My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 273KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #include "nozzle.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - Retract filament according to settings of M207
  98. * G11 - Retract recover filament according to settings of M208
  99. * G12 - Clean tool
  100. * G20 - Set input units to inches
  101. * G21 - Set input units to millimeters
  102. * G28 - Home one or more axes
  103. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  104. * G30 - Single Z probe, probes bed at current XY location.
  105. * G31 - Dock sled (Z_PROBE_SLED only)
  106. * G32 - Undock sled (Z_PROBE_SLED only)
  107. * G90 - Use Absolute Coordinates
  108. * G91 - Use Relative Coordinates
  109. * G92 - Set current position to coordinates given
  110. *
  111. * "M" Codes
  112. *
  113. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  114. * M1 - Same as M0
  115. * M17 - Enable/Power all stepper motors
  116. * M18 - Disable all stepper motors; same as M84
  117. * M20 - List SD card
  118. * M21 - Init SD card
  119. * M22 - Release SD card
  120. * M23 - Select SD file (M23 filename.g)
  121. * M24 - Start/resume SD print
  122. * M25 - Pause SD print
  123. * M26 - Set SD position in bytes (M26 S12345)
  124. * M27 - Report SD print status
  125. * M28 - Start SD write (M28 filename.g)
  126. * M29 - Stop SD write
  127. * M30 - Delete file from SD (M30 filename.g)
  128. * M31 - Output time since last M109 or SD card start to serial
  129. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  130. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  131. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  132. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  133. * M33 - Get the longname version of a path
  134. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  135. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  136. * M75 - Start the print job timer
  137. * M76 - Pause the print job timer
  138. * M77 - Stop the print job timer
  139. * M78 - Show statistical information about the print jobs
  140. * M80 - Turn on Power Supply
  141. * M81 - Turn off Power Supply
  142. * M82 - Set E codes absolute (default)
  143. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  144. * M84 - Disable steppers until next move,
  145. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  146. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  147. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  148. * M104 - Set extruder target temp
  149. * M105 - Read current temp
  150. * M106 - Fan on
  151. * M107 - Fan off
  152. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  153. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  154. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  155. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  156. * M110 - Set the current line number
  157. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  158. * M112 - Emergency stop
  159. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  160. * M114 - Output current position to serial port
  161. * M115 - Capabilities string
  162. * M117 - Display a message on the controller screen
  163. * M119 - Output Endstop status to serial port
  164. * M120 - Enable endstop detection
  165. * M121 - Disable endstop detection
  166. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  167. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  168. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  169. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M140 - Set bed target temp
  171. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  172. * M149 - Set temperature units
  173. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  174. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  175. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  176. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  177. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  178. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  179. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  180. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  181. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  182. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  183. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  184. * M205 - Set advanced settings. Current units apply:
  185. S<print> T<travel> minimum speeds
  186. B<minimum segment time>
  187. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  188. * M206 - Set additional homing offset
  189. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  190. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  191. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  192. Every normal extrude-only move will be classified as retract depending on the direction.
  193. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  194. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  195. * M221 - Set Flow Percentage: S<percent>
  196. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  197. * M240 - Trigger a camera to take a photograph
  198. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  199. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  200. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  201. * M301 - Set PID parameters P I and D
  202. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  203. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  204. * M304 - Set bed PID parameters P I and D
  205. * M380 - Activate solenoid on active extruder
  206. * M381 - Disable all solenoids
  207. * M400 - Finish all moves
  208. * M401 - Lower Z probe if present
  209. * M402 - Raise Z probe if present
  210. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  211. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  212. * M406 - Disable Filament Sensor extrusion control
  213. * M407 - Display measured filament diameter in millimeters
  214. * M410 - Quickstop. Abort all the planned moves
  215. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  216. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  217. * M428 - Set the home_offset logically based on the current_position
  218. * M500 - Store parameters in EEPROM
  219. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  220. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  221. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  222. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  223. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  224. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  225. * M666 - Set delta endstop adjustment
  226. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  227. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  228. * M907 - Set digital trimpot motor current using axis codes.
  229. * M908 - Control digital trimpot directly.
  230. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  231. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  232. * M350 - Set microstepping mode.
  233. * M351 - Toggle MS1 MS2 pins directly.
  234. *
  235. * ************ SCARA Specific - This can change to suit future G-code regulations
  236. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  237. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  238. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  239. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  240. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  241. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  242. * ************* SCARA End ***************
  243. *
  244. * ************ Custom codes - This can change to suit future G-code regulations
  245. * M100 - Watch Free Memory (For Debugging Only)
  246. * M928 - Start SD logging (M928 filename.g) - ended by M29
  247. * M999 - Restart after being stopped by error
  248. *
  249. * "T" Codes
  250. *
  251. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  252. *
  253. */
  254. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  255. void gcode_M100();
  256. #endif
  257. #if ENABLED(SDSUPPORT)
  258. CardReader card;
  259. #endif
  260. #if ENABLED(EXPERIMENTAL_I2CBUS)
  261. TWIBus i2c;
  262. #endif
  263. bool Running = true;
  264. uint8_t marlin_debug_flags = DEBUG_NONE;
  265. float current_position[NUM_AXIS] = { 0.0 };
  266. static float destination[NUM_AXIS] = { 0.0 };
  267. bool axis_known_position[3] = { false };
  268. bool axis_homed[3] = { false };
  269. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  270. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  271. static char* current_command, *current_command_args;
  272. static uint8_t cmd_queue_index_r = 0,
  273. cmd_queue_index_w = 0,
  274. commands_in_queue = 0;
  275. #if ENABLED(INCH_MODE_SUPPORT)
  276. float linear_unit_factor = 1.0;
  277. float volumetric_unit_factor = 1.0;
  278. #endif
  279. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  280. TempUnit input_temp_units = TEMPUNIT_C;
  281. #endif
  282. /**
  283. * Feed rates are often configured with mm/m
  284. * but the planner and stepper like mm/s units.
  285. */
  286. const float homing_feedrate_mm_m[] = HOMING_FEEDRATE;
  287. static float feedrate_mm_m = 1500.0, saved_feedrate_mm_m;
  288. int feedrate_percentage = 100, saved_feedrate_percentage;
  289. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  290. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  291. bool volumetric_enabled = false;
  292. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  293. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  294. // The distance that XYZ has been offset by G92. Reset by G28.
  295. float position_shift[3] = { 0 };
  296. // This offset is added to the configured home position.
  297. // Set by M206, M428, or menu item. Saved to EEPROM.
  298. float home_offset[3] = { 0 };
  299. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  300. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  301. // Software Endstops. Default to configured limits.
  302. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  303. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  304. #if ENABLED(DELTA)
  305. float delta_clip_start_height = Z_MAX_POS;
  306. #endif
  307. #if FAN_COUNT > 0
  308. int fanSpeeds[FAN_COUNT] = { 0 };
  309. #endif
  310. // The active extruder (tool). Set with T<extruder> command.
  311. uint8_t active_extruder = 0;
  312. // Relative Mode. Enable with G91, disable with G90.
  313. static bool relative_mode = false;
  314. volatile bool wait_for_heatup = true;
  315. const char errormagic[] PROGMEM = "Error:";
  316. const char echomagic[] PROGMEM = "echo:";
  317. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  318. static int serial_count = 0;
  319. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  320. static char* seen_pointer;
  321. // Next Immediate GCode Command pointer. NULL if none.
  322. const char* queued_commands_P = NULL;
  323. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  324. // Inactivity shutdown
  325. millis_t previous_cmd_ms = 0;
  326. static millis_t max_inactive_time = 0;
  327. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  328. // Print Job Timer
  329. #if ENABLED(PRINTCOUNTER)
  330. PrintCounter print_job_timer = PrintCounter();
  331. #else
  332. Stopwatch print_job_timer = Stopwatch();
  333. #endif
  334. // Buzzer
  335. #if HAS_BUZZER
  336. #if ENABLED(SPEAKER)
  337. Speaker buzzer;
  338. #else
  339. Buzzer buzzer;
  340. #endif
  341. #endif
  342. static uint8_t target_extruder;
  343. #if HAS_BED_PROBE
  344. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  345. #endif
  346. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  347. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  348. int xy_probe_feedrate_mm_m = XY_PROBE_SPEED;
  349. bool bed_leveling_in_progress = false;
  350. #define XY_PROBE_FEEDRATE_MM_M xy_probe_feedrate_mm_m
  351. #elif defined(XY_PROBE_SPEED)
  352. #define XY_PROBE_FEEDRATE_MM_M XY_PROBE_SPEED
  353. #else
  354. #define XY_PROBE_FEEDRATE_MM_M MMS_TO_MMM(PLANNER_XY_FEEDRATE())
  355. #endif
  356. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  357. float z_endstop_adj = 0;
  358. #endif
  359. // Extruder offsets
  360. #if HOTENDS > 1
  361. float hotend_offset[][HOTENDS] = {
  362. HOTEND_OFFSET_X,
  363. HOTEND_OFFSET_Y
  364. #ifdef HOTEND_OFFSET_Z
  365. , HOTEND_OFFSET_Z
  366. #endif
  367. };
  368. #endif
  369. #if HAS_Z_SERVO_ENDSTOP
  370. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  371. #endif
  372. #if ENABLED(BARICUDA)
  373. int baricuda_valve_pressure = 0;
  374. int baricuda_e_to_p_pressure = 0;
  375. #endif
  376. #if ENABLED(FWRETRACT)
  377. bool autoretract_enabled = false;
  378. bool retracted[EXTRUDERS] = { false };
  379. bool retracted_swap[EXTRUDERS] = { false };
  380. float retract_length = RETRACT_LENGTH;
  381. float retract_length_swap = RETRACT_LENGTH_SWAP;
  382. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  383. float retract_zlift = RETRACT_ZLIFT;
  384. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  385. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  386. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  387. #endif // FWRETRACT
  388. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  389. bool powersupply =
  390. #if ENABLED(PS_DEFAULT_OFF)
  391. false
  392. #else
  393. true
  394. #endif
  395. ;
  396. #endif
  397. #if ENABLED(DELTA)
  398. #define TOWER_1 X_AXIS
  399. #define TOWER_2 Y_AXIS
  400. #define TOWER_3 Z_AXIS
  401. float delta[3] = { 0 };
  402. #define SIN_60 0.8660254037844386
  403. #define COS_60 0.5
  404. float endstop_adj[3] = { 0 };
  405. // these are the default values, can be overriden with M665
  406. float delta_radius = DELTA_RADIUS;
  407. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  408. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  409. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  410. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  411. float delta_tower3_x = 0; // back middle tower
  412. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  413. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  414. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  415. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  416. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  417. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  418. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  419. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  420. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  421. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  422. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  423. int delta_grid_spacing[2] = { 0, 0 };
  424. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  425. #endif
  426. #else
  427. static bool home_all_axis = true;
  428. #endif
  429. #if ENABLED(SCARA)
  430. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  431. static float delta[3] = { 0 };
  432. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  433. #endif
  434. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  435. //Variables for Filament Sensor input
  436. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  437. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  438. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  439. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  440. int filwidth_delay_index1 = 0; //index into ring buffer
  441. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  442. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  443. #endif
  444. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  445. static bool filament_ran_out = false;
  446. #endif
  447. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  448. FilamentChangeMenuResponse filament_change_menu_response;
  449. #endif
  450. #if ENABLED(MIXING_EXTRUDER)
  451. float mixing_factor[MIXING_STEPPERS];
  452. #if MIXING_VIRTUAL_TOOLS > 1
  453. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  454. #endif
  455. #endif
  456. static bool send_ok[BUFSIZE];
  457. #if HAS_SERVOS
  458. Servo servo[NUM_SERVOS];
  459. #define MOVE_SERVO(I, P) servo[I].move(P)
  460. #if HAS_Z_SERVO_ENDSTOP
  461. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  462. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  463. #endif
  464. #endif
  465. #ifdef CHDK
  466. millis_t chdkHigh = 0;
  467. boolean chdkActive = false;
  468. #endif
  469. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  470. int lpq_len = 20;
  471. #endif
  472. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  473. static MarlinBusyState busy_state = NOT_BUSY;
  474. static millis_t next_busy_signal_ms = 0;
  475. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  476. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  477. #else
  478. #define host_keepalive() ;
  479. #define KEEPALIVE_STATE(n) ;
  480. #endif // HOST_KEEPALIVE_FEATURE
  481. /**
  482. * ***************************************************************************
  483. * ******************************** FUNCTIONS ********************************
  484. * ***************************************************************************
  485. */
  486. void stop();
  487. void get_available_commands();
  488. void process_next_command();
  489. void prepare_move_to_destination();
  490. #if ENABLED(ARC_SUPPORT)
  491. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  492. #endif
  493. #if ENABLED(BEZIER_CURVE_SUPPORT)
  494. void plan_cubic_move(const float offset[4]);
  495. #endif
  496. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  497. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  498. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  499. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  500. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  501. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  502. static void report_current_position();
  503. #if ENABLED(DEBUG_LEVELING_FEATURE)
  504. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  505. serialprintPGM(prefix);
  506. SERIAL_ECHOPAIR("(", x);
  507. SERIAL_ECHOPAIR(", ", y);
  508. SERIAL_ECHOPAIR(", ", z);
  509. SERIAL_ECHOPGM(")");
  510. if (suffix) serialprintPGM(suffix);
  511. else SERIAL_EOL;
  512. }
  513. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  514. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  515. }
  516. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  517. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  518. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  519. }
  520. #endif
  521. #define DEBUG_POS(SUFFIX,VAR) do { \
  522. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  523. #endif
  524. #if ENABLED(DELTA) || ENABLED(SCARA)
  525. inline void sync_plan_position_delta() {
  526. #if ENABLED(DEBUG_LEVELING_FEATURE)
  527. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  528. #endif
  529. calculate_delta(current_position);
  530. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  531. }
  532. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  533. #else
  534. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  535. #endif
  536. #if ENABLED(SDSUPPORT)
  537. #include "SdFatUtil.h"
  538. int freeMemory() { return SdFatUtil::FreeRam(); }
  539. #else
  540. extern "C" {
  541. extern unsigned int __bss_end;
  542. extern unsigned int __heap_start;
  543. extern void* __brkval;
  544. int freeMemory() {
  545. int free_memory;
  546. if ((int)__brkval == 0)
  547. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  548. else
  549. free_memory = ((int)&free_memory) - ((int)__brkval);
  550. return free_memory;
  551. }
  552. }
  553. #endif //!SDSUPPORT
  554. #if ENABLED(DIGIPOT_I2C)
  555. extern void digipot_i2c_set_current(int channel, float current);
  556. extern void digipot_i2c_init();
  557. #endif
  558. /**
  559. * Inject the next "immediate" command, when possible.
  560. * Return true if any immediate commands remain to inject.
  561. */
  562. static bool drain_queued_commands_P() {
  563. if (queued_commands_P != NULL) {
  564. size_t i = 0;
  565. char c, cmd[30];
  566. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  567. cmd[sizeof(cmd) - 1] = '\0';
  568. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  569. cmd[i] = '\0';
  570. if (enqueue_and_echo_command(cmd)) { // success?
  571. if (c) // newline char?
  572. queued_commands_P += i + 1; // advance to the next command
  573. else
  574. queued_commands_P = NULL; // nul char? no more commands
  575. }
  576. }
  577. return (queued_commands_P != NULL); // return whether any more remain
  578. }
  579. /**
  580. * Record one or many commands to run from program memory.
  581. * Aborts the current queue, if any.
  582. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  583. */
  584. void enqueue_and_echo_commands_P(const char* pgcode) {
  585. queued_commands_P = pgcode;
  586. drain_queued_commands_P(); // first command executed asap (when possible)
  587. }
  588. void clear_command_queue() {
  589. cmd_queue_index_r = cmd_queue_index_w;
  590. commands_in_queue = 0;
  591. }
  592. /**
  593. * Once a new command is in the ring buffer, call this to commit it
  594. */
  595. inline void _commit_command(bool say_ok) {
  596. send_ok[cmd_queue_index_w] = say_ok;
  597. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  598. commands_in_queue++;
  599. }
  600. /**
  601. * Copy a command directly into the main command buffer, from RAM.
  602. * Returns true if successfully adds the command
  603. */
  604. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  605. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  606. strcpy(command_queue[cmd_queue_index_w], cmd);
  607. _commit_command(say_ok);
  608. return true;
  609. }
  610. void enqueue_and_echo_command_now(const char* cmd) {
  611. while (!enqueue_and_echo_command(cmd)) idle();
  612. }
  613. /**
  614. * Enqueue with Serial Echo
  615. */
  616. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  617. if (_enqueuecommand(cmd, say_ok)) {
  618. SERIAL_ECHO_START;
  619. SERIAL_ECHOPGM(MSG_Enqueueing);
  620. SERIAL_ECHO(cmd);
  621. SERIAL_ECHOLNPGM("\"");
  622. return true;
  623. }
  624. return false;
  625. }
  626. void setup_killpin() {
  627. #if HAS_KILL
  628. SET_INPUT(KILL_PIN);
  629. WRITE(KILL_PIN, HIGH);
  630. #endif
  631. }
  632. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  633. void setup_filrunoutpin() {
  634. pinMode(FIL_RUNOUT_PIN, INPUT);
  635. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  636. WRITE(FIL_RUNOUT_PIN, HIGH);
  637. #endif
  638. }
  639. #endif
  640. // Set home pin
  641. void setup_homepin(void) {
  642. #if HAS_HOME
  643. SET_INPUT(HOME_PIN);
  644. WRITE(HOME_PIN, HIGH);
  645. #endif
  646. }
  647. void setup_photpin() {
  648. #if HAS_PHOTOGRAPH
  649. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  650. #endif
  651. }
  652. void setup_powerhold() {
  653. #if HAS_SUICIDE
  654. OUT_WRITE(SUICIDE_PIN, HIGH);
  655. #endif
  656. #if HAS_POWER_SWITCH
  657. #if ENABLED(PS_DEFAULT_OFF)
  658. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  659. #else
  660. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  661. #endif
  662. #endif
  663. }
  664. void suicide() {
  665. #if HAS_SUICIDE
  666. OUT_WRITE(SUICIDE_PIN, LOW);
  667. #endif
  668. }
  669. void servo_init() {
  670. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  671. servo[0].attach(SERVO0_PIN);
  672. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  673. #endif
  674. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  675. servo[1].attach(SERVO1_PIN);
  676. servo[1].detach();
  677. #endif
  678. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  679. servo[2].attach(SERVO2_PIN);
  680. servo[2].detach();
  681. #endif
  682. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  683. servo[3].attach(SERVO3_PIN);
  684. servo[3].detach();
  685. #endif
  686. #if HAS_Z_SERVO_ENDSTOP
  687. /**
  688. * Set position of Z Servo Endstop
  689. *
  690. * The servo might be deployed and positioned too low to stow
  691. * when starting up the machine or rebooting the board.
  692. * There's no way to know where the nozzle is positioned until
  693. * homing has been done - no homing with z-probe without init!
  694. *
  695. */
  696. STOW_Z_SERVO();
  697. #endif
  698. #if HAS_BED_PROBE
  699. endstops.enable_z_probe(false);
  700. #endif
  701. }
  702. /**
  703. * Stepper Reset (RigidBoard, et.al.)
  704. */
  705. #if HAS_STEPPER_RESET
  706. void disableStepperDrivers() {
  707. pinMode(STEPPER_RESET_PIN, OUTPUT);
  708. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  709. }
  710. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  711. #endif
  712. /**
  713. * Marlin entry-point: Set up before the program loop
  714. * - Set up the kill pin, filament runout, power hold
  715. * - Start the serial port
  716. * - Print startup messages and diagnostics
  717. * - Get EEPROM or default settings
  718. * - Initialize managers for:
  719. * • temperature
  720. * • planner
  721. * • watchdog
  722. * • stepper
  723. * • photo pin
  724. * • servos
  725. * • LCD controller
  726. * • Digipot I2C
  727. * • Z probe sled
  728. * • status LEDs
  729. */
  730. void setup() {
  731. #ifdef DISABLE_JTAG
  732. // Disable JTAG on AT90USB chips to free up pins for IO
  733. MCUCR = 0x80;
  734. MCUCR = 0x80;
  735. #endif
  736. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  737. setup_filrunoutpin();
  738. #endif
  739. setup_killpin();
  740. setup_powerhold();
  741. #if HAS_STEPPER_RESET
  742. disableStepperDrivers();
  743. #endif
  744. MYSERIAL.begin(BAUDRATE);
  745. SERIAL_PROTOCOLLNPGM("start");
  746. SERIAL_ECHO_START;
  747. // Check startup - does nothing if bootloader sets MCUSR to 0
  748. byte mcu = MCUSR;
  749. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  750. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  751. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  752. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  753. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  754. MCUSR = 0;
  755. SERIAL_ECHOPGM(MSG_MARLIN);
  756. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  757. #ifdef STRING_DISTRIBUTION_DATE
  758. #ifdef STRING_CONFIG_H_AUTHOR
  759. SERIAL_ECHO_START;
  760. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  761. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  762. SERIAL_ECHOPGM(MSG_AUTHOR);
  763. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  764. SERIAL_ECHOPGM("Compiled: ");
  765. SERIAL_ECHOLNPGM(__DATE__);
  766. #endif // STRING_CONFIG_H_AUTHOR
  767. #endif // STRING_DISTRIBUTION_DATE
  768. SERIAL_ECHO_START;
  769. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  770. SERIAL_ECHO(freeMemory());
  771. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  772. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  773. // Send "ok" after commands by default
  774. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  775. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  776. Config_RetrieveSettings();
  777. // Initialize current position based on home_offset
  778. memcpy(current_position, home_offset, sizeof(home_offset));
  779. #if ENABLED(DELTA) || ENABLED(SCARA)
  780. // Vital to init kinematic equivalent for X0 Y0 Z0
  781. SYNC_PLAN_POSITION_KINEMATIC();
  782. #endif
  783. thermalManager.init(); // Initialize temperature loop
  784. #if ENABLED(USE_WATCHDOG)
  785. watchdog_init();
  786. #endif
  787. stepper.init(); // Initialize stepper, this enables interrupts!
  788. setup_photpin();
  789. servo_init();
  790. #if HAS_CONTROLLERFAN
  791. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  792. #endif
  793. #if HAS_STEPPER_RESET
  794. enableStepperDrivers();
  795. #endif
  796. #if ENABLED(DIGIPOT_I2C)
  797. digipot_i2c_init();
  798. #endif
  799. #if ENABLED(DAC_STEPPER_CURRENT)
  800. dac_init();
  801. #endif
  802. #if ENABLED(Z_PROBE_SLED)
  803. pinMode(SLED_PIN, OUTPUT);
  804. digitalWrite(SLED_PIN, LOW); // turn it off
  805. #endif // Z_PROBE_SLED
  806. setup_homepin();
  807. #ifdef STAT_LED_RED
  808. pinMode(STAT_LED_RED, OUTPUT);
  809. digitalWrite(STAT_LED_RED, LOW); // turn it off
  810. #endif
  811. #ifdef STAT_LED_BLUE
  812. pinMode(STAT_LED_BLUE, OUTPUT);
  813. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  814. #endif
  815. lcd_init();
  816. #if ENABLED(SHOW_BOOTSCREEN)
  817. #if ENABLED(DOGLCD)
  818. safe_delay(BOOTSCREEN_TIMEOUT);
  819. #elif ENABLED(ULTRA_LCD)
  820. bootscreen();
  821. lcd_init();
  822. #endif
  823. #endif
  824. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  825. // Initialize mixing to 100% color 1
  826. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  827. mixing_factor[i] = (i == 0) ? 1 : 0;
  828. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  829. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  830. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  831. #endif
  832. }
  833. /**
  834. * The main Marlin program loop
  835. *
  836. * - Save or log commands to SD
  837. * - Process available commands (if not saving)
  838. * - Call heater manager
  839. * - Call inactivity manager
  840. * - Call endstop manager
  841. * - Call LCD update
  842. */
  843. void loop() {
  844. if (commands_in_queue < BUFSIZE) get_available_commands();
  845. #if ENABLED(SDSUPPORT)
  846. card.checkautostart(false);
  847. #endif
  848. if (commands_in_queue) {
  849. #if ENABLED(SDSUPPORT)
  850. if (card.saving) {
  851. char* command = command_queue[cmd_queue_index_r];
  852. if (strstr_P(command, PSTR("M29"))) {
  853. // M29 closes the file
  854. card.closefile();
  855. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  856. ok_to_send();
  857. }
  858. else {
  859. // Write the string from the read buffer to SD
  860. card.write_command(command);
  861. if (card.logging)
  862. process_next_command(); // The card is saving because it's logging
  863. else
  864. ok_to_send();
  865. }
  866. }
  867. else
  868. process_next_command();
  869. #else
  870. process_next_command();
  871. #endif // SDSUPPORT
  872. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  873. if (commands_in_queue) {
  874. --commands_in_queue;
  875. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  876. }
  877. }
  878. endstops.report_state();
  879. idle();
  880. }
  881. void gcode_line_error(const char* err, bool doFlush = true) {
  882. SERIAL_ERROR_START;
  883. serialprintPGM(err);
  884. SERIAL_ERRORLN(gcode_LastN);
  885. //Serial.println(gcode_N);
  886. if (doFlush) FlushSerialRequestResend();
  887. serial_count = 0;
  888. }
  889. inline void get_serial_commands() {
  890. static char serial_line_buffer[MAX_CMD_SIZE];
  891. static boolean serial_comment_mode = false;
  892. // If the command buffer is empty for too long,
  893. // send "wait" to indicate Marlin is still waiting.
  894. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  895. static millis_t last_command_time = 0;
  896. millis_t ms = millis();
  897. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  898. SERIAL_ECHOLNPGM(MSG_WAIT);
  899. last_command_time = ms;
  900. }
  901. #endif
  902. /**
  903. * Loop while serial characters are incoming and the queue is not full
  904. */
  905. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  906. char serial_char = MYSERIAL.read();
  907. /**
  908. * If the character ends the line
  909. */
  910. if (serial_char == '\n' || serial_char == '\r') {
  911. serial_comment_mode = false; // end of line == end of comment
  912. if (!serial_count) continue; // skip empty lines
  913. serial_line_buffer[serial_count] = 0; // terminate string
  914. serial_count = 0; //reset buffer
  915. char* command = serial_line_buffer;
  916. while (*command == ' ') command++; // skip any leading spaces
  917. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  918. char* apos = strchr(command, '*');
  919. if (npos) {
  920. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  921. if (M110) {
  922. char* n2pos = strchr(command + 4, 'N');
  923. if (n2pos) npos = n2pos;
  924. }
  925. gcode_N = strtol(npos + 1, NULL, 10);
  926. if (gcode_N != gcode_LastN + 1 && !M110) {
  927. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  928. return;
  929. }
  930. if (apos) {
  931. byte checksum = 0, count = 0;
  932. while (command[count] != '*') checksum ^= command[count++];
  933. if (strtol(apos + 1, NULL, 10) != checksum) {
  934. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  935. return;
  936. }
  937. // if no errors, continue parsing
  938. }
  939. else {
  940. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  941. return;
  942. }
  943. gcode_LastN = gcode_N;
  944. // if no errors, continue parsing
  945. }
  946. else if (apos) { // No '*' without 'N'
  947. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  948. return;
  949. }
  950. // Movement commands alert when stopped
  951. if (IsStopped()) {
  952. char* gpos = strchr(command, 'G');
  953. if (gpos) {
  954. int codenum = strtol(gpos + 1, NULL, 10);
  955. switch (codenum) {
  956. case 0:
  957. case 1:
  958. case 2:
  959. case 3:
  960. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  961. LCD_MESSAGEPGM(MSG_STOPPED);
  962. break;
  963. }
  964. }
  965. }
  966. #if DISABLED(EMERGENCY_PARSER)
  967. // If command was e-stop process now
  968. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  969. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  970. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  971. #endif
  972. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  973. last_command_time = ms;
  974. #endif
  975. // Add the command to the queue
  976. _enqueuecommand(serial_line_buffer, true);
  977. }
  978. else if (serial_count >= MAX_CMD_SIZE - 1) {
  979. // Keep fetching, but ignore normal characters beyond the max length
  980. // The command will be injected when EOL is reached
  981. }
  982. else if (serial_char == '\\') { // Handle escapes
  983. if (MYSERIAL.available() > 0) {
  984. // if we have one more character, copy it over
  985. serial_char = MYSERIAL.read();
  986. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  987. }
  988. // otherwise do nothing
  989. }
  990. else { // it's not a newline, carriage return or escape char
  991. if (serial_char == ';') serial_comment_mode = true;
  992. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  993. }
  994. } // queue has space, serial has data
  995. }
  996. #if ENABLED(SDSUPPORT)
  997. inline void get_sdcard_commands() {
  998. static bool stop_buffering = false,
  999. sd_comment_mode = false;
  1000. if (!card.sdprinting) return;
  1001. /**
  1002. * '#' stops reading from SD to the buffer prematurely, so procedural
  1003. * macro calls are possible. If it occurs, stop_buffering is triggered
  1004. * and the buffer is run dry; this character _can_ occur in serial com
  1005. * due to checksums, however, no checksums are used in SD printing.
