #if EXTRUDERS > 1
  2098. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2099. {
  2100. if(setTargetedHotend(218)){
  2101. break;
  2102. }
  2103. if(code_seen('X'))
  2104. {
  2105. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2106. }
  2107. if(code_seen('Y'))
  2108. {
  2109. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2110. }
  2111. #ifdef DUAL_X_CARRIAGE
  2112. if(code_seen('Z'))
  2113. {
  2114. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2115. }
  2116. #endif
  2117. SERIAL_ECHO_START;
  2118. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2119. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2120. {
  2121. SERIAL_ECHO(" ");
  2122. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2123. SERIAL_ECHO(",");
  2124. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2125. #ifdef DUAL_X_CARRIAGE
  2126. SERIAL_ECHO(",");
  2127. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2128. #endif
  2129. }
  2130. SERIAL_ECHOLN("");
  2131. }break;
  2132. #endif
  2133. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2134. {
  2135. if(code_seen('S'))
  2136. {
  2137. feedmultiply = code_value() ;
  2138. }
  2139. }
  2140. break;
  2141. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2142. {
  2143. if(code_seen('S'))
  2144. {
  2145. extrudemultiply = code_value() ;
  2146. }
  2147. }
  2148. break;
  2149. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2150. {
  2151. if(code_seen('P')){
  2152. int pin_number = code_value(); // pin number
  2153. int pin_state = -1; // required pin state - default is inverted
  2154. if(code_seen('S')) pin_state = code_value(); // required pin state
  2155. if(pin_state >= -1 && pin_state <= 1){
  2156. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2157. {
  2158. if (sensitive_pins[i] == pin_number)
  2159. {
  2160. pin_number = -1;
  2161. break;
  2162. }
  2163. }
  2164. if (pin_number > -1)
  2165. {
  2166. st_synchronize();
  2167. pinMode(pin_number, INPUT);
  2168. int target;
  2169. switch(pin_state){
  2170. case 1:
  2171. target = HIGH;
  2172. break;
  2173. case 0:
  2174. target = LOW;
  2175. break;
  2176. case -1:
  2177. target = !digitalRead(pin_number);
  2178. break;
  2179. }
  2180. while(digitalRead(pin_number) != target){
  2181. manage_heater();
  2182. manage_inactivity();
  2183. lcd_update();
  2184. }
  2185. }
  2186. }
  2187. }
  2188. }
  2189. break;
  2190. #if NUM_SERVOS > 0
  2191. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2192. {
  2193. int servo_index = -1;
  2194. int servo_position = 0;
  2195. if (code_seen('P'))
  2196. servo_index = code_value();
  2197. if (code_seen('S')) {
  2198. servo_position = code_value();
  2199. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2200. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2201. servos[servo_index].attach(0);
  2202. #endif
  2203. servos[servo_index].write(servo_position);
  2204. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2205. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2206. servos[servo_index].detach();
  2207. #endif
  2208. }
  2209. else {
  2210. SERIAL_ECHO_START;
  2211. SERIAL_ECHO("Servo ");
  2212. SERIAL_ECHO(servo_index);
  2213. SERIAL_ECHOLN(" out of range");
  2214. }
  2215. }
  2216. else if (servo_index >= 0) {
  2217. SERIAL_PROTOCOL(MSG_OK);
  2218. SERIAL_PROTOCOL(" Servo ");
  2219. SERIAL_PROTOCOL(servo_index);
  2220. SERIAL_PROTOCOL(": ");
  2221. SERIAL_PROTOCOL(servos[servo_index].read());
  2222. SERIAL_PROTOCOLLN("");
  2223. }
  2224. }
  2225. break;
  2226. #endif // NUM_SERVOS > 0
  2227. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2228. case 300: // M300
  2229. {
  2230. int beepS = code_seen('S') ? code_value() : 110;
  2231. int beepP = code_seen('P') ? code_value() : 1000;
  2232. if (beepS > 0)
  2233. {
  2234. #if BEEPER > 0
  2235. tone(BEEPER, beepS);
  2236. delay(beepP);
  2237. noTone(BEEPER);
  2238. #elif defined(ULTRALCD)
  2239. lcd_buzz(beepS, beepP);
  2240. #elif defined(LCD_USE_I2C_BUZZER)
  2241. lcd_buzz(beepP, beepS);
  2242. #endif
  2243. }
  2244. else
  2245. {
