My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 30KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V24"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V24 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM Checksum (uint16_t)
  45. *
  46. * 106 M92 XYZE planner.axis_steps_per_mm (float x4)
  47. * 122 M203 XYZE planner.max_feedrate (float x4)
  48. * 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
  49. * 154 M204 P planner.acceleration (float)
  50. * 158 M204 R planner.retract_acceleration (float)
  51. * 162 M204 T planner.travel_acceleration (float)
  52. * 166 M205 S planner.min_feedrate (float)
  53. * 170 M205 T planner.min_travel_feedrate (float)
  54. * 174 M205 B planner.min_segment_time (ulong)
  55. * 178 M205 X planner.max_xy_jerk (float)
  56. * 182 M205 Z planner.max_z_jerk (float)
  57. * 186 M205 E planner.max_e_jerk (float)
  58. * 190 M206 XYZ home_offset (float x3)
  59. *
  60. * Mesh bed leveling:
  61. * 202 M420 S status (uint8)
  62. * 203 z_offset (float)
  63. * 207 mesh_num_x (uint8 as set in firmware)
  64. * 208 mesh_num_y (uint8 as set in firmware)
  65. * 209 G29 S3 XYZ z_values[][] (float x9, by default)
  66. *
  67. * AUTO BED LEVELING
  68. * 245 M851 zprobe_zoffset (float)
  69. *
  70. * DELTA:
  71. * 249 M666 XYZ endstop_adj (float x3)
  72. * 261 M665 R delta_radius (float)
  73. * 265 M665 L delta_diagonal_rod (float)
  74. * 269 M665 S delta_segments_per_second (float)
  75. * 273 M665 A delta_diagonal_rod_trim_tower_1 (float)
  76. * 277 M665 B delta_diagonal_rod_trim_tower_2 (float)
  77. * 281 M665 C delta_diagonal_rod_trim_tower_3 (float)
  78. *
  79. * Z_DUAL_ENDSTOPS:
  80. * 285 M666 Z z_endstop_adj (float)
  81. *
  82. * ULTIPANEL:
  83. * 289 M145 S0 H plaPreheatHotendTemp (int)
  84. * 291 M145 S0 B plaPreheatHPBTemp (int)
  85. * 293 M145 S0 F plaPreheatFanSpeed (int)
  86. * 295 M145 S1 H absPreheatHotendTemp (int)
  87. * 297 M145 S1 B absPreheatHPBTemp (int)
  88. * 299 M145 S1 F absPreheatFanSpeed (int)
  89. *
  90. * PIDTEMP:
  91. * 301 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  92. * 317 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  93. * 333 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  94. * 349 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  95. * 365 M301 L lpq_len (int)
  96. *
  97. * PIDTEMPBED:
  98. * 367 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  99. *
  100. * DOGLCD:
  101. * 379 M250 C lcd_contrast (int)
  102. *
  103. * SCARA:
  104. * 381 M365 XYZ axis_scaling (float x3)
  105. *
  106. * FWRETRACT:
  107. * 393 M209 S autoretract_enabled (bool)
  108. * 394 M207 S retract_length (float)
  109. * 398 M207 W retract_length_swap (float)
  110. * 402 M207 F retract_feedrate_mm_s (float)
  111. * 406 M207 Z retract_zlift (float)
  112. * 410 M208 S retract_recover_length (float)
  113. * 414 M208 W retract_recover_length_swap (float)
  114. * 418 M208 F retract_recover_feedrate (float)
  115. *
  116. * Volumetric Extrusion:
  117. * 422 M200 D volumetric_enabled (bool)
  118. * 423 M200 T D filament_size (float x4) (T0..3)
  119. *
  120. * 439 This Slot is Available!