  1006. */
  1007. if (commands_in_queue == 0) stop_buffering = false;
  1008. uint16_t sd_count = 0;
  1009. bool card_eof = card.eof();
  1010. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1011. int16_t n = card.get();
  1012. char sd_char = (char)n;
  1013. card_eof = card.eof();
  1014. if (card_eof || n == -1
  1015. || sd_char == '\n' || sd_char == '\r'
  1016. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1017. ) {
  1018. if (card_eof) {
  1019. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1020. card.printingHasFinished();
  1021. card.checkautostart(true);
  1022. }
  1023. else if (n == -1) {
  1024. SERIAL_ERROR_START;
  1025. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1026. }
  1027. if (sd_char == '#') stop_buffering = true;
  1028. sd_comment_mode = false; //for new command
  1029. if (!sd_count) continue; //skip empty lines
  1030. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1031. sd_count = 0; //clear buffer
  1032. _commit_command(false);
  1033. }
  1034. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1035. /**
  1036. * Keep fetching, but ignore normal characters beyond the max length
  1037. * The command will be injected when EOL is reached
  1038. */
  1039. }
  1040. else {
  1041. if (sd_char == ';') sd_comment_mode = true;
  1042. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1043. }
  1044. }
  1045. }
  1046. #endif // SDSUPPORT
  1047. /**
  1048. * Add to the circular command queue the next command from:
  1049. * - The command-injection queue (queued_commands_P)
  1050. * - The active serial input (usually USB)
  1051. * - The SD card file being actively printed
  1052. */
  1053. void get_available_commands() {
  1054. // if any immediate commands remain, don't get other commands yet
  1055. if (drain_queued_commands_P()) return;
  1056. get_serial_commands();
  1057. #if ENABLED(SDSUPPORT)
  1058. get_sdcard_commands();
  1059. #endif
  1060. }
  1061. inline bool code_has_value() {
  1062. int i = 1;
  1063. char c = seen_pointer[i];
  1064. while (c == ' ') c = seen_pointer[++i];
  1065. if (c == '-' || c == '+') c = seen_pointer[++i];
  1066. if (c == '.') c = seen_pointer[++i];
  1067. return NUMERIC(c);
  1068. }
  1069. inline float code_value_float() {
  1070. float ret;
  1071. char* e = strchr(seen_pointer, 'E');
  1072. if (e) {
  1073. *e = 0;
  1074. ret = strtod(seen_pointer + 1, NULL);
  1075. *e = 'E';
  1076. }
  1077. else
  1078. ret = strtod(seen_pointer + 1, NULL);
  1079. return ret;
  1080. }
  1081. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1082. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1083. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1084. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1085. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1086. inline bool code_value_bool() { return code_value_byte() > 0; }
  1087. #if ENABLED(INCH_MODE_SUPPORT)
  1088. inline void set_input_linear_units(LinearUnit units) {
  1089. switch (units) {
  1090. case LINEARUNIT_INCH:
  1091. linear_unit_factor = 25.4;
  1092. break;
  1093. case LINEARUNIT_MM:
  1094. default:
  1095. linear_unit_factor = 1.0;
  1096. break;
  1097. }
  1098. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1099. }
  1100. inline float axis_unit_factor(int axis) {
  1101. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1102. }
  1103. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1104. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1105. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1106. #else
  1107. inline float code_value_linear_units() { return code_value_float(); }
  1108. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1109. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1110. #endif
  1111. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1112. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1113. float code_value_temp_abs() {
  1114. switch (input_temp_units) {
  1115. case TEMPUNIT_C:
  1116. return code_value_float();
  1117. case TEMPUNIT_F:
  1118. return (code_value_float() - 32) / 1.8;
  1119. case TEMPUNIT_K:
  1120. return code_value_float() - 272.15;
  1121. default:
  1122. return code_value_float();
  1123. }
  1124. }
  1125. float code_value_temp_diff() {
  1126. switch (input_temp_units) {
  1127. case TEMPUNIT_C:
  1128. case TEMPUNIT_K:
  1129. return code_value_float();
  1130. case TEMPUNIT_F:
  1131. return code_value_float() / 1.8;
  1132. default:
  1133. return code_value_float();
  1134. }
  1135. }
  1136. #else
  1137. float code_value_temp_abs() { return code_value_float(); }
  1138. float code_value_temp_diff() { return code_value_float(); }
  1139. #endif
  1140. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1141. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1142. bool code_seen(char code) {
  1143. seen_pointer = strchr(current_command_args, code);
  1144. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1145. }
  1146. /**
  1147. * Set target_extruder from the T parameter or the active_extruder
  1148. *
  1149. * Returns TRUE if the target is invalid
  1150. */
  1151. bool get_target_extruder_from_command(int code) {
  1152. if (code_seen('T')) {
  1153. if (code_value_byte() >= EXTRUDERS) {
  1154. SERIAL_ECHO_START;
  1155. SERIAL_CHAR('M');
  1156. SERIAL_ECHO(code);
  1157. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1158. SERIAL_EOL;
  1159. return true;
  1160. }
  1161. target_extruder = code_value_byte();
  1162. }
  1163. else
  1164. target_extruder = active_extruder;
  1165. return false;
  1166. }
  1167. #define DEFINE_PGM_READ_ANY(type, reader) \
  1168. static inline type pgm_read_any(const type *p) \
  1169. { return pgm_read_##reader##_near(p); }
  1170. DEFINE_PGM_READ_ANY(float, float);
  1171. DEFINE_PGM_READ_ANY(signed char, byte);
  1172. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1173. static const PROGMEM type array##_P[3] = \
  1174. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1175. static inline type array(int axis) \
  1176. { return pgm_read_any(&array##_P[axis]); }
  1177. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1178. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1179. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1180. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1181. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1182. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1183. #if ENABLED(DUAL_X_CARRIAGE)
  1184. #define DXC_FULL_CONTROL_MODE 0
  1185. #define DXC_AUTO_PARK_MODE 1
  1186. #define DXC_DUPLICATION_MODE 2
  1187. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1188. static float x_home_pos(int extruder) {
  1189. if (extruder == 0)
  1190. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1191. else
  1192. /**
  1193. * In dual carriage mode the extruder offset provides an override of the
  1194. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1195. * This allow soft recalibration of the second extruder offset position
  1196. * without firmware reflash (through the M218 command).
  1197. */
  1198. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1199. }
  1200. static int x_home_dir(int extruder) {
  1201. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1202. }
  1203. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1204. static bool active_extruder_parked = false; // used in mode 1 & 2
  1205. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1206. static millis_t delayed_move_time = 0; // used in mode 1
  1207. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1208. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1209. bool extruder_duplication_enabled = false; // used in mode 2
  1210. #endif //DUAL_X_CARRIAGE
  1211. /**
  1212. * Software endstops can be used to monitor the open end of
  1213. * an axis that has a hardware endstop on the other end. Or
  1214. * they can prevent axes from moving past endstops and grinding.
  1215. *
  1216. * To keep doing their job as the coordinate system changes,
  1217. * the software endstop positions must be refreshed to remain
  1218. * at the same positions relative to the machine.
  1219. */
  1220. static void update_software_endstops(AxisEnum axis) {
  1221. float offs = home_offset[axis] + position_shift[axis];
  1222. #if ENABLED(DUAL_X_CARRIAGE)
  1223. if (axis == X_AXIS) {
  1224. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1225. if (active_extruder != 0) {
  1226. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1227. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1228. return;
  1229. }
  1230. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1231. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1232. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1233. return;
  1234. }
  1235. }
  1236. else
  1237. #endif
  1238. {
  1239. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1240. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1241. }
  1242. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1243. if (DEBUGGING(LEVELING)) {
  1244. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1245. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1246. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1247. SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]);
  1248. SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]);
  1249. SERIAL_EOL;
  1250. }
  1251. #endif
  1252. #if ENABLED(DELTA)
  1253. if (axis == Z_AXIS) {
  1254. delta_clip_start_height = sw_endstop_max[axis] - delta_safe_distance_from_top();
  1255. }
  1256. #endif
  1257. }
  1258. /**
  1259. * Change the home offset for an axis, update the current
  1260. * position and the software endstops to retain the same
  1261. * relative distance to the new home.
  1262. *
  1263. * Since this changes the current_position, code should
  1264. * call sync_plan_position soon after this.
  1265. */
  1266. static void set_home_offset(AxisEnum axis, float v) {
  1267. current_position[axis] += v - home_offset[axis];
  1268. home_offset[axis] = v;
  1269. update_software_endstops(axis);
  1270. }
  1271. static void set_axis_is_at_home(AxisEnum axis) {
  1272. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1273. if (DEBUGGING(LEVELING)) {
  1274. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1275. SERIAL_ECHOLNPGM(")");
  1276. }
  1277. #endif
  1278. position_shift[axis] = 0;
  1279. #if ENABLED(DUAL_X_CARRIAGE)
  1280. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1281. if (active_extruder != 0)
  1282. current_position[X_AXIS] = x_home_pos(active_extruder);
  1283. else
  1284. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1285. update_software_endstops(X_AXIS);
  1286. return;
  1287. }
  1288. #endif
  1289. #if ENABLED(SCARA)
  1290. if (axis == X_AXIS || axis == Y_AXIS) {
  1291. float homeposition[3];
  1292. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1293. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1294. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1295. /**
  1296. * Works out real Homeposition angles using inverse kinematics,
  1297. * and calculates homing offset using forward kinematics
  1298. */
  1299. calculate_delta(homeposition);
  1300. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1301. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1302. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1303. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1304. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1305. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1306. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1307. calculate_SCARA_forward_Transform(delta);
  1308. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1309. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1310. current_position[axis] = delta[axis];
  1311. /**
  1312. * SCARA home positions are based on configuration since the actual
  1313. * limits are determined by the inverse kinematic transform.
  1314. */
  1315. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1316. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1317. }
  1318. else
  1319. #endif
  1320. {
  1321. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1322. update_software_endstops(axis);
  1323. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1324. if (axis == Z_AXIS) {
  1325. current_position[Z_AXIS] -= zprobe_zoffset;
  1326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1327. if (DEBUGGING(LEVELING)) {
  1328. SERIAL_ECHOPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1329. SERIAL_EOL;
  1330. }
  1331. #endif
  1332. }
  1333. #endif
  1334. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1335. if (DEBUGGING(LEVELING)) {
  1336. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1337. SERIAL_ECHOPAIR("] = ", home_offset[axis]);
  1338. SERIAL_EOL;
  1339. DEBUG_POS("", current_position);
  1340. }
  1341. #endif
  1342. }
  1343. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1344. if (DEBUGGING(LEVELING)) {
  1345. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1346. SERIAL_ECHOLNPGM(")");
  1347. }
  1348. #endif
  1349. }
  1350. /**
  1351. * Some planner shorthand inline functions
  1352. */
  1353. inline float set_homing_bump_feedrate(AxisEnum axis) {
  1354. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1355. int hbd = homing_bump_divisor[axis];
  1356. if (hbd < 1) {
  1357. hbd = 10;
  1358. SERIAL_ECHO_START;
  1359. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1360. }
  1361. feedrate_mm_m = homing_feedrate_mm_m[axis] / hbd;
  1362. return feedrate_mm_m;
  1363. }
  1364. //
  1365. // line_to_current_position
  1366. // Move the planner to the current position from wherever it last moved
  1367. // (or from wherever it has been told it is located).
  1368. //
  1369. inline void line_to_current_position() {
  1370. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1371. }
  1372. inline void line_to_z(float zPosition) {
  1373. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1374. }
  1375. inline void line_to_axis_pos(AxisEnum axis, float where, float fr_mm_m = 0.0) {
  1376. float old_feedrate_mm_m = feedrate_mm_m;
  1377. current_position[axis] = where;
  1378. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[axis];
  1379. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1380. stepper.synchronize(); // The lost one
  1381. feedrate_mm_m = old_feedrate_mm_m;
  1382. }
  1383. //
  1384. // line_to_destination
  1385. // Move the planner, not necessarily synced with current_position
  1386. //
  1387. inline void line_to_destination(float fr_mm_m) {
  1388. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS(fr_mm_m), active_extruder);
  1389. }
  1390. inline void line_to_destination() { line_to_destination(feedrate_mm_m); }
  1391. /**
  1392. * sync_plan_position
  1393. * Set planner / stepper positions to the cartesian current_position.
  1394. * The stepper code translates these coordinates into step units.
  1395. * Allows translation between steps and millimeters for cartesian & core robots
  1396. */
  1397. inline void sync_plan_position() {
  1398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1399. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1400. #endif
  1401. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1402. }
  1403. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1404. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1405. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1406. #if ENABLED(DELTA)
  1407. /**
  1408. * Calculate delta, start a line, and set current_position to destination
  1409. */
  1410. void prepare_move_to_destination_raw() {
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1413. #endif
  1414. refresh_cmd_timeout();
  1415. calculate_delta(destination);
  1416. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
  1417. set_current_to_destination();
  1418. }
  1419. #endif
  1420. /**
  1421. * Plan a move to (X, Y, Z) and set the current_position
  1422. * The final current_position may not be the one that was requested
  1423. */
  1424. void do_blocking_move_to(float x, float y, float z, float fr_mm_m /*=0.0*/) {
  1425. float old_feedrate_mm_m = feedrate_mm_m;
  1426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1427. if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), NULL, x, y, z);
  1428. #endif
  1429. #if ENABLED(DELTA)
  1430. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
  1431. destination[X_AXIS] = x;
  1432. destination[Y_AXIS] = y;
  1433. destination[Z_AXIS] = z;
  1434. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1435. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1436. else
  1437. prepare_move_to_destination(); // this will also set_current_to_destination
  1438. #else
  1439. // If Z needs to raise, do it before moving XY
  1440. if (current_position[Z_AXIS] < z) {
  1441. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
  1442. current_position[Z_AXIS] = z;
  1443. line_to_current_position();
  1444. }
  1445. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
  1446. current_position[X_AXIS] = x;
  1447. current_position[Y_AXIS] = y;
  1448. line_to_current_position();
  1449. // If Z needs to lower, do it after moving XY
  1450. if (current_position[Z_AXIS] > z) {
  1451. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
  1452. current_position[Z_AXIS] = z;
  1453. line_to_current_position();
  1454. }
  1455. #endif
  1456. stepper.synchronize();
  1457. feedrate_mm_m = old_feedrate_mm_m;
  1458. }
  1459. void do_blocking_move_to_axis_pos(AxisEnum axis, float where, float fr_mm_m/*=0.0*/) {
  1460. current_position[axis] = where;
  1461. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m);
  1462. }
  1463. void do_blocking_move_to_x(float x, float fr_mm_m/*=0.0*/) { do_blocking_move_to_axis_pos(X_AXIS, x, fr_mm_m); }
  1464. void do_blocking_move_to_y(float y) { do_blocking_move_to_axis_pos(Y_AXIS, y); }
  1465. void do_blocking_move_to_z(float z, float fr_mm_m/*=0.0*/) { do_blocking_move_to_axis_pos(Z_AXIS, z, fr_mm_m); }
  1466. void do_blocking_move_to_xy(float x, float y, float fr_mm_m/*=0.0*/) { do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_m); }
  1467. //
  1468. // Prepare to do endstop or probe moves
  1469. // with custom feedrates.
  1470. //
  1471. // - Save current feedrates
  1472. // - Reset the rate multiplier
  1473. // - Reset the command timeout
  1474. // - Enable the endstops (for endstop moves)
  1475. //
  1476. static void setup_for_endstop_or_probe_move() {
  1477. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1478. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1479. #endif
  1480. saved_feedrate_mm_m = feedrate_mm_m;
  1481. saved_feedrate_percentage = feedrate_percentage;
  1482. feedrate_percentage = 100;
  1483. refresh_cmd_timeout();
  1484. }
  1485. static void clean_up_after_endstop_or_probe_move() {
  1486. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1487. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1488. #endif
  1489. feedrate_mm_m = saved_feedrate_mm_m;
  1490. feedrate_percentage = saved_feedrate_percentage;
  1491. refresh_cmd_timeout();
  1492. }
  1493. #if HAS_BED_PROBE
  1494. /**
  1495. * Raise Z to a minimum height to make room for a probe to move
  1496. */
  1497. inline void do_probe_raise(float z_raise) {
  1498. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1499. if (DEBUGGING(LEVELING)) {
  1500. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1501. SERIAL_ECHOLNPGM(")");
  1502. }
  1503. #endif
  1504. float z_dest = home_offset[Z_AXIS] + z_raise;
  1505. if (zprobe_zoffset < 0)
  1506. z_dest -= zprobe_zoffset;
  1507. if (z_dest > current_position[Z_AXIS])
  1508. do_blocking_move_to_z(z_dest);
  1509. }
  1510. #endif //HAS_BED_PROBE
  1511. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1512. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1513. const bool xx = x && !axis_homed[X_AXIS],
  1514. yy = y && !axis_homed[Y_AXIS],
  1515. zz = z && !axis_homed[Z_AXIS];
  1516. if (xx || yy || zz) {
  1517. SERIAL_ECHO_START;
  1518. SERIAL_ECHOPGM(MSG_HOME " ");
  1519. if (xx) SERIAL_ECHOPGM(MSG_X);
  1520. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1521. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1522. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1523. #if ENABLED(ULTRA_LCD)
  1524. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1525. strcat_P(message, PSTR(MSG_HOME " "));
  1526. if (xx) strcat_P(message, PSTR(MSG_X));
  1527. if (yy) strcat_P(message, PSTR(MSG_Y));
  1528. if (zz) strcat_P(message, PSTR(MSG_Z));
  1529. strcat_P(message, PSTR(" " MSG_FIRST));
  1530. lcd_setstatus(message);
  1531. #endif
  1532. return true;
  1533. }
  1534. return false;
  1535. }
  1536. #endif
  1537. #if ENABLED(Z_PROBE_SLED)
  1538. #ifndef SLED_DOCKING_OFFSET
  1539. #define SLED_DOCKING_OFFSET 0
  1540. #endif
  1541. /**
  1542. * Method to dock/undock a sled designed by Charles Bell.
  1543. *
  1544. * stow[in] If false, move to MAX_X and engage the solenoid
  1545. * If true, move to MAX_X and release the solenoid
  1546. */
  1547. static void dock_sled(bool stow) {
  1548. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1549. if (DEBUGGING(LEVELING)) {
  1550. SERIAL_ECHOPAIR("dock_sled(", stow);
  1551. SERIAL_ECHOLNPGM(")");
  1552. }
  1553. #endif
  1554. // Dock sled a bit closer to ensure proper capturing
  1555. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1556. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1557. }
  1558. #endif // Z_PROBE_SLED
  1559. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1560. void run_deploy_moves_script() {
  1561. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1562. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1563. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1564. #endif
  1565. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1566. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1567. #endif
  1568. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1569. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1570. #endif
  1571. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1572. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1573. #endif
  1574. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1575. #endif
  1576. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1577. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1578. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1579. #endif
  1580. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1581. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1582. #endif
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1588. #endif
  1589. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1590. #endif
  1591. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1592. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1593. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1594. #endif
  1595. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1596. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1597. #endif
  1598. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1599. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1602. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1603. #endif
  1604. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1605. #endif
  1606. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1607. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1608. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1609. #endif
  1610. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1611. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1612. #endif
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1618. #endif
  1619. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1620. #endif
  1621. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1622. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1623. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1626. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1627. #endif
  1628. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1629. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1633. #endif
  1634. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1635. #endif
  1636. }
  1637. void run_stow_moves_script() {
  1638. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1639. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1640. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1641. #endif
  1642. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1643. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1644. #endif
  1645. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1646. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1647. #endif
  1648. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1649. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1650. #endif
  1651. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1652. #endif
  1653. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1654. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1655. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1656. #endif
  1657. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1658. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1659. #endif
  1660. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1661. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1662. #endif
  1663. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1664. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1665. #endif
  1666. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1667. #endif
  1668. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1669. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1670. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1671. #endif
  1672. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1673. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1676. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1679. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1680. #endif
  1681. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1682. #endif
  1683. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1685. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1686. #endif
  1687. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1688. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1691. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1694. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1695. #endif
  1696. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1697. #endif
  1698. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1699. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1700. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1701. #endif
  1702. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1703. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1704. #endif
  1705. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1706. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1707. #endif
  1708. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1709. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1710. #endif
  1711. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1712. #endif
  1713. }
  1714. #endif
  1715. #if HAS_BED_PROBE
  1716. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1717. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1718. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1719. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1720. #else
  1721. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1722. #endif
  1723. #endif
  1724. #define DEPLOY_PROBE() set_probe_deployed( true )
  1725. #define STOW_PROBE() set_probe_deployed( false )
  1726. // returns false for ok and true for failure
  1727. static bool set_probe_deployed(bool deploy) {
  1728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1729. if (DEBUGGING(LEVELING)) {
  1730. DEBUG_POS("set_probe_deployed", current_position);
  1731. SERIAL_ECHOPAIR("deploy: ", deploy);
  1732. SERIAL_EOL;
  1733. }
  1734. #endif
  1735. if (endstops.z_probe_enabled == deploy) return false;
  1736. // Make room for probe
  1737. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1738. #if ENABLED(Z_PROBE_SLED)
  1739. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1740. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1741. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1742. #endif
  1743. float oldXpos = current_position[X_AXIS]; // save x position
  1744. float oldYpos = current_position[Y_AXIS]; // save y position
  1745. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1746. // If endstop is already false, the Z probe is deployed
  1747. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1748. // Would a goto be less ugly?
  1749. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1750. // for a triggered when stowed manual probe.
  1751. #endif
  1752. #if ENABLED(Z_PROBE_SLED)
  1753. dock_sled(!deploy);
  1754. #elif HAS_Z_SERVO_ENDSTOP
  1755. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1756. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1757. if (!deploy) run_stow_moves_script();
  1758. else run_deploy_moves_script();
  1759. #else
  1760. // Nothing to be done. Just enable_z_probe below...
  1761. #endif
  1762. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1763. }; // opened before the probe specific actions
  1764. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1765. if (IsRunning()) {
  1766. SERIAL_ERROR_START;
  1767. SERIAL_ERRORLNPGM("Z-Probe failed");
  1768. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1769. }
  1770. stop();
  1771. return true;
  1772. }
  1773. #endif
  1774. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1775. endstops.enable_z_probe( deploy );
  1776. return false;
  1777. }
  1778. // Do a single Z probe and return with current_position[Z_AXIS]
  1779. // at the height where the probe triggered.
  1780. static float run_z_probe() {
  1781. float old_feedrate_mm_m = feedrate_mm_m;
  1782. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1783. refresh_cmd_timeout();
  1784. #if ENABLED(DELTA)
  1785. float start_z = current_position[Z_AXIS];
  1786. long start_steps = stepper.position(Z_AXIS);
  1787. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1788. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 1", current_position);
  1789. #endif
  1790. // move down slowly until you find the bed
  1791. feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS] / 4;
  1792. destination[Z_AXIS] = -10;
  1793. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1794. stepper.synchronize();
  1795. endstops.hit_on_purpose(); // clear endstop hit flags
  1796. /**
  1797. * We have to let the planner know where we are right now as it
  1798. * is not where we said to go.
  1799. */
  1800. long stop_steps = stepper.position(Z_AXIS);
  1801. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1802. current_position[Z_AXIS] = mm;
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1805. #endif
  1806. #else // !DELTA
  1807. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1808. planner.bed_level_matrix.set_to_identity();
  1809. #endif
  1810. feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
  1811. // Move down until the Z probe (or endstop?) is triggered
  1812. float zPosition = -(Z_MAX_LENGTH + 10);
  1813. line_to_z(zPosition);
  1814. stepper.synchronize();
  1815. // Tell the planner where we ended up - Get this from the stepper handler
  1816. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1817. planner.set_position_mm(
  1818. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1819. current_position[E_AXIS]
  1820. );
  1821. // move up the retract distance
  1822. zPosition += home_bump_mm(Z_AXIS);
  1823. line_to_z(zPosition);
  1824. stepper.synchronize();
  1825. endstops.hit_on_purpose(); // clear endstop hit flags
  1826. // move back down slowly to find bed
  1827. set_homing_bump_feedrate(Z_AXIS);
  1828. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1829. line_to_z(zPosition);
  1830. stepper.synchronize();
  1831. endstops.hit_on_purpose(); // clear endstop hit flags
  1832. // Get the current stepper position after bumping an endstop
  1833. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1834. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1835. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1836. #endif
  1837. #endif // !DELTA
  1838. SYNC_PLAN_POSITION_KINEMATIC();
  1839. feedrate_mm_m = old_feedrate_mm_m;
  1840. return current_position[Z_AXIS];
  1841. }
  1842. //
  1843. // - Move to the given XY
  1844. // - Deploy the probe, if not already deployed
  1845. // - Probe the bed, get the Z position
  1846. // - Depending on the 'stow' flag
  1847. // - Stow the probe, or
  1848. // - Raise to the BETWEEN height
  1849. // - Return the probed Z position
  1850. //
  1851. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1853. if (DEBUGGING(LEVELING)) {
  1854. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1855. SERIAL_ECHOPAIR(", ", y);
  1856. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1857. SERIAL_ECHOLNPGM(")");
  1858. DEBUG_POS("", current_position);
  1859. }
  1860. #endif
  1861. float old_feedrate_mm_m = feedrate_mm_m;
  1862. // Ensure a minimum height before moving the probe
  1863. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1864. // Move to the XY where we shall probe
  1865. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1866. if (DEBUGGING(LEVELING)) {
  1867. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1868. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1869. SERIAL_ECHOLNPGM(")");
  1870. }
  1871. #endif
  1872. feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
  1873. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1874. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1875. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1876. #endif
  1877. if (DEPLOY_PROBE()) return NAN;
  1878. float measured_z = run_z_probe();
  1879. if (stow) {
  1880. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1881. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1882. #endif
  1883. if (STOW_PROBE()) return NAN;
  1884. }
  1885. else {
  1886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1887. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1888. #endif
  1889. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1890. }
  1891. if (verbose_level > 2) {
  1892. SERIAL_PROTOCOLPGM("Bed X: ");
  1893. SERIAL_PROTOCOL_F(x, 3);
  1894. SERIAL_PROTOCOLPGM(" Y: ");
  1895. SERIAL_PROTOCOL_F(y, 3);
  1896. SERIAL_PROTOCOLPGM(" Z: ");
  1897. SERIAL_PROTOCOL_F(measured_z, 3);
  1898. SERIAL_EOL;
  1899. }
  1900. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1901. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1902. #endif
  1903. feedrate_mm_m = old_feedrate_mm_m;
  1904. return measured_z;
  1905. }
  1906. #endif // HAS_BED_PROBE
  1907. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1908. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1909. #if DISABLED(DELTA)
  1910. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1911. //planner.bed_level_matrix.debug("bed level before");
  1912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1913. planner.bed_level_matrix.set_to_identity();
  1914. if (DEBUGGING(LEVELING)) {
  1915. vector_3 uncorrected_position = planner.adjusted_position();
  1916. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1917. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1918. }
  1919. #endif
  1920. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1921. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1922. vector_3 corrected_position = planner.adjusted_position();
  1923. current_position[X_AXIS] = corrected_position.x;
  1924. current_position[Y_AXIS] = corrected_position.y;
  1925. current_position[Z_AXIS] = corrected_position.z;
  1926. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1927. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1928. #endif
  1929. SYNC_PLAN_POSITION_KINEMATIC();
  1930. }
  1931. #endif // !DELTA
  1932. #else // !AUTO_BED_LEVELING_GRID
  1933. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1934. planner.bed_level_matrix.set_to_identity();
  1935. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1936. if (DEBUGGING(LEVELING)) {
  1937. vector_3 uncorrected_position = planner.adjusted_position();
  1938. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1939. }
  1940. #endif
  1941. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1942. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1943. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1944. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1945. if (planeNormal.z < 0) {
  1946. planeNormal.x = -planeNormal.x;
  1947. planeNormal.y = -planeNormal.y;
  1948. planeNormal.z = -planeNormal.z;
  1949. }
  1950. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1951. vector_3 corrected_position = planner.adjusted_position();
  1952. current_position[X_AXIS] = corrected_position.x;
  1953. current_position[Y_AXIS] = corrected_position.y;
  1954. current_position[Z_AXIS] = corrected_position.z;
  1955. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1956. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1957. #endif
  1958. SYNC_PLAN_POSITION_KINEMATIC();
  1959. }
  1960. #endif // !AUTO_BED_LEVELING_GRID
  1961. #if ENABLED(DELTA)
  1962. /**
  1963. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1964. */
  1965. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1966. if (bed_level[x][y] != 0.0) {
  1967. return; // Don't overwrite good values.
