My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G7 - Coordinated move between UBL mesh points (I & J)
  53. * G10 - Retract filament according to settings of M207
  54. * G11 - Retract recover filament according to settings of M208
  55. * G12 - Clean tool
  56. * G20 - Set input units to inches
  57. * G21 - Set input units to millimeters
  58. * G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
  59. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  60. * G28 - Home one or more axes
  61. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  62. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  63. * G31 - Dock sled (Z_PROBE_SLED only)
  64. * G32 - Undock sled (Z_PROBE_SLED only)
  65. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  66. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  67. * G90 - Use Absolute Coordinates
  68. * G91 - Use Relative Coordinates
  69. * G92 - Set current position to coordinates given
  70. *
  71. * "M" Codes
  72. *
  73. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  74. * M1 - Same as M0
  75. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  76. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  77. * M5 - Turn laser/spindle off
  78. * M17 - Enable/Power all stepper motors
  79. * M18 - Disable all stepper motors; same as M84
  80. * M20 - List SD card. (Requires SDSUPPORT)
  81. * M21 - Init SD card. (Requires SDSUPPORT)
  82. * M22 - Release SD card. (Requires SDSUPPORT)
  83. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  84. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  85. * M25 - Pause SD print. (Requires SDSUPPORT)
  86. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  87. * M27 - Report SD print status. (Requires SDSUPPORT)
  88. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  89. * M29 - Stop SD write. (Requires SDSUPPORT)
  90. * M30 - Delete file from SD: "M30 /path/file.gco"
  91. * M31 - Report time since last M109 or SD card start to serial.
  92. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  93. * Use P to run other files as sub-programs: "M32 P !filename#"
  94. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  96. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  97. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  98. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  99. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  100. * M75 - Start the print job timer.
  101. * M76 - Pause the print job timer.
  102. * M77 - Stop the print job timer.
  103. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  104. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  105. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  106. * M82 - Set E codes absolute (default).
  107. * M83 - Set E codes relative while in Absolute (G90) mode.
  108. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  109. * duration after which steppers should turn off. S0 disables the timeout.
  110. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  111. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  112. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  113. * M104 - Set extruder target temp.
  114. * M105 - Report current temperatures.
  115. * M106 - Fan on.
  116. * M107 - Fan off.
  117. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  118. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  119. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  120. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  121. * M110 - Set the current line number. (Used by host printing)
  122. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  123. * M112 - Emergency stop.
  124. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  125. * M114 - Report current position.
  126. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  127. * M117 - Display a message on the controller screen. (Requires an LCD)
  128. * M119 - Report endstops status.
  129. * M120 - Enable endstops detection.
  130. * M121 - Disable endstops detection.
  131. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  132. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  133. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  134. * M128 - EtoP Open. (Requires BARICUDA)
  135. * M129 - EtoP Closed. (Requires BARICUDA)
  136. * M140 - Set bed target temp. S<temp>
  137. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  138. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  139. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  140. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  141. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  142. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  143. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  144. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  145. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  146. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  147. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  148. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  149. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  150. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  151. * M205 - Set advanced settings. Current units apply:
  152. S<print> T<travel> minimum speeds
  153. B<minimum segment time>
  154. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  155. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  156. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  157. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  158. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  159. Every normal extrude-only move will be classified as retract depending on the direction.
  160. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  161. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  162. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  163. * M221 - Set Flow Percentage: "M221 S<percent>"
  164. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  165. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  166. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  167. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  168. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  169. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  170. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  171. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  172. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  173. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  174. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  175. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  176. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  177. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  178. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  179. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  180. * M400 - Finish all moves.
  181. * M401 - Lower Z probe. (Requires a probe)
  182. * M402 - Raise Z probe. (Requires a probe)
  183. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  184. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  185. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  186. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  187. * M410 - Quickstop. Abort all planned moves.
  188. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  189. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  190. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  191. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  192. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  193. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  194. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  195. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  196. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  197. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  198. * M666 - Set delta endstop adjustment. (Requires DELTA)
  199. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  200. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  201. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  202. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  203. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  204. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  205. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  206. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  207. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  208. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  209. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  210. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  211. *
  212. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  213. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  214. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  215. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  216. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  217. *
  218. * ************ Custom codes - This can change to suit future G-code regulations
  219. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  220. * M999 - Restart after being stopped by error
  221. *
  222. * "T" Codes
  223. *
  224. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  225. *
  226. */
  227. #include "Marlin.h"
  228. #include "ultralcd.h"
  229. #include "planner.h"
  230. #include "stepper.h"
  231. #include "endstops.h"
  232. #include "temperature.h"
  233. #include "cardreader.h"
  234. #include "configuration_store.h"
  235. #include "language.h"
  236. #include "pins_arduino.h"
  237. #include "math.h"
  238. #include "nozzle.h"
  239. #include "duration_t.h"
  240. #include "types.h"
  241. #if HAS_ABL
  242. #include "vector_3.h"
  243. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  244. #include "qr_solve.h"
  245. #endif
  246. #elif ENABLED(MESH_BED_LEVELING)
  247. #include "mesh_bed_leveling.h"
  248. #endif
  249. #if ENABLED(BEZIER_CURVE_SUPPORT)
  250. #include "planner_bezier.h"
  251. #endif
  252. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  253. #include "buzzer.h"
  254. #endif
  255. #if ENABLED(USE_WATCHDOG)
  256. #include "watchdog.h"
  257. #endif
  258. #if ENABLED(BLINKM)
  259. #include "blinkm.h"
  260. #include "Wire.h"
  261. #endif
  262. #if HAS_SERVOS
  263. #include "servo.h"
  264. #endif
  265. #if HAS_DIGIPOTSS
  266. #include <SPI.h>
  267. #endif
  268. #if ENABLED(DAC_STEPPER_CURRENT)
  269. #include "stepper_dac.h"
  270. #endif
  271. #if ENABLED(EXPERIMENTAL_I2CBUS)
  272. #include "twibus.h"
  273. #endif
  274. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  275. #include "endstop_interrupts.h"
  276. #endif
  277. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  278. void gcode_M100();
  279. void M100_dump_routine(const char * const title, const char *start, const char *end);
  280. #endif
  281. #if ENABLED(SDSUPPORT)
  282. CardReader card;
  283. #endif
  284. #if ENABLED(EXPERIMENTAL_I2CBUS)
  285. TWIBus i2c;
  286. #endif
  287. #if ENABLED(G38_PROBE_TARGET)
  288. bool G38_move = false,
  289. G38_endstop_hit = false;
  290. #endif
  291. #if ENABLED(AUTO_BED_LEVELING_UBL)
  292. #include "ubl.h"
  293. unified_bed_leveling ubl;
  294. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  295. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  296. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  297. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  298. || isnan(ubl.z_values[0][0]))
  299. #endif
  300. bool Running = true;
  301. uint8_t marlin_debug_flags = DEBUG_NONE;
  302. /**
  303. * Cartesian Current Position
  304. * Used to track the logical position as moves are queued.
  305. * Used by 'line_to_current_position' to do a move after changing it.
  306. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  307. */
  308. float current_position[XYZE] = { 0.0 };
  309. /**
  310. * Cartesian Destination
  311. * A temporary position, usually applied to 'current_position'.
  312. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  313. * 'line_to_destination' sets 'current_position' to 'destination'.
  314. */
  315. float destination[XYZE] = { 0.0 };
  316. /**
  317. * axis_homed
  318. * Flags that each linear axis was homed.
  319. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  320. *
  321. * axis_known_position
  322. * Flags that the position is known in each linear axis. Set when homed.
  323. * Cleared whenever a stepper powers off, potentially losing its position.
  324. */
  325. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  326. /**
  327. * GCode line number handling. Hosts may opt to include line numbers when
  328. * sending commands to Marlin, and lines will be checked for sequentiality.
  329. * M110 N<int> sets the current line number.
  330. */
  331. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  332. /**
  333. * GCode Command Queue
  334. * A simple ring buffer of BUFSIZE command strings.
  335. *
  336. * Commands are copied into this buffer by the command injectors
  337. * (immediate, serial, sd card) and they are processed sequentially by
  338. * the main loop. The process_next_command function parses the next
  339. * command and hands off execution to individual handler functions.
  340. */
  341. uint8_t commands_in_queue = 0; // Count of commands in the queue
  342. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  343. cmd_queue_index_w = 0; // Ring buffer write position
  344. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  345. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  346. #else // This can be collapsed back to the way it was soon.
  347. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  348. #endif
  349. /**
  350. * Current GCode Command
  351. * When a GCode handler is running, these will be set
  352. */
  353. static char *current_command, // The command currently being executed
  354. *current_command_args, // The address where arguments begin
  355. *seen_pointer; // Set by code_seen(), used by the code_value functions
  356. /**
  357. * Next Injected Command pointer. NULL if no commands are being injected.
  358. * Used by Marlin internally to ensure that commands initiated from within
  359. * are enqueued ahead of any pending serial or sd card commands.
  360. */
  361. static const char *injected_commands_P = NULL;
  362. #if ENABLED(INCH_MODE_SUPPORT)
  363. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  364. #endif
  365. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  366. TempUnit input_temp_units = TEMPUNIT_C;
  367. #endif
  368. /**
  369. * Feed rates are often configured with mm/m
  370. * but the planner and stepper like mm/s units.
  371. */
  372. float constexpr homing_feedrate_mm_s[] = {
  373. #if ENABLED(DELTA)
  374. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  375. #else
  376. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  377. #endif
  378. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  379. };
  380. float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  381. int feedrate_percentage = 100, saved_feedrate_percentage,
  382. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  383. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  384. volumetric_enabled =
  385. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  386. true
  387. #else
  388. false
  389. #endif
  390. ;
  391. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  392. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  393. #if HAS_WORKSPACE_OFFSET
  394. #if HAS_POSITION_SHIFT
  395. // The distance that XYZ has been offset by G92. Reset by G28.
  396. float position_shift[XYZ] = { 0 };
  397. #endif
  398. #if HAS_HOME_OFFSET
  399. // This offset is added to the configured home position.
  400. // Set by M206, M428, or menu item. Saved to EEPROM.
  401. float home_offset[XYZ] = { 0 };
  402. #endif
  403. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  404. // The above two are combined to save on computes
  405. float workspace_offset[XYZ] = { 0 };
  406. #endif
  407. #endif
  408. // Software Endstops are based on the configured limits.
  409. #if HAS_SOFTWARE_ENDSTOPS
  410. bool soft_endstops_enabled = true;
  411. #endif
  412. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  413. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  414. #if FAN_COUNT > 0
  415. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  416. #if ENABLED(PROBING_FANS_OFF)
  417. bool fans_paused = false;
  418. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  419. #endif
  420. #endif
  421. // The active extruder (tool). Set with T<extruder> command.
  422. uint8_t active_extruder = 0;
  423. // Relative Mode. Enable with G91, disable with G90.
  424. static bool relative_mode = false;
  425. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  426. volatile bool wait_for_heatup = true;
  427. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  428. #if HAS_RESUME_CONTINUE
  429. volatile bool wait_for_user = false;
  430. #endif
  431. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  432. // Number of characters read in the current line of serial input
  433. static int serial_count = 0;
  434. // Inactivity shutdown
  435. millis_t previous_cmd_ms = 0;
  436. static millis_t max_inactive_time = 0;
  437. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  438. // Print Job Timer
  439. #if ENABLED(PRINTCOUNTER)
  440. PrintCounter print_job_timer = PrintCounter();
  441. #else
  442. Stopwatch print_job_timer = Stopwatch();
  443. #endif
  444. // Buzzer - I2C on the LCD or a BEEPER_PIN
  445. #if ENABLED(LCD_USE_I2C_BUZZER)
  446. #define BUZZ(d,f) lcd_buzz(d, f)
  447. #elif PIN_EXISTS(BEEPER)
  448. Buzzer buzzer;
  449. #define BUZZ(d,f) buzzer.tone(d, f)
  450. #else
  451. #define BUZZ(d,f) NOOP
  452. #endif
  453. static uint8_t target_extruder;
  454. #if HAS_BED_PROBE
  455. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  456. #endif
  457. #if HAS_ABL
  458. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  459. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  460. #elif defined(XY_PROBE_SPEED)
  461. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  462. #else
  463. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  464. #endif
  465. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  466. #if ENABLED(DELTA)
  467. #define ADJUST_DELTA(V) \
  468. if (planner.abl_enabled) { \
  469. const float zadj = bilinear_z_offset(V); \
  470. delta[A_AXIS] += zadj; \
  471. delta[B_AXIS] += zadj; \
  472. delta[C_AXIS] += zadj; \
  473. }
  474. #else
  475. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  476. #endif
  477. #elif IS_KINEMATIC
  478. #define ADJUST_DELTA(V) NOOP
  479. #endif
  480. #if ENABLED(Z_DUAL_ENDSTOPS)
  481. float z_endstop_adj =
  482. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  483. Z_DUAL_ENDSTOPS_ADJUSTMENT
  484. #else
  485. 0
  486. #endif
  487. ;
  488. #endif
  489. // Extruder offsets
  490. #if HOTENDS > 1
  491. float hotend_offset[XYZ][HOTENDS];
  492. #endif
  493. #if HAS_Z_SERVO_ENDSTOP
  494. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  495. #endif
  496. #if ENABLED(BARICUDA)
  497. int baricuda_valve_pressure = 0;
  498. int baricuda_e_to_p_pressure = 0;
  499. #endif
  500. #if ENABLED(FWRETRACT)
  501. bool autoretract_enabled = false;
  502. bool retracted[EXTRUDERS] = { false };
  503. bool retracted_swap[EXTRUDERS] = { false };
  504. float retract_length = RETRACT_LENGTH;
  505. float retract_length_swap = RETRACT_LENGTH_SWAP;
  506. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  507. float retract_zlift = RETRACT_ZLIFT;
  508. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  509. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  510. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  511. #endif // FWRETRACT
  512. #if HAS_POWER_SWITCH
  513. bool powersupply_on =
  514. #if ENABLED(PS_DEFAULT_OFF)
  515. false
  516. #else
  517. true
  518. #endif
  519. ;
  520. #endif
  521. #if HAS_CASE_LIGHT
  522. bool case_light_on =
  523. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  524. true
  525. #else
  526. false
  527. #endif
  528. ;
  529. #endif
  530. #if ENABLED(DELTA)
  531. float delta[ABC],
  532. endstop_adj[ABC] = { 0 };
  533. // These values are loaded or reset at boot time when setup() calls
  534. // settings.load(), which calls recalc_delta_settings().
  535. float delta_radius,
  536. delta_tower_angle_trim[2],
  537. delta_tower[ABC][2],
  538. delta_diagonal_rod,
  539. delta_calibration_radius,
  540. delta_diagonal_rod_2_tower[ABC],
  541. delta_segments_per_second,
  542. delta_clip_start_height = Z_MAX_POS;
  543. float delta_safe_distance_from_top();
  544. #endif
  545. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  546. int bilinear_grid_spacing[2], bilinear_start[2];
  547. float bilinear_grid_factor[2],
  548. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  549. #endif
  550. #if IS_SCARA
  551. // Float constants for SCARA calculations
  552. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  553. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  554. L2_2 = sq(float(L2));
  555. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  556. delta[ABC];
  557. #endif
  558. float cartes[XYZ] = { 0 };
  559. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  560. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  561. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  562. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  563. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  564. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  565. int meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
  566. #endif
  567. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  568. static bool filament_ran_out = false;
  569. #endif
  570. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  571. FilamentChangeMenuResponse filament_change_menu_response;
  572. #endif
  573. #if ENABLED(MIXING_EXTRUDER)
  574. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  575. #if MIXING_VIRTUAL_TOOLS > 1
  576. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  577. #endif
  578. #endif
  579. static bool send_ok[BUFSIZE];
  580. #if HAS_SERVOS
  581. Servo servo[NUM_SERVOS];
  582. #define MOVE_SERVO(I, P) servo[I].move(P)
  583. #if HAS_Z_SERVO_ENDSTOP
  584. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  585. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  586. #endif
  587. #endif
  588. #ifdef CHDK
  589. millis_t chdkHigh = 0;
  590. bool chdkActive = false;
  591. #endif
  592. #ifdef AUTOMATIC_CURRENT_CONTROL
  593. bool auto_current_control = 0;
  594. #endif
  595. #if ENABLED(PID_EXTRUSION_SCALING)
  596. int lpq_len = 20;
  597. #endif
  598. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  599. MarlinBusyState busy_state = NOT_BUSY;
  600. static millis_t next_busy_signal_ms = 0;
  601. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  602. #else
  603. #define host_keepalive() NOOP
  604. #endif
  605. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  606. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  607. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  608. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  609. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  610. typedef void __void_##CONFIG##__
  611. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  612. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  613. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  614. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  615. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  616. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  617. /**
  618. * ***************************************************************************
  619. * ******************************** FUNCTIONS ********************************
  620. * ***************************************************************************
  621. */
  622. void stop();
  623. void get_available_commands();
  624. void process_next_command();
  625. void prepare_move_to_destination();
  626. void get_cartesian_from_steppers();
  627. void set_current_from_steppers_for_axis(const AxisEnum axis);
  628. #if ENABLED(ARC_SUPPORT)
  629. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  630. #endif
  631. #if ENABLED(BEZIER_CURVE_SUPPORT)
  632. void plan_cubic_move(const float offset[4]);
  633. #endif
  634. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  635. static void report_current_position();
  636. #if ENABLED(DEBUG_LEVELING_FEATURE)
  637. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  638. serialprintPGM(prefix);
  639. SERIAL_CHAR('(');
  640. SERIAL_ECHO(x);
  641. SERIAL_ECHOPAIR(", ", y);
  642. SERIAL_ECHOPAIR(", ", z);
  643. SERIAL_CHAR(')');
  644. suffix ? serialprintPGM(suffix) : SERIAL_EOL;
  645. }
  646. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  647. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  648. }
  649. #if HAS_ABL
  650. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  651. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  652. }
  653. #endif
  654. #define DEBUG_POS(SUFFIX,VAR) do { \
  655. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  656. #endif
  657. /**
  658. * sync_plan_position
  659. *
  660. * Set the planner/stepper positions directly from current_position with
  661. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  662. */
  663. inline void sync_plan_position() {
  664. #if ENABLED(DEBUG_LEVELING_FEATURE)
  665. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  666. #endif
  667. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  668. }
  669. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  670. #if IS_KINEMATIC
  671. inline void sync_plan_position_kinematic() {
  672. #if ENABLED(DEBUG_LEVELING_FEATURE)
  673. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  674. #endif
  675. planner.set_position_mm_kinematic(current_position);
  676. }
  677. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  678. #else
  679. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  680. #endif
  681. #if ENABLED(SDSUPPORT)
  682. #include "SdFatUtil.h"
  683. int freeMemory() { return SdFatUtil::FreeRam(); }
  684. #else
  685. extern "C" {
  686. extern char __bss_end;
  687. extern char __heap_start;
  688. extern void* __brkval;
  689. int freeMemory() {
  690. int free_memory;
  691. if ((int)__brkval == 0)
  692. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  693. else
  694. free_memory = ((int)&free_memory) - ((int)__brkval);
  695. return free_memory;
  696. }
  697. }
  698. #endif // !SDSUPPORT
  699. #if ENABLED(DIGIPOT_I2C)
  700. extern void digipot_i2c_set_current(int channel, float current);
  701. extern void digipot_i2c_init();
  702. #endif
  703. /**
  704. * Inject the next "immediate" command, when possible, onto the front of the queue.
  705. * Return true if any immediate commands remain to inject.
  706. */
  707. static bool drain_injected_commands_P() {
  708. if (injected_commands_P != NULL) {
  709. size_t i = 0;
  710. char c, cmd[30];
  711. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  712. cmd[sizeof(cmd) - 1] = '\0';
  713. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  714. cmd[i] = '\0';
  715. if (enqueue_and_echo_command(cmd)) // success?
  716. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  717. }
  718. return (injected_commands_P != NULL); // return whether any more remain
  719. }
  720. /**
  721. * Record one or many commands to run from program memory.
  722. * Aborts the current queue, if any.
  723. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  724. */
  725. void enqueue_and_echo_commands_P(const char* pgcode) {
  726. injected_commands_P = pgcode;
  727. drain_injected_commands_P(); // first command executed asap (when possible)
  728. }
  729. /**
  730. * Clear the Marlin command queue
  731. */
  732. void clear_command_queue() {
  733. cmd_queue_index_r = cmd_queue_index_w;
  734. commands_in_queue = 0;
  735. }
  736. /**
  737. * Once a new command is in the ring buffer, call this to commit it
  738. */
  739. inline void _commit_command(bool say_ok) {
  740. send_ok[cmd_queue_index_w] = say_ok;
  741. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  742. commands_in_queue++;
  743. }
  744. /**
  745. * Copy a command from RAM into the main command buffer.
  746. * Return true if the command was successfully added.
  747. * Return false for a full buffer, or if the 'command' is a comment.
  748. */
  749. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  750. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  751. strcpy(command_queue[cmd_queue_index_w], cmd);
  752. _commit_command(say_ok);
  753. return true;
  754. }
  755. /**
  756. * Enqueue with Serial Echo
  757. */
  758. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  759. if (_enqueuecommand(cmd, say_ok)) {
  760. SERIAL_ECHO_START;
  761. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  762. SERIAL_CHAR('"');
  763. SERIAL_EOL;
  764. return true;
  765. }
  766. return false;
  767. }
  768. void setup_killpin() {
  769. #if HAS_KILL
  770. SET_INPUT_PULLUP(KILL_PIN);
  771. #endif
  772. }
  773. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  774. void setup_filrunoutpin() {
  775. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  776. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  777. #else
  778. SET_INPUT(FIL_RUNOUT_PIN);
  779. #endif
  780. }
  781. #endif
  782. void setup_homepin(void) {
  783. #if HAS_HOME
  784. SET_INPUT_PULLUP(HOME_PIN);
  785. #endif
  786. }
  787. void setup_powerhold() {
  788. #if HAS_SUICIDE
  789. OUT_WRITE(SUICIDE_PIN, HIGH);
  790. #endif
  791. #if HAS_POWER_SWITCH
  792. #if ENABLED(PS_DEFAULT_OFF)
  793. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  794. #else
  795. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  796. #endif
  797. #endif
  798. }
  799. void suicide() {
  800. #if HAS_SUICIDE
  801. OUT_WRITE(SUICIDE_PIN, LOW);
  802. #endif
  803. }
  804. void servo_init() {
  805. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  806. servo[0].attach(SERVO0_PIN);
  807. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  808. #endif
  809. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  810. servo[1].attach(SERVO1_PIN);
  811. servo[1].detach();
  812. #endif
  813. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  814. servo[2].attach(SERVO2_PIN);
  815. servo[2].detach();
  816. #endif
  817. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  818. servo[3].attach(SERVO3_PIN);
  819. servo[3].detach();
  820. #endif
  821. #if HAS_Z_SERVO_ENDSTOP
  822. /**
  823. * Set position of Z Servo Endstop
  824. *
  825. * The servo might be deployed and positioned too low to stow
  826. * when starting up the machine or rebooting the board.
  827. * There's no way to know where the nozzle is positioned until
  828. * homing has been done - no homing with z-probe without init!
  829. *
  830. */
  831. STOW_Z_SERVO();
  832. #endif
  833. }
  834. /**
  835. * Stepper Reset (RigidBoard, et.al.)
  836. */
  837. #if HAS_STEPPER_RESET
  838. void disableStepperDrivers() {
  839. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  840. }
  841. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  842. #endif
  843. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  844. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  845. i2c.receive(bytes);
  846. }
  847. void i2c_on_request() { // just send dummy data for now
  848. i2c.reply("Hello World!\n");
  849. }
  850. #endif
  851. #if HAS_COLOR_LEDS
  852. void set_led_color(
  853. const uint8_t r, const uint8_t g, const uint8_t b
  854. #if ENABLED(RGBW_LED)
  855. , const uint8_t w=0
  856. #endif
  857. ) {
  858. #if ENABLED(BLINKM)
  859. // This variant uses i2c to send the RGB components to the device.
  860. SendColors(r, g, b);
  861. #else
  862. // This variant uses 3 separate pins for the RGB components.
  863. // If the pins can do PWM then their intensity will be set.
  864. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  865. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  866. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  867. analogWrite(RGB_LED_R_PIN, r);
  868. analogWrite(RGB_LED_G_PIN, g);
  869. analogWrite(RGB_LED_B_PIN, b);
  870. #if ENABLED(RGBW_LED)
  871. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  872. analogWrite(RGB_LED_W_PIN, w);
  873. #endif
  874. #endif
  875. }
  876. #endif // HAS_COLOR_LEDS
  877. void gcode_line_error(const char* err, bool doFlush = true) {
  878. SERIAL_ERROR_START;
  879. serialprintPGM(err);
  880. SERIAL_ERRORLN(gcode_LastN);
  881. //Serial.println(gcode_N);
  882. if (doFlush) FlushSerialRequestResend();
  883. serial_count = 0;
  884. }
  885. /**
  886. * Get all commands waiting on the serial port and queue them.
  887. * Exit when the buffer is full or when no more characters are
  888. * left on the serial port.
  889. */
  890. inline void get_serial_commands() {
  891. static char serial_line_buffer[MAX_CMD_SIZE];
  892. static bool serial_comment_mode = false;
  893. // If the command buffer is empty for too long,
  894. // send "wait" to indicate Marlin is still waiting.
  895. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  896. static millis_t last_command_time = 0;
  897. const millis_t ms = millis();
  898. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  899. SERIAL_ECHOLNPGM(MSG_WAIT);
  900. last_command_time = ms;
  901. }
  902. #endif
  903. /**
  904. * Loop while serial characters are incoming and the queue is not full
  905. */
  906. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  907. char serial_char = MYSERIAL.read();
  908. /**
  909. * If the character ends the line
  910. */
  911. if (serial_char == '\n' || serial_char == '\r') {
  912. serial_comment_mode = false; // end of line == end of comment
  913. if (!serial_count) continue; // skip empty lines
  914. serial_line_buffer[serial_count] = 0; // terminate string
  915. serial_count = 0; //reset buffer
  916. char* command = serial_line_buffer;
  917. while (*command == ' ') command++; // skip any leading spaces
  918. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  919. char* apos = strchr(command, '*');
  920. if (npos) {
  921. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  922. if (M110) {
  923. char* n2pos = strchr(command + 4, 'N');
  924. if (n2pos) npos = n2pos;
  925. }
  926. gcode_N = strtol(npos + 1, NULL, 10);
  927. if (gcode_N != gcode_LastN + 1 && !M110) {
  928. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  929. return;
  930. }
  931. if (apos) {
  932. byte checksum = 0, count = 0;
  933. while (command[count] != '*') checksum ^= command[count++];
  934. if (strtol(apos + 1, NULL, 10) != checksum) {
  935. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  936. return;
  937. }
  938. // if no errors, continue parsing
  939. }
  940. else {
  941. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  942. return;
  943. }
  944. gcode_LastN = gcode_N;
  945. // if no errors, continue parsing
  946. }
  947. else if (apos) { // No '*' without 'N'
  948. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  949. return;
  950. }
  951. // Movement commands alert when stopped
  952. if (IsStopped()) {
  953. char* gpos = strchr(command, 'G');
  954. if (gpos) {
  955. const int codenum = strtol(gpos + 1, NULL, 10);
  956. switch (codenum) {
  957. case 0:
  958. case 1:
  959. case 2:
  960. case 3:
  961. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  962. LCD_MESSAGEPGM(MSG_STOPPED);
  963. break;
  964. }
  965. }
  966. }
  967. #if DISABLED(EMERGENCY_PARSER)
  968. // If command was e-stop process now
  969. if (strcmp(command, "M108") == 0) {
  970. wait_for_heatup = false;
  971. #if ENABLED(ULTIPANEL)
  972. wait_for_user = false;
  973. #endif
  974. }
  975. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  976. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  977. #endif
  978. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  979. last_command_time = ms;
  980. #endif
  981. // Add the command to the queue
  982. _enqueuecommand(serial_line_buffer, true);
  983. }
  984. else if (serial_count >= MAX_CMD_SIZE - 1) {
  985. // Keep fetching, but ignore normal characters beyond the max length
  986. // The command will be injected when EOL is reached
  987. }
  988. else if (serial_char == '\\') { // Handle escapes
  989. if (MYSERIAL.available() > 0) {
  990. // if we have one more character, copy it over
  991. serial_char = MYSERIAL.read();
  992. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  993. }
  994. // otherwise do nothing
  995. }
  996. else { // it's not a newline, carriage return or escape char
  997. if (serial_char == ';') serial_comment_mode = true;
  998. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  999. }
  1000. } // queue has space, serial has data
  1001. }
  1002. #if ENABLED(SDSUPPORT)
  1003. /**
  1004. * Get commands from the SD Card until the command buffer is full
  1005. * or until the end of the file is reached. The special character '#'
  1006. * can also interrupt buffering.
  1007. */
  1008. inline void get_sdcard_commands() {
  1009. static bool stop_buffering = false,
  1010. sd_comment_mode = false;
  1011. if (!card.sdprinting) return;
  1012. /**
  1013. * '#' stops reading from SD to the buffer prematurely, so procedural
  1014. * macro calls are possible. If it occurs, stop_buffering is triggered
  1015. * and the buffer is run dry; this character _can_ occur in serial com
  1016. * due to checksums, however, no checksums are used in SD printing.
  1017. */
  1018. if (commands_in_queue == 0) stop_buffering = false;
  1019. uint16_t sd_count = 0;
  1020. bool card_eof = card.eof();
  1021. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1022. const int16_t n = card.get();
  1023. char sd_char = (char)n;
  1024. card_eof = card.eof();
  1025. if (card_eof || n == -1
  1026. || sd_char == '\n' || sd_char == '\r'
  1027. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1028. ) {
  1029. if (card_eof) {
  1030. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1031. card.printingHasFinished();
  1032. #if ENABLED(PRINTER_EVENT_LEDS)
  1033. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1034. set_led_color(0, 255, 0); // Green
  1035. #if HAS_RESUME_CONTINUE
  1036. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1037. #else
  1038. safe_delay(1000);
  1039. #endif
  1040. set_led_color(0, 0, 0); // OFF
  1041. #endif
  1042. card.checkautostart(true);
  1043. }
  1044. else if (n == -1) {
  1045. SERIAL_ERROR_START;
  1046. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1047. }
  1048. if (sd_char == '#') stop_buffering = true;
  1049. sd_comment_mode = false; // for new command
  1050. if (!sd_count) continue; // skip empty lines (and comment lines)
  1051. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1052. sd_count = 0; // clear sd line buffer
  1053. _commit_command(false);
  1054. }
  1055. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1056. /**
  1057. * Keep fetching, but ignore normal characters beyond the max length
  1058. * The command will be injected when EOL is reached
  1059. */
  1060. }
  1061. else {
  1062. if (sd_char == ';') sd_comment_mode = true;
  1063. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1064. }
  1065. }
  1066. }
  1067. #endif // SDSUPPORT
  1068. /**
  1069. * Add to the circular command queue the next command from:
  1070. * - The command-injection queue (injected_commands_P)
  1071. * - The active serial input (usually USB)
  1072. * - The SD card file being actively printed
  1073. */
  1074. void get_available_commands() {
  1075. // if any immediate commands remain, don't get other commands yet
  1076. if (drain_injected_commands_P()) return;
  1077. get_serial_commands();
  1078. #if ENABLED(SDSUPPORT)
  1079. get_sdcard_commands();
  1080. #endif
  1081. }
  1082. inline bool code_has_value() {
  1083. int i = 1;
  1084. char c = seen_pointer[i];
  1085. while (c == ' ') c = seen_pointer[++i];
  1086. if (c == '-' || c == '+') c = seen_pointer[++i];
  1087. if (c == '.') c = seen_pointer[++i];
  1088. return NUMERIC(c);
  1089. }
  1090. inline float code_value_float() {
  1091. char* e = strchr(seen_pointer, 'E');
  1092. if (!e) return strtod(seen_pointer + 1, NULL);
  1093. *e = 0;
  1094. float ret = strtod(seen_pointer + 1, NULL);
  1095. *e = 'E';
  1096. return ret;
  1097. }
  1098. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1099. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1100. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1101. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1102. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1103. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1104. #if ENABLED(INCH_MODE_SUPPORT)
  1105. inline void set_input_linear_units(LinearUnit units) {
  1106. switch (units) {
  1107. case LINEARUNIT_INCH:
  1108. linear_unit_factor = 25.4;
  1109. break;
  1110. case LINEARUNIT_MM:
  1111. default:
  1112. linear_unit_factor = 1.0;
  1113. break;
  1114. }
  1115. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1116. }
  1117. inline float axis_unit_factor(const AxisEnum axis) {
  1118. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1119. }
  1120. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1121. inline float code_value_axis_units(const AxisEnum axis) { return code_value_float() * axis_unit_factor(axis); }
  1122. inline float code_value_per_axis_unit(const AxisEnum axis) { return code_value_float() / axis_unit_factor(axis); }
  1123. #endif
  1124. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1125. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1126. float to_temp_units(const float &c) {
  1127. switch (input_temp_units) {
  1128. case TEMPUNIT_F:
  1129. return c * 0.5555555556 + 32.0;
  1130. case TEMPUNIT_K:
  1131. return c + 273.15;
  1132. case TEMPUNIT_C:
  1133. default:
  1134. return c;
  1135. }
  1136. }
  1137. int16_t code_value_temp_abs() {
  1138. const float c = code_value_float();
  1139. switch (input_temp_units) {
  1140. case TEMPUNIT_F:
  1141. return (int16_t)((c - 32.0) * 0.5555555556);
  1142. case TEMPUNIT_K:
  1143. return (int16_t)(c - 273.15);
  1144. case TEMPUNIT_C:
  1145. default:
  1146. return (int16_t)(c);
  1147. }
  1148. }
  1149. int16_t code_value_temp_diff() {
  1150. switch (input_temp_units) {
  1151. case TEMPUNIT_F:
  1152. return code_value_float() * 0.5555555556;
  1153. case TEMPUNIT_C:
  1154. case TEMPUNIT_K:
  1155. default:
  1156. return code_value_float();
  1157. }
  1158. }
  1159. #else
  1160. int16_t code_value_temp_abs() { return code_value_int(); }
  1161. int16_t code_value_temp_diff() { return code_value_int(); }
  1162. #endif
  1163. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1164. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1165. bool code_seen(char code) {
  1166. seen_pointer = strchr(current_command_args, code);
  1167. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1168. }
  1169. /**
  1170. * Set target_extruder from the T parameter or the active_extruder
  1171. *
  1172. * Returns TRUE if the target is invalid
  1173. */
  1174. bool get_target_extruder_from_command(int code) {
  1175. if (code_seen('T')) {
  1176. if (code_value_byte() >= EXTRUDERS) {
  1177. SERIAL_ECHO_START;
  1178. SERIAL_CHAR('M');
  1179. SERIAL_ECHO(code);
  1180. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1181. return true;
  1182. }
  1183. target_extruder = code_value_byte();
  1184. }
  1185. else
  1186. target_extruder = active_extruder;
  1187. return false;
  1188. }
  1189. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1190. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1191. #endif
  1192. #if ENABLED(DUAL_X_CARRIAGE)
  1193. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1194. static float x_home_pos(const int extruder) {
  1195. if (extruder == 0)
  1196. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1197. else
  1198. /**
  1199. * In dual carriage mode the extruder offset provides an override of the
  1200. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1201. * This allows soft recalibration of the second extruder home position
  1202. * without firmware reflash (through the M218 command).
  1203. */
  1204. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1205. }
  1206. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1207. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1208. static bool active_extruder_parked = false; // used in mode 1 & 2
  1209. static float raised_parked_position[XYZE]; // used in mode 1
  1210. static millis_t delayed_move_time = 0; // used in mode 1
  1211. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1212. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1213. #endif // DUAL_X_CARRIAGE
  1214. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1215. /**
  1216. * Software endstops can be used to monitor the open end of
  1217. * an axis that has a hardware endstop on the other end. Or
  1218. * they can prevent axes from moving past endstops and grinding.
  1219. *
  1220. * To keep doing their job as the coordinate system changes,
  1221. * the software endstop positions must be refreshed to remain
  1222. * at the same positions relative to the machine.
  1223. */
  1224. void update_software_endstops(const AxisEnum axis) {
  1225. const float offs = 0.0
  1226. #if HAS_HOME_OFFSET
  1227. + home_offset[axis]
  1228. #endif
  1229. #if HAS_POSITION_SHIFT
  1230. + position_shift[axis]
  1231. #endif
  1232. ;
  1233. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1234. workspace_offset[axis] = offs;
  1235. #endif
  1236. #if ENABLED(DUAL_X_CARRIAGE)
  1237. if (axis == X_AXIS) {
  1238. // In Dual X mode hotend_offset[X] is T1's home position
  1239. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1240. if (active_extruder != 0) {
  1241. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1242. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1243. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1244. }
  1245. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1246. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1247. // but not so far to the right that T1 would move past the end
  1248. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1249. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1250. }
  1251. else {
  1252. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1253. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1254. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1255. }
  1256. }
  1257. #else
  1258. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1259. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1260. #endif
  1261. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1262. if (DEBUGGING(LEVELING)) {
  1263. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1264. #if HAS_HOME_OFFSET
  1265. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1266. #endif
  1267. #if HAS_POSITION_SHIFT
  1268. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1269. #endif
  1270. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1271. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1272. }
  1273. #endif
  1274. #if ENABLED(DELTA)
  1275. if (axis == Z_AXIS)
  1276. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1277. #endif
  1278. }
  1279. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1280. #if HAS_M206_COMMAND
  1281. /**
  1282. * Change the home offset for an axis, update the current
  1283. * position and the software endstops to retain the same
  1284. * relative distance to the new home.
  1285. *
  1286. * Since this changes the current_position, code should
  1287. * call sync_plan_position soon after this.
  1288. */
  1289. static void set_home_offset(const AxisEnum axis, const float v) {
  1290. current_position[axis] += v - home_offset[axis];
  1291. home_offset[axis] = v;
  1292. update_software_endstops(axis);
  1293. }
  1294. #endif // HAS_M206_COMMAND
  1295. /**
  1296. * Set an axis' current position to its home position (after homing).
  1297. *
  1298. * For Core and Cartesian robots this applies one-to-one when an
  1299. * individual axis has been homed.
  1300. *
  1301. * DELTA should wait until all homing is done before setting the XYZ
  1302. * current_position to home, because homing is a single operation.
  1303. * In the case where the axis positions are already known and previously
  1304. * homed, DELTA could home to X or Y individually by moving either one
  1305. * to the center. However, homing Z always homes XY and Z.
  1306. *
  1307. * SCARA should wait until all XY homing is done before setting the XY
  1308. * current_position to home, because neither X nor Y is at home until
  1309. * both are at home. Z can however be homed individually.
  1310. *
  1311. * Callers must sync the planner position after calling this!
  1312. */
  1313. static void set_axis_is_at_home(AxisEnum axis) {
  1314. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1315. if (DEBUGGING(LEVELING)) {
  1316. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1317. SERIAL_CHAR(')');
  1318. SERIAL_EOL;
  1319. }
  1320. #endif
  1321. axis_known_position[axis] = axis_homed[axis] = true;
  1322. #if HAS_POSITION_SHIFT
  1323. position_shift[axis] = 0;
  1324. update_software_endstops(axis);
  1325. #endif
  1326. #if ENABLED(DUAL_X_CARRIAGE)
  1327. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1328. current_position[X_AXIS] = x_home_pos(active_extruder);
  1329. return;
  1330. }
  1331. #endif
  1332. #if ENABLED(MORGAN_SCARA)
  1333. /**
  1334. * Morgan SCARA homes XY at the same time
  1335. */
  1336. if (axis == X_AXIS || axis == Y_AXIS) {
  1337. float homeposition[XYZ];
  1338. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1339. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1340. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1341. /**
  1342. * Get Home position SCARA arm angles using inverse kinematics,
  1343. * and calculate homing offset using forward kinematics
  1344. */
  1345. inverse_kinematics(homeposition);
  1346. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1347. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1348. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1349. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1350. /**
  1351. * SCARA home positions are based on configuration since the actual
  1352. * limits are determined by the inverse kinematic transform.
  1353. */
  1354. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1355. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1356. }
  1357. else
  1358. #endif
  1359. {
  1360. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1361. }
  1362. /**
  1363. * Z Probe Z Homing? Account for the probe's Z offset.
  1364. */
  1365. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1366. if (axis == Z_AXIS) {
  1367. #if HOMING_Z_WITH_PROBE
  1368. current_position[Z_AXIS] -= zprobe_zoffset;
  1369. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1370. if (DEBUGGING(LEVELING)) {
  1371. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1372. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1373. }
  1374. #endif
  1375. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1376. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1377. #endif
  1378. }
  1379. #endif
  1380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1381. if (DEBUGGING(LEVELING)) {
  1382. #if HAS_HOME_OFFSET
  1383. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1384. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1385. #endif
  1386. DEBUG_POS("", current_position);
  1387. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1388. SERIAL_CHAR(')');
  1389. SERIAL_EOL;
  1390. }
  1391. #endif
  1392. }
  1393. /**
  1394. * Some planner shorthand inline functions
  1395. */
  1396. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1397. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1398. int hbd = homing_bump_divisor[axis];
  1399. if (hbd < 1) {
  1400. hbd = 10;
  1401. SERIAL_ECHO_START;
  1402. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1403. }
  1404. return homing_feedrate_mm_s[axis] / hbd;
  1405. }
  1406. //
  1407. // line_to_current_position
  1408. // Move the planner to the current position from wherever it last moved
  1409. // (or from wherever it has been told it is located).