  121. *
  122. */
  123. #include "Marlin.h"
  124. #include "language.h"
  125. #include "planner.h"
  126. #include "temperature.h"
  127. #include "ultralcd.h"
  128. #include "configuration_store.h"
  129. #if ENABLED(MESH_BED_LEVELING)
  130. #include "mesh_bed_leveling.h"
  131. #endif
  132. uint16_t eeprom_checksum;
  133. const char version[4] = EEPROM_VERSION;
  134. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  135. uint8_t c;
  136. while (size--) {
  137. eeprom_write_byte((unsigned char*)pos, *value);
  138. c = eeprom_read_byte((unsigned char*)pos);
  139. if (c != *value) {
  140. SERIAL_ECHO_START;
  141. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  142. }
  143. eeprom_checksum += c;
  144. pos++;
  145. value++;
  146. };
  147. }
  148. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  149. do {
  150. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  151. *value = c;
  152. eeprom_checksum += c;
  153. pos++;
  154. value++;
  155. } while (--size);
  156. }
  157. /**
  158. * Post-process after Retrieve or Reset
  159. */
  160. void Config_Postprocess() {
  161. // steps per s2 needs to be updated to agree with units per s2
  162. planner.reset_acceleration_rates();
  163. #if ENABLED(DELTA)
  164. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  165. #endif
  166. #if ENABLED(PIDTEMP)
  167. thermalManager.updatePID();
  168. #endif
  169. calculate_volumetric_multipliers();
  170. }
  171. #if ENABLED(EEPROM_SETTINGS)
  172. #define DUMMY_PID_VALUE 3000.0f
  173. #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
  174. #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
  175. /**
  176. * M500 - Store Configuration
  177. */
  178. void Config_StoreSettings() {
  179. float dummy = 0.0f;
  180. char ver[4] = "000";
  181. int i = EEPROM_OFFSET;
  182. EEPROM_WRITE_VAR(i, ver); // invalidate data first
  183. i += sizeof(eeprom_checksum); // Skip the checksum slot
  184. eeprom_checksum = 0; // clear before first "real data"
  185. EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
  186. EEPROM_WRITE_VAR(i, planner.max_feedrate);
  187. EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
  188. EEPROM_WRITE_VAR(i, planner.acceleration);
  189. EEPROM_WRITE_VAR(i, planner.retract_acceleration);
  190. EEPROM_WRITE_VAR(i, planner.travel_acceleration);
  191. EEPROM_WRITE_VAR(i, planner.min_feedrate);
  192. EEPROM_WRITE_VAR(i, planner.min_travel_feedrate);
  193. EEPROM_WRITE_VAR(i, planner.min_segment_time);
  194. EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
  195. EEPROM_WRITE_VAR(i, planner.max_z_jerk);
  196. EEPROM_WRITE_VAR(i, planner.max_e_jerk);
  197. EEPROM_WRITE_VAR(i, home_offset);
  198. #if ENABLED(MESH_BED_LEVELING)
  199. // Compile time test that sizeof(mbl.z_values) is as expected
  200. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  201. uint8_t mesh_num_x = MESH_NUM_X_POINTS,
  202. mesh_num_y = MESH_NUM_Y_POINTS,
  203. dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
  204. EEPROM_WRITE_VAR(i, dummy_uint8);
  205. EEPROM_WRITE_VAR(i, mbl.z_offset);
  206. EEPROM_WRITE_VAR(i, mesh_num_x);
  207. EEPROM_WRITE_VAR(i, mesh_num_y);
  208. EEPROM_WRITE_VAR(i, mbl.z_values);
  209. #else
  210. uint8_t mesh_num_x = 3,
  211. mesh_num_y = 3,
  212. dummy_uint8 = 0;
  213. dummy = 0.0f;
  214. EEPROM_WRITE_VAR(i, dummy_uint8);
  215. EEPROM_WRITE_VAR(i, dummy);
  216. EEPROM_WRITE_VAR(i, mesh_num_x);
  217. EEPROM_WRITE_VAR(i, mesh_num_y);
  218. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy);
  219. #endif // MESH_BED_LEVELING
  220. #if !HAS_BED_PROBE
  221. float zprobe_zoffset = 0;
  222. #endif
  223. EEPROM_WRITE_VAR(i, zprobe_zoffset);
  224. #if ENABLED(DELTA)
  225. EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
  226. EEPROM_WRITE_VAR(i, delta_radius); // 1 float
  227. EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
  228. EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
  229. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