  1968. }
  1969. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1970. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1971. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1972. float median = c; // Median is robust (ignores outliers).
  1973. if (a < b) {
  1974. if (b < c) median = b;
  1975. if (c < a) median = a;
  1976. }
  1977. else { // b <= a
  1978. if (c < b) median = b;
  1979. if (a < c) median = a;
  1980. }
  1981. bed_level[x][y] = median;
  1982. }
  1983. /**
  1984. * Fill in the unprobed points (corners of circular print surface)
  1985. * using linear extrapolation, away from the center.
  1986. */
  1987. static void extrapolate_unprobed_bed_level() {
  1988. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1989. for (int y = 0; y <= half; y++) {
  1990. for (int x = 0; x <= half; x++) {
  1991. if (x + y < 3) continue;
  1992. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1993. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1994. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1995. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1996. }
  1997. }
  1998. }
  1999. /**
  2000. * Print calibration results for plotting or manual frame adjustment.
  2001. */
  2002. static void print_bed_level() {
  2003. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2004. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2005. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  2006. SERIAL_PROTOCOLCHAR(' ');
  2007. }
  2008. SERIAL_EOL;
  2009. }
  2010. }
  2011. /**
  2012. * Reset calibration results to zero.
  2013. */
  2014. void reset_bed_level() {
  2015. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2016. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2017. #endif
  2018. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2019. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2020. bed_level[x][y] = 0.0;
  2021. }
  2022. }
  2023. }
  2024. #endif // DELTA
  2025. #endif // AUTO_BED_LEVELING_FEATURE
  2026. /**
  2027. * Home an individual axis
  2028. */
  2029. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2030. static void homeaxis(AxisEnum axis) {
  2031. #define HOMEAXIS_DO(LETTER) \
  2032. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2033. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2034. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2035. if (DEBUGGING(LEVELING)) {
  2036. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2037. SERIAL_ECHOLNPGM(")");
  2038. }
  2039. #endif
  2040. int axis_home_dir =
  2041. #if ENABLED(DUAL_X_CARRIAGE)
  2042. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2043. #endif
  2044. home_dir(axis);
  2045. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2046. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2047. if (axis == Z_AXIS && axis_home_dir < 0) {
  2048. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2049. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2050. #endif
  2051. if (DEPLOY_PROBE()) return;
  2052. }
  2053. #endif
  2054. // Set the axis position as setup for the move
  2055. current_position[axis] = 0;
  2056. sync_plan_position();
  2057. // Set a flag for Z motor locking
  2058. #if ENABLED(Z_DUAL_ENDSTOPS)
  2059. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2060. #endif
  2061. // Move towards the endstop until an endstop is triggered
  2062. line_to_axis_pos(axis, 1.5 * max_length(axis) * axis_home_dir);
  2063. // Set the axis position as setup for the move
  2064. current_position[axis] = 0;
  2065. sync_plan_position();
  2066. // Move away from the endstop by the axis HOME_BUMP_MM
  2067. line_to_axis_pos(axis, -home_bump_mm(axis) * axis_home_dir);
  2068. // Move slowly towards the endstop until triggered
  2069. line_to_axis_pos(axis, 2 * home_bump_mm(axis) * axis_home_dir, set_homing_bump_feedrate(axis));
  2070. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2071. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2072. #endif
  2073. #if ENABLED(Z_DUAL_ENDSTOPS)
  2074. if (axis == Z_AXIS) {
  2075. float adj = fabs(z_endstop_adj);
  2076. bool lockZ1;
  2077. if (axis_home_dir > 0) {
  2078. adj = -adj;
  2079. lockZ1 = (z_endstop_adj > 0);
  2080. }
  2081. else
  2082. lockZ1 = (z_endstop_adj < 0);
  2083. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2084. sync_plan_position();
  2085. // Move to the adjusted endstop height
  2086. line_to_axis_pos(axis, adj);
  2087. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2088. stepper.set_homing_flag(false);
  2089. } // Z_AXIS
  2090. #endif
  2091. #if ENABLED(DELTA)
  2092. // retrace by the amount specified in endstop_adj
  2093. if (endstop_adj[axis] * axis_home_dir < 0) {
  2094. sync_plan_position();
  2095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2096. if (DEBUGGING(LEVELING)) {
  2097. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2098. DEBUG_POS("", current_position);
  2099. }
  2100. #endif
  2101. line_to_axis_pos(axis, endstop_adj[axis]);
  2102. }
  2103. #endif
  2104. // Set the axis position to its home position (plus home offsets)
  2105. set_axis_is_at_home(axis);
  2106. SYNC_PLAN_POSITION_KINEMATIC();
  2107. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2108. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2109. #endif
  2110. destination[axis] = current_position[axis];
  2111. endstops.hit_on_purpose(); // clear endstop hit flags
  2112. axis_known_position[axis] = true;
  2113. axis_homed[axis] = true;
  2114. // Put away the Z probe
  2115. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2116. if (axis == Z_AXIS && axis_home_dir < 0) {
  2117. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2118. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2119. #endif
  2120. if (STOW_PROBE()) return;
  2121. }
  2122. #endif
  2123. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2124. if (DEBUGGING(LEVELING)) {
  2125. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2126. SERIAL_ECHOLNPGM(")");
  2127. }
  2128. #endif
  2129. }
  2130. #if ENABLED(FWRETRACT)
  2131. void retract(bool retracting, bool swapping = false) {
  2132. if (retracting == retracted[active_extruder]) return;
  2133. float old_feedrate_mm_m = feedrate_mm_m;
  2134. set_destination_to_current();
  2135. if (retracting) {
  2136. feedrate_mm_m = MMS_TO_MMM(retract_feedrate_mm_s);
  2137. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2138. sync_plan_position_e();
  2139. prepare_move_to_destination();
  2140. if (retract_zlift > 0.01) {
  2141. current_position[Z_AXIS] -= retract_zlift;
  2142. SYNC_PLAN_POSITION_KINEMATIC();
  2143. prepare_move_to_destination();
  2144. }
  2145. }
  2146. else {
  2147. if (retract_zlift > 0.01) {
  2148. current_position[Z_AXIS] += retract_zlift;
  2149. SYNC_PLAN_POSITION_KINEMATIC();
  2150. }
  2151. feedrate_mm_m = MMM_TO_MMS(retract_recover_feedrate_mm_s);
  2152. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2153. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2154. sync_plan_position_e();
  2155. prepare_move_to_destination();
  2156. }
  2157. feedrate_mm_m = old_feedrate_mm_m;
  2158. retracted[active_extruder] = retracting;
  2159. } // retract()
  2160. #endif // FWRETRACT
  2161. #if ENABLED(MIXING_EXTRUDER)
  2162. void normalize_mix() {
  2163. float mix_total = 0.0;
  2164. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2165. float v = mixing_factor[i];
  2166. if (v < 0) v = mixing_factor[i] = 0;
  2167. mix_total += v;
  2168. }
  2169. // Scale all values if they don't add up to ~1.0
  2170. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2171. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2172. float mix_scale = 1.0 / mix_total;
  2173. for (int i = 0; i < MIXING_STEPPERS; i++)
  2174. mixing_factor[i] *= mix_scale;
  2175. }
  2176. }
  2177. #if ENABLED(DIRECT_MIXING_IN_G1)
  2178. // Get mixing parameters from the GCode
  2179. // Factors that are left out are set to 0
  2180. // The total "must" be 1.0 (but it will be normalized)
  2181. void gcode_get_mix() {
  2182. const char* mixing_codes = "ABCDHI";
  2183. for (int i = 0; i < MIXING_STEPPERS; i++)
  2184. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2185. normalize_mix();
  2186. }
  2187. #endif
  2188. #endif
  2189. /**
  2190. * ***************************************************************************
  2191. * ***************************** G-CODE HANDLING *****************************
  2192. * ***************************************************************************
  2193. */
  2194. /**
  2195. * Set XYZE destination and feedrate from the current GCode command
  2196. *
  2197. * - Set destination from included axis codes
  2198. * - Set to current for missing axis codes
  2199. * - Set the feedrate, if included
  2200. */
  2201. void gcode_get_destination() {
  2202. for (int i = 0; i < NUM_AXIS; i++) {
  2203. if (code_seen(axis_codes[i]))
  2204. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2205. else
  2206. destination[i] = current_position[i];
  2207. }
  2208. if (code_seen('F') && code_value_linear_units() > 0.0)
  2209. feedrate_mm_m = code_value_linear_units();
  2210. #if ENABLED(PRINTCOUNTER)
  2211. if (!DEBUGGING(DRYRUN))
  2212. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2213. #endif
  2214. // Get ABCDHI mixing factors
  2215. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2216. gcode_get_mix();
  2217. #endif
  2218. }
  2219. void unknown_command_error() {
  2220. SERIAL_ECHO_START;
  2221. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2222. SERIAL_ECHO(current_command);
  2223. SERIAL_ECHOLNPGM("\"");
  2224. }
  2225. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2226. /**
  2227. * Output a "busy" message at regular intervals
  2228. * while the machine is not accepting commands.
  2229. */
  2230. void host_keepalive() {
  2231. millis_t ms = millis();
  2232. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2233. if (PENDING(ms, next_busy_signal_ms)) return;
  2234. switch (busy_state) {
  2235. case IN_HANDLER:
  2236. case IN_PROCESS:
  2237. SERIAL_ECHO_START;
  2238. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2239. break;
  2240. case PAUSED_FOR_USER:
  2241. SERIAL_ECHO_START;
  2242. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2243. break;
  2244. case PAUSED_FOR_INPUT:
  2245. SERIAL_ECHO_START;
  2246. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2247. break;
  2248. default:
  2249. break;
  2250. }
  2251. }
  2252. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2253. }
  2254. #endif //HOST_KEEPALIVE_FEATURE
  2255. /**
  2256. * G0, G1: Coordinated movement of X Y Z E axes
  2257. */
  2258. inline void gcode_G0_G1() {
  2259. if (IsRunning()) {
  2260. gcode_get_destination(); // For X Y Z E F
  2261. #if ENABLED(FWRETRACT)
  2262. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2263. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2264. // Is this move an attempt to retract or recover?
  2265. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2266. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2267. sync_plan_position_e(); // AND from the planner
  2268. retract(!retracted[active_extruder]);
  2269. return;
  2270. }
  2271. }
  2272. #endif //FWRETRACT
  2273. prepare_move_to_destination();
  2274. }
  2275. }
  2276. /**
  2277. * G2: Clockwise Arc
  2278. * G3: Counterclockwise Arc
  2279. */
  2280. #if ENABLED(ARC_SUPPORT)
  2281. inline void gcode_G2_G3(bool clockwise) {
  2282. if (IsRunning()) {
  2283. #if ENABLED(SF_ARC_FIX)
  2284. bool relative_mode_backup = relative_mode;
  2285. relative_mode = true;
  2286. #endif
  2287. gcode_get_destination();
  2288. #if ENABLED(SF_ARC_FIX)
  2289. relative_mode = relative_mode_backup;
  2290. #endif
  2291. // Center of arc as offset from current_position
  2292. float arc_offset[2] = {
  2293. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2294. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2295. };
  2296. // Send an arc to the planner
  2297. plan_arc(destination, arc_offset, clockwise);
  2298. refresh_cmd_timeout();
  2299. }
  2300. }
  2301. #endif
  2302. /**
  2303. * G4: Dwell S<seconds> or P<milliseconds>
  2304. */
  2305. inline void gcode_G4() {
  2306. millis_t dwell_ms = 0;
  2307. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2308. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2309. stepper.synchronize();
  2310. refresh_cmd_timeout();
  2311. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2312. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2313. while (PENDING(millis(), dwell_ms)) idle();
  2314. }
  2315. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2316. /**
  2317. * Parameters interpreted according to:
  2318. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2319. * However I, J omission is not supported at this point; all
  2320. * parameters can be omitted and default to zero.
  2321. */
  2322. /**
  2323. * G5: Cubic B-spline
  2324. */
  2325. inline void gcode_G5() {
  2326. if (IsRunning()) {
  2327. gcode_get_destination();
  2328. float offset[] = {
  2329. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2330. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2331. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2332. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2333. };
  2334. plan_cubic_move(offset);
  2335. }
  2336. }
  2337. #endif // BEZIER_CURVE_SUPPORT
  2338. #if ENABLED(FWRETRACT)
  2339. /**
  2340. * G10 - Retract filament according to settings of M207
  2341. * G11 - Recover filament according to settings of M208
  2342. */
  2343. inline void gcode_G10_G11(bool doRetract=false) {
  2344. #if EXTRUDERS > 1
  2345. if (doRetract) {
  2346. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2347. }
  2348. #endif
  2349. retract(doRetract
  2350. #if EXTRUDERS > 1
  2351. , retracted_swap[active_extruder]
  2352. #endif
  2353. );
  2354. }
  2355. #endif //FWRETRACT
  2356. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2357. /**
  2358. * G12: Clean the nozzle
  2359. */
  2360. inline void gcode_G12() {
  2361. // Don't allow nozzle cleaning without homing first
  2362. if (axis_unhomed_error(true, true, true)) { return; }
  2363. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2364. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2365. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2366. Nozzle::clean(pattern, strokes, objects);
  2367. }
  2368. #endif
  2369. #if ENABLED(INCH_MODE_SUPPORT)
  2370. /**
  2371. * G20: Set input mode to inches
  2372. */
  2373. inline void gcode_G20() {
  2374. set_input_linear_units(LINEARUNIT_INCH);
  2375. }
  2376. /**
  2377. * G21: Set input mode to millimeters
  2378. */
  2379. inline void gcode_G21() {
  2380. set_input_linear_units(LINEARUNIT_MM);
  2381. }
  2382. #endif
  2383. #if ENABLED(NOZZLE_PARK_FEATURE)
  2384. /**
  2385. * G27: Park the nozzle
  2386. */
  2387. inline void gcode_G27() {
  2388. // Don't allow nozzle parking without homing first
  2389. if (axis_unhomed_error(true, true, true)) { return; }
  2390. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2391. Nozzle::park(z_action);
  2392. }
  2393. #endif // NOZZLE_PARK_FEATURE
  2394. #if ENABLED(QUICK_HOME)
  2395. static void quick_home_xy() {
  2396. // Pretend the current position is 0,0
  2397. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2398. sync_plan_position();
  2399. #if ENABLED(DUAL_X_CARRIAGE)
  2400. int x_axis_home_dir = x_home_dir(active_extruder);
  2401. extruder_duplication_enabled = false;
  2402. #else
  2403. int x_axis_home_dir = home_dir(X_AXIS);
  2404. #endif
  2405. float mlx = max_length(X_AXIS),
  2406. mly = max_length(Y_AXIS),
  2407. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2408. fr_mm_m = min(homing_feedrate_mm_m[X_AXIS], homing_feedrate_mm_m[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2409. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_m);
  2410. endstops.hit_on_purpose(); // clear endstop hit flags
  2411. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2412. }
  2413. #endif // QUICK_HOME
  2414. /**
  2415. * G28: Home all axes according to settings
  2416. *
  2417. * Parameters
  2418. *
  2419. * None Home to all axes with no parameters.
  2420. * With QUICK_HOME enabled XY will home together, then Z.
  2421. *
  2422. * Cartesian parameters
  2423. *
  2424. * X Home to the X endstop
  2425. * Y Home to the Y endstop
  2426. * Z Home to the Z endstop
  2427. *
  2428. */
  2429. inline void gcode_G28() {
  2430. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2431. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2432. #endif
  2433. // Wait for planner moves to finish!
  2434. stepper.synchronize();
  2435. // For auto bed leveling, clear the level matrix
  2436. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2437. planner.bed_level_matrix.set_to_identity();
  2438. #if ENABLED(DELTA)
  2439. reset_bed_level();
  2440. #endif
  2441. #endif
  2442. /**
  2443. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2444. * on again when homing all axis
  2445. */
  2446. #if ENABLED(MESH_BED_LEVELING)
  2447. float pre_home_z = MESH_HOME_SEARCH_Z;
  2448. if (mbl.active()) {
  2449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2450. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2451. #endif
  2452. // Save known Z position if already homed
  2453. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2454. pre_home_z = current_position[Z_AXIS];
  2455. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2456. }
  2457. mbl.set_active(false);
  2458. current_position[Z_AXIS] = pre_home_z;
  2459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2460. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2461. #endif
  2462. }
  2463. #endif
  2464. setup_for_endstop_or_probe_move();
  2465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2466. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2467. #endif
  2468. endstops.enable(true); // Enable endstops for next homing move
  2469. #if ENABLED(DELTA)
  2470. /**
  2471. * A delta can only safely home all axes at the same time
  2472. */
  2473. // Pretend the current position is 0,0,0
  2474. // This is like quick_home_xy() but for 3 towers.
  2475. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2476. sync_plan_position();
  2477. // Move all carriages up together until the first endstop is hit.
  2478. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 3.0 * (Z_MAX_LENGTH);
  2479. feedrate_mm_m = 1.732 * homing_feedrate_mm_m[X_AXIS];
  2480. line_to_current_position();
  2481. stepper.synchronize();
  2482. endstops.hit_on_purpose(); // clear endstop hit flags
  2483. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2484. // take care of back off and rehome. Now one carriage is at the top.
  2485. HOMEAXIS(X);
  2486. HOMEAXIS(Y);
  2487. HOMEAXIS(Z);
  2488. SYNC_PLAN_POSITION_KINEMATIC();
  2489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2490. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2491. #endif
  2492. #else // NOT DELTA
  2493. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2494. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2495. set_destination_to_current();
  2496. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2497. if (home_all_axis || homeZ) {
  2498. HOMEAXIS(Z);
  2499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2500. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2501. #endif
  2502. }
  2503. #else
  2504. if (home_all_axis || homeX || homeY) {
  2505. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2506. destination[Z_AXIS] = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING;
  2507. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2509. if (DEBUGGING(LEVELING)) {
  2510. SERIAL_ECHOPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2511. SERIAL_EOL;
  2512. }
  2513. #endif
  2514. do_blocking_move_to_z(destination[Z_AXIS]);
  2515. }
  2516. }
  2517. #endif
  2518. #if ENABLED(QUICK_HOME)
  2519. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2520. #endif
  2521. #if ENABLED(HOME_Y_BEFORE_X)
  2522. // Home Y
  2523. if (home_all_axis || homeY) {
  2524. HOMEAXIS(Y);
  2525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2526. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2527. #endif
  2528. }
  2529. #endif
  2530. // Home X
  2531. if (home_all_axis || homeX) {
  2532. #if ENABLED(DUAL_X_CARRIAGE)
  2533. int tmp_extruder = active_extruder;
  2534. extruder_duplication_enabled = false;
  2535. active_extruder = !active_extruder;
  2536. HOMEAXIS(X);
  2537. inactive_extruder_x_pos = current_position[X_AXIS];
  2538. active_extruder = tmp_extruder;
  2539. HOMEAXIS(X);
  2540. // reset state used by the different modes
  2541. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2542. delayed_move_time = 0;
  2543. active_extruder_parked = true;
  2544. #else
  2545. HOMEAXIS(X);
  2546. #endif
  2547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2548. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2549. #endif
  2550. }
  2551. #if DISABLED(HOME_Y_BEFORE_X)
  2552. // Home Y
  2553. if (home_all_axis || homeY) {
  2554. HOMEAXIS(Y);
  2555. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2556. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2557. #endif
  2558. }
  2559. #endif
  2560. // Home Z last if homing towards the bed
  2561. #if Z_HOME_DIR < 0
  2562. if (home_all_axis || homeZ) {
  2563. #if ENABLED(Z_SAFE_HOMING)
  2564. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2565. if (DEBUGGING(LEVELING)) {
  2566. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2567. }
  2568. #endif
  2569. if (home_all_axis) {
  2570. /**
  2571. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2572. * No need to move Z any more as this height should already be safe
  2573. * enough to reach Z_SAFE_HOMING XY positions.
  2574. * Just make sure the planner is in sync.
  2575. */
  2576. SYNC_PLAN_POSITION_KINEMATIC();
  2577. /**
  2578. * Set the Z probe (or just the nozzle) destination to the safe
  2579. * homing point
  2580. */
  2581. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2582. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2583. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2585. if (DEBUGGING(LEVELING)) {
  2586. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2587. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2588. }
  2589. #endif
  2590. // Move in the XY plane
  2591. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2592. }
  2593. // Let's see if X and Y are homed
  2594. if (axis_unhomed_error(true, true, false)) return;
  2595. /**
  2596. * Make sure the Z probe is within the physical limits
  2597. * NOTE: This doesn't necessarily ensure the Z probe is also
  2598. * within the bed!
  2599. */
  2600. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2601. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2602. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2603. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2604. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2605. // Home the Z axis
  2606. HOMEAXIS(Z);
  2607. }
  2608. else {
  2609. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2610. SERIAL_ECHO_START;
  2611. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2612. }
  2613. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2614. if (DEBUGGING(LEVELING)) {
  2615. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2616. }
  2617. #endif
  2618. #else // !Z_SAFE_HOMING
  2619. HOMEAXIS(Z);
  2620. #endif // !Z_SAFE_HOMING
  2621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2622. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2623. #endif
  2624. } // home_all_axis || homeZ
  2625. #endif // Z_HOME_DIR < 0
  2626. SYNC_PLAN_POSITION_KINEMATIC();
  2627. #endif // !DELTA (gcode_G28)
  2628. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2629. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2630. #endif
  2631. endstops.not_homing();
  2632. endstops.hit_on_purpose(); // clear endstop hit flags
  2633. // Enable mesh leveling again
  2634. #if ENABLED(MESH_BED_LEVELING)
  2635. if (mbl.has_mesh()) {
  2636. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2637. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2638. #endif
  2639. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2641. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2642. #endif
  2643. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2644. #if Z_HOME_DIR > 0
  2645. + Z_MAX_POS
  2646. #endif
  2647. ;
  2648. SYNC_PLAN_POSITION_KINEMATIC();
  2649. mbl.set_active(true);
  2650. #if ENABLED(MESH_G28_REST_ORIGIN)
  2651. current_position[Z_AXIS] = 0.0;
  2652. set_destination_to_current();
  2653. feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
  2654. line_to_destination();
  2655. stepper.synchronize();
  2656. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2657. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2658. #endif
  2659. #else
  2660. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2661. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2662. #if Z_HOME_DIR > 0
  2663. + Z_MAX_POS
  2664. #endif
  2665. ;
  2666. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2667. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2668. #endif
  2669. #endif
  2670. }
  2671. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2672. current_position[Z_AXIS] = pre_home_z;
  2673. SYNC_PLAN_POSITION_KINEMATIC();
  2674. mbl.set_active(true);
  2675. current_position[Z_AXIS] = pre_home_z -
  2676. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2677. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2678. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2679. #endif
  2680. }
  2681. }
  2682. #endif
  2683. #if ENABLED(DELTA)
  2684. // move to a height where we can use the full xy-area
  2685. do_blocking_move_to_z(delta_clip_start_height);
  2686. #endif
  2687. clean_up_after_endstop_or_probe_move();
  2688. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2689. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2690. #endif
  2691. report_current_position();
  2692. }
  2693. #if HAS_PROBING_PROCEDURE
  2694. void out_of_range_error(const char* p_edge) {
  2695. SERIAL_PROTOCOLPGM("?Probe ");
  2696. serialprintPGM(p_edge);
  2697. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2698. }
  2699. #endif
  2700. #if ENABLED(MESH_BED_LEVELING)
  2701. inline void _mbl_goto_xy(float x, float y) {
  2702. float old_feedrate_mm_m = feedrate_mm_m;
  2703. feedrate_mm_m = homing_feedrate_mm_m[X_AXIS];
  2704. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2705. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2706. + Z_RAISE_BETWEEN_PROBINGS
  2707. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2708. + MIN_Z_HEIGHT_FOR_HOMING
  2709. #endif
  2710. ;
  2711. line_to_current_position();
  2712. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2713. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2714. line_to_current_position();
  2715. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2716. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2717. line_to_current_position();
  2718. #endif
  2719. feedrate_mm_m = old_feedrate_mm_m;
  2720. stepper.synchronize();
  2721. }
  2722. /**
  2723. * G29: Mesh-based Z probe, probes a grid and produces a
  2724. * mesh to compensate for variable bed height
  2725. *
  2726. * Parameters With MESH_BED_LEVELING:
  2727. *
  2728. * S0 Produce a mesh report
  2729. * S1 Start probing mesh points
  2730. * S2 Probe the next mesh point
  2731. * S3 Xn Yn Zn.nn Manually modify a single point
  2732. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2733. * S5 Reset and disable mesh
  2734. *
  2735. * The S0 report the points as below
  2736. *
  2737. * +----> X-axis 1-n
  2738. * |
  2739. * |
  2740. * v Y-axis 1-n
  2741. *
  2742. */
  2743. inline void gcode_G29() {
  2744. static int probe_point = -1;
  2745. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2746. if (state < 0 || state > 5) {
  2747. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2748. return;
  2749. }
  2750. int8_t px, py;
  2751. switch (state) {
  2752. case MeshReport:
  2753. if (mbl.has_mesh()) {
  2754. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2755. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2756. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2757. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2758. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2759. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2760. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2761. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2762. SERIAL_PROTOCOLPGM(" ");
  2763. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2764. }
  2765. SERIAL_EOL;
  2766. }
  2767. }
  2768. else
  2769. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2770. break;
  2771. case MeshStart:
  2772. mbl.reset();
  2773. probe_point = 0;
  2774. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2775. break;
  2776. case MeshNext:
  2777. if (probe_point < 0) {
  2778. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2779. return;
  2780. }
  2781. // For each G29 S2...
  2782. if (probe_point == 0) {
  2783. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2784. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2785. #if Z_HOME_DIR > 0
  2786. + Z_MAX_POS
  2787. #endif
  2788. ;
  2789. SYNC_PLAN_POSITION_KINEMATIC();
  2790. }
  2791. else {
  2792. // For G29 S2 after adjusting Z.
  2793. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2794. }
  2795. // If there's another point to sample, move there with optional lift.