  1410. //
  1411. inline void line_to_current_position() {
  1412. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1413. }
  1414. //
  1415. // line_to_destination
  1416. // Move the planner, not necessarily synced with current_position
  1417. //
  1418. inline void line_to_destination(float fr_mm_s) {
  1419. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1420. }
  1421. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1422. inline void set_current_to_destination() { COPY(current_position, destination); }
  1423. inline void set_destination_to_current() { COPY(destination, current_position); }
  1424. #if IS_KINEMATIC
  1425. /**
  1426. * Calculate delta, start a line, and set current_position to destination
  1427. */
  1428. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1429. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1430. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1431. #endif
  1432. if ( current_position[X_AXIS] == destination[X_AXIS]
  1433. && current_position[Y_AXIS] == destination[Y_AXIS]
  1434. && current_position[Z_AXIS] == destination[Z_AXIS]
  1435. && current_position[E_AXIS] == destination[E_AXIS]
  1436. ) return;
  1437. refresh_cmd_timeout();
  1438. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1439. set_current_to_destination();
  1440. }
  1441. #endif // IS_KINEMATIC
  1442. /**
  1443. * Plan a move to (X, Y, Z) and set the current_position
  1444. * The final current_position may not be the one that was requested
  1445. */
  1446. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1447. const float old_feedrate_mm_s = feedrate_mm_s;
  1448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1449. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1450. #endif
  1451. #if ENABLED(DELTA)
  1452. if (!position_is_reachable_xy(x, y)) return;
  1453. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1454. set_destination_to_current(); // sync destination at the start
  1455. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1456. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1457. #endif
  1458. // when in the danger zone
  1459. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1460. if (z > delta_clip_start_height) { // staying in the danger zone
  1461. destination[X_AXIS] = x; // move directly (uninterpolated)
  1462. destination[Y_AXIS] = y;
  1463. destination[Z_AXIS] = z;
  1464. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1466. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1467. #endif
  1468. return;
  1469. }
  1470. else {
  1471. destination[Z_AXIS] = delta_clip_start_height;
  1472. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1474. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1475. #endif
  1476. }
  1477. }
  1478. if (z > current_position[Z_AXIS]) { // raising?
  1479. destination[Z_AXIS] = z;
  1480. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1482. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1483. #endif
  1484. }
  1485. destination[X_AXIS] = x;
  1486. destination[Y_AXIS] = y;
  1487. prepare_move_to_destination(); // set_current_to_destination
  1488. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1489. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1490. #endif
  1491. if (z < current_position[Z_AXIS]) { // lowering?
  1492. destination[Z_AXIS] = z;
  1493. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1495. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1496. #endif
  1497. }
  1498. #elif IS_SCARA
  1499. if (!position_is_reachable_xy(x, y)) return;
  1500. set_destination_to_current();
  1501. // If Z needs to raise, do it before moving XY
  1502. if (destination[Z_AXIS] < z) {
  1503. destination[Z_AXIS] = z;
  1504. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1505. }
  1506. destination[X_AXIS] = x;
  1507. destination[Y_AXIS] = y;
  1508. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1509. // If Z needs to lower, do it after moving XY
  1510. if (destination[Z_AXIS] > z) {
  1511. destination[Z_AXIS] = z;
  1512. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1513. }
  1514. #else
  1515. // If Z needs to raise, do it before moving XY
  1516. if (current_position[Z_AXIS] < z) {
  1517. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1518. current_position[Z_AXIS] = z;
  1519. line_to_current_position();
  1520. }
  1521. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1522. current_position[X_AXIS] = x;
  1523. current_position[Y_AXIS] = y;
  1524. line_to_current_position();
  1525. // If Z needs to lower, do it after moving XY
  1526. if (current_position[Z_AXIS] > z) {
  1527. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1528. current_position[Z_AXIS] = z;
  1529. line_to_current_position();
  1530. }
  1531. #endif
  1532. stepper.synchronize();
  1533. feedrate_mm_s = old_feedrate_mm_s;
  1534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1535. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1536. #endif
  1537. }
  1538. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1539. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1540. }
  1541. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1542. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1543. }
  1544. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1545. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1546. }
  1547. //
  1548. // Prepare to do endstop or probe moves
  1549. // with custom feedrates.
  1550. //
  1551. // - Save current feedrates
  1552. // - Reset the rate multiplier
  1553. // - Reset the command timeout
  1554. // - Enable the endstops (for endstop moves)
  1555. //
  1556. static void setup_for_endstop_or_probe_move() {
  1557. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1558. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1559. #endif
  1560. saved_feedrate_mm_s = feedrate_mm_s;
  1561. saved_feedrate_percentage = feedrate_percentage;
  1562. feedrate_percentage = 100;
  1563. refresh_cmd_timeout();
  1564. }
  1565. static void clean_up_after_endstop_or_probe_move() {
  1566. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1567. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1568. #endif
  1569. feedrate_mm_s = saved_feedrate_mm_s;
  1570. feedrate_percentage = saved_feedrate_percentage;
  1571. refresh_cmd_timeout();
  1572. }
  1573. #if HAS_BED_PROBE
  1574. /**
  1575. * Raise Z to a minimum height to make room for a probe to move
  1576. */
  1577. inline void do_probe_raise(float z_raise) {
  1578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1579. if (DEBUGGING(LEVELING)) {
  1580. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1581. SERIAL_CHAR(')');
  1582. SERIAL_EOL;
  1583. }
  1584. #endif
  1585. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1586. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1587. #if ENABLED(DELTA)
  1588. z_dest -= home_offset[Z_AXIS];
  1589. #endif
  1590. if (z_dest > current_position[Z_AXIS])
  1591. do_blocking_move_to_z(z_dest);
  1592. }
  1593. #endif // HAS_BED_PROBE
  1594. #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
  1595. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1596. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1597. const bool xx = x && !axis_known_position[X_AXIS],
  1598. yy = y && !axis_known_position[Y_AXIS],
  1599. zz = z && !axis_known_position[Z_AXIS];
  1600. #else
  1601. const bool xx = x && !axis_homed[X_AXIS],
  1602. yy = y && !axis_homed[Y_AXIS],
  1603. zz = z && !axis_homed[Z_AXIS];
  1604. #endif
  1605. if (xx || yy || zz) {
  1606. SERIAL_ECHO_START;
  1607. SERIAL_ECHOPGM(MSG_HOME " ");
  1608. if (xx) SERIAL_ECHOPGM(MSG_X);
  1609. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1610. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1611. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1612. #if ENABLED(ULTRA_LCD)
  1613. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1614. #endif
  1615. return true;
  1616. }
  1617. return false;
  1618. }
  1619. #endif
  1620. #if ENABLED(Z_PROBE_SLED)
  1621. #ifndef SLED_DOCKING_OFFSET
  1622. #define SLED_DOCKING_OFFSET 0
  1623. #endif
  1624. /**
  1625. * Method to dock/undock a sled designed by Charles Bell.
  1626. *
  1627. * stow[in] If false, move to MAX_X and engage the solenoid
  1628. * If true, move to MAX_X and release the solenoid
  1629. */
  1630. static void dock_sled(bool stow) {
  1631. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1632. if (DEBUGGING(LEVELING)) {
  1633. SERIAL_ECHOPAIR("dock_sled(", stow);
  1634. SERIAL_CHAR(')');
  1635. SERIAL_EOL;
  1636. }
  1637. #endif
  1638. // Dock sled a bit closer to ensure proper capturing
  1639. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1640. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1641. WRITE(SOL1_PIN, !stow); // switch solenoid
  1642. #endif
  1643. }
  1644. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1645. void run_deploy_moves_script() {
  1646. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1647. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1648. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1651. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1652. #endif
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1658. #endif
  1659. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1660. #endif
  1661. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1662. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1663. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1666. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1667. #endif
  1668. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1669. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1672. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1673. #endif
  1674. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1675. #endif
  1676. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1677. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1678. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1679. #endif
  1680. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1681. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1682. #endif
  1683. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1684. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1687. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1688. #endif
  1689. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1690. #endif
  1691. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1692. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1693. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1694. #endif
  1695. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1696. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1697. #endif
  1698. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1699. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1700. #endif
  1701. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1702. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1703. #endif
  1704. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1705. #endif
  1706. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1707. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1708. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1709. #endif
  1710. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1711. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1712. #endif
  1713. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1714. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1715. #endif
  1716. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1717. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1718. #endif
  1719. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1720. #endif
  1721. }
  1722. void run_stow_moves_script() {
  1723. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1725. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1726. #endif
  1727. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1728. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1729. #endif
  1730. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1731. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1732. #endif
  1733. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1734. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1735. #endif
  1736. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1737. #endif
  1738. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1739. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1740. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1741. #endif
  1742. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1743. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1744. #endif
  1745. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1746. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1747. #endif
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1749. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1750. #endif
  1751. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1752. #endif
  1753. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1755. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1756. #endif
  1757. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1758. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1759. #endif
  1760. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1761. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1762. #endif
  1763. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1764. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1765. #endif
  1766. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1767. #endif
  1768. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1769. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1770. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1771. #endif
  1772. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1773. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1774. #endif
  1775. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1776. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1777. #endif
  1778. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1779. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1780. #endif
  1781. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1782. #endif
  1783. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1784. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1785. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1786. #endif
  1787. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1788. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1789. #endif
  1790. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1791. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1792. #endif
  1793. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1794. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1795. #endif
  1796. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1797. #endif
  1798. }
  1799. #endif
  1800. #if ENABLED(PROBING_FANS_OFF)
  1801. void fans_pause(const bool p) {
  1802. if (p != fans_paused) {
  1803. fans_paused = p;
  1804. if (p)
  1805. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1806. paused_fanSpeeds[x] = fanSpeeds[x];
  1807. fanSpeeds[x] = 0;
  1808. }
  1809. else
  1810. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1811. fanSpeeds[x] = paused_fanSpeeds[x];
  1812. }
  1813. }
  1814. #endif // PROBING_FANS_OFF
  1815. #if HAS_BED_PROBE
  1816. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1817. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1818. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1819. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1820. #else
  1821. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1822. #endif
  1823. #endif
  1824. #if QUIET_PROBING
  1825. void probing_pause(const bool p) {
  1826. #if ENABLED(PROBING_HEATERS_OFF)
  1827. thermalManager.pause(p);
  1828. #endif
  1829. #if ENABLED(PROBING_FANS_OFF)
  1830. fans_pause(p);
  1831. #endif
  1832. if (p) safe_delay(25);
  1833. }
  1834. #endif // QUIET_PROBING
  1835. #if ENABLED(BLTOUCH)
  1836. void bltouch_command(int angle) {
  1837. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1838. safe_delay(BLTOUCH_DELAY);
  1839. }
  1840. void set_bltouch_deployed(const bool deploy) {
  1841. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1842. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1843. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1844. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1845. safe_delay(1500); // Wait for internal self-test to complete.
  1846. // (Measured completion time was 0.65 seconds
  1847. // after reset, deploy, and stow sequence)
  1848. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1849. SERIAL_ERROR_START;
  1850. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1851. stop(); // punt!
  1852. }
  1853. }
  1854. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1856. if (DEBUGGING(LEVELING)) {
  1857. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1858. SERIAL_CHAR(')');
  1859. SERIAL_EOL;
  1860. }
  1861. #endif
  1862. }
  1863. #endif // BLTOUCH
  1864. // returns false for ok and true for failure
  1865. bool set_probe_deployed(bool deploy) {
  1866. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1867. if (DEBUGGING(LEVELING)) {
  1868. DEBUG_POS("set_probe_deployed", current_position);
  1869. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1870. }
  1871. #endif
  1872. if (endstops.z_probe_enabled == deploy) return false;
  1873. // Make room for probe
  1874. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1875. // When deploying make sure BLTOUCH is not already triggered
  1876. #if ENABLED(BLTOUCH)
  1877. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1878. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1879. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1880. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1881. safe_delay(1500); // wait for internal self test to complete
  1882. // measured completion time was 0.65 seconds
  1883. // after reset, deploy & stow sequence
  1884. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1885. SERIAL_ERROR_START;
  1886. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1887. stop(); // punt!
  1888. return true;
  1889. }
  1890. }
  1891. #elif ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1892. #if ENABLED(Z_PROBE_SLED)
  1893. #define _AUE_ARGS true, false, false
  1894. #else
  1895. #define _AUE_ARGS
  1896. #endif
  1897. if (axis_unhomed_error(_AUE_ARGS)) {
  1898. SERIAL_ERROR_START;
  1899. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1900. stop();
  1901. return true;
  1902. }
  1903. #endif
  1904. const float oldXpos = current_position[X_AXIS],
  1905. oldYpos = current_position[Y_AXIS];
  1906. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1907. // If endstop is already false, the Z probe is deployed
  1908. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1909. // Would a goto be less ugly?
  1910. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1911. // for a triggered when stowed manual probe.
  1912. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1913. // otherwise an Allen-Key probe can't be stowed.
  1914. #endif
  1915. #if ENABLED(SOLENOID_PROBE)
  1916. #if HAS_SOLENOID_1
  1917. WRITE(SOL1_PIN, deploy);
  1918. #endif
  1919. #elif ENABLED(Z_PROBE_SLED)
  1920. dock_sled(!deploy);
  1921. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1922. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1923. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1924. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1925. #endif
  1926. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1927. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1928. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1929. if (IsRunning()) {
  1930. SERIAL_ERROR_START;
  1931. SERIAL_ERRORLNPGM("Z-Probe failed");
  1932. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1933. }
  1934. stop();
  1935. return true;
  1936. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1937. #endif
  1938. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1939. endstops.enable_z_probe(deploy);
  1940. return false;
  1941. }
  1942. static void do_probe_move(float z, float fr_mm_m) {
  1943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1944. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1945. #endif
  1946. // Deploy BLTouch at the start of any probe
  1947. #if ENABLED(BLTOUCH)
  1948. set_bltouch_deployed(true);
  1949. #endif
  1950. #if QUIET_PROBING
  1951. probing_pause(true);
  1952. #endif
  1953. // Move down until probe triggered
  1954. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1955. #if QUIET_PROBING
  1956. probing_pause(false);
  1957. #endif
  1958. // Retract BLTouch immediately after a probe
  1959. #if ENABLED(BLTOUCH)
  1960. set_bltouch_deployed(false);
  1961. #endif
  1962. // Clear endstop flags
  1963. endstops.hit_on_purpose();
  1964. // Get Z where the steppers were interrupted
  1965. set_current_from_steppers_for_axis(Z_AXIS);
  1966. // Tell the planner where we actually are
  1967. SYNC_PLAN_POSITION_KINEMATIC();
  1968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1969. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1970. #endif
  1971. }
  1972. // Do a single Z probe and return with current_position[Z_AXIS]
  1973. // at the height where the probe triggered.
  1974. static float run_z_probe() {
  1975. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1976. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1977. #endif
  1978. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1979. refresh_cmd_timeout();
  1980. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1981. // Do a first probe at the fast speed
  1982. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1983. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1984. float first_probe_z = current_position[Z_AXIS];
  1985. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1986. #endif
  1987. // move up by the bump distance
  1988. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1989. #else
  1990. // If the nozzle is above the travel height then
  1991. // move down quickly before doing the slow probe
  1992. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1993. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1994. #if ENABLED(DELTA)
  1995. z -= home_offset[Z_AXIS];
  1996. #endif
  1997. if (z < current_position[Z_AXIS])
  1998. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1999. #endif
  2000. // move down slowly to find bed
  2001. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  2002. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2003. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  2004. #endif
  2005. // Debug: compare probe heights
  2006. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  2007. if (DEBUGGING(LEVELING)) {
  2008. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  2009. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2010. }
  2011. #endif
  2012. return current_position[Z_AXIS] + zprobe_zoffset;
  2013. }
  2014. /**
  2015. * - Move to the given XY
  2016. * - Deploy the probe, if not already deployed
  2017. * - Probe the bed, get the Z position
  2018. * - Depending on the 'stow' flag
  2019. * - Stow the probe, or
  2020. * - Raise to the BETWEEN height
  2021. * - Return the probed Z position
  2022. */
  2023. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  2024. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2025. if (DEBUGGING(LEVELING)) {
  2026. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  2027. SERIAL_ECHOPAIR(", ", y);
  2028. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2029. SERIAL_ECHOLNPGM("stow)");
  2030. DEBUG_POS("", current_position);
  2031. }
  2032. #endif
  2033. if (!position_is_reachable_by_probe_xy(x, y)) return NAN;
  2034. const float old_feedrate_mm_s = feedrate_mm_s;
  2035. #if ENABLED(DELTA)
  2036. if (current_position[Z_AXIS] > delta_clip_start_height)
  2037. do_blocking_move_to_z(delta_clip_start_height);
  2038. #endif
  2039. // Ensure a minimum height before moving the probe
  2040. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2041. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2042. // Move the probe to the given XY
  2043. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2044. if (DEPLOY_PROBE()) return NAN;
  2045. const float measured_z = run_z_probe();
  2046. if (!stow)
  2047. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2048. else
  2049. if (STOW_PROBE()) return NAN;
  2050. if (verbose_level > 2) {
  2051. SERIAL_PROTOCOLPGM("Bed X: ");
  2052. SERIAL_PROTOCOL_F(x, 3);
  2053. SERIAL_PROTOCOLPGM(" Y: ");
  2054. SERIAL_PROTOCOL_F(y, 3);
  2055. SERIAL_PROTOCOLPGM(" Z: ");
  2056. SERIAL_PROTOCOL_F(measured_z, 3);
  2057. SERIAL_EOL;
  2058. }
  2059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2060. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2061. #endif
  2062. feedrate_mm_s = old_feedrate_mm_s;
  2063. return measured_z;
  2064. }
  2065. #endif // HAS_BED_PROBE
  2066. #if HAS_LEVELING
  2067. /**
  2068. * Turn bed leveling on or off, fixing the current
  2069. * position as-needed.
  2070. *
  2071. * Disable: Current position = physical position
  2072. * Enable: Current position = "unleveled" physical position
  2073. */
  2074. void set_bed_leveling_enabled(bool enable/*=true*/) {
  2075. #if ENABLED(MESH_BED_LEVELING)
  2076. if (enable != mbl.active()) {
  2077. if (!enable)
  2078. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2079. mbl.set_active(enable && mbl.has_mesh());
  2080. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  2081. }
  2082. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2083. #if PLANNER_LEVELING
  2084. if (ubl.state.active != enable) {
  2085. if (!enable) // leveling from on to off
  2086. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2087. else
  2088. planner.unapply_leveling(current_position);
  2089. }
  2090. #endif
  2091. ubl.state.active = enable;
  2092. #else
  2093. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2094. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  2095. #else
  2096. constexpr bool can_change = true;
  2097. #endif
  2098. if (can_change && enable != planner.abl_enabled) {
  2099. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2100. // Force bilinear_z_offset to re-calculate next time
  2101. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2102. (void)bilinear_z_offset(reset);
  2103. #endif
  2104. planner.abl_enabled = enable;
  2105. if (!enable)
  2106. set_current_from_steppers_for_axis(
  2107. #if ABL_PLANAR
  2108. ALL_AXES
  2109. #else
  2110. Z_AXIS
  2111. #endif
  2112. );
  2113. else
  2114. planner.unapply_leveling(current_position);
  2115. }
  2116. #endif
  2117. }
  2118. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2119. void set_z_fade_height(const float zfh) {
  2120. planner.z_fade_height = zfh;
  2121. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2122. if (
  2123. #if ENABLED(MESH_BED_LEVELING)
  2124. mbl.active()
  2125. #else
  2126. planner.abl_enabled
  2127. #endif
  2128. ) {
  2129. set_current_from_steppers_for_axis(
  2130. #if ABL_PLANAR
  2131. ALL_AXES
  2132. #else
  2133. Z_AXIS
  2134. #endif
  2135. );
  2136. }
  2137. }
  2138. #endif // LEVELING_FADE_HEIGHT
  2139. /**
  2140. * Reset calibration results to zero.
  2141. */
  2142. void reset_bed_level() {
  2143. set_bed_leveling_enabled(false);
  2144. #if ENABLED(MESH_BED_LEVELING)
  2145. if (mbl.has_mesh()) {
  2146. mbl.reset();
  2147. mbl.set_has_mesh(false);
  2148. }
  2149. #else
  2150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2151. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2152. #endif
  2153. #if ABL_PLANAR
  2154. planner.bed_level_matrix.set_to_identity();
  2155. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2156. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2157. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2158. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2159. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2160. z_values[x][y] = NAN;
  2161. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2162. ubl.reset();
  2163. #endif
  2164. #endif
  2165. }
  2166. #endif // HAS_LEVELING
  2167. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2168. /**
  2169. * Enable to produce output in JSON format suitable
  2170. * for SCAD or JavaScript mesh visualizers.
  2171. *
  2172. * Visualize meshes in OpenSCAD using the included script.
  2173. *
  2174. * buildroot/shared/scripts/MarlinMesh.scad
  2175. */
  2176. //#define SCAD_MESH_OUTPUT
  2177. /**
  2178. * Print calibration results for plotting or manual frame adjustment.
  2179. */
  2180. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2181. #ifndef SCAD_MESH_OUTPUT
  2182. for (uint8_t x = 0; x < sx; x++) {
  2183. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2184. SERIAL_PROTOCOLCHAR(' ');
  2185. SERIAL_PROTOCOL((int)x);
  2186. }
  2187. SERIAL_EOL;
  2188. #endif
  2189. #ifdef SCAD_MESH_OUTPUT
  2190. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2191. #endif
  2192. for (uint8_t y = 0; y < sy; y++) {
  2193. #ifdef SCAD_MESH_OUTPUT
  2194. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2195. #else
  2196. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2197. SERIAL_PROTOCOL((int)y);
  2198. #endif
  2199. for (uint8_t x = 0; x < sx; x++) {
  2200. SERIAL_PROTOCOLCHAR(' ');
  2201. const float offset = fn(x, y);
  2202. if (!isnan(offset)) {
  2203. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2204. SERIAL_PROTOCOL_F(offset, precision);
  2205. }
  2206. else {
  2207. #ifdef SCAD_MESH_OUTPUT
  2208. for (uint8_t i = 3; i < precision + 3; i++)
  2209. SERIAL_PROTOCOLCHAR(' ');
  2210. SERIAL_PROTOCOLPGM("NAN");
  2211. #else
  2212. for (uint8_t i = 0; i < precision + 3; i++)
  2213. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2214. #endif
  2215. }
  2216. #ifdef SCAD_MESH_OUTPUT
  2217. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2218. #endif
  2219. }
  2220. #ifdef SCAD_MESH_OUTPUT
  2221. SERIAL_PROTOCOLCHAR(' ');
  2222. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2223. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2224. #endif
  2225. SERIAL_EOL;
  2226. }
  2227. #ifdef SCAD_MESH_OUTPUT
  2228. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2229. #endif
  2230. SERIAL_EOL;
  2231. }
  2232. #endif
  2233. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2234. /**
  2235. * Extrapolate a single point from its neighbors
  2236. */
  2237. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2238. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2239. if (DEBUGGING(LEVELING)) {
  2240. SERIAL_ECHOPGM("Extrapolate [");
  2241. if (x < 10) SERIAL_CHAR(' ');
  2242. SERIAL_ECHO((int)x);
  2243. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2244. SERIAL_CHAR(' ');
  2245. if (y < 10) SERIAL_CHAR(' ');
  2246. SERIAL_ECHO((int)y);
  2247. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2248. SERIAL_CHAR(']');
  2249. }
  2250. #endif
  2251. if (!isnan(z_values[x][y])) {
  2252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2253. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2254. #endif
  2255. return; // Don't overwrite good values.
  2256. }
  2257. SERIAL_EOL;
  2258. // Get X neighbors, Y neighbors, and XY neighbors
  2259. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2260. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2261. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2262. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2263. // Treat far unprobed points as zero, near as equal to far
  2264. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2265. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2266. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2267. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2268. // Take the average instead of the median
  2269. z_values[x][y] = (a + b + c) / 3.0;
  2270. // Median is robust (ignores outliers).
  2271. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2272. // : ((c < b) ? b : (a < c) ? a : c);
  2273. }
  2274. //Enable this if your SCARA uses 180° of total area
  2275. //#define EXTRAPOLATE_FROM_EDGE
  2276. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2277. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2278. #define HALF_IN_X
  2279. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2280. #define HALF_IN_Y
  2281. #endif
  2282. #endif
  2283. /**
  2284. * Fill in the unprobed points (corners of circular print surface)
  2285. * using linear extrapolation, away from the center.
  2286. */
  2287. static void extrapolate_unprobed_bed_level() {
  2288. #ifdef HALF_IN_X
  2289. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2290. #else
  2291. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2292. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2293. xlen = ctrx1;
  2294. #endif
  2295. #ifdef HALF_IN_Y
  2296. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2297. #else
  2298. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2299. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2300. ylen = ctry1;
  2301. #endif
  2302. for (uint8_t xo = 0; xo <= xlen; xo++)
  2303. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2304. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2305. #ifndef HALF_IN_X
  2306. const uint8_t x1 = ctrx1 - xo;
  2307. #endif
  2308. #ifndef HALF_IN_Y
  2309. const uint8_t y1 = ctry1 - yo;
  2310. #ifndef HALF_IN_X
  2311. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2312. #endif
  2313. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2314. #endif
  2315. #ifndef HALF_IN_X
  2316. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2317. #endif
  2318. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2319. }
  2320. }
  2321. static void print_bilinear_leveling_grid() {
  2322. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2323. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2324. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2325. );
  2326. }
  2327. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2328. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2329. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2330. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2331. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2332. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2333. int bilinear_grid_spacing_virt[2] = { 0 };
  2334. float bilinear_grid_factor_virt[2] = { 0 };
  2335. static void bed_level_virt_print() {
  2336. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2337. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2338. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2339. );
  2340. }
  2341. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2342. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2343. uint8_t ep = 0, ip = 1;
  2344. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2345. if (x) {
  2346. ep = GRID_MAX_POINTS_X - 1;
  2347. ip = GRID_MAX_POINTS_X - 2;
  2348. }
  2349. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2350. return LINEAR_EXTRAPOLATION(
  2351. z_values[ep][y - 1],
  2352. z_values[ip][y - 1]
  2353. );
  2354. else
  2355. return LINEAR_EXTRAPOLATION(
  2356. bed_level_virt_coord(ep + 1, y),
  2357. bed_level_virt_coord(ip + 1, y)
  2358. );
  2359. }
  2360. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2361. if (y) {
  2362. ep = GRID_MAX_POINTS_Y - 1;
  2363. ip = GRID_MAX_POINTS_Y - 2;
  2364. }
  2365. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2366. return LINEAR_EXTRAPOLATION(
  2367. z_values[x - 1][ep],
  2368. z_values[x - 1][ip]
  2369. );
  2370. else
  2371. return LINEAR_EXTRAPOLATION(
  2372. bed_level_virt_coord(x, ep + 1),
  2373. bed_level_virt_coord(x, ip + 1)
  2374. );
  2375. }
  2376. return z_values[x - 1][y - 1];
  2377. }
  2378. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2379. return (
  2380. p[i-1] * -t * sq(1 - t)
  2381. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2382. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2383. - p[i+2] * sq(t) * (1 - t)
  2384. ) * 0.5;
  2385. }
  2386. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2387. float row[4], column[4];
  2388. for (uint8_t i = 0; i < 4; i++) {
  2389. for (uint8_t j = 0; j < 4; j++) {
  2390. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2391. }
  2392. row[i] = bed_level_virt_cmr(column, 1, ty);
  2393. }
  2394. return bed_level_virt_cmr(row, 1, tx);
  2395. }
  2396. void bed_level_virt_interpolate() {
  2397. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2398. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2399. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2400. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2401. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2402. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2403. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2404. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2405. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2406. continue;
  2407. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2408. bed_level_virt_2cmr(
  2409. x + 1,
  2410. y + 1,
  2411. (float)tx / (BILINEAR_SUBDIVISIONS),
  2412. (float)ty / (BILINEAR_SUBDIVISIONS)
  2413. );
  2414. }
  2415. }
  2416. #endif // ABL_BILINEAR_SUBDIVISION
  2417. // Refresh after other values have been updated
  2418. void refresh_bed_level() {
  2419. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2420. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2421. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2422. bed_level_virt_interpolate();
  2423. #endif
  2424. }
  2425. #endif // AUTO_BED_LEVELING_BILINEAR
  2426. /**
  2427. * Home an individual linear axis
  2428. */
  2429. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2430. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2431. if (DEBUGGING(LEVELING)) {
  2432. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2433. SERIAL_ECHOPAIR(", ", distance);
  2434. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2435. SERIAL_CHAR(')');
  2436. SERIAL_EOL;
  2437. }
  2438. #endif
  2439. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2440. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2441. if (deploy_bltouch) set_bltouch_deployed(true);
  2442. #endif
  2443. #if QUIET_PROBING
  2444. if (axis == Z_AXIS) probing_pause(true);
  2445. #endif
  2446. // Tell the planner we're at Z=0
  2447. current_position[axis] = 0;
  2448. #if IS_SCARA
  2449. SYNC_PLAN_POSITION_KINEMATIC();
  2450. current_position[axis] = distance;
  2451. inverse_kinematics(current_position);
  2452. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2453. #else
  2454. sync_plan_position();
  2455. current_position[axis] = distance;
  2456. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2457. #endif
  2458. stepper.synchronize();
  2459. #if QUIET_PROBING
  2460. if (axis == Z_AXIS) probing_pause(false);
  2461. #endif
  2462. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2463. if (deploy_bltouch) set_bltouch_deployed(false);
  2464. #endif
  2465. endstops.hit_on_purpose();
  2466. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2467. if (DEBUGGING(LEVELING)) {
  2468. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2469. SERIAL_CHAR(')');
  2470. SERIAL_EOL;
  2471. }
  2472. #endif
  2473. }
  2474. /**
  2475. * TMC2130 specific sensorless homing using stallGuard2.
  2476. * stallGuard2 only works when in spreadCycle mode.
  2477. * spreadCycle and stealthChop are mutually exclusive.
  2478. */
  2479. #if ENABLED(SENSORLESS_HOMING)
  2480. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2481. #if ENABLED(STEALTHCHOP)
  2482. if (enable) {
  2483. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2484. st.stealthChop(0);
  2485. }
  2486. else {
  2487. st.coolstep_min_speed(0);
  2488. st.stealthChop(1);
  2489. }
  2490. #endif
  2491. st.diag1_stall(enable ? 1 : 0);
  2492. }
  2493. #endif
  2494. /**
  2495. * Home an individual "raw axis" to its endstop.
  2496. * This applies to XYZ on Cartesian and Core robots, and
  2497. * to the individual ABC steppers on DELTA and SCARA.
  2498. *
  2499. * At the end of the procedure the axis is marked as
  2500. * homed and the current position of that axis is updated.
  2501. * Kinematic robots should wait till all axes are homed
  2502. * before updating the current position.
  2503. */
  2504. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2505. static void homeaxis(const AxisEnum axis) {
  2506. #if IS_SCARA
  2507. // Only Z homing (with probe) is permitted
  2508. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2509. #else
  2510. #define CAN_HOME(A) \
  2511. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2512. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2513. #endif
  2514. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2515. if (DEBUGGING(LEVELING)) {
  2516. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2517. SERIAL_CHAR(')');
  2518. SERIAL_EOL;
  2519. }
  2520. #endif
  2521. const int axis_home_dir =
  2522. #if ENABLED(DUAL_X_CARRIAGE)
  2523. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2524. #endif
  2525. home_dir(axis);
  2526. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2527. #if HOMING_Z_WITH_PROBE
  2528. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2529. #endif
  2530. // Set a flag for Z motor locking
  2531. #if ENABLED(Z_DUAL_ENDSTOPS)
  2532. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2533. #endif
  2534. // Disable stealthChop if used. Enable diag1 pin on driver.
  2535. #if ENABLED(SENSORLESS_HOMING)
  2536. #if ENABLED(X_IS_TMC2130)
  2537. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2538. #endif
  2539. #if ENABLED(Y_IS_TMC2130)
  2540. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2541. #endif
  2542. #endif
  2543. // Fast move towards endstop until triggered
  2544. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2545. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2546. #endif
  2547. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2548. // When homing Z with probe respect probe clearance
  2549. const float bump = axis_home_dir * (
  2550. #if HOMING_Z_WITH_PROBE
  2551. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2552. #endif
  2553. home_bump_mm(axis)
  2554. );
  2555. // If a second homing move is configured...
  2556. if (bump) {
  2557. // Move away from the endstop by the axis HOME_BUMP_MM
  2558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2559. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2560. #endif
  2561. do_homing_move(axis, -bump);
  2562. // Slow move towards endstop until triggered
  2563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2564. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2565. #endif
  2566. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2567. }
  2568. #if ENABLED(Z_DUAL_ENDSTOPS)
  2569. if (axis == Z_AXIS) {
  2570. float adj = fabs(z_endstop_adj);
  2571. bool lockZ1;
  2572. if (axis_home_dir > 0) {
  2573. adj = -adj;
  2574. lockZ1 = (z_endstop_adj > 0);
  2575. }
  2576. else
  2577. lockZ1 = (z_endstop_adj < 0);
  2578. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2579. // Move to the adjusted endstop height
  2580. do_homing_move(axis, adj);
  2581. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2582. stepper.set_homing_flag(false);
  2583. } // Z_AXIS
  2584. #endif
  2585. #if IS_SCARA
  2586. set_axis_is_at_home(axis);
  2587. SYNC_PLAN_POSITION_KINEMATIC();
  2588. #elif ENABLED(DELTA)
  2589. // Delta has already moved all three towers up in G28
  2590. // so here it re-homes each tower in turn.
  2591. // Delta homing treats the axes as normal linear axes.
  2592. // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
  2593. if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2594. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2595. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2596. #endif
  2597. do_homing_move(axis, endstop_adj[axis] - 0.1);
  2598. }
  2599. #else
  2600. // For cartesian/core machines,
  2601. // set the axis to its home position
  2602. set_axis_is_at_home(axis);
  2603. sync_plan_position();
  2604. destination[axis] = current_position[axis];
  2605. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2606. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2607. #endif
  2608. #endif
  2609. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2610. #if ENABLED(SENSORLESS_HOMING)
  2611. #if ENABLED(X_IS_TMC2130)
  2612. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2613. #endif
  2614. #if ENABLED(Y_IS_TMC2130)
  2615. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2616. #endif
  2617. #endif
  2618. // Put away the Z probe
  2619. #if HOMING_Z_WITH_PROBE
  2620. if (axis == Z_AXIS && STOW_PROBE()) return;
  2621. #endif
  2622. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2623. if (DEBUGGING(LEVELING)) {
  2624. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2625. SERIAL_CHAR(')');
  2626. SERIAL_EOL;
  2627. }
  2628. #endif
  2629. } // homeaxis()
  2630. #if ENABLED(FWRETRACT)
  2631. void retract(const bool retracting, const bool swapping = false) {
  2632. static float hop_height;
  2633. if (retracting == retracted[active_extruder]) return;
  2634. const float old_feedrate_mm_s = feedrate_mm_s;
  2635. set_destination_to_current();
  2636. if (retracting) {
  2637. feedrate_mm_s = retract_feedrate_mm_s;
  2638. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2639. sync_plan_position_e();
  2640. prepare_move_to_destination();
  2641. if (retract_zlift > 0.01) {
  2642. hop_height = current_position[Z_AXIS];
  2643. // Pretend current position is lower
  2644. current_position[Z_AXIS] -= retract_zlift;
  2645. SYNC_PLAN_POSITION_KINEMATIC();
  2646. // Raise up to the old current_position
  2647. prepare_move_to_destination();
  2648. }
  2649. }
  2650. else {
  2651. // If the height hasn't been lowered, undo the Z hop
  2652. if (retract_zlift > 0.01 && hop_height <= current_position[Z_AXIS]) {
  2653. // Pretend current position is higher. Z will lower on the next move
  2654. current_position[Z_AXIS] += retract_zlift;
  2655. SYNC_PLAN_POSITION_KINEMATIC();
  2656. // Lower Z
  2657. prepare_move_to_destination();
  2658. }
  2659. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2660. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2661. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2662. sync_plan_position_e();
  2663. // Recover E
  2664. prepare_move_to_destination();
  2665. }
  2666. feedrate_mm_s = old_feedrate_mm_s;
  2667. retracted[active_extruder] = retracting;
  2668. } // retract()
  2669. #endif // FWRETRACT
  2670. #if ENABLED(MIXING_EXTRUDER)
  2671. void normalize_mix() {
  2672. float mix_total = 0.0;
  2673. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2674. // Scale all values if they don't add up to ~1.0
  2675. if (!NEAR(mix_total, 1.0)) {
  2676. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2677. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2678. }
  2679. }
  2680. #if ENABLED(DIRECT_MIXING_IN_G1)
  2681. // Get mixing parameters from the GCode
  2682. // The total "must" be 1.0 (but it will be normalized)
  2683. // If no mix factors are given, the old mix is preserved
  2684. void gcode_get_mix() {
  2685. const char* mixing_codes = "ABCDHI";
  2686. byte mix_bits = 0;
  2687. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2688. if (code_seen(mixing_codes[i])) {
  2689. SBI(mix_bits, i);
  2690. float v = code_value_float();
  2691. NOLESS(v, 0.0);
  2692. mixing_factor[i] = RECIPROCAL(v);
  2693. }
  2694. }
  2695. // If any mixing factors were included, clear the rest
  2696. // If none were included, preserve the last mix
  2697. if (mix_bits) {
  2698. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2699. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2700. normalize_mix();
  2701. }
  2702. }
  2703. #endif
  2704. #endif
  2705. /**
  2706. * ***************************************************************************
  2707. * ***************************** G-CODE HANDLING *****************************
  2708. * ***************************************************************************
  2709. */
  2710. /**
  2711. * Set XYZE destination and feedrate from the current GCode command
  2712. *
  2713. * - Set destination from included axis codes
  2714. * - Set to current for missing axis codes
  2715. * - Set the feedrate, if included
  2716. */
  2717. void gcode_get_destination() {
  2718. LOOP_XYZE(i) {
  2719. if (code_seen(axis_codes[i]))
  2720. destination[i] = code_value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2721. else
  2722. destination[i] = current_position[i];
  2723. }
  2724. if (code_seen('F') && code_value_linear_units() > 0.0)
  2725. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2726. #if ENABLED(PRINTCOUNTER)
  2727. if (!DEBUGGING(DRYRUN))
  2728. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2729. #endif
  2730. // Get ABCDHI mixing factors
  2731. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2732. gcode_get_mix();
  2733. #endif
  2734. }
  2735. void unknown_command_error() {
  2736. SERIAL_ECHO_START;
  2737. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2738. SERIAL_CHAR('"');
  2739. SERIAL_EOL;
  2740. }
  2741. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2742. /**
  2743. * Output a "busy" message at regular intervals
  2744. * while the machine is not accepting commands.
  2745. */
  2746. void host_keepalive() {
  2747. const millis_t ms = millis();
  2748. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2749. if (PENDING(ms, next_busy_signal_ms)) return;
  2750. switch (busy_state) {
  2751. case IN_HANDLER:
  2752. case IN_PROCESS:
  2753. SERIAL_ECHO_START;
  2754. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2755. break;
  2756. case PAUSED_FOR_USER:
  2757. SERIAL_ECHO_START;
  2758. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2759. break;
  2760. case PAUSED_FOR_INPUT:
  2761. SERIAL_ECHO_START;
  2762. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2763. break;
  2764. default:
  2765. break;
  2766. }
  2767. }
  2768. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2769. }
  2770. #endif // HOST_KEEPALIVE_FEATURE
  2771. /**************************************************
  2772. ***************** GCode Handlers *****************
  2773. **************************************************/
  2774. /**
  2775. * G0, G1: Coordinated movement of X Y Z E axes
  2776. */
  2777. inline void gcode_G0_G1(
  2778. #if IS_SCARA
  2779. bool fast_move=false
  2780. #endif
  2781. ) {
  2782. if (IsRunning()) {
  2783. gcode_get_destination(); // For X Y Z E F
  2784. #if ENABLED(FWRETRACT)
  2785. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2786. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2787. // Is this move an attempt to retract or recover?
  2788. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2789. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2790. sync_plan_position_e(); // AND from the planner
  2791. retract(!retracted[active_extruder]);
  2792. return;
  2793. }
  2794. }
  2795. #endif //FWRETRACT
  2796. #if IS_SCARA
  2797. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2798. #else
  2799. prepare_move_to_destination();
  2800. #endif
  2801. }
  2802. }
  2803. /**
  2804. * G2: Clockwise Arc
  2805. * G3: Counterclockwise Arc
  2806. *
  2807. * This command has two forms: IJ-form and R-form.
  2808. *
  2809. * - I specifies an X offset. J specifies a Y offset.
  2810. * At least one of the IJ parameters is required.
  2811. * X and Y can be omitted to do a complete circle.
  2812. * The given XY is not error-checked. The arc ends
  2813. * based on the angle of the destination.
  2814. * Mixing I or J with R will throw an error.
  2815. *
  2816. * - R specifies the radius. X or Y is required.
  2817. * Omitting both X and Y will throw an error.
  2818. * X or Y must differ from the current XY.
  2819. * Mixing R with I or J will throw an error.
  2820. *
  2821. * Examples:
  2822. *
  2823. * G2 I10 ; CW circle centered at X+10
  2824. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2825. */
  2826. #if ENABLED(ARC_SUPPORT)
  2827. inline void gcode_G2_G3(bool clockwise) {
  2828. if (IsRunning()) {
  2829. #if ENABLED(SF_ARC_FIX)
  2830. const bool relative_mode_backup = relative_mode;
  2831. relative_mode = true;
  2832. #endif
  2833. gcode_get_destination();
  2834. #if ENABLED(SF_ARC_FIX)
  2835. relative_mode = relative_mode_backup;
  2836. #endif
  2837. float arc_offset[2] = { 0.0, 0.0 };
  2838. if (code_seen('R')) {
  2839. const float r = code_value_linear_units(),
  2840. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2841. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2842. if (r && (x2 != x1 || y2 != y1)) {
  2843. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2844. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2845. d = HYPOT(dx, dy), // Linear distance between the points
  2846. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2847. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2848. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2849. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2850. arc_offset[X_AXIS] = cx - x1;
  2851. arc_offset[Y_AXIS] = cy - y1;
  2852. }
  2853. }
  2854. else {
  2855. if (code_seen('I')) arc_offset[X_AXIS] = code_value_linear_units();
  2856. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_linear_units();
  2857. }
  2858. if (arc_offset[0] || arc_offset[1]) {
  2859. // Send an arc to the planner
  2860. plan_arc(destination, arc_offset, clockwise);
  2861. refresh_cmd_timeout();
  2862. }
  2863. else {
  2864. // Bad arguments
  2865. SERIAL_ERROR_START;
  2866. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2867. }
  2868. }
  2869. }
  2870. #endif
  2871. /**
  2872. * G4: Dwell S<seconds> or P<milliseconds>
  2873. */
  2874. inline void gcode_G4() {
  2875. millis_t dwell_ms = 0;
  2876. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2877. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2878. stepper.synchronize();
  2879. refresh_cmd_timeout();
  2880. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2881. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2882. while (PENDING(millis(), dwell_ms)) idle();
  2883. }
  2884. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2885. /**
  2886. * Parameters interpreted according to:
  2887. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2888. * However I, J omission is not supported at this point; all
  2889. * parameters can be omitted and default to zero.