  2246. delay(beepP);
  2247. }
  2248. }
  2249. break;
  2250. #endif // M300
  2251. #ifdef PIDTEMP
  2252. case 301: // M301
  2253. {
  2254. if(code_seen('P')) Kp = code_value();
  2255. if(code_seen('I')) Ki = scalePID_i(code_value());
  2256. if(code_seen('D')) Kd = scalePID_d(code_value());
  2257. #ifdef PID_ADD_EXTRUSION_RATE
  2258. if(code_seen('C')) Kc = code_value();
  2259. #endif
  2260. updatePID();
  2261. SERIAL_PROTOCOL(MSG_OK);
  2262. SERIAL_PROTOCOL(" p:");
  2263. SERIAL_PROTOCOL(Kp);
  2264. SERIAL_PROTOCOL(" i:");
  2265. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2266. SERIAL_PROTOCOL(" d:");
  2267. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2268. #ifdef PID_ADD_EXTRUSION_RATE
  2269. SERIAL_PROTOCOL(" c:");
  2270. //Kc does not have scaling applied above, or in resetting defaults
  2271. SERIAL_PROTOCOL(Kc);
  2272. #endif
  2273. SERIAL_PROTOCOLLN("");
  2274. }
  2275. break;
  2276. #endif //PIDTEMP
  2277. #ifdef PIDTEMPBED
  2278. case 304: // M304
  2279. {
  2280. if(code_seen('P')) bedKp = code_value();
  2281. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2282. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2283. updatePID();
  2284. SERIAL_PROTOCOL(MSG_OK);
  2285. SERIAL_PROTOCOL(" p:");
  2286. SERIAL_PROTOCOL(bedKp);
  2287. SERIAL_PROTOCOL(" i:");
  2288. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2289. SERIAL_PROTOCOL(" d:");
  2290. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2291. SERIAL_PROTOCOLLN("");
  2292. }
  2293. break;
  2294. #endif //PIDTEMP
  2295. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2296. {
  2297. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2298. const uint8_t NUM_PULSES=16;
  2299. const float PULSE_LENGTH=0.01524;
  2300. for(int i=0; i < NUM_PULSES; i++) {
  2301. WRITE(PHOTOGRAPH_PIN, HIGH);
  2302. _delay_ms(PULSE_LENGTH);
  2303. WRITE(PHOTOGRAPH_PIN, LOW);
  2304. _delay_ms(PULSE_LENGTH);
  2305. }
  2306. delay(7.33);
  2307. for(int i=0; i < NUM_PULSES; i++) {
  2308. WRITE(PHOTOGRAPH_PIN, HIGH);
  2309. _delay_ms(PULSE_LENGTH);
  2310. WRITE(PHOTOGRAPH_PIN, LOW);
  2311. _delay_ms(PULSE_LENGTH);
  2312. }
  2313. #endif
  2314. }
  2315. break;
  2316. #ifdef DOGLCD
  2317. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2318. {
  2319. if (code_seen('C')) {
  2320. lcd_setcontrast( ((int)code_value())&63 );
  2321. }
  2322. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2323. SERIAL_PROTOCOL(lcd_contrast);
  2324. SERIAL_PROTOCOLLN("");
  2325. }
  2326. break;
  2327. #endif
  2328. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2329. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2330. {
  2331. float temp = .0;
  2332. if (code_seen('S')) temp=code_value();
  2333. set_extrude_min_temp(temp);
  2334. }
  2335. break;
  2336. #endif
  2337. case 303: // M303 PID autotune
  2338. {
  2339. float temp = 150.0;
  2340. int e=0;
  2341. int c=5;
  2342. if (code_seen('E')) e=code_value();
  2343. if (e<0)
  2344. temp=70;
  2345. if (code_seen('S')) temp=code_value();
  2346. if (code_seen('C')) c=code_value();
  2347. PID_autotune(temp, e, c);
  2348. }
  2349. break;
  2350. case 400: // M400 finish all moves
  2351. {
  2352. st_synchronize();
  2353. }
  2354. break;
  2355. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2356. case 401:
  2357. {
  2358. engage_z_probe(); // Engage Z Servo endstop if available
  2359. }
  2360. break;
  2361. case 402:
  2362. {
  2363. retract_z_probe(); // Retract Z Servo endstop if enabled
  2364. }
  2365. break;
  2366. #endif
  2367. case 500: // M500 Store settings in EEPROM
  2368. {
  2369. Config_StoreSettings();
  2370. }
  2371. break;
  2372. case 501: // M501 Read settings from EEPROM
  2373. {
  2374. Config_RetrieveSettings();
  2375. }
  2376. break;
  2377. case 502: // M502 Revert to default settings
  2378. {
  2379. Config_ResetDefault();
  2380. }
  2381. break;
  2382. case 503: // M503 print settings currently in memory
  2383. {
  2384. Config_PrintSettings();
  2385. }
  2386. break;
  2387. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2388. case 540:
  2389. {
  2390. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2391. }
  2392. break;
  2393. #endif
  2394. #ifdef FILAMENTCHANGEENABLE
  2395. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2396. {
  2397. float target[4];
  2398. float lastpos[4];
  2399. target[X_AXIS]=current_position[X_AXIS];
  2400. target[Y_AXIS]=current_position[Y_AXIS];
  2401. target[Z_AXIS]=current_position[Z_AXIS];
  2402. target[E_AXIS]=current_position[E_AXIS];
  2403. lastpos[X_AXIS]=current_position[X_AXIS];
  2404. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2405. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2406. lastpos[E_AXIS]=current_position[E_AXIS];
  2407. //retract by E
  2408. if(code_seen('E'))
  2409. {
  2410. target[E_AXIS]+= code_value();
  2411. }
  2412. else
  2413. {
  2414. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2415. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2416. #endif
  2417. }
  2418. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2419. //lift Z
  2420. if(code_seen('Z'))
  2421. {
  2422. target[Z_AXIS]+= code_value();
  2423. }
  2424. else
  2425. {
  2426. #ifdef FILAMENTCHANGE_ZADD
  2427. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2428. #endif
  2429. }
  2430. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2431. //move xy
  2432. if(code_seen('X'))
  2433. {
  2434. target[X_AXIS]+= code_value();
  2435. }
  2436. else
  2437. {
  2438. #ifdef FILAMENTCHANGE_XPOS
  2439. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2440. #endif
  2441. }
  2442. if(code_seen('Y'))
  2443. {
  2444. target[Y_AXIS]= code_value();
  2445. }
  2446. else
  2447. {
  2448. #ifdef FILAMENTCHANGE_YPOS
  2449. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2450. #endif
  2451. }
  2452. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2453. if(code_seen('L'))
  2454. {
  2455. target[E_AXIS]+= code_value();
  2456. }
  2457. else
  2458. {
  2459. #ifdef FILAMENTCHANGE_FINALRETRACT
  2460. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2461. #endif
  2462. }
  2463. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2464. //finish moves
  2465. st_synchronize();
  2466. //disable extruder steppers so filament can be removed
  2467. disable_e0();
  2468. disable_e1();
  2469. disable_e2();
  2470. delay(100);
  2471. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2472. uint8_t cnt=0;
  2473. while(!lcd_clicked()){
  2474. cnt++;
  2475. manage_heater();
  2476. manage_inactivity();
  2477. lcd_update();
  2478. if(cnt==0)
  2479. {
  2480. #if BEEPER > 0
  2481. SET_OUTPUT(BEEPER);
  2482. WRITE(BEEPER,HIGH);
  2483. delay(3);
  2484. WRITE(BEEPER,LOW);
  2485. delay(3);
  2486. #else
  2487. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2488. lcd_buzz(1000/6,100);
  2489. #else
  2490. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2491. #endif
  2492. #endif
  2493. }
  2494. }
  2495. //return to normal
  2496. if(code_seen('L'))
  2497. {
  2498. target[E_AXIS]+= -code_value();
  2499. }
  2500. else
  2501. {
  2502. #ifdef FILAMENTCHANGE_FINALRETRACT
  2503. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2504. #endif
  2505. }
  2506. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2507. plan_set_e_position(current_position[E_AXIS]);
  2508. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2509. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2510. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2511. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2512. }
  2513. break;
  2514. #endif //FILAMENTCHANGEENABLE
  2515. #ifdef DUAL_X_CARRIAGE
  2516. case 605: // Set dual x-carriage movement mode:
  2517. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2518. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2519. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2520. // millimeters x-offset and an optional differential hotend temperature of
  2521. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2522. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2523. //
  2524. // Note: the X axis should be homed after changing dual x-carriage mode.