  2796. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2797. mbl.zigzag(probe_point, px, py);
  2798. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2799. probe_point++;
  2800. }
  2801. else {
  2802. // One last "return to the bed" (as originally coded) at completion
  2803. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2804. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2805. + Z_RAISE_BETWEEN_PROBINGS
  2806. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2807. + MIN_Z_HEIGHT_FOR_HOMING
  2808. #endif
  2809. ;
  2810. line_to_current_position();
  2811. stepper.synchronize();
  2812. // After recording the last point, activate the mbl and home
  2813. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2814. probe_point = -1;
  2815. mbl.set_has_mesh(true);
  2816. enqueue_and_echo_commands_P(PSTR("G28"));
  2817. }
  2818. break;
  2819. case MeshSet:
  2820. if (code_seen('X')) {
  2821. px = code_value_int() - 1;
  2822. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2823. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2824. return;
  2825. }
  2826. }
  2827. else {
  2828. SERIAL_PROTOCOLLNPGM("X not entered.");
  2829. return;
  2830. }
  2831. if (code_seen('Y')) {
  2832. py = code_value_int() - 1;
  2833. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2834. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2835. return;
  2836. }
  2837. }
  2838. else {
  2839. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2840. return;
  2841. }
  2842. if (code_seen('Z')) {
  2843. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2844. }
  2845. else {
  2846. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2847. return;
  2848. }
  2849. break;
  2850. case MeshSetZOffset:
  2851. if (code_seen('Z')) {
  2852. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2853. }
  2854. else {
  2855. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2856. return;
  2857. }
  2858. break;
  2859. case MeshReset:
  2860. if (mbl.active()) {
  2861. current_position[Z_AXIS] +=
  2862. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2863. mbl.reset();
  2864. SYNC_PLAN_POSITION_KINEMATIC();
  2865. }
  2866. else
  2867. mbl.reset();
  2868. } // switch(state)
  2869. report_current_position();
  2870. }
  2871. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2872. /**
  2873. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2874. * Will fail if the printer has not been homed with G28.
  2875. *
  2876. * Enhanced G29 Auto Bed Leveling Probe Routine
  2877. *
  2878. * Parameters With AUTO_BED_LEVELING_GRID:
  2879. *
  2880. * P Set the size of the grid that will be probed (P x P points).
  2881. * Not supported by non-linear delta printer bed leveling.
  2882. * Example: "G29 P4"
  2883. *
  2884. * S Set the XY travel speed between probe points (in units/min)
  2885. *
  2886. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2887. * or clean the rotation Matrix. Useful to check the topology
  2888. * after a first run of G29.
  2889. *
  2890. * V Set the verbose level (0-4). Example: "G29 V3"
  2891. *
  2892. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2893. * This is useful for manual bed leveling and finding flaws in the bed (to
  2894. * assist with part placement).
  2895. * Not supported by non-linear delta printer bed leveling.
  2896. *
  2897. * F Set the Front limit of the probing grid
  2898. * B Set the Back limit of the probing grid
  2899. * L Set the Left limit of the probing grid
  2900. * R Set the Right limit of the probing grid
  2901. *
  2902. * Global Parameters:
  2903. *
  2904. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2905. * Include "E" to engage/disengage the Z probe for each sample.
  2906. * There's no extra effect if you have a fixed Z probe.
  2907. * Usage: "G29 E" or "G29 e"
  2908. *
  2909. */
  2910. inline void gcode_G29() {
  2911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2912. if (DEBUGGING(LEVELING)) {
  2913. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2914. DEBUG_POS("", current_position);
  2915. }
  2916. #endif
  2917. // Don't allow auto-leveling without homing first
  2918. if (axis_unhomed_error(true, true, true)) return;
  2919. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2920. if (verbose_level < 0 || verbose_level > 4) {
  2921. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2922. return;
  2923. }
  2924. bool dryrun = code_seen('D');
  2925. bool stow_probe_after_each = code_seen('E');
  2926. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2927. #if DISABLED(DELTA)
  2928. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2929. #endif
  2930. if (verbose_level > 0) {
  2931. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2932. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2933. }
  2934. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2935. #if DISABLED(DELTA)
  2936. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2937. if (auto_bed_leveling_grid_points < 2) {
  2938. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2939. return;
  2940. }
  2941. #endif
  2942. xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2943. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2944. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2945. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2946. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2947. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2948. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2949. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2950. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2951. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2952. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2953. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2954. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2955. if (left_out || right_out || front_out || back_out) {
  2956. if (left_out) {
  2957. out_of_range_error(PSTR("(L)eft"));
  2958. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2959. }
  2960. if (right_out) {
  2961. out_of_range_error(PSTR("(R)ight"));
  2962. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2963. }
  2964. if (front_out) {
  2965. out_of_range_error(PSTR("(F)ront"));
  2966. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2967. }
  2968. if (back_out) {
  2969. out_of_range_error(PSTR("(B)ack"));
  2970. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2971. }
  2972. return;
  2973. }
  2974. #endif // AUTO_BED_LEVELING_GRID
  2975. if (!dryrun) {
  2976. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2977. if (DEBUGGING(LEVELING)) {
  2978. vector_3 corrected_position = planner.adjusted_position();
  2979. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2980. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2981. }
  2982. #endif
  2983. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2984. planner.bed_level_matrix.set_to_identity();
  2985. #if ENABLED(DELTA)
  2986. reset_bed_level();
  2987. #else //!DELTA
  2988. //vector_3 corrected_position = planner.adjusted_position();
  2989. //corrected_position.debug("position before G29");
  2990. vector_3 uncorrected_position = planner.adjusted_position();
  2991. //uncorrected_position.debug("position during G29");
  2992. current_position[X_AXIS] = uncorrected_position.x;
  2993. current_position[Y_AXIS] = uncorrected_position.y;
  2994. current_position[Z_AXIS] = uncorrected_position.z;
  2995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2996. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2997. #endif
  2998. SYNC_PLAN_POSITION_KINEMATIC();
  2999. #endif // !DELTA
  3000. }
  3001. stepper.synchronize();
  3002. setup_for_endstop_or_probe_move();
  3003. // Deploy the probe. Probe will raise if needed.
  3004. if (DEPLOY_PROBE()) return;
  3005. bed_leveling_in_progress = true;
  3006. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3007. // probe at the points of a lattice grid
  3008. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  3009. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  3010. #if ENABLED(DELTA)
  3011. delta_grid_spacing[0] = xGridSpacing;
  3012. delta_grid_spacing[1] = yGridSpacing;
  3013. float zoffset = zprobe_zoffset;
  3014. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3015. #else // !DELTA
  3016. /**
  3017. * solve the plane equation ax + by + d = z
  3018. * A is the matrix with rows [x y 1] for all the probed points
  3019. * B is the vector of the Z positions
  3020. * the normal vector to the plane is formed by the coefficients of the
  3021. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3022. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3023. */
  3024. int abl2 = sq(auto_bed_leveling_grid_points);
  3025. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3026. eqnBVector[abl2], // "B" vector of Z points
  3027. mean = 0.0;
  3028. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  3029. #endif // !DELTA
  3030. int probePointCounter = 0;
  3031. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3032. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  3033. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  3034. int xStart, xStop, xInc;
  3035. if (zig) {
  3036. xStart = 0;
  3037. xStop = auto_bed_leveling_grid_points;
  3038. xInc = 1;
  3039. }
  3040. else {
  3041. xStart = auto_bed_leveling_grid_points - 1;
  3042. xStop = -1;
  3043. xInc = -1;
  3044. }
  3045. zig = !zig;
  3046. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3047. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  3048. #if ENABLED(DELTA)
  3049. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  3050. float distance_from_center = HYPOT(xProbe, yProbe);
  3051. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  3052. #endif //DELTA
  3053. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3054. #if DISABLED(DELTA)
  3055. mean += measured_z;
  3056. eqnBVector[probePointCounter] = measured_z;
  3057. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3058. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3059. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3060. indexIntoAB[xCount][yCount] = probePointCounter;
  3061. #else
  3062. bed_level[xCount][yCount] = measured_z + zoffset;
  3063. #endif
  3064. probePointCounter++;
  3065. idle();
  3066. } //xProbe
  3067. } //yProbe
  3068. #else // !AUTO_BED_LEVELING_GRID
  3069. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3070. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3071. #endif
  3072. // Probe at 3 arbitrary points
  3073. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3074. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3075. stow_probe_after_each, verbose_level),
  3076. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3077. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3078. stow_probe_after_each, verbose_level),
  3079. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3080. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3081. stow_probe_after_each, verbose_level);
  3082. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3083. #endif // !AUTO_BED_LEVELING_GRID
  3084. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3085. if (STOW_PROBE()) return;
  3086. // Restore state after probing
  3087. clean_up_after_endstop_or_probe_move();
  3088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3089. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3090. #endif
  3091. // Calculate leveling, print reports, correct the position
  3092. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3093. #if ENABLED(DELTA)
  3094. if (!dryrun) extrapolate_unprobed_bed_level();
  3095. print_bed_level();
  3096. #else // !DELTA
  3097. // solve lsq problem
  3098. double plane_equation_coefficients[3];
  3099. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3100. mean /= abl2;
  3101. if (verbose_level) {
  3102. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3103. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3104. SERIAL_PROTOCOLPGM(" b: ");
  3105. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3106. SERIAL_PROTOCOLPGM(" d: ");
  3107. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3108. SERIAL_EOL;
  3109. if (verbose_level > 2) {
  3110. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3111. SERIAL_PROTOCOL_F(mean, 8);
  3112. SERIAL_EOL;
  3113. }
  3114. }
  3115. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3116. // Show the Topography map if enabled
  3117. if (do_topography_map) {
  3118. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3119. " +--- BACK --+\n"
  3120. " | |\n"
  3121. " L | (+) | R\n"
  3122. " E | | I\n"
  3123. " F | (-) N (+) | G\n"
  3124. " T | | H\n"
  3125. " | (-) | T\n"
  3126. " | |\n"
  3127. " O-- FRONT --+\n"
  3128. " (0,0)");
  3129. float min_diff = 999;
  3130. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3131. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3132. int ind = indexIntoAB[xx][yy];
  3133. float diff = eqnBVector[ind] - mean;
  3134. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3135. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3136. z_tmp = 0;
  3137. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3138. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3139. if (diff >= 0.0)
  3140. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3141. else
  3142. SERIAL_PROTOCOLCHAR(' ');
  3143. SERIAL_PROTOCOL_F(diff, 5);
  3144. } // xx
  3145. SERIAL_EOL;
  3146. } // yy
  3147. SERIAL_EOL;
  3148. if (verbose_level > 3) {
  3149. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3150. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3151. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3152. int ind = indexIntoAB[xx][yy];
  3153. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3154. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3155. z_tmp = 0;
  3156. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3157. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3158. if (diff >= 0.0)
  3159. SERIAL_PROTOCOLPGM(" +");
  3160. // Include + for column alignment
  3161. else
  3162. SERIAL_PROTOCOLCHAR(' ');
  3163. SERIAL_PROTOCOL_F(diff, 5);
  3164. } // xx
  3165. SERIAL_EOL;
  3166. } // yy
  3167. SERIAL_EOL;
  3168. }
  3169. } //do_topography_map
  3170. #endif //!DELTA
  3171. #endif // AUTO_BED_LEVELING_GRID
  3172. #if DISABLED(DELTA)
  3173. if (verbose_level > 0)
  3174. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3175. if (!dryrun) {
  3176. /**
  3177. * Correct the Z height difference from Z probe position and nozzle tip position.
  3178. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3179. * from the nozzle. When the bed is uneven, this height must be corrected.
  3180. */
  3181. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3182. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3183. z_tmp = current_position[Z_AXIS],
  3184. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3185. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3186. if (DEBUGGING(LEVELING)) {
  3187. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3188. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3189. SERIAL_EOL;
  3190. }
  3191. #endif
  3192. // Apply the correction sending the Z probe offset
  3193. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3194. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3195. if (DEBUGGING(LEVELING)) {
  3196. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3197. SERIAL_EOL;
  3198. }
  3199. #endif
  3200. // Adjust the current Z and send it to the planner.
  3201. current_position[Z_AXIS] += z_tmp - stepper_z;
  3202. SYNC_PLAN_POSITION_KINEMATIC();
  3203. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3204. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3205. #endif
  3206. }
  3207. #endif // !DELTA
  3208. #ifdef Z_PROBE_END_SCRIPT
  3209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3210. if (DEBUGGING(LEVELING)) {
  3211. SERIAL_ECHOPGM("Z Probe End Script: ");
  3212. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3213. }
  3214. #endif
  3215. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3216. stepper.synchronize();
  3217. #endif
  3218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3219. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3220. #endif
  3221. bed_leveling_in_progress = false;
  3222. report_current_position();
  3223. KEEPALIVE_STATE(IN_HANDLER);
  3224. }
  3225. #endif //AUTO_BED_LEVELING_FEATURE
  3226. #if HAS_BED_PROBE
  3227. /**
  3228. * G30: Do a single Z probe at the current XY
  3229. */
  3230. inline void gcode_G30() {
  3231. setup_for_endstop_or_probe_move();
  3232. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3233. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3234. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3235. true, 1);
  3236. SERIAL_PROTOCOLPGM("Bed X: ");
  3237. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3238. SERIAL_PROTOCOLPGM(" Y: ");
  3239. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3240. SERIAL_PROTOCOLPGM(" Z: ");
  3241. SERIAL_PROTOCOL(measured_z + 0.0001);
  3242. SERIAL_EOL;
  3243. clean_up_after_endstop_or_probe_move();
  3244. report_current_position();
  3245. }
  3246. #if ENABLED(Z_PROBE_SLED)
  3247. /**
  3248. * G31: Deploy the Z probe
  3249. */
  3250. inline void gcode_G31() { DEPLOY_PROBE(); }
  3251. /**
  3252. * G32: Stow the Z probe
  3253. */
  3254. inline void gcode_G32() { STOW_PROBE(); }
  3255. #endif // Z_PROBE_SLED
  3256. #endif // HAS_BED_PROBE
  3257. /**
  3258. * G92: Set current position to given X Y Z E
  3259. */
  3260. inline void gcode_G92() {
  3261. bool didE = code_seen('E');
  3262. if (!didE) stepper.synchronize();
  3263. bool didXYZ = false;
  3264. for (int i = 0; i < NUM_AXIS; i++) {
  3265. if (code_seen(axis_codes[i])) {
  3266. float p = current_position[i],
  3267. v = code_value_axis_units(i);
  3268. current_position[i] = v;
  3269. if (i != E_AXIS) {
  3270. position_shift[i] += v - p; // Offset the coordinate space
  3271. update_software_endstops((AxisEnum)i);
  3272. didXYZ = true;
  3273. }
  3274. }
  3275. }
  3276. if (didXYZ)
  3277. SYNC_PLAN_POSITION_KINEMATIC();
  3278. else if (didE)
  3279. sync_plan_position_e();
  3280. }
  3281. #if ENABLED(ULTIPANEL)
  3282. /**
  3283. * M0: Unconditional stop - Wait for user button press on LCD
  3284. * M1: Conditional stop - Wait for user button press on LCD
  3285. */
  3286. inline void gcode_M0_M1() {
  3287. char* args = current_command_args;
  3288. millis_t codenum = 0;
  3289. bool hasP = false, hasS = false;
  3290. if (code_seen('P')) {
  3291. codenum = code_value_millis(); // milliseconds to wait
  3292. hasP = codenum > 0;
  3293. }
  3294. if (code_seen('S')) {
  3295. codenum = code_value_millis_from_seconds(); // seconds to wait
  3296. hasS = codenum > 0;
  3297. }
  3298. if (!hasP && !hasS && *args != '\0')
  3299. lcd_setstatus(args, true);
  3300. else {
  3301. LCD_MESSAGEPGM(MSG_USERWAIT);
  3302. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3303. dontExpireStatus();
  3304. #endif
  3305. }
  3306. lcd_ignore_click();
  3307. stepper.synchronize();
  3308. refresh_cmd_timeout();
  3309. if (codenum > 0) {
  3310. codenum += previous_cmd_ms; // wait until this time for a click
  3311. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3312. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3313. KEEPALIVE_STATE(IN_HANDLER);
  3314. lcd_ignore_click(false);
  3315. }
  3316. else {
  3317. if (!lcd_detected()) return;
  3318. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3319. while (!lcd_clicked()) idle();
  3320. KEEPALIVE_STATE(IN_HANDLER);
  3321. }
  3322. if (IS_SD_PRINTING)
  3323. LCD_MESSAGEPGM(MSG_RESUMING);
  3324. else
  3325. LCD_MESSAGEPGM(WELCOME_MSG);
  3326. }
  3327. #endif // ULTIPANEL
  3328. /**
  3329. * M17: Enable power on all stepper motors
  3330. */
  3331. inline void gcode_M17() {
  3332. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3333. enable_all_steppers();
  3334. }
  3335. #if ENABLED(SDSUPPORT)
  3336. /**
  3337. * M20: List SD card to serial output
  3338. */
  3339. inline void gcode_M20() {
  3340. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3341. card.ls();
  3342. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3343. }
  3344. /**
  3345. * M21: Init SD Card
  3346. */
  3347. inline void gcode_M21() {
  3348. card.initsd();
  3349. }
  3350. /**
  3351. * M22: Release SD Card
  3352. */
  3353. inline void gcode_M22() {
  3354. card.release();
  3355. }
  3356. /**
  3357. * M23: Open a file
  3358. */
  3359. inline void gcode_M23() {
  3360. card.openFile(current_command_args, true);
  3361. }
  3362. /**
  3363. * M24: Start SD Print
  3364. */
  3365. inline void gcode_M24() {
  3366. card.startFileprint();
  3367. print_job_timer.start();
  3368. }
  3369. /**
  3370. * M25: Pause SD Print
  3371. */
  3372. inline void gcode_M25() {
  3373. card.pauseSDPrint();
  3374. }
  3375. /**
  3376. * M26: Set SD Card file index
  3377. */
  3378. inline void gcode_M26() {
  3379. if (card.cardOK && code_seen('S'))
  3380. card.setIndex(code_value_long());
  3381. }
  3382. /**
  3383. * M27: Get SD Card status
  3384. */
  3385. inline void gcode_M27() {
  3386. card.getStatus();
  3387. }
  3388. /**
  3389. * M28: Start SD Write
  3390. */
  3391. inline void gcode_M28() {
  3392. card.openFile(current_command_args, false);
  3393. }
  3394. /**
  3395. * M29: Stop SD Write
  3396. * Processed in write to file routine above
  3397. */
  3398. inline void gcode_M29() {
  3399. // card.saving = false;
  3400. }
  3401. /**
  3402. * M30 <filename>: Delete SD Card file
  3403. */
  3404. inline void gcode_M30() {
  3405. if (card.cardOK) {
  3406. card.closefile();
  3407. card.removeFile(current_command_args);
  3408. }
  3409. }
  3410. #endif //SDSUPPORT
  3411. /**
  3412. * M31: Get the time since the start of SD Print (or last M109)
  3413. */
  3414. inline void gcode_M31() {
  3415. millis_t t = print_job_timer.duration();
  3416. int d = int(t / 60 / 60 / 24),
  3417. h = int(t / 60 / 60) % 60,
  3418. m = int(t / 60) % 60,
  3419. s = int(t % 60);
  3420. char time[18]; // 123456789012345678
  3421. if (d)
  3422. sprintf_P(time, PSTR("%id %ih %im %is"), d, h, m, s); // 99d 23h 59m 59s
  3423. else
  3424. sprintf_P(time, PSTR("%ih %im %is"), h, m, s); // 23h 59m 59s
  3425. lcd_setstatus(time);
  3426. SERIAL_ECHO_START;
  3427. SERIAL_ECHOPGM(MSG_PRINT_TIME " ");
  3428. SERIAL_ECHOLN(time);
  3429. thermalManager.autotempShutdown();
  3430. }
  3431. #if ENABLED(SDSUPPORT)
  3432. /**
  3433. * M32: Select file and start SD Print
  3434. */
  3435. inline void gcode_M32() {
  3436. if (card.sdprinting)
  3437. stepper.synchronize();
  3438. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3439. if (!namestartpos)
  3440. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3441. else
  3442. namestartpos++; //to skip the '!'
  3443. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3444. if (card.cardOK) {
  3445. card.openFile(namestartpos, true, call_procedure);
  3446. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3447. card.setIndex(code_value_long());
  3448. card.startFileprint();
  3449. // Procedure calls count as normal print time.
  3450. if (!call_procedure) print_job_timer.start();
  3451. }
  3452. }
  3453. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3454. /**
  3455. * M33: Get the long full path of a file or folder
  3456. *
  3457. * Parameters:
  3458. * <dospath> Case-insensitive DOS-style path to a file or folder
  3459. *
  3460. * Example:
  3461. * M33 miscel~1/armchair/armcha~1.gco
  3462. *
  3463. * Output:
  3464. * /Miscellaneous/Armchair/Armchair.gcode
  3465. */
  3466. inline void gcode_M33() {
  3467. card.printLongPath(current_command_args);
  3468. }
  3469. #endif
  3470. /**
  3471. * M928: Start SD Write
  3472. */
  3473. inline void gcode_M928() {
  3474. card.openLogFile(current_command_args);
  3475. }
  3476. #endif // SDSUPPORT
  3477. /**
  3478. * M42: Change pin status via GCode
  3479. *
  3480. * P<pin> Pin number (LED if omitted)
  3481. * S<byte> Pin status from 0 - 255
  3482. */
  3483. inline void gcode_M42() {
  3484. if (!code_seen('S')) return;
  3485. int pin_status = code_value_int();
  3486. if (pin_status < 0 || pin_status > 255) return;
  3487. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3488. if (pin_number < 0) return;
  3489. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3490. if (pin_number == sensitive_pins[i]) return;
  3491. pinMode(pin_number, OUTPUT);
  3492. digitalWrite(pin_number, pin_status);
  3493. analogWrite(pin_number, pin_status);
  3494. #if FAN_COUNT > 0
  3495. switch (pin_number) {
  3496. #if HAS_FAN0
  3497. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3498. #endif
  3499. #if HAS_FAN1
  3500. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3501. #endif
  3502. #if HAS_FAN2
  3503. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3504. #endif
  3505. }
  3506. #endif
  3507. }
  3508. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3509. /**
  3510. * M48: Z probe repeatability measurement function.
  3511. *
  3512. * Usage:
  3513. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3514. * P = Number of sampled points (4-50, default 10)
  3515. * X = Sample X position
  3516. * Y = Sample Y position
  3517. * V = Verbose level (0-4, default=1)
  3518. * E = Engage Z probe for each reading
  3519. * L = Number of legs of movement before probe
  3520. * S = Schizoid (Or Star if you prefer)
  3521. *
  3522. * This function assumes the bed has been homed. Specifically, that a G28 command
  3523. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3524. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3525. * regenerated.
  3526. */
  3527. inline void gcode_M48() {
  3528. if (axis_unhomed_error(true, true, true)) return;
  3529. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3530. if (verbose_level < 0 || verbose_level > 4) {
  3531. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3532. return;
  3533. }
  3534. if (verbose_level > 0)
  3535. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3536. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3537. if (n_samples < 4 || n_samples > 50) {
  3538. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3539. return;
  3540. }
  3541. float X_current = current_position[X_AXIS],
  3542. Y_current = current_position[Y_AXIS];
  3543. bool stow_probe_after_each = code_seen('E');
  3544. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3545. #if DISABLED(DELTA)
  3546. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3547. out_of_range_error(PSTR("X"));
  3548. return;
  3549. }
  3550. #endif
  3551. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3552. #if DISABLED(DELTA)
  3553. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3554. out_of_range_error(PSTR("Y"));
  3555. return;
  3556. }
  3557. #else
  3558. if (HYPOT(X_probe_location, Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3559. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3560. return;
  3561. }
  3562. #endif
  3563. bool seen_L = code_seen('L');
  3564. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3565. if (n_legs > 15) {
  3566. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3567. return;
  3568. }
  3569. if (n_legs == 1) n_legs = 2;
  3570. bool schizoid_flag = code_seen('S');
  3571. if (schizoid_flag && !seen_L) n_legs = 7;
  3572. /**
  3573. * Now get everything to the specified probe point So we can safely do a
  3574. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3575. * we don't want to use that as a starting point for each probe.
  3576. */
  3577. if (verbose_level > 2)
  3578. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3579. #if ENABLED(DELTA)
  3580. // we don't do bed level correction in M48 because we want the raw data when we probe
  3581. reset_bed_level();
  3582. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3583. // we don't do bed level correction in M48 because we want the raw data when we probe
  3584. planner.bed_level_matrix.set_to_identity();
  3585. #endif
  3586. setup_for_endstop_or_probe_move();
  3587. // Move to the first point, deploy, and probe
  3588. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3589. randomSeed(millis());
  3590. double mean = 0, sigma = 0, sample_set[n_samples];
  3591. for (uint8_t n = 0; n < n_samples; n++) {
  3592. if (n_legs) {
  3593. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3594. float angle = random(0.0, 360.0),
  3595. radius = random(
  3596. #if ENABLED(DELTA)
  3597. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3598. #else
  3599. 5, X_MAX_LENGTH / 8
  3600. #endif
  3601. );
  3602. if (verbose_level > 3) {
  3603. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3604. SERIAL_ECHOPAIR(" angle: ", angle);
  3605. SERIAL_ECHOPGM(" Direction: ");
  3606. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3607. SERIAL_ECHOLNPGM("Clockwise");
  3608. }
  3609. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3610. double delta_angle;
  3611. if (schizoid_flag)
  3612. // The points of a 5 point star are 72 degrees apart. We need to
  3613. // skip a point and go to the next one on the star.
  3614. delta_angle = dir * 2.0 * 72.0;
  3615. else
  3616. // If we do this line, we are just trying to move further
  3617. // around the circle.
  3618. delta_angle = dir * (float) random(25, 45);
  3619. angle += delta_angle;
  3620. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3621. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3622. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3623. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3624. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3625. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3626. #if DISABLED(DELTA)
  3627. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3628. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3629. #else
  3630. // If we have gone out too far, we can do a simple fix and scale the numbers
  3631. // back in closer to the origin.
  3632. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3633. X_current /= 1.25;
  3634. Y_current /= 1.25;
  3635. if (verbose_level > 3) {
  3636. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3637. SERIAL_ECHOPAIR(", ", Y_current);
  3638. SERIAL_EOL;
  3639. }
  3640. }
  3641. #endif
  3642. if (verbose_level > 3) {
  3643. SERIAL_PROTOCOLPGM("Going to:");
  3644. SERIAL_ECHOPAIR(" X", X_current);
  3645. SERIAL_ECHOPAIR(" Y", Y_current);
  3646. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3647. SERIAL_EOL;
  3648. }
  3649. do_blocking_move_to_xy(X_current, Y_current);
  3650. } // n_legs loop
  3651. } // n_legs
  3652. // Probe a single point
  3653. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3654. /**
  3655. * Get the current mean for the data points we have so far
  3656. */
  3657. double sum = 0.0;
  3658. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3659. mean = sum / (n + 1);
  3660. /**
  3661. * Now, use that mean to calculate the standard deviation for the
  3662. * data points we have so far
  3663. */
  3664. sum = 0.0;
  3665. for (uint8_t j = 0; j <= n; j++)
  3666. sum += sq(sample_set[j] - mean);
  3667. sigma = sqrt(sum / (n + 1));
  3668. if (verbose_level > 0) {
  3669. if (verbose_level > 1) {
  3670. SERIAL_PROTOCOL(n + 1);
  3671. SERIAL_PROTOCOLPGM(" of ");
  3672. SERIAL_PROTOCOL((int)n_samples);
  3673. SERIAL_PROTOCOLPGM(" z: ");
  3674. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3675. if (verbose_level > 2) {
  3676. SERIAL_PROTOCOLPGM(" mean: ");
  3677. SERIAL_PROTOCOL_F(mean, 6);
  3678. SERIAL_PROTOCOLPGM(" sigma: ");
  3679. SERIAL_PROTOCOL_F(sigma, 6);
  3680. }
  3681. }
  3682. SERIAL_EOL;
  3683. }
  3684. } // End of probe loop
  3685. if (STOW_PROBE()) return;
  3686. if (verbose_level > 0) {
  3687. SERIAL_PROTOCOLPGM("Mean: ");
  3688. SERIAL_PROTOCOL_F(mean, 6);
  3689. SERIAL_EOL;
  3690. }
  3691. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3692. SERIAL_PROTOCOL_F(sigma, 6);
  3693. SERIAL_EOL; SERIAL_EOL;
  3694. clean_up_after_endstop_or_probe_move();
  3695. report_current_position();
  3696. }
  3697. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3698. /**
  3699. * M75: Start print timer
  3700. */
  3701. inline void gcode_M75() { print_job_timer.start(); }
  3702. /**
  3703. * M76: Pause print timer
  3704. */
  3705. inline void gcode_M76() { print_job_timer.pause(); }
  3706. /**
  3707. * M77: Stop print timer
  3708. */
  3709. inline void gcode_M77() { print_job_timer.stop(); }
  3710. #if ENABLED(PRINTCOUNTER)
  3711. /**
  3712. * M78: Show print statistics
  3713. */
  3714. inline void gcode_M78() {
  3715. // "M78 S78" will reset the statistics
  3716. if (code_seen('S') && code_value_int() == 78)
  3717. print_job_timer.initStats();
  3718. else print_job_timer.showStats();
  3719. }
  3720. #endif
  3721. /**
  3722. * M104: Set hot end temperature
  3723. */
  3724. inline void gcode_M104() {
  3725. if (get_target_extruder_from_command(104)) return;
  3726. if (DEBUGGING(DRYRUN)) return;
  3727. #if ENABLED(SINGLENOZZLE)
  3728. if (target_extruder != active_extruder) return;
  3729. #endif
  3730. if (code_seen('S')) {
  3731. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3732. #if ENABLED(DUAL_X_CARRIAGE)
  3733. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3734. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3735. #endif
  3736. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3737. /**
  3738. * Stop the timer at the end of print, starting is managed by
  3739. * 'heat and wait' M109.