  2890. */
  2891. /**
  2892. * G5: Cubic B-spline
  2893. */
  2894. inline void gcode_G5() {
  2895. if (IsRunning()) {
  2896. gcode_get_destination();
  2897. const float offset[] = {
  2898. code_seen('I') ? code_value_linear_units() : 0.0,
  2899. code_seen('J') ? code_value_linear_units() : 0.0,
  2900. code_seen('P') ? code_value_linear_units() : 0.0,
  2901. code_seen('Q') ? code_value_linear_units() : 0.0
  2902. };
  2903. plan_cubic_move(offset);
  2904. }
  2905. }
  2906. #endif // BEZIER_CURVE_SUPPORT
  2907. #if ENABLED(AUTO_BED_LEVELING_UBL) //todo: enable for other leveling systems?
  2908. /**
  2909. * G7: Move X & Y axes to mesh coordinates
  2910. */
  2911. inline void gcode_G7(
  2912. #if IS_SCARA
  2913. bool fast_move=false
  2914. #endif
  2915. ) {
  2916. if (IsRunning()) {
  2917. const bool hasI = code_seen('I');
  2918. const int8_t ix = code_has_value() ? code_value_int() : 0;
  2919. const bool hasJ = code_seen('J');
  2920. const int8_t iy = code_has_value() ? code_value_int() : 0;
  2921. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  2922. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  2923. return;
  2924. }
  2925. destination[X_AXIS] = hasI ? pgm_read_float(&ubl.mesh_index_to_xpos[ix]) : current_position[X_AXIS];
  2926. destination[Y_AXIS] = hasJ ? pgm_read_float(&ubl.mesh_index_to_ypos[iy]) : current_position[Y_AXIS];
  2927. destination[Z_AXIS] = current_position[Z_AXIS]; //todo: perhaps add Z-move support?
  2928. destination[E_AXIS] = current_position[E_AXIS];
  2929. if (code_seen('F') && code_value_linear_units() > 0.0)
  2930. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2931. #if IS_SCARA
  2932. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2933. #else
  2934. prepare_move_to_destination();
  2935. #endif
  2936. }
  2937. }
  2938. #endif
  2939. #if ENABLED(FWRETRACT)
  2940. /**
  2941. * G10 - Retract filament according to settings of M207
  2942. * G11 - Recover filament according to settings of M208
  2943. */
  2944. inline void gcode_G10_G11(bool doRetract=false) {
  2945. #if EXTRUDERS > 1
  2946. if (doRetract) {
  2947. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2948. }
  2949. #endif
  2950. retract(doRetract
  2951. #if EXTRUDERS > 1
  2952. , retracted_swap[active_extruder]
  2953. #endif
  2954. );
  2955. }
  2956. #endif // FWRETRACT
  2957. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2958. /**
  2959. * G12: Clean the nozzle
  2960. */
  2961. inline void gcode_G12() {
  2962. // Don't allow nozzle cleaning without homing first
  2963. if (axis_unhomed_error()) return;
  2964. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2965. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2966. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2967. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2968. Nozzle::clean(pattern, strokes, radius, objects);
  2969. }
  2970. #endif
  2971. #if ENABLED(INCH_MODE_SUPPORT)
  2972. /**
  2973. * G20: Set input mode to inches
  2974. */
  2975. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2976. /**
  2977. * G21: Set input mode to millimeters
  2978. */
  2979. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2980. #endif
  2981. #if ENABLED(NOZZLE_PARK_FEATURE)
  2982. /**
  2983. * G27: Park the nozzle
  2984. */
  2985. inline void gcode_G27() {
  2986. // Don't allow nozzle parking without homing first
  2987. if (axis_unhomed_error()) return;
  2988. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2989. }
  2990. #endif // NOZZLE_PARK_FEATURE
  2991. #if ENABLED(QUICK_HOME)
  2992. static void quick_home_xy() {
  2993. // Pretend the current position is 0,0
  2994. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2995. sync_plan_position();
  2996. const int x_axis_home_dir =
  2997. #if ENABLED(DUAL_X_CARRIAGE)
  2998. x_home_dir(active_extruder)
  2999. #else
  3000. home_dir(X_AXIS)
  3001. #endif
  3002. ;
  3003. const float mlx = max_length(X_AXIS),
  3004. mly = max_length(Y_AXIS),
  3005. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3006. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  3007. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3008. endstops.hit_on_purpose(); // clear endstop hit flags
  3009. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3010. }
  3011. #endif // QUICK_HOME
  3012. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3013. void log_machine_info() {
  3014. SERIAL_ECHOPGM("Machine Type: ");
  3015. #if ENABLED(DELTA)
  3016. SERIAL_ECHOLNPGM("Delta");
  3017. #elif IS_SCARA
  3018. SERIAL_ECHOLNPGM("SCARA");
  3019. #elif IS_CORE
  3020. SERIAL_ECHOLNPGM("Core");
  3021. #else
  3022. SERIAL_ECHOLNPGM("Cartesian");
  3023. #endif
  3024. SERIAL_ECHOPGM("Probe: ");
  3025. #if ENABLED(PROBE_MANUALLY)
  3026. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3027. #elif ENABLED(FIX_MOUNTED_PROBE)
  3028. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3029. #elif ENABLED(BLTOUCH)
  3030. SERIAL_ECHOLNPGM("BLTOUCH");
  3031. #elif HAS_Z_SERVO_ENDSTOP
  3032. SERIAL_ECHOLNPGM("SERVO PROBE");
  3033. #elif ENABLED(Z_PROBE_SLED)
  3034. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3035. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3036. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3037. #else
  3038. SERIAL_ECHOLNPGM("NONE");
  3039. #endif
  3040. #if HAS_BED_PROBE
  3041. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3042. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3043. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3044. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3045. SERIAL_ECHOPGM(" (Right");
  3046. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3047. SERIAL_ECHOPGM(" (Left");
  3048. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3049. SERIAL_ECHOPGM(" (Middle");
  3050. #else
  3051. SERIAL_ECHOPGM(" (Aligned With");
  3052. #endif
  3053. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3054. SERIAL_ECHOPGM("-Back");
  3055. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3056. SERIAL_ECHOPGM("-Front");
  3057. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3058. SERIAL_ECHOPGM("-Center");
  3059. #endif
  3060. if (zprobe_zoffset < 0)
  3061. SERIAL_ECHOPGM(" & Below");
  3062. else if (zprobe_zoffset > 0)
  3063. SERIAL_ECHOPGM(" & Above");
  3064. else
  3065. SERIAL_ECHOPGM(" & Same Z as");
  3066. SERIAL_ECHOLNPGM(" Nozzle)");
  3067. #endif
  3068. #if HAS_ABL
  3069. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3070. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3071. SERIAL_ECHOPGM("LINEAR");
  3072. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3073. SERIAL_ECHOPGM("BILINEAR");
  3074. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3075. SERIAL_ECHOPGM("3POINT");
  3076. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3077. SERIAL_ECHOPGM("UBL");
  3078. #endif
  3079. if (planner.abl_enabled) {
  3080. SERIAL_ECHOLNPGM(" (enabled)");
  3081. #if ABL_PLANAR
  3082. float diff[XYZ] = {
  3083. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3084. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3085. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3086. };
  3087. SERIAL_ECHOPGM("ABL Adjustment X");
  3088. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3089. SERIAL_ECHO(diff[X_AXIS]);
  3090. SERIAL_ECHOPGM(" Y");
  3091. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3092. SERIAL_ECHO(diff[Y_AXIS]);
  3093. SERIAL_ECHOPGM(" Z");
  3094. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3095. SERIAL_ECHO(diff[Z_AXIS]);
  3096. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3097. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3098. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3099. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3100. #endif
  3101. }
  3102. else
  3103. SERIAL_ECHOLNPGM(" (disabled)");
  3104. SERIAL_EOL;
  3105. #elif ENABLED(MESH_BED_LEVELING)
  3106. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3107. if (mbl.active()) {
  3108. float lz = current_position[Z_AXIS];
  3109. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3110. SERIAL_ECHOLNPGM(" (enabled)");
  3111. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3112. }
  3113. else
  3114. SERIAL_ECHOPGM(" (disabled)");
  3115. SERIAL_EOL;
  3116. #endif // MESH_BED_LEVELING
  3117. }
  3118. #endif // DEBUG_LEVELING_FEATURE
  3119. #if ENABLED(DELTA)
  3120. /**
  3121. * A delta can only safely home all axes at the same time
  3122. * This is like quick_home_xy() but for 3 towers.
  3123. */
  3124. inline void home_delta() {
  3125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3126. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3127. #endif
  3128. // Init the current position of all carriages to 0,0,0
  3129. ZERO(current_position);
  3130. sync_plan_position();
  3131. // Move all carriages together linearly until an endstop is hit.
  3132. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3133. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  3134. line_to_current_position();
  3135. stepper.synchronize();
  3136. endstops.hit_on_purpose(); // clear endstop hit flags
  3137. // At least one carriage has reached the top.
  3138. // Now re-home each carriage separately.
  3139. HOMEAXIS(A);
  3140. HOMEAXIS(B);
  3141. HOMEAXIS(C);
  3142. // Set all carriages to their home positions
  3143. // Do this here all at once for Delta, because
  3144. // XYZ isn't ABC. Applying this per-tower would
  3145. // give the impression that they are the same.
  3146. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3147. SYNC_PLAN_POSITION_KINEMATIC();
  3148. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3149. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3150. #endif
  3151. }
  3152. #endif // DELTA
  3153. #if ENABLED(Z_SAFE_HOMING)
  3154. inline void home_z_safely() {
  3155. // Disallow Z homing if X or Y are unknown
  3156. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3157. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3158. SERIAL_ECHO_START;
  3159. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3160. return;
  3161. }
  3162. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3163. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3164. #endif
  3165. SYNC_PLAN_POSITION_KINEMATIC();
  3166. /**
  3167. * Move the Z probe (or just the nozzle) to the safe homing point
  3168. */
  3169. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3170. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3171. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3172. #if HOMING_Z_WITH_PROBE
  3173. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3174. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3175. #endif
  3176. if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
  3177. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3178. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3179. #endif
  3180. // This causes the carriage on Dual X to unpark
  3181. #if ENABLED(DUAL_X_CARRIAGE)
  3182. active_extruder_parked = false;
  3183. #endif
  3184. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3185. HOMEAXIS(Z);
  3186. }
  3187. else {
  3188. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3189. SERIAL_ECHO_START;
  3190. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3191. }
  3192. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3193. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3194. #endif
  3195. }
  3196. #endif // Z_SAFE_HOMING
  3197. #if ENABLED(PROBE_MANUALLY)
  3198. bool g29_in_progress = false;
  3199. #else
  3200. constexpr bool g29_in_progress = false;
  3201. #endif
  3202. /**
  3203. * G28: Home all axes according to settings
  3204. *
  3205. * Parameters
  3206. *
  3207. * None Home to all axes with no parameters.
  3208. * With QUICK_HOME enabled XY will home together, then Z.
  3209. *
  3210. * Cartesian parameters
  3211. *
  3212. * X Home to the X endstop
  3213. * Y Home to the Y endstop
  3214. * Z Home to the Z endstop
  3215. *
  3216. */
  3217. inline void gcode_G28(const bool always_home_all) {
  3218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3219. if (DEBUGGING(LEVELING)) {
  3220. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3221. log_machine_info();
  3222. }
  3223. #endif
  3224. // Wait for planner moves to finish!
  3225. stepper.synchronize();
  3226. // Cancel the active G29 session
  3227. #if ENABLED(PROBE_MANUALLY)
  3228. g29_in_progress = false;
  3229. #endif
  3230. // Disable the leveling matrix before homing
  3231. #if HAS_LEVELING
  3232. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3233. const bool ubl_state_at_entry = ubl.state.active;
  3234. #endif
  3235. set_bed_leveling_enabled(false);
  3236. #endif
  3237. // Always home with tool 0 active
  3238. #if HOTENDS > 1
  3239. const uint8_t old_tool_index = active_extruder;
  3240. tool_change(0, 0, true);
  3241. #endif
  3242. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3243. extruder_duplication_enabled = false;
  3244. #endif
  3245. setup_for_endstop_or_probe_move();
  3246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3247. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3248. #endif
  3249. endstops.enable(true); // Enable endstops for next homing move
  3250. #if ENABLED(DELTA)
  3251. home_delta();
  3252. #else // NOT DELTA
  3253. const bool homeX = always_home_all || code_seen('X'),
  3254. homeY = always_home_all || code_seen('Y'),
  3255. homeZ = always_home_all || code_seen('Z'),
  3256. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3257. set_destination_to_current();
  3258. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3259. if (home_all || homeZ) {
  3260. HOMEAXIS(Z);
  3261. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3262. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3263. #endif
  3264. }
  3265. #else
  3266. if (home_all || homeX || homeY) {
  3267. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3268. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3269. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3270. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3271. if (DEBUGGING(LEVELING))
  3272. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3273. #endif
  3274. do_blocking_move_to_z(destination[Z_AXIS]);
  3275. }
  3276. }
  3277. #endif
  3278. #if ENABLED(QUICK_HOME)
  3279. if (home_all || (homeX && homeY)) quick_home_xy();
  3280. #endif
  3281. #if ENABLED(HOME_Y_BEFORE_X)
  3282. // Home Y
  3283. if (home_all || homeY) {
  3284. HOMEAXIS(Y);
  3285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3286. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3287. #endif
  3288. }
  3289. #endif
  3290. // Home X
  3291. if (home_all || homeX) {
  3292. #if ENABLED(DUAL_X_CARRIAGE)
  3293. // Always home the 2nd (right) extruder first
  3294. active_extruder = 1;
  3295. HOMEAXIS(X);
  3296. // Remember this extruder's position for later tool change
  3297. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3298. // Home the 1st (left) extruder
  3299. active_extruder = 0;
  3300. HOMEAXIS(X);
  3301. // Consider the active extruder to be parked
  3302. COPY(raised_parked_position, current_position);
  3303. delayed_move_time = 0;
  3304. active_extruder_parked = true;
  3305. #else
  3306. HOMEAXIS(X);
  3307. #endif
  3308. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3309. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3310. #endif
  3311. }
  3312. #if DISABLED(HOME_Y_BEFORE_X)
  3313. // Home Y
  3314. if (home_all || homeY) {
  3315. HOMEAXIS(Y);
  3316. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3317. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3318. #endif
  3319. }
  3320. #endif
  3321. // Home Z last if homing towards the bed
  3322. #if Z_HOME_DIR < 0
  3323. if (home_all || homeZ) {
  3324. #if ENABLED(Z_SAFE_HOMING)
  3325. home_z_safely();
  3326. #else
  3327. HOMEAXIS(Z);
  3328. #endif
  3329. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3330. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3331. #endif
  3332. } // home_all || homeZ
  3333. #endif // Z_HOME_DIR < 0
  3334. SYNC_PLAN_POSITION_KINEMATIC();
  3335. #endif // !DELTA (gcode_G28)
  3336. endstops.not_homing();
  3337. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3338. // move to a height where we can use the full xy-area
  3339. do_blocking_move_to_z(delta_clip_start_height);
  3340. #endif
  3341. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3342. set_bed_leveling_enabled(ubl_state_at_entry);
  3343. #endif
  3344. clean_up_after_endstop_or_probe_move();
  3345. // Restore the active tool after homing
  3346. #if HOTENDS > 1
  3347. tool_change(old_tool_index, 0, true);
  3348. #endif
  3349. report_current_position();
  3350. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3351. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3352. #endif
  3353. } // G28
  3354. void home_all_axes() { gcode_G28(true); }
  3355. #if HAS_PROBING_PROCEDURE
  3356. void out_of_range_error(const char* p_edge) {
  3357. SERIAL_PROTOCOLPGM("?Probe ");
  3358. serialprintPGM(p_edge);
  3359. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3360. }
  3361. #endif
  3362. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3363. inline void _manual_goto_xy(const float &x, const float &y) {
  3364. const float old_feedrate_mm_s = feedrate_mm_s;
  3365. #if MANUAL_PROBE_HEIGHT > 0
  3366. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3367. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3368. line_to_current_position();
  3369. #endif
  3370. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3371. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3372. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3373. line_to_current_position();
  3374. #if MANUAL_PROBE_HEIGHT > 0
  3375. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3376. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3377. line_to_current_position();
  3378. #endif
  3379. feedrate_mm_s = old_feedrate_mm_s;
  3380. stepper.synchronize();
  3381. }
  3382. #endif
  3383. #if ENABLED(MESH_BED_LEVELING)
  3384. // Save 130 bytes with non-duplication of PSTR
  3385. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3386. void mbl_mesh_report() {
  3387. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3388. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3389. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3390. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3391. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3392. );
  3393. }
  3394. void mesh_probing_done() {
  3395. mbl.set_has_mesh(true);
  3396. home_all_axes();
  3397. set_bed_leveling_enabled(true);
  3398. #if ENABLED(MESH_G28_REST_ORIGIN)
  3399. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3400. set_destination_to_current();
  3401. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3402. stepper.synchronize();
  3403. #endif
  3404. }
  3405. /**
  3406. * G29: Mesh-based Z probe, probes a grid and produces a
  3407. * mesh to compensate for variable bed height
  3408. *
  3409. * Parameters With MESH_BED_LEVELING:
  3410. *
  3411. * S0 Produce a mesh report
  3412. * S1 Start probing mesh points
  3413. * S2 Probe the next mesh point
  3414. * S3 Xn Yn Zn.nn Manually modify a single point
  3415. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3416. * S5 Reset and disable mesh
  3417. *
  3418. * The S0 report the points as below
  3419. *
  3420. * +----> X-axis 1-n
  3421. * |
  3422. * |
  3423. * v Y-axis 1-n
  3424. *
  3425. */
  3426. inline void gcode_G29() {
  3427. static int mbl_probe_index = -1;
  3428. #if HAS_SOFTWARE_ENDSTOPS
  3429. static bool enable_soft_endstops;
  3430. #endif
  3431. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3432. if (!WITHIN(state, 0, 5)) {
  3433. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3434. return;
  3435. }
  3436. int8_t px, py;
  3437. switch (state) {
  3438. case MeshReport:
  3439. if (mbl.has_mesh()) {
  3440. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3441. mbl_mesh_report();
  3442. }
  3443. else
  3444. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3445. break;
  3446. case MeshStart:
  3447. mbl.reset();
  3448. mbl_probe_index = 0;
  3449. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3450. break;
  3451. case MeshNext:
  3452. if (mbl_probe_index < 0) {
  3453. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3454. return;
  3455. }
  3456. // For each G29 S2...
  3457. if (mbl_probe_index == 0) {
  3458. #if HAS_SOFTWARE_ENDSTOPS
  3459. // For the initial G29 S2 save software endstop state
  3460. enable_soft_endstops = soft_endstops_enabled;
  3461. #endif
  3462. }
  3463. else {
  3464. // For G29 S2 after adjusting Z.
  3465. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3466. #if HAS_SOFTWARE_ENDSTOPS
  3467. soft_endstops_enabled = enable_soft_endstops;
  3468. #endif
  3469. }
  3470. // If there's another point to sample, move there with optional lift.
  3471. if (mbl_probe_index < GRID_MAX_POINTS) {
  3472. mbl.zigzag(mbl_probe_index, px, py);
  3473. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3474. #if HAS_SOFTWARE_ENDSTOPS
  3475. // Disable software endstops to allow manual adjustment
  3476. // If G29 is not completed, they will not be re-enabled
  3477. soft_endstops_enabled = false;
  3478. #endif
  3479. mbl_probe_index++;
  3480. }
  3481. else {
  3482. // One last "return to the bed" (as originally coded) at completion
  3483. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3484. line_to_current_position();
  3485. stepper.synchronize();
  3486. // After recording the last point, activate home and activate
  3487. mbl_probe_index = -1;
  3488. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3489. BUZZ(100, 659);
  3490. BUZZ(100, 698);
  3491. mesh_probing_done();
  3492. }
  3493. break;
  3494. case MeshSet:
  3495. if (code_seen('X')) {
  3496. px = code_value_int() - 1;
  3497. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3498. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3499. return;
  3500. }
  3501. }
  3502. else {
  3503. SERIAL_CHAR('X'); echo_not_entered();
  3504. return;
  3505. }
  3506. if (code_seen('Y')) {
  3507. py = code_value_int() - 1;
  3508. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3509. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3510. return;
  3511. }
  3512. }
  3513. else {
  3514. SERIAL_CHAR('Y'); echo_not_entered();
  3515. return;
  3516. }
  3517. if (code_seen('Z')) {
  3518. mbl.z_values[px][py] = code_value_linear_units();
  3519. }
  3520. else {
  3521. SERIAL_CHAR('Z'); echo_not_entered();
  3522. return;
  3523. }
  3524. break;
  3525. case MeshSetZOffset:
  3526. if (code_seen('Z')) {
  3527. mbl.z_offset = code_value_linear_units();
  3528. }
  3529. else {
  3530. SERIAL_CHAR('Z'); echo_not_entered();
  3531. return;
  3532. }
  3533. break;
  3534. case MeshReset:
  3535. reset_bed_level();
  3536. break;
  3537. } // switch(state)
  3538. report_current_position();
  3539. }
  3540. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3541. #if ABL_GRID
  3542. #if ENABLED(PROBE_Y_FIRST)
  3543. #define PR_OUTER_VAR xCount
  3544. #define PR_OUTER_END abl_grid_points_x
  3545. #define PR_INNER_VAR yCount
  3546. #define PR_INNER_END abl_grid_points_y
  3547. #else
  3548. #define PR_OUTER_VAR yCount
  3549. #define PR_OUTER_END abl_grid_points_y
  3550. #define PR_INNER_VAR xCount
  3551. #define PR_INNER_END abl_grid_points_x
  3552. #endif
  3553. #endif
  3554. /**
  3555. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3556. * Will fail if the printer has not been homed with G28.
  3557. *
  3558. * Enhanced G29 Auto Bed Leveling Probe Routine
  3559. *
  3560. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3561. * or alter the bed level data. Useful to check the topology
  3562. * after a first run of G29.
  3563. *
  3564. * J Jettison current bed leveling data
  3565. *
  3566. * V Set the verbose level (0-4). Example: "G29 V3"
  3567. *
  3568. * Parameters With LINEAR leveling only:
  3569. *
  3570. * P Set the size of the grid that will be probed (P x P points).
  3571. * Example: "G29 P4"
  3572. *
  3573. * X Set the X size of the grid that will be probed (X x Y points).
  3574. * Example: "G29 X7 Y5"
  3575. *
  3576. * Y Set the Y size of the grid that will be probed (X x Y points).
  3577. *
  3578. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3579. * This is useful for manual bed leveling and finding flaws in the bed (to
  3580. * assist with part placement).
  3581. * Not supported by non-linear delta printer bed leveling.
  3582. *
  3583. * Parameters With LINEAR and BILINEAR leveling only:
  3584. *
  3585. * S Set the XY travel speed between probe points (in units/min)
  3586. *
  3587. * F Set the Front limit of the probing grid
  3588. * B Set the Back limit of the probing grid
  3589. * L Set the Left limit of the probing grid
  3590. * R Set the Right limit of the probing grid
  3591. *
  3592. * Parameters with DEBUG_LEVELING_FEATURE only:
  3593. *
  3594. * C Make a totally fake grid with no actual probing.
  3595. * For use in testing when no probing is possible.
  3596. *
  3597. * Parameters with BILINEAR leveling only:
  3598. *
  3599. * Z Supply an additional Z probe offset
  3600. *
  3601. * Extra parameters with PROBE_MANUALLY:
  3602. *
  3603. * To do manual probing simply repeat G29 until the procedure is complete.
  3604. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3605. *
  3606. * Q Query leveling and G29 state
  3607. *
  3608. * A Abort current leveling procedure
  3609. *
  3610. * W Write a mesh point. (Ignored during leveling.)
  3611. * X Required X for mesh point
  3612. * Y Required Y for mesh point
  3613. * Z Required Z for mesh point
  3614. *
  3615. * Without PROBE_MANUALLY:
  3616. *
  3617. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3618. * Include "E" to engage/disengage the Z probe for each sample.
  3619. * There's no extra effect if you have a fixed Z probe.
  3620. *
  3621. */
  3622. inline void gcode_G29() {
  3623. // G29 Q is also available if debugging
  3624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3625. const bool query = code_seen('Q');
  3626. const uint8_t old_debug_flags = marlin_debug_flags;
  3627. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3628. if (DEBUGGING(LEVELING)) {
  3629. DEBUG_POS(">>> gcode_G29", current_position);
  3630. log_machine_info();
  3631. }
  3632. marlin_debug_flags = old_debug_flags;
  3633. #if DISABLED(PROBE_MANUALLY)
  3634. if (query) return;
  3635. #endif
  3636. #endif
  3637. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3638. const bool faux = code_seen('C') && code_value_bool();
  3639. #else
  3640. bool constexpr faux = false;
  3641. #endif
  3642. // Don't allow auto-leveling without homing first
  3643. if (axis_unhomed_error()) return;
  3644. // Define local vars 'static' for manual probing, 'auto' otherwise
  3645. #if ENABLED(PROBE_MANUALLY)
  3646. #define ABL_VAR static
  3647. #else
  3648. #define ABL_VAR
  3649. #endif
  3650. ABL_VAR int verbose_level;
  3651. ABL_VAR float xProbe, yProbe, measured_z;
  3652. ABL_VAR bool dryrun, abl_should_enable;
  3653. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3654. ABL_VAR int abl_probe_index;
  3655. #endif
  3656. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3657. ABL_VAR bool enable_soft_endstops = true;
  3658. #endif
  3659. #if ABL_GRID
  3660. #if ENABLED(PROBE_MANUALLY)
  3661. ABL_VAR uint8_t PR_OUTER_VAR;
  3662. ABL_VAR int8_t PR_INNER_VAR;
  3663. #endif
  3664. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3665. ABL_VAR float xGridSpacing, yGridSpacing;
  3666. #if ABL_PLANAR
  3667. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3668. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3669. ABL_VAR bool do_topography_map;
  3670. #else // 3-point
  3671. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3672. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3673. #endif
  3674. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3675. #if ABL_PLANAR
  3676. ABL_VAR int abl2;
  3677. #else // 3-point
  3678. int constexpr abl2 = GRID_MAX_POINTS;
  3679. #endif
  3680. #endif
  3681. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3682. ABL_VAR float zoffset;
  3683. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3684. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3685. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3686. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3687. mean;
  3688. #endif
  3689. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3690. // Probe at 3 arbitrary points
  3691. ABL_VAR vector_3 points[3] = {
  3692. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3693. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3694. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3695. };
  3696. #endif // AUTO_BED_LEVELING_3POINT
  3697. /**
  3698. * On the initial G29 fetch command parameters.
  3699. */
  3700. if (!g29_in_progress) {
  3701. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3702. abl_probe_index = 0;
  3703. #endif
  3704. abl_should_enable = planner.abl_enabled;
  3705. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3706. if (code_seen('W')) {
  3707. if (!bilinear_grid_spacing[X_AXIS]) {
  3708. SERIAL_ERROR_START;
  3709. SERIAL_ERRORLNPGM("No bilinear grid");
  3710. return;
  3711. }
  3712. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3713. if (!WITHIN(z, -10, 10)) {
  3714. SERIAL_ERROR_START;
  3715. SERIAL_ERRORLNPGM("Bad Z value");
  3716. return;
  3717. }
  3718. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3719. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3720. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3721. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3722. if (x < 99998 && y < 99998) {
  3723. // Get nearest i / j from x / y
  3724. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3725. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3726. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3727. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3728. }
  3729. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3730. set_bed_leveling_enabled(false);
  3731. z_values[i][j] = z;
  3732. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3733. bed_level_virt_interpolate();
  3734. #endif
  3735. set_bed_leveling_enabled(abl_should_enable);
  3736. }
  3737. return;
  3738. } // code_seen('W')
  3739. #endif
  3740. #if HAS_LEVELING
  3741. // Jettison bed leveling data
  3742. if (code_seen('J')) {
  3743. reset_bed_level();
  3744. return;
  3745. }
  3746. #endif
  3747. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3748. if (!WITHIN(verbose_level, 0, 4)) {
  3749. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3750. return;
  3751. }
  3752. dryrun = code_seen('D') && code_value_bool();
  3753. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3754. do_topography_map = verbose_level > 2 || code_seen('T');
  3755. // X and Y specify points in each direction, overriding the default
  3756. // These values may be saved with the completed mesh
  3757. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3758. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3759. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3760. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3761. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3762. return;
  3763. }
  3764. abl2 = abl_grid_points_x * abl_grid_points_y;
  3765. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3766. zoffset = code_seen('Z') ? code_value_linear_units() : 0;
  3767. #endif
  3768. #if ABL_GRID
  3769. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3770. left_probe_bed_position = code_seen('L') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3771. right_probe_bed_position = code_seen('R') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3772. front_probe_bed_position = code_seen('F') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3773. back_probe_bed_position = code_seen('B') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3774. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3775. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3776. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3777. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3778. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3779. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3780. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3781. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3782. if (left_out || right_out || front_out || back_out) {
  3783. if (left_out) {
  3784. out_of_range_error(PSTR("(L)eft"));
  3785. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3786. }
  3787. if (right_out) {
  3788. out_of_range_error(PSTR("(R)ight"));
  3789. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3790. }
  3791. if (front_out) {
  3792. out_of_range_error(PSTR("(F)ront"));
  3793. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3794. }
  3795. if (back_out) {
  3796. out_of_range_error(PSTR("(B)ack"));
  3797. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3798. }
  3799. return;
  3800. }
  3801. // probe at the points of a lattice grid
  3802. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3803. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3804. #endif // ABL_GRID
  3805. if (verbose_level > 0) {
  3806. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3807. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3808. }
  3809. stepper.synchronize();
  3810. // Disable auto bed leveling during G29
  3811. planner.abl_enabled = false;
  3812. if (!dryrun) {
  3813. // Re-orient the current position without leveling
  3814. // based on where the steppers are positioned.
  3815. set_current_from_steppers_for_axis(ALL_AXES);
  3816. // Sync the planner to where the steppers stopped
  3817. SYNC_PLAN_POSITION_KINEMATIC();
  3818. }
  3819. if (!faux) setup_for_endstop_or_probe_move();
  3820. //xProbe = yProbe = measured_z = 0;
  3821. #if HAS_BED_PROBE
  3822. // Deploy the probe. Probe will raise if needed.
  3823. if (DEPLOY_PROBE()) {
  3824. planner.abl_enabled = abl_should_enable;
  3825. return;
  3826. }
  3827. #endif
  3828. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3829. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3830. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3831. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3832. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3833. ) {
  3834. if (dryrun) {
  3835. // Before reset bed level, re-enable to correct the position
  3836. planner.abl_enabled = abl_should_enable;
  3837. }
  3838. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3839. reset_bed_level();
  3840. // Initialize a grid with the given dimensions
  3841. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3842. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3843. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3844. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3845. // Can't re-enable (on error) until the new grid is written
  3846. abl_should_enable = false;
  3847. }
  3848. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3849. mean = 0.0;
  3850. #endif // AUTO_BED_LEVELING_LINEAR
  3851. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3853. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3854. #endif
  3855. // Probe at 3 arbitrary points
  3856. points[0].z = points[1].z = points[2].z = 0;
  3857. #endif // AUTO_BED_LEVELING_3POINT
  3858. } // !g29_in_progress
  3859. #if ENABLED(PROBE_MANUALLY)
  3860. // Abort current G29 procedure, go back to ABLStart
  3861. if (code_seen('A') && g29_in_progress) {
  3862. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3863. #if HAS_SOFTWARE_ENDSTOPS
  3864. soft_endstops_enabled = enable_soft_endstops;
  3865. #endif
  3866. planner.abl_enabled = abl_should_enable;
  3867. g29_in_progress = false;
  3868. }
  3869. // Query G29 status
  3870. if (code_seen('Q')) {
  3871. if (!g29_in_progress)
  3872. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3873. else {
  3874. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3875. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3876. }
  3877. }
  3878. if (code_seen('A') || code_seen('Q')) return;
  3879. // Fall through to probe the first point
  3880. g29_in_progress = true;
  3881. if (abl_probe_index == 0) {
  3882. // For the initial G29 save software endstop state
  3883. #if HAS_SOFTWARE_ENDSTOPS
  3884. enable_soft_endstops = soft_endstops_enabled;
  3885. #endif
  3886. }
  3887. else {
  3888. // For G29 after adjusting Z.
  3889. // Save the previous Z before going to the next point
  3890. measured_z = current_position[Z_AXIS];
  3891. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3892. mean += measured_z;
  3893. eqnBVector[abl_probe_index] = measured_z;
  3894. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3895. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3896. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3897. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3898. z_values[xCount][yCount] = measured_z + zoffset;
  3899. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3900. points[i].z = measured_z;
  3901. #endif
  3902. }
  3903. //
  3904. // If there's another point to sample, move there with optional lift.
  3905. //
  3906. #if ABL_GRID
  3907. // Find a next point to probe
  3908. // On the first G29 this will be the first probe point
  3909. while (abl_probe_index < abl2) {
  3910. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3911. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3912. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3913. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3914. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3915. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3916. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3917. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3918. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3919. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3920. indexIntoAB[xCount][yCount] = abl_probe_index;
  3921. #endif
  3922. // Keep looping till a reachable point is found
  3923. if (position_is_reachable_xy(xProbe, yProbe)) break;
  3924. ++abl_probe_index;
  3925. }
  3926. // Is there a next point to move to?
  3927. if (abl_probe_index < abl2) {
  3928. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3929. ++abl_probe_index;
  3930. #if HAS_SOFTWARE_ENDSTOPS
  3931. // Disable software endstops to allow manual adjustment
  3932. // If G29 is not completed, they will not be re-enabled
  3933. soft_endstops_enabled = false;
  3934. #endif
  3935. return;
  3936. }
  3937. else {
  3938. // Then leveling is done!
  3939. // G29 finishing code goes here
  3940. // After recording the last point, activate abl
  3941. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3942. g29_in_progress = false;
  3943. // Re-enable software endstops, if needed
  3944. #if HAS_SOFTWARE_ENDSTOPS
  3945. soft_endstops_enabled = enable_soft_endstops;
  3946. #endif
  3947. }
  3948. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3949. // Probe at 3 arbitrary points
  3950. if (abl_probe_index < 3) {
  3951. xProbe = LOGICAL_X_POSITION(points[i].x);
  3952. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3953. ++abl_probe_index;
  3954. #if HAS_SOFTWARE_ENDSTOPS
  3955. // Disable software endstops to allow manual adjustment
  3956. // If G29 is not completed, they will not be re-enabled
  3957. soft_endstops_enabled = false;
  3958. #endif
  3959. return;
  3960. }
  3961. else {
  3962. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3963. g29_in_progress = false;
  3964. // Re-enable software endstops, if needed
  3965. #if HAS_SOFTWARE_ENDSTOPS
  3966. soft_endstops_enabled = enable_soft_endstops;
  3967. #endif
  3968. if (!dryrun) {
  3969. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3970. if (planeNormal.z < 0) {
  3971. planeNormal.x *= -1;
  3972. planeNormal.y *= -1;
  3973. planeNormal.z *= -1;
  3974. }
  3975. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3976. // Can't re-enable (on error) until the new grid is written
  3977. abl_should_enable = false;
  3978. }
  3979. }
  3980. #endif // AUTO_BED_LEVELING_3POINT
  3981. #else // !PROBE_MANUALLY
  3982. bool stow_probe_after_each = code_seen('E');
  3983. #if ABL_GRID
  3984. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3985. // Outer loop is Y with PROBE_Y_FIRST disabled
  3986. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3987. int8_t inStart, inStop, inInc;
  3988. if (zig) { // away from origin
  3989. inStart = 0;
  3990. inStop = PR_INNER_END;
  3991. inInc = 1;
  3992. }
  3993. else { // towards origin
  3994. inStart = PR_INNER_END - 1;
  3995. inStop = -1;
  3996. inInc = -1;
  3997. }
  3998. zig ^= true; // zag
  3999. // Inner loop is Y with PROBE_Y_FIRST enabled
  4000. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4001. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4002. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4003. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  4004. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  4005. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4006. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  4007. #endif
  4008. #if IS_KINEMATIC
  4009. // Avoid probing outside the round or hexagonal area
  4010. if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
  4011. #endif
  4012. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4013. if (isnan(measured_z)) {
  4014. planner.abl_enabled = abl_should_enable;
  4015. return;
  4016. }
  4017. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4018. mean += measured_z;
  4019. eqnBVector[abl_probe_index] = measured_z;
  4020. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4021. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4022. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4023. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4024. z_values[xCount][yCount] = measured_z + zoffset;
  4025. #endif
  4026. abl_should_enable = false;
  4027. idle();
  4028. } // inner
  4029. } // outer
  4030. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4031. // Probe at 3 arbitrary points
  4032. for (uint8_t i = 0; i < 3; ++i) {
  4033. // Retain the last probe position
  4034. xProbe = LOGICAL_X_POSITION(points[i].x);
  4035. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4036. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4037. if (isnan(measured_z)) {
  4038. planner.abl_enabled = abl_should_enable;
  4039. return;
  4040. }
  4041. points[i].z = measured_z;
  4042. }
  4043. if (!dryrun) {
  4044. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4045. if (planeNormal.z < 0) {
  4046. planeNormal.x *= -1;
  4047. planeNormal.y *= -1;
  4048. planeNormal.z *= -1;
  4049. }
  4050. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4051. // Can't re-enable (on error) until the new grid is written
  4052. abl_should_enable = false;
  4053. }
  4054. #endif // AUTO_BED_LEVELING_3POINT
  4055. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4056. if (STOW_PROBE()) {
  4057. planner.abl_enabled = abl_should_enable;
  4058. return;
  4059. }
  4060. #endif // !PROBE_MANUALLY
  4061. //
  4062. // G29 Finishing Code
  4063. //
  4064. // Unless this is a dry run, auto bed leveling will
  4065. // definitely be enabled after this point
  4066. //
  4067. // Restore state after probing
  4068. if (!faux) clean_up_after_endstop_or_probe_move();
  4069. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4070. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4071. #endif
  4072. // Calculate leveling, print reports, correct the position
  4073. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4074. if (!dryrun) extrapolate_unprobed_bed_level();
  4075. print_bilinear_leveling_grid();
  4076. refresh_bed_level();
  4077. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4078. bed_level_virt_print();
  4079. #endif
  4080. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4081. // For LINEAR leveling calculate matrix, print reports, correct the position
  4082. /**
  4083. * solve the plane equation ax + by + d = z
  4084. * A is the matrix with rows [x y 1] for all the probed points
  4085. * B is the vector of the Z positions
  4086. * the normal vector to the plane is formed by the coefficients of the
  4087. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4088. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4089. */
  4090. float plane_equation_coefficients[3];
  4091. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  4092. mean /= abl2;
  4093. if (verbose_level) {
  4094. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4095. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4096. SERIAL_PROTOCOLPGM(" b: ");
  4097. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4098. SERIAL_PROTOCOLPGM(" d: ");
  4099. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4100. SERIAL_EOL;
  4101. if (verbose_level > 2) {
  4102. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4103. SERIAL_PROTOCOL_F(mean, 8);
  4104. SERIAL_EOL;
  4105. }
  4106. }
  4107. // Create the matrix but don't correct the position yet
  4108. if (!dryrun) {
  4109. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4110. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4111. );
  4112. }
  4113. // Show the Topography map if enabled
  4114. if (do_topography_map) {
  4115. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4116. " +--- BACK --+\n"
  4117. " | |\n"
  4118. " L | (+) | R\n"
  4119. " E | | I\n"
  4120. " F | (-) N (+) | G\n"
  4121. " T | | H\n"
  4122. " | (-) | T\n"
  4123. " | |\n"
  4124. " O-- FRONT --+\n"
  4125. " (0,0)");
  4126. float min_diff = 999;
  4127. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4128. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4129. int ind = indexIntoAB[xx][yy];
  4130. float diff = eqnBVector[ind] - mean,
  4131. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4132. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4133. z_tmp = 0;
  4134. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4135. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4136. if (diff >= 0.0)
  4137. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4138. else
  4139. SERIAL_PROTOCOLCHAR(' ');
  4140. SERIAL_PROTOCOL_F(diff, 5);
  4141. } // xx
  4142. SERIAL_EOL;
  4143. } // yy
  4144. SERIAL_EOL;
  4145. if (verbose_level > 3) {
  4146. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4147. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4148. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4149. int ind = indexIntoAB[xx][yy];
  4150. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4151. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4152. z_tmp = 0;
  4153. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4154. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4155. if (diff >= 0.0)
  4156. SERIAL_PROTOCOLPGM(" +");
  4157. // Include + for column alignment
  4158. else
  4159. SERIAL_PROTOCOLCHAR(' ');
  4160. SERIAL_PROTOCOL_F(diff, 5);
  4161. } // xx
  4162. SERIAL_EOL;
  4163. } // yy
  4164. SERIAL_EOL;
  4165. }
  4166. } //do_topography_map
  4167. #endif // AUTO_BED_LEVELING_LINEAR
  4168. #if ABL_PLANAR
  4169. // For LINEAR and 3POINT leveling correct the current position
  4170. if (verbose_level > 0)
  4171. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4172. if (!dryrun) {
  4173. //
  4174. // Correct the current XYZ position based on the tilted plane.
  4175. //
  4176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4177. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4178. #endif
  4179. float converted[XYZ];
  4180. COPY(converted, current_position);
  4181. planner.abl_enabled = true;
  4182. planner.unapply_leveling(converted); // use conversion machinery
  4183. planner.abl_enabled = false;
  4184. // Use the last measured distance to the bed, if possible
  4185. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4186. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4187. ) {
  4188. float simple_z = current_position[Z_AXIS] - measured_z;
  4189. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4190. if (DEBUGGING(LEVELING)) {
  4191. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4192. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4193. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4194. }
  4195. #endif
  4196. converted[Z_AXIS] = simple_z;
  4197. }
  4198. // The rotated XY and corrected Z are now current_position
  4199. COPY(current_position, converted);
  4200. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4201. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4202. #endif
  4203. }
  4204. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4205. if (!dryrun) {
  4206. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4207. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4208. #endif
  4209. // Unapply the offset because it is going to be immediately applied
  4210. // and cause compensation movement in Z
  4211. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4212. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4213. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4214. #endif
  4215. }
  4216. #endif // ABL_PLANAR
  4217. #ifdef Z_PROBE_END_SCRIPT
  4218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4219. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4220. #endif
  4221. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4222. stepper.synchronize();
  4223. #endif
  4224. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4225. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4226. #endif
  4227. report_current_position();
  4228. KEEPALIVE_STATE(IN_HANDLER);
  4229. // Auto Bed Leveling is complete! Enable if possible.
