My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 119KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores parameters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from EEPROM)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M665 - set delta configurations
  149. // M666 - set delta endstop adjustment
  150. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  151. // M907 - Set digital trimpot motor current using axis codes.
  152. // M908 - Control digital trimpot directly.
  153. // M350 - Set microstepping mode.
  154. // M351 - Toggle MS1 MS2 pins directly.
  155. // M928 - Start SD logging (M928 filename.g) - ended by M29
  156. // M999 - Restart after being stopped by error
  157. //Stepper Movement Variables
  158. //===========================================================================
  159. //=============================imported variables============================
  160. //===========================================================================
  161. //===========================================================================
  162. //=============================public variables=============================
  163. //===========================================================================
  164. #ifdef SDSUPPORT
  165. CardReader card;
  166. #endif
  167. float homing_feedrate[] = HOMING_FEEDRATE;
  168. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  169. int feedmultiply=100; //100->1 200->2
  170. int saved_feedmultiply;
  171. int extrudemultiply=100; //100->1 200->2
  172. int extruder_multiply[EXTRUDERS] = {100
  173. #if EXTRUDERS > 1
  174. , 100
  175. #if EXTRUDERS > 2
  176. , 100
  177. #endif
  178. #endif
  179. };
  180. float volumetric_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. float add_homeing[3]={0,0,0};
  190. #ifdef DELTA
  191. float endstop_adj[3]={0,0,0};
  192. #endif
  193. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  194. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  195. bool axis_known_position[3] = {false, false, false};
  196. float zprobe_zoffset;
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #ifndef DUAL_X_CARRIAGE
  200. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  201. #else
  202. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  203. #endif
  204. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  205. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  206. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  207. #endif
  208. };
  209. #endif
  210. uint8_t active_extruder = 0;
  211. int fanSpeed=0;
  212. #ifdef SERVO_ENDSTOPS
  213. int servo_endstops[] = SERVO_ENDSTOPS;
  214. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  215. #endif
  216. #ifdef BARICUDA
  217. int ValvePressure=0;
  218. int EtoPPressure=0;
  219. #endif
  220. #ifdef FWRETRACT
  221. bool autoretract_enabled=false;
  222. bool retracted=false;
  223. float retract_length = RETRACT_LENGTH;
  224. float retract_feedrate = RETRACT_FEEDRATE;
  225. float retract_zlift = RETRACT_ZLIFT;
  226. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  227. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  228. #endif
  229. #ifdef ULTIPANEL
  230. #ifdef PS_DEFAULT_OFF
  231. bool powersupply = false;
  232. #else
  233. bool powersupply = true;
  234. #endif
  235. #endif
  236. #ifdef DELTA
  237. float delta[3] = {0.0, 0.0, 0.0};
  238. #define SIN_60 0.8660254037844386
  239. #define COS_60 0.5
  240. // these are the default values, can be overriden with M665
  241. float delta_radius= DELTA_RADIUS;
  242. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  243. float delta_tower1_y= -COS_60*delta_radius;
  244. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  245. float delta_tower2_y= -COS_60*delta_radius;
  246. float delta_tower3_x= 0.0; // back middle tower
  247. float delta_tower3_y= delta_radius;
  248. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  249. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  250. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  251. #endif
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  256. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  257. static float offset[3] = {0.0, 0.0, 0.0};
  258. static bool home_all_axis = true;
  259. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  260. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  261. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  262. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  263. static bool fromsd[BUFSIZE];
  264. static int bufindr = 0;
  265. static int bufindw = 0;
  266. static int buflen = 0;
  267. //static int i = 0;
  268. static char serial_char;
  269. static int serial_count = 0;
  270. static boolean comment_mode = false;
  271. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  272. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  273. //static float tt = 0;
  274. //static float bt = 0;
  275. //Inactivity shutdown variables
  276. static unsigned long previous_millis_cmd = 0;
  277. static unsigned long max_inactive_time = 0;
  278. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  279. unsigned long starttime=0;
  280. unsigned long stoptime=0;
  281. static uint8_t tmp_extruder;
  282. bool Stopped=false;
  283. #if NUM_SERVOS > 0
  284. Servo servos[NUM_SERVOS];
  285. #endif
  286. bool CooldownNoWait = true;
  287. bool target_direction;
  288. //Insert variables if CHDK is defined
  289. #ifdef CHDK
  290. unsigned long chdkHigh = 0;
  291. boolean chdkActive = false;
  292. #endif
  293. //===========================================================================
  294. //=============================Routines======================================
  295. //===========================================================================
  296. void get_arc_coordinates();
  297. bool setTargetedHotend(int code);
  298. void serial_echopair_P(const char *s_P, float v)
  299. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  300. void serial_echopair_P(const char *s_P, double v)
  301. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  302. void serial_echopair_P(const char *s_P, unsigned long v)
  303. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  304. extern "C"{
  305. extern unsigned int __bss_end;
  306. extern unsigned int __heap_start;
  307. extern void *__brkval;
  308. int freeMemory() {
  309. int free_memory;
  310. if((int)__brkval == 0)
  311. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  312. else
  313. free_memory = ((int)&free_memory) - ((int)__brkval);
  314. return free_memory;
  315. }
  316. }
  317. //adds an command to the main command buffer
  318. //thats really done in a non-safe way.
  319. //needs overworking someday
  320. void enquecommand(const char *cmd)
  321. {
  322. if(buflen < BUFSIZE)
  323. {
  324. //this is dangerous if a mixing of serial and this happens
  325. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  326. SERIAL_ECHO_START;
  327. SERIAL_ECHOPGM("enqueing \"");
  328. SERIAL_ECHO(cmdbuffer[bufindw]);
  329. SERIAL_ECHOLNPGM("\"");
  330. bufindw= (bufindw + 1)%BUFSIZE;
  331. buflen += 1;
  332. }
  333. }
  334. void enquecommand_P(const char *cmd)
  335. {
  336. if(buflen < BUFSIZE)
  337. {
  338. //this is dangerous if a mixing of serial and this happens
  339. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  340. SERIAL_ECHO_START;
  341. SERIAL_ECHOPGM("enqueing \"");
  342. SERIAL_ECHO(cmdbuffer[bufindw]);
  343. SERIAL_ECHOLNPGM("\"");
  344. bufindw= (bufindw + 1)%BUFSIZE;
  345. buflen += 1;
  346. }
  347. }
  348. void setup_killpin()
  349. {
  350. #if defined(KILL_PIN) && KILL_PIN > -1
  351. pinMode(KILL_PIN,INPUT);
  352. WRITE(KILL_PIN,HIGH);
  353. #endif
  354. }
  355. void setup_photpin()
  356. {
  357. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  358. SET_OUTPUT(PHOTOGRAPH_PIN);
  359. WRITE(PHOTOGRAPH_PIN, LOW);
  360. #endif
  361. }
  362. void setup_powerhold()
  363. {
  364. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  365. SET_OUTPUT(SUICIDE_PIN);
  366. WRITE(SUICIDE_PIN, HIGH);
  367. #endif
  368. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  369. SET_OUTPUT(PS_ON_PIN);
  370. #if defined(PS_DEFAULT_OFF)
  371. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  372. #else
  373. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  374. #endif
  375. #endif
  376. }
  377. void suicide()
  378. {
  379. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  380. SET_OUTPUT(SUICIDE_PIN);
  381. WRITE(SUICIDE_PIN, LOW);
  382. #endif
  383. }
  384. void servo_init()
  385. {
  386. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  387. servos[0].attach(SERVO0_PIN);
  388. #endif
  389. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  390. servos[1].attach(SERVO1_PIN);
  391. #endif
  392. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  393. servos[2].attach(SERVO2_PIN);
  394. #endif
  395. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  396. servos[3].attach(SERVO3_PIN);
  397. #endif
  398. #if (NUM_SERVOS >= 5)
  399. #error "TODO: enter initalisation code for more servos"
  400. #endif
  401. // Set position of Servo Endstops that are defined
  402. #ifdef SERVO_ENDSTOPS
  403. for(int8_t i = 0; i < 3; i++)
  404. {
  405. if(servo_endstops[i] > -1) {
  406. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  407. }
  408. }
  409. #endif
  410. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  411. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  412. servos[servo_endstops[Z_AXIS]].detach();
  413. #endif
  414. }
  415. void setup()
  416. {
  417. setup_killpin();
  418. setup_powerhold();
  419. MYSERIAL.begin(BAUDRATE);
  420. SERIAL_PROTOCOLLNPGM("start");
  421. SERIAL_ECHO_START;
  422. // Check startup - does nothing if bootloader sets MCUSR to 0
  423. byte mcu = MCUSR;
  424. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  425. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  426. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  427. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  428. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  429. MCUSR=0;
  430. SERIAL_ECHOPGM(MSG_MARLIN);
  431. SERIAL_ECHOLNPGM(VERSION_STRING);
  432. #ifdef STRING_VERSION_CONFIG_H
  433. #ifdef STRING_CONFIG_H_AUTHOR
  434. SERIAL_ECHO_START;
  435. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  436. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  437. SERIAL_ECHOPGM(MSG_AUTHOR);
  438. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  439. SERIAL_ECHOPGM("Compiled: ");
  440. SERIAL_ECHOLNPGM(__DATE__);
  441. #endif
  442. #endif
  443. SERIAL_ECHO_START;
  444. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  445. SERIAL_ECHO(freeMemory());
  446. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  447. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  448. for(int8_t i = 0; i < BUFSIZE; i++)
  449. {
  450. fromsd[i] = false;
  451. }
  452. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  453. Config_RetrieveSettings();
  454. tp_init(); // Initialize temperature loop
  455. plan_init(); // Initialize planner;
  456. watchdog_init();
  457. st_init(); // Initialize stepper, this enables interrupts!