  230. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
  231. EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
  232. #elif ENABLED(Z_DUAL_ENDSTOPS)
  233. EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 float
  234. dummy = 0.0f;
  235. for (uint8_t q = 8; q--;) EEPROM_WRITE_VAR(i, dummy);
  236. #else
  237. dummy = 0.0f;
  238. for (uint8_t q = 9; q--;) EEPROM_WRITE_VAR(i, dummy);
  239. #endif
  240. #if DISABLED(ULTIPANEL)
  241. int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
  242. absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  243. #endif // !ULTIPANEL
  244. EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
  245. EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
  246. EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
  247. EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
  248. EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
  249. EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
  250. for (uint8_t e = 0; e < 4; e++) {
  251. #if ENABLED(PIDTEMP)
  252. if (e < HOTENDS) {
  253. EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
  254. EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
  255. EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
  256. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  257. EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
  258. #else
  259. dummy = 1.0f; // 1.0 = default kc
  260. EEPROM_WRITE_VAR(i, dummy);
  261. #endif
  262. }
  263. else
  264. #endif // !PIDTEMP
  265. {
  266. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  267. EEPROM_WRITE_VAR(i, dummy); // Kp
  268. dummy = 0.0f;
  269. for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc
  270. }
  271. } // Hotends Loop
  272. #if DISABLED(PID_ADD_EXTRUSION_RATE)
  273. int lpq_len = 20;
  274. #endif
  275. EEPROM_WRITE_VAR(i, lpq_len);
  276. #if DISABLED(PIDTEMPBED)
  277. dummy = DUMMY_PID_VALUE;
  278. for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
  279. #else
  280. EEPROM_WRITE_VAR(i, thermalManager.bedKp);
  281. EEPROM_WRITE_VAR(i, thermalManager.bedKi);
  282. EEPROM_WRITE_VAR(i, thermalManager.bedKd);
  283. #endif
  284. #if !HAS_LCD_CONTRAST
  285. const int lcd_contrast = 32;
  286. #endif
  287. EEPROM_WRITE_VAR(i, lcd_contrast);
  288. #if ENABLED(SCARA)
  289. EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
  290. #else
  291. dummy = 1.0f;
  292. EEPROM_WRITE_VAR(i, dummy);
  293. #endif
  294. #if ENABLED(FWRETRACT)
  295. EEPROM_WRITE_VAR(i, autoretract_enabled);
  296. EEPROM_WRITE_VAR(i, retract_length);
  297. #if EXTRUDERS > 1
  298. EEPROM_WRITE_VAR(i, retract_length_swap);
  299. #else
  300. dummy = 0.0f;
  301. EEPROM_WRITE_VAR(i, dummy);
  302. #endif
  303. EEPROM_WRITE_VAR(i, retract_feedrate_mm_s);
  304. EEPROM_WRITE_VAR(i, retract_zlift);
  305. EEPROM_WRITE_VAR(i, retract_recover_length);
  306. #if EXTRUDERS > 1
  307. EEPROM_WRITE_VAR(i, retract_recover_length_swap);
  308. #else
  309. dummy = 0.0f;
  310. EEPROM_WRITE_VAR(i, dummy);
  311. #endif
  312. EEPROM_WRITE_VAR(i, retract_recover_feedrate);
  313. #endif // FWRETRACT
  314. EEPROM_WRITE_VAR(i, volumetric_enabled);
  315. // Save filament sizes
  316. for (uint8_t q = 0; q < 4; q++) {
  317. if (q < EXTRUDERS) dummy = filament_size[q];
  318. EEPROM_WRITE_VAR(i, dummy);
  319. }
  320. uint16_t final_checksum = eeprom_checksum;
  321. int j = EEPROM_OFFSET;
  322. EEPROM_WRITE_VAR(j, version);
  323. EEPROM_WRITE_VAR(j, final_checksum);
  324. // Report storage size
  325. SERIAL_ECHO_START;
  326. SERIAL_ECHOPAIR("Settings Stored (", i);
  327. SERIAL_ECHOLNPGM(" bytes)");
  328. }
  329. /**
  330. * M501 - Retrieve Configuration
  331. */
  332. void Config_RetrieveSettings() {
  333. int i = EEPROM_OFFSET;
  334. char stored_ver[4];
  335. uint16_t stored_checksum;
  336. EEPROM_READ_VAR(i, stored_ver);
  337. EEPROM_READ_VAR(i, stored_checksum);
  338. // SERIAL_ECHOPAIR("Version: [", ver);
  339. // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
  340. // SERIAL_ECHOLNPGM("]");