  4230. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4231. if (planner.abl_enabled)
  4232. SYNC_PLAN_POSITION_KINEMATIC();
  4233. }
  4234. #endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
  4235. #if HAS_BED_PROBE
  4236. /**
  4237. * G30: Do a single Z probe at the current XY
  4238. *
  4239. * Parameters:
  4240. *
  4241. * X Probe X position (default current X)
  4242. * Y Probe Y position (default current Y)
  4243. * S0 Leave the probe deployed
  4244. */
  4245. inline void gcode_G30() {
  4246. const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4247. ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4248. if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
  4249. // Disable leveling so the planner won't mess with us
  4250. #if HAS_LEVELING
  4251. set_bed_leveling_enabled(false);
  4252. #endif
  4253. setup_for_endstop_or_probe_move();
  4254. const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
  4255. if (!isnan(measured_z)) {
  4256. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4257. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4258. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4259. }
  4260. clean_up_after_endstop_or_probe_move();
  4261. report_current_position();
  4262. }
  4263. #if ENABLED(Z_PROBE_SLED)
  4264. /**
  4265. * G31: Deploy the Z probe
  4266. */
  4267. inline void gcode_G31() { DEPLOY_PROBE(); }
  4268. /**
  4269. * G32: Stow the Z probe
  4270. */
  4271. inline void gcode_G32() { STOW_PROBE(); }
  4272. #endif // Z_PROBE_SLED
  4273. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4274. /**
  4275. * G33 - Delta '1-4-7-point' Auto-Calibration
  4276. * Calibrate height, endstops, delta radius, and tower angles.
  4277. *
  4278. * Parameters:
  4279. *
  4280. * Pn Number of probe points:
  4281. *
  4282. * P1 Probe center and set height only.
  4283. * P2 Probe center and towers. Set height, endstops, and delta radius.
  4284. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4285. * P4-P7 Probe all positions at different locations and average them.
  4286. *
  4287. * T Don't calibrate tower angle corrections
  4288. *
  4289. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4290. *
  4291. * Vn Verbose level:
  4292. *
  4293. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4294. * V1 Report settings
  4295. * V2 Report settings and probe results
  4296. */
  4297. inline void gcode_G33() {
  4298. const int8_t probe_points = code_seen('P') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS;
  4299. if (!WITHIN(probe_points, 1, 7)) {
  4300. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1 to 7).");
  4301. return;
  4302. }
  4303. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4304. if (!WITHIN(verbose_level, 0, 2)) {
  4305. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
  4306. return;
  4307. }
  4308. const float calibration_precision = code_seen('C') ? code_value_float() : 0.0;
  4309. if (calibration_precision < 0) {
  4310. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
  4311. return;
  4312. }
  4313. const bool towers_set = !code_seen('T'),
  4314. _1p_calibration = probe_points == 1,
  4315. _4p_calibration = probe_points == 2,
  4316. _4p_towers_points = _4p_calibration && towers_set,
  4317. _4p_opposite_points = _4p_calibration && !towers_set,
  4318. _7p_calibration = probe_points >= 3,
  4319. _7p_half_circle = probe_points == 3,
  4320. _7p_double_circle = probe_points == 5,
  4321. _7p_triple_circle = probe_points == 6,
  4322. _7p_quadruple_circle = probe_points == 7,
  4323. _7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
  4324. _7p_intermed_points = _7p_calibration && !_7p_half_circle;
  4325. if (!_1p_calibration) { // test if the outer radius is reachable
  4326. const float circles = (_7p_quadruple_circle ? 1.5 :
  4327. _7p_triple_circle ? 1.0 :
  4328. _7p_double_circle ? 0.5 : 0),
  4329. radius = (1 + circles * 0.1) * delta_calibration_radius;
  4330. for (uint8_t axis = 1; axis < 13; ++axis) {
  4331. if (!position_is_reachable_by_probe_xy(cos(RADIANS(180 + 30 * axis)) * radius, sin(RADIANS(180 + 30 * axis)) * radius)) {
  4332. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4333. return;
  4334. }
  4335. }
  4336. }
  4337. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4338. stepper.synchronize();
  4339. #if HAS_LEVELING
  4340. reset_bed_level(); // After calibration bed-level data is no longer valid
  4341. #endif
  4342. #if HOTENDS > 1
  4343. const uint8_t old_tool_index = active_extruder;
  4344. tool_change(0, 0, true);
  4345. #endif
  4346. setup_for_endstop_or_probe_move();
  4347. endstops.enable(true);
  4348. home_delta();
  4349. endstops.not_homing();
  4350. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4351. float test_precision,
  4352. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4353. zero_std_dev_old = zero_std_dev,
  4354. e_old[XYZ] = {
  4355. endstop_adj[A_AXIS],
  4356. endstop_adj[B_AXIS],
  4357. endstop_adj[C_AXIS]
  4358. },
  4359. dr_old = delta_radius,
  4360. zh_old = home_offset[Z_AXIS],
  4361. alpha_old = delta_tower_angle_trim[A_AXIS],
  4362. beta_old = delta_tower_angle_trim[B_AXIS];
  4363. // print settings
  4364. SERIAL_PROTOCOLPGM("Checking... AC");
  4365. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4366. SERIAL_EOL;
  4367. LCD_MESSAGEPGM("Checking... AC"); // TODO: Make translatable string
  4368. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4369. if (!_1p_calibration) {
  4370. SERIAL_PROTOCOLPGM(" Ex:");
  4371. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4372. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4373. SERIAL_PROTOCOLPGM(" Ey:");
  4374. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4375. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4376. SERIAL_PROTOCOLPGM(" Ez:");
  4377. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4378. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4379. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4380. }
  4381. SERIAL_EOL;
  4382. if (_7p_calibration && towers_set) {
  4383. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4384. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4385. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4386. SERIAL_PROTOCOLPGM(" Ty:");
  4387. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4388. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4389. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4390. SERIAL_EOL;
  4391. }
  4392. #if ENABLED(Z_PROBE_SLED)
  4393. DEPLOY_PROBE();
  4394. #endif
  4395. int8_t iterations = 0;
  4396. home_offset[Z_AXIS] -= probe_pt(0.0, 0.0 , true, 1); // 1st probe to set height
  4397. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  4398. do {
  4399. float z_at_pt[13] = { 0.0 }, S1 = 0.0, S2 = 0.0;
  4400. int16_t N = 0;
  4401. test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
  4402. iterations++;
  4403. // Probe the points
  4404. if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
  4405. z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
  4406. }
  4407. if (_7p_calibration) { // probe extra center points
  4408. for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
  4409. const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
  4410. z_at_pt[0] += probe_pt(cos(a) * r, sin(a) * r, true, 1); // TODO: Needs error handling
  4411. }
  4412. z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
  4413. }
  4414. if (!_1p_calibration) { // probe the radius
  4415. bool zig_zag = true;
  4416. const uint8_t start = _4p_opposite_points ? 3 : 1,
  4417. step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
  4418. for (uint8_t axis = start; axis < 13; axis += step) {
  4419. const float offset_circles = _7p_quadruple_circle ? (zig_zag ? 1.5 : 1.0) :
  4420. _7p_triple_circle ? (zig_zag ? 1.0 : 0.5) :
  4421. _7p_double_circle ? (zig_zag ? 0.5 : 0.0) : 0;
  4422. for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
  4423. const float a = RADIANS(180 + 30 * axis),
  4424. r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
  4425. z_at_pt[axis] += probe_pt(cos(a) * r, sin(a) * r, true, 1); // TODO: Needs error handling
  4426. }
  4427. zig_zag = !zig_zag;
  4428. z_at_pt[axis] /= (2 * offset_circles + 1);
  4429. }
  4430. }
  4431. if (_7p_intermed_points) // average intermediates to tower and opposites
  4432. for (uint8_t axis = 1; axis <= 11; axis += 2)
  4433. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4434. S1 += z_at_pt[0];
  4435. S2 += sq(z_at_pt[0]);
  4436. N++;
  4437. if (!_1p_calibration) // std dev from zero plane
  4438. for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
  4439. S1 += z_at_pt[axis];
  4440. S2 += sq(z_at_pt[axis]);
  4441. N++;
  4442. }
  4443. zero_std_dev_old = zero_std_dev;
  4444. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4445. if (iterations == 1) home_offset[Z_AXIS] = zh_old; // reset height after 1st probe change
  4446. // Solve matrices
  4447. if (zero_std_dev < test_precision && zero_std_dev > calibration_precision) {
  4448. COPY(e_old, endstop_adj);
  4449. dr_old = delta_radius;
  4450. zh_old = home_offset[Z_AXIS];
  4451. alpha_old = delta_tower_angle_trim[A_AXIS];
  4452. beta_old = delta_tower_angle_trim[B_AXIS];
  4453. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
  4454. const float r_diff = delta_radius - delta_calibration_radius,
  4455. h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
  4456. r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
  4457. a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
  4458. #define ZP(N,I) ((N) * z_at_pt[I])
  4459. #define Z1000(I) ZP(1.00, I)
  4460. #define Z1050(I) ZP(h_factor, I)
  4461. #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
  4462. #define Z0350(I) ZP(h_factor / 3.00, I)
  4463. #define Z0175(I) ZP(h_factor / 6.00, I)
  4464. #define Z2250(I) ZP(r_factor, I)
  4465. #define Z0750(I) ZP(r_factor / 3.00, I)
  4466. #define Z0375(I) ZP(r_factor / 6.00, I)
  4467. #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
  4468. #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
  4469. switch (probe_points) {
  4470. case 1:
  4471. test_precision = 0.00;
  4472. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4473. break;
  4474. case 2:
  4475. if (towers_set) {
  4476. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4477. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4478. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4479. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4480. }
  4481. else {
  4482. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4483. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4484. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4485. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4486. }
  4487. break;
  4488. default:
  4489. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4490. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4491. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4492. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4493. if (towers_set) {
  4494. t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
  4495. t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
  4496. }
  4497. break;
  4498. }
  4499. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4500. delta_radius += r_delta;
  4501. delta_tower_angle_trim[A_AXIS] += t_alpha;
  4502. delta_tower_angle_trim[B_AXIS] += t_beta;
  4503. // adjust delta_height and endstops by the max amount
  4504. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4505. home_offset[Z_AXIS] -= z_temp;
  4506. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4507. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4508. }
  4509. else if(zero_std_dev >= test_precision) { // step one back
  4510. COPY(endstop_adj, e_old);
  4511. delta_radius = dr_old;
  4512. home_offset[Z_AXIS] = zh_old;
  4513. delta_tower_angle_trim[A_AXIS] = alpha_old;
  4514. delta_tower_angle_trim[B_AXIS] = beta_old;
  4515. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4516. }
  4517. // print report
  4518. if (verbose_level != 1) {
  4519. SERIAL_PROTOCOLPGM(". c:");
  4520. if (z_at_pt[0] > 0) SERIAL_CHAR('+');
  4521. SERIAL_PROTOCOL_F(z_at_pt[0], 2);
  4522. if (_4p_towers_points || _7p_calibration) {
  4523. SERIAL_PROTOCOLPGM(" x:");
  4524. if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
  4525. SERIAL_PROTOCOL_F(z_at_pt[1], 2);
  4526. SERIAL_PROTOCOLPGM(" y:");
  4527. if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
  4528. SERIAL_PROTOCOL_F(z_at_pt[5], 2);
  4529. SERIAL_PROTOCOLPGM(" z:");
  4530. if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
  4531. SERIAL_PROTOCOL_F(z_at_pt[9], 2);
  4532. }
  4533. if (!_4p_opposite_points) SERIAL_EOL;
  4534. if ((_4p_opposite_points) || _7p_calibration) {
  4535. if (_7p_calibration) {
  4536. SERIAL_CHAR('.');
  4537. SERIAL_PROTOCOL_SP(13);
  4538. }
  4539. SERIAL_PROTOCOLPGM(" yz:");
  4540. if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
  4541. SERIAL_PROTOCOL_F(z_at_pt[7], 2);
  4542. SERIAL_PROTOCOLPGM(" zx:");
  4543. if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
  4544. SERIAL_PROTOCOL_F(z_at_pt[11], 2);
  4545. SERIAL_PROTOCOLPGM(" xy:");
  4546. if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
  4547. SERIAL_PROTOCOL_F(z_at_pt[3], 2);
  4548. SERIAL_EOL;
  4549. }
  4550. }
  4551. if (test_precision != 0.0) { // !forced end
  4552. if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) { // end iterations
  4553. SERIAL_PROTOCOLPGM("Calibration OK");
  4554. SERIAL_PROTOCOL_SP(36);
  4555. if (zero_std_dev >= test_precision)
  4556. SERIAL_PROTOCOLPGM("rolling back.");
  4557. else {
  4558. SERIAL_PROTOCOLPGM("std dev:");
  4559. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4560. }
  4561. SERIAL_EOL;
  4562. LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
  4563. }
  4564. else { // !end iterations
  4565. char mess[15] = "No convergence";
  4566. if (iterations < 31)
  4567. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4568. SERIAL_PROTOCOL(mess);
  4569. SERIAL_PROTOCOL_SP(36);
  4570. SERIAL_PROTOCOLPGM("std dev:");
  4571. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4572. SERIAL_EOL;
  4573. lcd_setstatus(mess);
  4574. }
  4575. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4576. if (!_1p_calibration) {
  4577. SERIAL_PROTOCOLPGM(" Ex:");
  4578. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4579. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4580. SERIAL_PROTOCOLPGM(" Ey:");
  4581. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4582. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4583. SERIAL_PROTOCOLPGM(" Ez:");
  4584. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4585. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4586. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4587. }
  4588. SERIAL_EOL;
  4589. if (_7p_calibration && towers_set) {
  4590. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4591. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4592. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4593. SERIAL_PROTOCOLPGM(" Ty:");
  4594. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4595. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4596. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4597. SERIAL_EOL;
  4598. }
  4599. if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision)
  4600. serialprintPGM(save_message);
  4601. SERIAL_EOL;
  4602. }
  4603. else { // forced end
  4604. if (verbose_level == 0) {
  4605. SERIAL_PROTOCOLPGM("End DRY-RUN");
  4606. SERIAL_PROTOCOL_SP(39);
  4607. SERIAL_PROTOCOLPGM("std dev:");
  4608. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4609. SERIAL_EOL;
  4610. }
  4611. else {
  4612. SERIAL_PROTOCOLLNPGM("Calibration OK");
  4613. LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
  4614. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4615. SERIAL_EOL;
  4616. serialprintPGM(save_message);
  4617. SERIAL_EOL;
  4618. }
  4619. }
  4620. endstops.enable(true);
  4621. home_delta();
  4622. endstops.not_homing();
  4623. }
  4624. while (zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31);
  4625. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4626. do_blocking_move_to_z(delta_clip_start_height);
  4627. #endif
  4628. clean_up_after_endstop_or_probe_move();
  4629. #if HOTENDS > 1
  4630. tool_change(old_tool_index, 0, true);
  4631. #endif
  4632. #if ENABLED(Z_PROBE_SLED)
  4633. RETRACT_PROBE();
  4634. #endif
  4635. }
  4636. #endif // DELTA_AUTO_CALIBRATION
  4637. #endif // HAS_BED_PROBE
  4638. #if ENABLED(G38_PROBE_TARGET)
  4639. static bool G38_run_probe() {
  4640. bool G38_pass_fail = false;
  4641. // Get direction of move and retract
  4642. float retract_mm[XYZ];
  4643. LOOP_XYZ(i) {
  4644. float dist = destination[i] - current_position[i];
  4645. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4646. }
  4647. stepper.synchronize(); // wait until the machine is idle
  4648. // Move until destination reached or target hit
  4649. endstops.enable(true);
  4650. G38_move = true;
  4651. G38_endstop_hit = false;
  4652. prepare_move_to_destination();
  4653. stepper.synchronize();
  4654. G38_move = false;
  4655. endstops.hit_on_purpose();
  4656. set_current_from_steppers_for_axis(ALL_AXES);
  4657. SYNC_PLAN_POSITION_KINEMATIC();
  4658. if (G38_endstop_hit) {
  4659. G38_pass_fail = true;
  4660. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4661. // Move away by the retract distance
  4662. set_destination_to_current();
  4663. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4664. endstops.enable(false);
  4665. prepare_move_to_destination();
  4666. stepper.synchronize();
  4667. feedrate_mm_s /= 4;
  4668. // Bump the target more slowly
  4669. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4670. endstops.enable(true);
  4671. G38_move = true;
  4672. prepare_move_to_destination();
  4673. stepper.synchronize();
  4674. G38_move = false;
  4675. set_current_from_steppers_for_axis(ALL_AXES);
  4676. SYNC_PLAN_POSITION_KINEMATIC();
  4677. #endif
  4678. }
  4679. endstops.hit_on_purpose();
  4680. endstops.not_homing();
  4681. return G38_pass_fail;
  4682. }
  4683. /**
  4684. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4685. * G38.3 - probe toward workpiece, stop on contact
  4686. *
  4687. * Like G28 except uses Z min probe for all axes
  4688. */
  4689. inline void gcode_G38(bool is_38_2) {
  4690. // Get X Y Z E F
  4691. gcode_get_destination();
  4692. setup_for_endstop_or_probe_move();
  4693. // If any axis has enough movement, do the move
  4694. LOOP_XYZ(i)
  4695. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4696. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4697. // If G38.2 fails throw an error
  4698. if (!G38_run_probe() && is_38_2) {
  4699. SERIAL_ERROR_START;
  4700. SERIAL_ERRORLNPGM("Failed to reach target");
  4701. }
  4702. break;
  4703. }
  4704. clean_up_after_endstop_or_probe_move();
  4705. }
  4706. #endif // G38_PROBE_TARGET
  4707. /**
  4708. * G92: Set current position to given X Y Z E
  4709. */
  4710. inline void gcode_G92() {
  4711. bool didXYZ = false,
  4712. didE = code_seen('E');
  4713. if (!didE) stepper.synchronize();
  4714. LOOP_XYZE(i) {
  4715. if (code_seen(axis_codes[i])) {
  4716. #if IS_SCARA
  4717. current_position[i] = code_value_axis_units((AxisEnum)i);
  4718. if (i != E_AXIS) didXYZ = true;
  4719. #else
  4720. #if HAS_POSITION_SHIFT
  4721. const float p = current_position[i];
  4722. #endif
  4723. float v = code_value_axis_units((AxisEnum)i);
  4724. current_position[i] = v;
  4725. if (i != E_AXIS) {
  4726. didXYZ = true;
  4727. #if HAS_POSITION_SHIFT
  4728. position_shift[i] += v - p; // Offset the coordinate space
  4729. update_software_endstops((AxisEnum)i);
  4730. #endif
  4731. }
  4732. #endif
  4733. }
  4734. }
  4735. if (didXYZ)
  4736. SYNC_PLAN_POSITION_KINEMATIC();
  4737. else if (didE)
  4738. sync_plan_position_e();
  4739. report_current_position();
  4740. }
  4741. #if HAS_RESUME_CONTINUE
  4742. /**
  4743. * M0: Unconditional stop - Wait for user button press on LCD
  4744. * M1: Conditional stop - Wait for user button press on LCD
  4745. */
  4746. inline void gcode_M0_M1() {
  4747. const char * const args = current_command_args;
  4748. millis_t codenum = 0;
  4749. bool hasP = false, hasS = false;
  4750. if (code_seen('P')) {
  4751. codenum = code_value_millis(); // milliseconds to wait
  4752. hasP = codenum > 0;
  4753. }
  4754. if (code_seen('S')) {
  4755. codenum = code_value_millis_from_seconds(); // seconds to wait
  4756. hasS = codenum > 0;
  4757. }
  4758. #if ENABLED(ULTIPANEL)
  4759. if (!hasP && !hasS && *args != '\0')
  4760. lcd_setstatus(args, true);
  4761. else {
  4762. LCD_MESSAGEPGM(MSG_USERWAIT);
  4763. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4764. dontExpireStatus();
  4765. #endif
  4766. }
  4767. #else
  4768. if (!hasP && !hasS && *args != '\0') {
  4769. SERIAL_ECHO_START;
  4770. SERIAL_ECHOLN(args);
  4771. }
  4772. #endif
  4773. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4774. wait_for_user = true;
  4775. stepper.synchronize();
  4776. refresh_cmd_timeout();
  4777. if (codenum > 0) {
  4778. codenum += previous_cmd_ms; // wait until this time for a click
  4779. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4780. }
  4781. else {
  4782. #if ENABLED(ULTIPANEL)
  4783. if (lcd_detected()) {
  4784. while (wait_for_user) idle();
  4785. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4786. }
  4787. #else
  4788. while (wait_for_user) idle();
  4789. #endif
  4790. }
  4791. wait_for_user = false;
  4792. KEEPALIVE_STATE(IN_HANDLER);
  4793. }
  4794. #endif // HAS_RESUME_CONTINUE
  4795. #if ENABLED(SPINDLE_LASER_ENABLE)
  4796. /**
  4797. * M3: Spindle Clockwise
  4798. * M4: Spindle Counter-clockwise
  4799. *
  4800. * S0 turns off spindle.
  4801. *
  4802. * If no speed PWM output is defined then M3/M4 just turns it on.
  4803. *
  4804. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  4805. * Hardware PWM is required. ISRs are too slow.
  4806. *
  4807. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  4808. * No other settings give a PWM signal that goes from 0 to 5 volts.
  4809. *
  4810. * The system automatically sets WGM to Mode 1, so no special
  4811. * initialization is needed.
  4812. *
  4813. * WGM bits for timer 2 are automatically set by the system to
  4814. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  4815. * No special initialization is needed.
  4816. *
  4817. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  4818. * factors for timers 2, 3, 4, and 5 are acceptable.
  4819. *
  4820. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  4821. * the spindle/laser during power-up or when connecting to the host
  4822. * (usually goes through a reset which sets all I/O pins to tri-state)
  4823. *
  4824. * PWM duty cycle goes from 0 (off) to 255 (always on).
  4825. */
  4826. // Wait for spindle to come up to speed
  4827. inline void delay_for_power_up() {
  4828. refresh_cmd_timeout();
  4829. while (PENDING(millis(), SPINDLE_LASER_POWERUP_DELAY + previous_cmd_ms)) idle();
  4830. }
  4831. // Wait for spindle to stop turning
  4832. inline void delay_for_power_down() {
  4833. refresh_cmd_timeout();
  4834. while (PENDING(millis(), SPINDLE_LASER_POWERDOWN_DELAY + previous_cmd_ms + 1)) idle();
  4835. }
  4836. /**
  4837. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  4838. *
  4839. * it accepts inputs of 0-255
  4840. */
  4841. inline void ocr_val_mode() {
  4842. uint8_t spindle_laser_power = code_value_byte();
  4843. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  4844. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  4845. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  4846. }
  4847. inline void gcode_M3_M4(bool is_M3) {
  4848. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  4849. #if SPINDLE_DIR_CHANGE
  4850. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  4851. if (SPINDLE_STOP_ON_DIR_CHANGE \
  4852. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  4853. && READ(SPINDLE_DIR_PIN) != rotation_dir
  4854. ) {
  4855. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  4856. delay_for_power_down();
  4857. }
  4858. digitalWrite(SPINDLE_DIR_PIN, rotation_dir);
  4859. #endif
  4860. /**
  4861. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  4862. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  4863. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  4864. */
  4865. #if ENABLED(SPINDLE_LASER_PWM)
  4866. if (code_seen('O')) ocr_val_mode();
  4867. else {
  4868. const float spindle_laser_power = code_seen('S') ? code_value_float() : 0;
  4869. if (spindle_laser_power == 0) {
  4870. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  4871. delay_for_power_down();
  4872. }
  4873. else {
  4874. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  4875. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  4876. if (spindle_laser_power <= SPEED_POWER_MIN)
  4877. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  4878. if (spindle_laser_power >= SPEED_POWER_MAX)
  4879. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  4880. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  4881. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  4882. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  4883. delay_for_power_up();
  4884. }
  4885. }
  4886. #else
  4887. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  4888. delay_for_power_up();
  4889. #endif
  4890. }
  4891. /**
  4892. * M5 turn off spindle
  4893. */
  4894. inline void gcode_M5() {
  4895. stepper.synchronize();
  4896. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  4897. delay_for_power_down();
  4898. }
  4899. #endif // SPINDLE_LASER_ENABLE
  4900. /**
  4901. * M17: Enable power on all stepper motors
  4902. */
  4903. inline void gcode_M17() {
  4904. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4905. enable_all_steppers();
  4906. }
  4907. #if IS_KINEMATIC
  4908. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4909. #else
  4910. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4911. #endif
  4912. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4913. float resume_position[XYZE];
  4914. bool move_away_flag = false;
  4915. inline void move_back_on_resume() {
  4916. if (!move_away_flag) return;
  4917. move_away_flag = false;
  4918. // Set extruder to saved position
  4919. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4920. planner.set_e_position_mm(current_position[E_AXIS]);
  4921. #if IS_KINEMATIC
  4922. // Move XYZ to starting position
  4923. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4924. #else
  4925. // Move XY to starting position, then Z
  4926. destination[X_AXIS] = resume_position[X_AXIS];
  4927. destination[Y_AXIS] = resume_position[Y_AXIS];
  4928. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4929. destination[Z_AXIS] = resume_position[Z_AXIS];
  4930. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4931. #endif
  4932. stepper.synchronize();
  4933. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4934. filament_ran_out = false;
  4935. #endif
  4936. set_current_to_destination();
  4937. }
  4938. #endif // PARK_HEAD_ON_PAUSE
  4939. #if ENABLED(SDSUPPORT)
  4940. /**
  4941. * M20: List SD card to serial output
  4942. */
  4943. inline void gcode_M20() {
  4944. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4945. card.ls();
  4946. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4947. }
  4948. /**
  4949. * M21: Init SD Card
  4950. */
  4951. inline void gcode_M21() { card.initsd(); }
  4952. /**
  4953. * M22: Release SD Card
  4954. */
  4955. inline void gcode_M22() { card.release(); }
  4956. /**
  4957. * M23: Open a file
  4958. */
  4959. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4960. /**
  4961. * M24: Start or Resume SD Print
  4962. */
  4963. inline void gcode_M24() {
  4964. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4965. move_back_on_resume();
  4966. #endif
  4967. card.startFileprint();
  4968. print_job_timer.start();
  4969. }
  4970. /**
  4971. * M25: Pause SD Print
  4972. */
  4973. inline void gcode_M25() {
  4974. card.pauseSDPrint();
  4975. print_job_timer.pause();
  4976. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4977. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4978. #endif
  4979. }
  4980. /**
  4981. * M26: Set SD Card file index
  4982. */
  4983. inline void gcode_M26() {
  4984. if (card.cardOK && code_seen('S'))
  4985. card.setIndex(code_value_long());
  4986. }
  4987. /**
  4988. * M27: Get SD Card status
  4989. */
  4990. inline void gcode_M27() { card.getStatus(); }
  4991. /**
  4992. * M28: Start SD Write
  4993. */
  4994. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4995. /**
  4996. * M29: Stop SD Write
  4997. * Processed in write to file routine above
  4998. */
  4999. inline void gcode_M29() {
  5000. // card.saving = false;
  5001. }
  5002. /**
  5003. * M30 <filename>: Delete SD Card file
  5004. */
  5005. inline void gcode_M30() {
  5006. if (card.cardOK) {
  5007. card.closefile();
  5008. card.removeFile(current_command_args);
  5009. }
  5010. }
  5011. #endif // SDSUPPORT
  5012. /**
  5013. * M31: Get the time since the start of SD Print (or last M109)
  5014. */
  5015. inline void gcode_M31() {
  5016. char buffer[21];
  5017. duration_t elapsed = print_job_timer.duration();
  5018. elapsed.toString(buffer);
  5019. lcd_setstatus(buffer);
  5020. SERIAL_ECHO_START;
  5021. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5022. }
  5023. #if ENABLED(SDSUPPORT)
  5024. /**
  5025. * M32: Select file and start SD Print
  5026. */
  5027. inline void gcode_M32() { // Why is M32 allowed to flout the sacred GCode standard?
  5028. if (card.sdprinting)
  5029. stepper.synchronize();
  5030. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  5031. if (!namestartpos)
  5032. namestartpos = current_command_args; // Default name position, 4 letters after the M
  5033. else
  5034. namestartpos++; //to skip the '!'
  5035. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  5036. if (card.cardOK) {
  5037. card.openFile(namestartpos, true, call_procedure);
  5038. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  5039. card.setIndex(code_value_long());
  5040. card.startFileprint();
  5041. // Procedure calls count as normal print time.
  5042. if (!call_procedure) print_job_timer.start();
  5043. }
  5044. }
  5045. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5046. /**
  5047. * M33: Get the long full path of a file or folder
  5048. *
  5049. * Parameters:
  5050. * <dospath> Case-insensitive DOS-style path to a file or folder
  5051. *
  5052. * Example:
  5053. * M33 miscel~1/armchair/armcha~1.gco
  5054. *
  5055. * Output:
  5056. * /Miscellaneous/Armchair/Armchair.gcode
  5057. */
  5058. inline void gcode_M33() {
  5059. card.printLongPath(current_command_args);
  5060. }
  5061. #endif
  5062. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5063. /**
  5064. * M34: Set SD Card Sorting Options
  5065. */
  5066. inline void gcode_M34() {
  5067. if (code_seen('S')) card.setSortOn(code_value_bool());
  5068. if (code_seen('F')) {
  5069. int v = code_value_long();
  5070. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5071. }
  5072. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  5073. }
  5074. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5075. /**
  5076. * M928: Start SD Write
  5077. */
  5078. inline void gcode_M928() {
  5079. card.openLogFile(current_command_args);
  5080. }
  5081. #endif // SDSUPPORT
  5082. /**
  5083. * Sensitive pin test for M42, M226
  5084. */
  5085. static bool pin_is_protected(uint8_t pin) {
  5086. static const int sensitive_pins[] = SENSITIVE_PINS;
  5087. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5088. if (sensitive_pins[i] == pin) return true;
  5089. return false;
  5090. }
  5091. /**
  5092. * M42: Change pin status via GCode
  5093. *
  5094. * P<pin> Pin number (LED if omitted)
  5095. * S<byte> Pin status from 0 - 255
  5096. */
  5097. inline void gcode_M42() {
  5098. if (!code_seen('S')) return;
  5099. int pin_status = code_value_int();
  5100. if (!WITHIN(pin_status, 0, 255)) return;
  5101. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  5102. if (pin_number < 0) return;
  5103. if (pin_is_protected(pin_number)) {
  5104. SERIAL_ERROR_START;
  5105. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5106. return;
  5107. }
  5108. pinMode(pin_number, OUTPUT);
  5109. digitalWrite(pin_number, pin_status);
  5110. analogWrite(pin_number, pin_status);
  5111. #if FAN_COUNT > 0
  5112. switch (pin_number) {
  5113. #if HAS_FAN0
  5114. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5115. #endif
  5116. #if HAS_FAN1
  5117. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5118. #endif
  5119. #if HAS_FAN2
  5120. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5121. #endif
  5122. }
  5123. #endif
  5124. }
  5125. #if ENABLED(PINS_DEBUGGING)
  5126. #include "pinsDebug.h"
  5127. inline void toggle_pins() {
  5128. const bool I_flag = code_seen('I') && code_value_bool();
  5129. const int repeat = code_seen('R') ? code_value_int() : 1,
  5130. start = code_seen('S') ? code_value_int() : 0,
  5131. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  5132. wait = code_seen('W') ? code_value_int() : 500;
  5133. for (uint8_t pin = start; pin <= end; pin++) {
  5134. if (!I_flag && pin_is_protected(pin)) {
  5135. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  5136. SERIAL_ECHOLNPGM(" untouched.");
  5137. }
  5138. else {
  5139. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  5140. pinMode(pin, OUTPUT);
  5141. for (int16_t j = 0; j < repeat; j++) {
  5142. digitalWrite(pin, 0);
  5143. safe_delay(wait);
  5144. digitalWrite(pin, 1);
  5145. safe_delay(wait);
  5146. digitalWrite(pin, 0);
  5147. safe_delay(wait);
  5148. }
  5149. }
  5150. SERIAL_CHAR('\n');
  5151. }
  5152. SERIAL_ECHOLNPGM("Done.");
  5153. } // toggle_pins
  5154. inline void servo_probe_test() {
  5155. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5156. SERIAL_ERROR_START;
  5157. SERIAL_ERRORLNPGM("SERVO not setup");
  5158. #elif !HAS_Z_SERVO_ENDSTOP
  5159. SERIAL_ERROR_START;
  5160. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5161. #else
  5162. const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
  5163. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5164. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5165. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5166. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5167. bool probe_inverting;
  5168. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5169. #define PROBE_TEST_PIN Z_MIN_PIN
  5170. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5171. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5172. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5173. #if Z_MIN_ENDSTOP_INVERTING
  5174. SERIAL_PROTOCOLLNPGM("true");
  5175. #else
  5176. SERIAL_PROTOCOLLNPGM("false");
  5177. #endif
  5178. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5179. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5180. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5181. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5182. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5183. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5184. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5185. SERIAL_PROTOCOLLNPGM("true");
  5186. #else
  5187. SERIAL_PROTOCOLLNPGM("false");
  5188. #endif
  5189. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5190. #endif
  5191. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5192. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  5193. bool deploy_state;
  5194. bool stow_state;
  5195. for (uint8_t i = 0; i < 4; i++) {
  5196. servo[probe_index].move(z_servo_angle[0]); //deploy
  5197. safe_delay(500);
  5198. deploy_state = digitalRead(PROBE_TEST_PIN);
  5199. servo[probe_index].move(z_servo_angle[1]); //stow
  5200. safe_delay(500);
  5201. stow_state = digitalRead(PROBE_TEST_PIN);
  5202. }
  5203. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5204. refresh_cmd_timeout();
  5205. if (deploy_state != stow_state) {
  5206. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5207. if (deploy_state) {
  5208. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5209. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5210. }
  5211. else {
  5212. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5213. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5214. }
  5215. #if ENABLED(BLTOUCH)
  5216. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5217. #endif
  5218. }
  5219. else { // measure active signal length
  5220. servo[probe_index].move(z_servo_angle[0]); // deploy
  5221. safe_delay(500);
  5222. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5223. uint16_t probe_counter = 0;
  5224. // Allow 30 seconds max for operator to trigger probe
  5225. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5226. safe_delay(2);
  5227. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5228. refresh_cmd_timeout();
  5229. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  5230. for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
  5231. safe_delay(2);
  5232. if (probe_counter == 50)
  5233. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5234. else if (probe_counter >= 2)
  5235. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5236. else
  5237. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5238. servo[probe_index].move(z_servo_angle[1]); //stow
  5239. } // pulse detected
  5240. } // for loop waiting for trigger
  5241. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5242. } // measure active signal length
  5243. #endif
  5244. } // servo_probe_test
  5245. /**
  5246. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5247. *
  5248. * M43 - report name and state of pin(s)
  5249. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5250. * I Flag to ignore Marlin's pin protection.
  5251. *
  5252. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5253. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5254. * I Flag to ignore Marlin's pin protection.
  5255. *
  5256. * M43 E<bool> - Enable / disable background endstop monitoring
  5257. * - Machine continues to operate
  5258. * - Reports changes to endstops
  5259. * - Toggles LED when an endstop changes
  5260. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5261. *
  5262. * M43 T - Toggle pin(s) and report which pin is being toggled
  5263. * S<pin> - Start Pin number. If not given, will default to 0
  5264. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5265. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5266. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5267. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5268. *
  5269. * M43 S - Servo probe test
  5270. * P<index> - Probe index (optional - defaults to 0
  5271. */
  5272. inline void gcode_M43() {
  5273. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  5274. toggle_pins();
  5275. return;
  5276. }
  5277. // Enable or disable endstop monitoring
  5278. if (code_seen('E')) {
  5279. endstop_monitor_flag = code_value_bool();
  5280. SERIAL_PROTOCOLPGM("endstop monitor ");
  5281. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5282. SERIAL_PROTOCOLLNPGM("abled");
  5283. return;
  5284. }
  5285. if (code_seen('S')) {
  5286. servo_probe_test();
  5287. return;
  5288. }
  5289. // Get the range of pins to test or watch
  5290. const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
  5291. last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5292. if (first_pin > last_pin) return;
  5293. const bool ignore_protection = code_seen('I') && code_value_bool();
  5294. // Watch until click, M108, or reset
  5295. if (code_seen('W') && code_value_bool()) {
  5296. SERIAL_PROTOCOLLNPGM("Watching pins");
  5297. byte pin_state[last_pin - first_pin + 1];
  5298. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5299. if (pin_is_protected(pin) && !ignore_protection) continue;
  5300. pinMode(pin, INPUT_PULLUP);
  5301. /*
  5302. if (IS_ANALOG(pin))
  5303. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5304. else
  5305. //*/
  5306. pin_state[pin - first_pin] = digitalRead(pin);
  5307. }
  5308. #if HAS_RESUME_CONTINUE
  5309. wait_for_user = true;
  5310. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5311. #endif
  5312. for (;;) {
  5313. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5314. if (pin_is_protected(pin)) continue;
  5315. const byte val =
  5316. /*
  5317. IS_ANALOG(pin)
  5318. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5319. :
  5320. //*/
  5321. digitalRead(pin);
  5322. if (val != pin_state[pin - first_pin]) {
  5323. report_pin_state(pin);
  5324. pin_state[pin - first_pin] = val;
  5325. }
  5326. }
  5327. #if HAS_RESUME_CONTINUE
  5328. if (!wait_for_user) {
  5329. KEEPALIVE_STATE(IN_HANDLER);
  5330. break;
  5331. }
  5332. #endif
  5333. safe_delay(500);
  5334. }
  5335. return;
  5336. }
  5337. // Report current state of selected pin(s)
  5338. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5339. report_pin_state_extended(pin, ignore_protection);
  5340. }
  5341. #endif // PINS_DEBUGGING
  5342. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5343. /**
  5344. * M48: Z probe repeatability measurement function.
  5345. *
  5346. * Usage:
  5347. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5348. * P = Number of sampled points (4-50, default 10)
  5349. * X = Sample X position
  5350. * Y = Sample Y position
  5351. * V = Verbose level (0-4, default=1)
  5352. * E = Engage Z probe for each reading
  5353. * L = Number of legs of movement before probe
  5354. * S = Schizoid (Or Star if you prefer)
  5355. *
  5356. * This function assumes the bed has been homed. Specifically, that a G28 command
  5357. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5358. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5359. * regenerated.
  5360. */
  5361. inline void gcode_M48() {
  5362. if (axis_unhomed_error()) return;
  5363. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  5364. if (!WITHIN(verbose_level, 0, 4)) {
  5365. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  5366. return;
  5367. }
  5368. if (verbose_level > 0)
  5369. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5370. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  5371. if (!WITHIN(n_samples, 4, 50)) {
  5372. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5373. return;
  5374. }
  5375. float X_current = current_position[X_AXIS],
  5376. Y_current = current_position[Y_AXIS];
  5377. bool stow_probe_after_each = code_seen('E');
  5378. float X_probe_location = code_seen('X') ? code_value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  5379. float Y_probe_location = code_seen('Y') ? code_value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  5380. #if DISABLED(DELTA)
  5381. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5382. out_of_range_error(PSTR("X"));
  5383. return;
  5384. }
  5385. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5386. out_of_range_error(PSTR("Y"));
  5387. return;
  5388. }
  5389. #else
  5390. if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
  5391. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5392. return;
  5393. }
  5394. #endif
  5395. bool seen_L = code_seen('L');
  5396. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  5397. if (n_legs > 15) {
  5398. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5399. return;
  5400. }
  5401. if (n_legs == 1) n_legs = 2;
  5402. bool schizoid_flag = code_seen('S');
  5403. if (schizoid_flag && !seen_L) n_legs = 7;
  5404. /**
  5405. * Now get everything to the specified probe point So we can safely do a
  5406. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5407. * we don't want to use that as a starting point for each probe.
  5408. */
  5409. if (verbose_level > 2)
  5410. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5411. // Disable bed level correction in M48 because we want the raw data when we probe
  5412. #if HAS_LEVELING
  5413. const bool was_enabled =
  5414. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5415. ubl.state.active
  5416. #elif ENABLED(MESH_BED_LEVELING)
  5417. mbl.active()
  5418. #else
  5419. planner.abl_enabled
  5420. #endif
  5421. ;
  5422. set_bed_leveling_enabled(false);
  5423. #endif
  5424. setup_for_endstop_or_probe_move();
  5425. // Move to the first point, deploy, and probe
  5426. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5427. if (isnan(t)) return;
  5428. randomSeed(millis());
  5429. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5430. for (uint8_t n = 0; n < n_samples; n++) {
  5431. if (n_legs) {
  5432. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5433. float angle = random(0.0, 360.0),
  5434. radius = random(
  5435. #if ENABLED(DELTA)
  5436. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5437. #else
  5438. 5, X_MAX_LENGTH / 8
  5439. #endif
  5440. );
  5441. if (verbose_level > 3) {
  5442. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5443. SERIAL_ECHOPAIR(" angle: ", angle);
  5444. SERIAL_ECHOPGM(" Direction: ");
  5445. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5446. SERIAL_ECHOLNPGM("Clockwise");
  5447. }
  5448. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5449. double delta_angle;
  5450. if (schizoid_flag)
  5451. // The points of a 5 point star are 72 degrees apart. We need to
  5452. // skip a point and go to the next one on the star.
  5453. delta_angle = dir * 2.0 * 72.0;
  5454. else
  5455. // If we do this line, we are just trying to move further
  5456. // around the circle.
  5457. delta_angle = dir * (float) random(25, 45);
  5458. angle += delta_angle;
  5459. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5460. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5461. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5462. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5463. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5464. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5465. #if DISABLED(DELTA)
  5466. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5467. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5468. #else
  5469. // If we have gone out too far, we can do a simple fix and scale the numbers
  5470. // back in closer to the origin.