  458. setup_photpin();
  459. servo_init();
  460. lcd_init();
  461. _delay_ms(1000); // wait 1sec to display the splash screen
  462. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  463. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  464. #endif
  465. #ifdef DIGIPOT_I2C
  466. digipot_i2c_init();
  467. #endif
  468. }
  469. void loop()
  470. {
  471. if(buflen < (BUFSIZE-1))
  472. get_command();
  473. #ifdef SDSUPPORT
  474. card.checkautostart(false);
  475. #endif
  476. if(buflen)
  477. {
  478. #ifdef SDSUPPORT
  479. if(card.saving)
  480. {
  481. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  482. {
  483. card.write_command(cmdbuffer[bufindr]);
  484. if(card.logging)
  485. {
  486. process_commands();
  487. }
  488. else
  489. {
  490. SERIAL_PROTOCOLLNPGM(MSG_OK);
  491. }
  492. }
  493. else
  494. {
  495. card.closefile();
  496. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  497. }
  498. }
  499. else
  500. {
  501. process_commands();
  502. }
  503. #else
  504. process_commands();
  505. #endif //SDSUPPORT
  506. buflen = (buflen-1);
  507. bufindr = (bufindr + 1)%BUFSIZE;
  508. }
  509. //check heater every n milliseconds
  510. manage_heater();
  511. manage_inactivity();
  512. checkHitEndstops();
  513. lcd_update();
  514. }
  515. void get_command()
  516. {
  517. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  518. serial_char = MYSERIAL.read();
  519. if(serial_char == '\n' ||
  520. serial_char == '\r' ||
  521. (serial_char == ':' && comment_mode == false) ||
  522. serial_count >= (MAX_CMD_SIZE - 1) )
  523. {
  524. if(!serial_count) { //if empty line
  525. comment_mode = false; //for new command
  526. return;
  527. }
  528. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  529. if(!comment_mode){
  530. comment_mode = false; //for new command
  531. fromsd[bufindw] = false;
  532. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  533. {
  534. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  535. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  536. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  537. SERIAL_ERROR_START;
  538. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  539. SERIAL_ERRORLN(gcode_LastN);
  540. //Serial.println(gcode_N);
  541. FlushSerialRequestResend();
  542. serial_count = 0;
  543. return;
  544. }
  545. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  546. {
  547. byte checksum = 0;
  548. byte count = 0;
  549. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  550. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  551. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  552. SERIAL_ERROR_START;
  553. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  554. SERIAL_ERRORLN(gcode_LastN);
  555. FlushSerialRequestResend();
  556. serial_count = 0;
  557. return;
  558. }
  559. //if no errors, continue parsing
  560. }
  561. else
  562. {
  563. SERIAL_ERROR_START;
  564. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  565. SERIAL_ERRORLN(gcode_LastN);
  566. FlushSerialRequestResend();
  567. serial_count = 0;
  568. return;
  569. }
  570. gcode_LastN = gcode_N;
  571. //if no errors, continue parsing
  572. }
  573. else // if we don't receive 'N' but still see '*'
  574. {
  575. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  576. {
  577. SERIAL_ERROR_START;
  578. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  579. SERIAL_ERRORLN(gcode_LastN);
  580. serial_count = 0;
  581. return;
  582. }
  583. }
  584. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  585. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  586. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  587. case 0:
  588. case 1:
  589. case 2:
  590. case 3:
  591. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  592. #ifdef SDSUPPORT
  593. if(card.saving)
  594. break;
  595. #endif //SDSUPPORT
  596. SERIAL_PROTOCOLLNPGM(MSG_OK);
  597. }
  598. else {
  599. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  600. LCD_MESSAGEPGM(MSG_STOPPED);
  601. }
  602. break;
  603. default:
  604. break;
  605. }
  606. }
  607. bufindw = (bufindw + 1)%BUFSIZE;
  608. buflen += 1;
  609. }
  610. serial_count = 0; //clear buffer
  611. }
  612. else
  613. {
  614. if(serial_char == ';') comment_mode = true;
  615. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  616. }
  617. }
  618. #ifdef SDSUPPORT
  619. if(!card.sdprinting || serial_count!=0){
  620. return;
  621. }
  622. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  623. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  624. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  625. static bool stop_buffering=false;
  626. if(buflen==0) stop_buffering=false;
  627. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  628. int16_t n=card.get();
  629. serial_char = (char)n;
  630. if(serial_char == '\n' ||
  631. serial_char == '\r' ||
  632. (serial_char == '#' && comment_mode == false) ||
  633. (serial_char == ':' && comment_mode == false) ||
  634. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  635. {
  636. if(card.eof()){
  637. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  638. stoptime=millis();
  639. char time[30];
  640. unsigned long t=(stoptime-starttime)/1000;
  641. int hours, minutes;
  642. minutes=(t/60)%60;
  643. hours=t/60/60;
  644. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  645. SERIAL_ECHO_START;
  646. SERIAL_ECHOLN(time);
  647. lcd_setstatus(time);
  648. card.printingHasFinished();
  649. card.checkautostart(true);
  650. }
  651. if(serial_char=='#')
  652. stop_buffering=true;
  653. if(!serial_count)
  654. {
  655. comment_mode = false; //for new command
  656. return; //if empty line
  657. }
  658. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  659. // if(!comment_mode){
  660. fromsd[bufindw] = true;
  661. buflen += 1;
  662. bufindw = (bufindw + 1)%BUFSIZE;
  663. // }
  664. comment_mode = false; //for new command
  665. serial_count = 0; //clear buffer
  666. }
  667. else
  668. {
  669. if(serial_char == ';') comment_mode = true;
  670. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  671. }
  672. }
  673. #endif //SDSUPPORT
  674. }
  675. float code_value()
  676. {
  677. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  678. }
  679. long code_value_long()
  680. {
  681. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  682. }
  683. bool code_seen(char code)
  684. {
  685. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  686. return (strchr_pointer != NULL); //Return True if a character was found
  687. }
  688. #define DEFINE_PGM_READ_ANY(type, reader) \
  689. static inline type pgm_read_any(const type *p) \
  690. { return pgm_read_##reader##_near(p); }
  691. DEFINE_PGM_READ_ANY(float, float);
  692. DEFINE_PGM_READ_ANY(signed char, byte);
  693. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  694. static const PROGMEM type array##_P[3] = \
  695. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  696. static inline type array(int axis) \
  697. { return pgm_read_any(&array##_P[axis]); }
  698. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  699. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  700. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  701. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  702. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  703. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  704. #ifdef DUAL_X_CARRIAGE
  705. #if EXTRUDERS == 1 || defined(COREXY) \
  706. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  707. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  708. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  709. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  710. #endif
  711. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  712. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  713. #endif
  714. #define DXC_FULL_CONTROL_MODE 0
  715. #define DXC_AUTO_PARK_MODE 1
  716. #define DXC_DUPLICATION_MODE 2
  717. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  718. static float x_home_pos(int extruder) {
  719. if (extruder == 0)
  720. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  721. else
  722. // In dual carriage mode the extruder offset provides an override of the
  723. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  724. // This allow soft recalibration of the second extruder offset position without firmware reflash
  725. // (through the M218 command).
  726. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  727. }
  728. static int x_home_dir(int extruder) {
  729. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  730. }
  731. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  732. static bool active_extruder_parked = false; // used in mode 1 & 2
  733. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  734. static unsigned long delayed_move_time = 0; // used in mode 1
  735. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  736. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  737. bool extruder_duplication_enabled = false; // used in mode 2
  738. #endif //DUAL_X_CARRIAGE
  739. static void axis_is_at_home(int axis) {
  740. #ifdef DUAL_X_CARRIAGE
  741. if (axis == X_AXIS) {
  742. if (active_extruder != 0) {
  743. current_position[X_AXIS] = x_home_pos(active_extruder);
  744. min_pos[X_AXIS] = X2_MIN_POS;
  745. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  746. return;
  747. }
  748. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  749. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  750. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  751. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  752. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  753. return;
  754. }
  755. }
  756. #endif
  757. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  758. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  759. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  760. }
  761. #ifdef ENABLE_AUTO_BED_LEVELING
  762. #ifdef AUTO_BED_LEVELING_GRID
  763. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  764. {
  765. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  766. planeNormal.debug("planeNormal");
  767. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  768. //bedLevel.debug("bedLevel");
  769. //plan_bed_level_matrix.debug("bed level before");
  770. //vector_3 uncorrected_position = plan_get_position_mm();
  771. //uncorrected_position.debug("position before");
  772. vector_3 corrected_position = plan_get_position();
  773. // corrected_position.debug("position after");
  774. current_position[X_AXIS] = corrected_position.x;
  775. current_position[Y_AXIS] = corrected_position.y;
  776. current_position[Z_AXIS] = corrected_position.z;
  777. // but the bed at 0 so we don't go below it.
  778. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  780. }
  781. #else // not AUTO_BED_LEVELING_GRID
  782. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  783. plan_bed_level_matrix.set_to_identity();
  784. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  785. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  786. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  787. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  788. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  789. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  790. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  791. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  792. vector_3 corrected_position = plan_get_position();
  793. current_position[X_AXIS] = corrected_position.x;
  794. current_position[Y_AXIS] = corrected_position.y;
  795. current_position[Z_AXIS] = corrected_position.z;
  796. // put the bed at 0 so we don't go below it.
  797. current_position[Z_AXIS] = zprobe_zoffset;
  798. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  799. }
  800. #endif // AUTO_BED_LEVELING_GRID
  801. static void run_z_probe() {
  802. plan_bed_level_matrix.set_to_identity();
  803. feedrate = homing_feedrate[Z_AXIS];
  804. // move down until you find the bed
  805. float zPosition = -10;
  806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  807. st_synchronize();
  808. // we have to let the planner know where we are right now as it is not where we said to go.
  809. zPosition = st_get_position_mm(Z_AXIS);
  810. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  811. // move up the retract distance
  812. zPosition += home_retract_mm(Z_AXIS);
  813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  814. st_synchronize();
  815. // move back down slowly to find bed
  816. feedrate = homing_feedrate[Z_AXIS]/4;
  817. zPosition -= home_retract_mm(Z_AXIS) * 2;
  818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  819. st_synchronize();
  820. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  821. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  822. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  823. }
  824. static void do_blocking_move_to(float x, float y, float z) {
  825. float oldFeedRate = feedrate;
  826. feedrate = XY_TRAVEL_SPEED;
  827. current_position[X_AXIS] = x;
  828. current_position[Y_AXIS] = y;
  829. current_position[Z_AXIS] = z;
  830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  831. st_synchronize();
  832. feedrate = oldFeedRate;
  833. }
  834. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  835. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  836. }
  837. static void setup_for_endstop_move() {
  838. saved_feedrate = feedrate;
  839. saved_feedmultiply = feedmultiply;
  840. feedmultiply = 100;
  841. previous_millis_cmd = millis();
  842. enable_endstops(true);
  843. }
  844. static void clean_up_after_endstop_move() {
  845. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  846. enable_endstops(false);
  847. #endif
  848. feedrate = saved_feedrate;
  849. feedmultiply = saved_feedmultiply;
  850. previous_millis_cmd = millis();
  851. }
  852. static void engage_z_probe() {
  853. // Engage Z Servo endstop if enabled
  854. #ifdef SERVO_ENDSTOPS
  855. if (servo_endstops[Z_AXIS] > -1) {
  856. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  857. servos[servo_endstops[Z_AXIS]].attach(0);
  858. #endif
  859. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  860. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  861. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  862. servos[servo_endstops[Z_AXIS]].detach();
  863. #endif
  864. }
  865. #endif
  866. }
  867. static void retract_z_probe() {
  868. // Retract Z Servo endstop if enabled
  869. #ifdef SERVO_ENDSTOPS
  870. if (servo_endstops[Z_AXIS] > -1) {
  871. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  872. servos[servo_endstops[Z_AXIS]].attach(0);
  873. #endif
  874. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  875. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  876. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  877. servos[servo_endstops[Z_AXIS]].detach();
  878. #endif
  879. }
  880. #endif
  881. }
  882. /// Probe bed height at position (x,y), returns the measured z value
  883. static float probe_pt(float x, float y, float z_before) {
  884. // move to right place
  885. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  886. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  887. engage_z_probe(); // Engage Z Servo endstop if available
  888. run_z_probe();
  889. float measured_z = current_position[Z_AXIS];
  890. retract_z_probe();
  891. SERIAL_PROTOCOLPGM(MSG_BED);
  892. SERIAL_PROTOCOLPGM(" x: ");
  893. SERIAL_PROTOCOL(x);
  894. SERIAL_PROTOCOLPGM(" y: ");
  895. SERIAL_PROTOCOL(y);
  896. SERIAL_PROTOCOLPGM(" z: ");
  897. SERIAL_PROTOCOL(measured_z);
  898. SERIAL_PROTOCOLPGM("\n");
  899. return measured_z;
  900. }
  901. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  902. static void homeaxis(int axis) {
  903. #define HOMEAXIS_DO(LETTER) \
  904. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  905. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  906. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  907. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  908. 0) {
  909. int axis_home_dir = home_dir(axis);
  910. #ifdef DUAL_X_CARRIAGE
  911. if (axis == X_AXIS)
  912. axis_home_dir = x_home_dir(active_extruder);
  913. #endif
  914. current_position[axis] = 0;
  915. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  916. // Engage Servo endstop if enabled
  917. #ifdef SERVO_ENDSTOPS