  341. if (strncmp(version, stored_ver, 3) != 0) {
  342. Config_ResetDefault();
  343. }
  344. else {
  345. float dummy = 0;
  346. eeprom_checksum = 0; // clear before reading first "real data"
  347. // version number match
  348. EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
  349. EEPROM_READ_VAR(i, planner.max_feedrate);
  350. EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);
  351. EEPROM_READ_VAR(i, planner.acceleration);
  352. EEPROM_READ_VAR(i, planner.retract_acceleration);
  353. EEPROM_READ_VAR(i, planner.travel_acceleration);
  354. EEPROM_READ_VAR(i, planner.min_feedrate);
  355. EEPROM_READ_VAR(i, planner.min_travel_feedrate);
  356. EEPROM_READ_VAR(i, planner.min_segment_time);
  357. EEPROM_READ_VAR(i, planner.max_xy_jerk);
  358. EEPROM_READ_VAR(i, planner.max_z_jerk);
  359. EEPROM_READ_VAR(i, planner.max_e_jerk);
  360. EEPROM_READ_VAR(i, home_offset);
  361. uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
  362. EEPROM_READ_VAR(i, dummy_uint8);
  363. EEPROM_READ_VAR(i, dummy);
  364. EEPROM_READ_VAR(i, mesh_num_x);
  365. EEPROM_READ_VAR(i, mesh_num_y);
  366. #if ENABLED(MESH_BED_LEVELING)
  367. mbl.status = dummy_uint8;
  368. mbl.z_offset = dummy;
  369. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  370. EEPROM_READ_VAR(i, mbl.z_values);
  371. } else {
  372. mbl.reset();
  373. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
  374. }
  375. #else
  376. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
  377. #endif // MESH_BED_LEVELING
  378. #if !HAS_BED_PROBE
  379. float zprobe_zoffset = 0;
  380. #endif
  381. EEPROM_READ_VAR(i, zprobe_zoffset);
  382. #if ENABLED(DELTA)
  383. EEPROM_READ_VAR(i, endstop_adj); // 3 floats
  384. EEPROM_READ_VAR(i, delta_radius); // 1 float
  385. EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
  386. EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
  387. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
  388. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
  389. EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
  390. #elif ENABLED(Z_DUAL_ENDSTOPS)
  391. EEPROM_READ_VAR(i, z_endstop_adj);
  392. dummy = 0.0f;
  393. for (uint8_t q=8; q--;) EEPROM_READ_VAR(i, dummy);
  394. #else
  395. dummy = 0.0f;
  396. for (uint8_t q=9; q--;) EEPROM_READ_VAR(i, dummy);
  397. #endif
  398. #if DISABLED(ULTIPANEL)
  399. int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
  400. absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
  401. #endif
  402. EEPROM_READ_VAR(i, plaPreheatHotendTemp);
  403. EEPROM_READ_VAR(i, plaPreheatHPBTemp);
  404. EEPROM_READ_VAR(i, plaPreheatFanSpeed);
  405. EEPROM_READ_VAR(i, absPreheatHotendTemp);
  406. EEPROM_READ_VAR(i, absPreheatHPBTemp);
  407. EEPROM_READ_VAR(i, absPreheatFanSpeed);
  408. #if ENABLED(PIDTEMP)
  409. for (uint8_t e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
  410. EEPROM_READ_VAR(i, dummy); // Kp
  411. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  412. // do not need to scale PID values as the values in EEPROM are already scaled
  413. PID_PARAM(Kp, e) = dummy;
  414. EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
  415. EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
  416. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  417. EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
  418. #else
  419. EEPROM_READ_VAR(i, dummy);
  420. #endif
  421. }
  422. else {
  423. for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
  424. }
  425. }
  426. #else // !PIDTEMP
  427. // 4 x 4 = 16 slots for PID parameters
  428. for (uint8_t q=16; q--;) EEPROM_READ_VAR(i, dummy); // 4x Kp, Ki, Kd, Kc
  429. #endif // !PIDTEMP
  430. #if DISABLED(PID_ADD_EXTRUSION_RATE)
  431. int lpq_len;
  432. #endif
  433. EEPROM_READ_VAR(i, lpq_len);
  434. #if ENABLED(PIDTEMPBED)
  435. EEPROM_READ_VAR(i, dummy); // bedKp
  436. if (dummy != DUMMY_PID_VALUE) {
  437. thermalManager.bedKp = dummy;
  438. EEPROM_READ_VAR(i, thermalManager.bedKi);
  439. EEPROM_READ_VAR(i, thermalManager.bedKd);
  440. }
  441. #else