  5471. while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
  5472. X_current *= 0.8;
  5473. Y_current *= 0.8;
  5474. if (verbose_level > 3) {
  5475. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5476. SERIAL_ECHOLNPAIR(", ", Y_current);
  5477. }
  5478. }
  5479. #endif
  5480. if (verbose_level > 3) {
  5481. SERIAL_PROTOCOLPGM("Going to:");
  5482. SERIAL_ECHOPAIR(" X", X_current);
  5483. SERIAL_ECHOPAIR(" Y", Y_current);
  5484. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5485. }
  5486. do_blocking_move_to_xy(X_current, Y_current);
  5487. } // n_legs loop
  5488. } // n_legs
  5489. // Probe a single point
  5490. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5491. /**
  5492. * Get the current mean for the data points we have so far
  5493. */
  5494. double sum = 0.0;
  5495. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5496. mean = sum / (n + 1);
  5497. NOMORE(min, sample_set[n]);
  5498. NOLESS(max, sample_set[n]);
  5499. /**
  5500. * Now, use that mean to calculate the standard deviation for the
  5501. * data points we have so far
  5502. */
  5503. sum = 0.0;
  5504. for (uint8_t j = 0; j <= n; j++)
  5505. sum += sq(sample_set[j] - mean);
  5506. sigma = sqrt(sum / (n + 1));
  5507. if (verbose_level > 0) {
  5508. if (verbose_level > 1) {
  5509. SERIAL_PROTOCOL(n + 1);
  5510. SERIAL_PROTOCOLPGM(" of ");
  5511. SERIAL_PROTOCOL((int)n_samples);
  5512. SERIAL_PROTOCOLPGM(": z: ");
  5513. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5514. if (verbose_level > 2) {
  5515. SERIAL_PROTOCOLPGM(" mean: ");
  5516. SERIAL_PROTOCOL_F(mean, 4);
  5517. SERIAL_PROTOCOLPGM(" sigma: ");
  5518. SERIAL_PROTOCOL_F(sigma, 6);
  5519. SERIAL_PROTOCOLPGM(" min: ");
  5520. SERIAL_PROTOCOL_F(min, 3);
  5521. SERIAL_PROTOCOLPGM(" max: ");
  5522. SERIAL_PROTOCOL_F(max, 3);
  5523. SERIAL_PROTOCOLPGM(" range: ");
  5524. SERIAL_PROTOCOL_F(max-min, 3);
  5525. }
  5526. SERIAL_EOL;
  5527. }
  5528. }
  5529. } // End of probe loop
  5530. if (STOW_PROBE()) return;
  5531. SERIAL_PROTOCOLPGM("Finished!");
  5532. SERIAL_EOL;
  5533. if (verbose_level > 0) {
  5534. SERIAL_PROTOCOLPGM("Mean: ");
  5535. SERIAL_PROTOCOL_F(mean, 6);
  5536. SERIAL_PROTOCOLPGM(" Min: ");
  5537. SERIAL_PROTOCOL_F(min, 3);
  5538. SERIAL_PROTOCOLPGM(" Max: ");
  5539. SERIAL_PROTOCOL_F(max, 3);
  5540. SERIAL_PROTOCOLPGM(" Range: ");
  5541. SERIAL_PROTOCOL_F(max-min, 3);
  5542. SERIAL_EOL;
  5543. }
  5544. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5545. SERIAL_PROTOCOL_F(sigma, 6);
  5546. SERIAL_EOL;
  5547. SERIAL_EOL;
  5548. clean_up_after_endstop_or_probe_move();
  5549. // Re-enable bed level correction if it had been on
  5550. #if HAS_LEVELING
  5551. set_bed_leveling_enabled(was_enabled);
  5552. #endif
  5553. report_current_position();
  5554. }
  5555. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5556. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  5557. inline void gcode_M49() {
  5558. ubl.g26_debug_flag ^= true;
  5559. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5560. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5561. }
  5562. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  5563. /**
  5564. * M75: Start print timer
  5565. */
  5566. inline void gcode_M75() { print_job_timer.start(); }
  5567. /**
  5568. * M76: Pause print timer
  5569. */
  5570. inline void gcode_M76() { print_job_timer.pause(); }
  5571. /**
  5572. * M77: Stop print timer
  5573. */
  5574. inline void gcode_M77() { print_job_timer.stop(); }
  5575. #if ENABLED(PRINTCOUNTER)
  5576. /**
  5577. * M78: Show print statistics
  5578. */
  5579. inline void gcode_M78() {
  5580. // "M78 S78" will reset the statistics
  5581. if (code_seen('S') && code_value_int() == 78)
  5582. print_job_timer.initStats();
  5583. else
  5584. print_job_timer.showStats();
  5585. }
  5586. #endif
  5587. /**
  5588. * M104: Set hot end temperature
  5589. */
  5590. inline void gcode_M104() {
  5591. if (get_target_extruder_from_command(104)) return;
  5592. if (DEBUGGING(DRYRUN)) return;
  5593. #if ENABLED(SINGLENOZZLE)
  5594. if (target_extruder != active_extruder) return;
  5595. #endif
  5596. if (code_seen('S')) {
  5597. const int16_t temp = code_value_temp_abs();
  5598. thermalManager.setTargetHotend(temp, target_extruder);
  5599. #if ENABLED(DUAL_X_CARRIAGE)
  5600. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5601. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  5602. #endif
  5603. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5604. /**
  5605. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5606. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5607. * standby mode, for instance in a dual extruder setup, without affecting
  5608. * the running print timer.
  5609. */
  5610. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5611. print_job_timer.stop();
  5612. LCD_MESSAGEPGM(WELCOME_MSG);
  5613. }
  5614. #endif
  5615. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder))
  5616. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5617. }
  5618. #if ENABLED(AUTOTEMP)
  5619. planner.autotemp_M104_M109();
  5620. #endif
  5621. }
  5622. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5623. void print_heaterstates() {
  5624. #if HAS_TEMP_HOTEND
  5625. SERIAL_PROTOCOLPGM(" T:");
  5626. SERIAL_PROTOCOL(thermalManager.degHotend(target_extruder));
  5627. SERIAL_PROTOCOLPGM(" /");
  5628. SERIAL_PROTOCOL(thermalManager.degTargetHotend(target_extruder));
  5629. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5630. SERIAL_PROTOCOLPAIR(" (", thermalManager.rawHotendTemp(target_extruder) / OVERSAMPLENR);
  5631. SERIAL_PROTOCOLCHAR(')');
  5632. #endif
  5633. #endif
  5634. #if HAS_TEMP_BED
  5635. SERIAL_PROTOCOLPGM(" B:");
  5636. SERIAL_PROTOCOL(thermalManager.degBed());
  5637. SERIAL_PROTOCOLPGM(" /");
  5638. SERIAL_PROTOCOL(thermalManager.degTargetBed());
  5639. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5640. SERIAL_PROTOCOLPAIR(" (", thermalManager.rawBedTemp() / OVERSAMPLENR);
  5641. SERIAL_PROTOCOLCHAR(')');
  5642. #endif
  5643. #endif
  5644. #if HOTENDS > 1
  5645. HOTEND_LOOP() {
  5646. SERIAL_PROTOCOLPAIR(" T", e);
  5647. SERIAL_PROTOCOLCHAR(':');
  5648. SERIAL_PROTOCOL(thermalManager.degHotend(e));
  5649. SERIAL_PROTOCOLPGM(" /");
  5650. SERIAL_PROTOCOL(thermalManager.degTargetHotend(e));
  5651. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5652. SERIAL_PROTOCOLPAIR(" (", thermalManager.rawHotendTemp(e) / OVERSAMPLENR);
  5653. SERIAL_PROTOCOLCHAR(')');
  5654. #endif
  5655. }
  5656. #endif
  5657. SERIAL_PROTOCOLPGM(" @:");
  5658. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5659. #if HAS_TEMP_BED
  5660. SERIAL_PROTOCOLPGM(" B@:");
  5661. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5662. #endif
  5663. #if HOTENDS > 1
  5664. HOTEND_LOOP() {
  5665. SERIAL_PROTOCOLPAIR(" @", e);
  5666. SERIAL_PROTOCOLCHAR(':');
  5667. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5668. }
  5669. #endif
  5670. }
  5671. #endif
  5672. /**
  5673. * M105: Read hot end and bed temperature
  5674. */
  5675. inline void gcode_M105() {
  5676. if (get_target_extruder_from_command(105)) return;
  5677. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5678. SERIAL_PROTOCOLPGM(MSG_OK);
  5679. print_heaterstates();
  5680. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5681. SERIAL_ERROR_START;
  5682. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5683. #endif
  5684. SERIAL_EOL;
  5685. }
  5686. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5687. static uint8_t auto_report_temp_interval;
  5688. static millis_t next_temp_report_ms;
  5689. /**
  5690. * M155: Set temperature auto-report interval. M155 S<seconds>
  5691. */
  5692. inline void gcode_M155() {
  5693. if (code_seen('S')) {
  5694. auto_report_temp_interval = code_value_byte();
  5695. NOMORE(auto_report_temp_interval, 60);
  5696. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5697. }
  5698. }
  5699. inline void auto_report_temperatures() {
  5700. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5701. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5702. print_heaterstates();
  5703. SERIAL_EOL;
  5704. }
  5705. }
  5706. #endif // AUTO_REPORT_TEMPERATURES
  5707. #if FAN_COUNT > 0
  5708. /**
  5709. * M106: Set Fan Speed
  5710. *
  5711. * S<int> Speed between 0-255
  5712. * P<index> Fan index, if more than one fan
  5713. */
  5714. inline void gcode_M106() {
  5715. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5716. p = code_seen('P') ? code_value_ushort() : 0;
  5717. NOMORE(s, 255);
  5718. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5719. }
  5720. /**
  5721. * M107: Fan Off
  5722. */
  5723. inline void gcode_M107() {
  5724. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5725. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5726. }
  5727. #endif // FAN_COUNT > 0
  5728. #if DISABLED(EMERGENCY_PARSER)
  5729. /**
  5730. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5731. */
  5732. inline void gcode_M108() { wait_for_heatup = false; }
  5733. /**
  5734. * M112: Emergency Stop
  5735. */
  5736. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5737. /**
  5738. * M410: Quickstop - Abort all planned moves
  5739. *
  5740. * This will stop the carriages mid-move, so most likely they
  5741. * will be out of sync with the stepper position after this.
  5742. */
  5743. inline void gcode_M410() { quickstop_stepper(); }
  5744. #endif
  5745. /**
  5746. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5747. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5748. */
  5749. #ifndef MIN_COOLING_SLOPE_DEG
  5750. #define MIN_COOLING_SLOPE_DEG 1.50
  5751. #endif
  5752. #ifndef MIN_COOLING_SLOPE_TIME
  5753. #define MIN_COOLING_SLOPE_TIME 60
  5754. #endif
  5755. inline void gcode_M109() {
  5756. if (get_target_extruder_from_command(109)) return;
  5757. if (DEBUGGING(DRYRUN)) return;
  5758. #if ENABLED(SINGLENOZZLE)
  5759. if (target_extruder != active_extruder) return;
  5760. #endif
  5761. const bool no_wait_for_cooling = code_seen('S');
  5762. if (no_wait_for_cooling || code_seen('R')) {
  5763. const int16_t temp = code_value_temp_abs();
  5764. thermalManager.setTargetHotend(temp, target_extruder);
  5765. #if ENABLED(DUAL_X_CARRIAGE)
  5766. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5767. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  5768. #endif
  5769. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5770. /**
  5771. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5772. * standby mode, (e.g., in a dual extruder setup) without affecting
  5773. * the running print timer.
  5774. */
  5775. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5776. print_job_timer.stop();
  5777. LCD_MESSAGEPGM(WELCOME_MSG);
  5778. }
  5779. else
  5780. print_job_timer.start();
  5781. #endif
  5782. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5783. }
  5784. else return;
  5785. #if ENABLED(AUTOTEMP)
  5786. planner.autotemp_M104_M109();
  5787. #endif
  5788. #if TEMP_RESIDENCY_TIME > 0
  5789. millis_t residency_start_ms = 0;
  5790. // Loop until the temperature has stabilized
  5791. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5792. #else
  5793. // Loop until the temperature is very close target
  5794. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5795. #endif
  5796. float target_temp = -1.0, old_temp = 9999.0;
  5797. bool wants_to_cool = false;
  5798. wait_for_heatup = true;
  5799. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5800. KEEPALIVE_STATE(NOT_BUSY);
  5801. #if ENABLED(PRINTER_EVENT_LEDS)
  5802. const float start_temp = thermalManager.degHotend(target_extruder);
  5803. uint8_t old_blue = 0;
  5804. #endif
  5805. do {
  5806. // Target temperature might be changed during the loop
  5807. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5808. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5809. target_temp = thermalManager.degTargetHotend(target_extruder);
  5810. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5811. if (no_wait_for_cooling && wants_to_cool) break;
  5812. }
  5813. now = millis();
  5814. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5815. next_temp_ms = now + 1000UL;
  5816. print_heaterstates();
  5817. #if TEMP_RESIDENCY_TIME > 0
  5818. SERIAL_PROTOCOLPGM(" W:");
  5819. if (residency_start_ms) {
  5820. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5821. SERIAL_PROTOCOLLN(rem);
  5822. }
  5823. else {
  5824. SERIAL_PROTOCOLLNPGM("?");
  5825. }
  5826. #else
  5827. SERIAL_EOL;
  5828. #endif
  5829. }
  5830. idle();
  5831. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5832. const float temp = thermalManager.degHotend(target_extruder);
  5833. #if ENABLED(PRINTER_EVENT_LEDS)
  5834. // Gradually change LED strip from violet to red as nozzle heats up
  5835. if (!wants_to_cool) {
  5836. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5837. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5838. }
  5839. #endif
  5840. #if TEMP_RESIDENCY_TIME > 0
  5841. const float temp_diff = fabs(target_temp - temp);
  5842. if (!residency_start_ms) {
  5843. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5844. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5845. }
  5846. else if (temp_diff > TEMP_HYSTERESIS) {
  5847. // Restart the timer whenever the temperature falls outside the hysteresis.
  5848. residency_start_ms = now;
  5849. }
  5850. #endif
  5851. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5852. if (wants_to_cool) {
  5853. // break after MIN_COOLING_SLOPE_TIME seconds
  5854. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5855. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5856. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5857. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5858. old_temp = temp;
  5859. }
  5860. }
  5861. } while (wait_for_heatup && TEMP_CONDITIONS);
  5862. if (wait_for_heatup) {
  5863. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5864. #if ENABLED(PRINTER_EVENT_LEDS)
  5865. #if ENABLED(RGBW_LED)
  5866. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5867. #else
  5868. set_led_color(255, 255, 255); // Set LEDs All On
  5869. #endif
  5870. #endif
  5871. }
  5872. KEEPALIVE_STATE(IN_HANDLER);
  5873. }
  5874. #if HAS_TEMP_BED
  5875. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5876. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5877. #endif
  5878. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5879. #define MIN_COOLING_SLOPE_TIME_BED 60
  5880. #endif
  5881. /**
  5882. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5883. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5884. */
  5885. inline void gcode_M190() {
  5886. if (DEBUGGING(DRYRUN)) return;
  5887. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5888. const bool no_wait_for_cooling = code_seen('S');
  5889. if (no_wait_for_cooling || code_seen('R')) {
  5890. thermalManager.setTargetBed(code_value_temp_abs());
  5891. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5892. if (code_value_temp_abs() > BED_MINTEMP)
  5893. print_job_timer.start();
  5894. #endif
  5895. }
  5896. else return;
  5897. #if TEMP_BED_RESIDENCY_TIME > 0
  5898. millis_t residency_start_ms = 0;
  5899. // Loop until the temperature has stabilized
  5900. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5901. #else
  5902. // Loop until the temperature is very close target
  5903. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5904. #endif
  5905. float target_temp = -1.0, old_temp = 9999.0;
  5906. bool wants_to_cool = false;
  5907. wait_for_heatup = true;
  5908. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5909. KEEPALIVE_STATE(NOT_BUSY);
  5910. target_extruder = active_extruder; // for print_heaterstates
  5911. #if ENABLED(PRINTER_EVENT_LEDS)
  5912. const float start_temp = thermalManager.degBed();
  5913. uint8_t old_red = 255;
  5914. #endif
  5915. do {
  5916. // Target temperature might be changed during the loop
  5917. if (target_temp != thermalManager.degTargetBed()) {
  5918. wants_to_cool = thermalManager.isCoolingBed();
  5919. target_temp = thermalManager.degTargetBed();
  5920. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5921. if (no_wait_for_cooling && wants_to_cool) break;
  5922. }
  5923. now = millis();
  5924. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5925. next_temp_ms = now + 1000UL;
  5926. print_heaterstates();
  5927. #if TEMP_BED_RESIDENCY_TIME > 0
  5928. SERIAL_PROTOCOLPGM(" W:");
  5929. if (residency_start_ms) {
  5930. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5931. SERIAL_PROTOCOLLN(rem);
  5932. }
  5933. else {
  5934. SERIAL_PROTOCOLLNPGM("?");
  5935. }
  5936. #else
  5937. SERIAL_EOL;
  5938. #endif
  5939. }
  5940. idle();
  5941. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5942. const float temp = thermalManager.degBed();
  5943. #if ENABLED(PRINTER_EVENT_LEDS)
  5944. // Gradually change LED strip from blue to violet as bed heats up
  5945. if (!wants_to_cool) {
  5946. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5947. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5948. }
  5949. #endif
  5950. #if TEMP_BED_RESIDENCY_TIME > 0
  5951. const float temp_diff = fabs(target_temp - temp);
  5952. if (!residency_start_ms) {
  5953. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5954. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5955. }
  5956. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5957. // Restart the timer whenever the temperature falls outside the hysteresis.
  5958. residency_start_ms = now;
  5959. }
  5960. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5961. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5962. if (wants_to_cool) {
  5963. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5964. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5965. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5966. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5967. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5968. old_temp = temp;
  5969. }
  5970. }
  5971. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5972. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5973. KEEPALIVE_STATE(IN_HANDLER);
  5974. }
  5975. #endif // HAS_TEMP_BED
  5976. /**
  5977. * M110: Set Current Line Number
  5978. */
  5979. inline void gcode_M110() {
  5980. if (code_seen('N')) gcode_LastN = code_value_long();
  5981. }
  5982. /**
  5983. * M111: Set the debug level
  5984. */
  5985. inline void gcode_M111() {
  5986. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5987. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5988. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5989. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5990. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5991. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5992. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5993. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5994. #endif
  5995. const static char* const debug_strings[] PROGMEM = {
  5996. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5997. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5998. str_debug_32
  5999. #endif
  6000. };
  6001. SERIAL_ECHO_START;
  6002. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6003. if (marlin_debug_flags) {
  6004. uint8_t comma = 0;
  6005. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6006. if (TEST(marlin_debug_flags, i)) {
  6007. if (comma++) SERIAL_CHAR(',');
  6008. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6009. }
  6010. }
  6011. }
  6012. else {
  6013. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6014. }
  6015. SERIAL_EOL;
  6016. }
  6017. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6018. /**
  6019. * M113: Get or set Host Keepalive interval (0 to disable)
  6020. *
  6021. * S<seconds> Optional. Set the keepalive interval.
  6022. */
  6023. inline void gcode_M113() {
  6024. if (code_seen('S')) {
  6025. host_keepalive_interval = code_value_byte();
  6026. NOMORE(host_keepalive_interval, 60);
  6027. }
  6028. else {
  6029. SERIAL_ECHO_START;
  6030. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6031. }
  6032. }
  6033. #endif
  6034. #if ENABLED(BARICUDA)
  6035. #if HAS_HEATER_1
  6036. /**
  6037. * M126: Heater 1 valve open
  6038. */
  6039. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  6040. /**
  6041. * M127: Heater 1 valve close
  6042. */
  6043. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6044. #endif
  6045. #if HAS_HEATER_2
  6046. /**
  6047. * M128: Heater 2 valve open
  6048. */
  6049. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  6050. /**
  6051. * M129: Heater 2 valve close
  6052. */
  6053. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6054. #endif
  6055. #endif // BARICUDA
  6056. /**
  6057. * M140: Set bed temperature
  6058. */
  6059. inline void gcode_M140() {
  6060. if (DEBUGGING(DRYRUN)) return;
  6061. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  6062. }
  6063. #if ENABLED(ULTIPANEL)
  6064. /**
  6065. * M145: Set the heatup state for a material in the LCD menu
  6066. *
  6067. * S<material> (0=PLA, 1=ABS)
  6068. * H<hotend temp>
  6069. * B<bed temp>
  6070. * F<fan speed>
  6071. */
  6072. inline void gcode_M145() {
  6073. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  6074. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6075. SERIAL_ERROR_START;
  6076. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6077. }
  6078. else {
  6079. int v;
  6080. if (code_seen('H')) {
  6081. v = code_value_int();
  6082. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6083. }
  6084. if (code_seen('F')) {
  6085. v = code_value_int();
  6086. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6087. }
  6088. #if TEMP_SENSOR_BED != 0
  6089. if (code_seen('B')) {
  6090. v = code_value_int();
  6091. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6092. }
  6093. #endif
  6094. }
  6095. }
  6096. #endif // ULTIPANEL
  6097. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6098. /**
  6099. * M149: Set temperature units
  6100. */
  6101. inline void gcode_M149() {
  6102. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  6103. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  6104. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  6105. }
  6106. #endif
  6107. #if HAS_POWER_SWITCH
  6108. /**
  6109. * M80 : Turn on the Power Supply
  6110. * M80 S : Report the current state and exit
  6111. */
  6112. inline void gcode_M80() {
  6113. // S: Report the current power supply state and exit
  6114. if (code_seen('S')) {
  6115. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6116. return;
  6117. }
  6118. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6119. /**
  6120. * If you have a switch on suicide pin, this is useful
  6121. * if you want to start another print with suicide feature after
  6122. * a print without suicide...
  6123. */
  6124. #if HAS_SUICIDE
  6125. OUT_WRITE(SUICIDE_PIN, HIGH);
  6126. #endif
  6127. #if ENABLED(HAVE_TMC2130)
  6128. delay(100);
  6129. tmc2130_init(); // Settings only stick when the driver has power
  6130. #endif
  6131. powersupply_on = true;
  6132. #if ENABLED(ULTIPANEL)
  6133. LCD_MESSAGEPGM(WELCOME_MSG);
  6134. #endif
  6135. }
  6136. #endif // HAS_POWER_SWITCH
  6137. /**
  6138. * M81: Turn off Power, including Power Supply, if there is one.
  6139. *
  6140. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6141. */
  6142. inline void gcode_M81() {
  6143. thermalManager.disable_all_heaters();
  6144. stepper.finish_and_disable();
  6145. #if FAN_COUNT > 0
  6146. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6147. #if ENABLED(PROBING_FANS_OFF)
  6148. fans_paused = false;
  6149. ZERO(paused_fanSpeeds);
  6150. #endif
  6151. #endif
  6152. safe_delay(1000); // Wait 1 second before switching off
  6153. #if HAS_SUICIDE
  6154. stepper.synchronize();
  6155. suicide();
  6156. #elif HAS_POWER_SWITCH
  6157. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6158. powersupply_on = false;
  6159. #endif
  6160. #if ENABLED(ULTIPANEL)
  6161. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6162. #endif
  6163. }
  6164. /**
  6165. * M82: Set E codes absolute (default)
  6166. */
  6167. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6168. /**
  6169. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6170. */
  6171. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6172. /**
  6173. * M18, M84: Disable stepper motors
  6174. */
  6175. inline void gcode_M18_M84() {
  6176. if (code_seen('S')) {
  6177. stepper_inactive_time = code_value_millis_from_seconds();
  6178. }
  6179. else {
  6180. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  6181. if (all_axis) {
  6182. stepper.finish_and_disable();
  6183. }
  6184. else {
  6185. stepper.synchronize();
  6186. if (code_seen('X')) disable_X();
  6187. if (code_seen('Y')) disable_Y();
  6188. if (code_seen('Z')) disable_Z();
  6189. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  6190. if (code_seen('E')) disable_e_steppers();
  6191. #endif
  6192. }
  6193. }
  6194. }
  6195. /**
  6196. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6197. */
  6198. inline void gcode_M85() {
  6199. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  6200. }
  6201. /**
  6202. * Multi-stepper support for M92, M201, M203
  6203. */
  6204. #if ENABLED(DISTINCT_E_FACTORS)
  6205. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6206. #define TARGET_EXTRUDER target_extruder
  6207. #else
  6208. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6209. #define TARGET_EXTRUDER 0
  6210. #endif
  6211. /**
  6212. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6213. * (Follows the same syntax as G92)
  6214. *
  6215. * With multiple extruders use T to specify which one.
  6216. */
  6217. inline void gcode_M92() {
  6218. GET_TARGET_EXTRUDER(92);
  6219. LOOP_XYZE(i) {
  6220. if (code_seen(axis_codes[i])) {
  6221. if (i == E_AXIS) {
  6222. const float value = code_value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  6223. if (value < 20.0) {
  6224. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6225. planner.max_jerk[E_AXIS] *= factor;
  6226. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6227. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6228. }
  6229. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6230. }
  6231. else {
  6232. planner.axis_steps_per_mm[i] = code_value_per_axis_unit((AxisEnum)i);
  6233. }
  6234. }
  6235. }
  6236. planner.refresh_positioning();
  6237. }
  6238. /**
  6239. * Output the current position to serial
  6240. */
  6241. static void report_current_position() {
  6242. SERIAL_PROTOCOLPGM("X:");
  6243. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6244. SERIAL_PROTOCOLPGM(" Y:");
  6245. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6246. SERIAL_PROTOCOLPGM(" Z:");
  6247. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6248. SERIAL_PROTOCOLPGM(" E:");
  6249. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6250. stepper.report_positions();
  6251. #if IS_SCARA
  6252. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6253. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6254. SERIAL_EOL;
  6255. #endif
  6256. }
  6257. /**
  6258. * M114: Output current position to serial port
  6259. */
  6260. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  6261. /**
  6262. * M115: Capabilities string
  6263. */
  6264. inline void gcode_M115() {
  6265. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6266. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6267. // EEPROM (M500, M501)
  6268. #if ENABLED(EEPROM_SETTINGS)
  6269. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6270. #else
  6271. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6272. #endif
  6273. // AUTOREPORT_TEMP (M155)
  6274. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6275. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6276. #else
  6277. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6278. #endif
  6279. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6280. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6281. // AUTOLEVEL (G29)
  6282. #if HAS_ABL
  6283. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6284. #else
  6285. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6286. #endif
  6287. // Z_PROBE (G30)
  6288. #if HAS_BED_PROBE
  6289. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6290. #else
  6291. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6292. #endif
  6293. // MESH_REPORT (M420 V)
  6294. #if HAS_LEVELING
  6295. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6296. #else
  6297. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6298. #endif
  6299. // SOFTWARE_POWER (G30)
  6300. #if HAS_POWER_SWITCH
  6301. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6302. #else
  6303. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6304. #endif
  6305. // TOGGLE_LIGHTS (M355)
  6306. #if HAS_CASE_LIGHT
  6307. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6308. #else
  6309. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6310. #endif
  6311. // EMERGENCY_PARSER (M108, M112, M410)
  6312. #if ENABLED(EMERGENCY_PARSER)
  6313. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6314. #else
  6315. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6316. #endif
  6317. #endif // EXTENDED_CAPABILITIES_REPORT
  6318. }
  6319. /**
  6320. * M117: Set LCD Status Message
  6321. */
  6322. inline void gcode_M117() {
  6323. lcd_setstatus(current_command_args);
  6324. }
  6325. /**
  6326. * M119: Output endstop states to serial output
  6327. */
  6328. inline void gcode_M119() { endstops.M119(); }
  6329. /**
  6330. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6331. */
  6332. inline void gcode_M120() { endstops.enable_globally(true); }
  6333. /**
  6334. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6335. */
  6336. inline void gcode_M121() { endstops.enable_globally(false); }
  6337. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6338. /**
  6339. * M125: Store current position and move to filament change position.
  6340. * Called on pause (by M25) to prevent material leaking onto the
  6341. * object. On resume (M24) the head will be moved back and the
  6342. * print will resume.
  6343. *
  6344. * If Marlin is compiled without SD Card support, M125 can be
  6345. * used directly to pause the print and move to park position,
  6346. * resuming with a button click or M108.
  6347. *
  6348. * L = override retract length
  6349. * X = override X
  6350. * Y = override Y
  6351. * Z = override Z raise
  6352. */
  6353. inline void gcode_M125() {
  6354. if (move_away_flag) return; // already paused
  6355. const bool job_running = print_job_timer.isRunning();
  6356. // there are blocks after this one, or sd printing
  6357. move_away_flag = job_running || planner.blocks_queued()
  6358. #if ENABLED(SDSUPPORT)
  6359. || card.sdprinting
  6360. #endif
  6361. ;
  6362. if (!move_away_flag) return; // nothing to pause
  6363. // M125 can be used to pause a print too
  6364. #if ENABLED(SDSUPPORT)
  6365. card.pauseSDPrint();
  6366. #endif
  6367. print_job_timer.pause();
  6368. // Save current position
  6369. COPY(resume_position, current_position);
  6370. set_destination_to_current();
  6371. // Initial retract before move to filament change position
  6372. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6373. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6374. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6375. #endif
  6376. ;
  6377. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6378. // Lift Z axis
  6379. const float z_lift = code_seen('Z') ? code_value_linear_units() :
  6380. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6381. FILAMENT_CHANGE_Z_ADD
  6382. #else
  6383. 0
  6384. #endif
  6385. ;
  6386. if (z_lift > 0) {
  6387. destination[Z_AXIS] += z_lift;
  6388. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6389. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6390. }
  6391. // Move XY axes to filament change position or given position
  6392. destination[X_AXIS] = code_seen('X') ? code_value_linear_units() : 0
  6393. #ifdef FILAMENT_CHANGE_X_POS
  6394. + FILAMENT_CHANGE_X_POS
  6395. #endif
  6396. ;
  6397. destination[Y_AXIS] = code_seen('Y') ? code_value_linear_units() : 0
  6398. #ifdef FILAMENT_CHANGE_Y_POS
  6399. + FILAMENT_CHANGE_Y_POS
  6400. #endif
  6401. ;
  6402. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6403. if (active_extruder > 0) {
  6404. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  6405. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  6406. }
  6407. #endif
  6408. clamp_to_software_endstops(destination);
  6409. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6410. set_current_to_destination();
  6411. stepper.synchronize();
  6412. disable_e_steppers();
  6413. #if DISABLED(SDSUPPORT)
  6414. // Wait for lcd click or M108
  6415. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6416. wait_for_user = true;
  6417. while (wait_for_user) idle();
  6418. KEEPALIVE_STATE(IN_HANDLER);
  6419. // Return to print position and continue
  6420. move_back_on_resume();
  6421. if (job_running) print_job_timer.start();
  6422. move_away_flag = false;
  6423. #endif
  6424. }
  6425. #endif // PARK_HEAD_ON_PAUSE
  6426. #if HAS_COLOR_LEDS
  6427. /**
  6428. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6429. *
  6430. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6431. *
  6432. * Examples:
  6433. *
  6434. * M150 R255 ; Turn LED red
  6435. * M150 R255 U127 ; Turn LED orange (PWM only)
  6436. * M150 ; Turn LED off
  6437. * M150 R U B ; Turn LED white
  6438. * M150 W ; Turn LED white using a white LED
  6439. *
  6440. */
  6441. inline void gcode_M150() {
  6442. set_led_color(
  6443. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6444. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6445. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  6446. #if ENABLED(RGBW_LED)
  6447. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  6448. #endif
  6449. );
  6450. }
  6451. #endif // BLINKM || RGB_LED
  6452. /**
  6453. * M200: Set filament diameter and set E axis units to cubic units
  6454. *
  6455. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6456. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6457. */
  6458. inline void gcode_M200() {
  6459. if (get_target_extruder_from_command(200)) return;
  6460. if (code_seen('D')) {
  6461. // setting any extruder filament size disables volumetric on the assumption that
  6462. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6463. // for all extruders
  6464. volumetric_enabled = (code_value_linear_units() != 0.0);
  6465. if (volumetric_enabled) {
  6466. filament_size[target_extruder] = code_value_linear_units();
  6467. // make sure all extruders have some sane value for the filament size
  6468. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6469. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6470. }
  6471. }
  6472. calculate_volumetric_multipliers();
  6473. }
  6474. /**
  6475. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6476. *
  6477. * With multiple extruders use T to specify which one.
  6478. */
  6479. inline void gcode_M201() {
  6480. GET_TARGET_EXTRUDER(201);
  6481. LOOP_XYZE(i) {
  6482. if (code_seen(axis_codes[i])) {
  6483. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6484. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units((AxisEnum)a);
  6485. }
  6486. }
  6487. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6488. planner.reset_acceleration_rates();
  6489. }
  6490. #if 0 // Not used for Sprinter/grbl gen6
  6491. inline void gcode_M202() {
  6492. LOOP_XYZE(i) {
  6493. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6494. }
  6495. }
  6496. #endif
  6497. /**
  6498. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6499. *
  6500. * With multiple extruders use T to specify which one.
  6501. */
  6502. inline void gcode_M203() {
  6503. GET_TARGET_EXTRUDER(203);
  6504. LOOP_XYZE(i)
  6505. if (code_seen(axis_codes[i])) {
  6506. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6507. planner.max_feedrate_mm_s[a] = code_value_axis_units((AxisEnum)a);
  6508. }
  6509. }
  6510. /**
  6511. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6512. *
  6513. * P = Printing moves
  6514. * R = Retract only (no X, Y, Z) moves
  6515. * T = Travel (non printing) moves
  6516. *
  6517. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6518. */
  6519. inline void gcode_M204() {
  6520. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6521. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  6522. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6523. }
  6524. if (code_seen('P')) {
  6525. planner.acceleration = code_value_linear_units();
  6526. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6527. }
  6528. if (code_seen('R')) {
  6529. planner.retract_acceleration = code_value_linear_units();
  6530. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6531. }
  6532. if (code_seen('T')) {
  6533. planner.travel_acceleration = code_value_linear_units();
  6534. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6535. }
  6536. }
  6537. /**
  6538. * M205: Set Advanced Settings
  6539. *
  6540. * S = Min Feed Rate (units/s)
  6541. * T = Min Travel Feed Rate (units/s)
  6542. * B = Min Segment Time (µs)
  6543. * X = Max X Jerk (units/sec^2)
  6544. * Y = Max Y Jerk (units/sec^2)
  6545. * Z = Max Z Jerk (units/sec^2)
  6546. * E = Max E Jerk (units/sec^2)
  6547. */
  6548. inline void gcode_M205() {
  6549. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  6550. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  6551. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  6552. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_linear_units();
  6553. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_linear_units();
  6554. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_linear_units();
  6555. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_linear_units();
  6556. }
  6557. #if HAS_M206_COMMAND
  6558. /**
  6559. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6560. */
  6561. inline void gcode_M206() {
  6562. LOOP_XYZ(i)
  6563. if (code_seen(axis_codes[i]))
  6564. set_home_offset((AxisEnum)i, code_value_linear_units());
  6565. #if ENABLED(MORGAN_SCARA)
  6566. if (code_seen('T')) set_home_offset(A_AXIS, code_value_linear_units()); // Theta
  6567. if (code_seen('P')) set_home_offset(B_AXIS, code_value_linear_units()); // Psi
  6568. #endif
  6569. SYNC_PLAN_POSITION_KINEMATIC();
  6570. report_current_position();
  6571. }
  6572. #endif // HAS_M206_COMMAND
  6573. #if ENABLED(DELTA)
  6574. /**
  6575. * M665: Set delta configurations
  6576. *
  6577. * H = delta height
  6578. * L = diagonal rod
  6579. * R = delta radius
  6580. * S = segments per second
  6581. * B = delta calibration radius
  6582. * X = Alpha (Tower 1) angle trim
  6583. * Y = Beta (Tower 2) angle trim
  6584. * Z = Rotate A and B by this angle
  6585. */
  6586. inline void gcode_M665() {
  6587. if (code_seen('H')) {
  6588. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6589. current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
  6590. update_software_endstops(Z_AXIS);
  6591. }
  6592. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  6593. if (code_seen('R')) delta_radius = code_value_linear_units();
  6594. if (code_seen('S')) delta_segments_per_second = code_value_float();
  6595. if (code_seen('B')) delta_calibration_radius = code_value_float();
  6596. if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_float();
  6597. if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_float();
  6598. if (code_seen('Z')) { // rotate all 3 axis for Z = 0
  6599. delta_tower_angle_trim[A_AXIS] -= code_value_float();
  6600. delta_tower_angle_trim[B_AXIS] -= code_value_float();
  6601. }
  6602. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6603. }
  6604. /**
  6605. * M666: Set delta endstop adjustment
  6606. */
  6607. inline void gcode_M666() {
  6608. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6609. if (DEBUGGING(LEVELING)) {
  6610. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6611. }
  6612. #endif
  6613. LOOP_XYZ(i) {
  6614. if (code_seen(axis_codes[i])) {
  6615. endstop_adj[i] = code_value_linear_units();
  6616. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6617. if (DEBUGGING(LEVELING)) {
  6618. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6619. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6620. }
  6621. #endif
  6622. }
  6623. }
  6624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6625. if (DEBUGGING(LEVELING)) {
  6626. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6627. }
  6628. #endif
  6629. // normalize endstops so all are <=0; set the residue to delta height
  6630. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  6631. home_offset[Z_AXIS] -= z_temp;
  6632. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  6633. }
  6634. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  6635. /**
  6636. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  6637. */
  6638. inline void gcode_M666() {
  6639. if (code_seen('Z')) z_endstop_adj = code_value_linear_units();
  6640. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  6641. }
  6642. #endif // !DELTA && Z_DUAL_ENDSTOPS
  6643. #if ENABLED(FWRETRACT)
  6644. /**
  6645. * M207: Set firmware retraction values
  6646. *
  6647. * S[+units] retract_length
  6648. * W[+units] retract_length_swap (multi-extruder)
  6649. * F[units/min] retract_feedrate_mm_s
  6650. * Z[units] retract_zlift
  6651. */
  6652. inline void gcode_M207() {
  6653. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  6654. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6655. if (code_seen('Z')) retract_zlift = code_value_linear_units();
  6656. #if EXTRUDERS > 1
  6657. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6658. #endif
  6659. }
  6660. /**
  6661. * M208: Set firmware un-retraction values
  6662. *
  6663. * S[+units] retract_recover_length (in addition to M207 S*)
  6664. * W[+units] retract_recover_length_swap (multi-extruder)
  6665. * F[units/min] retract_recover_feedrate_mm_s
  6666. */
  6667. inline void gcode_M208() {
  6668. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6669. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6670. #if EXTRUDERS > 1
  6671. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6672. #endif
  6673. }
  6674. /**
  6675. * M209: Enable automatic retract (M209 S1)
  6676. * For slicers that don't support G10/11, reversed extrude-only
  6677. * moves will be classified as retraction.
  6678. */
  6679. inline void gcode_M209() {
  6680. if (code_seen('S')) {
  6681. autoretract_enabled = code_value_bool();
  6682. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6683. }
  6684. }
  6685. #endif // FWRETRACT
  6686. /**
  6687. * M211: Enable, Disable, and/or Report software endstops
  6688. *
  6689. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6690. */
  6691. inline void gcode_M211() {
  6692. SERIAL_ECHO_START;
  6693. #if HAS_SOFTWARE_ENDSTOPS
  6694. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6695. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6696. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6697. #else
  6698. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6699. SERIAL_ECHOPGM(MSG_OFF);
  6700. #endif
  6701. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6702. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6703. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6704. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6705. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6706. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6707. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6708. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6709. }
  6710. #if HOTENDS > 1
  6711. /**
  6712. * M218 - set hotend offset (in linear units)
  6713. *
  6714. * T<tool>
  6715. * X<xoffset>
  6716. * Y<yoffset>
  6717. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  6718. */
  6719. inline void gcode_M218() {
  6720. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6721. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_linear_units();
  6722. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_linear_units();
  6723. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
  6724. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_linear_units();
  6725. #endif
  6726. SERIAL_ECHO_START;
  6727. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6728. HOTEND_LOOP() {
  6729. SERIAL_CHAR(' ');
  6730. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6731. SERIAL_CHAR(',');
  6732. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6733. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
  6734. SERIAL_CHAR(',');
  6735. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6736. #endif
  6737. }
  6738. SERIAL_EOL;
  6739. }
  6740. #endif // HOTENDS > 1
  6741. /**
  6742. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6743. */
  6744. inline void gcode_M220() {
  6745. if (code_seen('S')) feedrate_percentage = code_value_int();
  6746. }
  6747. /**
  6748. * M221: Set extrusion percentage (M221 T0 S95)
  6749. */
  6750. inline void gcode_M221() {
  6751. if (get_target_extruder_from_command(221)) return;
  6752. if (code_seen('S'))
  6753. flow_percentage[target_extruder] = code_value_int();
  6754. }
  6755. /**
  6756. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6757. */
  6758. inline void gcode_M226() {
  6759. if (code_seen('P')) {
  6760. int pin_number = code_value_int(),
  6761. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6762. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6763. int target = LOW;
  6764. stepper.synchronize();
  6765. pinMode(pin_number, INPUT);
  6766. switch (pin_state) {
  6767. case 1:
  6768. target = HIGH;
  6769. break;
  6770. case 0:
  6771. target = LOW;
  6772. break;
  6773. case -1:
  6774. target = !digitalRead(pin_number);
  6775. break;
  6776. }
  6777. while (digitalRead(pin_number) != target) idle();
  6778. } // pin_state -1 0 1 && pin_number > -1
  6779. } // code_seen('P')
  6780. }
  6781. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6782. /**
  6783. * M260: Send data to a I2C slave device
  6784. *
  6785. * This is a PoC, the formating and arguments for the GCODE will
  6786. * change to be more compatible, the current proposal is:
  6787. *
  6788. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6789. *
  6790. * M260 B<byte-1 value in base 10>
  6791. * M260 B<byte-2 value in base 10>
  6792. * M260 B<byte-3 value in base 10>
  6793. *
  6794. * M260 S1 ; Send the buffered data and reset the buffer
  6795. * M260 R1 ; Reset the buffer without sending data
  6796. *
  6797. */
  6798. inline void gcode_M260() {
  6799. // Set the target address
  6800. if (code_seen('A')) i2c.address(code_value_byte());
  6801. // Add a new byte to the buffer
  6802. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6803. // Flush the buffer to the bus
  6804. if (code_seen('S')) i2c.send();
  6805. // Reset and rewind the buffer
  6806. else if (code_seen('R')) i2c.reset();
  6807. }
  6808. /**
  6809. * M261: Request X bytes from I2C slave device
  6810. *
  6811. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6812. */
  6813. inline void gcode_M261() {
  6814. if (code_seen('A')) i2c.address(code_value_byte());
  6815. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6816. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6817. i2c.relay(bytes);
  6818. }
  6819. else {
  6820. SERIAL_ERROR_START;
  6821. SERIAL_ERRORLN("Bad i2c request");
  6822. }
  6823. }
  6824. #endif // EXPERIMENTAL_I2CBUS
  6825. #if HAS_SERVOS
  6826. /**
  6827. * M280: Get or set servo position. P<index> [S<angle>]
  6828. */
  6829. inline void gcode_M280() {
  6830. if (!code_seen('P')) return;
  6831. int servo_index = code_value_int();
  6832. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6833. if (code_seen('S'))
  6834. MOVE_SERVO(servo_index, code_value_int());
  6835. else {
  6836. SERIAL_ECHO_START;
  6837. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6838. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6839. }
  6840. }
  6841. else {
  6842. SERIAL_ERROR_START;
  6843. SERIAL_ECHOPAIR("Servo ", servo_index);
  6844. SERIAL_ECHOLNPGM(" out of range");
  6845. }
  6846. }
  6847. #endif // HAS_SERVOS
  6848. #if HAS_BUZZER
  6849. /**
  6850. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6851. */
  6852. inline void gcode_M300() {
  6853. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6854. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6855. // Limits the tone duration to 0-5 seconds.