  2525. {
  2526. st_synchronize();
  2527. if (code_seen('S'))
  2528. dual_x_carriage_mode = code_value();
  2529. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2530. {
  2531. if (code_seen('X'))
  2532. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2533. if (code_seen('R'))
  2534. duplicate_extruder_temp_offset = code_value();
  2535. SERIAL_ECHO_START;
  2536. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2537. SERIAL_ECHO(" ");
  2538. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2539. SERIAL_ECHO(",");
  2540. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2541. SERIAL_ECHO(" ");
  2542. SERIAL_ECHO(duplicate_extruder_x_offset);
  2543. SERIAL_ECHO(",");
  2544. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2545. }
  2546. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2547. {
  2548. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2549. }
  2550. active_extruder_parked = false;
  2551. extruder_duplication_enabled = false;
  2552. delayed_move_time = 0;
  2553. }
  2554. break;
  2555. #endif //DUAL_X_CARRIAGE
  2556. case 907: // M907 Set digital trimpot motor current using axis codes.
  2557. {
  2558. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2559. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2560. if(code_seen('B')) digipot_current(4,code_value());
  2561. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2562. #endif
  2563. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2564. if(code_seen('X')) digipot_current(0, code_value());
  2565. #endif
  2566. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2567. if(code_seen('Z')) digipot_current(1, code_value());
  2568. #endif
  2569. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2570. if(code_seen('E')) digipot_current(2, code_value());
  2571. #endif
  2572. #ifdef DIGIPOT_I2C
  2573. // this one uses actual amps in floating point
  2574. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2575. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2576. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2577. #endif
  2578. }
  2579. break;
  2580. case 908: // M908 Control digital trimpot directly.
  2581. {
  2582. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2583. uint8_t channel,current;
  2584. if(code_seen('P')) channel=code_value();
  2585. if(code_seen('S')) current=code_value();
  2586. digitalPotWrite(channel, current);
  2587. #endif
  2588. }
  2589. break;
  2590. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2591. {
  2592. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2593. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2594. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2595. if(code_seen('B')) microstep_mode(4,code_value());
  2596. microstep_readings();
  2597. #endif
  2598. }
  2599. break;
  2600. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2601. {
  2602. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2603. if(code_seen('S')) switch((int)code_value())
  2604. {
  2605. case 1:
  2606. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2607. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2608. break;
  2609. case 2:
  2610. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2611. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2612. break;
  2613. }
  2614. microstep_readings();
  2615. #endif
  2616. }
  2617. break;
  2618. case 999: // M999: Restart after being stopped
  2619. Stopped = false;
  2620. lcd_reset_alert_level();
  2621. gcode_LastN = Stopped_gcode_LastN;
  2622. FlushSerialRequestResend();
  2623. break;
  2624. }
  2625. }
  2626. else if(code_seen('T'))
  2627. {
  2628. tmp_extruder = code_value();
  2629. if(tmp_extruder >= EXTRUDERS) {
  2630. SERIAL_ECHO_START;
  2631. SERIAL_ECHO("T");
  2632. SERIAL_ECHO(tmp_extruder);
  2633. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2634. }
  2635. else {
  2636. boolean make_move = false;
  2637. if(code_seen('F')) {
  2638. make_move = true;
  2639. next_feedrate = code_value();
  2640. if(next_feedrate > 0.0) {
  2641. feedrate = next_feedrate;
  2642. }
  2643. }
  2644. #if EXTRUDERS > 1
  2645. if(tmp_extruder != active_extruder) {
  2646. // Save current position to return to after applying extruder offset
  2647. memcpy(destination, current_position, sizeof(destination));
  2648. #ifdef DUAL_X_CARRIAGE
  2649. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2650. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2651. {
  2652. // Park old head: 1) raise 2) move to park position 3) lower
  2653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2654. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2655. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2656. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2657. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2658. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2659. st_synchronize();
  2660. }
  2661. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2662. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2663. extruder_offset[Y_AXIS][active_extruder] +
  2664. extruder_offset[Y_AXIS][tmp_extruder];
  2665. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2666. extruder_offset[Z_AXIS][active_extruder] +
  2667. extruder_offset[Z_AXIS][tmp_extruder];
  2668. active_extruder = tmp_extruder;
  2669. // This function resets the max/min values - the current position may be overwritten below.