  918. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  919. if (axis==Z_AXIS) {
  920. engage_z_probe();
  921. }
  922. else
  923. #endif
  924. if (servo_endstops[axis] > -1) {
  925. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  926. }
  927. #endif
  928. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  929. feedrate = homing_feedrate[axis];
  930. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  931. st_synchronize();
  932. current_position[axis] = 0;
  933. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  934. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  935. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  936. st_synchronize();
  937. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  938. #ifdef DELTA
  939. feedrate = homing_feedrate[axis]/10;
  940. #else
  941. feedrate = homing_feedrate[axis]/2 ;
  942. #endif
  943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  944. st_synchronize();
  945. #ifdef DELTA
  946. // retrace by the amount specified in endstop_adj
  947. if (endstop_adj[axis] * axis_home_dir < 0) {
  948. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  949. destination[axis] = endstop_adj[axis];
  950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  951. st_synchronize();
  952. }
  953. #endif
  954. axis_is_at_home(axis);
  955. destination[axis] = current_position[axis];
  956. feedrate = 0.0;
  957. endstops_hit_on_purpose();
  958. axis_known_position[axis] = true;
  959. // Retract Servo endstop if enabled
  960. #ifdef SERVO_ENDSTOPS
  961. if (servo_endstops[axis] > -1) {
  962. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  963. }
  964. #endif
  965. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  966. if (axis==Z_AXIS) retract_z_probe();
  967. #endif
  968. }
  969. }
  970. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  971. void refresh_cmd_timeout(void)
  972. {
  973. previous_millis_cmd = millis();
  974. }
  975. #ifdef FWRETRACT
  976. void retract(bool retracting) {
  977. if(retracting && !retracted) {
  978. destination[X_AXIS]=current_position[X_AXIS];
  979. destination[Y_AXIS]=current_position[Y_AXIS];
  980. destination[Z_AXIS]=current_position[Z_AXIS];
  981. destination[E_AXIS]=current_position[E_AXIS];
  982. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  983. plan_set_e_position(current_position[E_AXIS]);
  984. float oldFeedrate = feedrate;
  985. feedrate=retract_feedrate;
  986. retracted=true;
  987. prepare_move();
  988. current_position[Z_AXIS]-=retract_zlift;
  989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  990. prepare_move();
  991. feedrate = oldFeedrate;
  992. } else if(!retracting && retracted) {
  993. destination[X_AXIS]=current_position[X_AXIS];
  994. destination[Y_AXIS]=current_position[Y_AXIS];
  995. destination[Z_AXIS]=current_position[Z_AXIS];
  996. destination[E_AXIS]=current_position[E_AXIS];
  997. current_position[Z_AXIS]+=retract_zlift;
  998. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  999. //prepare_move();
  1000. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1001. plan_set_e_position(current_position[E_AXIS]);
  1002. float oldFeedrate = feedrate;
  1003. feedrate=retract_recover_feedrate;
  1004. retracted=false;
  1005. prepare_move();
  1006. feedrate = oldFeedrate;
  1007. }
  1008. } //retract
  1009. #endif //FWRETRACT
  1010. void process_commands()
  1011. {
  1012. unsigned long codenum; //throw away variable
  1013. char *starpos = NULL;
  1014. #ifdef ENABLE_AUTO_BED_LEVELING
  1015. float x_tmp, y_tmp, z_tmp, real_z;
  1016. #endif
  1017. if(code_seen('G'))
  1018. {
  1019. switch((int)code_value())
  1020. {
  1021. case 0: // G0 -> G1
  1022. case 1: // G1
  1023. if(Stopped == false) {
  1024. get_coordinates(); // For X Y Z E F
  1025. #ifdef FWRETRACT
  1026. if(autoretract_enabled)
  1027. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1028. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1029. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1030. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1031. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1032. retract(!retracted);
  1033. return;
  1034. }
  1035. }
  1036. #endif //FWRETRACT
  1037. prepare_move();
  1038. //ClearToSend();
  1039. return;
  1040. }
  1041. //break;
  1042. case 2: // G2 - CW ARC
  1043. if(Stopped == false) {
  1044. get_arc_coordinates();
  1045. prepare_arc_move(true);
  1046. return;
  1047. }
  1048. case 3: // G3 - CCW ARC
  1049. if(Stopped == false) {
  1050. get_arc_coordinates();
  1051. prepare_arc_move(false);
  1052. return;
  1053. }
  1054. case 4: // G4 dwell
  1055. LCD_MESSAGEPGM(MSG_DWELL);
  1056. codenum = 0;
  1057. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1058. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1059. st_synchronize();
  1060. codenum += millis(); // keep track of when we started waiting
  1061. previous_millis_cmd = millis();
  1062. while(millis() < codenum ){
  1063. manage_heater();
  1064. manage_inactivity();
  1065. lcd_update();
  1066. }
  1067. break;
  1068. #ifdef FWRETRACT
  1069. case 10: // G10 retract
  1070. retract(true);
  1071. break;
  1072. case 11: // G11 retract_recover
  1073. retract(false);
  1074. break;
  1075. #endif //FWRETRACT
  1076. case 28: //G28 Home all Axis one at a time
  1077. #ifdef ENABLE_AUTO_BED_LEVELING
  1078. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1079. #endif //ENABLE_AUTO_BED_LEVELING
  1080. saved_feedrate = feedrate;
  1081. saved_feedmultiply = feedmultiply;
  1082. feedmultiply = 100;
  1083. previous_millis_cmd = millis();
  1084. enable_endstops(true);
  1085. for(int8_t i=0; i < NUM_AXIS; i++) {
  1086. destination[i] = current_position[i];
  1087. }
  1088. feedrate = 0.0;
  1089. #ifdef DELTA
  1090. // A delta can only safely home all axis at the same time
  1091. // all axis have to home at the same time
  1092. // Move all carriages up together until the first endstop is hit.
  1093. current_position[X_AXIS] = 0;
  1094. current_position[Y_AXIS] = 0;
  1095. current_position[Z_AXIS] = 0;
  1096. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1097. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1098. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1099. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1100. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1101. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1102. st_synchronize();
  1103. endstops_hit_on_purpose();
  1104. current_position[X_AXIS] = destination[X_AXIS];
  1105. current_position[Y_AXIS] = destination[Y_AXIS];
  1106. current_position[Z_AXIS] = destination[Z_AXIS];
  1107. // take care of back off and rehome now we are all at the top
  1108. HOMEAXIS(X);
  1109. HOMEAXIS(Y);
  1110. HOMEAXIS(Z);
  1111. calculate_delta(current_position);
  1112. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1113. #else // NOT DELTA
  1114. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1115. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1116. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1117. HOMEAXIS(Z);
  1118. }
  1119. #endif
  1120. #ifdef QUICK_HOME
  1121. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1122. {
  1123. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1124. #ifndef DUAL_X_CARRIAGE
  1125. int x_axis_home_dir = home_dir(X_AXIS);
  1126. #else
  1127. int x_axis_home_dir = x_home_dir(active_extruder);
  1128. extruder_duplication_enabled = false;
  1129. #endif
  1130. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1131. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1132. feedrate = homing_feedrate[X_AXIS];
  1133. if(homing_feedrate[Y_AXIS]<feedrate)
  1134. feedrate =homing_feedrate[Y_AXIS];
  1135. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1136. st_synchronize();
  1137. axis_is_at_home(X_AXIS);
  1138. axis_is_at_home(Y_AXIS);
  1139. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1140. destination[X_AXIS] = current_position[X_AXIS];
  1141. destination[Y_AXIS] = current_position[Y_AXIS];
  1142. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1143. feedrate = 0.0;
  1144. st_synchronize();
  1145. endstops_hit_on_purpose();
  1146. current_position[X_AXIS] = destination[X_AXIS];
  1147. current_position[Y_AXIS] = destination[Y_AXIS];
  1148. current_position[Z_AXIS] = destination[Z_AXIS];
  1149. }
  1150. #endif
  1151. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1152. {
  1153. #ifdef DUAL_X_CARRIAGE
  1154. int tmp_extruder = active_extruder;
  1155. extruder_duplication_enabled = false;
  1156. active_extruder = !active_extruder;
  1157. HOMEAXIS(X);
  1158. inactive_extruder_x_pos = current_position[X_AXIS];
  1159. active_extruder = tmp_extruder;
  1160. HOMEAXIS(X);
  1161. // reset state used by the different modes
  1162. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1163. delayed_move_time = 0;
  1164. active_extruder_parked = true;
  1165. #else
  1166. HOMEAXIS(X);
  1167. #endif
  1168. }
  1169. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1170. HOMEAXIS(Y);
  1171. }
  1172. if(code_seen(axis_codes[X_AXIS]))
  1173. {
  1174. if(code_value_long() != 0) {
  1175. current_position[X_AXIS]=code_value()+add_homeing[0];
  1176. }
  1177. }
  1178. if(code_seen(axis_codes[Y_AXIS])) {
  1179. if(code_value_long() != 0) {
  1180. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1181. }
  1182. }
  1183. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1184. #ifndef Z_SAFE_HOMING
  1185. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1186. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1187. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1188. feedrate = max_feedrate[Z_AXIS];
  1189. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1190. st_synchronize();
  1191. #endif
  1192. HOMEAXIS(Z);
  1193. }
  1194. #else // Z Safe mode activated.
  1195. if(home_all_axis) {
  1196. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1197. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1198. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1199. feedrate = XY_TRAVEL_SPEED;
  1200. current_position[Z_AXIS] = 0;
  1201. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1202. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1203. st_synchronize();
  1204. current_position[X_AXIS] = destination[X_AXIS];
  1205. current_position[Y_AXIS] = destination[Y_AXIS];
  1206. HOMEAXIS(Z);
  1207. }
  1208. // Let's see if X and Y are homed and probe is inside bed area.
  1209. if(code_seen(axis_codes[Z_AXIS])) {
  1210. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1211. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1212. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1213. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1214. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1215. current_position[Z_AXIS] = 0;
  1216. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1217. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1218. feedrate = max_feedrate[Z_AXIS];
  1219. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1220. st_synchronize();
  1221. HOMEAXIS(Z);
  1222. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1223. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1224. SERIAL_ECHO_START;
  1225. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1226. } else {
  1227. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1228. SERIAL_ECHO_START;
  1229. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1230. }
  1231. }
  1232. #endif
  1233. #endif
  1234. if(code_seen(axis_codes[Z_AXIS])) {
  1235. if(code_value_long() != 0) {
  1236. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1237. }
  1238. }
  1239. #ifdef ENABLE_AUTO_BED_LEVELING
  1240. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1241. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1242. }
  1243. #endif
  1244. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1245. #endif // else DELTA
  1246. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1247. enable_endstops(false);
  1248. #endif
  1249. feedrate = saved_feedrate;
  1250. feedmultiply = saved_feedmultiply;
  1251. previous_millis_cmd = millis();
  1252. endstops_hit_on_purpose();
  1253. break;
  1254. #ifdef ENABLE_AUTO_BED_LEVELING
  1255. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1256. {
  1257. #if Z_MIN_PIN == -1
  1258. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1259. #endif
  1260. // Prevent user from running a G29 without first homing in X and Y
  1261. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1262. {
  1263. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1264. SERIAL_ECHO_START;
  1265. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1266. break; // abort G29, since we don't know where we are
  1267. }
  1268. st_synchronize();
  1269. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1270. //vector_3 corrected_position = plan_get_position_mm();
  1271. //corrected_position.debug("position before G29");
  1272. plan_bed_level_matrix.set_to_identity();
  1273. vector_3 uncorrected_position = plan_get_position();
  1274. //uncorrected_position.debug("position durring G29");
  1275. current_position[X_AXIS] = uncorrected_position.x;
  1276. current_position[Y_AXIS] = uncorrected_position.y;
  1277. current_position[Z_AXIS] = uncorrected_position.z;
  1278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1279. setup_for_endstop_move();
  1280. feedrate = homing_feedrate[Z_AXIS];
  1281. #ifdef AUTO_BED_LEVELING_GRID
  1282. // probe at the points of a lattice grid
  1283. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1284. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1285. // solve the plane equation ax + by + d = z
  1286. // A is the matrix with rows [x y 1] for all the probed points
  1287. // B is the vector of the Z positions
  1288. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1289. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1290. // "A" matrix of the linear system of equations
  1291. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1292. // "B" vector of Z points
  1293. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1294. int probePointCounter = 0;
  1295. bool zig = true;
  1296. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1297. {
  1298. int xProbe, xInc;
  1299. if (zig)
  1300. {
  1301. xProbe = LEFT_PROBE_BED_POSITION;
  1302. //xEnd = RIGHT_PROBE_BED_POSITION;
  1303. xInc = xGridSpacing;
  1304. zig = false;
  1305. } else // zag
  1306. {
  1307. xProbe = RIGHT_PROBE_BED_POSITION;
  1308. //xEnd = LEFT_PROBE_BED_POSITION;
  1309. xInc = -xGridSpacing;
  1310. zig = true;
  1311. }
  1312. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1313. {
  1314. float z_before;
  1315. if (probePointCounter == 0)
  1316. {
  1317. // raise before probing
  1318. z_before = Z_RAISE_BEFORE_PROBING;
  1319. } else
  1320. {
  1321. // raise extruder
  1322. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1323. }
  1324. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1325. eqnBVector[probePointCounter] = measured_z;
  1326. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1327. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1328. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1329. probePointCounter++;
  1330. xProbe += xInc;
  1331. }
  1332. }
  1333. clean_up_after_endstop_move();
  1334. // solve lsq problem
  1335. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1336. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1337. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1338. SERIAL_PROTOCOLPGM(" b: ");
  1339. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1340. SERIAL_PROTOCOLPGM(" d: ");
  1341. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1342. set_bed_level_equation_lsq(plane_equation_coefficients);
  1343. free(plane_equation_coefficients);
  1344. #else // AUTO_BED_LEVELING_GRID not defined
  1345. // Probe at 3 arbitrary points
  1346. // probe 1
  1347. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1348. // probe 2
  1349. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1350. // probe 3
  1351. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1352. clean_up_after_endstop_move();
  1353. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1354. #endif // AUTO_BED_LEVELING_GRID
  1355. st_synchronize();
  1356. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1357. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1358. // When the bed is uneven, this height must be corrected.