  442. for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd
  443. #endif
  444. #if !HAS_LCD_CONTRAST
  445. int lcd_contrast;
  446. #endif
  447. EEPROM_READ_VAR(i, lcd_contrast);
  448. #if ENABLED(SCARA)
  449. EEPROM_READ_VAR(i, axis_scaling); // 3 floats
  450. #else
  451. EEPROM_READ_VAR(i, dummy);
  452. #endif
  453. #if ENABLED(FWRETRACT)
  454. EEPROM_READ_VAR(i, autoretract_enabled);
  455. EEPROM_READ_VAR(i, retract_length);
  456. #if EXTRUDERS > 1
  457. EEPROM_READ_VAR(i, retract_length_swap);
  458. #else
  459. EEPROM_READ_VAR(i, dummy);
  460. #endif
  461. EEPROM_READ_VAR(i, retract_feedrate_mm_s);
  462. EEPROM_READ_VAR(i, retract_zlift);
  463. EEPROM_READ_VAR(i, retract_recover_length);
  464. #if EXTRUDERS > 1
  465. EEPROM_READ_VAR(i, retract_recover_length_swap);
  466. #else
  467. EEPROM_READ_VAR(i, dummy);
  468. #endif
  469. EEPROM_READ_VAR(i, retract_recover_feedrate);
  470. #endif // FWRETRACT
  471. EEPROM_READ_VAR(i, volumetric_enabled);
  472. for (uint8_t q = 0; q < 4; q++) {
  473. EEPROM_READ_VAR(i, dummy);
  474. if (q < EXTRUDERS) filament_size[q] = dummy;
  475. }
  476. if (eeprom_checksum == stored_checksum) {
  477. Config_Postprocess();
  478. SERIAL_ECHO_START;
  479. SERIAL_ECHO(version);
  480. SERIAL_ECHOPAIR(" stored settings retrieved (", i);
  481. SERIAL_ECHOLNPGM(" bytes)");
  482. }
  483. else {
  484. SERIAL_ERROR_START;
  485. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  486. Config_ResetDefault();
  487. }
  488. }
  489. #if ENABLED(EEPROM_CHITCHAT)
  490. Config_PrintSettings();
  491. #endif
  492. }
  493. #endif // EEPROM_SETTINGS
  494. /**
  495. * M502 - Reset Configuration
  496. */
  497. void Config_ResetDefault() {
  498. float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  499. float tmp2[] = DEFAULT_MAX_FEEDRATE;
  500. long tmp3[] = DEFAULT_MAX_ACCELERATION;
  501. for (uint8_t i = 0; i < NUM_AXIS; i++) {
  502. planner.axis_steps_per_mm[i] = tmp1[i];
  503. planner.max_feedrate[i] = tmp2[i];
  504. planner.max_acceleration_mm_per_s2[i] = tmp3[i];
  505. #if ENABLED(SCARA)
  506. if (i < COUNT(axis_scaling))
  507. axis_scaling[i] = 1;
  508. #endif
  509. }
  510. planner.acceleration = DEFAULT_ACCELERATION;
  511. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  512. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  513. planner.min_feedrate = DEFAULT_MINIMUMFEEDRATE;
  514. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  515. planner.min_travel_feedrate = DEFAULT_MINTRAVELFEEDRATE;
  516. planner.max_xy_jerk = DEFAULT_XYJERK;
  517. planner.max_z_jerk = DEFAULT_ZJERK;
  518. planner.max_e_jerk = DEFAULT_EJERK;
  519. home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
  520. #if ENABLED(MESH_BED_LEVELING)
  521. mbl.reset();
  522. #endif
  523. #if HAS_BED_PROBE
  524. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  525. #endif
  526. #if ENABLED(DELTA)
  527. endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
  528. delta_radius = DELTA_RADIUS;
  529. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  530. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  531. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  532. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  533. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  534. #elif ENABLED(Z_DUAL_ENDSTOPS)
  535. z_endstop_adj = 0;
  536. #endif
  537. #if ENABLED(ULTIPANEL)
  538. plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
  539. plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
  540. plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
  541. absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
  542. absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
  543. absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  544. #endif
  545. #if HAS_LCD_CONTRAST
  546. lcd_contrast = DEFAULT_LCD_CONTRAST;
  547. #endif
  548. #if ENABLED(PIDTEMP)
  549. #if ENABLED(PID_PARAMS_PER_HOTEND)
  550. for (uint8_t e = 0; e < HOTENDS; e++)
  551. #else
  552. int e = 0; UNUSED(e); // only need to write once