  6856. NOMORE(duration, 5000);
  6857. BUZZ(duration, frequency);
  6858. }
  6859. #endif // HAS_BUZZER
  6860. #if ENABLED(PIDTEMP)
  6861. /**
  6862. * M301: Set PID parameters P I D (and optionally C, L)
  6863. *
  6864. * P[float] Kp term
  6865. * I[float] Ki term (unscaled)
  6866. * D[float] Kd term (unscaled)
  6867. *
  6868. * With PID_EXTRUSION_SCALING:
  6869. *
  6870. * C[float] Kc term
  6871. * L[float] LPQ length
  6872. */
  6873. inline void gcode_M301() {
  6874. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6875. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6876. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6877. if (e < HOTENDS) { // catch bad input value
  6878. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6879. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6880. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6881. #if ENABLED(PID_EXTRUSION_SCALING)
  6882. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6883. if (code_seen('L')) lpq_len = code_value_float();
  6884. NOMORE(lpq_len, LPQ_MAX_LEN);
  6885. #endif
  6886. thermalManager.updatePID();
  6887. SERIAL_ECHO_START;
  6888. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6889. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6890. #endif // PID_PARAMS_PER_HOTEND
  6891. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6892. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6893. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6894. #if ENABLED(PID_EXTRUSION_SCALING)
  6895. //Kc does not have scaling applied above, or in resetting defaults
  6896. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6897. #endif
  6898. SERIAL_EOL;
  6899. }
  6900. else {
  6901. SERIAL_ERROR_START;
  6902. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6903. }
  6904. }
  6905. #endif // PIDTEMP
  6906. #if ENABLED(PIDTEMPBED)
  6907. inline void gcode_M304() {
  6908. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6909. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6910. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6911. thermalManager.updatePID();
  6912. SERIAL_ECHO_START;
  6913. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6914. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6915. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6916. }
  6917. #endif // PIDTEMPBED
  6918. #if defined(CHDK) || HAS_PHOTOGRAPH
  6919. /**
  6920. * M240: Trigger a camera by emulating a Canon RC-1
  6921. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6922. */
  6923. inline void gcode_M240() {
  6924. #ifdef CHDK
  6925. OUT_WRITE(CHDK, HIGH);
  6926. chdkHigh = millis();
  6927. chdkActive = true;
  6928. #elif HAS_PHOTOGRAPH
  6929. const uint8_t NUM_PULSES = 16;
  6930. const float PULSE_LENGTH = 0.01524;
  6931. for (int i = 0; i < NUM_PULSES; i++) {
  6932. WRITE(PHOTOGRAPH_PIN, HIGH);
  6933. _delay_ms(PULSE_LENGTH);
  6934. WRITE(PHOTOGRAPH_PIN, LOW);
  6935. _delay_ms(PULSE_LENGTH);
  6936. }
  6937. delay(7.33);
  6938. for (int i = 0; i < NUM_PULSES; i++) {
  6939. WRITE(PHOTOGRAPH_PIN, HIGH);
  6940. _delay_ms(PULSE_LENGTH);
  6941. WRITE(PHOTOGRAPH_PIN, LOW);
  6942. _delay_ms(PULSE_LENGTH);
  6943. }
  6944. #endif // !CHDK && HAS_PHOTOGRAPH
  6945. }
  6946. #endif // CHDK || PHOTOGRAPH_PIN
  6947. #if HAS_LCD_CONTRAST
  6948. /**
  6949. * M250: Read and optionally set the LCD contrast
  6950. */
  6951. inline void gcode_M250() {
  6952. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6953. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6954. SERIAL_PROTOCOL(lcd_contrast);
  6955. SERIAL_EOL;
  6956. }
  6957. #endif // HAS_LCD_CONTRAST
  6958. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6959. /**
  6960. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6961. *
  6962. * S<temperature> sets the minimum extrude temperature
  6963. * P<bool> enables (1) or disables (0) cold extrusion
  6964. *
  6965. * Examples:
  6966. *
  6967. * M302 ; report current cold extrusion state
  6968. * M302 P0 ; enable cold extrusion checking
  6969. * M302 P1 ; disables cold extrusion checking
  6970. * M302 S0 ; always allow extrusion (disables checking)
  6971. * M302 S170 ; only allow extrusion above 170
  6972. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6973. */
  6974. inline void gcode_M302() {
  6975. bool seen_S = code_seen('S');
  6976. if (seen_S) {
  6977. thermalManager.extrude_min_temp = code_value_temp_abs();
  6978. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6979. }
  6980. if (code_seen('P'))
  6981. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6982. else if (!seen_S) {
  6983. // Report current state
  6984. SERIAL_ECHO_START;
  6985. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6986. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  6987. SERIAL_ECHOLNPGM("C)");
  6988. }
  6989. }
  6990. #endif // PREVENT_COLD_EXTRUSION
  6991. /**
  6992. * M303: PID relay autotune
  6993. *
  6994. * S<temperature> sets the target temperature. (default 150C)
  6995. * E<extruder> (-1 for the bed) (default 0)
  6996. * C<cycles>
  6997. * U<bool> with a non-zero value will apply the result to current settings
  6998. */
  6999. inline void gcode_M303() {
  7000. #if HAS_PID_HEATING
  7001. const int e = code_seen('E') ? code_value_int() : 0,
  7002. c = code_seen('C') ? code_value_int() : 5;
  7003. const bool u = code_seen('U') && code_value_bool();
  7004. int16_t temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70 : 150);
  7005. if (WITHIN(e, 0, HOTENDS - 1))
  7006. target_extruder = e;
  7007. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  7008. thermalManager.PID_autotune(temp, e, c, u);
  7009. KEEPALIVE_STATE(IN_HANDLER);
  7010. #else
  7011. SERIAL_ERROR_START;
  7012. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  7013. #endif
  7014. }
  7015. #if ENABLED(MORGAN_SCARA)
  7016. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  7017. if (IsRunning()) {
  7018. forward_kinematics_SCARA(delta_a, delta_b);
  7019. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  7020. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  7021. destination[Z_AXIS] = current_position[Z_AXIS];
  7022. prepare_move_to_destination();
  7023. return true;
  7024. }
  7025. return false;
  7026. }
  7027. /**
  7028. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  7029. */
  7030. inline bool gcode_M360() {
  7031. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  7032. return SCARA_move_to_cal(0, 120);
  7033. }
  7034. /**
  7035. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  7036. */
  7037. inline bool gcode_M361() {
  7038. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  7039. return SCARA_move_to_cal(90, 130);
  7040. }
  7041. /**
  7042. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  7043. */
  7044. inline bool gcode_M362() {
  7045. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  7046. return SCARA_move_to_cal(60, 180);
  7047. }
  7048. /**
  7049. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  7050. */
  7051. inline bool gcode_M363() {
  7052. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  7053. return SCARA_move_to_cal(50, 90);
  7054. }
  7055. /**
  7056. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  7057. */
  7058. inline bool gcode_M364() {
  7059. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  7060. return SCARA_move_to_cal(45, 135);
  7061. }
  7062. #endif // SCARA
  7063. #if ENABLED(EXT_SOLENOID)
  7064. void enable_solenoid(const uint8_t num) {
  7065. switch (num) {
  7066. case 0:
  7067. OUT_WRITE(SOL0_PIN, HIGH);
  7068. break;
  7069. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7070. case 1:
  7071. OUT_WRITE(SOL1_PIN, HIGH);
  7072. break;
  7073. #endif
  7074. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7075. case 2:
  7076. OUT_WRITE(SOL2_PIN, HIGH);
  7077. break;
  7078. #endif
  7079. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7080. case 3:
  7081. OUT_WRITE(SOL3_PIN, HIGH);
  7082. break;
  7083. #endif
  7084. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7085. case 4:
  7086. OUT_WRITE(SOL4_PIN, HIGH);
  7087. break;
  7088. #endif
  7089. default:
  7090. SERIAL_ECHO_START;
  7091. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  7092. break;
  7093. }
  7094. }
  7095. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  7096. void disable_all_solenoids() {
  7097. OUT_WRITE(SOL0_PIN, LOW);
  7098. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7099. OUT_WRITE(SOL1_PIN, LOW);
  7100. #endif
  7101. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7102. OUT_WRITE(SOL2_PIN, LOW);
  7103. #endif
  7104. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7105. OUT_WRITE(SOL3_PIN, LOW);
  7106. #endif
  7107. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7108. OUT_WRITE(SOL4_PIN, LOW);
  7109. #endif
  7110. }
  7111. /**
  7112. * M380: Enable solenoid on the active extruder
  7113. */
  7114. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  7115. /**
  7116. * M381: Disable all solenoids
  7117. */
  7118. inline void gcode_M381() { disable_all_solenoids(); }
  7119. #endif // EXT_SOLENOID
  7120. /**
  7121. * M400: Finish all moves
  7122. */
  7123. inline void gcode_M400() { stepper.synchronize(); }
  7124. #if HAS_BED_PROBE
  7125. /**
  7126. * M401: Engage Z Servo endstop if available
  7127. */
  7128. inline void gcode_M401() { DEPLOY_PROBE(); }
  7129. /**
  7130. * M402: Retract Z Servo endstop if enabled
  7131. */
  7132. inline void gcode_M402() { STOW_PROBE(); }
  7133. #endif // HAS_BED_PROBE
  7134. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7135. /**
  7136. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  7137. */
  7138. inline void gcode_M404() {
  7139. if (code_seen('W')) {
  7140. filament_width_nominal = code_value_linear_units();
  7141. }
  7142. else {
  7143. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  7144. SERIAL_PROTOCOLLN(filament_width_nominal);
  7145. }
  7146. }
  7147. /**
  7148. * M405: Turn on filament sensor for control
  7149. */
  7150. inline void gcode_M405() {
  7151. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  7152. // everything else, it uses code_value_int() instead of code_value_linear_units().
  7153. if (code_seen('D')) meas_delay_cm = code_value_int();
  7154. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  7155. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  7156. const int temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  7157. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  7158. measurement_delay[i] = temp_ratio;
  7159. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  7160. }
  7161. filament_sensor = true;
  7162. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7163. //SERIAL_PROTOCOL(filament_width_meas);
  7164. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  7165. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  7166. }
  7167. /**
  7168. * M406: Turn off filament sensor for control
  7169. */
  7170. inline void gcode_M406() { filament_sensor = false; }
  7171. /**
  7172. * M407: Get measured filament diameter on serial output
  7173. */
  7174. inline void gcode_M407() {
  7175. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7176. SERIAL_PROTOCOLLN(filament_width_meas);
  7177. }
  7178. #endif // FILAMENT_WIDTH_SENSOR
  7179. void quickstop_stepper() {
  7180. stepper.quick_stop();
  7181. stepper.synchronize();
  7182. set_current_from_steppers_for_axis(ALL_AXES);
  7183. SYNC_PLAN_POSITION_KINEMATIC();
  7184. }
  7185. #if HAS_LEVELING
  7186. /**
  7187. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7188. *
  7189. * S[bool] Turns leveling on or off
  7190. * Z[height] Sets the Z fade height (0 or none to disable)
  7191. * V[bool] Verbose - Print the leveling grid
  7192. *
  7193. * With AUTO_BED_LEVELING_UBL only:
  7194. *
  7195. * L[index] Load UBL mesh from index (0 is default)
  7196. */
  7197. inline void gcode_M420() {
  7198. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7199. // L to load a mesh from the EEPROM
  7200. if (code_seen('L')) {
  7201. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.storage_slot;
  7202. const int16_t a = settings.calc_num_meshes();
  7203. if (!a) {
  7204. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7205. return;
  7206. }
  7207. if (!WITHIN(storage_slot, 0, a - 1)) {
  7208. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  7209. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  7210. return;
  7211. }
  7212. settings.load_mesh(storage_slot);
  7213. ubl.state.storage_slot = storage_slot;
  7214. }
  7215. #endif // AUTO_BED_LEVELING_UBL
  7216. // V to print the matrix or mesh
  7217. if (code_seen('V')) {
  7218. #if ABL_PLANAR
  7219. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  7220. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7221. if (bilinear_grid_spacing[X_AXIS]) {
  7222. print_bilinear_leveling_grid();
  7223. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7224. bed_level_virt_print();
  7225. #endif
  7226. }
  7227. #elif ENABLED(MESH_BED_LEVELING)
  7228. if (mbl.has_mesh()) {
  7229. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7230. mbl_mesh_report();
  7231. }
  7232. #endif
  7233. }
  7234. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7235. // L to load a mesh from the EEPROM
  7236. if (code_seen('L') || code_seen('V')) {
  7237. ubl.display_map(0); // Currently only supports one map type
  7238. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7239. SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
  7240. }
  7241. #endif
  7242. bool to_enable = false;
  7243. if (code_seen('S')) {
  7244. to_enable = code_value_bool();
  7245. set_bed_leveling_enabled(to_enable);
  7246. }
  7247. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7248. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  7249. #endif
  7250. const bool new_status =
  7251. #if ENABLED(MESH_BED_LEVELING)
  7252. mbl.active()
  7253. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7254. ubl.state.active
  7255. #else
  7256. planner.abl_enabled
  7257. #endif
  7258. ;
  7259. if (to_enable && !new_status) {
  7260. SERIAL_ERROR_START;
  7261. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7262. }
  7263. SERIAL_ECHO_START;
  7264. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7265. }
  7266. #endif
  7267. #if ENABLED(MESH_BED_LEVELING)
  7268. /**
  7269. * M421: Set a single Mesh Bed Leveling Z coordinate
  7270. *
  7271. * Usage:
  7272. * M421 X<linear> Y<linear> Z<linear>
  7273. * M421 X<linear> Y<linear> Q<offset>
  7274. * M421 I<xindex> J<yindex> Z<linear>
  7275. * M421 I<xindex> J<yindex> Q<offset>
  7276. */
  7277. inline void gcode_M421() {
  7278. const bool hasX = code_seen('X'), hasI = code_seen('I');
  7279. const int8_t ix = hasI ? code_value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(code_value_linear_units())) : -1;
  7280. const bool hasY = code_seen('Y'), hasJ = code_seen('J');
  7281. const int8_t iy = hasJ ? code_value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(code_value_linear_units())) : -1;
  7282. const bool hasZ = code_seen('Z'), hasQ = !hasZ && code_seen('Q');
  7283. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  7284. SERIAL_ERROR_START;
  7285. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7286. }
  7287. else if (ix < 0 || iy < 0) {
  7288. SERIAL_ERROR_START;
  7289. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7290. }
  7291. else
  7292. mbl.set_z(ix, iy, code_value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  7293. }
  7294. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7295. /**
  7296. * M421: Set a single Mesh Bed Leveling Z coordinate
  7297. *
  7298. * Usage:
  7299. * M421 I<xindex> J<yindex> Z<linear>
  7300. * M421 I<xindex> J<yindex> Q<offset>
  7301. */
  7302. inline void gcode_M421() {
  7303. const bool hasI = code_seen('I');
  7304. const int8_t ix = hasI ? code_value_int() : -1;
  7305. const bool hasJ = code_seen('J');
  7306. const int8_t iy = hasJ ? code_value_int() : -1;
  7307. const bool hasZ = code_seen('Z'), hasQ = !hasZ && code_seen('Q');
  7308. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  7309. SERIAL_ERROR_START;
  7310. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7311. }
  7312. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7313. SERIAL_ERROR_START;
  7314. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7315. }
  7316. else {
  7317. z_values[ix][iy] = code_value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  7318. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7319. bed_level_virt_interpolate();
  7320. #endif
  7321. }
  7322. }
  7323. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7324. /**
  7325. * M421: Set a single Mesh Bed Leveling Z coordinate
  7326. *
  7327. * Usage:
  7328. * M421 I<xindex> J<yindex> Z<linear>
  7329. * M421 I<xindex> J<yindex> Q<offset>
  7330. * M421 C Z<linear>
  7331. * M421 C Q<offset>
  7332. */
  7333. inline void gcode_M421() {
  7334. const bool hasC = code_seen('C');
  7335. const bool hasI = code_seen('I');
  7336. int8_t ix = hasI ? code_value_int() : -1;
  7337. const bool hasJ = code_seen('J');
  7338. int8_t iy = hasJ ? code_value_int() : -1;
  7339. const bool hasZ = code_seen('Z'), hasQ = !hasZ && code_seen('Q');
  7340. if (hasC) {
  7341. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
  7342. ix = location.x_index;
  7343. iy = location.y_index;
  7344. }
  7345. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  7346. SERIAL_ERROR_START;
  7347. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7348. }
  7349. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7350. SERIAL_ERROR_START;
  7351. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7352. }
  7353. else
  7354. ubl.z_values[ix][iy] = code_value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  7355. }
  7356. #endif // AUTO_BED_LEVELING_UBL
  7357. #if HAS_M206_COMMAND
  7358. /**
  7359. * M428: Set home_offset based on the distance between the
  7360. * current_position and the nearest "reference point."
  7361. * If an axis is past center its endstop position
  7362. * is the reference-point. Otherwise it uses 0. This allows
  7363. * the Z offset to be set near the bed when using a max endstop.
  7364. *
  7365. * M428 can't be used more than 2cm away from 0 or an endstop.
  7366. *
  7367. * Use M206 to set these values directly.
  7368. */
  7369. inline void gcode_M428() {
  7370. bool err = false;
  7371. LOOP_XYZ(i) {
  7372. if (axis_homed[i]) {
  7373. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7374. diff = current_position[i] - LOGICAL_POSITION(base, i);
  7375. if (WITHIN(diff, -20, 20)) {
  7376. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  7377. }
  7378. else {
  7379. SERIAL_ERROR_START;
  7380. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7381. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7382. BUZZ(200, 40);
  7383. err = true;
  7384. break;
  7385. }
  7386. }
  7387. }
  7388. if (!err) {
  7389. SYNC_PLAN_POSITION_KINEMATIC();
  7390. report_current_position();
  7391. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7392. BUZZ(100, 659);
  7393. BUZZ(100, 698);
  7394. }
  7395. }
  7396. #endif // HAS_M206_COMMAND
  7397. /**
  7398. * M500: Store settings in EEPROM
  7399. */
  7400. inline void gcode_M500() {
  7401. (void)settings.save();
  7402. }
  7403. /**
  7404. * M501: Read settings from EEPROM
  7405. */
  7406. inline void gcode_M501() {
  7407. (void)settings.load();
  7408. }
  7409. /**
  7410. * M502: Revert to default settings
  7411. */
  7412. inline void gcode_M502() {
  7413. (void)settings.reset();
  7414. }
  7415. /**
  7416. * M503: print settings currently in memory
  7417. */
  7418. inline void gcode_M503() {
  7419. (void)settings.report(code_seen('S') && !code_value_bool());
  7420. }
  7421. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7422. /**
  7423. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7424. */
  7425. inline void gcode_M540() {
  7426. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  7427. }
  7428. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7429. #if HAS_BED_PROBE
  7430. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7431. static float last_zoffset = NAN;
  7432. if (!isnan(last_zoffset)) {
  7433. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  7434. const float diff = zprobe_zoffset - last_zoffset;
  7435. #endif
  7436. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7437. // Correct bilinear grid for new probe offset
  7438. if (diff) {
  7439. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7440. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7441. z_values[x][y] -= diff;
  7442. }
  7443. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7444. bed_level_virt_interpolate();
  7445. #endif
  7446. #endif
  7447. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7448. if (!no_babystep && planner.abl_enabled)
  7449. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7450. #else
  7451. UNUSED(no_babystep);
  7452. #endif
  7453. #if ENABLED(DELTA) // correct the delta_height
  7454. home_offset[Z_AXIS] -= diff;
  7455. #endif
  7456. }
  7457. last_zoffset = zprobe_zoffset;
  7458. }
  7459. inline void gcode_M851() {
  7460. SERIAL_ECHO_START;
  7461. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7462. if (code_seen('Z')) {
  7463. const float value = code_value_linear_units();
  7464. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7465. zprobe_zoffset = value;
  7466. refresh_zprobe_zoffset();
  7467. SERIAL_ECHO(zprobe_zoffset);
  7468. }
  7469. else
  7470. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7471. }
  7472. else
  7473. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7474. SERIAL_EOL;
  7475. }
  7476. #endif // HAS_BED_PROBE
  7477. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7478. void filament_change_beep(const bool init=false) {
  7479. static millis_t next_buzz = 0;
  7480. static uint16_t runout_beep = 0;
  7481. if (init) next_buzz = runout_beep = 0;
  7482. const millis_t ms = millis();
  7483. if (ELAPSED(ms, next_buzz)) {
  7484. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  7485. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  7486. BUZZ(300, 2000);
  7487. runout_beep++;
  7488. }
  7489. }
  7490. }
  7491. static bool busy_doing_M600 = false;
  7492. /**
  7493. * M600: Pause for filament change
  7494. *
  7495. * E[distance] - Retract the filament this far (negative value)
  7496. * Z[distance] - Move the Z axis by this distance
  7497. * X[position] - Move to this X position, with Y
  7498. * Y[position] - Move to this Y position, with X
  7499. * L[distance] - Retract distance for removal (manual reload)
  7500. *
  7501. * Default values are used for omitted arguments.
  7502. *
  7503. */
  7504. inline void gcode_M600() {
  7505. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  7506. SERIAL_ERROR_START;
  7507. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  7508. return;
  7509. }
  7510. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  7511. // Pause the print job timer
  7512. const bool job_running = print_job_timer.isRunning();
  7513. print_job_timer.pause();
  7514. // Show initial message and wait for synchronize steppers
  7515. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  7516. stepper.synchronize();
  7517. // Save current position of all axes
  7518. float lastpos[XYZE];
  7519. COPY(lastpos, current_position);
  7520. set_destination_to_current();
  7521. // Initial retract before move to filament change position
  7522. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  7523. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  7524. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  7525. #endif
  7526. ;
  7527. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  7528. // Lift Z axis
  7529. float z_lift = code_seen('Z') ? code_value_linear_units() :
  7530. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  7531. FILAMENT_CHANGE_Z_ADD
  7532. #else
  7533. 0
  7534. #endif
  7535. ;
  7536. if (z_lift > 0) {
  7537. destination[Z_AXIS] += z_lift;
  7538. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  7539. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7540. }
  7541. // Move XY axes to filament exchange position
  7542. if (code_seen('X')) destination[X_AXIS] = code_value_linear_units();
  7543. #ifdef FILAMENT_CHANGE_X_POS
  7544. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  7545. #endif
  7546. if (code_seen('Y')) destination[Y_AXIS] = code_value_linear_units();
  7547. #ifdef FILAMENT_CHANGE_Y_POS
  7548. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  7549. #endif
  7550. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7551. stepper.synchronize();
  7552. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  7553. idle();
  7554. // Unload filament
  7555. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  7556. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7557. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7558. #endif
  7559. ;
  7560. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  7561. // Synchronize steppers and then disable extruders steppers for manual filament changing
  7562. stepper.synchronize();
  7563. disable_e_steppers();
  7564. safe_delay(100);
  7565. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  7566. bool nozzle_timed_out = false;
  7567. // Wait for filament insert by user and press button
  7568. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7569. #if HAS_BUZZER
  7570. filament_change_beep(true);
  7571. #endif
  7572. idle();
  7573. int16_t temps[HOTENDS];
  7574. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  7575. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7576. wait_for_user = true; // LCD click or M108 will clear this
  7577. while (wait_for_user) {
  7578. if (nozzle_timed_out)
  7579. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7580. #if HAS_BUZZER
  7581. filament_change_beep();
  7582. #endif
  7583. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  7584. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  7585. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  7586. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7587. }
  7588. idle(true);
  7589. }
  7590. KEEPALIVE_STATE(IN_HANDLER);
  7591. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  7592. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  7593. // Show "wait for heating"
  7594. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  7595. wait_for_heatup = true;
  7596. while (wait_for_heatup) {
  7597. idle();
  7598. wait_for_heatup = false;
  7599. HOTEND_LOOP() {
  7600. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  7601. wait_for_heatup = true;
  7602. break;
  7603. }
  7604. }
  7605. }
  7606. // Show "insert filament"
  7607. if (nozzle_timed_out)
  7608. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7609. #if HAS_BUZZER
  7610. filament_change_beep(true);
  7611. #endif
  7612. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7613. wait_for_user = true; // LCD click or M108 will clear this
  7614. while (wait_for_user && nozzle_timed_out) {
  7615. #if HAS_BUZZER
  7616. filament_change_beep();
  7617. #endif
  7618. idle(true);
  7619. }
  7620. KEEPALIVE_STATE(IN_HANDLER);
  7621. // Show "load" message
  7622. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  7623. // Load filament
  7624. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  7625. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  7626. + FILAMENT_CHANGE_LOAD_LENGTH
  7627. #endif
  7628. ;
  7629. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  7630. stepper.synchronize();
  7631. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  7632. do {
  7633. // "Wait for filament extrude"
  7634. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  7635. // Extrude filament to get into hotend
  7636. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  7637. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  7638. stepper.synchronize();
  7639. // Show "Extrude More" / "Resume" menu and wait for reply
  7640. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7641. wait_for_user = false;
  7642. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  7643. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  7644. KEEPALIVE_STATE(IN_HANDLER);
  7645. // Keep looping if "Extrude More" was selected
  7646. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  7647. #endif
  7648. // "Wait for print to resume"
  7649. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  7650. // Set extruder to saved position
  7651. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  7652. planner.set_e_position_mm(current_position[E_AXIS]);
  7653. #if IS_KINEMATIC
  7654. // Move XYZ to starting position
  7655. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  7656. #else
  7657. // Move XY to starting position, then Z
  7658. destination[X_AXIS] = lastpos[X_AXIS];
  7659. destination[Y_AXIS] = lastpos[Y_AXIS];
  7660. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7661. destination[Z_AXIS] = lastpos[Z_AXIS];
  7662. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7663. #endif
  7664. stepper.synchronize();
  7665. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7666. filament_ran_out = false;
  7667. #endif
  7668. // Show status screen
  7669. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  7670. // Resume the print job timer if it was running
  7671. if (job_running) print_job_timer.start();
  7672. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  7673. }
  7674. #endif // FILAMENT_CHANGE_FEATURE
  7675. #if ENABLED(DUAL_X_CARRIAGE)
  7676. /**
  7677. * M605: Set dual x-carriage movement mode
  7678. *
  7679. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7680. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7681. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7682. * units x-offset and an optional differential hotend temperature of
  7683. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7684. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7685. *
  7686. * Note: the X axis should be homed after changing dual x-carriage mode.
  7687. */
  7688. inline void gcode_M605() {
  7689. stepper.synchronize();
  7690. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7691. switch (dual_x_carriage_mode) {
  7692. case DXC_FULL_CONTROL_MODE:
  7693. case DXC_AUTO_PARK_MODE:
  7694. break;
  7695. case DXC_DUPLICATION_MODE:
  7696. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_linear_units(), X2_MIN_POS - x_home_pos(0));
  7697. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7698. SERIAL_ECHO_START;
  7699. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7700. SERIAL_CHAR(' ');
  7701. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7702. SERIAL_CHAR(',');
  7703. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7704. SERIAL_CHAR(' ');
  7705. SERIAL_ECHO(duplicate_extruder_x_offset);
  7706. SERIAL_CHAR(',');
  7707. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7708. break;
  7709. default:
  7710. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7711. break;
  7712. }
  7713. active_extruder_parked = false;
  7714. extruder_duplication_enabled = false;
  7715. delayed_move_time = 0;
  7716. }
  7717. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7718. inline void gcode_M605() {
  7719. stepper.synchronize();
  7720. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7721. SERIAL_ECHO_START;
  7722. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7723. }
  7724. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7725. #if ENABLED(LIN_ADVANCE)
  7726. /**
  7727. * M900: Set and/or Get advance K factor and WH/D ratio
  7728. *
  7729. * K<factor> Set advance K factor
  7730. * R<ratio> Set ratio directly (overrides WH/D)
  7731. * W<width> H<height> D<diam> Set ratio from WH/D
  7732. */
  7733. inline void gcode_M900() {
  7734. stepper.synchronize();
  7735. const float newK = code_seen('K') ? code_value_float() : -1;
  7736. if (newK >= 0) planner.extruder_advance_k = newK;
  7737. float newR = code_seen('R') ? code_value_float() : -1;
  7738. if (newR < 0) {
  7739. const float newD = code_seen('D') ? code_value_float() : -1,
  7740. newW = code_seen('W') ? code_value_float() : -1,
  7741. newH = code_seen('H') ? code_value_float() : -1;
  7742. if (newD >= 0 && newW >= 0 && newH >= 0)
  7743. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  7744. }
  7745. if (newR >= 0) planner.advance_ed_ratio = newR;
  7746. SERIAL_ECHO_START;
  7747. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  7748. SERIAL_ECHOPGM(" E/D=");
  7749. const float ratio = planner.advance_ed_ratio;
  7750. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  7751. SERIAL_EOL;
  7752. }
  7753. #endif // LIN_ADVANCE
  7754. #if ENABLED(HAVE_TMC2130)
  7755. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7756. SERIAL_CHAR(name);
  7757. SERIAL_ECHOPGM(" axis driver current: ");
  7758. SERIAL_ECHOLN(st.getCurrent());
  7759. }
  7760. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  7761. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  7762. tmc2130_get_current(st, name);
  7763. }
  7764. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7765. SERIAL_CHAR(name);
  7766. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7767. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7768. SERIAL_EOL;
  7769. }
  7770. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7771. st.clear_otpw();
  7772. SERIAL_CHAR(name);
  7773. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7774. }
  7775. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  7776. SERIAL_CHAR(name);
  7777. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  7778. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  7779. }
  7780. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  7781. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  7782. tmc2130_get_pwmthrs(st, name, spmm);
  7783. }
  7784. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  7785. SERIAL_CHAR(name);
  7786. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  7787. SERIAL_ECHOLN(st.sgt());
  7788. }
  7789. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  7790. st.sgt(sgt_val);
  7791. tmc2130_get_sgt(st, name);
  7792. }
  7793. /**
  7794. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7795. * Report driver currents when no axis specified
  7796. *
  7797. * S1: Enable automatic current control
  7798. * S0: Disable
  7799. */
  7800. inline void gcode_M906() {
  7801. uint16_t values[XYZE];
  7802. LOOP_XYZE(i)
  7803. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7804. #if ENABLED(X_IS_TMC2130)
  7805. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  7806. else tmc2130_get_current(stepperX, 'X');
  7807. #endif
  7808. #if ENABLED(Y_IS_TMC2130)
  7809. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  7810. else tmc2130_get_current(stepperY, 'Y');
  7811. #endif
  7812. #if ENABLED(Z_IS_TMC2130)
  7813. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  7814. else tmc2130_get_current(stepperZ, 'Z');
  7815. #endif
  7816. #if ENABLED(E0_IS_TMC2130)
  7817. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  7818. else tmc2130_get_current(stepperE0, 'E');
  7819. #endif
  7820. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  7821. if (code_seen('S')) auto_current_control = code_value_bool();
  7822. #endif
  7823. }
  7824. /**
  7825. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7826. * The flag is held by the library and persist until manually cleared by M912
  7827. */
  7828. inline void gcode_M911() {
  7829. const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'),
  7830. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  7831. #if ENABLED(X_IS_TMC2130)
  7832. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  7833. #endif
  7834. #if ENABLED(Y_IS_TMC2130)
  7835. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  7836. #endif
  7837. #if ENABLED(Z_IS_TMC2130)
  7838. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  7839. #endif
  7840. #if ENABLED(E0_IS_TMC2130)
  7841. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  7842. #endif
  7843. }
  7844. /**
  7845. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7846. */
  7847. inline void gcode_M912() {
  7848. const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'),
  7849. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  7850. #if ENABLED(X_IS_TMC2130)
  7851. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  7852. #endif
  7853. #if ENABLED(Y_IS_TMC2130)
  7854. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  7855. #endif
  7856. #if ENABLED(Z_IS_TMC2130)
  7857. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  7858. #endif
  7859. #if ENABLED(E0_IS_TMC2130)
  7860. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  7861. #endif
  7862. }
  7863. /**
  7864. * M913: Set HYBRID_THRESHOLD speed.
  7865. */
  7866. #if ENABLED(HYBRID_THRESHOLD)
  7867. inline void gcode_M913() {
  7868. uint16_t values[XYZE];
  7869. LOOP_XYZE(i)
  7870. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7871. #if ENABLED(X_IS_TMC2130)
  7872. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  7873. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  7874. #endif
  7875. #if ENABLED(Y_IS_TMC2130)
  7876. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  7877. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  7878. #endif
  7879. #if ENABLED(Z_IS_TMC2130)
  7880. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  7881. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  7882. #endif
  7883. #if ENABLED(E0_IS_TMC2130)
  7884. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  7885. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  7886. #endif
  7887. }
  7888. #endif // HYBRID_THRESHOLD
  7889. /**
  7890. * M914: Set SENSORLESS_HOMING sensitivity.
  7891. */
  7892. #if ENABLED(SENSORLESS_HOMING)
  7893. inline void gcode_M914() {
  7894. #if ENABLED(X_IS_TMC2130)
  7895. if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int());
  7896. else tmc2130_get_sgt(stepperX, 'X');
  7897. #endif
  7898. #if ENABLED(Y_IS_TMC2130)
  7899. if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int());
  7900. else tmc2130_get_sgt(stepperY, 'Y');
  7901. #endif
  7902. }
  7903. #endif // SENSORLESS_HOMING
  7904. #endif // HAVE_TMC2130
  7905. /**
  7906. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7907. */
  7908. inline void gcode_M907() {
  7909. #if HAS_DIGIPOTSS
  7910. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7911. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7912. if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7913. #elif HAS_MOTOR_CURRENT_PWM
  7914. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7915. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7916. #endif
  7917. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7918. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7919. #endif
  7920. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7921. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7922. #endif
  7923. #endif
  7924. #if ENABLED(DIGIPOT_I2C)
  7925. // this one uses actual amps in floating point
  7926. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7927. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7928. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7929. #endif
  7930. #if ENABLED(DAC_STEPPER_CURRENT)
  7931. if (code_seen('S')) {
  7932. const float dac_percent = code_value_float();
  7933. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7934. }
  7935. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7936. #endif
  7937. }
  7938. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7939. /**
  7940. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7941. */
  7942. inline void gcode_M908() {
  7943. #if HAS_DIGIPOTSS
  7944. stepper.digitalPotWrite(
  7945. code_seen('P') ? code_value_int() : 0,
  7946. code_seen('S') ? code_value_int() : 0
  7947. );
  7948. #endif
  7949. #ifdef DAC_STEPPER_CURRENT
  7950. dac_current_raw(
  7951. code_seen('P') ? code_value_byte() : -1,
  7952. code_seen('S') ? code_value_ushort() : 0
  7953. );
  7954. #endif
  7955. }
  7956. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7957. inline void gcode_M909() { dac_print_values(); }
  7958. inline void gcode_M910() { dac_commit_eeprom(); }
  7959. #endif
  7960. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7961. #if HAS_MICROSTEPS
  7962. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7963. inline void gcode_M350() {
  7964. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7965. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7966. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7967. stepper.microstep_readings();
  7968. }
  7969. /**
  7970. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7971. * S# determines MS1 or MS2, X# sets the pin high/low.
  7972. */
  7973. inline void gcode_M351() {
  7974. if (code_seen('S')) switch (code_value_byte()) {
  7975. case 1:
  7976. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7977. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7978. break;
  7979. case 2:
  7980. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7981. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7982. break;
  7983. }
  7984. stepper.microstep_readings();
  7985. }
  7986. #endif // HAS_MICROSTEPS
  7987. #if HAS_CASE_LIGHT
  7988. uint8_t case_light_brightness = 255;
  7989. void update_case_light() {
  7990. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7991. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7992. }
  7993. #endif // HAS_CASE_LIGHT
  7994. /**
  7995. * M355: Turn case lights on/off and set brightness
  7996. *
  7997. * S<bool> Turn case light on or off
  7998. * P<byte> Set case light brightness (PWM pin required)
  7999. */
  8000. inline void gcode_M355() {
  8001. #if HAS_CASE_LIGHT
  8002. if (code_seen('P')) case_light_brightness = code_value_byte();
  8003. if (code_seen('S')) case_light_on = code_value_bool();
  8004. update_case_light();
  8005. SERIAL_ECHO_START;
  8006. SERIAL_ECHOPGM("Case lights ");
  8007. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  8008. #else
  8009. SERIAL_ERROR_START;
  8010. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8011. #endif // HAS_CASE_LIGHT
  8012. }
  8013. #if ENABLED(MIXING_EXTRUDER)
  8014. /**
  8015. * M163: Set a single mix factor for a mixing extruder
  8016. * This is called "weight" by some systems.
  8017. *
  8018. * S[index] The channel index to set
  8019. * P[float] The mix value
  8020. *
  8021. */
  8022. inline void gcode_M163() {
  8023. const int mix_index = code_seen('S') ? code_value_int() : 0;
  8024. if (mix_index < MIXING_STEPPERS) {
  8025. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  8026. NOLESS(mix_value, 0.0);
  8027. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  8028. }
  8029. }
  8030. #if MIXING_VIRTUAL_TOOLS > 1
  8031. /**
  8032. * M164: Store the current mix factors as a virtual tool.
  8033. *
  8034. * S[index] The virtual tool to store
  8035. *
  8036. */
  8037. inline void gcode_M164() {
  8038. const int tool_index = code_seen('S') ? code_value_int() : 0;
  8039. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  8040. normalize_mix();
  8041. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8042. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  8043. }
  8044. }
  8045. #endif
  8046. #if ENABLED(DIRECT_MIXING_IN_G1)
  8047. /**
  8048. * M165: Set multiple mix factors for a mixing extruder.
  8049. * Factors that are left out will be set to 0.
  8050. * All factors together must add up to 1.0.
  8051. *
  8052. * A[factor] Mix factor for extruder stepper 1
  8053. * B[factor] Mix factor for extruder stepper 2
  8054. * C[factor] Mix factor for extruder stepper 3
  8055. * D[factor] Mix factor for extruder stepper 4
  8056. * H[factor] Mix factor for extruder stepper 5
  8057. * I[factor] Mix factor for extruder stepper 6
  8058. *
  8059. */
  8060. inline void gcode_M165() { gcode_get_mix(); }
  8061. #endif
  8062. #endif // MIXING_EXTRUDER
  8063. /**
  8064. * M999: Restart after being stopped
  8065. *
  8066. * Default behaviour is to flush the serial buffer and request
  8067. * a resend to the host starting on the last N line received.
  8068. *
  8069. * Sending "M999 S1" will resume printing without flushing the
  8070. * existing command buffer.
  8071. *
  8072. */
  8073. inline void gcode_M999() {
  8074. Running = true;
  8075. lcd_reset_alert_level();
  8076. if (code_seen('S') && code_value_bool()) return;
  8077. // gcode_LastN = Stopped_gcode_LastN;
  8078. FlushSerialRequestResend();
  8079. }
  8080. #if ENABLED(SWITCHING_EXTRUDER)
  8081. inline void move_extruder_servo(uint8_t e) {
  8082. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  8083. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  8084. safe_delay(500);
  8085. }
  8086. #endif
  8087. #if ENABLED(SWITCHING_NOZZLE)
  8088. inline void move_nozzle_servo(uint8_t e) {
  8089. const int angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  8090. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  8091. safe_delay(500);
  8092. }
  8093. #endif
  8094. inline void invalid_extruder_error(const uint8_t &e) {
  8095. SERIAL_ECHO_START;
  8096. SERIAL_CHAR('T');
  8097. SERIAL_ECHO_F(e, DEC);
  8098. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  8099. }
  8100. /**
  8101. * Perform a tool-change, which may result in moving the
  8102. * previous tool out of the way and the new tool into place.