  1359. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1360. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1361. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1362. z_tmp = current_position[Z_AXIS];
  1363. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1364. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1365. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1366. }
  1367. break;
  1368. case 30: // G30 Single Z Probe
  1369. {
  1370. engage_z_probe(); // Engage Z Servo endstop if available
  1371. st_synchronize();
  1372. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1373. setup_for_endstop_move();
  1374. feedrate = homing_feedrate[Z_AXIS];
  1375. run_z_probe();
  1376. SERIAL_PROTOCOLPGM(MSG_BED);
  1377. SERIAL_PROTOCOLPGM(" X: ");
  1378. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1379. SERIAL_PROTOCOLPGM(" Y: ");
  1380. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1381. SERIAL_PROTOCOLPGM(" Z: ");
  1382. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1383. SERIAL_PROTOCOLPGM("\n");
  1384. clean_up_after_endstop_move();
  1385. retract_z_probe(); // Retract Z Servo endstop if available
  1386. }
  1387. break;
  1388. #endif // ENABLE_AUTO_BED_LEVELING
  1389. case 90: // G90
  1390. relative_mode = false;
  1391. break;
  1392. case 91: // G91
  1393. relative_mode = true;
  1394. break;
  1395. case 92: // G92
  1396. if(!code_seen(axis_codes[E_AXIS]))
  1397. st_synchronize();
  1398. for(int8_t i=0; i < NUM_AXIS; i++) {
  1399. if(code_seen(axis_codes[i])) {
  1400. if(i == E_AXIS) {
  1401. current_position[i] = code_value();
  1402. plan_set_e_position(current_position[E_AXIS]);
  1403. }
  1404. else {
  1405. current_position[i] = code_value()+add_homeing[i];
  1406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1407. }
  1408. }
  1409. }
  1410. break;
  1411. }
  1412. }
  1413. else if(code_seen('M'))
  1414. {
  1415. switch( (int)code_value() )
  1416. {
  1417. #ifdef ULTIPANEL
  1418. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1419. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1420. {
  1421. LCD_MESSAGEPGM(MSG_USERWAIT);
  1422. codenum = 0;
  1423. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1424. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1425. st_synchronize();
  1426. previous_millis_cmd = millis();
  1427. if (codenum > 0){
  1428. codenum += millis(); // keep track of when we started waiting
  1429. while(millis() < codenum && !lcd_clicked()){
  1430. manage_heater();
  1431. manage_inactivity();
  1432. lcd_update();
  1433. }
  1434. }else{
  1435. if (!lcd_detected())
  1436. break;
  1437. while(!lcd_clicked()){
  1438. manage_heater();
  1439. manage_inactivity();
  1440. lcd_update();
  1441. }
  1442. }
  1443. LCD_MESSAGEPGM(MSG_RESUMING);
  1444. }
  1445. break;
  1446. #endif
  1447. case 17:
  1448. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1449. enable_x();
  1450. enable_y();
  1451. enable_z();
  1452. enable_e0();
  1453. enable_e1();
  1454. enable_e2();
  1455. break;
  1456. #ifdef SDSUPPORT
  1457. case 20: // M20 - list SD card
  1458. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1459. card.ls();
  1460. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1461. break;
  1462. case 21: // M21 - init SD card
  1463. card.initsd();
  1464. break;
  1465. case 22: //M22 - release SD card
  1466. card.release();
  1467. break;
  1468. case 23: //M23 - Select file
  1469. starpos = (strchr(strchr_pointer + 4,'*'));
  1470. if(starpos!=NULL)
  1471. *(starpos-1)='\0';
  1472. card.openFile(strchr_pointer + 4,true);
  1473. break;
  1474. case 24: //M24 - Start SD print
  1475. card.startFileprint();
  1476. starttime=millis();
  1477. break;
  1478. case 25: //M25 - Pause SD print
  1479. card.pauseSDPrint();
  1480. break;
  1481. case 26: //M26 - Set SD index
  1482. if(card.cardOK && code_seen('S')) {
  1483. card.setIndex(code_value_long());
  1484. }
  1485. break;
  1486. case 27: //M27 - Get SD status
  1487. card.getStatus();
  1488. break;
  1489. case 28: //M28 - Start SD write
  1490. starpos = (strchr(strchr_pointer + 4,'*'));
  1491. if(starpos != NULL){
  1492. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1493. strchr_pointer = strchr(npos,' ') + 1;
  1494. *(starpos-1) = '\0';
  1495. }
  1496. card.openFile(strchr_pointer+4,false);
  1497. break;
  1498. case 29: //M29 - Stop SD write
  1499. //processed in write to file routine above
  1500. //card,saving = false;
  1501. break;
  1502. case 30: //M30 <filename> Delete File
  1503. if (card.cardOK){
  1504. card.closefile();
  1505. starpos = (strchr(strchr_pointer + 4,'*'));
  1506. if(starpos != NULL){
  1507. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1508. strchr_pointer = strchr(npos,' ') + 1;
  1509. *(starpos-1) = '\0';
  1510. }
  1511. card.removeFile(strchr_pointer + 4);
  1512. }
  1513. break;
  1514. case 32: //M32 - Select file and start SD print
  1515. {
  1516. if(card.sdprinting) {
  1517. st_synchronize();
  1518. }
  1519. starpos = (strchr(strchr_pointer + 4,'*'));
  1520. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1521. if(namestartpos==NULL)
  1522. {
  1523. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1524. }
  1525. else
  1526. namestartpos++; //to skip the '!'
  1527. if(starpos!=NULL)
  1528. *(starpos-1)='\0';
  1529. bool call_procedure=(code_seen('P'));
  1530. if(strchr_pointer>namestartpos)
  1531. call_procedure=false; //false alert, 'P' found within filename
  1532. if( card.cardOK )
  1533. {
  1534. card.openFile(namestartpos,true,!call_procedure);
  1535. if(code_seen('S'))
  1536. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1537. card.setIndex(code_value_long());
  1538. card.startFileprint();
  1539. if(!call_procedure)
  1540. starttime=millis(); //procedure calls count as normal print time.
  1541. }
  1542. } break;
  1543. case 928: //M928 - Start SD write
  1544. starpos = (strchr(strchr_pointer + 5,'*'));
  1545. if(starpos != NULL){
  1546. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1547. strchr_pointer = strchr(npos,' ') + 1;
  1548. *(starpos-1) = '\0';
  1549. }
  1550. card.openLogFile(strchr_pointer+5);
  1551. break;
  1552. #endif //SDSUPPORT
  1553. case 31: //M31 take time since the start of the SD print or an M109 command
  1554. {
  1555. stoptime=millis();
  1556. char time[30];
  1557. unsigned long t=(stoptime-starttime)/1000;
  1558. int sec,min;
  1559. min=t/60;
  1560. sec=t%60;
  1561. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1562. SERIAL_ECHO_START;
  1563. SERIAL_ECHOLN(time);
  1564. lcd_setstatus(time);
  1565. autotempShutdown();
  1566. }
  1567. break;
  1568. case 42: //M42 -Change pin status via gcode
  1569. if (code_seen('S'))
  1570. {
  1571. int pin_status = code_value();
  1572. int pin_number = LED_PIN;
  1573. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1574. pin_number = code_value();
  1575. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1576. {
  1577. if (sensitive_pins[i] == pin_number)
  1578. {
  1579. pin_number = -1;
  1580. break;
  1581. }
  1582. }
  1583. #if defined(FAN_PIN) && FAN_PIN > -1
  1584. if (pin_number == FAN_PIN)
  1585. fanSpeed = pin_status;
  1586. #endif
  1587. if (pin_number > -1)
  1588. {
  1589. pinMode(pin_number, OUTPUT);
  1590. digitalWrite(pin_number, pin_status);
  1591. analogWrite(pin_number, pin_status);
  1592. }
  1593. }
  1594. break;
  1595. case 104: // M104
  1596. if(setTargetedHotend(104)){
  1597. break;
  1598. }
  1599. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1600. #ifdef DUAL_X_CARRIAGE
  1601. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1602. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1603. #endif
  1604. setWatch();
  1605. break;
  1606. case 140: // M140 set bed temp
  1607. if (code_seen('S')) setTargetBed(code_value());
  1608. break;
  1609. case 105 : // M105
  1610. if(setTargetedHotend(105)){
  1611. break;
  1612. }
  1613. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1614. SERIAL_PROTOCOLPGM("ok T:");
  1615. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1616. SERIAL_PROTOCOLPGM(" /");
  1617. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1618. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1619. SERIAL_PROTOCOLPGM(" B:");
  1620. SERIAL_PROTOCOL_F(degBed(),1);
  1621. SERIAL_PROTOCOLPGM(" /");
  1622. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1623. #endif //TEMP_BED_PIN
  1624. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1625. SERIAL_PROTOCOLPGM(" T");
  1626. SERIAL_PROTOCOL(cur_extruder);
  1627. SERIAL_PROTOCOLPGM(":");
  1628. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1629. SERIAL_PROTOCOLPGM(" /");
  1630. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1631. }
  1632. #else
  1633. SERIAL_ERROR_START;
  1634. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1635. #endif
  1636. SERIAL_PROTOCOLPGM(" @:");
  1637. #ifdef EXTRUDER_WATTS
  1638. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1639. SERIAL_PROTOCOLPGM("W");
  1640. #else
  1641. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1642. #endif
  1643. SERIAL_PROTOCOLPGM(" B@:");
  1644. #ifdef BED_WATTS
  1645. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1646. SERIAL_PROTOCOLPGM("W");
  1647. #else
  1648. SERIAL_PROTOCOL(getHeaterPower(-1));
  1649. #endif
  1650. #ifdef SHOW_TEMP_ADC_VALUES
  1651. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1652. SERIAL_PROTOCOLPGM(" ADC B:");
  1653. SERIAL_PROTOCOL_F(degBed(),1);
  1654. SERIAL_PROTOCOLPGM("C->");
  1655. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1656. #endif
  1657. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1658. SERIAL_PROTOCOLPGM(" T");
  1659. SERIAL_PROTOCOL(cur_extruder);
  1660. SERIAL_PROTOCOLPGM(":");
  1661. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1662. SERIAL_PROTOCOLPGM("C->");
  1663. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1664. }
  1665. #endif
  1666. SERIAL_PROTOCOLLN("");
  1667. return;
  1668. break;
  1669. case 109:
  1670. {// M109 - Wait for extruder heater to reach target.