  2670. axis_is_at_home(X_AXIS);
  2671. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2672. {
  2673. current_position[X_AXIS] = inactive_extruder_x_pos;
  2674. inactive_extruder_x_pos = destination[X_AXIS];
  2675. }
  2676. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2677. {
  2678. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2679. if (active_extruder == 0 || active_extruder_parked)
  2680. current_position[X_AXIS] = inactive_extruder_x_pos;
  2681. else
  2682. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2683. inactive_extruder_x_pos = destination[X_AXIS];
  2684. extruder_duplication_enabled = false;
  2685. }
  2686. else
  2687. {
  2688. // record raised toolhead position for use by unpark
  2689. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2690. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2691. active_extruder_parked = true;
  2692. delayed_move_time = 0;
  2693. }
  2694. #else
  2695. // Offset extruder (only by XY)
  2696. int i;
  2697. for(i = 0; i < 2; i++) {
  2698. current_position[i] = current_position[i] -
  2699. extruder_offset[i][active_extruder] +
  2700. extruder_offset[i][tmp_extruder];
  2701. }
  2702. // Set the new active extruder and position
  2703. active_extruder = tmp_extruder;
  2704. #endif //else DUAL_X_CARRIAGE
  2705. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2706. // Move to the old position if 'F' was in the parameters
  2707. if(make_move && Stopped == false) {
  2708. prepare_move();
  2709. }
  2710. }
  2711. #endif
  2712. SERIAL_ECHO_START;
  2713. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2714. SERIAL_PROTOCOLLN((int)active_extruder);
  2715. }
  2716. }
  2717. else
  2718. {
  2719. SERIAL_ECHO_START;
  2720. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2721. SERIAL_ECHO(cmdbuffer[bufindr]);
  2722. SERIAL_ECHOLNPGM("\"");
  2723. }
  2724. ClearToSend();
  2725. }
  2726. void FlushSerialRequestResend()
  2727. {
  2728. //char cmdbuffer[bufindr][100]="Resend:";
  2729. MYSERIAL.flush();
  2730. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2731. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2732. ClearToSend();
  2733. }
  2734. void ClearToSend()
  2735. {
  2736. previous_millis_cmd = millis();
  2737. #ifdef SDSUPPORT
  2738. if(fromsd[bufindr])
  2739. return;
  2740. #endif //SDSUPPORT
  2741. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2742. }
  2743. void get_coordinates()
  2744. {
  2745. bool seen[4]={false,false,false,false};
  2746. for(int8_t i=0; i < NUM_AXIS; i++) {
  2747. if(code_seen(axis_codes[i]))
  2748. {
  2749. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2750. seen[i]=true;
  2751. }
  2752. else destination[i] = current_position[i]; //Are these else lines really needed?