  8103. */
  8104. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  8105. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8106. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  8107. return invalid_extruder_error(tmp_extruder);
  8108. // T0-Tnnn: Switch virtual tool by changing the mix
  8109. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  8110. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  8111. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8112. #if HOTENDS > 1
  8113. if (tmp_extruder >= EXTRUDERS)
  8114. return invalid_extruder_error(tmp_extruder);
  8115. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  8116. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  8117. if (tmp_extruder != active_extruder) {
  8118. if (!no_move && axis_unhomed_error()) {
  8119. SERIAL_ECHOLNPGM("No move on toolchange");
  8120. no_move = true;
  8121. }
  8122. // Save current position to destination, for use later
  8123. set_destination_to_current();
  8124. #if ENABLED(DUAL_X_CARRIAGE)
  8125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8126. if (DEBUGGING(LEVELING)) {
  8127. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  8128. switch (dual_x_carriage_mode) {
  8129. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  8130. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  8131. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  8132. }
  8133. }
  8134. #endif
  8135. const float xhome = x_home_pos(active_extruder);
  8136. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  8137. && IsRunning()
  8138. && (delayed_move_time || current_position[X_AXIS] != xhome)
  8139. ) {
  8140. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  8141. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8142. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  8143. #endif
  8144. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8145. if (DEBUGGING(LEVELING)) {
  8146. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  8147. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  8148. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  8149. }
  8150. #endif
  8151. // Park old head: 1) raise 2) move to park position 3) lower
  8152. for (uint8_t i = 0; i < 3; i++)
  8153. planner.buffer_line(
  8154. i == 0 ? current_position[X_AXIS] : xhome,
  8155. current_position[Y_AXIS],
  8156. i == 2 ? current_position[Z_AXIS] : raised_z,
  8157. current_position[E_AXIS],
  8158. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  8159. active_extruder
  8160. );
  8161. stepper.synchronize();
  8162. }
  8163. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  8164. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  8165. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8166. // Activate the new extruder
  8167. active_extruder = tmp_extruder;
  8168. // This function resets the max/min values - the current position may be overwritten below.
  8169. set_axis_is_at_home(X_AXIS);
  8170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8171. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  8172. #endif
  8173. // Only when auto-parking are carriages safe to move
  8174. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  8175. switch (dual_x_carriage_mode) {
  8176. case DXC_FULL_CONTROL_MODE:
  8177. // New current position is the position of the activated extruder
  8178. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8179. // Save the inactive extruder's position (from the old current_position)
  8180. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8181. break;
  8182. case DXC_AUTO_PARK_MODE:
  8183. // record raised toolhead position for use by unpark
  8184. COPY(raised_parked_position, current_position);
  8185. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  8186. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8187. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8188. #endif
  8189. active_extruder_parked = true;
  8190. delayed_move_time = 0;
  8191. break;
  8192. case DXC_DUPLICATION_MODE:
  8193. // If the new extruder is the left one, set it "parked"
  8194. // This triggers the second extruder to move into the duplication position
  8195. active_extruder_parked = (active_extruder == 0);
  8196. if (active_extruder_parked)
  8197. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8198. else
  8199. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  8200. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8201. extruder_duplication_enabled = false;
  8202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8203. if (DEBUGGING(LEVELING)) {
  8204. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8205. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8206. }
  8207. #endif
  8208. break;
  8209. }
  8210. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8211. if (DEBUGGING(LEVELING)) {
  8212. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8213. DEBUG_POS("New extruder (parked)", current_position);
  8214. }
  8215. #endif
  8216. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8217. #else // !DUAL_X_CARRIAGE
  8218. #if ENABLED(SWITCHING_NOZZLE)
  8219. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8220. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8221. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8222. // Always raise by some amount (destination copied from current_position earlier)
  8223. current_position[Z_AXIS] += z_raise;
  8224. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8225. stepper.synchronize();
  8226. move_nozzle_servo(active_extruder);
  8227. #endif
  8228. #if ENABLED(SWITCHING_EXTRUDER)
  8229. #if !(ENABLED(SWITCHING_NOZZLE) && (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR))
  8230. stepper.synchronize();
  8231. move_extruder_servo(active_extruder);
  8232. #endif
  8233. #endif
  8234. /**
  8235. * Set current_position to the position of the new nozzle.
  8236. * Offsets are based on linear distance, so we need to get
  8237. * the resulting position in coordinate space.
  8238. *
  8239. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8240. * - With mesh leveling, update Z for the new position
  8241. * - Otherwise, just use the raw linear distance
  8242. *
  8243. * Software endstops are altered here too. Consider a case where:
  8244. * E0 at X=0 ... E1 at X=10
  8245. * When we switch to E1 now X=10, but E1 can't move left.
  8246. * To express this we apply the change in XY to the software endstops.
  8247. * E1 can move farther right than E0, so the right limit is extended.
  8248. *
  8249. * Note that we don't adjust the Z software endstops. Why not?
  8250. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8251. * because the bed is 1mm lower at the new position. As long as
  8252. * the first nozzle is out of the way, the carriage should be
  8253. * allowed to move 1mm lower. This technically "breaks" the
  8254. * Z software endstop. But this is technically correct (and
  8255. * there is no viable alternative).
  8256. */
  8257. #if ABL_PLANAR
  8258. // Offset extruder, make sure to apply the bed level rotation matrix
  8259. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8260. hotend_offset[Y_AXIS][tmp_extruder],
  8261. 0),
  8262. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8263. hotend_offset[Y_AXIS][active_extruder],
  8264. 0),
  8265. offset_vec = tmp_offset_vec - act_offset_vec;
  8266. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8267. if (DEBUGGING(LEVELING)) {
  8268. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  8269. act_offset_vec.debug(PSTR("act_offset_vec"));
  8270. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  8271. }
  8272. #endif
  8273. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8274. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8275. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  8276. #endif
  8277. // Adjustments to the current position
  8278. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8279. current_position[Z_AXIS] += offset_vec.z;
  8280. #else // !ABL_PLANAR
  8281. const float xydiff[2] = {
  8282. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8283. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8284. };
  8285. #if ENABLED(MESH_BED_LEVELING)
  8286. if (mbl.active()) {
  8287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8288. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8289. #endif
  8290. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8291. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8292. z1 = current_position[Z_AXIS], z2 = z1;
  8293. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8294. planner.apply_leveling(x2, y2, z2);
  8295. current_position[Z_AXIS] += z2 - z1;
  8296. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8297. if (DEBUGGING(LEVELING))
  8298. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8299. #endif
  8300. }
  8301. #endif // MESH_BED_LEVELING
  8302. #endif // !HAS_ABL
  8303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8304. if (DEBUGGING(LEVELING)) {
  8305. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8306. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8307. SERIAL_ECHOLNPGM(" }");
  8308. }
  8309. #endif
  8310. // The newly-selected extruder XY is actually at...
  8311. current_position[X_AXIS] += xydiff[X_AXIS];
  8312. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8313. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8314. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8315. #if HAS_POSITION_SHIFT
  8316. position_shift[i] += xydiff[i];
  8317. #endif
  8318. update_software_endstops((AxisEnum)i);
  8319. }
  8320. #endif
  8321. // Set the new active extruder
  8322. active_extruder = tmp_extruder;
  8323. #endif // !DUAL_X_CARRIAGE
  8324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8325. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8326. #endif
  8327. // Tell the planner the new "current position"
  8328. SYNC_PLAN_POSITION_KINEMATIC();
  8329. // Move to the "old position" (move the extruder into place)
  8330. if (!no_move && IsRunning()) {
  8331. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8332. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8333. #endif
  8334. prepare_move_to_destination();
  8335. }
  8336. #if ENABLED(SWITCHING_NOZZLE)
  8337. // Move back down, if needed. (Including when the new tool is higher.)
  8338. if (z_raise != z_diff) {
  8339. destination[Z_AXIS] += z_diff;
  8340. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8341. prepare_move_to_destination();
  8342. }
  8343. #endif
  8344. } // (tmp_extruder != active_extruder)
  8345. stepper.synchronize();
  8346. #if ENABLED(EXT_SOLENOID)
  8347. disable_all_solenoids();
  8348. enable_solenoid_on_active_extruder();
  8349. #endif // EXT_SOLENOID
  8350. feedrate_mm_s = old_feedrate_mm_s;
  8351. #else // HOTENDS <= 1
  8352. // Set the new active extruder
  8353. active_extruder = tmp_extruder;
  8354. UNUSED(fr_mm_s);
  8355. UNUSED(no_move);
  8356. #if ENABLED(SWITCHING_EXTRUDER)
  8357. stepper.synchronize();
  8358. move_extruder_servo(active_extruder);
  8359. #endif
  8360. #endif // HOTENDS <= 1
  8361. SERIAL_ECHO_START;
  8362. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8363. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8364. }
  8365. /**
  8366. * T0-T3: Switch tool, usually switching extruders
  8367. *
  8368. * F[units/min] Set the movement feedrate
  8369. * S1 Don't move the tool in XY after change
  8370. */
  8371. inline void gcode_T(uint8_t tmp_extruder) {
  8372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8373. if (DEBUGGING(LEVELING)) {
  8374. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8375. SERIAL_CHAR(')');
  8376. SERIAL_EOL;
  8377. DEBUG_POS("BEFORE", current_position);
  8378. }
  8379. #endif
  8380. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8381. tool_change(tmp_extruder);
  8382. #elif HOTENDS > 1
  8383. tool_change(
  8384. tmp_extruder,
  8385. code_seen('F') ? MMM_TO_MMS(code_value_linear_units()) : 0.0,
  8386. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  8387. );
  8388. #endif
  8389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8390. if (DEBUGGING(LEVELING)) {
  8391. DEBUG_POS("AFTER", current_position);
  8392. SERIAL_ECHOLNPGM("<<< gcode_T");
  8393. }
  8394. #endif
  8395. }
  8396. /**
  8397. * Process a single command and dispatch it to its handler
  8398. * This is called from the main loop()
  8399. */
  8400. void process_next_command() {
  8401. current_command = command_queue[cmd_queue_index_r];
  8402. if (DEBUGGING(ECHO)) {
  8403. SERIAL_ECHO_START;
  8404. SERIAL_ECHOLN(current_command);
  8405. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8406. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8407. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  8408. #endif
  8409. }
  8410. // Sanitize the current command:
  8411. // - Skip leading spaces
  8412. // - Bypass N[-0-9][0-9]*[ ]*
  8413. // - Overwrite * with nul to mark the end
  8414. while (*current_command == ' ') ++current_command;
  8415. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  8416. current_command += 2; // skip N[-0-9]
  8417. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  8418. while (*current_command == ' ') ++current_command; // skip [ ]*
  8419. }
  8420. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  8421. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  8422. char *cmd_ptr = current_command;
  8423. // Get the command code, which must be G, M, or T
  8424. char command_code = *cmd_ptr++;
  8425. // Skip spaces to get the numeric part
  8426. while (*cmd_ptr == ' ') cmd_ptr++;
  8427. // Allow for decimal point in command
  8428. #if ENABLED(G38_PROBE_TARGET)
  8429. uint8_t subcode = 0;
  8430. #endif
  8431. uint16_t codenum = 0; // define ahead of goto
  8432. // Bail early if there's no code
  8433. bool code_is_good = NUMERIC(*cmd_ptr);
  8434. if (!code_is_good) goto ExitUnknownCommand;
  8435. // Get and skip the code number
  8436. do {
  8437. codenum = (codenum * 10) + (*cmd_ptr - '0');
  8438. cmd_ptr++;
  8439. } while (NUMERIC(*cmd_ptr));
  8440. // Allow for decimal point in command
  8441. #if ENABLED(G38_PROBE_TARGET)
  8442. if (*cmd_ptr == '.') {
  8443. cmd_ptr++;
  8444. while (NUMERIC(*cmd_ptr))
  8445. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  8446. }
  8447. #endif
  8448. // Skip all spaces to get to the first argument, or nul
  8449. while (*cmd_ptr == ' ') cmd_ptr++;
  8450. // The command's arguments (if any) start here, for sure!
  8451. current_command_args = cmd_ptr;
  8452. KEEPALIVE_STATE(IN_HANDLER);
  8453. // Handle a known G, M, or T
  8454. switch (command_code) {
  8455. case 'G': switch (codenum) {
  8456. // G0, G1
  8457. case 0:
  8458. case 1:
  8459. #if IS_SCARA
  8460. gcode_G0_G1(codenum == 0);
  8461. #else
  8462. gcode_G0_G1();
  8463. #endif
  8464. break;
  8465. // G2, G3
  8466. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8467. case 2: // G2 - CW ARC
  8468. case 3: // G3 - CCW ARC
  8469. gcode_G2_G3(codenum == 2);
  8470. break;
  8471. #endif
  8472. // G4 Dwell
  8473. case 4:
  8474. gcode_G4();
  8475. break;
  8476. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8477. // G5
  8478. case 5: // G5 - Cubic B_spline
  8479. gcode_G5();
  8480. break;
  8481. #endif // BEZIER_CURVE_SUPPORT
  8482. #if ENABLED(AUTO_BED_LEVELING_UBL)
  8483. case 7:
  8484. #if IS_SCARA
  8485. gcode_G7(codenum == 0);
  8486. #else
  8487. gcode_G7();
  8488. #endif
  8489. break;
  8490. #endif
  8491. #if ENABLED(FWRETRACT)
  8492. case 10: // G10: retract
  8493. case 11: // G11: retract_recover
  8494. gcode_G10_G11(codenum == 10);
  8495. break;
  8496. #endif // FWRETRACT
  8497. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8498. case 12:
  8499. gcode_G12(); // G12: Nozzle Clean
  8500. break;
  8501. #endif // NOZZLE_CLEAN_FEATURE
  8502. #if ENABLED(INCH_MODE_SUPPORT)
  8503. case 20: //G20: Inch Mode
  8504. gcode_G20();
  8505. break;
  8506. case 21: //G21: MM Mode
  8507. gcode_G21();
  8508. break;
  8509. #endif // INCH_MODE_SUPPORT
  8510. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  8511. case 26: // G26: Mesh Validation Pattern generation
  8512. gcode_G26();
  8513. break;
  8514. #endif // AUTO_BED_LEVELING_UBL
  8515. #if ENABLED(NOZZLE_PARK_FEATURE)
  8516. case 27: // G27: Nozzle Park
  8517. gcode_G27();
  8518. break;
  8519. #endif // NOZZLE_PARK_FEATURE
  8520. case 28: // G28: Home all axes, one at a time
  8521. gcode_G28(false);
  8522. break;
  8523. #if HAS_LEVELING
  8524. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8525. // or provides access to the UBL System if enabled.
  8526. gcode_G29();
  8527. break;
  8528. #endif // HAS_LEVELING
  8529. #if HAS_BED_PROBE
  8530. case 30: // G30 Single Z probe
  8531. gcode_G30();
  8532. break;
  8533. #if ENABLED(Z_PROBE_SLED)
  8534. case 31: // G31: dock the sled
  8535. gcode_G31();
  8536. break;
  8537. case 32: // G32: undock the sled
  8538. gcode_G32();
  8539. break;
  8540. #endif // Z_PROBE_SLED
  8541. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8542. case 33: // G33: Delta Auto-Calibration
  8543. gcode_G33();
  8544. break;
  8545. #endif // DELTA_AUTO_CALIBRATION
  8546. #endif // HAS_BED_PROBE
  8547. #if ENABLED(G38_PROBE_TARGET)
  8548. case 38: // G38.2 & G38.3
  8549. if (subcode == 2 || subcode == 3)
  8550. gcode_G38(subcode == 2);
  8551. break;
  8552. #endif
  8553. case 90: // G90
  8554. relative_mode = false;
  8555. break;
  8556. case 91: // G91
  8557. relative_mode = true;
  8558. break;
  8559. case 92: // G92
  8560. gcode_G92();
  8561. break;
  8562. }
  8563. break;
  8564. case 'M': switch (codenum) {
  8565. #if HAS_RESUME_CONTINUE
  8566. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8567. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8568. gcode_M0_M1();
  8569. break;
  8570. #endif // ULTIPANEL
  8571. #if ENABLED(SPINDLE_LASER_ENABLE)
  8572. case 3:
  8573. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  8574. break; // synchronizes with movement commands
  8575. case 4:
  8576. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  8577. break; // synchronizes with movement commands
  8578. case 5:
  8579. gcode_M5(); // M5 - turn spindle/laser off
  8580. break; // synchronizes with movement commands
  8581. #endif
  8582. case 17: // M17: Enable all stepper motors
  8583. gcode_M17();
  8584. break;
  8585. #if ENABLED(SDSUPPORT)
  8586. case 20: // M20: list SD card
  8587. gcode_M20(); break;
  8588. case 21: // M21: init SD card
  8589. gcode_M21(); break;
  8590. case 22: // M22: release SD card
  8591. gcode_M22(); break;
  8592. case 23: // M23: Select file
  8593. gcode_M23(); break;
  8594. case 24: // M24: Start SD print
  8595. gcode_M24(); break;
  8596. case 25: // M25: Pause SD print
  8597. gcode_M25(); break;
  8598. case 26: // M26: Set SD index
  8599. gcode_M26(); break;
  8600. case 27: // M27: Get SD status
  8601. gcode_M27(); break;
  8602. case 28: // M28: Start SD write
  8603. gcode_M28(); break;
  8604. case 29: // M29: Stop SD write
  8605. gcode_M29(); break;
  8606. case 30: // M30 <filename> Delete File
  8607. gcode_M30(); break;
  8608. case 32: // M32: Select file and start SD print
  8609. gcode_M32(); break;
  8610. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8611. case 33: // M33: Get the long full path to a file or folder
  8612. gcode_M33(); break;
  8613. #endif
  8614. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8615. case 34: //M34 - Set SD card sorting options
  8616. gcode_M34(); break;
  8617. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8618. case 928: // M928: Start SD write
  8619. gcode_M928(); break;
  8620. #endif // SDSUPPORT
  8621. case 31: // M31: Report time since the start of SD print or last M109
  8622. gcode_M31(); break;
  8623. case 42: // M42: Change pin state
  8624. gcode_M42(); break;
  8625. #if ENABLED(PINS_DEBUGGING)
  8626. case 43: // M43: Read pin state
  8627. gcode_M43(); break;
  8628. #endif
  8629. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8630. case 48: // M48: Z probe repeatability test
  8631. gcode_M48();
  8632. break;
  8633. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8634. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  8635. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8636. gcode_M49();
  8637. break;
  8638. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  8639. case 75: // M75: Start print timer
  8640. gcode_M75(); break;
  8641. case 76: // M76: Pause print timer
  8642. gcode_M76(); break;
  8643. case 77: // M77: Stop print timer
  8644. gcode_M77(); break;
  8645. #if ENABLED(PRINTCOUNTER)
  8646. case 78: // M78: Show print statistics
  8647. gcode_M78(); break;
  8648. #endif
  8649. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8650. case 100: // M100: Free Memory Report
  8651. gcode_M100();
  8652. break;
  8653. #endif
  8654. case 104: // M104: Set hot end temperature
  8655. gcode_M104();
  8656. break;
  8657. case 110: // M110: Set Current Line Number
  8658. gcode_M110();
  8659. break;
  8660. case 111: // M111: Set debug level
  8661. gcode_M111();
  8662. break;
  8663. #if DISABLED(EMERGENCY_PARSER)
  8664. case 108: // M108: Cancel Waiting
  8665. gcode_M108();
  8666. break;
  8667. case 112: // M112: Emergency Stop
  8668. gcode_M112();
  8669. break;
  8670. case 410: // M410 quickstop - Abort all the planned moves.
  8671. gcode_M410();
  8672. break;
  8673. #endif
  8674. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8675. case 113: // M113: Set Host Keepalive interval
  8676. gcode_M113();
  8677. break;
  8678. #endif
  8679. case 140: // M140: Set bed temperature
  8680. gcode_M140();
  8681. break;
  8682. case 105: // M105: Report current temperature
  8683. gcode_M105();
  8684. KEEPALIVE_STATE(NOT_BUSY);
  8685. return; // "ok" already printed
  8686. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8687. case 155: // M155: Set temperature auto-report interval
  8688. gcode_M155();
  8689. break;
  8690. #endif
  8691. case 109: // M109: Wait for hotend temperature to reach target
  8692. gcode_M109();
  8693. break;
  8694. #if HAS_TEMP_BED
  8695. case 190: // M190: Wait for bed temperature to reach target
  8696. gcode_M190();
  8697. break;
  8698. #endif // HAS_TEMP_BED
  8699. #if FAN_COUNT > 0
  8700. case 106: // M106: Fan On
  8701. gcode_M106();
  8702. break;
  8703. case 107: // M107: Fan Off
  8704. gcode_M107();
  8705. break;
  8706. #endif // FAN_COUNT > 0
  8707. #if ENABLED(PARK_HEAD_ON_PAUSE)
  8708. case 125: // M125: Store current position and move to filament change position
  8709. gcode_M125(); break;
  8710. #endif
  8711. #if ENABLED(BARICUDA)
  8712. // PWM for HEATER_1_PIN
  8713. #if HAS_HEATER_1
  8714. case 126: // M126: valve open
  8715. gcode_M126();
  8716. break;
  8717. case 127: // M127: valve closed
  8718. gcode_M127();
  8719. break;
  8720. #endif // HAS_HEATER_1
  8721. // PWM for HEATER_2_PIN
  8722. #if HAS_HEATER_2
  8723. case 128: // M128: valve open
  8724. gcode_M128();
  8725. break;
  8726. case 129: // M129: valve closed
  8727. gcode_M129();
  8728. break;
  8729. #endif // HAS_HEATER_2
  8730. #endif // BARICUDA
  8731. #if HAS_POWER_SWITCH
  8732. case 80: // M80: Turn on Power Supply
  8733. gcode_M80();
  8734. break;
  8735. #endif // HAS_POWER_SWITCH
  8736. case 81: // M81: Turn off Power, including Power Supply, if possible
  8737. gcode_M81();
  8738. break;
  8739. case 82: // M82: Set E axis normal mode (same as other axes)
  8740. gcode_M82();
  8741. break;
  8742. case 83: // M83: Set E axis relative mode
  8743. gcode_M83();
  8744. break;
  8745. case 18: // M18 => M84
  8746. case 84: // M84: Disable all steppers or set timeout
  8747. gcode_M18_M84();
  8748. break;
  8749. case 85: // M85: Set inactivity stepper shutdown timeout
  8750. gcode_M85();
  8751. break;
  8752. case 92: // M92: Set the steps-per-unit for one or more axes
  8753. gcode_M92();
  8754. break;
  8755. case 114: // M114: Report current position
  8756. gcode_M114();
  8757. break;
  8758. case 115: // M115: Report capabilities
  8759. gcode_M115();
  8760. break;
  8761. case 117: // M117: Set LCD message text, if possible
  8762. gcode_M117();
  8763. break;
  8764. case 119: // M119: Report endstop states
  8765. gcode_M119();
  8766. break;
  8767. case 120: // M120: Enable endstops
  8768. gcode_M120();
  8769. break;
  8770. case 121: // M121: Disable endstops
  8771. gcode_M121();
  8772. break;
  8773. #if ENABLED(ULTIPANEL)
  8774. case 145: // M145: Set material heatup parameters
  8775. gcode_M145();
  8776. break;
  8777. #endif
  8778. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  8779. case 149: // M149: Set temperature units
  8780. gcode_M149();
  8781. break;
  8782. #endif
  8783. #if HAS_COLOR_LEDS
  8784. case 150: // M150: Set Status LED Color
  8785. gcode_M150();
  8786. break;
  8787. #endif // BLINKM
  8788. #if ENABLED(MIXING_EXTRUDER)
  8789. case 163: // M163: Set a component weight for mixing extruder
  8790. gcode_M163();
  8791. break;
  8792. #if MIXING_VIRTUAL_TOOLS > 1
  8793. case 164: // M164: Save current mix as a virtual extruder
  8794. gcode_M164();
  8795. break;
  8796. #endif
  8797. #if ENABLED(DIRECT_MIXING_IN_G1)
  8798. case 165: // M165: Set multiple mix weights
  8799. gcode_M165();
  8800. break;
  8801. #endif
  8802. #endif
  8803. case 200: // M200: Set filament diameter, E to cubic units
  8804. gcode_M200();
  8805. break;
  8806. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8807. gcode_M201();
  8808. break;
  8809. #if 0 // Not used for Sprinter/grbl gen6
  8810. case 202: // M202
  8811. gcode_M202();
  8812. break;
  8813. #endif
  8814. case 203: // M203: Set max feedrate (units/sec)
  8815. gcode_M203();
  8816. break;
  8817. case 204: // M204: Set acceleration
  8818. gcode_M204();
  8819. break;
  8820. case 205: //M205: Set advanced settings
  8821. gcode_M205();
  8822. break;
  8823. #if HAS_M206_COMMAND
  8824. case 206: // M206: Set home offsets
  8825. gcode_M206();
  8826. break;
  8827. #endif
  8828. #if ENABLED(DELTA)
  8829. case 665: // M665: Set delta configurations
  8830. gcode_M665();
  8831. break;
  8832. #endif
  8833. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8834. case 666: // M666: Set delta or dual endstop adjustment
  8835. gcode_M666();
  8836. break;
  8837. #endif
  8838. #if ENABLED(FWRETRACT)
  8839. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8840. gcode_M207();
  8841. break;
  8842. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8843. gcode_M208();
  8844. break;
  8845. case 209: // M209: Turn Automatic Retract Detection on/off
  8846. gcode_M209();
  8847. break;
  8848. #endif // FWRETRACT
  8849. case 211: // M211: Enable, Disable, and/or Report software endstops
  8850. gcode_M211();
  8851. break;
  8852. #if HOTENDS > 1
  8853. case 218: // M218: Set a tool offset
  8854. gcode_M218();
  8855. break;
  8856. #endif
  8857. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8858. gcode_M220();
  8859. break;
  8860. case 221: // M221: Set Flow Percentage
  8861. gcode_M221();
  8862. break;
  8863. case 226: // M226: Wait until a pin reaches a state
  8864. gcode_M226();
  8865. break;
  8866. #if HAS_SERVOS
  8867. case 280: // M280: Set servo position absolute
  8868. gcode_M280();
  8869. break;
  8870. #endif // HAS_SERVOS
  8871. #if HAS_BUZZER
  8872. case 300: // M300: Play beep tone
  8873. gcode_M300();
  8874. break;
  8875. #endif // HAS_BUZZER
  8876. #if ENABLED(PIDTEMP)
  8877. case 301: // M301: Set hotend PID parameters
  8878. gcode_M301();
  8879. break;
  8880. #endif // PIDTEMP
  8881. #if ENABLED(PIDTEMPBED)
  8882. case 304: // M304: Set bed PID parameters
  8883. gcode_M304();
  8884. break;
  8885. #endif // PIDTEMPBED
  8886. #if defined(CHDK) || HAS_PHOTOGRAPH
  8887. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8888. gcode_M240();
  8889. break;
  8890. #endif // CHDK || PHOTOGRAPH_PIN
  8891. #if HAS_LCD_CONTRAST
  8892. case 250: // M250: Set LCD contrast
  8893. gcode_M250();
  8894. break;
  8895. #endif // HAS_LCD_CONTRAST
  8896. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8897. case 260: // M260: Send data to an i2c slave
  8898. gcode_M260();
  8899. break;
  8900. case 261: // M261: Request data from an i2c slave
  8901. gcode_M261();
  8902. break;
  8903. #endif // EXPERIMENTAL_I2CBUS
  8904. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8905. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8906. gcode_M302();
  8907. break;
  8908. #endif // PREVENT_COLD_EXTRUSION
  8909. case 303: // M303: PID autotune
  8910. gcode_M303();
  8911. break;
  8912. #if ENABLED(MORGAN_SCARA)
  8913. case 360: // M360: SCARA Theta pos1
  8914. if (gcode_M360()) return;
  8915. break;
  8916. case 361: // M361: SCARA Theta pos2
  8917. if (gcode_M361()) return;
  8918. break;
  8919. case 362: // M362: SCARA Psi pos1
  8920. if (gcode_M362()) return;
  8921. break;
  8922. case 363: // M363: SCARA Psi pos2
  8923. if (gcode_M363()) return;
  8924. break;
  8925. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8926. if (gcode_M364()) return;
  8927. break;
  8928. #endif // SCARA
  8929. case 400: // M400: Finish all moves
  8930. gcode_M400();
  8931. break;
  8932. #if HAS_BED_PROBE
  8933. case 401: // M401: Deploy probe
  8934. gcode_M401();
  8935. break;
  8936. case 402: // M402: Stow probe
  8937. gcode_M402();
  8938. break;
  8939. #endif // HAS_BED_PROBE
  8940. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8941. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8942. gcode_M404();
  8943. break;
  8944. case 405: // M405: Turn on filament sensor for control
  8945. gcode_M405();
  8946. break;
  8947. case 406: // M406: Turn off filament sensor for control
  8948. gcode_M406();
  8949. break;
  8950. case 407: // M407: Display measured filament diameter
  8951. gcode_M407();
  8952. break;
  8953. #endif // FILAMENT_WIDTH_SENSOR
  8954. #if HAS_LEVELING
  8955. case 420: // M420: Enable/Disable Bed Leveling
  8956. gcode_M420();
  8957. break;
  8958. #endif
  8959. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8960. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8961. gcode_M421();
  8962. break;
  8963. #endif
  8964. #if HAS_M206_COMMAND
  8965. case 428: // M428: Apply current_position to home_offset
  8966. gcode_M428();
  8967. break;
  8968. #endif
  8969. case 500: // M500: Store settings in EEPROM
  8970. gcode_M500();
  8971. break;
  8972. case 501: // M501: Read settings from EEPROM
  8973. gcode_M501();
  8974. break;
  8975. case 502: // M502: Revert to default settings
  8976. gcode_M502();
  8977. break;
  8978. case 503: // M503: print settings currently in memory
  8979. gcode_M503();
  8980. break;
  8981. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8982. case 540: // M540: Set abort on endstop hit for SD printing
  8983. gcode_M540();
  8984. break;
  8985. #endif
  8986. #if HAS_BED_PROBE
  8987. case 851: // M851: Set Z Probe Z Offset
  8988. gcode_M851();
  8989. break;
  8990. #endif // HAS_BED_PROBE
  8991. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8992. case 600: // M600: Pause for filament change
  8993. gcode_M600();
  8994. break;
  8995. #endif // FILAMENT_CHANGE_FEATURE
  8996. #if ENABLED(DUAL_X_CARRIAGE)
  8997. case 605: // M605: Set Dual X Carriage movement mode
  8998. gcode_M605();
  8999. break;
  9000. #endif // DUAL_X_CARRIAGE
  9001. #if ENABLED(LIN_ADVANCE)
  9002. case 900: // M900: Set advance K factor.
  9003. gcode_M900();
  9004. break;
  9005. #endif
  9006. #if ENABLED(HAVE_TMC2130)
  9007. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  9008. gcode_M906();
  9009. break;
  9010. #endif
  9011. case 907: // M907: Set digital trimpot motor current using axis codes.
  9012. gcode_M907();
  9013. break;
  9014. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  9015. case 908: // M908: Control digital trimpot directly.
  9016. gcode_M908();
  9017. break;
  9018. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  9019. case 909: // M909: Print digipot/DAC current value
  9020. gcode_M909();
  9021. break;
  9022. case 910: // M910: Commit digipot/DAC value to external EEPROM
  9023. gcode_M910();
  9024. break;
  9025. #endif
  9026. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  9027. #if ENABLED(HAVE_TMC2130)
  9028. case 911: // M911: Report TMC2130 prewarn triggered flags
  9029. gcode_M911();
  9030. break;
  9031. case 912: // M911: Clear TMC2130 prewarn triggered flags
  9032. gcode_M912();
  9033. break;
  9034. #if ENABLED(HYBRID_THRESHOLD)
  9035. case 913: // M913: Set HYBRID_THRESHOLD speed.
  9036. gcode_M913();
  9037. break;
  9038. #endif
  9039. #if ENABLED(SENSORLESS_HOMING)
  9040. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  9041. gcode_M914();
  9042. break;
  9043. #endif
  9044. #endif
  9045. #if HAS_MICROSTEPS
  9046. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  9047. gcode_M350();
  9048. break;
  9049. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  9050. gcode_M351();
  9051. break;
  9052. #endif // HAS_MICROSTEPS
  9053. case 355: // M355 Turn case lights on/off
  9054. gcode_M355();
  9055. break;
  9056. case 999: // M999: Restart after being Stopped
  9057. gcode_M999();
  9058. break;
  9059. }
  9060. break;
  9061. case 'T':
  9062. gcode_T(codenum);
  9063. break;
  9064. default: code_is_good = false;
  9065. }
  9066. KEEPALIVE_STATE(NOT_BUSY);
  9067. ExitUnknownCommand:
  9068. // Still unknown command? Throw an error
  9069. if (!code_is_good) unknown_command_error();
  9070. ok_to_send();
  9071. }
  9072. /**
  9073. * Send a "Resend: nnn" message to the host to
  9074. * indicate that a command needs to be re-sent.
  9075. */
  9076. void FlushSerialRequestResend() {
  9077. //char command_queue[cmd_queue_index_r][100]="Resend:";
  9078. MYSERIAL.flush();
  9079. SERIAL_PROTOCOLPGM(MSG_RESEND);
  9080. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  9081. ok_to_send();
  9082. }
  9083. /**
  9084. * Send an "ok" message to the host, indicating
  9085. * that a command was successfully processed.
  9086. *
  9087. * If ADVANCED_OK is enabled also include:
  9088. * N<int> Line number of the command, if any
  9089. * P<int> Planner space remaining
  9090. * B<int> Block queue space remaining
  9091. */
  9092. void ok_to_send() {
  9093. refresh_cmd_timeout();
  9094. if (!send_ok[cmd_queue_index_r]) return;
  9095. SERIAL_PROTOCOLPGM(MSG_OK);
  9096. #if ENABLED(ADVANCED_OK)
  9097. char* p = command_queue[cmd_queue_index_r];
  9098. if (*p == 'N') {
  9099. SERIAL_PROTOCOL(' ');
  9100. SERIAL_ECHO(*p++);
  9101. while (NUMERIC_SIGNED(*p))
  9102. SERIAL_ECHO(*p++);
  9103. }
  9104. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  9105. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  9106. #endif
  9107. SERIAL_EOL;
  9108. }
  9109. #if HAS_SOFTWARE_ENDSTOPS
  9110. /**
  9111. * Constrain the given coordinates to the software endstops.
  9112. */
  9113. void clamp_to_software_endstops(float target[XYZ]) {
  9114. if (!soft_endstops_enabled) return;
  9115. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  9116. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  9117. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  9118. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  9119. #endif
  9120. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9121. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  9122. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  9123. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9124. #endif
  9125. }
  9126. #endif
  9127. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9128. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  9129. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  9130. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  9131. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  9132. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  9133. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  9134. #else
  9135. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  9136. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  9137. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  9138. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  9139. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  9140. #endif
  9141. // Get the Z adjustment for non-linear bed leveling
  9142. float bilinear_z_offset(const float logical[XYZ]) {
  9143. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  9144. last_x = -999.999, last_y = -999.999;
  9145. // Whole units for the grid line indices. Constrained within bounds.
  9146. static int8_t gridx, gridy, nextx, nexty,
  9147. last_gridx = -99, last_gridy = -99;
  9148. // XY relative to the probed area
  9149. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  9150. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  9151. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  9152. // Keep using the last grid box
  9153. #define FAR_EDGE_OR_BOX 2
  9154. #else
  9155. // Just use the grid far edge
  9156. #define FAR_EDGE_OR_BOX 1
  9157. #endif
  9158. if (last_x != x) {
  9159. last_x = x;
  9160. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  9161. const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  9162. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  9163. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9164. // Beyond the grid maintain height at grid edges
  9165. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  9166. #endif
  9167. gridx = gx;
  9168. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  9169. }
  9170. if (last_y != y || last_gridx != gridx) {
  9171. if (last_y != y) {
  9172. last_y = y;
  9173. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  9174. const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  9175. ratio_y -= gy;
  9176. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9177. // Beyond the grid maintain height at grid edges
  9178. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  9179. #endif
  9180. gridy = gy;
  9181. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  9182. }
  9183. if (last_gridx != gridx || last_gridy != gridy) {
  9184. last_gridx = gridx;
  9185. last_gridy = gridy;
  9186. // Z at the box corners
  9187. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  9188. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  9189. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  9190. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  9191. }
  9192. // Bilinear interpolate. Needed since y or gridx has changed.
  9193. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  9194. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  9195. D = R - L;
  9196. }
  9197. const float offset = L + ratio_x * D; // the offset almost always changes
  9198. /*
  9199. static float last_offset = 0;
  9200. if (fabs(last_offset - offset) > 0.2) {
  9201. SERIAL_ECHOPGM("Sudden Shift at ");
  9202. SERIAL_ECHOPAIR("x=", x);
  9203. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  9204. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  9205. SERIAL_ECHOPAIR(" y=", y);
  9206. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  9207. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  9208. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  9209. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  9210. SERIAL_ECHOPAIR(" z1=", z1);
  9211. SERIAL_ECHOPAIR(" z2=", z2);
  9212. SERIAL_ECHOPAIR(" z3=", z3);
  9213. SERIAL_ECHOLNPAIR(" z4=", z4);
  9214. SERIAL_ECHOPAIR(" L=", L);
  9215. SERIAL_ECHOPAIR(" R=", R);
  9216. SERIAL_ECHOLNPAIR(" offset=", offset);
  9217. }
  9218. last_offset = offset;
  9219. //*/
  9220. return offset;
  9221. }
  9222. #endif // AUTO_BED_LEVELING_BILINEAR
  9223. #if ENABLED(DELTA)
  9224. /**
  9225. * Recalculate factors used for delta kinematics whenever
  9226. * settings have been changed (e.g., by M665).
  9227. */
  9228. void recalc_delta_settings(float radius, float diagonal_rod) {
  9229. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  9230. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  9231. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  9232. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  9233. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  9234. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  9235. delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
  9236. delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
  9237. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  9238. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  9239. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  9240. }
  9241. #if ENABLED(DELTA_FAST_SQRT)
  9242. /**
  9243. * Fast inverse sqrt from Quake III Arena
  9244. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  9245. */
  9246. float Q_rsqrt(float number) {
  9247. long i;
  9248. float x2, y;
  9249. const float threehalfs = 1.5f;
  9250. x2 = number * 0.5f;
  9251. y = number;
  9252. i = * ( long * ) &y; // evil floating point bit level hacking
  9253. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  9254. y = * ( float * ) &i;
  9255. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  9256. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  9257. return y;
  9258. }
  9259. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  9260. #else
  9261. #define _SQRT(n) sqrt(n)
  9262. #endif
  9263. /**
  9264. * Delta Inverse Kinematics
  9265. *
  9266. * Calculate the tower positions for a given logical
  9267. * position, storing the result in the delta[] array.
  9268. *
  9269. * This is an expensive calculation, requiring 3 square
  9270. * roots per segmented linear move, and strains the limits
  9271. * of a Mega2560 with a Graphical Display.
  9272. *
  9273. * Suggested optimizations include:
  9274. *
  9275. * - Disable the home_offset (M206) and/or position_shift (G92)
  9276. * features to remove up to 12 float additions.
  9277. *
  9278. * - Use a fast-inverse-sqrt function and add the reciprocal.
  9279. * (see above)
  9280. */
  9281. // Macro to obtain the Z position of an individual tower
  9282. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  9283. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  9284. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  9285. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  9286. ) \
  9287. )
  9288. #define DELTA_RAW_IK() do { \
  9289. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  9290. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  9291. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  9292. } while(0)
  9293. #define DELTA_LOGICAL_IK() do { \
  9294. const float raw[XYZ] = { \
  9295. RAW_X_POSITION(logical[X_AXIS]), \
  9296. RAW_Y_POSITION(logical[Y_AXIS]), \
  9297. RAW_Z_POSITION(logical[Z_AXIS]) \
  9298. }; \
  9299. DELTA_RAW_IK(); \
  9300. } while(0)
  9301. #define DELTA_DEBUG() do { \
  9302. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  9303. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  9304. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  9305. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  9306. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  9307. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  9308. } while(0)
  9309. void inverse_kinematics(const float logical[XYZ]) {
  9310. DELTA_LOGICAL_IK();
  9311. // DELTA_DEBUG();
  9312. }
  9313. /**
  9314. * Calculate the highest Z position where the
  9315. * effector has the full range of XY motion.
  9316. */
  9317. float delta_safe_distance_from_top() {
  9318. float cartesian[XYZ] = {
  9319. LOGICAL_X_POSITION(0),
  9320. LOGICAL_Y_POSITION(0),
  9321. LOGICAL_Z_POSITION(0)
  9322. };
  9323. inverse_kinematics(cartesian);
  9324. float distance = delta[A_AXIS];
  9325. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  9326. inverse_kinematics(cartesian);
  9327. return abs(distance - delta[A_AXIS]);
  9328. }
  9329. /**
  9330. * Delta Forward Kinematics
  9331. *
  9332. * See the Wikipedia article "Trilateration"
  9333. * https://en.wikipedia.org/wiki/Trilateration
  9334. *
  9335. * Establish a new coordinate system in the plane of the
  9336. * three carriage points. This system has its origin at
  9337. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  9338. * plane with a Z component of zero.
  9339. * We will define unit vectors in this coordinate system
  9340. * in our original coordinate system. Then when we calculate
  9341. * the Xnew, Ynew and Znew values, we can translate back into
  9342. * the original system by moving along those unit vectors
  9343. * by the corresponding values.
  9344. *
  9345. * Variable names matched to Marlin, c-version, and avoid the
  9346. * use of any vector library.
  9347. *
  9348. * by Andreas Hardtung 2016-06-07
  9349. * based on a Java function from "Delta Robot Kinematics V3"
  9350. * by Steve Graves
  9351. *
  9352. * The result is stored in the cartes[] array.
  9353. */
  9354. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9355. // Create a vector in old coordinates along x axis of new coordinate
  9356. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9357. // Get the Magnitude of vector.
  9358. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9359. // Create unit vector by dividing by magnitude.
  9360. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9361. // Get the vector from the origin of the new system to the third point.
  9362. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9363. // Use the dot product to find the component of this vector on the X axis.
  9364. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9365. // Create a vector along the x axis that represents the x component of p13.
  9366. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9367. // Subtract the X component from the original vector leaving only Y. We use the
  9368. // variable that will be the unit vector after we scale it.
  9369. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9370. // The magnitude of Y component
  9371. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9372. // Convert to a unit vector
  9373. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9374. // The cross product of the unit x and y is the unit z
  9375. // float[] ez = vectorCrossProd(ex, ey);
  9376. float ez[3] = {
  9377. ex[1] * ey[2] - ex[2] * ey[1],
  9378. ex[2] * ey[0] - ex[0] * ey[2],
  9379. ex[0] * ey[1] - ex[1] * ey[0]
  9380. };
  9381. // We now have the d, i and j values defined in Wikipedia.
  9382. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9383. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9384. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9385. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9386. // Start from the origin of the old coordinates and add vectors in the
  9387. // old coords that represent the Xnew, Ynew and Znew to find the point
  9388. // in the old system.