  1671. if(setTargetedHotend(109)){
  1672. break;
  1673. }
  1674. LCD_MESSAGEPGM(MSG_HEATING);
  1675. #ifdef AUTOTEMP
  1676. autotemp_enabled=false;
  1677. #endif
  1678. if (code_seen('S')) {
  1679. setTargetHotend(code_value(), tmp_extruder);
  1680. #ifdef DUAL_X_CARRIAGE
  1681. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1682. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1683. #endif
  1684. CooldownNoWait = true;
  1685. } else if (code_seen('R')) {
  1686. setTargetHotend(code_value(), tmp_extruder);
  1687. #ifdef DUAL_X_CARRIAGE
  1688. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1689. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1690. #endif
  1691. CooldownNoWait = false;
  1692. }
  1693. #ifdef AUTOTEMP
  1694. if (code_seen('S')) autotemp_min=code_value();
  1695. if (code_seen('B')) autotemp_max=code_value();
  1696. if (code_seen('F'))
  1697. {
  1698. autotemp_factor=code_value();
  1699. autotemp_enabled=true;
  1700. }
  1701. #endif
  1702. setWatch();
  1703. codenum = millis();
  1704. /* See if we are heating up or cooling down */
  1705. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1706. #ifdef TEMP_RESIDENCY_TIME
  1707. long residencyStart;
  1708. residencyStart = -1;
  1709. /* continue to loop until we have reached the target temp
  1710. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1711. while((residencyStart == -1) ||
  1712. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1713. #else
  1714. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1715. #endif //TEMP_RESIDENCY_TIME
  1716. if( (millis() - codenum) > 1000UL )
  1717. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1718. SERIAL_PROTOCOLPGM("T:");
  1719. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1720. SERIAL_PROTOCOLPGM(" E:");
  1721. SERIAL_PROTOCOL((int)tmp_extruder);
  1722. #ifdef TEMP_RESIDENCY_TIME
  1723. SERIAL_PROTOCOLPGM(" W:");
  1724. if(residencyStart > -1)
  1725. {
  1726. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1727. SERIAL_PROTOCOLLN( codenum );
  1728. }
  1729. else
  1730. {
  1731. SERIAL_PROTOCOLLN( "?" );
  1732. }
  1733. #else
  1734. SERIAL_PROTOCOLLN("");
  1735. #endif
  1736. codenum = millis();
  1737. }
  1738. manage_heater();
  1739. manage_inactivity();
  1740. lcd_update();
  1741. #ifdef TEMP_RESIDENCY_TIME
  1742. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1743. or when current temp falls outside the hysteresis after target temp was reached */
  1744. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1745. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1746. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1747. {
  1748. residencyStart = millis();
  1749. }
  1750. #endif //TEMP_RESIDENCY_TIME
  1751. }
  1752. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1753. starttime=millis();
  1754. previous_millis_cmd = millis();
  1755. }
  1756. break;
  1757. case 190: // M190 - Wait for bed heater to reach target.
  1758. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1759. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1760. if (code_seen('S')) {
  1761. setTargetBed(code_value());
  1762. CooldownNoWait = true;
  1763. } else if (code_seen('R')) {
  1764. setTargetBed(code_value());
  1765. CooldownNoWait = false;
  1766. }
  1767. codenum = millis();
  1768. target_direction = isHeatingBed(); // true if heating, false if cooling
  1769. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1770. {
  1771. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1772. {
  1773. float tt=degHotend(active_extruder);
  1774. SERIAL_PROTOCOLPGM("T:");
  1775. SERIAL_PROTOCOL(tt);
  1776. SERIAL_PROTOCOLPGM(" E:");
  1777. SERIAL_PROTOCOL((int)active_extruder);
  1778. SERIAL_PROTOCOLPGM(" B:");
  1779. SERIAL_PROTOCOL_F(degBed(),1);
  1780. SERIAL_PROTOCOLLN("");
  1781. codenum = millis();
  1782. }
  1783. manage_heater();
  1784. manage_inactivity();
  1785. lcd_update();
  1786. }
  1787. LCD_MESSAGEPGM(MSG_BED_DONE);
  1788. previous_millis_cmd = millis();
  1789. #endif
  1790. break;
  1791. #if defined(FAN_PIN) && FAN_PIN > -1
  1792. case 106: //M106 Fan On
  1793. if (code_seen('S')){
  1794. fanSpeed=constrain(code_value(),0,255);
  1795. }
  1796. else {
  1797. fanSpeed=255;
  1798. }
  1799. break;
  1800. case 107: //M107 Fan Off
  1801. fanSpeed = 0;
  1802. break;
  1803. #endif //FAN_PIN
  1804. #ifdef BARICUDA
  1805. // PWM for HEATER_1_PIN
  1806. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1807. case 126: //M126 valve open
  1808. if (code_seen('S')){
  1809. ValvePressure=constrain(code_value(),0,255);
  1810. }
  1811. else {
  1812. ValvePressure=255;
  1813. }
  1814. break;
  1815. case 127: //M127 valve closed
  1816. ValvePressure = 0;
  1817. break;
  1818. #endif //HEATER_1_PIN
  1819. // PWM for HEATER_2_PIN
  1820. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1821. case 128: //M128 valve open
  1822. if (code_seen('S')){
  1823. EtoPPressure=constrain(code_value(),0,255);
  1824. }
  1825. else {
  1826. EtoPPressure=255;
  1827. }
  1828. break;
  1829. case 129: //M129 valve closed
  1830. EtoPPressure = 0;
  1831. break;
  1832. #endif //HEATER_2_PIN
  1833. #endif
  1834. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1835. case 80: // M80 - Turn on Power Supply
  1836. SET_OUTPUT(PS_ON_PIN); //GND
  1837. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1838. // If you have a switch on suicide pin, this is useful
  1839. // if you want to start another print with suicide feature after
  1840. // a print without suicide...
  1841. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1842. SET_OUTPUT(SUICIDE_PIN);
  1843. WRITE(SUICIDE_PIN, HIGH);
  1844. #endif
  1845. #ifdef ULTIPANEL
  1846. powersupply = true;
  1847. LCD_MESSAGEPGM(WELCOME_MSG);
  1848. lcd_update();
  1849. #endif
  1850. break;
  1851. #endif
  1852. case 81: // M81 - Turn off Power Supply
  1853. disable_heater();
  1854. st_synchronize();
  1855. disable_e0();
  1856. disable_e1();
  1857. disable_e2();
  1858. finishAndDisableSteppers();
  1859. fanSpeed = 0;
  1860. delay(1000); // Wait a little before to switch off
  1861. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1862. st_synchronize();
  1863. suicide();
  1864. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1865. SET_OUTPUT(PS_ON_PIN);
  1866. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1867. #endif
  1868. #ifdef ULTIPANEL
  1869. powersupply = false;
  1870. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1871. lcd_update();
  1872. #endif
  1873. break;
  1874. case 82:
  1875. axis_relative_modes[3] = false;
  1876. break;
  1877. case 83:
  1878. axis_relative_modes[3] = true;
  1879. break;
  1880. case 18: //compatibility
  1881. case 84: // M84
  1882. if(code_seen('S')){
  1883. stepper_inactive_time = code_value() * 1000;
  1884. }
  1885. else
  1886. {
  1887. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1888. if(all_axis)
  1889. {
  1890. st_synchronize();
  1891. disable_e0();
  1892. disable_e1();
  1893. disable_e2();
  1894. finishAndDisableSteppers();
  1895. }
  1896. else
  1897. {
  1898. st_synchronize();
  1899. if(code_seen('X')) disable_x();
  1900. if(code_seen('Y')) disable_y();
  1901. if(code_seen('Z')) disable_z();
  1902. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1903. if(code_seen('E')) {
  1904. disable_e0();
  1905. disable_e1();
  1906. disable_e2();
  1907. }
  1908. #endif
  1909. }
  1910. }
  1911. break;
  1912. case 85: // M85
  1913. code_seen('S');
  1914. max_inactive_time = code_value() * 1000;
  1915. break;
  1916. case 92: // M92
  1917. for(int8_t i=0; i < NUM_AXIS; i++)
  1918. {
  1919. if(code_seen(axis_codes[i]))
  1920. {
  1921. if(i == 3) { // E
  1922. float value = code_value();
  1923. if(value < 20.0) {
  1924. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1925. max_e_jerk *= factor;
  1926. max_feedrate[i] *= factor;
  1927. axis_steps_per_sqr_second[i] *= factor;
  1928. }
  1929. axis_steps_per_unit[i] = value;
  1930. }
  1931. else {
  1932. axis_steps_per_unit[i] = code_value();
  1933. }
  1934. }
  1935. }
  1936. break;
  1937. case 115: // M115
  1938. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1939. break;
  1940. case 117: // M117 display message
  1941. starpos = (strchr(strchr_pointer + 5,'*'));
  1942. if(starpos!=NULL)
  1943. *(starpos-1)='\0';
  1944. lcd_setstatus(strchr_pointer + 5);
  1945. break;
  1946. case 114: // M114
  1947. SERIAL_PROTOCOLPGM("X:");
  1948. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1949. SERIAL_PROTOCOLPGM(" Y:");
  1950. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1951. SERIAL_PROTOCOLPGM(" Z:");
  1952. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1953. SERIAL_PROTOCOLPGM(" E:");
  1954. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1955. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1956. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1957. SERIAL_PROTOCOLPGM(" Y:");
  1958. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1959. SERIAL_PROTOCOLPGM(" Z:");
  1960. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1961. SERIAL_PROTOCOLLN("");
  1962. break;
  1963. case 120: // M120
  1964. enable_endstops(false) ;
  1965. break;
  1966. case 121: // M121
  1967. enable_endstops(true) ;
  1968. break;
  1969. case 119: // M119
  1970. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1971. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1972. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1973. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1974. #endif
  1975. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1976. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1977. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1978. #endif
  1979. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1980. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1981. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1982. #endif
  1983. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1984. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1985. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1986. #endif
  1987. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1988. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1989. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1990. #endif
  1991. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1992. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1993. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1994. #endif
  1995. break;
  1996. //TODO: update for all axis, use for loop
  1997. #ifdef BLINKM
  1998. case 150: // M150
  1999. {
  2000. byte red;
  2001. byte grn;
  2002. byte blu;
  2003. if(code_seen('R')) red = code_value();
  2004. if(code_seen('U')) grn = code_value();
  2005. if(code_seen('B')) blu = code_value();
  2006. SendColors(red,grn,blu);
  2007. }
  2008. break;
  2009. #endif //BLINKM
  2010. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2011. {
  2012. float area = .0;
  2013. float radius = .0;
  2014. if(code_seen('D')) {
  2015. radius = (float)code_value() * .5;
  2016. if(radius == 0) {
  2017. area = 1;
  2018. } else {
  2019. area = M_PI * pow(radius, 2);
  2020. }
  2021. } else {
  2022. //reserved for setting filament diameter via UFID or filament measuring device
  2023. break;
  2024. }
  2025. tmp_extruder = active_extruder;
  2026. if(code_seen('T')) {
  2027. tmp_extruder = code_value();
  2028. if(tmp_extruder >= EXTRUDERS) {
  2029. SERIAL_ECHO_START;
  2030. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2031. }
  2032. SERIAL_ECHOLN(tmp_extruder);
  2033. break;
  2034. }
  2035. volumetric_multiplier[tmp_extruder] = 1 / area;
  2036. }
  2037. break;
  2038. case 201: // M201
  2039. for(int8_t i=0; i < NUM_AXIS; i++)
  2040. {
  2041. if(code_seen(axis_codes[i]))
  2042. {
  2043. max_acceleration_units_per_sq_second[i] = code_value();
  2044. }
  2045. }
  2046. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2047. reset_acceleration_rates();