  553. #endif
  554. {
  555. PID_PARAM(Kp, e) = DEFAULT_Kp;
  556. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  557. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  558. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  559. PID_PARAM(Kc, e) = DEFAULT_Kc;
  560. #endif
  561. }
  562. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  563. lpq_len = 20; // default last-position-queue size
  564. #endif
  565. #endif // PIDTEMP
  566. #if ENABLED(PIDTEMPBED)
  567. thermalManager.bedKp = DEFAULT_bedKp;
  568. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  569. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  570. #endif
  571. #if ENABLED(FWRETRACT)
  572. autoretract_enabled = false;
  573. retract_length = RETRACT_LENGTH;
  574. #if EXTRUDERS > 1
  575. retract_length_swap = RETRACT_LENGTH_SWAP;
  576. #endif
  577. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  578. retract_zlift = RETRACT_ZLIFT;
  579. retract_recover_length = RETRACT_RECOVER_LENGTH;
  580. #if EXTRUDERS > 1
  581. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  582. #endif
  583. retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  584. #endif
  585. volumetric_enabled = false;
  586. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  587. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  588. Config_Postprocess();
  589. SERIAL_ECHO_START;
  590. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  591. }
  592. #if DISABLED(DISABLE_M503)
  593. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  594. /**
  595. * M503 - Print Configuration
  596. */
  597. void Config_PrintSettings(bool forReplay) {
  598. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  599. CONFIG_ECHO_START;
  600. if (!forReplay) {
  601. SERIAL_ECHOLNPGM("Steps per unit:");
  602. CONFIG_ECHO_START;
  603. }
  604. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  605. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  606. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  607. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  608. SERIAL_EOL;
  609. CONFIG_ECHO_START;
  610. #if ENABLED(SCARA)
  611. if (!forReplay) {
  612. SERIAL_ECHOLNPGM("Scaling factors:");
  613. CONFIG_ECHO_START;
  614. }
  615. SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
  616. SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
  617. SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
  618. SERIAL_EOL;
  619. CONFIG_ECHO_START;
  620. #endif // SCARA
  621. if (!forReplay) {
  622. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  623. CONFIG_ECHO_START;
  624. }
  625. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate[X_AXIS]);
  626. SERIAL_ECHOPAIR(" Y", planner.max_feedrate[Y_AXIS]);
  627. SERIAL_ECHOPAIR(" Z", planner.max_feedrate[Z_AXIS]);
  628. SERIAL_ECHOPAIR(" E", planner.max_feedrate[E_AXIS]);
  629. SERIAL_EOL;
  630. CONFIG_ECHO_START;
  631. if (!forReplay) {
  632. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  633. CONFIG_ECHO_START;
  634. }
  635. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  636. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  637. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  638. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  639. SERIAL_EOL;
  640. CONFIG_ECHO_START;
  641. if (!forReplay) {
  642. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  643. CONFIG_ECHO_START;
  644. }
  645. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  646. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  647. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  648. SERIAL_EOL;
  649. CONFIG_ECHO_START;
  650. if (!forReplay) {
  651. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  652. CONFIG_ECHO_START;
  653. }
  654. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate);
  655. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate);
  656. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  657. SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