  3740. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3741. * stand by mode, for instance in a dual extruder setup, without affecting
  3742. * the running print timer.
  3743. */
  3744. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3745. print_job_timer.stop();
  3746. LCD_MESSAGEPGM(WELCOME_MSG);
  3747. }
  3748. #endif
  3749. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3750. }
  3751. }
  3752. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3753. void print_heaterstates() {
  3754. #if HAS_TEMP_HOTEND
  3755. SERIAL_PROTOCOLPGM(" T:");
  3756. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3757. SERIAL_PROTOCOLPGM(" /");
  3758. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3759. #endif
  3760. #if HAS_TEMP_BED
  3761. SERIAL_PROTOCOLPGM(" B:");
  3762. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3763. SERIAL_PROTOCOLPGM(" /");
  3764. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3765. #endif
  3766. #if HOTENDS > 1
  3767. HOTEND_LOOP() {
  3768. SERIAL_PROTOCOLPGM(" T");
  3769. SERIAL_PROTOCOL(e);
  3770. SERIAL_PROTOCOLCHAR(':');
  3771. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3772. SERIAL_PROTOCOLPGM(" /");
  3773. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3774. }
  3775. #endif
  3776. #if HAS_TEMP_BED
  3777. SERIAL_PROTOCOLPGM(" B@:");
  3778. #ifdef BED_WATTS
  3779. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3780. SERIAL_PROTOCOLCHAR('W');
  3781. #else
  3782. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3783. #endif
  3784. #endif
  3785. SERIAL_PROTOCOLPGM(" @:");
  3786. #ifdef EXTRUDER_WATTS
  3787. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3788. SERIAL_PROTOCOLCHAR('W');
  3789. #else
  3790. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3791. #endif
  3792. #if HOTENDS > 1
  3793. HOTEND_LOOP() {
  3794. SERIAL_PROTOCOLPGM(" @");
  3795. SERIAL_PROTOCOL(e);
  3796. SERIAL_PROTOCOLCHAR(':');
  3797. #ifdef EXTRUDER_WATTS
  3798. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3799. SERIAL_PROTOCOLCHAR('W');
  3800. #else
  3801. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3802. #endif
  3803. }
  3804. #endif
  3805. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3806. #if HAS_TEMP_BED
  3807. SERIAL_PROTOCOLPGM(" ADC B:");
  3808. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3809. SERIAL_PROTOCOLPGM("C->");
  3810. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3811. #endif
  3812. HOTEND_LOOP() {
  3813. SERIAL_PROTOCOLPGM(" T");
  3814. SERIAL_PROTOCOL(e);
  3815. SERIAL_PROTOCOLCHAR(':');
  3816. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3817. SERIAL_PROTOCOLPGM("C->");
  3818. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(e) / OVERSAMPLENR, 0);
  3819. }
  3820. #endif
  3821. }
  3822. #endif
  3823. /**
  3824. * M105: Read hot end and bed temperature
  3825. */
  3826. inline void gcode_M105() {
  3827. if (get_target_extruder_from_command(105)) return;
  3828. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3829. SERIAL_PROTOCOLPGM(MSG_OK);
  3830. print_heaterstates();
  3831. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3832. SERIAL_ERROR_START;
  3833. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3834. #endif
  3835. SERIAL_EOL;
  3836. }
  3837. #if FAN_COUNT > 0
  3838. /**
  3839. * M106: Set Fan Speed
  3840. *
  3841. * S<int> Speed between 0-255
  3842. * P<index> Fan index, if more than one fan
  3843. */
  3844. inline void gcode_M106() {
  3845. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3846. p = code_seen('P') ? code_value_ushort() : 0;
  3847. NOMORE(s, 255);
  3848. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3849. }
  3850. /**
  3851. * M107: Fan Off
  3852. */
  3853. inline void gcode_M107() {
  3854. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3855. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3856. }
  3857. #endif // FAN_COUNT > 0
  3858. #if DISABLED(EMERGENCY_PARSER)
  3859. /**
  3860. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3861. */
  3862. inline void gcode_M108() { wait_for_heatup = false; }
  3863. /**
  3864. * M112: Emergency Stop
  3865. */
  3866. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3867. /**
  3868. * M410: Quickstop - Abort all planned moves
  3869. *
  3870. * This will stop the carriages mid-move, so most likely they
  3871. * will be out of sync with the stepper position after this.
  3872. */
  3873. inline void gcode_M410() { quickstop_stepper(); }
  3874. #endif
  3875. #ifndef MIN_COOLING_SLOPE_DEG
  3876. #define MIN_COOLING_SLOPE_DEG 1.50
  3877. #endif
  3878. #ifndef MIN_COOLING_SLOPE_TIME
  3879. #define MIN_COOLING_SLOPE_TIME 60
  3880. #endif
  3881. /**
  3882. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3883. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3884. */
  3885. inline void gcode_M109() {
  3886. if (get_target_extruder_from_command(109)) return;
  3887. if (DEBUGGING(DRYRUN)) return;
  3888. #if ENABLED(SINGLENOZZLE)
  3889. if (target_extruder != active_extruder) return;
  3890. #endif
  3891. bool no_wait_for_cooling = code_seen('S');
  3892. if (no_wait_for_cooling || code_seen('R')) {
  3893. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3894. #if ENABLED(DUAL_X_CARRIAGE)
  3895. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3896. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3897. #endif
  3898. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3899. /**
  3900. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3901. * stand by mode, for instance in a dual extruder setup, without affecting
  3902. * the running print timer.
  3903. */
  3904. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3905. print_job_timer.stop();
  3906. LCD_MESSAGEPGM(WELCOME_MSG);
  3907. }
  3908. /**
  3909. * We do not check if the timer is already running because this check will
  3910. * be done for us inside the Stopwatch::start() method thus a running timer
  3911. * will not restart.
  3912. */
  3913. else print_job_timer.start();
  3914. #endif
  3915. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3916. }
  3917. #if ENABLED(AUTOTEMP)
  3918. planner.autotemp_M109();
  3919. #endif
  3920. #if TEMP_RESIDENCY_TIME > 0
  3921. millis_t residency_start_ms = 0;
  3922. // Loop until the temperature has stabilized
  3923. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3924. #else
  3925. // Loop until the temperature is very close target
  3926. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3927. #endif //TEMP_RESIDENCY_TIME > 0
  3928. float theTarget = -1.0, old_temp = 9999.0;
  3929. bool wants_to_cool = false;
  3930. wait_for_heatup = true;
  3931. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3932. KEEPALIVE_STATE(NOT_BUSY);
  3933. do {
  3934. // Target temperature might be changed during the loop
  3935. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3936. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3937. theTarget = thermalManager.degTargetHotend(target_extruder);
  3938. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3939. if (no_wait_for_cooling && wants_to_cool) break;
  3940. }
  3941. now = millis();
  3942. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3943. next_temp_ms = now + 1000UL;
  3944. print_heaterstates();
  3945. #if TEMP_RESIDENCY_TIME > 0
  3946. SERIAL_PROTOCOLPGM(" W:");
  3947. if (residency_start_ms) {
  3948. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3949. SERIAL_PROTOCOLLN(rem);
  3950. }
  3951. else {
  3952. SERIAL_PROTOCOLLNPGM("?");
  3953. }
  3954. #else
  3955. SERIAL_EOL;
  3956. #endif
  3957. }
  3958. idle();
  3959. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3960. float temp = thermalManager.degHotend(target_extruder);
  3961. #if TEMP_RESIDENCY_TIME > 0
  3962. float temp_diff = fabs(theTarget - temp);
  3963. if (!residency_start_ms) {
  3964. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3965. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3966. }
  3967. else if (temp_diff > TEMP_HYSTERESIS) {
  3968. // Restart the timer whenever the temperature falls outside the hysteresis.
  3969. residency_start_ms = now;
  3970. }
  3971. #endif //TEMP_RESIDENCY_TIME > 0
  3972. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3973. if (wants_to_cool) {
  3974. // break after MIN_COOLING_SLOPE_TIME seconds
  3975. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3976. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3977. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3978. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3979. old_temp = temp;
  3980. }
  3981. }
  3982. } while (wait_for_heatup && TEMP_CONDITIONS);
  3983. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3984. KEEPALIVE_STATE(IN_HANDLER);
  3985. }
  3986. #if HAS_TEMP_BED
  3987. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3988. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3989. #endif
  3990. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3991. #define MIN_COOLING_SLOPE_TIME_BED 60
  3992. #endif
  3993. /**
  3994. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3995. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3996. */
  3997. inline void gcode_M190() {
  3998. if (DEBUGGING(DRYRUN)) return;
  3999. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4000. bool no_wait_for_cooling = code_seen('S');
  4001. if (no_wait_for_cooling || code_seen('R')) {
  4002. thermalManager.setTargetBed(code_value_temp_abs());
  4003. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4004. if (code_value_temp_abs() > BED_MINTEMP) {
  4005. /**
  4006. * We start the timer when 'heating and waiting' command arrives, LCD
  4007. * functions never wait. Cooling down managed by extruders.
  4008. *
  4009. * We do not check if the timer is already running because this check will
  4010. * be done for us inside the Stopwatch::start() method thus a running timer
  4011. * will not restart.
  4012. */
  4013. print_job_timer.start();
  4014. }
  4015. #endif
  4016. }
  4017. #if TEMP_BED_RESIDENCY_TIME > 0
  4018. millis_t residency_start_ms = 0;
  4019. // Loop until the temperature has stabilized
  4020. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4021. #else
  4022. // Loop until the temperature is very close target
  4023. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4024. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4025. float theTarget = -1.0, old_temp = 9999.0;
  4026. bool wants_to_cool = false;
  4027. wait_for_heatup = true;
  4028. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4029. KEEPALIVE_STATE(NOT_BUSY);
  4030. target_extruder = active_extruder; // for print_heaterstates
  4031. do {
  4032. // Target temperature might be changed during the loop
  4033. if (theTarget != thermalManager.degTargetBed()) {
  4034. wants_to_cool = thermalManager.isCoolingBed();
  4035. theTarget = thermalManager.degTargetBed();
  4036. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4037. if (no_wait_for_cooling && wants_to_cool) break;
  4038. }
  4039. now = millis();
  4040. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4041. next_temp_ms = now + 1000UL;
  4042. print_heaterstates();
  4043. #if TEMP_BED_RESIDENCY_TIME > 0
  4044. SERIAL_PROTOCOLPGM(" W:");
  4045. if (residency_start_ms) {
  4046. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4047. SERIAL_PROTOCOLLN(rem);
  4048. }
  4049. else {
  4050. SERIAL_PROTOCOLLNPGM("?");
  4051. }
  4052. #else
  4053. SERIAL_EOL;
  4054. #endif
  4055. }
  4056. idle();
  4057. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4058. float temp = thermalManager.degBed();
  4059. #if TEMP_BED_RESIDENCY_TIME > 0
  4060. float temp_diff = fabs(theTarget - temp);
  4061. if (!residency_start_ms) {
  4062. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4063. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4064. }
  4065. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4066. // Restart the timer whenever the temperature falls outside the hysteresis.
  4067. residency_start_ms = now;
  4068. }
  4069. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4070. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4071. if (wants_to_cool) {
  4072. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4073. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4074. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4075. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4076. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4077. old_temp = temp;
  4078. }
  4079. }
  4080. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4081. LCD_MESSAGEPGM(MSG_BED_DONE);
  4082. KEEPALIVE_STATE(IN_HANDLER);
  4083. }
  4084. #endif // HAS_TEMP_BED
  4085. /**
  4086. * M110: Set Current Line Number
  4087. */
  4088. inline void gcode_M110() {
  4089. if (code_seen('N')) gcode_N = code_value_long();
  4090. }
  4091. /**
  4092. * M111: Set the debug level
  4093. */
  4094. inline void gcode_M111() {
  4095. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4096. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4097. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4098. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4099. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4100. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4101. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4102. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4103. #endif
  4104. const static char* const debug_strings[] PROGMEM = {
  4105. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4106. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4107. str_debug_32
  4108. #endif
  4109. };
  4110. SERIAL_ECHO_START;
  4111. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4112. if (marlin_debug_flags) {
  4113. uint8_t comma = 0;
  4114. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4115. if (TEST(marlin_debug_flags, i)) {
  4116. if (comma++) SERIAL_CHAR(',');
  4117. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4118. }
  4119. }
  4120. }
  4121. else {
  4122. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4123. }
  4124. SERIAL_EOL;
  4125. }
  4126. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4127. /**
  4128. * M113: Get or set Host Keepalive interval (0 to disable)
  4129. *
  4130. * S<seconds> Optional. Set the keepalive interval.
  4131. */
  4132. inline void gcode_M113() {
  4133. if (code_seen('S')) {
  4134. host_keepalive_interval = code_value_byte();
  4135. NOMORE(host_keepalive_interval, 60);
  4136. }
  4137. else {
  4138. SERIAL_ECHO_START;
  4139. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4140. SERIAL_EOL;
  4141. }
  4142. }
  4143. #endif
  4144. #if ENABLED(BARICUDA)
  4145. #if HAS_HEATER_1
  4146. /**
  4147. * M126: Heater 1 valve open
  4148. */
  4149. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4150. /**
  4151. * M127: Heater 1 valve close
  4152. */
  4153. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4154. #endif
  4155. #if HAS_HEATER_2
  4156. /**
  4157. * M128: Heater 2 valve open
  4158. */
  4159. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4160. /**
  4161. * M129: Heater 2 valve close
  4162. */
  4163. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4164. #endif
  4165. #endif //BARICUDA
  4166. /**
  4167. * M140: Set bed temperature
  4168. */
  4169. inline void gcode_M140() {
  4170. if (DEBUGGING(DRYRUN)) return;
  4171. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4172. }
  4173. #if ENABLED(ULTIPANEL)
  4174. /**
  4175. * M145: Set the heatup state for a material in the LCD menu
  4176. * S<material> (0=PLA, 1=ABS)
  4177. * H<hotend temp>
  4178. * B<bed temp>
  4179. * F<fan speed>
  4180. */
  4181. inline void gcode_M145() {
  4182. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4183. if (material < 0 || material > 1) {
  4184. SERIAL_ERROR_START;
  4185. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4186. }
  4187. else {
  4188. int v;
  4189. switch (material) {
  4190. case 0:
  4191. if (code_seen('H')) {
  4192. v = code_value_int();
  4193. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4194. }
  4195. if (code_seen('F')) {
  4196. v = code_value_int();
  4197. preheatFanSpeed1 = constrain(v, 0, 255);
  4198. }
  4199. #if TEMP_SENSOR_BED != 0
  4200. if (code_seen('B')) {
  4201. v = code_value_int();
  4202. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4203. }
  4204. #endif
  4205. break;
  4206. case 1:
  4207. if (code_seen('H')) {
  4208. v = code_value_int();
  4209. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4210. }
  4211. if (code_seen('F')) {
  4212. v = code_value_int();
  4213. preheatFanSpeed2 = constrain(v, 0, 255);
  4214. }
  4215. #if TEMP_SENSOR_BED != 0
  4216. if (code_seen('B')) {
  4217. v = code_value_int();
  4218. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4219. }
  4220. #endif
  4221. break;
  4222. }
  4223. }
  4224. }
  4225. #endif
  4226. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4227. /**
  4228. * M149: Set temperature units
  4229. */
  4230. inline void gcode_M149() {
  4231. if (code_seen('C')) {
  4232. set_input_temp_units(TEMPUNIT_C);
  4233. } else if (code_seen('K')) {
  4234. set_input_temp_units(TEMPUNIT_K);
  4235. } else if (code_seen('F')) {
  4236. set_input_temp_units(TEMPUNIT_F);
  4237. }
  4238. }
  4239. #endif
  4240. #if HAS_POWER_SWITCH
  4241. /**
  4242. * M80: Turn on Power Supply
  4243. */
  4244. inline void gcode_M80() {
  4245. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4246. /**
  4247. * If you have a switch on suicide pin, this is useful
  4248. * if you want to start another print with suicide feature after
  4249. * a print without suicide...
  4250. */
  4251. #if HAS_SUICIDE
  4252. OUT_WRITE(SUICIDE_PIN, HIGH);
  4253. #endif
  4254. #if ENABLED(ULTIPANEL)
  4255. powersupply = true;
  4256. LCD_MESSAGEPGM(WELCOME_MSG);
  4257. lcd_update();
  4258. #endif
  4259. }
  4260. #endif // HAS_POWER_SWITCH
  4261. /**
  4262. * M81: Turn off Power, including Power Supply, if there is one.
  4263. *
  4264. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4265. */
  4266. inline void gcode_M81() {
  4267. thermalManager.disable_all_heaters();
  4268. stepper.finish_and_disable();
  4269. #if FAN_COUNT > 0
  4270. #if FAN_COUNT > 1
  4271. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4272. #else
  4273. fanSpeeds[0] = 0;
  4274. #endif
  4275. #endif
  4276. delay(1000); // Wait 1 second before switching off
  4277. #if HAS_SUICIDE
  4278. stepper.synchronize();
  4279. suicide();
  4280. #elif HAS_POWER_SWITCH
  4281. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4282. #endif
  4283. #if ENABLED(ULTIPANEL)
  4284. #if HAS_POWER_SWITCH
  4285. powersupply = false;
  4286. #endif
  4287. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4288. lcd_update();
  4289. #endif
  4290. }
  4291. /**
  4292. * M82: Set E codes absolute (default)
  4293. */
  4294. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4295. /**
  4296. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4297. */
  4298. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4299. /**
  4300. * M18, M84: Disable all stepper motors
  4301. */
  4302. inline void gcode_M18_M84() {
  4303. if (code_seen('S')) {
  4304. stepper_inactive_time = code_value_millis_from_seconds();
  4305. }
  4306. else {
  4307. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4308. if (all_axis) {
  4309. stepper.finish_and_disable();
  4310. }
  4311. else {
  4312. stepper.synchronize();
  4313. if (code_seen('X')) disable_x();
  4314. if (code_seen('Y')) disable_y();
  4315. if (code_seen('Z')) disable_z();
  4316. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4317. if (code_seen('E')) {
  4318. disable_e0();
  4319. disable_e1();
  4320. disable_e2();
  4321. disable_e3();
  4322. }
  4323. #endif
  4324. }
  4325. }
  4326. }
  4327. /**
  4328. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4329. */
  4330. inline void gcode_M85() {
  4331. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4332. }
  4333. /**
  4334. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4335. * (Follows the same syntax as G92)
  4336. */
  4337. inline void gcode_M92() {
  4338. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4339. if (code_seen(axis_codes[i])) {
  4340. if (i == E_AXIS) {
  4341. float value = code_value_per_axis_unit(i);
  4342. if (value < 20.0) {
  4343. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4344. planner.max_e_jerk *= factor;
  4345. planner.max_feedrate_mm_s[i] *= factor;
  4346. planner.max_acceleration_steps_per_s2[i] *= factor;
  4347. }
  4348. planner.axis_steps_per_mm[i] = value;
  4349. }
  4350. else {
  4351. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4352. }
  4353. }
  4354. }
  4355. }
  4356. /**
  4357. * Output the current position to serial
  4358. */
  4359. static void report_current_position() {
  4360. SERIAL_PROTOCOLPGM("X:");
  4361. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4362. SERIAL_PROTOCOLPGM(" Y:");
  4363. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4364. SERIAL_PROTOCOLPGM(" Z:");
  4365. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4366. SERIAL_PROTOCOLPGM(" E:");
  4367. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4368. stepper.report_positions();
  4369. #if ENABLED(SCARA)
  4370. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4371. SERIAL_PROTOCOL(delta[X_AXIS]);
  4372. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4373. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4374. SERIAL_EOL;
  4375. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4376. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4377. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4378. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4379. SERIAL_EOL;
  4380. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4381. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4382. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4383. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4384. SERIAL_EOL; SERIAL_EOL;
  4385. #endif
  4386. }
  4387. /**
  4388. * M114: Output current position to serial port
  4389. */
  4390. inline void gcode_M114() { report_current_position(); }
  4391. /**
  4392. * M115: Capabilities string
  4393. */
  4394. inline void gcode_M115() {
  4395. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4396. }
  4397. /**
  4398. * M117: Set LCD Status Message
  4399. */
  4400. inline void gcode_M117() {
  4401. lcd_setstatus(current_command_args);
  4402. }
  4403. /**
  4404. * M119: Output endstop states to serial output
  4405. */
  4406. inline void gcode_M119() { endstops.M119(); }
  4407. /**
  4408. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4409. */
  4410. inline void gcode_M120() { endstops.enable_globally(true); }
  4411. /**
  4412. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4413. */
  4414. inline void gcode_M121() { endstops.enable_globally(false); }
  4415. #if ENABLED(BLINKM)
  4416. /**
  4417. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4418. */
  4419. inline void gcode_M150() {
  4420. SendColors(
  4421. code_seen('R') ? code_value_byte() : 0,
  4422. code_seen('U') ? code_value_byte() : 0,
  4423. code_seen('B') ? code_value_byte() : 0
  4424. );
  4425. }
  4426. #endif // BLINKM
  4427. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4428. /**
  4429. * M155: Send data to a I2C slave device
  4430. *
  4431. * This is a PoC, the formating and arguments for the GCODE will
  4432. * change to be more compatible, the current proposal is:
  4433. *
  4434. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4435. *
  4436. * M155 B<byte-1 value in base 10>
  4437. * M155 B<byte-2 value in base 10>
  4438. * M155 B<byte-3 value in base 10>
  4439. *
  4440. * M155 S1 ; Send the buffered data and reset the buffer
  4441. * M155 R1 ; Reset the buffer without sending data
  4442. *
  4443. */
  4444. inline void gcode_M155() {
  4445. // Set the target address
  4446. if (code_seen('A'))
  4447. i2c.address(code_value_byte());
  4448. // Add a new byte to the buffer
  4449. else if (code_seen('B'))
  4450. i2c.addbyte(code_value_int());
  4451. // Flush the buffer to the bus
  4452. else if (code_seen('S')) i2c.send();
  4453. // Reset and rewind the buffer
  4454. else if (code_seen('R')) i2c.reset();
  4455. }
  4456. /**
  4457. * M156: Request X bytes from I2C slave device
  4458. *
  4459. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4460. */
  4461. inline void gcode_M156() {
  4462. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4463. int bytes = code_seen('B') ? code_value_int() : 1;
  4464. if (addr && bytes > 0 && bytes <= 32) {
  4465. i2c.address(addr);
  4466. i2c.reqbytes(bytes);
  4467. }
  4468. else {
  4469. SERIAL_ERROR_START;
  4470. SERIAL_ERRORLN("Bad i2c request");
  4471. }
  4472. }
  4473. #endif //EXPERIMENTAL_I2CBUS
  4474. /**
  4475. * M200: Set filament diameter and set E axis units to cubic units
  4476. *
  4477. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4478. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4479. */
  4480. inline void gcode_M200() {
  4481. if (get_target_extruder_from_command(200)) return;
  4482. if (code_seen('D')) {
  4483. // setting any extruder filament size disables volumetric on the assumption that
  4484. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4485. // for all extruders
  4486. volumetric_enabled = (code_value_linear_units() != 0.0);
  4487. if (volumetric_enabled) {
  4488. filament_size[target_extruder] = code_value_linear_units();
  4489. // make sure all extruders have some sane value for the filament size
  4490. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4491. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4492. }
  4493. }
  4494. else {
  4495. //reserved for setting filament diameter via UFID or filament measuring device
  4496. return;
  4497. }
  4498. calculate_volumetric_multipliers();
  4499. }
  4500. /**
  4501. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4502. */
  4503. inline void gcode_M201() {
  4504. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4505. if (code_seen(axis_codes[i])) {
  4506. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4507. }
  4508. }
  4509. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4510. planner.reset_acceleration_rates();
  4511. }
  4512. #if 0 // Not used for Sprinter/grbl gen6
  4513. inline void gcode_M202() {
  4514. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4515. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4516. }
  4517. }
  4518. #endif
  4519. /**
  4520. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4521. */
  4522. inline void gcode_M203() {
  4523. for (int8_t i = 0; i < NUM_AXIS; i++)
  4524. if (code_seen(axis_codes[i]))
  4525. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4526. }
  4527. /**
  4528. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4529. *
  4530. * P = Printing moves
  4531. * R = Retract only (no X, Y, Z) moves
  4532. * T = Travel (non printing) moves
  4533. *
  4534. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4535. */
  4536. inline void gcode_M204() {
  4537. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4538. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4539. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4540. SERIAL_EOL;
  4541. }
  4542. if (code_seen('P')) {
  4543. planner.acceleration = code_value_linear_units();
  4544. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4545. SERIAL_EOL;
  4546. }
  4547. if (code_seen('R')) {
  4548. planner.retract_acceleration = code_value_linear_units();
  4549. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4550. SERIAL_EOL;
  4551. }
  4552. if (code_seen('T')) {
  4553. planner.travel_acceleration = code_value_linear_units();
  4554. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4555. SERIAL_EOL;
  4556. }
  4557. }
  4558. /**
  4559. * M205: Set Advanced Settings
  4560. *
  4561. * S = Min Feed Rate (units/s)
  4562. * T = Min Travel Feed Rate (units/s)
  4563. * B = Min Segment Time (µs)
  4564. * X = Max XY Jerk (units/sec^2)
  4565. * Z = Max Z Jerk (units/sec^2)
  4566. * E = Max E Jerk (units/sec^2)
  4567. */
  4568. inline void gcode_M205() {
  4569. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4570. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4571. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4572. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4573. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4574. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4575. }
  4576. /**
  4577. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4578. */
  4579. inline void gcode_M206() {
  4580. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4581. if (code_seen(axis_codes[i]))
  4582. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4583. #if ENABLED(SCARA)
  4584. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4585. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4586. #endif
  4587. SYNC_PLAN_POSITION_KINEMATIC();
  4588. report_current_position();
  4589. }
  4590. #if ENABLED(DELTA)
  4591. /**
  4592. * M665: Set delta configurations
  4593. *
  4594. * L = diagonal rod
  4595. * R = delta radius
  4596. * S = segments per second
  4597. * A = Alpha (Tower 1) diagonal rod trim
  4598. * B = Beta (Tower 2) diagonal rod trim
  4599. * C = Gamma (Tower 3) diagonal rod trim
  4600. */
  4601. inline void gcode_M665() {
  4602. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4603. if (code_seen('R')) delta_radius = code_value_linear_units();
  4604. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4605. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4606. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4607. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4608. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4609. }
  4610. /**
  4611. * M666: Set delta endstop adjustment
  4612. */
  4613. inline void gcode_M666() {
  4614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4615. if (DEBUGGING(LEVELING)) {
  4616. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4617. }
  4618. #endif
  4619. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4620. if (code_seen(axis_codes[i])) {
  4621. endstop_adj[i] = code_value_axis_units(i);
  4622. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4623. if (DEBUGGING(LEVELING)) {
  4624. SERIAL_ECHOPGM("endstop_adj[");
  4625. SERIAL_ECHO(axis_codes[i]);
  4626. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4627. SERIAL_EOL;
  4628. }
  4629. #endif
  4630. }
  4631. }
  4632. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4633. if (DEBUGGING(LEVELING)) {
  4634. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4635. }
  4636. #endif
  4637. }
  4638. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4639. /**
  4640. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4641. */
  4642. inline void gcode_M666() {
  4643. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4644. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4645. SERIAL_EOL;
  4646. }
  4647. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4648. #if ENABLED(FWRETRACT)
  4649. /**
  4650. * M207: Set firmware retraction values
  4651. *
  4652. * S[+units] retract_length
  4653. * W[+units] retract_length_swap (multi-extruder)
  4654. * F[units/min] retract_feedrate_mm_s
  4655. * Z[units] retract_zlift
  4656. */
  4657. inline void gcode_M207() {
  4658. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4659. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4660. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4661. #if EXTRUDERS > 1
  4662. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4663. #endif
  4664. }
  4665. /**
  4666. * M208: Set firmware un-retraction values
  4667. *
  4668. * S[+units] retract_recover_length (in addition to M207 S*)
  4669. * W[+units] retract_recover_length_swap (multi-extruder)
  4670. * F[units/min] retract_recover_feedrate_mm_s
  4671. */
  4672. inline void gcode_M208() {
  4673. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4674. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4675. #if EXTRUDERS > 1
  4676. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4677. #endif
  4678. }
  4679. /**
  4680. * M209: Enable automatic retract (M209 S1)
  4681. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4682. */
  4683. inline void gcode_M209() {
  4684. if (code_seen('S')) {
  4685. int t = code_value_int();
  4686. switch (t) {
  4687. case 0:
  4688. autoretract_enabled = false;
  4689. break;
  4690. case 1:
  4691. autoretract_enabled = true;
  4692. break;
  4693. default:
  4694. unknown_command_error();
  4695. return;
  4696. }
  4697. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4698. }
  4699. }
  4700. #endif // FWRETRACT
  4701. #if HOTENDS > 1
  4702. /**
  4703. * M218 - set hotend offset (in linear units)
  4704. *
  4705. * T<tool>
  4706. * X<xoffset>
  4707. * Y<yoffset>
  4708. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4709. */
  4710. inline void gcode_M218() {
  4711. if (get_target_extruder_from_command(218)) return;
  4712. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4713. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4714. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4715. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4716. #endif
  4717. SERIAL_ECHO_START;
  4718. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4719. HOTEND_LOOP() {
  4720. SERIAL_CHAR(' ');
  4721. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4722. SERIAL_CHAR(',');
  4723. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4724. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4725. SERIAL_CHAR(',');
  4726. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4727. #endif
  4728. }
  4729. SERIAL_EOL;
  4730. }
  4731. #endif // HOTENDS > 1
  4732. /**
  4733. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4734. */
  4735. inline void gcode_M220() {
  4736. if (code_seen('S')) feedrate_percentage = code_value_int();
  4737. }
  4738. /**
  4739. * M221: Set extrusion percentage (M221 T0 S95)
  4740. */
  4741. inline void gcode_M221() {
  4742. if (get_target_extruder_from_command(221)) return;
  4743. if (code_seen('S'))
  4744. extruder_multiplier[target_extruder] = code_value_int();
  4745. }
  4746. /**
  4747. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4748. */
  4749. inline void gcode_M226() {
  4750. if (code_seen('P')) {
  4751. int pin_number = code_value_int();
  4752. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4753. if (pin_state >= -1 && pin_state <= 1) {
  4754. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4755. if (sensitive_pins[i] == pin_number) {
  4756. pin_number = -1;
  4757. break;
  4758. }
  4759. }
  4760. if (pin_number > -1) {
  4761. int target = LOW;
  4762. stepper.synchronize();
  4763. pinMode(pin_number, INPUT);
  4764. switch (pin_state) {
  4765. case 1:
  4766. target = HIGH;
  4767. break;
  4768. case 0:
  4769. target = LOW;
  4770. break;
  4771. case -1:
  4772. target = !digitalRead(pin_number);
  4773. break;
  4774. }
  4775. while (digitalRead(pin_number) != target) idle();
  4776. } // pin_number > -1
  4777. } // pin_state -1 0 1
  4778. } // code_seen('P')
  4779. }
  4780. #if HAS_SERVOS
  4781. /**
  4782. * M280: Get or set servo position. P<index> [S<angle>]
  4783. */
  4784. inline void gcode_M280() {
  4785. if (!code_seen('P')) return;
  4786. int servo_index = code_value_int();
  4787. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4788. if (code_seen('S'))
  4789. MOVE_SERVO(servo_index, code_value_int());
  4790. else {
  4791. SERIAL_ECHO_START;
  4792. SERIAL_ECHOPGM(" Servo ");
  4793. SERIAL_ECHO(servo_index);
  4794. SERIAL_ECHOPGM(": ");
  4795. SERIAL_ECHOLN(servo[servo_index].read());
  4796. }
  4797. }
  4798. else {
  4799. SERIAL_ERROR_START;
  4800. SERIAL_ERROR("Servo ");
  4801. SERIAL_ERROR(servo_index);
  4802. SERIAL_ERRORLN(" out of range");
  4803. }
  4804. }
  4805. #endif // HAS_SERVOS
  4806. #if HAS_BUZZER
  4807. /**
  4808. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4809. */
  4810. inline void gcode_M300() {
  4811. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4812. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4813. // Limits the tone duration to 0-5 seconds.