  2048. break;
  2049. #if 0 // Not used for Sprinter/grbl gen6
  2050. case 202: // M202
  2051. for(int8_t i=0; i < NUM_AXIS; i++) {
  2052. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2053. }
  2054. break;
  2055. #endif
  2056. case 203: // M203 max feedrate mm/sec
  2057. for(int8_t i=0; i < NUM_AXIS; i++) {
  2058. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2059. }
  2060. break;
  2061. case 204: // M204 acclereration S normal moves T filmanent only moves
  2062. {
  2063. if(code_seen('S')) acceleration = code_value() ;
  2064. if(code_seen('T')) retract_acceleration = code_value() ;
  2065. }
  2066. break;
  2067. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2068. {
  2069. if(code_seen('S')) minimumfeedrate = code_value();
  2070. if(code_seen('T')) mintravelfeedrate = code_value();
  2071. if(code_seen('B')) minsegmenttime = code_value() ;
  2072. if(code_seen('X')) max_xy_jerk = code_value() ;
  2073. if(code_seen('Z')) max_z_jerk = code_value() ;
  2074. if(code_seen('E')) max_e_jerk = code_value() ;
  2075. }
  2076. break;
  2077. case 206: // M206 additional homeing offset
  2078. for(int8_t i=0; i < 3; i++)
  2079. {
  2080. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2081. }
  2082. break;
  2083. #ifdef DELTA
  2084. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2085. if(code_seen('L')) {
  2086. delta_diagonal_rod= code_value();
  2087. }
  2088. if(code_seen('R')) {
  2089. delta_radius= code_value();
  2090. }
  2091. if(code_seen('S')) {
  2092. delta_segments_per_second= code_value();
  2093. }
  2094. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2095. break;
  2096. case 666: // M666 set delta endstop adjustemnt
  2097. for(int8_t i=0; i < 3; i++)
  2098. {
  2099. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2100. }
  2101. break;
  2102. #endif
  2103. #ifdef FWRETRACT
  2104. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2105. {
  2106. if(code_seen('S'))
  2107. {
  2108. retract_length = code_value() ;
  2109. }
  2110. if(code_seen('F'))
  2111. {
  2112. retract_feedrate = code_value() ;
  2113. }
  2114. if(code_seen('Z'))
  2115. {
  2116. retract_zlift = code_value() ;
  2117. }
  2118. }break;
  2119. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2120. {
  2121. if(code_seen('S'))
  2122. {
  2123. retract_recover_length = code_value() ;
  2124. }
  2125. if(code_seen('F'))
  2126. {
  2127. retract_recover_feedrate = code_value() ;
  2128. }
  2129. }break;
  2130. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2131. {
  2132. if(code_seen('S'))
  2133. {
  2134. int t= code_value() ;
  2135. switch(t)
  2136. {
  2137. case 0: autoretract_enabled=false;retracted=false;break;
  2138. case 1: autoretract_enabled=true;retracted=false;break;
  2139. default:
  2140. SERIAL_ECHO_START;
  2141. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2142. SERIAL_ECHO(cmdbuffer[bufindr]);
  2143. SERIAL_ECHOLNPGM("\"");
  2144. }
  2145. }
  2146. }break;
  2147. #endif // FWRETRACT
  2148. #if EXTRUDERS > 1
  2149. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2150. {
  2151. if(setTargetedHotend(218)){
  2152. break;
  2153. }
  2154. if(code_seen('X'))
  2155. {
  2156. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2157. }
  2158. if(code_seen('Y'))
  2159. {
  2160. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2161. }
  2162. #ifdef DUAL_X_CARRIAGE
  2163. if(code_seen('Z'))
  2164. {
  2165. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2166. }
  2167. #endif
  2168. SERIAL_ECHO_START;
  2169. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2170. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2171. {
  2172. SERIAL_ECHO(" ");
  2173. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2174. SERIAL_ECHO(",");
  2175. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2176. #ifdef DUAL_X_CARRIAGE
  2177. SERIAL_ECHO(",");
  2178. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2179. #endif
  2180. }
  2181. SERIAL_ECHOLN("");
  2182. }break;
  2183. #endif
  2184. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2185. {
  2186. if(code_seen('S'))
  2187. {
  2188. feedmultiply = code_value() ;
  2189. }
  2190. }
  2191. break;
  2192. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2193. {
  2194. if(code_seen('S'))
  2195. {
  2196. int tmp_code = code_value();
  2197. if (code_seen('T'))
  2198. {
  2199. if(setTargetedHotend(221)){
  2200. break;
  2201. }
  2202. extruder_multiply[tmp_extruder] = tmp_code;
  2203. }
  2204. else
  2205. {
  2206. extrudemultiply = tmp_code ;
  2207. }
  2208. }
  2209. }
  2210. break;
  2211. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2212. {
  2213. if(code_seen('P')){
  2214. int pin_number = code_value(); // pin number
  2215. int pin_state = -1; // required pin state - default is inverted
  2216. if(code_seen('S')) pin_state = code_value(); // required pin state
  2217. if(pin_state >= -1 && pin_state <= 1){
  2218. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2219. {
  2220. if (sensitive_pins[i] == pin_number)
  2221. {
  2222. pin_number = -1;
  2223. break;
  2224. }
  2225. }
  2226. if (pin_number > -1)
  2227. {
  2228. st_synchronize();
  2229. pinMode(pin_number, INPUT);
  2230. int target;
  2231. switch(pin_state){
  2232. case 1:
  2233. target = HIGH;
  2234. break;
  2235. case 0:
  2236. target = LOW;
  2237. break;
  2238. case -1:
  2239. target = !digitalRead(pin_number);
  2240. break;
  2241. }
  2242. while(digitalRead(pin_number) != target){
  2243. manage_heater();
  2244. manage_inactivity();
  2245. lcd_update();
  2246. }
  2247. }
  2248. }
  2249. }
  2250. }
  2251. break;
  2252. #if NUM_SERVOS > 0
  2253. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2254. {
  2255. int servo_index = -1;
  2256. int servo_position = 0;
  2257. if (code_seen('P'))
  2258. servo_index = code_value();
  2259. if (code_seen('S')) {
  2260. servo_position = code_value();
  2261. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2262. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2263. servos[servo_index].attach(0);
  2264. #endif
  2265. servos[servo_index].write(servo_position);
  2266. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2267. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2268. servos[servo_index].detach();
  2269. #endif
  2270. }
  2271. else {
  2272. SERIAL_ECHO_START;
  2273. SERIAL_ECHO("Servo ");
  2274. SERIAL_ECHO(servo_index);
  2275. SERIAL_ECHOLN(" out of range");
  2276. }
  2277. }
  2278. else if (servo_index >= 0) {
  2279. SERIAL_PROTOCOL(MSG_OK);
  2280. SERIAL_PROTOCOL(" Servo ");
  2281. SERIAL_PROTOCOL(servo_index);
  2282. SERIAL_PROTOCOL(": ");
  2283. SERIAL_PROTOCOL(servos[servo_index].read());
  2284. SERIAL_PROTOCOLLN("");
  2285. }
  2286. }
  2287. break;
  2288. #endif // NUM_SERVOS > 0
  2289. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2290. case 300: // M300
  2291. {
  2292. int beepS = code_seen('S') ? code_value() : 110;
  2293. int beepP = code_seen('P') ? code_value() : 1000;
  2294. if (beepS > 0)
  2295. {
  2296. #if BEEPER > 0
  2297. tone(BEEPER, beepS);
  2298. delay(beepP);
  2299. noTone(BEEPER);
  2300. #elif defined(ULTRALCD)
  2301. lcd_buzz(beepS, beepP);
  2302. #elif defined(LCD_USE_I2C_BUZZER)
  2303. lcd_buzz(beepP, beepS);
  2304. #endif
  2305. }
  2306. else
  2307. {
  2308. delay(beepP);
  2309. }
  2310. }
  2311. break;
  2312. #endif // M300
  2313. #ifdef PIDTEMP
  2314. case 301: // M301
  2315. {
  2316. if(code_seen('P')) Kp = code_value();
  2317. if(code_seen('I')) Ki = scalePID_i(code_value());
  2318. if(code_seen('D')) Kd = scalePID_d(code_value());
  2319. #ifdef PID_ADD_EXTRUSION_RATE
  2320. if(code_seen('C')) Kc = code_value();
  2321. #endif
  2322. updatePID();
  2323. SERIAL_PROTOCOL(MSG_OK);
  2324. SERIAL_PROTOCOL(" p:");
  2325. SERIAL_PROTOCOL(Kp);
  2326. SERIAL_PROTOCOL(" i:");
  2327. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2328. SERIAL_PROTOCOL(" d:");
  2329. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2330. #ifdef PID_ADD_EXTRUSION_RATE
  2331. SERIAL_PROTOCOL(" c:");
  2332. //Kc does not have scaling applied above, or in resetting defaults
  2333. SERIAL_PROTOCOL(Kc);
  2334. #endif
  2335. SERIAL_PROTOCOLLN("");
  2336. }
  2337. break;
  2338. #endif //PIDTEMP
  2339. #ifdef PIDTEMPBED
  2340. case 304: // M304
  2341. {
  2342. if(code_seen('P')) bedKp = code_value();
  2343. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2344. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2345. updatePID();
  2346. SERIAL_PROTOCOL(MSG_OK);
  2347. SERIAL_PROTOCOL(" p:");
  2348. SERIAL_PROTOCOL(bedKp);
  2349. SERIAL_PROTOCOL(" i:");
  2350. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2351. SERIAL_PROTOCOL(" d:");
  2352. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2353. SERIAL_PROTOCOLLN("");
  2354. }
  2355. break;
  2356. #endif //PIDTEMP
  2357. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2358. {
  2359. #ifdef CHDK
  2360. SET_OUTPUT(CHDK);
  2361. WRITE(CHDK, HIGH);
  2362. chdkHigh = millis();
  2363. chdkActive = true;
  2364. #else
  2365. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2366. const uint8_t NUM_PULSES=16;
  2367. const float PULSE_LENGTH=0.01524;
  2368. for(int i=0; i < NUM_PULSES; i++) {
  2369. WRITE(PHOTOGRAPH_PIN, HIGH);
  2370. _delay_ms(PULSE_LENGTH);
  2371. WRITE(PHOTOGRAPH_PIN, LOW);
  2372. _delay_ms(PULSE_LENGTH);
  2373. }
  2374. delay(7.33);
  2375. for(int i=0; i < NUM_PULSES; i++) {
  2376. WRITE(PHOTOGRAPH_PIN, HIGH);
  2377. _delay_ms(PULSE_LENGTH);
  2378. WRITE(PHOTOGRAPH_PIN, LOW);
  2379. _delay_ms(PULSE_LENGTH);
  2380. }
  2381. #endif
  2382. #endif //chdk end if
  2383. }
  2384. break;
  2385. #ifdef DOGLCD
  2386. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2387. {
  2388. if (code_seen('C')) {
  2389. lcd_setcontrast( ((int)code_value())&63 );
  2390. }
  2391. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2392. SERIAL_PROTOCOL(lcd_contrast);
  2393. SERIAL_PROTOCOLLN("");
  2394. }
  2395. break;
  2396. #endif
  2397. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2398. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2399. {
  2400. float temp = .0;
  2401. if (code_seen('S')) temp=code_value();
  2402. set_extrude_min_temp(temp);
  2403. }
  2404. break;
  2405. #endif
  2406. case 303: // M303 PID autotune
  2407. {
  2408. float temp = 150.0;
  2409. int e=0;
  2410. int c=5;
  2411. if (code_seen('E')) e=code_value();
  2412. if (e<0)
  2413. temp=70;
  2414. if (code_seen('S')) temp=code_value();
  2415. if (code_seen('C')) c=code_value();
  2416. PID_autotune(temp, e, c);
  2417. }
  2418. break;
  2419. case 400: // M400 finish all moves
  2420. {
  2421. st_synchronize();
  2422. }
  2423. break;
  2424. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2425. case 401:
  2426. {
  2427. engage_z_probe(); // Engage Z Servo endstop if available
  2428. }
  2429. break;
  2430. case 402:
  2431. {
  2432. retract_z_probe(); // Retract Z Servo endstop if enabled
  2433. }
  2434. break;
  2435. #endif
  2436. case 500: // M500 Store settings in EEPROM
  2437. {
  2438. Config_StoreSettings();
  2439. }
  2440. break;
  2441. case 501: // M501 Read settings from EEPROM
  2442. {
  2443. Config_RetrieveSettings();
  2444. }
  2445. break;
  2446. case 502: // M502 Revert to default settings
  2447. {
  2448. Config_ResetDefault();
  2449. }
  2450. break;
  2451. case 503: // M503 print settings currently in memory
  2452. {
  2453. Config_PrintSettings();
  2454. }
  2455. break;
  2456. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2457. case 540:
  2458. {
  2459. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2460. }
  2461. break;
  2462. #endif
  2463. #ifdef FILAMENTCHANGEENABLE
  2464. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2465. {
  2466. float target[4];
  2467. float lastpos[4];
  2468. target[X_AXIS]=current_position[X_AXIS];