  2753. }
  2754. if(code_seen('F')) {
  2755. next_feedrate = code_value();
  2756. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2757. }
  2758. #ifdef FWRETRACT
  2759. if(autoretract_enabled)
  2760. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2761. {
  2762. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2763. if(echange<-MIN_RETRACT) //retract
  2764. {
  2765. if(!retracted)
  2766. {
  2767. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2768. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2769. float correctede=-echange-retract_length;
  2770. //to generate the additional steps, not the destination is changed, but inversely the current position
  2771. current_position[E_AXIS]+=-correctede;
  2772. feedrate=retract_feedrate;
  2773. retracted=true;
  2774. }
  2775. }
  2776. else
  2777. if(echange>MIN_RETRACT) //retract_recover
  2778. {
  2779. if(retracted)
  2780. {
  2781. //current_position[Z_AXIS]+=-retract_zlift;
  2782. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2783. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2784. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2785. feedrate=retract_recover_feedrate;
  2786. retracted=false;
  2787. }
  2788. }
  2789. }
  2790. #endif //FWRETRACT
  2791. }
  2792. void get_arc_coordinates()
  2793. {
  2794. #ifdef SF_ARC_FIX
  2795. bool relative_mode_backup = relative_mode;
  2796. relative_mode = true;
  2797. #endif
  2798. get_coordinates();
  2799. #ifdef SF_ARC_FIX
  2800. relative_mode=relative_mode_backup;
  2801. #endif
  2802. if(code_seen('I')) {
  2803. offset[0] = code_value();
  2804. }
  2805. else {
  2806. offset[0] = 0.0;
  2807. }
  2808. if(code_seen('J')) {
  2809. offset[1] = code_value();
  2810. }
  2811. else {
  2812. offset[1] = 0.0;
  2813. }
  2814. }
  2815. void clamp_to_software_endstops(float target[3])
  2816. {
  2817. if (min_software_endstops) {
  2818. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2819. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2820. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2821. }
  2822. if (max_software_endstops) {
  2823. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2824. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2825. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2826. }
  2827. }
  2828. #ifdef DELTA
  2829. void calculate_delta(float cartesian[3])
  2830. {
  2831. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2832. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2833. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2834. ) + cartesian[Z_AXIS];
  2835. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2836. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2837. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2838. ) + cartesian[Z_AXIS];
  2839. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2840. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2841. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2842. ) + cartesian[Z_AXIS];
  2843. /*
  2844. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2845. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2846. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2847. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2848. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2849. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2850. */
  2851. }
  2852. #endif
  2853. void prepare_move()
  2854. {
  2855. clamp_to_software_endstops(destination);
  2856. previous_millis_cmd = millis();
  2857. #ifdef DELTA
  2858. float difference[NUM_AXIS];
  2859. for (int8_t i=0; i < NUM_AXIS; i++) {
  2860. difference[i] = destination[i] - current_position[i];
  2861. }
  2862. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2863. sq(difference[Y_AXIS]) +
  2864. sq(difference[Z_AXIS]));
  2865. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2866. if (cartesian_mm < 0.000001) { return; }
  2867. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2868. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2869. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2870. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2871. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2872. for (int s = 1; s <= steps; s++) {
  2873. float fraction = float(s) / float(steps);
  2874. for(int8_t i=0; i < NUM_AXIS; i++) {
  2875. destination[i] = current_position[i] + difference[i] * fraction;
  2876. }
  2877. calculate_delta(destination);
  2878. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2879. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2880. active_extruder);
  2881. }
  2882. #else
  2883. #ifdef DUAL_X_CARRIAGE
  2884. if (active_extruder_parked)
  2885. {
  2886. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2887. {
  2888. // move duplicate extruder into correct duplication position.
  2889. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2890. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2891. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2893. st_synchronize();
  2894. extruder_duplication_enabled = true;
  2895. active_extruder_parked = false;
  2896. }
  2897. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2898. {
  2899. if (current_position[E_AXIS] == destination[E_AXIS])
  2900. {
  2901. // this is a travel move - skit it but keep track of current position (so that it can later
  2902. // be used as start of first non-travel move)
  2903. if (delayed_move_time != 0xFFFFFFFFUL)
  2904. {
  2905. memcpy(current_position, destination, sizeof(current_position));
  2906. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2907. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2908. delayed_move_time = millis();
  2909. return;
  2910. }
  2911. }
  2912. delayed_move_time = 0;
  2913. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2914. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2915. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2916. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2918. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2919. active_extruder_parked = false;
  2920. }
  2921. }
  2922. #endif //DUAL_X_CARRIAGE
  2923. // Do not use feedmultiply for E or Z only moves
  2924. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2925. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2926. }
  2927. else {
  2928. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2929. }
  2930. #endif //else DELTA
  2931. for(int8_t i=0; i < NUM_AXIS; i++) {
  2932. current_position[i] = destination[i];
  2933. }
  2934. }
  2935. void prepare_arc_move(char isclockwise) {
  2936. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2937. // Trace the arc
  2938. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2939. // As far as the parser is concerned, the position is now == target. In reality the
  2940. // motion control system might still be processing the action and the real tool position
  2941. // in any intermediate location.