  4814. NOMORE(duration, 5000);
  4815. buzzer.tone(duration, frequency);
  4816. }
  4817. #endif // HAS_BUZZER
  4818. #if ENABLED(PIDTEMP)
  4819. /**
  4820. * M301: Set PID parameters P I D (and optionally C, L)
  4821. *
  4822. * P[float] Kp term
  4823. * I[float] Ki term (unscaled)
  4824. * D[float] Kd term (unscaled)
  4825. *
  4826. * With PID_ADD_EXTRUSION_RATE:
  4827. *
  4828. * C[float] Kc term
  4829. * L[float] LPQ length
  4830. */
  4831. inline void gcode_M301() {
  4832. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4833. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4834. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4835. if (e < HOTENDS) { // catch bad input value
  4836. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4837. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4838. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4839. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4840. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4841. if (code_seen('L')) lpq_len = code_value_float();
  4842. NOMORE(lpq_len, LPQ_MAX_LEN);
  4843. #endif
  4844. thermalManager.updatePID();
  4845. SERIAL_ECHO_START;
  4846. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4847. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4848. SERIAL_ECHO(e);
  4849. #endif // PID_PARAMS_PER_HOTEND
  4850. SERIAL_ECHOPGM(" p:");
  4851. SERIAL_ECHO(PID_PARAM(Kp, e));
  4852. SERIAL_ECHOPGM(" i:");
  4853. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4854. SERIAL_ECHOPGM(" d:");
  4855. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4856. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4857. SERIAL_ECHOPGM(" c:");
  4858. //Kc does not have scaling applied above, or in resetting defaults
  4859. SERIAL_ECHO(PID_PARAM(Kc, e));
  4860. #endif
  4861. SERIAL_EOL;
  4862. }
  4863. else {
  4864. SERIAL_ERROR_START;
  4865. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4866. }
  4867. }
  4868. #endif // PIDTEMP
  4869. #if ENABLED(PIDTEMPBED)
  4870. inline void gcode_M304() {
  4871. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4872. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4873. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4874. thermalManager.updatePID();
  4875. SERIAL_ECHO_START;
  4876. SERIAL_ECHOPGM(" p:");
  4877. SERIAL_ECHO(thermalManager.bedKp);
  4878. SERIAL_ECHOPGM(" i:");
  4879. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4880. SERIAL_ECHOPGM(" d:");
  4881. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4882. }
  4883. #endif // PIDTEMPBED
  4884. #if defined(CHDK) || HAS_PHOTOGRAPH
  4885. /**
  4886. * M240: Trigger a camera by emulating a Canon RC-1
  4887. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4888. */
  4889. inline void gcode_M240() {
  4890. #ifdef CHDK
  4891. OUT_WRITE(CHDK, HIGH);
  4892. chdkHigh = millis();
  4893. chdkActive = true;
  4894. #elif HAS_PHOTOGRAPH
  4895. const uint8_t NUM_PULSES = 16;
  4896. const float PULSE_LENGTH = 0.01524;
  4897. for (int i = 0; i < NUM_PULSES; i++) {
  4898. WRITE(PHOTOGRAPH_PIN, HIGH);
  4899. _delay_ms(PULSE_LENGTH);
  4900. WRITE(PHOTOGRAPH_PIN, LOW);
  4901. _delay_ms(PULSE_LENGTH);
  4902. }
  4903. delay(7.33);
  4904. for (int i = 0; i < NUM_PULSES; i++) {
  4905. WRITE(PHOTOGRAPH_PIN, HIGH);
  4906. _delay_ms(PULSE_LENGTH);
  4907. WRITE(PHOTOGRAPH_PIN, LOW);
  4908. _delay_ms(PULSE_LENGTH);
  4909. }
  4910. #endif // !CHDK && HAS_PHOTOGRAPH
  4911. }
  4912. #endif // CHDK || PHOTOGRAPH_PIN
  4913. #if HAS_LCD_CONTRAST
  4914. /**
  4915. * M250: Read and optionally set the LCD contrast
  4916. */
  4917. inline void gcode_M250() {
  4918. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4919. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4920. SERIAL_PROTOCOL(lcd_contrast);
  4921. SERIAL_EOL;
  4922. }
  4923. #endif // HAS_LCD_CONTRAST
  4924. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4925. /**
  4926. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4927. *
  4928. * S<temperature> sets the minimum extrude temperature
  4929. * P<bool> enables (1) or disables (0) cold extrusion
  4930. *
  4931. * Examples:
  4932. *
  4933. * M302 ; report current cold extrusion state
  4934. * M302 P0 ; enable cold extrusion checking
  4935. * M302 P1 ; disables cold extrusion checking
  4936. * M302 S0 ; always allow extrusion (disables checking)
  4937. * M302 S170 ; only allow extrusion above 170
  4938. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4939. */
  4940. inline void gcode_M302() {
  4941. bool seen_S = code_seen('S');
  4942. if (seen_S) {
  4943. thermalManager.extrude_min_temp = code_value_temp_abs();
  4944. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4945. }
  4946. if (code_seen('P'))
  4947. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4948. else if (!seen_S) {
  4949. // Report current state
  4950. SERIAL_ECHO_START;
  4951. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4952. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4953. SERIAL_ECHOLNPGM("C)");
  4954. }
  4955. }
  4956. #endif // PREVENT_DANGEROUS_EXTRUDE
  4957. /**
  4958. * M303: PID relay autotune
  4959. *
  4960. * S<temperature> sets the target temperature. (default 150C)
  4961. * E<extruder> (-1 for the bed) (default 0)
  4962. * C<cycles>
  4963. * U<bool> with a non-zero value will apply the result to current settings
  4964. */
  4965. inline void gcode_M303() {
  4966. #if HAS_PID_HEATING
  4967. int e = code_seen('E') ? code_value_int() : 0;
  4968. int c = code_seen('C') ? code_value_int() : 5;
  4969. bool u = code_seen('U') && code_value_bool();
  4970. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4971. if (e >= 0 && e < HOTENDS)
  4972. target_extruder = e;
  4973. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4974. thermalManager.PID_autotune(temp, e, c, u);
  4975. KEEPALIVE_STATE(IN_HANDLER);
  4976. #else
  4977. SERIAL_ERROR_START;
  4978. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4979. #endif
  4980. }
  4981. #if ENABLED(SCARA)
  4982. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4983. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4984. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4985. if (IsRunning()) {
  4986. //gcode_get_destination(); // For X Y Z E F
  4987. delta[X_AXIS] = delta_x;
  4988. delta[Y_AXIS] = delta_y;
  4989. calculate_SCARA_forward_Transform(delta);
  4990. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4991. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4992. prepare_move_to_destination();
  4993. //ok_to_send();
  4994. return true;
  4995. }
  4996. return false;
  4997. }
  4998. /**
  4999. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5000. */
  5001. inline bool gcode_M360() {
  5002. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5003. return SCARA_move_to_cal(0, 120);
  5004. }
  5005. /**
  5006. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5007. */
  5008. inline bool gcode_M361() {
  5009. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5010. return SCARA_move_to_cal(90, 130);
  5011. }
  5012. /**
  5013. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5014. */
  5015. inline bool gcode_M362() {
  5016. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5017. return SCARA_move_to_cal(60, 180);
  5018. }
  5019. /**
  5020. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5021. */
  5022. inline bool gcode_M363() {
  5023. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5024. return SCARA_move_to_cal(50, 90);
  5025. }
  5026. /**
  5027. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5028. */
  5029. inline bool gcode_M364() {
  5030. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5031. return SCARA_move_to_cal(45, 135);
  5032. }
  5033. /**
  5034. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5035. */
  5036. inline void gcode_M365() {
  5037. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  5038. if (code_seen(axis_codes[i]))
  5039. axis_scaling[i] = code_value_float();
  5040. }
  5041. #endif // SCARA
  5042. #if ENABLED(EXT_SOLENOID)
  5043. void enable_solenoid(uint8_t num) {
  5044. switch (num) {
  5045. case 0:
  5046. OUT_WRITE(SOL0_PIN, HIGH);
  5047. break;
  5048. #if HAS_SOLENOID_1
  5049. case 1:
  5050. OUT_WRITE(SOL1_PIN, HIGH);
  5051. break;
  5052. #endif
  5053. #if HAS_SOLENOID_2
  5054. case 2:
  5055. OUT_WRITE(SOL2_PIN, HIGH);
  5056. break;
  5057. #endif
  5058. #if HAS_SOLENOID_3
  5059. case 3:
  5060. OUT_WRITE(SOL3_PIN, HIGH);
  5061. break;
  5062. #endif
  5063. default:
  5064. SERIAL_ECHO_START;
  5065. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5066. break;
  5067. }
  5068. }
  5069. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5070. void disable_all_solenoids() {
  5071. OUT_WRITE(SOL0_PIN, LOW);
  5072. OUT_WRITE(SOL1_PIN, LOW);
  5073. OUT_WRITE(SOL2_PIN, LOW);
  5074. OUT_WRITE(SOL3_PIN, LOW);
  5075. }
  5076. /**
  5077. * M380: Enable solenoid on the active extruder
  5078. */
  5079. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5080. /**
  5081. * M381: Disable all solenoids
  5082. */
  5083. inline void gcode_M381() { disable_all_solenoids(); }
  5084. #endif // EXT_SOLENOID
  5085. /**
  5086. * M400: Finish all moves
  5087. */
  5088. inline void gcode_M400() { stepper.synchronize(); }
  5089. #if HAS_BED_PROBE
  5090. /**
  5091. * M401: Engage Z Servo endstop if available
  5092. */
  5093. inline void gcode_M401() { DEPLOY_PROBE(); }
  5094. /**
  5095. * M402: Retract Z Servo endstop if enabled
  5096. */
  5097. inline void gcode_M402() { STOW_PROBE(); }
  5098. #endif // HAS_BED_PROBE
  5099. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5100. /**
  5101. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5102. */
  5103. inline void gcode_M404() {
  5104. if (code_seen('W')) {
  5105. filament_width_nominal = code_value_linear_units();
  5106. }
  5107. else {
  5108. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5109. SERIAL_PROTOCOLLN(filament_width_nominal);
  5110. }
  5111. }
  5112. /**
  5113. * M405: Turn on filament sensor for control
  5114. */
  5115. inline void gcode_M405() {
  5116. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5117. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5118. if (code_seen('D')) meas_delay_cm = code_value_int();
  5119. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5120. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5121. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5122. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5123. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5124. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5125. }
  5126. filament_sensor = true;
  5127. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5128. //SERIAL_PROTOCOL(filament_width_meas);
  5129. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5130. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5131. }
  5132. /**
  5133. * M406: Turn off filament sensor for control
  5134. */
  5135. inline void gcode_M406() { filament_sensor = false; }
  5136. /**
  5137. * M407: Get measured filament diameter on serial output
  5138. */
  5139. inline void gcode_M407() {
  5140. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5141. SERIAL_PROTOCOLLN(filament_width_meas);
  5142. }
  5143. #endif // FILAMENT_WIDTH_SENSOR
  5144. void quickstop_stepper() {
  5145. stepper.quick_stop();
  5146. #if DISABLED(DELTA) && DISABLED(SCARA)
  5147. stepper.synchronize();
  5148. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5149. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5150. current_position[X_AXIS] = pos.x;
  5151. current_position[Y_AXIS] = pos.y;
  5152. current_position[Z_AXIS] = pos.z;
  5153. #else
  5154. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5155. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5156. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5157. #endif
  5158. sync_plan_position(); // ...re-apply to planner position
  5159. #endif
  5160. }
  5161. #if ENABLED(MESH_BED_LEVELING)
  5162. /**
  5163. * M420: Enable/Disable Mesh Bed Leveling
  5164. */
  5165. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5166. /**
  5167. * M421: Set a single Mesh Bed Leveling Z coordinate
  5168. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5169. */
  5170. inline void gcode_M421() {
  5171. int8_t px = 0, py = 0;
  5172. float z = 0;
  5173. bool hasX, hasY, hasZ, hasI, hasJ;
  5174. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5175. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5176. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5177. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5178. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5179. if (hasX && hasY && hasZ) {
  5180. if (px >= 0 && py >= 0)
  5181. mbl.set_z(px, py, z);
  5182. else {
  5183. SERIAL_ERROR_START;
  5184. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5185. }
  5186. }
  5187. else if (hasI && hasJ && hasZ) {
  5188. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5189. mbl.set_z(px, py, z);
  5190. else {
  5191. SERIAL_ERROR_START;
  5192. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5193. }
  5194. }
  5195. else {
  5196. SERIAL_ERROR_START;
  5197. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5198. }
  5199. }
  5200. #endif
  5201. /**
  5202. * M428: Set home_offset based on the distance between the
  5203. * current_position and the nearest "reference point."
  5204. * If an axis is past center its endstop position
  5205. * is the reference-point. Otherwise it uses 0. This allows
  5206. * the Z offset to be set near the bed when using a max endstop.
  5207. *
  5208. * M428 can't be used more than 2cm away from 0 or an endstop.
  5209. *
  5210. * Use M206 to set these values directly.
  5211. */
  5212. inline void gcode_M428() {
  5213. bool err = false;
  5214. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5215. if (axis_homed[i]) {
  5216. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5217. diff = current_position[i] - base;
  5218. if (diff > -20 && diff < 20) {
  5219. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5220. }
  5221. else {
  5222. SERIAL_ERROR_START;
  5223. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5224. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5225. #if HAS_BUZZER
  5226. buzzer.tone(200, 40);
  5227. #endif
  5228. err = true;
  5229. break;
  5230. }
  5231. }
  5232. }
  5233. if (!err) {
  5234. SYNC_PLAN_POSITION_KINEMATIC();
  5235. report_current_position();
  5236. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5237. #if HAS_BUZZER
  5238. buzzer.tone(200, 659);
  5239. buzzer.tone(200, 698);
  5240. #endif
  5241. }
  5242. }
  5243. /**
  5244. * M500: Store settings in EEPROM
  5245. */
  5246. inline void gcode_M500() {
  5247. Config_StoreSettings();
  5248. }
  5249. /**
  5250. * M501: Read settings from EEPROM
  5251. */
  5252. inline void gcode_M501() {
  5253. Config_RetrieveSettings();
  5254. }
  5255. /**
  5256. * M502: Revert to default settings
  5257. */
  5258. inline void gcode_M502() {
  5259. Config_ResetDefault();
  5260. }
  5261. /**
  5262. * M503: print settings currently in memory
  5263. */
  5264. inline void gcode_M503() {
  5265. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5266. }
  5267. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5268. /**
  5269. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5270. */
  5271. inline void gcode_M540() {
  5272. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5273. }
  5274. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5275. #if HAS_BED_PROBE
  5276. inline void gcode_M851() {
  5277. SERIAL_ECHO_START;
  5278. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5279. SERIAL_CHAR(' ');
  5280. if (code_seen('Z')) {
  5281. float value = code_value_axis_units(Z_AXIS);
  5282. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5283. zprobe_zoffset = value;
  5284. SERIAL_ECHO(zprobe_zoffset);
  5285. }
  5286. else {
  5287. SERIAL_ECHOPGM(MSG_Z_MIN);
  5288. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5289. SERIAL_CHAR(' ');
  5290. SERIAL_ECHOPGM(MSG_Z_MAX);
  5291. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5292. }
  5293. }
  5294. else {
  5295. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5296. }
  5297. SERIAL_EOL;
  5298. }
  5299. #endif // HAS_BED_PROBE
  5300. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5301. /**
  5302. * M600: Pause for filament change
  5303. *
  5304. * E[distance] - Retract the filament this far (negative value)
  5305. * Z[distance] - Move the Z axis by this distance
  5306. * X[position] - Move to this X position, with Y
  5307. * Y[position] - Move to this Y position, with X
  5308. * L[distance] - Retract distance for removal (manual reload)
  5309. *
  5310. * Default values are used for omitted arguments.
  5311. *
  5312. */
  5313. inline void gcode_M600() {
  5314. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5315. SERIAL_ERROR_START;
  5316. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5317. return;
  5318. }
  5319. // Show initial message and wait for synchronize steppers
  5320. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5321. stepper.synchronize();
  5322. float lastpos[NUM_AXIS];
  5323. // Save current position of all axes
  5324. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5325. lastpos[i] = destination[i] = current_position[i];
  5326. // Define runplan for move axes
  5327. #if ENABLED(DELTA)
  5328. #define RUNPLAN(RATE_MM_S) calculate_delta(destination); \
  5329. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5330. #else
  5331. #define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S));
  5332. #endif
  5333. KEEPALIVE_STATE(IN_HANDLER);
  5334. // Initial retract before move to filament change position
  5335. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5336. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5337. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5338. #endif
  5339. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5340. // Lift Z axis
  5341. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5342. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5343. FILAMENT_CHANGE_Z_ADD
  5344. #else
  5345. 0
  5346. #endif
  5347. ;
  5348. if (z_lift > 0) {
  5349. destination[Z_AXIS] += z_lift;
  5350. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5351. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5352. }
  5353. // Move XY axes to filament exchange position
  5354. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5355. #ifdef FILAMENT_CHANGE_X_POS
  5356. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5357. #endif
  5358. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5359. #ifdef FILAMENT_CHANGE_Y_POS
  5360. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5361. #endif
  5362. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5363. stepper.synchronize();
  5364. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5365. // Unload filament
  5366. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5367. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5368. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5369. #endif
  5370. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5371. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5372. stepper.synchronize();
  5373. disable_e0();
  5374. disable_e1();
  5375. disable_e2();
  5376. disable_e3();
  5377. delay(100);
  5378. #if HAS_BUZZER
  5379. millis_t next_tick = 0;
  5380. #endif
  5381. // Wait for filament insert by user and press button
  5382. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5383. while (!lcd_clicked()) {
  5384. #if HAS_BUZZER
  5385. millis_t ms = millis();
  5386. if (ms >= next_tick) {
  5387. buzzer.tone(300, 2000);
  5388. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5389. }
  5390. #endif
  5391. idle(true);
  5392. }
  5393. delay(100);
  5394. while (lcd_clicked()) idle(true);
  5395. delay(100);
  5396. // Show load message
  5397. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5398. // Load filament
  5399. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5400. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5401. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5402. #endif
  5403. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5404. stepper.synchronize();
  5405. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5406. do {
  5407. // Extrude filament to get into hotend
  5408. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5409. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5410. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5411. stepper.synchronize();
  5412. // Ask user if more filament should be extruded
  5413. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5414. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5415. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5416. KEEPALIVE_STATE(IN_HANDLER);
  5417. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5418. #endif
  5419. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5420. KEEPALIVE_STATE(IN_HANDLER);
  5421. // Set extruder to saved position
  5422. current_position[E_AXIS] = lastpos[E_AXIS];
  5423. destination[E_AXIS] = lastpos[E_AXIS];
  5424. planner.set_e_position_mm(current_position[E_AXIS]);
  5425. #if ENABLED(DELTA)
  5426. // Move XYZ to starting position, then E
  5427. calculate_delta(lastpos);
  5428. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5429. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5430. #else
  5431. // Move XY to starting position, then Z, then E
  5432. destination[X_AXIS] = lastpos[X_AXIS];
  5433. destination[Y_AXIS] = lastpos[Y_AXIS];
  5434. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5435. destination[Z_AXIS] = lastpos[Z_AXIS];
  5436. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5437. #endif
  5438. stepper.synchronize();
  5439. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5440. filament_ran_out = false;
  5441. #endif
  5442. // Show status screen
  5443. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5444. }
  5445. #endif // FILAMENT_CHANGE_FEATURE
  5446. #if ENABLED(DUAL_X_CARRIAGE)
  5447. /**
  5448. * M605: Set dual x-carriage movement mode
  5449. *
  5450. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5451. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5452. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5453. * units x-offset and an optional differential hotend temperature of
  5454. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5455. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5456. *
  5457. * Note: the X axis should be homed after changing dual x-carriage mode.
  5458. */
  5459. inline void gcode_M605() {
  5460. stepper.synchronize();
  5461. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5462. switch (dual_x_carriage_mode) {
  5463. case DXC_DUPLICATION_MODE:
  5464. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5465. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5466. SERIAL_ECHO_START;
  5467. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5468. SERIAL_CHAR(' ');
  5469. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5470. SERIAL_CHAR(',');
  5471. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5472. SERIAL_CHAR(' ');
  5473. SERIAL_ECHO(duplicate_extruder_x_offset);
  5474. SERIAL_CHAR(',');
  5475. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5476. break;
  5477. case DXC_FULL_CONTROL_MODE:
  5478. case DXC_AUTO_PARK_MODE:
  5479. break;
  5480. default:
  5481. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5482. break;
  5483. }
  5484. active_extruder_parked = false;
  5485. extruder_duplication_enabled = false;
  5486. delayed_move_time = 0;
  5487. }
  5488. #endif // DUAL_X_CARRIAGE
  5489. #if ENABLED(LIN_ADVANCE)
  5490. /**
  5491. * M905: Set advance factor
  5492. */
  5493. inline void gcode_M905() {
  5494. stepper.synchronize();
  5495. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5496. }
  5497. #endif
  5498. /**
  5499. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5500. */
  5501. inline void gcode_M907() {
  5502. #if HAS_DIGIPOTSS
  5503. for (int i = 0; i < NUM_AXIS; i++)
  5504. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5505. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5506. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5507. #endif
  5508. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5509. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5510. #endif
  5511. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5512. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5513. #endif
  5514. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5515. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5516. #endif
  5517. #if ENABLED(DIGIPOT_I2C)
  5518. // this one uses actual amps in floating point
  5519. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5520. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5521. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5522. #endif
  5523. #if ENABLED(DAC_STEPPER_CURRENT)
  5524. if (code_seen('S')) {
  5525. float dac_percent = code_value_float();
  5526. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5527. }
  5528. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5529. #endif
  5530. }
  5531. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5532. /**
  5533. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5534. */
  5535. inline void gcode_M908() {
  5536. #if HAS_DIGIPOTSS
  5537. stepper.digitalPotWrite(
  5538. code_seen('P') ? code_value_int() : 0,
  5539. code_seen('S') ? code_value_int() : 0
  5540. );
  5541. #endif
  5542. #ifdef DAC_STEPPER_CURRENT
  5543. dac_current_raw(
  5544. code_seen('P') ? code_value_byte() : -1,
  5545. code_seen('S') ? code_value_ushort() : 0
  5546. );
  5547. #endif
  5548. }
  5549. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5550. inline void gcode_M909() { dac_print_values(); }
  5551. inline void gcode_M910() { dac_commit_eeprom(); }
  5552. #endif
  5553. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5554. #if HAS_MICROSTEPS
  5555. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5556. inline void gcode_M350() {
  5557. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5558. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5559. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5560. stepper.microstep_readings();
  5561. }
  5562. /**
  5563. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5564. * S# determines MS1 or MS2, X# sets the pin high/low.
  5565. */
  5566. inline void gcode_M351() {
  5567. if (code_seen('S')) switch (code_value_byte()) {
  5568. case 1:
  5569. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5570. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5571. break;
  5572. case 2:
  5573. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5574. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5575. break;
  5576. }
  5577. stepper.microstep_readings();
  5578. }
  5579. #endif // HAS_MICROSTEPS
  5580. #if ENABLED(MIXING_EXTRUDER)
  5581. /**
  5582. * M163: Set a single mix factor for a mixing extruder
  5583. * This is called "weight" by some systems.