  2469. target[Y_AXIS]=current_position[Y_AXIS];
  2470. target[Z_AXIS]=current_position[Z_AXIS];
  2471. target[E_AXIS]=current_position[E_AXIS];
  2472. lastpos[X_AXIS]=current_position[X_AXIS];
  2473. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2474. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2475. lastpos[E_AXIS]=current_position[E_AXIS];
  2476. //retract by E
  2477. if(code_seen('E'))
  2478. {
  2479. target[E_AXIS]+= code_value();
  2480. }
  2481. else
  2482. {
  2483. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2484. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2485. #endif
  2486. }
  2487. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2488. //lift Z
  2489. if(code_seen('Z'))
  2490. {
  2491. target[Z_AXIS]+= code_value();
  2492. }
  2493. else
  2494. {
  2495. #ifdef FILAMENTCHANGE_ZADD
  2496. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2497. #endif
  2498. }
  2499. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2500. //move xy
  2501. if(code_seen('X'))
  2502. {
  2503. target[X_AXIS]+= code_value();
  2504. }
  2505. else
  2506. {
  2507. #ifdef FILAMENTCHANGE_XPOS
  2508. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2509. #endif
  2510. }
  2511. if(code_seen('Y'))
  2512. {
  2513. target[Y_AXIS]= code_value();
  2514. }
  2515. else
  2516. {
  2517. #ifdef FILAMENTCHANGE_YPOS
  2518. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2519. #endif
  2520. }
  2521. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2522. if(code_seen('L'))
  2523. {
  2524. target[E_AXIS]+= code_value();
  2525. }
  2526. else
  2527. {
  2528. #ifdef FILAMENTCHANGE_FINALRETRACT
  2529. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2530. #endif
  2531. }
  2532. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2533. //finish moves
  2534. st_synchronize();
  2535. //disable extruder steppers so filament can be removed
  2536. disable_e0();
  2537. disable_e1();
  2538. disable_e2();
  2539. delay(100);
  2540. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2541. uint8_t cnt=0;
  2542. while(!lcd_clicked()){
  2543. cnt++;
  2544. manage_heater();
  2545. manage_inactivity();
  2546. lcd_update();
  2547. if(cnt==0)
  2548. {
  2549. #if BEEPER > 0
  2550. SET_OUTPUT(BEEPER);
  2551. WRITE(BEEPER,HIGH);
  2552. delay(3);
  2553. WRITE(BEEPER,LOW);
  2554. delay(3);
  2555. #else
  2556. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2557. lcd_buzz(1000/6,100);
  2558. #else
  2559. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2560. #endif
  2561. #endif
  2562. }
  2563. }
  2564. //return to normal
  2565. if(code_seen('L'))
  2566. {
  2567. target[E_AXIS]+= -code_value();
  2568. }
  2569. else
  2570. {
  2571. #ifdef FILAMENTCHANGE_FINALRETRACT
  2572. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2573. #endif
  2574. }
  2575. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2576. plan_set_e_position(current_position[E_AXIS]);
  2577. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2578. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2579. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2580. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2581. }
  2582. break;
  2583. #endif //FILAMENTCHANGEENABLE
  2584. #ifdef DUAL_X_CARRIAGE
  2585. case 605: // Set dual x-carriage movement mode:
  2586. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2587. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2588. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2589. // millimeters x-offset and an optional differential hotend temperature of
  2590. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2591. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2592. //
  2593. // Note: the X axis should be homed after changing dual x-carriage mode.
  2594. {
  2595. st_synchronize();
  2596. if (code_seen('S'))
  2597. dual_x_carriage_mode = code_value();
  2598. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2599. {
  2600. if (code_seen('X'))
  2601. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2602. if (code_seen('R'))
  2603. duplicate_extruder_temp_offset = code_value();
  2604. SERIAL_ECHO_START;
  2605. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2606. SERIAL_ECHO(" ");
  2607. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2608. SERIAL_ECHO(",");
  2609. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2610. SERIAL_ECHO(" ");
  2611. SERIAL_ECHO(duplicate_extruder_x_offset);
  2612. SERIAL_ECHO(",");
  2613. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2614. }
  2615. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2616. {
  2617. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2618. }
  2619. active_extruder_parked = false;
  2620. extruder_duplication_enabled = false;
  2621. delayed_move_time = 0;
  2622. }
  2623. break;
  2624. #endif //DUAL_X_CARRIAGE
  2625. case 907: // M907 Set digital trimpot motor current using axis codes.
  2626. {
  2627. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2628. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2629. if(code_seen('B')) digipot_current(4,code_value());
  2630. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2631. #endif
  2632. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2633. if(code_seen('X')) digipot_current(0, code_value());
  2634. #endif
  2635. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2636. if(code_seen('Z')) digipot_current(1, code_value());
  2637. #endif
  2638. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2639. if(code_seen('E')) digipot_current(2, code_value());
  2640. #endif
  2641. #ifdef DIGIPOT_I2C
  2642. // this one uses actual amps in floating point
  2643. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2644. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2645. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2646. #endif
  2647. }
  2648. break;
  2649. case 908: // M908 Control digital trimpot directly.
  2650. {
  2651. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2652. uint8_t channel,current;
  2653. if(code_seen('P')) channel=code_value();
  2654. if(code_seen('S')) current=code_value();
  2655. digitalPotWrite(channel, current);
  2656. #endif
  2657. }
  2658. break;
  2659. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2660. {
  2661. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2662. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2663. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2664. if(code_seen('B')) microstep_mode(4,code_value());
  2665. microstep_readings();
  2666. #endif
  2667. }
  2668. break;
  2669. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2670. {
  2671. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2672. if(code_seen('S')) switch((int)code_value())
  2673. {
  2674. case 1:
  2675. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2676. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2677. break;
  2678. case 2:
  2679. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2680. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2681. break;
  2682. }
  2683. microstep_readings();
  2684. #endif
  2685. }
  2686. break;
  2687. case 999: // M999: Restart after being stopped
  2688. Stopped = false;
  2689. lcd_reset_alert_level();
  2690. gcode_LastN = Stopped_gcode_LastN;
  2691. FlushSerialRequestResend();
  2692. break;
  2693. }
  2694. }
  2695. else if(code_seen('T'))
  2696. {
  2697. tmp_extruder = code_value();
  2698. if(tmp_extruder >= EXTRUDERS) {
  2699. SERIAL_ECHO_START;
  2700. SERIAL_ECHO("T");
  2701. SERIAL_ECHO(tmp_extruder);
  2702. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2703. }
  2704. else {
  2705. boolean make_move = false;
  2706. if(code_seen('F')) {
  2707. make_move = true;
  2708. next_feedrate = code_value();
  2709. if(next_feedrate > 0.0) {
  2710. feedrate = next_feedrate;
  2711. }
  2712. }
  2713. #if EXTRUDERS > 1
  2714. if(tmp_extruder != active_extruder) {
  2715. // Save current position to return to after applying extruder offset
  2716. memcpy(destination, current_position, sizeof(destination));
  2717. #ifdef DUAL_X_CARRIAGE
  2718. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2719. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2720. {
  2721. // Park old head: 1) raise 2) move to park position 3) lower
  2722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2723. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2724. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2725. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2726. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2727. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2728. st_synchronize();
  2729. }
  2730. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2731. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2732. extruder_offset[Y_AXIS][active_extruder] +
  2733. extruder_offset[Y_AXIS][tmp_extruder];
  2734. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2735. extruder_offset[Z_AXIS][active_extruder] +
  2736. extruder_offset[Z_AXIS][tmp_extruder];
  2737. active_extruder = tmp_extruder;
  2738. // This function resets the max/min values - the current position may be overwritten below.
  2739. axis_is_at_home(X_AXIS);
  2740. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2741. {
  2742. current_position[X_AXIS] = inactive_extruder_x_pos;
  2743. inactive_extruder_x_pos = destination[X_AXIS];
  2744. }
  2745. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2746. {
  2747. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2748. if (active_extruder == 0 || active_extruder_parked)
  2749. current_position[X_AXIS] = inactive_extruder_x_pos;
  2750. else
  2751. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2752. inactive_extruder_x_pos = destination[X_AXIS];
  2753. extruder_duplication_enabled = false;
  2754. }
  2755. else
  2756. {
  2757. // record raised toolhead position for use by unpark
  2758. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2759. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2760. active_extruder_parked = true;
  2761. delayed_move_time = 0;
  2762. }
  2763. #else
  2764. // Offset extruder (only by XY)
  2765. int i;
  2766. for(i = 0; i < 2; i++) {
  2767. current_position[i] = current_position[i] -
  2768. extruder_offset[i][active_extruder] +
  2769. extruder_offset[i][tmp_extruder];
  2770. }
  2771. // Set the new active extruder and position
  2772. active_extruder = tmp_extruder;
  2773. #endif //else DUAL_X_CARRIAGE
  2774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2775. // Move to the old position if 'F' was in the parameters
  2776. if(make_move && Stopped == false) {
  2777. prepare_move();
  2778. }
  2779. }
  2780. #endif
  2781. SERIAL_ECHO_START;
  2782. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2783. SERIAL_PROTOCOLLN((int)active_extruder);
  2784. }
  2785. }
  2786. else
  2787. {
  2788. SERIAL_ECHO_START;
  2789. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2790. SERIAL_ECHO(cmdbuffer[bufindr]);
  2791. SERIAL_ECHOLNPGM("\"");
  2792. }
  2793. ClearToSend();
  2794. }
  2795. void FlushSerialRequestResend()
  2796. {
  2797. //char cmdbuffer[bufindr][100]="Resend:";
  2798. MYSERIAL.flush();
  2799. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2800. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2801. ClearToSend();
  2802. }
  2803. void ClearToSend()
  2804. {
  2805. previous_millis_cmd = millis();
  2806. #ifdef SDSUPPORT
  2807. if(fromsd[bufindr])
  2808. return;
  2809. #endif //SDSUPPORT
  2810. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2811. }
  2812. void get_coordinates()
  2813. {
  2814. bool seen[4]={false,false,false,false};
  2815. for(int8_t i=0; i < NUM_AXIS; i++) {
  2816. if(code_seen(axis_codes[i]))
  2817. {
  2818. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2819. seen[i]=true;
  2820. }
  2821. else destination[i] = current_position[i]; //Are these else lines really needed?