  9389. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9390. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9391. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9392. }
  9393. void forward_kinematics_DELTA(float point[ABC]) {
  9394. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9395. }
  9396. #endif // DELTA
  9397. /**
  9398. * Get the stepper positions in the cartes[] array.
  9399. * Forward kinematics are applied for DELTA and SCARA.
  9400. *
  9401. * The result is in the current coordinate space with
  9402. * leveling applied. The coordinates need to be run through
  9403. * unapply_leveling to obtain the "ideal" coordinates
  9404. * suitable for current_position, etc.
  9405. */
  9406. void get_cartesian_from_steppers() {
  9407. #if ENABLED(DELTA)
  9408. forward_kinematics_DELTA(
  9409. stepper.get_axis_position_mm(A_AXIS),
  9410. stepper.get_axis_position_mm(B_AXIS),
  9411. stepper.get_axis_position_mm(C_AXIS)
  9412. );
  9413. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9414. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9415. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9416. #elif IS_SCARA
  9417. forward_kinematics_SCARA(
  9418. stepper.get_axis_position_degrees(A_AXIS),
  9419. stepper.get_axis_position_degrees(B_AXIS)
  9420. );
  9421. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9422. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9423. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9424. #else
  9425. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9426. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9427. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9428. #endif
  9429. }
  9430. /**
  9431. * Set the current_position for an axis based on
  9432. * the stepper positions, removing any leveling that
  9433. * may have been applied.
  9434. */
  9435. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9436. get_cartesian_from_steppers();
  9437. #if PLANNER_LEVELING
  9438. planner.unapply_leveling(cartes);
  9439. #endif
  9440. if (axis == ALL_AXES)
  9441. COPY(current_position, cartes);
  9442. else
  9443. current_position[axis] = cartes[axis];
  9444. }
  9445. #if ENABLED(MESH_BED_LEVELING)
  9446. /**
  9447. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9448. * splitting the move where it crosses mesh borders.
  9449. */
  9450. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9451. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9452. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9453. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9454. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9455. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9456. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9457. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9458. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9459. if (cx1 == cx2 && cy1 == cy2) {
  9460. // Start and end on same mesh square
  9461. line_to_destination(fr_mm_s);
  9462. set_current_to_destination();
  9463. return;
  9464. }
  9465. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9466. float normalized_dist, end[XYZE];
  9467. // Split at the left/front border of the right/top square
  9468. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9469. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9470. COPY(end, destination);
  9471. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9472. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9473. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9474. CBI(x_splits, gcx);
  9475. }
  9476. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9477. COPY(end, destination);
  9478. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9479. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9480. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9481. CBI(y_splits, gcy);
  9482. }
  9483. else {
  9484. // Already split on a border
  9485. line_to_destination(fr_mm_s);
  9486. set_current_to_destination();
  9487. return;
  9488. }
  9489. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9490. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9491. // Do the split and look for more borders
  9492. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9493. // Restore destination from stack
  9494. COPY(destination, end);
  9495. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9496. }
  9497. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9498. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  9499. /**
  9500. * Prepare a bilinear-leveled linear move on Cartesian,
  9501. * splitting the move where it crosses grid borders.
  9502. */
  9503. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9504. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9505. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9506. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9507. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9508. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9509. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9510. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9511. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9512. if (cx1 == cx2 && cy1 == cy2) {
  9513. // Start and end on same mesh square
  9514. line_to_destination(fr_mm_s);
  9515. set_current_to_destination();
  9516. return;
  9517. }
  9518. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9519. float normalized_dist, end[XYZE];
  9520. // Split at the left/front border of the right/top square
  9521. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9522. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9523. COPY(end, destination);
  9524. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9525. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9526. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9527. CBI(x_splits, gcx);
  9528. }
  9529. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9530. COPY(end, destination);
  9531. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9532. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9533. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9534. CBI(y_splits, gcy);
  9535. }
  9536. else {
  9537. // Already split on a border
  9538. line_to_destination(fr_mm_s);
  9539. set_current_to_destination();
  9540. return;
  9541. }
  9542. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9543. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9544. // Do the split and look for more borders
  9545. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9546. // Restore destination from stack
  9547. COPY(destination, end);
  9548. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9549. }
  9550. #endif // AUTO_BED_LEVELING_BILINEAR
  9551. #if IS_KINEMATIC && !UBL_DELTA
  9552. /**
  9553. * Prepare a linear move in a DELTA or SCARA setup.
  9554. *
  9555. * This calls planner.buffer_line several times, adding
  9556. * small incremental moves for DELTA or SCARA.
  9557. */
  9558. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9559. // Get the top feedrate of the move in the XY plane
  9560. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9561. // If the move is only in Z/E don't split up the move
  9562. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9563. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9564. return false;
  9565. }
  9566. // Fail if attempting move outside printable radius
  9567. if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
  9568. // Get the cartesian distances moved in XYZE
  9569. float difference[XYZE];
  9570. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  9571. // Get the linear distance in XYZ
  9572. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9573. // If the move is very short, check the E move distance
  9574. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  9575. // No E move either? Game over.
  9576. if (UNEAR_ZERO(cartesian_mm)) return true;
  9577. // Minimum number of seconds to move the given distance
  9578. const float seconds = cartesian_mm / _feedrate_mm_s;
  9579. // The number of segments-per-second times the duration
  9580. // gives the number of segments
  9581. uint16_t segments = delta_segments_per_second * seconds;
  9582. // For SCARA minimum segment size is 0.25mm
  9583. #if IS_SCARA
  9584. NOMORE(segments, cartesian_mm * 4);
  9585. #endif
  9586. // At least one segment is required
  9587. NOLESS(segments, 1);
  9588. // The approximate length of each segment
  9589. const float inv_segments = 1.0 / float(segments),
  9590. segment_distance[XYZE] = {
  9591. difference[X_AXIS] * inv_segments,
  9592. difference[Y_AXIS] * inv_segments,
  9593. difference[Z_AXIS] * inv_segments,
  9594. difference[E_AXIS] * inv_segments
  9595. };
  9596. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9597. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9598. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9599. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  9600. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9601. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9602. feed_factor = inv_segment_length * _feedrate_mm_s;
  9603. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9604. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9605. #endif
  9606. // Get the logical current position as starting point
  9607. float logical[XYZE];
  9608. COPY(logical, current_position);
  9609. // Drop one segment so the last move is to the exact target.
  9610. // If there's only 1 segment, loops will be skipped entirely.
  9611. --segments;
  9612. // Calculate and execute the segments
  9613. for (uint16_t s = segments + 1; --s;) {
  9614. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9615. #if ENABLED(DELTA)
  9616. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9617. #else
  9618. inverse_kinematics(logical);
  9619. #endif
  9620. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9621. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  9622. // For SCARA scale the feed rate from mm/s to degrees/s
  9623. // Use ratio between the length of the move and the larger angle change
  9624. const float adiff = abs(delta[A_AXIS] - oldA),
  9625. bdiff = abs(delta[B_AXIS] - oldB);
  9626. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9627. oldA = delta[A_AXIS];
  9628. oldB = delta[B_AXIS];
  9629. #else
  9630. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9631. #endif
  9632. }
  9633. // Since segment_distance is only approximate,
  9634. // the final move must be to the exact destination.
  9635. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  9636. // For SCARA scale the feed rate from mm/s to degrees/s
  9637. // With segments > 1 length is 1 segment, otherwise total length
  9638. inverse_kinematics(ltarget);
  9639. ADJUST_DELTA(ltarget);
  9640. const float adiff = abs(delta[A_AXIS] - oldA),
  9641. bdiff = abs(delta[B_AXIS] - oldB);
  9642. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9643. #else
  9644. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9645. #endif
  9646. return false;
  9647. }
  9648. #else // !IS_KINEMATIC || UBL_DELTA
  9649. /**
  9650. * Prepare a linear move in a Cartesian setup.
  9651. * If Mesh Bed Leveling is enabled, perform a mesh move.
  9652. *
  9653. * Returns true if the caller didn't update current_position.
  9654. */
  9655. inline bool prepare_move_to_destination_cartesian() {
  9656. #if ENABLED(AUTO_BED_LEVELING_UBL)
  9657. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  9658. if (ubl.state.active) {
  9659. ubl_line_to_destination_cartesian(fr_scaled, active_extruder);
  9660. return true;
  9661. }
  9662. else
  9663. line_to_destination(fr_scaled);
  9664. #else
  9665. // Do not use feedrate_percentage for E or Z only moves
  9666. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
  9667. line_to_destination();
  9668. else {
  9669. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  9670. #if ENABLED(MESH_BED_LEVELING)
  9671. if (mbl.active()) {
  9672. mesh_line_to_destination(fr_scaled);
  9673. return true;
  9674. }
  9675. else
  9676. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9677. if (planner.abl_enabled) {
  9678. bilinear_line_to_destination(fr_scaled);
  9679. return true;
  9680. }
  9681. else
  9682. #endif
  9683. line_to_destination(fr_scaled);
  9684. }
  9685. #endif
  9686. return false;
  9687. }
  9688. #endif // !IS_KINEMATIC || UBL_DELTA
  9689. #if ENABLED(DUAL_X_CARRIAGE)
  9690. /**
  9691. * Prepare a linear move in a dual X axis setup
  9692. */
  9693. inline bool prepare_move_to_destination_dualx() {
  9694. if (active_extruder_parked) {
  9695. switch (dual_x_carriage_mode) {
  9696. case DXC_FULL_CONTROL_MODE:
  9697. break;
  9698. case DXC_AUTO_PARK_MODE:
  9699. if (current_position[E_AXIS] == destination[E_AXIS]) {
  9700. // This is a travel move (with no extrusion)
  9701. // Skip it, but keep track of the current position
  9702. // (so it can be used as the start of the next non-travel move)
  9703. if (delayed_move_time != 0xFFFFFFFFUL) {
  9704. set_current_to_destination();
  9705. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  9706. delayed_move_time = millis();
  9707. return true;
  9708. }
  9709. }
  9710. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  9711. for (uint8_t i = 0; i < 3; i++)
  9712. planner.buffer_line(
  9713. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  9714. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  9715. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  9716. current_position[E_AXIS],
  9717. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  9718. active_extruder
  9719. );
  9720. delayed_move_time = 0;
  9721. active_extruder_parked = false;
  9722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9723. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  9724. #endif
  9725. break;
  9726. case DXC_DUPLICATION_MODE:
  9727. if (active_extruder == 0) {
  9728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9729. if (DEBUGGING(LEVELING)) {
  9730. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  9731. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  9732. }
  9733. #endif
  9734. // move duplicate extruder into correct duplication position.
  9735. planner.set_position_mm(
  9736. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  9737. current_position[Y_AXIS],
  9738. current_position[Z_AXIS],
  9739. current_position[E_AXIS]
  9740. );
  9741. planner.buffer_line(
  9742. current_position[X_AXIS] + duplicate_extruder_x_offset,
  9743. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  9744. planner.max_feedrate_mm_s[X_AXIS], 1
  9745. );
  9746. SYNC_PLAN_POSITION_KINEMATIC();
  9747. stepper.synchronize();
  9748. extruder_duplication_enabled = true;
  9749. active_extruder_parked = false;
  9750. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9751. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  9752. #endif
  9753. }
  9754. else {
  9755. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9756. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  9757. #endif
  9758. }
  9759. break;
  9760. }
  9761. }
  9762. return false;
  9763. }
  9764. #endif // DUAL_X_CARRIAGE
  9765. /**
  9766. * Prepare a single move and get ready for the next one
  9767. *
  9768. * This may result in several calls to planner.buffer_line to
  9769. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  9770. */
  9771. void prepare_move_to_destination() {
  9772. clamp_to_software_endstops(destination);
  9773. refresh_cmd_timeout();
  9774. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9775. if (!DEBUGGING(DRYRUN)) {
  9776. if (destination[E_AXIS] != current_position[E_AXIS]) {
  9777. if (thermalManager.tooColdToExtrude(active_extruder)) {
  9778. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9779. SERIAL_ECHO_START;
  9780. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  9781. }
  9782. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  9783. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  9784. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9785. SERIAL_ECHO_START;
  9786. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  9787. }
  9788. #endif
  9789. }
  9790. }
  9791. #endif
  9792. if (
  9793. #if IS_KINEMATIC
  9794. #if UBL_DELTA
  9795. ubl_prepare_linear_move_to(destination, feedrate_mm_s)
  9796. #else
  9797. prepare_kinematic_move_to(destination)
  9798. #endif
  9799. #elif ENABLED(DUAL_X_CARRIAGE)
  9800. prepare_move_to_destination_dualx()
  9801. #elif UBL_DELTA // will work for CARTESIAN too (smaller segments follow mesh more closely)
  9802. ubl_prepare_linear_move_to(destination, feedrate_mm_s)
  9803. #else
  9804. prepare_move_to_destination_cartesian()
  9805. #endif
  9806. ) return;
  9807. set_current_to_destination();
  9808. }
  9809. #if ENABLED(ARC_SUPPORT)
  9810. /**
  9811. * Plan an arc in 2 dimensions
  9812. *
  9813. * The arc is approximated by generating many small linear segments.
  9814. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  9815. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  9816. * larger segments will tend to be more efficient. Your slicer should have
  9817. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  9818. */
  9819. void plan_arc(
  9820. float logical[XYZE], // Destination position
  9821. float *offset, // Center of rotation relative to current_position
  9822. uint8_t clockwise // Clockwise?
  9823. ) {
  9824. float r_X = -offset[X_AXIS], // Radius vector from center to current location
  9825. r_Y = -offset[Y_AXIS];
  9826. const float radius = HYPOT(r_X, r_Y),
  9827. center_X = current_position[X_AXIS] - r_X,
  9828. center_Y = current_position[Y_AXIS] - r_Y,
  9829. rt_X = logical[X_AXIS] - center_X,
  9830. rt_Y = logical[Y_AXIS] - center_Y,
  9831. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  9832. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  9833. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  9834. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  9835. if (angular_travel < 0) angular_travel += RADIANS(360);
  9836. if (clockwise) angular_travel -= RADIANS(360);
  9837. // Make a circle if the angular rotation is 0
  9838. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  9839. angular_travel += RADIANS(360);
  9840. const float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  9841. if (mm_of_travel < 0.001) return;
  9842. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  9843. if (segments == 0) segments = 1;
  9844. /**
  9845. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  9846. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  9847. * r_T = [cos(phi) -sin(phi);
  9848. * sin(phi) cos(phi)] * r ;
  9849. *
  9850. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  9851. * defined from the circle center to the initial position. Each line segment is formed by successive
  9852. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  9853. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  9854. * all double numbers are single precision on the Arduino. (True double precision will not have
  9855. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  9856. * tool precision in some cases. Therefore, arc path correction is implemented.
  9857. *
  9858. * Small angle approximation may be used to reduce computation overhead further. This approximation
  9859. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  9860. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  9861. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  9862. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  9863. * issue for CNC machines with the single precision Arduino calculations.
  9864. *
  9865. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  9866. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  9867. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  9868. * This is important when there are successive arc motions.
  9869. */
  9870. // Vector rotation matrix values
  9871. float arc_target[XYZE];
  9872. const float theta_per_segment = angular_travel / segments,
  9873. linear_per_segment = linear_travel / segments,
  9874. extruder_per_segment = extruder_travel / segments,
  9875. sin_T = theta_per_segment,
  9876. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  9877. // Initialize the linear axis
  9878. arc_target[Z_AXIS] = current_position[Z_AXIS];
  9879. // Initialize the extruder axis
  9880. arc_target[E_AXIS] = current_position[E_AXIS];
  9881. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9882. millis_t next_idle_ms = millis() + 200UL;
  9883. int8_t count = 0;
  9884. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9885. thermalManager.manage_heater();
  9886. if (ELAPSED(millis(), next_idle_ms)) {
  9887. next_idle_ms = millis() + 200UL;
  9888. idle();
  9889. }
  9890. if (++count < N_ARC_CORRECTION) {
  9891. // Apply vector rotation matrix to previous r_X / 1
  9892. const float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9893. r_X = r_X * cos_T - r_Y * sin_T;
  9894. r_Y = r_new_Y;
  9895. }
  9896. else {
  9897. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9898. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9899. // To reduce stuttering, the sin and cos could be computed at different times.
  9900. // For now, compute both at the same time.
  9901. const float cos_Ti = cos(i * theta_per_segment),
  9902. sin_Ti = sin(i * theta_per_segment);
  9903. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9904. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9905. count = 0;
  9906. }
  9907. // Update arc_target location
  9908. arc_target[X_AXIS] = center_X + r_X;
  9909. arc_target[Y_AXIS] = center_Y + r_Y;
  9910. arc_target[Z_AXIS] += linear_per_segment;
  9911. arc_target[E_AXIS] += extruder_per_segment;
  9912. clamp_to_software_endstops(arc_target);
  9913. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9914. }
  9915. // Ensure last segment arrives at target location.
  9916. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9917. // As far as the parser is concerned, the position is now == target. In reality the
  9918. // motion control system might still be processing the action and the real tool position
  9919. // in any intermediate location.
  9920. set_current_to_destination();
  9921. }
  9922. #endif
  9923. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9924. void plan_cubic_move(const float offset[4]) {
  9925. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9926. // As far as the parser is concerned, the position is now == destination. In reality the
  9927. // motion control system might still be processing the action and the real tool position
  9928. // in any intermediate location.
  9929. set_current_to_destination();
  9930. }
  9931. #endif // BEZIER_CURVE_SUPPORT
  9932. #if ENABLED(USE_CONTROLLER_FAN)
  9933. void controllerFan() {
  9934. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9935. nextMotorCheck = 0; // Last time the state was checked
  9936. const millis_t ms = millis();
  9937. if (ELAPSED(ms, nextMotorCheck)) {
  9938. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9939. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  9940. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9941. #if E_STEPPERS > 1
  9942. || E1_ENABLE_READ == E_ENABLE_ON
  9943. #if HAS_X2_ENABLE
  9944. || X2_ENABLE_READ == X_ENABLE_ON
  9945. #endif
  9946. #if E_STEPPERS > 2
  9947. || E2_ENABLE_READ == E_ENABLE_ON
  9948. #if E_STEPPERS > 3
  9949. || E3_ENABLE_READ == E_ENABLE_ON
  9950. #if E_STEPPERS > 4
  9951. || E4_ENABLE_READ == E_ENABLE_ON
  9952. #endif // E_STEPPERS > 4
  9953. #endif // E_STEPPERS > 3
  9954. #endif // E_STEPPERS > 2
  9955. #endif // E_STEPPERS > 1
  9956. ) {
  9957. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9958. }
  9959. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9960. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9961. // allows digital or PWM fan output to be used (see M42 handling)
  9962. WRITE(CONTROLLER_FAN_PIN, speed);
  9963. analogWrite(CONTROLLER_FAN_PIN, speed);
  9964. }
  9965. }
  9966. #endif // USE_CONTROLLER_FAN
  9967. #if ENABLED(MORGAN_SCARA)
  9968. /**
  9969. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9970. * Maths and first version by QHARLEY.
  9971. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9972. */
  9973. void forward_kinematics_SCARA(const float &a, const float &b) {
  9974. float a_sin = sin(RADIANS(a)) * L1,
  9975. a_cos = cos(RADIANS(a)) * L1,
  9976. b_sin = sin(RADIANS(b)) * L2,
  9977. b_cos = cos(RADIANS(b)) * L2;
  9978. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9979. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9980. /*
  9981. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9982. SERIAL_ECHOPAIR(" b=", b);
  9983. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9984. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9985. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9986. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9987. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9988. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9989. //*/
  9990. }
  9991. /**
  9992. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9993. *
  9994. * See http://forums.reprap.org/read.php?185,283327
  9995. *
  9996. * Maths and first version by QHARLEY.
  9997. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9998. */
  9999. void inverse_kinematics(const float logical[XYZ]) {
  10000. static float C2, S2, SK1, SK2, THETA, PSI;
  10001. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  10002. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  10003. if (L1 == L2)
  10004. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  10005. else
  10006. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  10007. S2 = sqrt(sq(C2) - 1);
  10008. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  10009. SK1 = L1 + L2 * C2;
  10010. // Rotated Arm2 gives the distance from Arm1 to Arm2
  10011. SK2 = L2 * S2;
  10012. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  10013. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  10014. // Angle of Arm2
  10015. PSI = atan2(S2, C2);
  10016. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  10017. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  10018. delta[C_AXIS] = logical[Z_AXIS];
  10019. /*
  10020. DEBUG_POS("SCARA IK", logical);
  10021. DEBUG_POS("SCARA IK", delta);
  10022. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  10023. SERIAL_ECHOPAIR(",", sy);
  10024. SERIAL_ECHOPAIR(" C2=", C2);
  10025. SERIAL_ECHOPAIR(" S2=", S2);
  10026. SERIAL_ECHOPAIR(" Theta=", THETA);
  10027. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  10028. //*/
  10029. }
  10030. #endif // MORGAN_SCARA
  10031. #if ENABLED(TEMP_STAT_LEDS)
  10032. static bool red_led = false;
  10033. static millis_t next_status_led_update_ms = 0;
  10034. void handle_status_leds(void) {
  10035. if (ELAPSED(millis(), next_status_led_update_ms)) {
  10036. next_status_led_update_ms += 500; // Update every 0.5s
  10037. float max_temp = 0.0;
  10038. #if HAS_TEMP_BED
  10039. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  10040. #endif
  10041. HOTEND_LOOP()
  10042. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  10043. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  10044. if (new_led != red_led) {
  10045. red_led = new_led;
  10046. #if PIN_EXISTS(STAT_LED_RED)
  10047. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  10048. #if PIN_EXISTS(STAT_LED_BLUE)
  10049. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  10050. #endif
  10051. #else
  10052. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  10053. #endif
  10054. }
  10055. }
  10056. }
  10057. #endif
  10058. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10059. void handle_filament_runout() {
  10060. if (!filament_ran_out) {
  10061. filament_ran_out = true;
  10062. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  10063. stepper.synchronize();
  10064. }
  10065. }
  10066. #endif // FILAMENT_RUNOUT_SENSOR
  10067. #if ENABLED(FAST_PWM_FAN)
  10068. void setPwmFrequency(uint8_t pin, int val) {
  10069. val &= 0x07;
  10070. switch (digitalPinToTimer(pin)) {
  10071. #ifdef TCCR0A
  10072. case TIMER0A:
  10073. case TIMER0B:
  10074. //_SET_CS(0, val);
  10075. break;
  10076. #endif
  10077. #ifdef TCCR1A
  10078. case TIMER1A:
  10079. case TIMER1B:
  10080. //_SET_CS(1, val);
  10081. break;
  10082. #endif
  10083. #ifdef TCCR2
  10084. case TIMER2:
  10085. case TIMER2:
  10086. _SET_CS(2, val);
  10087. break;
  10088. #endif
  10089. #ifdef TCCR2A
  10090. case TIMER2A:
  10091. case TIMER2B:
  10092. _SET_CS(2, val);
  10093. break;
  10094. #endif
  10095. #ifdef TCCR3A
  10096. case TIMER3A:
  10097. case TIMER3B:
  10098. case TIMER3C:
  10099. _SET_CS(3, val);
  10100. break;
  10101. #endif
  10102. #ifdef TCCR4A
  10103. case TIMER4A:
  10104. case TIMER4B:
  10105. case TIMER4C:
  10106. _SET_CS(4, val);
  10107. break;
  10108. #endif
  10109. #ifdef TCCR5A
  10110. case TIMER5A:
  10111. case TIMER5B:
  10112. case TIMER5C:
  10113. _SET_CS(5, val);
  10114. break;
  10115. #endif
  10116. }
  10117. }
  10118. #endif // FAST_PWM_FAN
  10119. float calculate_volumetric_multiplier(float diameter) {
  10120. if (!volumetric_enabled || diameter == 0) return 1.0;
  10121. return 1.0 / (M_PI * sq(diameter * 0.5));
  10122. }
  10123. void calculate_volumetric_multipliers() {
  10124. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  10125. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  10126. }
  10127. void enable_all_steppers() {
  10128. enable_X();
  10129. enable_Y();
  10130. enable_Z();
  10131. enable_E0();
  10132. enable_E1();
  10133. enable_E2();
  10134. enable_E3();
  10135. enable_E4();
  10136. }
  10137. void disable_e_steppers() {
  10138. disable_E0();
  10139. disable_E1();
  10140. disable_E2();
  10141. disable_E3();
  10142. disable_E4();
  10143. }
  10144. void disable_all_steppers() {
  10145. disable_X();
  10146. disable_Y();
  10147. disable_Z();
  10148. disable_e_steppers();
  10149. }
  10150. #if ENABLED(HAVE_TMC2130)
  10151. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  10152. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  10153. const bool is_otpw = st.checkOT();
  10154. // Report if a warning was triggered
  10155. static bool previous_otpw = false;
  10156. if (is_otpw && !previous_otpw) {
  10157. char timestamp[10];
  10158. duration_t elapsed = print_job_timer.duration();
  10159. const bool has_days = (elapsed.value > 60*60*24L);
  10160. (void)elapsed.toDigital(timestamp, has_days);
  10161. SERIAL_ECHO(timestamp);
  10162. SERIAL_ECHO(": ");
  10163. SERIAL_ECHO(axisID);
  10164. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  10165. }
  10166. previous_otpw = is_otpw;
  10167. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  10168. // Return if user has not enabled current control start with M906 S1.
  10169. if (!auto_current_control) return;
  10170. /**
  10171. * Decrease current if is_otpw is true.
  10172. * Bail out if driver is disabled.
  10173. * Increase current if OTPW has not been triggered yet.
  10174. */
  10175. uint16_t current = st.getCurrent();
  10176. if (is_otpw) {
  10177. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  10178. #if ENABLED(REPORT_CURRENT_CHANGE)
  10179. SERIAL_ECHO(axisID);
  10180. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  10181. #endif
  10182. }
  10183. else if (!st.isEnabled())
  10184. return;
  10185. else if (!is_otpw && !st.getOTPW()) {
  10186. current += CURRENT_STEP;
  10187. if (current <= AUTO_ADJUST_MAX) {
  10188. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  10189. #if ENABLED(REPORT_CURRENT_CHANGE)
  10190. SERIAL_ECHO(axisID);
  10191. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  10192. #endif
  10193. }
  10194. }
  10195. SERIAL_EOL;
  10196. #endif
  10197. }
  10198. void checkOverTemp() {
  10199. static millis_t next_cOT = 0;
  10200. if (ELAPSED(millis(), next_cOT)) {
  10201. next_cOT = millis() + 5000;
  10202. #if ENABLED(X_IS_TMC2130)
  10203. automatic_current_control(stepperX, "X");
  10204. #endif
  10205. #if ENABLED(Y_IS_TMC2130)
  10206. automatic_current_control(stepperY, "Y");
  10207. #endif
  10208. #if ENABLED(Z_IS_TMC2130)
  10209. automatic_current_control(stepperZ, "Z");
  10210. #endif
  10211. #if ENABLED(X2_IS_TMC2130)
  10212. automatic_current_control(stepperX2, "X2");
  10213. #endif
  10214. #if ENABLED(Y2_IS_TMC2130)
  10215. automatic_current_control(stepperY2, "Y2");
  10216. #endif
  10217. #if ENABLED(Z2_IS_TMC2130)
  10218. automatic_current_control(stepperZ2, "Z2");
  10219. #endif
  10220. #if ENABLED(E0_IS_TMC2130)
  10221. automatic_current_control(stepperE0, "E0");
  10222. #endif
  10223. #if ENABLED(E1_IS_TMC2130)
  10224. automatic_current_control(stepperE1, "E1");
  10225. #endif
  10226. #if ENABLED(E2_IS_TMC2130)
  10227. automatic_current_control(stepperE2, "E2");
  10228. #endif
  10229. #if ENABLED(E3_IS_TMC2130)
  10230. automatic_current_control(stepperE3, "E3");
  10231. #endif
  10232. #if ENABLED(E4_IS_TMC2130)
  10233. automatic_current_control(stepperE4, "E4");
  10234. #endif
  10235. #if ENABLED(E4_IS_TMC2130)
  10236. automatic_current_control(stepperE4);
  10237. #endif
  10238. }
  10239. }
  10240. #endif // HAVE_TMC2130
  10241. /**
  10242. * Manage several activities:
  10243. * - Check for Filament Runout
  10244. * - Keep the command buffer full
  10245. * - Check for maximum inactive time between commands
  10246. * - Check for maximum inactive time between stepper commands
  10247. * - Check if pin CHDK needs to go LOW
  10248. * - Check for KILL button held down
  10249. * - Check for HOME button held down
  10250. * - Check if cooling fan needs to be switched on
  10251. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  10252. */
  10253. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  10254. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10255. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  10256. handle_filament_runout();
  10257. #endif
  10258. if (commands_in_queue < BUFSIZE) get_available_commands();
  10259. const millis_t ms = millis();
  10260. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  10261. SERIAL_ERROR_START;
  10262. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  10263. kill(PSTR(MSG_KILLED));
  10264. }
  10265. // Prevent steppers timing-out in the middle of M600
  10266. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  10267. #define M600_TEST !busy_doing_M600
  10268. #else
  10269. #define M600_TEST true
  10270. #endif
  10271. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  10272. && !ignore_stepper_queue && !planner.blocks_queued()) {
  10273. #if ENABLED(DISABLE_INACTIVE_X)
  10274. disable_X();
  10275. #endif
  10276. #if ENABLED(DISABLE_INACTIVE_Y)
  10277. disable_Y();
  10278. #endif
  10279. #if ENABLED(DISABLE_INACTIVE_Z)
  10280. disable_Z();
  10281. #endif
  10282. #if ENABLED(DISABLE_INACTIVE_E)
  10283. disable_e_steppers();
  10284. #endif
  10285. }
  10286. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  10287. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  10288. chdkActive = false;
  10289. WRITE(CHDK, LOW);
  10290. }
  10291. #endif
  10292. #if HAS_KILL
  10293. // Check if the kill button was pressed and wait just in case it was an accidental
  10294. // key kill key press
  10295. // -------------------------------------------------------------------------------
  10296. static int killCount = 0; // make the inactivity button a bit less responsive
  10297. const int KILL_DELAY = 750;
  10298. if (!READ(KILL_PIN))
  10299. killCount++;
  10300. else if (killCount > 0)
  10301. killCount--;
  10302. // Exceeded threshold and we can confirm that it was not accidental
  10303. // KILL the machine
  10304. // ----------------------------------------------------------------
  10305. if (killCount >= KILL_DELAY) {
  10306. SERIAL_ERROR_START;
  10307. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  10308. kill(PSTR(MSG_KILLED));
  10309. }
  10310. #endif
  10311. #if HAS_HOME
  10312. // Check to see if we have to home, use poor man's debouncer
  10313. // ---------------------------------------------------------
  10314. static int homeDebounceCount = 0; // poor man's debouncing count
  10315. const int HOME_DEBOUNCE_DELAY = 2500;
  10316. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  10317. if (!homeDebounceCount) {
  10318. enqueue_and_echo_commands_P(PSTR("G28"));
  10319. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  10320. }
  10321. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  10322. homeDebounceCount++;
  10323. else
  10324. homeDebounceCount = 0;
  10325. }
  10326. #endif
  10327. #if ENABLED(USE_CONTROLLER_FAN)
  10328. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  10329. #endif
  10330. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  10331. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  10332. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  10333. bool oldstatus;
  10334. #if ENABLED(SWITCHING_EXTRUDER)
  10335. oldstatus = E0_ENABLE_READ;
  10336. enable_E0();
  10337. #else // !SWITCHING_EXTRUDER
  10338. switch (active_extruder) {
  10339. case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  10340. #if E_STEPPERS > 1
  10341. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  10342. #if E_STEPPERS > 2
  10343. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  10344. #if E_STEPPERS > 3
  10345. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  10346. #if E_STEPPERS > 4
  10347. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  10348. #endif // E_STEPPERS > 4
  10349. #endif // E_STEPPERS > 3
  10350. #endif // E_STEPPERS > 2
  10351. #endif // E_STEPPERS > 1
  10352. }
  10353. #endif // !SWITCHING_EXTRUDER
  10354. previous_cmd_ms = ms; // refresh_cmd_timeout()
  10355. const float olde = current_position[E_AXIS];
  10356. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  10357. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  10358. current_position[E_AXIS] = olde;
  10359. planner.set_e_position_mm(olde);
  10360. stepper.synchronize();
  10361. #if ENABLED(SWITCHING_EXTRUDER)
  10362. E0_ENABLE_WRITE(oldstatus);
  10363. #else
  10364. switch (active_extruder) {
  10365. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10366. #if E_STEPPERS > 1
  10367. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10368. #if E_STEPPERS > 2
  10369. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10370. #if E_STEPPERS > 3
  10371. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10372. #if E_STEPPERS > 4
  10373. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10374. #endif // E_STEPPERS > 4
  10375. #endif // E_STEPPERS > 3
  10376. #endif // E_STEPPERS > 2
  10377. #endif // E_STEPPERS > 1
  10378. }
  10379. #endif // !SWITCHING_EXTRUDER
  10380. }
  10381. #endif // EXTRUDER_RUNOUT_PREVENT
  10382. #if ENABLED(DUAL_X_CARRIAGE)
  10383. // handle delayed move timeout
  10384. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10385. // travel moves have been received so enact them
  10386. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10387. set_destination_to_current();
  10388. prepare_move_to_destination();
  10389. }
  10390. #endif
  10391. #if ENABLED(TEMP_STAT_LEDS)
  10392. handle_status_leds();
  10393. #endif
  10394. #if ENABLED(HAVE_TMC2130)
  10395. checkOverTemp();
  10396. #endif
  10397. planner.check_axes_activity();
  10398. }
  10399. /**
  10400. * Standard idle routine keeps the machine alive
  10401. */
  10402. void idle(
  10403. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10404. bool no_stepper_sleep/*=false*/
  10405. #endif
  10406. ) {
  10407. lcd_update();
  10408. host_keepalive();
  10409. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10410. auto_report_temperatures();
  10411. #endif
  10412. manage_inactivity(
  10413. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10414. no_stepper_sleep
  10415. #endif
  10416. );
  10417. thermalManager.manage_heater();
  10418. #if ENABLED(PRINTCOUNTER)
  10419. print_job_timer.tick();
  10420. #endif
  10421. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10422. buzzer.tick();
  10423. #endif
  10424. }
  10425. /**
  10426. * Kill all activity and lock the machine.
  10427. * After this the machine will need to be reset.
  10428. */
  10429. void kill(const char* lcd_msg) {
  10430. SERIAL_ERROR_START;
  10431. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10432. thermalManager.disable_all_heaters();
  10433. disable_all_steppers();
  10434. #if ENABLED(ULTRA_LCD)
  10435. kill_screen(lcd_msg);
  10436. #else
  10437. UNUSED(lcd_msg);
  10438. #endif
  10439. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10440. cli(); // Stop interrupts
  10441. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10442. thermalManager.disable_all_heaters(); //turn off heaters again
  10443. #if HAS_POWER_SWITCH
  10444. SET_INPUT(PS_ON_PIN);
  10445. #endif
  10446. suicide();
  10447. while (1) {
  10448. #if ENABLED(USE_WATCHDOG)
  10449. watchdog_reset();
  10450. #endif
  10451. } // Wait for reset
  10452. }
  10453. /**
  10454. * Turn off heaters and stop the print in progress
  10455. * After a stop the machine may be resumed with M999
  10456. */
  10457. void stop() {
  10458. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  10459. #if ENABLED(PROBING_FANS_OFF)
  10460. if (fans_paused) fans_pause(false); // put things back the way they were
  10461. #endif
  10462. if (IsRunning()) {
  10463. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10464. SERIAL_ERROR_START;
  10465. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10466. LCD_MESSAGEPGM(MSG_STOPPED);
  10467. safe_delay(350); // allow enough time for messages to get out before stopping
  10468. Running = false;
  10469. }
  10470. }
  10471. /**
  10472. * Marlin entry-point: Set up before the program loop
  10473. * - Set up the kill pin, filament runout, power hold
  10474. * - Start the serial port
  10475. * - Print startup messages and diagnostics
  10476. * - Get EEPROM or default settings
  10477. * - Initialize managers for:
  10478. * • temperature
  10479. * • planner
  10480. * • watchdog
  10481. * • stepper
  10482. * • photo pin
  10483. * • servos
  10484. * • LCD controller
  10485. * • Digipot I2C
  10486. * • Z probe sled
  10487. * • status LEDs
  10488. */
  10489. void setup() {
  10490. #ifdef DISABLE_JTAG
  10491. // Disable JTAG on AT90USB chips to free up pins for IO
  10492. MCUCR = 0x80;
  10493. MCUCR = 0x80;
  10494. #endif
  10495. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10496. setup_filrunoutpin();
  10497. #endif
  10498. setup_killpin();
  10499. setup_powerhold();
  10500. #if HAS_STEPPER_RESET
  10501. disableStepperDrivers();
  10502. #endif
  10503. MYSERIAL.begin(BAUDRATE);
  10504. SERIAL_PROTOCOLLNPGM("start");
  10505. SERIAL_ECHO_START;
  10506. // Check startup - does nothing if bootloader sets MCUSR to 0
  10507. byte mcu = MCUSR;
  10508. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10509. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10510. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10511. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10512. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10513. MCUSR = 0;
  10514. SERIAL_ECHOPGM(MSG_MARLIN);
  10515. SERIAL_CHAR(' ');
  10516. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10517. SERIAL_EOL;
  10518. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10519. SERIAL_ECHO_START;
  10520. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10521. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10522. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10523. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10524. #endif
  10525. SERIAL_ECHO_START;
  10526. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10527. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10528. // Send "ok" after commands by default
  10529. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10530. // Load data from EEPROM if available (or use defaults)
  10531. // This also updates variables in the planner, elsewhere
  10532. (void)settings.load();
  10533. #if HAS_M206_COMMAND
  10534. // Initialize current position based on home_offset
  10535. COPY(current_position, home_offset);
  10536. #else
  10537. ZERO(current_position);
  10538. #endif
  10539. // Vital to init stepper/planner equivalent for current_position
  10540. SYNC_PLAN_POSITION_KINEMATIC();
  10541. thermalManager.init(); // Initialize temperature loop
  10542. #if ENABLED(USE_WATCHDOG)
  10543. watchdog_init();
  10544. #endif
  10545. stepper.init(); // Initialize stepper, this enables interrupts!
  10546. servo_init();
  10547. #if HAS_PHOTOGRAPH
  10548. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10549. #endif
  10550. #if HAS_CASE_LIGHT
  10551. update_case_light();
  10552. #endif
  10553. #if ENABLED(SPINDLE_LASER_ENABLE)
  10554. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  10555. #if SPINDLE_DIR_CHANGE
  10556. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  10557. #endif
  10558. #if ENABLED(SPINDLE_LASER_PWM)
  10559. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  10560. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  10561. #endif
  10562. #endif
  10563. #if HAS_BED_PROBE
  10564. endstops.enable_z_probe(false);
  10565. #endif
  10566. #if ENABLED(USE_CONTROLLER_FAN)
  10567. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  10568. #endif
  10569. #if HAS_STEPPER_RESET
  10570. enableStepperDrivers();
  10571. #endif
  10572. #if ENABLED(DIGIPOT_I2C)
  10573. digipot_i2c_init();
  10574. #endif
  10575. #if ENABLED(DAC_STEPPER_CURRENT)
  10576. dac_init();
  10577. #endif
  10578. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10579. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10580. #endif
  10581. setup_homepin();
  10582. #if PIN_EXISTS(STAT_LED_RED)
  10583. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10584. #endif
  10585. #if PIN_EXISTS(STAT_LED_BLUE)
  10586. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10587. #endif
  10588. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10589. SET_OUTPUT(RGB_LED_R_PIN);
  10590. SET_OUTPUT(RGB_LED_G_PIN);
  10591. SET_OUTPUT(RGB_LED_B_PIN);
  10592. #if ENABLED(RGBW_LED)
  10593. SET_OUTPUT(RGB_LED_W_PIN);
  10594. #endif
  10595. #endif
  10596. lcd_init();
  10597. #if ENABLED(SHOW_BOOTSCREEN)
  10598. #if ENABLED(DOGLCD)
  10599. safe_delay(BOOTSCREEN_TIMEOUT);
  10600. #elif ENABLED(ULTRA_LCD)
  10601. bootscreen();
  10602. #if DISABLED(SDSUPPORT)
  10603. lcd_init();
  10604. #endif
  10605. #endif
  10606. #endif
  10607. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  10608. // Initialize mixing to 100% color 1
  10609. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10610. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  10611. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  10612. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10613. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  10614. #endif
  10615. #if ENABLED(BLTOUCH)
  10616. // Make sure any BLTouch error condition is cleared
  10617. bltouch_command(BLTOUCH_RESET);
  10618. set_bltouch_deployed(true);
  10619. set_bltouch_deployed(false);
  10620. #endif
  10621. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  10622. i2c.onReceive(i2c_on_receive);
  10623. i2c.onRequest(i2c_on_request);
  10624. #endif
  10625. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  10626. setup_endstop_interrupts();
  10627. #endif
  10628. }
  10629. /**
  10630. * The main Marlin program loop
  10631. *
  10632. * - Save or log commands to SD
  10633. * - Process available commands (if not saving)
  10634. * - Call heater manager
  10635. * - Call inactivity manager
  10636. * - Call endstop manager
  10637. * - Call LCD update
  10638. */
  10639. void loop() {
  10640. if (commands_in_queue < BUFSIZE) get_available_commands();
  10641. #if ENABLED(SDSUPPORT)
  10642. card.checkautostart(false);
  10643. #endif
  10644. if (commands_in_queue) {
  10645. #if ENABLED(SDSUPPORT)
  10646. if (card.saving) {
  10647. char* command = command_queue[cmd_queue_index_r];
  10648. if (strstr_P(command, PSTR("M29"))) {
  10649. // M29 closes the file
  10650. card.closefile();
  10651. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  10652. ok_to_send();
  10653. }
  10654. else {
  10655. // Write the string from the read buffer to SD
  10656. card.write_command(command);
  10657. if (card.logging)
  10658. process_next_command(); // The card is saving because it's logging
  10659. else
  10660. ok_to_send();
  10661. }
  10662. }
  10663. else
  10664. process_next_command();
  10665. #else
  10666. process_next_command();
  10667. #endif // SDSUPPORT
  10668. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  10669. if (commands_in_queue) {
  10670. --commands_in_queue;
  10671. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  10672. }
  10673. }
  10674. endstops.report_state();
  10675. idle();
  10676. }