  5584. *
  5585. * S[index] The channel index to set
  5586. * P[float] The mix value
  5587. *
  5588. */
  5589. inline void gcode_M163() {
  5590. int mix_index = code_seen('S') ? code_value_int() : 0;
  5591. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5592. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5593. }
  5594. #if MIXING_VIRTUAL_TOOLS > 1
  5595. /**
  5596. * M164: Store the current mix factors as a virtual tool.
  5597. *
  5598. * S[index] The virtual tool to store
  5599. *
  5600. */
  5601. inline void gcode_M164() {
  5602. int tool_index = code_seen('S') ? code_value_int() : 0;
  5603. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5604. normalize_mix();
  5605. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5606. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5607. }
  5608. }
  5609. #endif
  5610. #if ENABLED(DIRECT_MIXING_IN_G1)
  5611. /**
  5612. * M165: Set multiple mix factors for a mixing extruder.
  5613. * Factors that are left out will be set to 0.
  5614. * All factors together must add up to 1.0.
  5615. *
  5616. * A[factor] Mix factor for extruder stepper 1
  5617. * B[factor] Mix factor for extruder stepper 2
  5618. * C[factor] Mix factor for extruder stepper 3
  5619. * D[factor] Mix factor for extruder stepper 4
  5620. * H[factor] Mix factor for extruder stepper 5
  5621. * I[factor] Mix factor for extruder stepper 6
  5622. *
  5623. */
  5624. inline void gcode_M165() { gcode_get_mix(); }
  5625. #endif
  5626. #endif // MIXING_EXTRUDER
  5627. /**
  5628. * M999: Restart after being stopped
  5629. *
  5630. * Default behaviour is to flush the serial buffer and request
  5631. * a resend to the host starting on the last N line received.
  5632. *
  5633. * Sending "M999 S1" will resume printing without flushing the
  5634. * existing command buffer.
  5635. *
  5636. */
  5637. inline void gcode_M999() {
  5638. Running = true;
  5639. lcd_reset_alert_level();
  5640. if (code_seen('S') && code_value_bool()) return;
  5641. // gcode_LastN = Stopped_gcode_LastN;
  5642. FlushSerialRequestResend();
  5643. }
  5644. #if ENABLED(SWITCHING_EXTRUDER)
  5645. inline void move_extruder_servo(uint8_t e) {
  5646. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5647. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5648. }
  5649. #endif
  5650. inline void invalid_extruder_error(const uint8_t &e) {
  5651. SERIAL_ECHO_START;
  5652. SERIAL_CHAR('T');
  5653. SERIAL_PROTOCOL_F(e, DEC);
  5654. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5655. }
  5656. /**
  5657. * T0-T3: Switch tool, usually switching extruders
  5658. *
  5659. * F[units/min] Set the movement feedrate
  5660. * S1 Don't move the tool in XY after change
  5661. */
  5662. inline void gcode_T(uint8_t tmp_extruder) {
  5663. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5664. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5665. invalid_extruder_error(tmp_extruder);
  5666. return;
  5667. }
  5668. // T0-Tnnn: Switch virtual tool by changing the mix
  5669. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5670. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5671. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5672. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5673. if (DEBUGGING(LEVELING)) {
  5674. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5675. SERIAL_ECHOLNPGM(")");
  5676. DEBUG_POS("BEFORE", current_position);
  5677. }
  5678. #endif
  5679. #if HOTENDS > 1
  5680. if (tmp_extruder >= EXTRUDERS) {
  5681. invalid_extruder_error(tmp_extruder);
  5682. return;
  5683. }
  5684. float old_feedrate_mm_m = feedrate_mm_m;
  5685. if (code_seen('F')) {
  5686. float next_feedrate_mm_m = code_value_axis_units(X_AXIS);
  5687. if (next_feedrate_mm_m > 0.0) old_feedrate_mm_m = feedrate_mm_m = next_feedrate_mm_m;
  5688. }
  5689. else
  5690. feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
  5691. if (tmp_extruder != active_extruder) {
  5692. bool no_move = code_seen('S') && code_value_bool();
  5693. if (!no_move && axis_unhomed_error(true, true, true)) {
  5694. SERIAL_ECHOLNPGM("No move on toolchange");
  5695. no_move = true;
  5696. }
  5697. // Save current position to destination, for use later
  5698. set_destination_to_current();
  5699. #if ENABLED(DUAL_X_CARRIAGE)
  5700. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5701. if (DEBUGGING(LEVELING)) {
  5702. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5703. switch (dual_x_carriage_mode) {
  5704. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5705. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5706. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5707. }
  5708. }
  5709. #endif
  5710. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5711. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5712. ) {
  5713. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5714. if (DEBUGGING(LEVELING)) {
  5715. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5716. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5717. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5718. }
  5719. #endif
  5720. // Park old head: 1) raise 2) move to park position 3) lower
  5721. for (uint8_t i = 0; i < 3; i++)
  5722. planner.buffer_line(
  5723. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5724. current_position[Y_AXIS],
  5725. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5726. current_position[E_AXIS],
  5727. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5728. active_extruder
  5729. );
  5730. stepper.synchronize();
  5731. }
  5732. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5733. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5734. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5735. active_extruder = tmp_extruder;
  5736. // This function resets the max/min values - the current position may be overwritten below.
  5737. set_axis_is_at_home(X_AXIS);
  5738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5739. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5740. #endif
  5741. switch (dual_x_carriage_mode) {
  5742. case DXC_FULL_CONTROL_MODE:
  5743. current_position[X_AXIS] = inactive_extruder_x_pos;
  5744. inactive_extruder_x_pos = destination[X_AXIS];
  5745. break;
  5746. case DXC_DUPLICATION_MODE:
  5747. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5748. if (active_extruder_parked)
  5749. current_position[X_AXIS] = inactive_extruder_x_pos;
  5750. else
  5751. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5752. inactive_extruder_x_pos = destination[X_AXIS];
  5753. extruder_duplication_enabled = false;
  5754. break;
  5755. default:
  5756. // record raised toolhead position for use by unpark
  5757. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5758. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5759. active_extruder_parked = true;
  5760. delayed_move_time = 0;
  5761. break;
  5762. }
  5763. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5764. if (DEBUGGING(LEVELING)) {
  5765. SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5766. SERIAL_EOL;
  5767. DEBUG_POS("New extruder (parked)", current_position);
  5768. }
  5769. #endif
  5770. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5771. #else // !DUAL_X_CARRIAGE
  5772. #if ENABLED(SWITCHING_EXTRUDER)
  5773. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5774. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5775. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5776. // Always raise by some amount
  5777. planner.buffer_line(
  5778. current_position[X_AXIS],
  5779. current_position[Y_AXIS],
  5780. current_position[Z_AXIS] + z_raise,
  5781. current_position[E_AXIS],
  5782. planner.max_feedrate_mm_s[Z_AXIS],
  5783. active_extruder
  5784. );
  5785. stepper.synchronize();
  5786. move_extruder_servo(active_extruder);
  5787. delay(500);
  5788. // Move back down, if needed
  5789. if (z_raise != z_diff) {
  5790. planner.buffer_line(
  5791. current_position[X_AXIS],
  5792. current_position[Y_AXIS],
  5793. current_position[Z_AXIS] + z_diff,
  5794. current_position[E_AXIS],
  5795. planner.max_feedrate_mm_s[Z_AXIS],
  5796. active_extruder
  5797. );
  5798. stepper.synchronize();
  5799. }
  5800. #endif
  5801. /**
  5802. * Set current_position to the position of the new nozzle.
  5803. * Offsets are based on linear distance, so we need to get
  5804. * the resulting position in coordinate space.
  5805. *
  5806. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5807. * - With mesh leveling, update Z for the new position
  5808. * - Otherwise, just use the raw linear distance
  5809. *
  5810. * Software endstops are altered here too. Consider a case where:
  5811. * E0 at X=0 ... E1 at X=10
  5812. * When we switch to E1 now X=10, but E1 can't move left.
  5813. * To express this we apply the change in XY to the software endstops.
  5814. * E1 can move farther right than E0, so the right limit is extended.
  5815. *
  5816. * Note that we don't adjust the Z software endstops. Why not?
  5817. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5818. * because the bed is 1mm lower at the new position. As long as
  5819. * the first nozzle is out of the way, the carriage should be
  5820. * allowed to move 1mm lower. This technically "breaks" the
  5821. * Z software endstop. But this is technically correct (and
  5822. * there is no viable alternative).
  5823. */
  5824. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5825. // Offset extruder, make sure to apply the bed level rotation matrix
  5826. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5827. hotend_offset[Y_AXIS][tmp_extruder],
  5828. 0),
  5829. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5830. hotend_offset[Y_AXIS][active_extruder],
  5831. 0),
  5832. offset_vec = tmp_offset_vec - act_offset_vec;
  5833. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5834. if (DEBUGGING(LEVELING)) {
  5835. tmp_offset_vec.debug("tmp_offset_vec");
  5836. act_offset_vec.debug("act_offset_vec");
  5837. offset_vec.debug("offset_vec (BEFORE)");
  5838. }
  5839. #endif
  5840. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5842. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5843. #endif
  5844. // Adjustments to the current position
  5845. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5846. current_position[Z_AXIS] += offset_vec.z;
  5847. #else // !AUTO_BED_LEVELING_FEATURE
  5848. float xydiff[2] = {
  5849. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5850. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5851. };
  5852. #if ENABLED(MESH_BED_LEVELING)
  5853. if (mbl.active()) {
  5854. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5855. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5856. #endif
  5857. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5858. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5859. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5860. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5861. if (DEBUGGING(LEVELING)) {
  5862. SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
  5863. SERIAL_EOL;
  5864. }
  5865. #endif
  5866. }
  5867. #endif // MESH_BED_LEVELING
  5868. #endif // !AUTO_BED_LEVELING_FEATURE
  5869. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5870. if (DEBUGGING(LEVELING)) {
  5871. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5872. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5873. SERIAL_ECHOLNPGM(" }");
  5874. }
  5875. #endif
  5876. // The newly-selected extruder XY is actually at...
  5877. current_position[X_AXIS] += xydiff[X_AXIS];
  5878. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5879. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5880. position_shift[i] += xydiff[i];
  5881. update_software_endstops((AxisEnum)i);
  5882. }
  5883. // Set the new active extruder
  5884. active_extruder = tmp_extruder;
  5885. #endif // !DUAL_X_CARRIAGE
  5886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5887. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5888. #endif
  5889. // Tell the planner the new "current position"
  5890. SYNC_PLAN_POSITION_KINEMATIC();
  5891. // Move to the "old position" (move the extruder into place)
  5892. if (!no_move && IsRunning()) {
  5893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5894. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5895. #endif
  5896. prepare_move_to_destination();
  5897. }
  5898. } // (tmp_extruder != active_extruder)
  5899. stepper.synchronize();
  5900. #if ENABLED(EXT_SOLENOID)
  5901. disable_all_solenoids();
  5902. enable_solenoid_on_active_extruder();
  5903. #endif // EXT_SOLENOID
  5904. feedrate_mm_m = old_feedrate_mm_m;
  5905. #else // HOTENDS <= 1
  5906. // Set the new active extruder
  5907. active_extruder = tmp_extruder;
  5908. #endif // HOTENDS <= 1
  5909. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5910. if (DEBUGGING(LEVELING)) {
  5911. DEBUG_POS("AFTER", current_position);
  5912. SERIAL_ECHOLNPGM("<<< gcode_T");
  5913. }
  5914. #endif
  5915. SERIAL_ECHO_START;
  5916. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5917. SERIAL_PROTOCOLLN((int)active_extruder);
  5918. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5919. }
  5920. /**
  5921. * Process a single command and dispatch it to its handler
  5922. * This is called from the main loop()
  5923. */
  5924. void process_next_command() {
  5925. current_command = command_queue[cmd_queue_index_r];
  5926. if (DEBUGGING(ECHO)) {
  5927. SERIAL_ECHO_START;
  5928. SERIAL_ECHOLN(current_command);
  5929. }
  5930. // Sanitize the current command:
  5931. // - Skip leading spaces
  5932. // - Bypass N[-0-9][0-9]*[ ]*
  5933. // - Overwrite * with nul to mark the end
  5934. while (*current_command == ' ') ++current_command;
  5935. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5936. current_command += 2; // skip N[-0-9]
  5937. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5938. while (*current_command == ' ') ++current_command; // skip [ ]*
  5939. }
  5940. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5941. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5942. char *cmd_ptr = current_command;
  5943. // Get the command code, which must be G, M, or T
  5944. char command_code = *cmd_ptr++;
  5945. // Skip spaces to get the numeric part
  5946. while (*cmd_ptr == ' ') cmd_ptr++;
  5947. uint16_t codenum = 0; // define ahead of goto
  5948. // Bail early if there's no code
  5949. bool code_is_good = NUMERIC(*cmd_ptr);
  5950. if (!code_is_good) goto ExitUnknownCommand;
  5951. // Get and skip the code number
  5952. do {
  5953. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5954. cmd_ptr++;
  5955. } while (NUMERIC(*cmd_ptr));
  5956. // Skip all spaces to get to the first argument, or nul
  5957. while (*cmd_ptr == ' ') cmd_ptr++;
  5958. // The command's arguments (if any) start here, for sure!
  5959. current_command_args = cmd_ptr;
  5960. KEEPALIVE_STATE(IN_HANDLER);
  5961. // Handle a known G, M, or T
  5962. switch (command_code) {
  5963. case 'G': switch (codenum) {
  5964. // G0, G1
  5965. case 0:
  5966. case 1:
  5967. gcode_G0_G1();
  5968. break;
  5969. // G2, G3
  5970. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5971. case 2: // G2 - CW ARC
  5972. case 3: // G3 - CCW ARC
  5973. gcode_G2_G3(codenum == 2);
  5974. break;
  5975. #endif
  5976. // G4 Dwell
  5977. case 4:
  5978. gcode_G4();
  5979. break;
  5980. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5981. // G5
  5982. case 5: // G5 - Cubic B_spline
  5983. gcode_G5();
  5984. break;
  5985. #endif // BEZIER_CURVE_SUPPORT
  5986. #if ENABLED(FWRETRACT)
  5987. case 10: // G10: retract
  5988. case 11: // G11: retract_recover
  5989. gcode_G10_G11(codenum == 10);
  5990. break;
  5991. #endif // FWRETRACT
  5992. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5993. case 12:
  5994. gcode_G12(); // G12: Nozzle Clean
  5995. break;
  5996. #endif // NOZZLE_CLEAN_FEATURE
  5997. #if ENABLED(INCH_MODE_SUPPORT)
  5998. case 20: //G20: Inch Mode
  5999. gcode_G20();
  6000. break;
  6001. case 21: //G21: MM Mode
  6002. gcode_G21();
  6003. break;
  6004. #endif // INCH_MODE_SUPPORT
  6005. #if ENABLED(NOZZLE_PARK_FEATURE)
  6006. case 27: // G27: Nozzle Park
  6007. gcode_G27();
  6008. break;
  6009. #endif // NOZZLE_PARK_FEATURE
  6010. case 28: // G28: Home all axes, one at a time
  6011. gcode_G28();
  6012. break;
  6013. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  6014. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6015. gcode_G29();
  6016. break;
  6017. #endif // AUTO_BED_LEVELING_FEATURE
  6018. #if HAS_BED_PROBE
  6019. case 30: // G30 Single Z probe
  6020. gcode_G30();
  6021. break;
  6022. #if ENABLED(Z_PROBE_SLED)
  6023. case 31: // G31: dock the sled
  6024. gcode_G31();
  6025. break;
  6026. case 32: // G32: undock the sled
  6027. gcode_G32();
  6028. break;
  6029. #endif // Z_PROBE_SLED
  6030. #endif // HAS_BED_PROBE
  6031. case 90: // G90
  6032. relative_mode = false;
  6033. break;
  6034. case 91: // G91
  6035. relative_mode = true;
  6036. break;
  6037. case 92: // G92
  6038. gcode_G92();
  6039. break;
  6040. }
  6041. break;
  6042. case 'M': switch (codenum) {
  6043. #if ENABLED(ULTIPANEL)
  6044. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6045. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6046. gcode_M0_M1();
  6047. break;
  6048. #endif // ULTIPANEL
  6049. case 17:
  6050. gcode_M17();
  6051. break;
  6052. #if ENABLED(SDSUPPORT)
  6053. case 20: // M20 - list SD card
  6054. gcode_M20(); break;
  6055. case 21: // M21 - init SD card
  6056. gcode_M21(); break;
  6057. case 22: //M22 - release SD card
  6058. gcode_M22(); break;
  6059. case 23: //M23 - Select file
  6060. gcode_M23(); break;
  6061. case 24: //M24 - Start SD print
  6062. gcode_M24(); break;
  6063. case 25: //M25 - Pause SD print
  6064. gcode_M25(); break;
  6065. case 26: //M26 - Set SD index
  6066. gcode_M26(); break;
  6067. case 27: //M27 - Get SD status
  6068. gcode_M27(); break;
  6069. case 28: //M28 - Start SD write
  6070. gcode_M28(); break;
  6071. case 29: //M29 - Stop SD write
  6072. gcode_M29(); break;
  6073. case 30: //M30 <filename> Delete File
  6074. gcode_M30(); break;
  6075. case 32: //M32 - Select file and start SD print
  6076. gcode_M32(); break;
  6077. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6078. case 33: //M33 - Get the long full path to a file or folder
  6079. gcode_M33(); break;
  6080. #endif // LONG_FILENAME_HOST_SUPPORT
  6081. case 928: //M928 - Start SD write
  6082. gcode_M928(); break;
  6083. #endif //SDSUPPORT
  6084. case 31: //M31 take time since the start of the SD print or an M109 command
  6085. gcode_M31();
  6086. break;
  6087. case 42: //M42 -Change pin status via gcode
  6088. gcode_M42();
  6089. break;
  6090. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6091. case 48: // M48 Z probe repeatability
  6092. gcode_M48();
  6093. break;
  6094. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6095. case 75: // Start print timer
  6096. gcode_M75();
  6097. break;
  6098. case 76: // Pause print timer
  6099. gcode_M76();
  6100. break;
  6101. case 77: // Stop print timer
  6102. gcode_M77();
  6103. break;
  6104. #if ENABLED(PRINTCOUNTER)
  6105. case 78: // Show print statistics
  6106. gcode_M78();
  6107. break;
  6108. #endif
  6109. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6110. case 100:
  6111. gcode_M100();
  6112. break;
  6113. #endif
  6114. case 104: // M104
  6115. gcode_M104();
  6116. break;
  6117. case 110: // M110: Set Current Line Number
  6118. gcode_M110();
  6119. break;
  6120. case 111: // M111: Set debug level
  6121. gcode_M111();
  6122. break;
  6123. #if DISABLED(EMERGENCY_PARSER)
  6124. case 108: // M108: Cancel Waiting
  6125. gcode_M108();
  6126. break;
  6127. case 112: // M112: Emergency Stop
  6128. gcode_M112();
  6129. break;
  6130. case 410: // M410 quickstop - Abort all the planned moves.
  6131. gcode_M410();
  6132. break;
  6133. #endif
  6134. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6135. case 113: // M113: Set Host Keepalive interval
  6136. gcode_M113();
  6137. break;
  6138. #endif
  6139. case 140: // M140: Set bed temp
  6140. gcode_M140();
  6141. break;
  6142. case 105: // M105: Read current temperature
  6143. gcode_M105();
  6144. KEEPALIVE_STATE(NOT_BUSY);
  6145. return; // "ok" already printed
  6146. case 109: // M109: Wait for temperature
  6147. gcode_M109();
  6148. break;
  6149. #if HAS_TEMP_BED
  6150. case 190: // M190: Wait for bed heater to reach target
  6151. gcode_M190();
  6152. break;
  6153. #endif // HAS_TEMP_BED
  6154. #if FAN_COUNT > 0
  6155. case 106: // M106: Fan On
  6156. gcode_M106();
  6157. break;
  6158. case 107: // M107: Fan Off
  6159. gcode_M107();
  6160. break;
  6161. #endif // FAN_COUNT > 0
  6162. #if ENABLED(BARICUDA)
  6163. // PWM for HEATER_1_PIN
  6164. #if HAS_HEATER_1
  6165. case 126: // M126: valve open
  6166. gcode_M126();
  6167. break;
  6168. case 127: // M127: valve closed
  6169. gcode_M127();
  6170. break;
  6171. #endif // HAS_HEATER_1
  6172. // PWM for HEATER_2_PIN
  6173. #if HAS_HEATER_2
  6174. case 128: // M128: valve open
  6175. gcode_M128();
  6176. break;
  6177. case 129: // M129: valve closed
  6178. gcode_M129();
  6179. break;
  6180. #endif // HAS_HEATER_2
  6181. #endif // BARICUDA
  6182. #if HAS_POWER_SWITCH
  6183. case 80: // M80: Turn on Power Supply
  6184. gcode_M80();
  6185. break;
  6186. #endif // HAS_POWER_SWITCH
  6187. case 81: // M81: Turn off Power, including Power Supply, if possible
  6188. gcode_M81();
  6189. break;
  6190. case 82:
  6191. gcode_M82();
  6192. break;
  6193. case 83:
  6194. gcode_M83();
  6195. break;
  6196. case 18: // (for compatibility)
  6197. case 84: // M84
  6198. gcode_M18_M84();
  6199. break;
  6200. case 85: // M85
  6201. gcode_M85();
  6202. break;
  6203. case 92: // M92: Set the steps-per-unit for one or more axes
  6204. gcode_M92();
  6205. break;
  6206. case 115: // M115: Report capabilities
  6207. gcode_M115();
  6208. break;
  6209. case 117: // M117: Set LCD message text, if possible
  6210. gcode_M117();
  6211. break;
  6212. case 114: // M114: Report current position
  6213. gcode_M114();
  6214. break;
  6215. case 120: // M120: Enable endstops
  6216. gcode_M120();
  6217. break;
  6218. case 121: // M121: Disable endstops
  6219. gcode_M121();
  6220. break;
  6221. case 119: // M119: Report endstop states
  6222. gcode_M119();
  6223. break;
  6224. #if ENABLED(ULTIPANEL)
  6225. case 145: // M145: Set material heatup parameters
  6226. gcode_M145();
  6227. break;
  6228. #endif
  6229. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6230. case 149:
  6231. gcode_M149();
  6232. break;
  6233. #endif
  6234. #if ENABLED(BLINKM)
  6235. case 150: // M150
  6236. gcode_M150();
  6237. break;
  6238. #endif //BLINKM
  6239. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6240. case 155:
  6241. gcode_M155();
  6242. break;
  6243. case 156:
  6244. gcode_M156();
  6245. break;
  6246. #endif //EXPERIMENTAL_I2CBUS
  6247. #if ENABLED(MIXING_EXTRUDER)
  6248. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6249. gcode_M163();
  6250. break;
  6251. #if MIXING_VIRTUAL_TOOLS > 1
  6252. case 164: // M164 S<int> save current mix as a virtual extruder
  6253. gcode_M164();
  6254. break;
  6255. #endif
  6256. #if ENABLED(DIRECT_MIXING_IN_G1)
  6257. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6258. gcode_M165();
  6259. break;
  6260. #endif
  6261. #endif
  6262. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6263. gcode_M200();
  6264. break;
  6265. case 201: // M201
  6266. gcode_M201();
  6267. break;
  6268. #if 0 // Not used for Sprinter/grbl gen6
  6269. case 202: // M202
  6270. gcode_M202();
  6271. break;
  6272. #endif
  6273. case 203: // M203 max feedrate units/sec
  6274. gcode_M203();
  6275. break;
  6276. case 204: // M204 acclereration S normal moves T filmanent only moves
  6277. gcode_M204();
  6278. break;
  6279. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6280. gcode_M205();
  6281. break;
  6282. case 206: // M206 additional homing offset
  6283. gcode_M206();
  6284. break;
  6285. #if ENABLED(DELTA)
  6286. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6287. gcode_M665();
  6288. break;
  6289. #endif
  6290. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6291. case 666: // M666 set delta / dual endstop adjustment
  6292. gcode_M666();
  6293. break;
  6294. #endif
  6295. #if ENABLED(FWRETRACT)
  6296. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6297. gcode_M207();
  6298. break;
  6299. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6300. gcode_M208();
  6301. break;
  6302. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6303. gcode_M209();
  6304. break;
  6305. #endif // FWRETRACT
  6306. #if HOTENDS > 1
  6307. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6308. gcode_M218();
  6309. break;
  6310. #endif
  6311. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6312. gcode_M220();
  6313. break;
  6314. case 221: // M221 - Set Flow Percentage: S<percent>
  6315. gcode_M221();
  6316. break;
  6317. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6318. gcode_M226();
  6319. break;
  6320. #if HAS_SERVOS
  6321. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6322. gcode_M280();
  6323. break;
  6324. #endif // HAS_SERVOS
  6325. #if HAS_BUZZER
  6326. case 300: // M300 - Play beep tone
  6327. gcode_M300();
  6328. break;
  6329. #endif // HAS_BUZZER
  6330. #if ENABLED(PIDTEMP)
  6331. case 301: // M301
  6332. gcode_M301();
  6333. break;
  6334. #endif // PIDTEMP
  6335. #if ENABLED(PIDTEMPBED)
  6336. case 304: // M304
  6337. gcode_M304();
  6338. break;
  6339. #endif // PIDTEMPBED
  6340. #if defined(CHDK) || HAS_PHOTOGRAPH
  6341. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6342. gcode_M240();
  6343. break;
  6344. #endif // CHDK || PHOTOGRAPH_PIN
  6345. #if HAS_LCD_CONTRAST
  6346. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6347. gcode_M250();
  6348. break;
  6349. #endif // HAS_LCD_CONTRAST
  6350. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6351. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6352. gcode_M302();
  6353. break;
  6354. #endif // PREVENT_DANGEROUS_EXTRUDE
  6355. case 303: // M303 PID autotune
  6356. gcode_M303();
  6357. break;
  6358. #if ENABLED(SCARA)
  6359. case 360: // M360 SCARA Theta pos1
  6360. if (gcode_M360()) return;
  6361. break;
  6362. case 361: // M361 SCARA Theta pos2
  6363. if (gcode_M361()) return;
  6364. break;
  6365. case 362: // M362 SCARA Psi pos1
  6366. if (gcode_M362()) return;
  6367. break;
  6368. case 363: // M363 SCARA Psi pos2
  6369. if (gcode_M363()) return;
  6370. break;
  6371. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6372. if (gcode_M364()) return;
  6373. break;
  6374. case 365: // M365 Set SCARA scaling for X Y Z
  6375. gcode_M365();
  6376. break;
  6377. #endif // SCARA
  6378. case 400: // M400 finish all moves
  6379. gcode_M400();
  6380. break;
  6381. #if HAS_BED_PROBE
  6382. case 401:
  6383. gcode_M401();
  6384. break;
  6385. case 402:
  6386. gcode_M402();
  6387. break;
  6388. #endif // HAS_BED_PROBE
  6389. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6390. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6391. gcode_M404();
  6392. break;
  6393. case 405: //M405 Turn on filament sensor for control
  6394. gcode_M405();
  6395. break;
  6396. case 406: //M406 Turn off filament sensor for control
  6397. gcode_M406();
  6398. break;
  6399. case 407: //M407 Display measured filament diameter
  6400. gcode_M407();
  6401. break;
  6402. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6403. #if ENABLED(MESH_BED_LEVELING)
  6404. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6405. gcode_M420();
  6406. break;
  6407. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6408. gcode_M421();
  6409. break;
  6410. #endif
  6411. case 428: // M428 Apply current_position to home_offset
  6412. gcode_M428();
  6413. break;
  6414. case 500: // M500 Store settings in EEPROM
  6415. gcode_M500();
  6416. break;
  6417. case 501: // M501 Read settings from EEPROM
  6418. gcode_M501();
  6419. break;
  6420. case 502: // M502 Revert to default settings
  6421. gcode_M502();
  6422. break;
  6423. case 503: // M503 print settings currently in memory
  6424. gcode_M503();
  6425. break;
  6426. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6427. case 540:
  6428. gcode_M540();
  6429. break;
  6430. #endif
  6431. #if HAS_BED_PROBE
  6432. case 851:
  6433. gcode_M851();
  6434. break;
  6435. #endif // HAS_BED_PROBE
  6436. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6437. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6438. gcode_M600();
  6439. break;
  6440. #endif // FILAMENT_CHANGE_FEATURE
  6441. #if ENABLED(DUAL_X_CARRIAGE)
  6442. case 605:
  6443. gcode_M605();
  6444. break;
  6445. #endif // DUAL_X_CARRIAGE
  6446. #if ENABLED(LIN_ADVANCE)
  6447. case 905: // M905 Set advance factor.