  2822. }
  2823. if(code_seen('F')) {
  2824. next_feedrate = code_value();
  2825. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2826. }
  2827. }
  2828. void get_arc_coordinates()
  2829. {
  2830. #ifdef SF_ARC_FIX
  2831. bool relative_mode_backup = relative_mode;
  2832. relative_mode = true;
  2833. #endif
  2834. get_coordinates();
  2835. #ifdef SF_ARC_FIX
  2836. relative_mode=relative_mode_backup;
  2837. #endif
  2838. if(code_seen('I')) {
  2839. offset[0] = code_value();
  2840. }
  2841. else {
  2842. offset[0] = 0.0;
  2843. }
  2844. if(code_seen('J')) {
  2845. offset[1] = code_value();
  2846. }
  2847. else {
  2848. offset[1] = 0.0;
  2849. }
  2850. }
  2851. void clamp_to_software_endstops(float target[3])
  2852. {
  2853. if (min_software_endstops) {
  2854. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2855. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2856. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2857. }
  2858. if (max_software_endstops) {
  2859. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2860. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2861. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2862. }
  2863. }
  2864. #ifdef DELTA
  2865. void recalc_delta_settings(float radius, float diagonal_rod)
  2866. {
  2867. delta_tower1_x= -SIN_60*radius; // front left tower
  2868. delta_tower1_y= -COS_60*radius;
  2869. delta_tower2_x= SIN_60*radius; // front right tower
  2870. delta_tower2_y= -COS_60*radius;
  2871. delta_tower3_x= 0.0; // back middle tower
  2872. delta_tower3_y= radius;
  2873. delta_diagonal_rod_2= sq(diagonal_rod);
  2874. }
  2875. void calculate_delta(float cartesian[3])
  2876. {
  2877. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  2878. - sq(delta_tower1_x-cartesian[X_AXIS])
  2879. - sq(delta_tower1_y-cartesian[Y_AXIS])
  2880. ) + cartesian[Z_AXIS];
  2881. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  2882. - sq(delta_tower2_x-cartesian[X_AXIS])
  2883. - sq(delta_tower2_y-cartesian[Y_AXIS])
  2884. ) + cartesian[Z_AXIS];
  2885. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  2886. - sq(delta_tower3_x-cartesian[X_AXIS])
  2887. - sq(delta_tower3_y-cartesian[Y_AXIS])
  2888. ) + cartesian[Z_AXIS];
  2889. /*
  2890. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2891. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2892. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2893. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2894. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2895. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2896. */
  2897. }
  2898. #endif
  2899. void prepare_move()
  2900. {
  2901. clamp_to_software_endstops(destination);
  2902. previous_millis_cmd = millis();
  2903. #ifdef DELTA
  2904. float difference[NUM_AXIS];
  2905. for (int8_t i=0; i < NUM_AXIS; i++) {
  2906. difference[i] = destination[i] - current_position[i];
  2907. }
  2908. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2909. sq(difference[Y_AXIS]) +
  2910. sq(difference[Z_AXIS]));
  2911. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2912. if (cartesian_mm < 0.000001) { return; }
  2913. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2914. int steps = max(1, int(delta_segments_per_second * seconds));
  2915. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2916. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2917. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2918. for (int s = 1; s <= steps; s++) {
  2919. float fraction = float(s) / float(steps);
  2920. for(int8_t i=0; i < NUM_AXIS; i++) {
  2921. destination[i] = current_position[i] + difference[i] * fraction;
  2922. }
  2923. calculate_delta(destination);
  2924. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2925. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2926. active_extruder);
  2927. }
  2928. #else
  2929. #ifdef DUAL_X_CARRIAGE
  2930. if (active_extruder_parked)
  2931. {
  2932. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2933. {
  2934. // move duplicate extruder into correct duplication position.
  2935. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2936. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2937. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2938. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2939. st_synchronize();
  2940. extruder_duplication_enabled = true;
  2941. active_extruder_parked = false;
  2942. }
  2943. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2944. {
  2945. if (current_position[E_AXIS] == destination[E_AXIS])
  2946. {
  2947. // this is a travel move - skit it but keep track of current position (so that it can later
  2948. // be used as start of first non-travel move)
  2949. if (delayed_move_time != 0xFFFFFFFFUL)
  2950. {
  2951. memcpy(current_position, destination, sizeof(current_position));
  2952. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2953. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2954. delayed_move_time = millis();
  2955. return;
  2956. }
  2957. }
  2958. delayed_move_time = 0;
  2959. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2960. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2962. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2963. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2964. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2965. active_extruder_parked = false;
  2966. }
  2967. }
  2968. #endif //DUAL_X_CARRIAGE
  2969. // Do not use feedmultiply for E or Z only moves
  2970. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2971. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2972. }
  2973. else {
  2974. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2975. }
  2976. #endif //else DELTA
  2977. for(int8_t i=0; i < NUM_AXIS; i++) {
  2978. current_position[i] = destination[i];
  2979. }
  2980. }
  2981. void prepare_arc_move(char isclockwise) {
  2982. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2983. // Trace the arc
  2984. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2985. // As far as the parser is concerned, the position is now == target. In reality the
  2986. // motion control system might still be processing the action and the real tool position
  2987. // in any intermediate location.
  2988. for(int8_t i=0; i < NUM_AXIS; i++) {
  2989. current_position[i] = destination[i];
  2990. }
  2991. previous_millis_cmd = millis();
  2992. }
  2993. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2994. #if defined(FAN_PIN)
  2995. #if CONTROLLERFAN_PIN == FAN_PIN
  2996. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2997. #endif
  2998. #endif
  2999. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3000. unsigned long lastMotorCheck = 0;
  3001. void controllerFan()
  3002. {
  3003. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3004. {
  3005. lastMotorCheck = millis();
  3006. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3007. #if EXTRUDERS > 2
  3008. || !READ(E2_ENABLE_PIN)
  3009. #endif
  3010. #if EXTRUDER > 1
  3011. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3012. || !READ(X2_ENABLE_PIN)
  3013. #endif
  3014. || !READ(E1_ENABLE_PIN)
  3015. #endif
  3016. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3017. {
  3018. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3019. }
  3020. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3021. {
  3022. digitalWrite(CONTROLLERFAN_PIN, 0);
  3023. analogWrite(CONTROLLERFAN_PIN, 0);
  3024. }
  3025. else
  3026. {
  3027. // allows digital or PWM fan output to be used (see M42 handling)
  3028. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3029. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3030. }
  3031. }
  3032. }
  3033. #endif
  3034. #ifdef TEMP_STAT_LEDS
  3035. static bool blue_led = false;
  3036. static bool red_led = false;
  3037. static uint32_t stat_update = 0;
  3038. void handle_status_leds(void) {
  3039. float max_temp = 0.0;
  3040. if(millis() > stat_update) {
  3041. stat_update += 500; // Update every 0.5s
  3042. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3043. max_temp = max(max_temp, degHotend(cur_extruder));
  3044. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3045. }
  3046. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3047. max_temp = max(max_temp, degTargetBed());
  3048. max_temp = max(max_temp, degBed());
  3049. #endif
  3050. if((max_temp > 55.0) && (red_led == false)) {
  3051. digitalWrite(STAT_LED_RED, 1);
  3052. digitalWrite(STAT_LED_BLUE, 0);
  3053. red_led = true;
  3054. blue_led = false;
  3055. }
  3056. if((max_temp < 54.0) && (blue_led == false)) {
  3057. digitalWrite(STAT_LED_RED, 0);
  3058. digitalWrite(STAT_LED_BLUE, 1);
  3059. red_led = false;
  3060. blue_led = true;
  3061. }
  3062. }
  3063. }
  3064. #endif
  3065. void manage_inactivity()
  3066. {
  3067. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3068. if(max_inactive_time)
  3069. kill();
  3070. if(stepper_inactive_time) {
  3071. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3072. {
  3073. if(blocks_queued() == false) {
  3074. disable_x();
  3075. disable_y();
  3076. disable_z();
  3077. disable_e0();
  3078. disable_e1();
  3079. disable_e2();
  3080. }
  3081. }
  3082. }
  3083. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3084. if (chdkActive)
  3085. {
  3086. chdkActive = false;
  3087. if (millis()-chdkHigh < CHDK_DELAY) return;
  3088. WRITE(CHDK, LOW);
  3089. }
  3090. #endif
  3091. #if defined(KILL_PIN) && KILL_PIN > -1
  3092. if( 0 == READ(KILL_PIN) )
  3093. kill();
  3094. #endif
  3095. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3096. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3097. #endif
  3098. #ifdef EXTRUDER_RUNOUT_PREVENT
  3099. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3100. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3101. {
  3102. bool oldstatus=READ(E0_ENABLE_PIN);
  3103. enable_e0();
  3104. float oldepos=current_position[E_AXIS];
  3105. float oldedes=destination[E_AXIS];
  3106. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3107. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3108. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3109. current_position[E_AXIS]=oldepos;
  3110. destination[E_AXIS]=oldedes;
  3111. plan_set_e_position(oldepos);
  3112. previous_millis_cmd=millis();
  3113. st_synchronize();
  3114. WRITE(E0_ENABLE_PIN,oldstatus);
  3115. }
  3116. #endif
  3117. #if defined(DUAL_X_CARRIAGE)
  3118. // handle delayed move timeout
  3119. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3120. {
  3121. // travel moves have been received so enact them
  3122. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3123. memcpy(destination,current_position,sizeof(destination));
  3124. prepare_move();
  3125. }
  3126. #endif
  3127. #ifdef TEMP_STAT_LEDS
  3128. handle_status_leds();
  3129. #endif
  3130. check_axes_activity();
  3131. }
  3132. void kill()
  3133. {
  3134. cli(); // Stop interrupts
  3135. disable_heater();
  3136. disable_x();
  3137. disable_y();
  3138. disable_z();
  3139. disable_e0();
  3140. disable_e1();
  3141. disable_e2();
  3142. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3143. pinMode(PS_ON_PIN,INPUT);
  3144. #endif
  3145. SERIAL_ERROR_START;
  3146. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3147. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3148. suicide();
  3149. while(1) { /* Intentionally left empty */ } // Wait for reset
  3150. }
  3151. void Stop()
  3152. {
  3153. disable_heater();
  3154. if(Stopped == false) {
  3155. Stopped = true;
  3156. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3157. SERIAL_ERROR_START;
  3158. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3159. LCD_MESSAGEPGM(MSG_STOPPED);
  3160. }
  3161. }
  3162. bool IsStopped() { return Stopped; };
  3163. #ifdef FAST_PWM_FAN
  3164. void setPwmFrequency(uint8_t pin, int val)
  3165. {
  3166. val &= 0x07;
  3167. switch(digitalPinToTimer(pin))
  3168. {
  3169. #if defined(TCCR0A)
  3170. case TIMER0A:
  3171. case TIMER0B:
  3172. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3173. // TCCR0B |= val;
  3174. break;
  3175. #endif
  3176. #if defined(TCCR1A)
  3177. case TIMER1A:
  3178. case TIMER1B:
  3179. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3180. // TCCR1B |= val;
  3181. break;
  3182. #endif
  3183. #if defined(TCCR2)
  3184. case TIMER2:
  3185. case TIMER2:
  3186. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3187. TCCR2 |= val;
  3188. break;
  3189. #endif
  3190. #if defined(TCCR2A)
  3191. case TIMER2A:
  3192. case TIMER2B:
  3193. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3194. TCCR2B |= val;
  3195. break;
  3196. #endif
  3197. #if defined(TCCR3A)
  3198. case TIMER3A:
  3199. case TIMER3B:
  3200. case TIMER3C:
  3201. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3202. TCCR3B |= val;
  3203. break;
  3204. #endif
  3205. #if defined(TCCR4A)
  3206. case TIMER4A:
  3207. case TIMER4B:
  3208. case TIMER4C:
  3209. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3210. TCCR4B |= val;
  3211. break;
  3212. #endif
  3213. #if defined(TCCR5A)
  3214. case TIMER5A:
  3215. case TIMER5B:
  3216. case TIMER5C:
  3217. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3218. TCCR5B |= val;
  3219. break;
  3220. #endif
  3221. }
  3222. }
  3223. #endif //FAST_PWM_FAN
  3224. bool setTargetedHotend(int code){
  3225. tmp_extruder = active_extruder;
  3226. if(code_seen('T')) {
  3227. tmp_extruder = code_value();
  3228. if(tmp_extruder >= EXTRUDERS) {
  3229. SERIAL_ECHO_START;
  3230. switch(code){
  3231. case 104:
  3232. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3233. break;
  3234. case 105:
  3235. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3236. break;
  3237. case 109:
  3238. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3239. break;
  3240. case 218:
  3241. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3242. break;
  3243. case 221:
  3244. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3245. break;
  3246. }
  3247. SERIAL_ECHOLN(tmp_extruder);
  3248. return true;
  3249. }
  3250. }
  3251. return false;
  3252. }