  2942. for(int8_t i=0; i < NUM_AXIS; i++) {
  2943. current_position[i] = destination[i];
  2944. }
  2945. previous_millis_cmd = millis();
  2946. }
  2947. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2948. #if defined(FAN_PIN)
  2949. #if CONTROLLERFAN_PIN == FAN_PIN
  2950. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2951. #endif
  2952. #endif
  2953. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2954. unsigned long lastMotorCheck = 0;
  2955. void controllerFan()
  2956. {
  2957. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2958. {
  2959. lastMotorCheck = millis();
  2960. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2961. #if EXTRUDERS > 2
  2962. || !READ(E2_ENABLE_PIN)
  2963. #endif
  2964. #if EXTRUDER > 1
  2965. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2966. || !READ(X2_ENABLE_PIN)
  2967. #endif
  2968. || !READ(E1_ENABLE_PIN)
  2969. #endif
  2970. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2971. {
  2972. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2973. }
  2974. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2975. {
  2976. digitalWrite(CONTROLLERFAN_PIN, 0);
  2977. analogWrite(CONTROLLERFAN_PIN, 0);
  2978. }
  2979. else
  2980. {
  2981. // allows digital or PWM fan output to be used (see M42 handling)
  2982. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2983. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2984. }
  2985. }
  2986. }
  2987. #endif
  2988. #ifdef TEMP_STAT_LEDS
  2989. static bool blue_led = false;
  2990. static bool red_led = false;
  2991. static uint32_t stat_update = 0;
  2992. void handle_status_leds(void) {
  2993. float max_temp = 0.0;
  2994. if(millis() > stat_update) {
  2995. stat_update += 500; // Update every 0.5s
  2996. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2997. max_temp = max(max_temp, degHotend(cur_extruder));
  2998. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2999. }
  3000. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3001. max_temp = max(max_temp, degTargetBed());
  3002. max_temp = max(max_temp, degBed());
  3003. #endif
  3004. if((max_temp > 55.0) && (red_led == false)) {
  3005. digitalWrite(STAT_LED_RED, 1);
  3006. digitalWrite(STAT_LED_BLUE, 0);
  3007. red_led = true;
  3008. blue_led = false;
  3009. }
  3010. if((max_temp < 54.0) && (blue_led == false)) {
  3011. digitalWrite(STAT_LED_RED, 0);
  3012. digitalWrite(STAT_LED_BLUE, 1);
  3013. red_led = false;
  3014. blue_led = true;
  3015. }
  3016. }
  3017. }
  3018. #endif
  3019. void manage_inactivity()
  3020. {
  3021. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3022. if(max_inactive_time)
  3023. kill();
  3024. if(stepper_inactive_time) {
  3025. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3026. {
  3027. if(blocks_queued() == false) {
  3028. disable_x();
  3029. disable_y();
  3030. disable_z();
  3031. disable_e0();
  3032. disable_e1();
  3033. disable_e2();
  3034. }
  3035. }
  3036. }
  3037. #if defined(KILL_PIN) && KILL_PIN > -1
  3038. if( 0 == READ(KILL_PIN) )
  3039. kill();
  3040. #endif
  3041. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3042. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3043. #endif
  3044. #ifdef EXTRUDER_RUNOUT_PREVENT
  3045. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3046. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3047. {
  3048. bool oldstatus=READ(E0_ENABLE_PIN);
  3049. enable_e0();
  3050. float oldepos=current_position[E_AXIS];
  3051. float oldedes=destination[E_AXIS];
  3052. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3053. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3054. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3055. current_position[E_AXIS]=oldepos;
  3056. destination[E_AXIS]=oldedes;
  3057. plan_set_e_position(oldepos);