  6448. gcode_M905();
  6449. break;
  6450. #endif
  6451. case 907: // M907 Set digital trimpot motor current using axis codes.
  6452. gcode_M907();
  6453. break;
  6454. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6455. case 908: // M908 Control digital trimpot directly.
  6456. gcode_M908();
  6457. break;
  6458. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6459. case 909: // M909 Print digipot/DAC current value
  6460. gcode_M909();
  6461. break;
  6462. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6463. gcode_M910();
  6464. break;
  6465. #endif
  6466. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6467. #if HAS_MICROSTEPS
  6468. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6469. gcode_M350();
  6470. break;
  6471. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6472. gcode_M351();
  6473. break;
  6474. #endif // HAS_MICROSTEPS
  6475. case 999: // M999: Restart after being Stopped
  6476. gcode_M999();
  6477. break;
  6478. }
  6479. break;
  6480. case 'T':
  6481. gcode_T(codenum);
  6482. break;
  6483. default: code_is_good = false;
  6484. }
  6485. KEEPALIVE_STATE(NOT_BUSY);
  6486. ExitUnknownCommand:
  6487. // Still unknown command? Throw an error
  6488. if (!code_is_good) unknown_command_error();
  6489. ok_to_send();
  6490. }
  6491. void FlushSerialRequestResend() {
  6492. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6493. MYSERIAL.flush();
  6494. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6495. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6496. ok_to_send();
  6497. }
  6498. void ok_to_send() {
  6499. refresh_cmd_timeout();
  6500. if (!send_ok[cmd_queue_index_r]) return;
  6501. SERIAL_PROTOCOLPGM(MSG_OK);
  6502. #if ENABLED(ADVANCED_OK)
  6503. char* p = command_queue[cmd_queue_index_r];
  6504. if (*p == 'N') {
  6505. SERIAL_PROTOCOL(' ');
  6506. SERIAL_ECHO(*p++);
  6507. while (NUMERIC_SIGNED(*p))
  6508. SERIAL_ECHO(*p++);
  6509. }
  6510. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6511. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6512. #endif
  6513. SERIAL_EOL;
  6514. }
  6515. void clamp_to_software_endstops(float target[3]) {
  6516. if (min_software_endstops) {
  6517. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6518. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6519. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6520. }
  6521. if (max_software_endstops) {
  6522. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6523. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6524. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6525. }
  6526. }
  6527. #if ENABLED(DELTA)
  6528. void recalc_delta_settings(float radius, float diagonal_rod) {
  6529. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6530. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6531. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6532. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6533. delta_tower3_x = 0.0; // back middle tower
  6534. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6535. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6536. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6537. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6538. }
  6539. void calculate_delta(float cartesian[3]) {
  6540. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6541. - sq(delta_tower1_x - cartesian[X_AXIS])
  6542. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6543. ) + cartesian[Z_AXIS];
  6544. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6545. - sq(delta_tower2_x - cartesian[X_AXIS])
  6546. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6547. ) + cartesian[Z_AXIS];
  6548. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6549. - sq(delta_tower3_x - cartesian[X_AXIS])
  6550. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6551. ) + cartesian[Z_AXIS];
  6552. /**
  6553. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6554. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6555. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6556. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6557. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6558. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6559. */
  6560. }
  6561. float delta_safe_distance_from_top() {
  6562. float cartesian[3] = { 0 };
  6563. calculate_delta(cartesian);
  6564. float distance = delta[TOWER_3];
  6565. cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
  6566. calculate_delta(cartesian);
  6567. return abs(distance - delta[TOWER_3]);
  6568. }
  6569. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6570. // Adjust print surface height by linear interpolation over the bed_level array.
  6571. void adjust_delta(float cartesian[3]) {
  6572. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6573. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6574. float h1 = 0.001 - half, h2 = half - 0.001,
  6575. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6576. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6577. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6578. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6579. z1 = bed_level[floor_x + half][floor_y + half],
  6580. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6581. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6582. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6583. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6584. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6585. offset = (1 - ratio_x) * left + ratio_x * right;
  6586. delta[X_AXIS] += offset;
  6587. delta[Y_AXIS] += offset;
  6588. delta[Z_AXIS] += offset;
  6589. /**
  6590. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6591. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6592. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6593. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6594. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6595. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6596. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6597. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6598. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6599. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6600. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6601. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6602. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6603. */
  6604. }
  6605. #endif // AUTO_BED_LEVELING_FEATURE
  6606. #endif // DELTA
  6607. #if ENABLED(MESH_BED_LEVELING)
  6608. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6609. void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6610. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6611. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6612. cx2 = mbl.cell_index_x(RAW_POSITION(destination[X_AXIS], X_AXIS)),
  6613. cy2 = mbl.cell_index_y(RAW_POSITION(destination[Y_AXIS], Y_AXIS));
  6614. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6615. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6616. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6617. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6618. if (cx1 == cx2 && cy1 == cy2) {
  6619. // Start and end on same mesh square
  6620. line_to_destination(fr_mm_m);
  6621. set_current_to_destination();
  6622. return;
  6623. }
  6624. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6625. float normalized_dist, end[NUM_AXIS];
  6626. // Split at the left/front border of the right/top square
  6627. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6628. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6629. memcpy(end, destination, sizeof(end));
  6630. destination[X_AXIS] = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS];
  6631. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6632. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6633. CBI(x_splits, gcx);
  6634. }
  6635. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6636. memcpy(end, destination, sizeof(end));
  6637. destination[Y_AXIS] = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS];
  6638. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6639. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6640. CBI(y_splits, gcy);
  6641. }
  6642. else {
  6643. // Already split on a border
  6644. line_to_destination(fr_mm_m);
  6645. set_current_to_destination();
  6646. return;
  6647. }
  6648. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6649. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6650. // Do the split and look for more borders
  6651. mesh_line_to_destination(fr_mm_m, x_splits, y_splits);
  6652. // Restore destination from stack
  6653. memcpy(destination, end, sizeof(end));
  6654. mesh_line_to_destination(fr_mm_m, x_splits, y_splits);
  6655. }
  6656. #endif // MESH_BED_LEVELING
  6657. #if ENABLED(DELTA) || ENABLED(SCARA)
  6658. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6659. float difference[NUM_AXIS];
  6660. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6661. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6662. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6663. if (cartesian_mm < 0.000001) return false;
  6664. float _feedrate_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
  6665. float seconds = cartesian_mm / _feedrate_mm_s;
  6666. int steps = max(1, int(delta_segments_per_second * seconds));
  6667. float inv_steps = 1.0/steps;
  6668. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6669. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6670. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6671. for (int s = 1; s <= steps; s++) {
  6672. float fraction = float(s) * inv_steps;
  6673. for (int8_t i = 0; i < NUM_AXIS; i++)
  6674. target[i] = current_position[i] + difference[i] * fraction;
  6675. calculate_delta(target);
  6676. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6677. if (!bed_leveling_in_progress) adjust_delta(target);
  6678. #endif
  6679. //DEBUG_POS("prepare_delta_move_to", target);
  6680. //DEBUG_POS("prepare_delta_move_to", delta);
  6681. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6682. }
  6683. return true;
  6684. }
  6685. #endif // DELTA || SCARA
  6686. #if ENABLED(SCARA)
  6687. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6688. #endif
  6689. #if ENABLED(DUAL_X_CARRIAGE)
  6690. inline bool prepare_move_to_destination_dualx() {
  6691. if (active_extruder_parked) {
  6692. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6693. // move duplicate extruder into correct duplication position.
  6694. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6695. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6696. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6697. SYNC_PLAN_POSITION_KINEMATIC();
  6698. stepper.synchronize();
  6699. extruder_duplication_enabled = true;
  6700. active_extruder_parked = false;
  6701. }
  6702. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6703. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6704. // This is a travel move (with no extrusion)
  6705. // Skip it, but keep track of the current position
  6706. // (so it can be used as the start of the next non-travel move)
  6707. if (delayed_move_time != 0xFFFFFFFFUL) {
  6708. set_current_to_destination();
  6709. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6710. delayed_move_time = millis();
  6711. return false;
  6712. }
  6713. }
  6714. delayed_move_time = 0;
  6715. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6716. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6717. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6718. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6719. active_extruder_parked = false;
  6720. }
  6721. }
  6722. return true;
  6723. }
  6724. #endif // DUAL_X_CARRIAGE
  6725. #if DISABLED(DELTA) && DISABLED(SCARA)
  6726. inline bool prepare_move_to_destination_cartesian() {
  6727. // Do not use feedrate_percentage for E or Z only moves
  6728. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6729. line_to_destination();
  6730. }
  6731. else {
  6732. #if ENABLED(MESH_BED_LEVELING)
  6733. if (mbl.active()) {
  6734. mesh_line_to_destination(MMM_SCALED(feedrate_mm_m));
  6735. return false;
  6736. }
  6737. else
  6738. #endif
  6739. line_to_destination(MMM_SCALED(feedrate_mm_m));
  6740. }
  6741. return true;
  6742. }
  6743. #endif // !DELTA && !SCARA
  6744. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6745. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6746. if (DEBUGGING(DRYRUN)) return;
  6747. float de = dest_e - curr_e;
  6748. if (de) {
  6749. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6750. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6751. SERIAL_ECHO_START;
  6752. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6753. }
  6754. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6755. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6756. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6757. SERIAL_ECHO_START;
  6758. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6759. }
  6760. #endif
  6761. }
  6762. }
  6763. #endif // PREVENT_DANGEROUS_EXTRUDE
  6764. /**
  6765. * Prepare a single move and get ready for the next one
  6766. *
  6767. * (This may call planner.buffer_line several times to put
  6768. * smaller moves into the planner for DELTA or SCARA.)
  6769. */
  6770. void prepare_move_to_destination() {
  6771. clamp_to_software_endstops(destination);
  6772. refresh_cmd_timeout();
  6773. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6774. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6775. #endif
  6776. #if ENABLED(SCARA)
  6777. if (!prepare_scara_move_to(destination)) return;
  6778. #elif ENABLED(DELTA)
  6779. if (!prepare_delta_move_to(destination)) return;
  6780. #else
  6781. #if ENABLED(DUAL_X_CARRIAGE)
  6782. if (!prepare_move_to_destination_dualx()) return;
  6783. #endif
  6784. if (!prepare_move_to_destination_cartesian()) return;
  6785. #endif
  6786. set_current_to_destination();
  6787. }
  6788. #if ENABLED(ARC_SUPPORT)
  6789. /**
  6790. * Plan an arc in 2 dimensions
  6791. *
  6792. * The arc is approximated by generating many small linear segments.
  6793. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6794. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6795. * larger segments will tend to be more efficient. Your slicer should have
  6796. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6797. */
  6798. void plan_arc(
  6799. float target[NUM_AXIS], // Destination position
  6800. float* offset, // Center of rotation relative to current_position
  6801. uint8_t clockwise // Clockwise?
  6802. ) {
  6803. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6804. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6805. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6806. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6807. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6808. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6809. r_Y = -offset[Y_AXIS],
  6810. rt_X = target[X_AXIS] - center_X,
  6811. rt_Y = target[Y_AXIS] - center_Y;
  6812. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6813. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6814. if (angular_travel < 0) angular_travel += RADIANS(360);
  6815. if (clockwise) angular_travel -= RADIANS(360);
  6816. // Make a circle if the angular rotation is 0
  6817. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6818. angular_travel += RADIANS(360);
  6819. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6820. if (mm_of_travel < 0.001) return;
  6821. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6822. if (segments == 0) segments = 1;
  6823. float theta_per_segment = angular_travel / segments;
  6824. float linear_per_segment = linear_travel / segments;
  6825. float extruder_per_segment = extruder_travel / segments;
  6826. /**
  6827. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6828. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6829. * r_T = [cos(phi) -sin(phi);
  6830. * sin(phi) cos(phi] * r ;
  6831. *
  6832. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6833. * defined from the circle center to the initial position. Each line segment is formed by successive
  6834. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6835. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6836. * all double numbers are single precision on the Arduino. (True double precision will not have
  6837. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6838. * tool precision in some cases. Therefore, arc path correction is implemented.
  6839. *
  6840. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6841. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6842. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6843. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6844. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6845. * issue for CNC machines with the single precision Arduino calculations.
  6846. *
  6847. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6848. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6849. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6850. * This is important when there are successive arc motions.
  6851. */
  6852. // Vector rotation matrix values
  6853. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6854. float sin_T = theta_per_segment;
  6855. float arc_target[NUM_AXIS];
  6856. float sin_Ti, cos_Ti, r_new_Y;
  6857. uint16_t i;
  6858. int8_t count = 0;
  6859. // Initialize the linear axis
  6860. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6861. // Initialize the extruder axis
  6862. arc_target[E_AXIS] = current_position[E_AXIS];
  6863. float fr_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
  6864. millis_t next_idle_ms = millis() + 200UL;
  6865. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6866. thermalManager.manage_heater();
  6867. millis_t now = millis();
  6868. if (ELAPSED(now, next_idle_ms)) {
  6869. next_idle_ms = now + 200UL;
  6870. idle();
  6871. }
  6872. if (++count < N_ARC_CORRECTION) {
  6873. // Apply vector rotation matrix to previous r_X / 1
  6874. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6875. r_X = r_X * cos_T - r_Y * sin_T;
  6876. r_Y = r_new_Y;
  6877. }
  6878. else {
  6879. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6880. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6881. // To reduce stuttering, the sin and cos could be computed at different times.
  6882. // For now, compute both at the same time.
  6883. cos_Ti = cos(i * theta_per_segment);
  6884. sin_Ti = sin(i * theta_per_segment);
  6885. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6886. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6887. count = 0;
  6888. }
  6889. // Update arc_target location
  6890. arc_target[X_AXIS] = center_X + r_X;
  6891. arc_target[Y_AXIS] = center_Y + r_Y;
  6892. arc_target[Z_AXIS] += linear_per_segment;
  6893. arc_target[E_AXIS] += extruder_per_segment;
  6894. clamp_to_software_endstops(arc_target);
  6895. #if ENABLED(DELTA) || ENABLED(SCARA)
  6896. calculate_delta(arc_target);
  6897. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6898. adjust_delta(arc_target);
  6899. #endif
  6900. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6901. #else
  6902. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6903. #endif
  6904. }
  6905. // Ensure last segment arrives at target location.
  6906. #if ENABLED(DELTA) || ENABLED(SCARA)
  6907. calculate_delta(target);
  6908. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6909. adjust_delta(target);
  6910. #endif
  6911. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6912. #else
  6913. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6914. #endif
  6915. // As far as the parser is concerned, the position is now == target. In reality the
  6916. // motion control system might still be processing the action and the real tool position
  6917. // in any intermediate location.
  6918. set_current_to_destination();
  6919. }
  6920. #endif
  6921. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6922. void plan_cubic_move(const float offset[4]) {
  6923. cubic_b_spline(current_position, destination, offset, MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
  6924. // As far as the parser is concerned, the position is now == target. In reality the
  6925. // motion control system might still be processing the action and the real tool position
  6926. // in any intermediate location.
  6927. set_current_to_destination();
  6928. }
  6929. #endif // BEZIER_CURVE_SUPPORT
  6930. #if HAS_CONTROLLERFAN
  6931. void controllerFan() {
  6932. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6933. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6934. millis_t ms = millis();
  6935. if (ELAPSED(ms, nextMotorCheck)) {
  6936. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6937. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6938. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6939. #if E_STEPPERS > 1
  6940. || E1_ENABLE_READ == E_ENABLE_ON
  6941. #if HAS_X2_ENABLE
  6942. || X2_ENABLE_READ == X_ENABLE_ON
  6943. #endif
  6944. #if E_STEPPERS > 2
  6945. || E2_ENABLE_READ == E_ENABLE_ON
  6946. #if E_STEPPERS > 3
  6947. || E3_ENABLE_READ == E_ENABLE_ON
  6948. #endif
  6949. #endif
  6950. #endif
  6951. ) {
  6952. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6953. }
  6954. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6955. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6956. // allows digital or PWM fan output to be used (see M42 handling)
  6957. digitalWrite(CONTROLLERFAN_PIN, speed);
  6958. analogWrite(CONTROLLERFAN_PIN, speed);
  6959. }
  6960. }
  6961. #endif // HAS_CONTROLLERFAN
  6962. #if ENABLED(SCARA)
  6963. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6964. // Perform forward kinematics, and place results in delta[3]
  6965. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6966. float x_sin, x_cos, y_sin, y_cos;
  6967. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6968. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6969. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6970. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6971. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6972. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6973. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6974. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6975. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6976. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6977. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6978. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6979. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6980. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6981. }
  6982. void calculate_delta(float cartesian[3]) {
  6983. //reverse kinematics.
  6984. // Perform reversed kinematics, and place results in delta[3]
  6985. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6986. float SCARA_pos[2];
  6987. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6988. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6989. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6990. #if (Linkage_1 == Linkage_2)
  6991. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6992. #else
  6993. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6994. #endif
  6995. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6996. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6997. SCARA_K2 = Linkage_2 * SCARA_S2;
  6998. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6999. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  7000. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  7001. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  7002. delta[Z_AXIS] = cartesian[Z_AXIS];
  7003. /**
  7004. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  7005. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  7006. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  7007. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  7008. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  7009. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  7010. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  7011. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  7012. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  7013. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  7014. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  7015. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  7016. SERIAL_EOL;
  7017. */
  7018. }
  7019. #endif // SCARA
  7020. #if ENABLED(TEMP_STAT_LEDS)
  7021. static bool red_led = false;
  7022. static millis_t next_status_led_update_ms = 0;
  7023. void handle_status_leds(void) {
  7024. float max_temp = 0.0;
  7025. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7026. next_status_led_update_ms += 500; // Update every 0.5s
  7027. HOTEND_LOOP() {
  7028. max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
  7029. }
  7030. #if HAS_TEMP_BED
  7031. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  7032. #endif
  7033. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7034. if (new_led != red_led) {
  7035. red_led = new_led;
  7036. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7037. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7038. }
  7039. }
  7040. }
  7041. #endif
  7042. void enable_all_steppers() {
  7043. enable_x();
  7044. enable_y();
  7045. enable_z();
  7046. enable_e0();
  7047. enable_e1();
  7048. enable_e2();
  7049. enable_e3();
  7050. }
  7051. void disable_all_steppers() {
  7052. disable_x();
  7053. disable_y();
  7054. disable_z();
  7055. disable_e0();
  7056. disable_e1();
  7057. disable_e2();
  7058. disable_e3();
  7059. }
  7060. /**
  7061. * Standard idle routine keeps the machine alive
  7062. */
  7063. void idle(
  7064. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7065. bool no_stepper_sleep/*=false*/
  7066. #endif
  7067. ) {
  7068. lcd_update();
  7069. host_keepalive();
  7070. manage_inactivity(
  7071. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7072. no_stepper_sleep
  7073. #endif
  7074. );
  7075. thermalManager.manage_heater();
  7076. #if ENABLED(PRINTCOUNTER)
  7077. print_job_timer.tick();
  7078. #endif
  7079. #if HAS_BUZZER
  7080. buzzer.tick();
  7081. #endif
  7082. }
  7083. /**
  7084. * Manage several activities:
  7085. * - Check for Filament Runout
  7086. * - Keep the command buffer full
  7087. * - Check for maximum inactive time between commands
  7088. * - Check for maximum inactive time between stepper commands
  7089. * - Check if pin CHDK needs to go LOW
  7090. * - Check for KILL button held down
  7091. * - Check for HOME button held down
  7092. * - Check if cooling fan needs to be switched on
  7093. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7094. */
  7095. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7096. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7097. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7098. handle_filament_runout();
  7099. #endif
  7100. if (commands_in_queue < BUFSIZE) get_available_commands();
  7101. millis_t ms = millis();
  7102. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7103. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7104. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7105. #if ENABLED(DISABLE_INACTIVE_X)
  7106. disable_x();
  7107. #endif
  7108. #if ENABLED(DISABLE_INACTIVE_Y)
  7109. disable_y();
  7110. #endif
  7111. #if ENABLED(DISABLE_INACTIVE_Z)
  7112. disable_z();
  7113. #endif
  7114. #if ENABLED(DISABLE_INACTIVE_E)
  7115. disable_e0();
  7116. disable_e1();
  7117. disable_e2();
  7118. disable_e3();
  7119. #endif
  7120. }
  7121. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7122. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7123. chdkActive = false;
  7124. WRITE(CHDK, LOW);
  7125. }
  7126. #endif
  7127. #if HAS_KILL
  7128. // Check if the kill button was pressed and wait just in case it was an accidental
  7129. // key kill key press
  7130. // -------------------------------------------------------------------------------
  7131. static int killCount = 0; // make the inactivity button a bit less responsive
  7132. const int KILL_DELAY = 750;
  7133. if (!READ(KILL_PIN))
  7134. killCount++;
  7135. else if (killCount > 0)
  7136. killCount--;
  7137. // Exceeded threshold and we can confirm that it was not accidental
  7138. // KILL the machine
  7139. // ----------------------------------------------------------------
  7140. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7141. #endif
  7142. #if HAS_HOME
  7143. // Check to see if we have to home, use poor man's debouncer
  7144. // ---------------------------------------------------------
  7145. static int homeDebounceCount = 0; // poor man's debouncing count
  7146. const int HOME_DEBOUNCE_DELAY = 2500;
  7147. if (!READ(HOME_PIN)) {
  7148. if (!homeDebounceCount) {
  7149. enqueue_and_echo_commands_P(PSTR("G28"));
  7150. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7151. }
  7152. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7153. homeDebounceCount++;
  7154. else
  7155. homeDebounceCount = 0;
  7156. }
  7157. #endif
  7158. #if HAS_CONTROLLERFAN
  7159. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7160. #endif
  7161. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7162. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7163. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7164. #if ENABLED(SWITCHING_EXTRUDER)
  7165. bool oldstatus = E0_ENABLE_READ;
  7166. enable_e0();
  7167. #else // !SWITCHING_EXTRUDER
  7168. bool oldstatus;
  7169. switch (active_extruder) {
  7170. case 0:
  7171. oldstatus = E0_ENABLE_READ;
  7172. enable_e0();
  7173. break;
  7174. #if E_STEPPERS > 1
  7175. case 1:
  7176. oldstatus = E1_ENABLE_READ;
  7177. enable_e1();
  7178. break;
  7179. #if E_STEPPERS > 2
  7180. case 2:
  7181. oldstatus = E2_ENABLE_READ;
  7182. enable_e2();
  7183. break;
  7184. #if E_STEPPERS > 3
  7185. case 3:
  7186. oldstatus = E3_ENABLE_READ;
  7187. enable_e3();
  7188. break;
  7189. #endif
  7190. #endif
  7191. #endif
  7192. }
  7193. #endif // !SWITCHING_EXTRUDER
  7194. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7195. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7196. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  7197. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  7198. current_position[E_AXIS] = oldepos;
  7199. destination[E_AXIS] = oldedes;
  7200. planner.set_e_position_mm(oldepos);
  7201. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7202. stepper.synchronize();
  7203. #if ENABLED(SWITCHING_EXTRUDER)
  7204. E0_ENABLE_WRITE(oldstatus);
  7205. #else
  7206. switch (active_extruder) {
  7207. case 0:
  7208. E0_ENABLE_WRITE(oldstatus);
  7209. break;
  7210. #if E_STEPPERS > 1
  7211. case 1:
  7212. E1_ENABLE_WRITE(oldstatus);
  7213. break;
  7214. #if E_STEPPERS > 2
  7215. case 2:
  7216. E2_ENABLE_WRITE(oldstatus);
  7217. break;
  7218. #if E_STEPPERS > 3
  7219. case 3:
  7220. E3_ENABLE_WRITE(oldstatus);
  7221. break;
  7222. #endif
  7223. #endif
  7224. #endif
  7225. }
  7226. #endif // !SWITCHING_EXTRUDER
  7227. }
  7228. #endif // EXTRUDER_RUNOUT_PREVENT
  7229. #if ENABLED(DUAL_X_CARRIAGE)
  7230. // handle delayed move timeout
  7231. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7232. // travel moves have been received so enact them
  7233. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7234. set_destination_to_current();
  7235. prepare_move_to_destination();
  7236. }
  7237. #endif
  7238. #if ENABLED(TEMP_STAT_LEDS)
  7239. handle_status_leds();
  7240. #endif
  7241. planner.check_axes_activity();
  7242. }
  7243. void kill(const char* lcd_msg) {
  7244. SERIAL_ERROR_START;
  7245. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7246. #if ENABLED(ULTRA_LCD)
  7247. kill_screen(lcd_msg);
  7248. #else
  7249. UNUSED(lcd_msg);
  7250. #endif
  7251. for (int i = 5; i--;) delay(100); // Wait a short time
  7252. cli(); // Stop interrupts
  7253. thermalManager.disable_all_heaters();
  7254. disable_all_steppers();
  7255. #if HAS_POWER_SWITCH
  7256. pinMode(PS_ON_PIN, INPUT);
  7257. #endif
  7258. suicide();
  7259. while (1) {
  7260. #if ENABLED(USE_WATCHDOG)
  7261. watchdog_reset();
  7262. #endif
  7263. } // Wait for reset
  7264. }
  7265. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7266. void handle_filament_runout() {
  7267. if (!filament_ran_out) {
  7268. filament_ran_out = true;
  7269. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7270. stepper.synchronize();
  7271. }
  7272. }
  7273. #endif // FILAMENT_RUNOUT_SENSOR
  7274. #if ENABLED(FAST_PWM_FAN)
  7275. void setPwmFrequency(uint8_t pin, int val) {
  7276. val &= 0x07;
  7277. switch (digitalPinToTimer(pin)) {
  7278. #if defined(TCCR0A)
  7279. case TIMER0A:
  7280. case TIMER0B:
  7281. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7282. // TCCR0B |= val;
  7283. break;
  7284. #endif
  7285. #if defined(TCCR1A)
  7286. case TIMER1A:
  7287. case TIMER1B:
  7288. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7289. // TCCR1B |= val;
  7290. break;
  7291. #endif
  7292. #if defined(TCCR2)
  7293. case TIMER2:
  7294. case TIMER2:
  7295. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7296. TCCR2 |= val;
  7297. break;
  7298. #endif
  7299. #if defined(TCCR2A)
  7300. case TIMER2A:
  7301. case TIMER2B:
  7302. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7303. TCCR2B |= val;
  7304. break;
  7305. #endif
  7306. #if defined(TCCR3A)
  7307. case TIMER3A:
  7308. case TIMER3B:
  7309. case TIMER3C:
  7310. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7311. TCCR3B |= val;
  7312. break;
  7313. #endif
  7314. #if defined(TCCR4A)
  7315. case TIMER4A:
  7316. case TIMER4B:
  7317. case TIMER4C:
  7318. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7319. TCCR4B |= val;
  7320. break;
  7321. #endif
  7322. #if defined(TCCR5A)
  7323. case TIMER5A:
  7324. case TIMER5B:
  7325. case TIMER5C:
  7326. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7327. TCCR5B |= val;
  7328. break;
  7329. #endif
  7330. }
  7331. }
  7332. #endif // FAST_PWM_FAN
  7333. void stop() {
  7334. thermalManager.disable_all_heaters();
  7335. if (IsRunning()) {
  7336. Running = false;
  7337. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7338. SERIAL_ERROR_START;
  7339. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7340. LCD_MESSAGEPGM(MSG_STOPPED);
  7341. }
  7342. }
  7343. float calculate_volumetric_multiplier(float diameter) {
  7344. if (!volumetric_enabled || diameter == 0) return 1.0;
  7345. float d2 = diameter * 0.5;
  7346. return 1.0 / (M_PI * d2 * d2);
  7347. }
  7348. void calculate_volumetric_multipliers() {
  7349. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7350. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7351. }