  3058. previous_millis_cmd=millis();
  3059. st_synchronize();
  3060. WRITE(E0_ENABLE_PIN,oldstatus);
  3061. }
  3062. #endif
  3063. #if defined(DUAL_X_CARRIAGE)
  3064. // handle delayed move timeout
  3065. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3066. {
  3067. // travel moves have been received so enact them
  3068. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3069. memcpy(destination,current_position,sizeof(destination));
  3070. prepare_move();
  3071. }
  3072. #endif
  3073. #ifdef TEMP_STAT_LEDS
  3074. handle_status_leds();
  3075. #endif
  3076. check_axes_activity();
  3077. }
  3078. void kill()
  3079. {
  3080. cli(); // Stop interrupts
  3081. disable_heater();
  3082. disable_x();
  3083. disable_y();
  3084. disable_z();
  3085. disable_e0();
  3086. disable_e1();
  3087. disable_e2();
  3088. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3089. pinMode(PS_ON_PIN,INPUT);
  3090. #endif
  3091. SERIAL_ERROR_START;
  3092. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3093. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3094. suicide();
  3095. while(1) { /* Intentionally left empty */ } // Wait for reset
  3096. }
  3097. void Stop()
  3098. {
  3099. disable_heater();
  3100. if(Stopped == false) {
  3101. Stopped = true;
  3102. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3103. SERIAL_ERROR_START;
  3104. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3105. LCD_MESSAGEPGM(MSG_STOPPED);
  3106. }
  3107. }
  3108. bool IsStopped() { return Stopped; };
  3109. #ifdef FAST_PWM_FAN
  3110. void setPwmFrequency(uint8_t pin, int val)
  3111. {
  3112. val &= 0x07;
  3113. switch(digitalPinToTimer(pin))
  3114. {
  3115. #if defined(TCCR0A)
  3116. case TIMER0A:
  3117. case TIMER0B:
  3118. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3119. // TCCR0B |= val;
  3120. break;
  3121. #endif
  3122. #if defined(TCCR1A)
  3123. case TIMER1A:
  3124. case TIMER1B:
  3125. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3126. // TCCR1B |= val;
  3127. break;
  3128. #endif
  3129. #if defined(TCCR2)
  3130. case TIMER2:
  3131. case TIMER2:
  3132. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3133. TCCR2 |= val;
  3134. break;
  3135. #endif
  3136. #if defined(TCCR2A)
  3137. case TIMER2A:
  3138. case TIMER2B:
  3139. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3140. TCCR2B |= val;
  3141. break;
  3142. #endif
  3143. #if defined(TCCR3A)
  3144. case TIMER3A:
  3145. case TIMER3B:
  3146. case TIMER3C:
  3147. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3148. TCCR3B |= val;
  3149. break;
  3150. #endif
  3151. #if defined(TCCR4A)
  3152. case TIMER4A:
  3153. case TIMER4B:
  3154. case TIMER4C:
  3155. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3156. TCCR4B |= val;
  3157. break;
  3158. #endif
  3159. #if defined(TCCR5A)
  3160. case TIMER5A:
  3161. case TIMER5B:
  3162. case TIMER5C:
  3163. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3164. TCCR5B |= val;
  3165. break;
  3166. #endif
  3167. }
  3168. }
  3169. #endif //FAST_PWM_FAN
  3170. bool setTargetedHotend(int code){
  3171. tmp_extruder = active_extruder;
  3172. if(code_seen('T')) {
  3173. tmp_extruder = code_value();
  3174. if(tmp_extruder >= EXTRUDERS) {
  3175. SERIAL_ECHO_START;
  3176. switch(code){
  3177. case 104:
  3178. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3179. break;
  3180. case 105:
  3181. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3182. break;
  3183. case 109:
  3184. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3185. break;
  3186. case 218:
  3187. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3188. break;
  3189. }
  3190. SERIAL_ECHOLN(tmp_extruder);
  3191. return true;
  3192. }
  3193. }
  3194. return false;
  3195. }