  658. SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
  659. SERIAL_ECHOPAIR(" E", planner.max_e_jerk);
  660. SERIAL_EOL;
  661. CONFIG_ECHO_START;
  662. if (!forReplay) {
  663. SERIAL_ECHOLNPGM("Home offset (mm)");
  664. CONFIG_ECHO_START;
  665. }
  666. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  667. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  668. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  669. SERIAL_EOL;
  670. #if ENABLED(MESH_BED_LEVELING)
  671. if (!forReplay) {
  672. SERIAL_ECHOLNPGM("Mesh bed leveling:");
  673. CONFIG_ECHO_START;
  674. }
  675. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  676. SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
  677. SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
  678. SERIAL_EOL;
  679. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  680. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  681. CONFIG_ECHO_START;
  682. SERIAL_ECHOPAIR(" G29 S3 X", px);
  683. SERIAL_ECHOPAIR(" Y", py);
  684. SERIAL_ECHOPGM(" Z");
  685. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  686. SERIAL_EOL;
  687. }
  688. }
  689. #endif
  690. #if ENABLED(DELTA)
  691. CONFIG_ECHO_START;
  692. if (!forReplay) {
  693. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  694. CONFIG_ECHO_START;
  695. }
  696. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  697. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  698. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  699. SERIAL_EOL;
  700. CONFIG_ECHO_START;
  701. if (!forReplay) {
  702. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  703. CONFIG_ECHO_START;
  704. }
  705. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  706. SERIAL_ECHOPAIR(" R", delta_radius);
  707. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  708. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  709. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  710. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  711. SERIAL_EOL;
  712. #elif ENABLED(Z_DUAL_ENDSTOPS)
  713. CONFIG_ECHO_START;
  714. if (!forReplay) {
  715. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  716. CONFIG_ECHO_START;
  717. }
  718. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  719. SERIAL_EOL;
  720. #endif // DELTA
  721. #if ENABLED(ULTIPANEL)
  722. CONFIG_ECHO_START;
  723. if (!forReplay) {
  724. SERIAL_ECHOLNPGM("Material heatup parameters:");
  725. CONFIG_ECHO_START;
  726. }
  727. SERIAL_ECHOPAIR(" M145 S0 H", plaPreheatHotendTemp);
  728. SERIAL_ECHOPAIR(" B", plaPreheatHPBTemp);
  729. SERIAL_ECHOPAIR(" F", plaPreheatFanSpeed);
  730. SERIAL_EOL;
  731. CONFIG_ECHO_START;
  732. SERIAL_ECHOPAIR(" M145 S1 H", absPreheatHotendTemp);
  733. SERIAL_ECHOPAIR(" B", absPreheatHPBTemp);
  734. SERIAL_ECHOPAIR(" F", absPreheatFanSpeed);
  735. SERIAL_EOL;
  736. #endif // ULTIPANEL
  737. #if HAS_PID_HEATING
  738. CONFIG_ECHO_START;
  739. if (!forReplay) {
  740. SERIAL_ECHOLNPGM("PID settings:");
  741. }
  742. #if ENABLED(PIDTEMP)
  743. #if HOTENDS > 1
  744. if (forReplay) {
  745. for (uint8_t i = 0; i < HOTENDS; i++) {
  746. CONFIG_ECHO_START;
  747. SERIAL_ECHOPAIR(" M301 E", i);
  748. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, i));
  749. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, i)));
  750. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, i)));
  751. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  752. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, i));
  753. if (i == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  754. #endif
  755. SERIAL_EOL;
  756. }
  757. }
  758. else
  759. #endif // HOTENDS > 1
  760. // !forReplay || HOTENDS == 1
  761. {
  762. CONFIG_ECHO_START;
  763. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  764. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  765. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  766. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  767. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  768. SERIAL_ECHOPAIR(" L", lpq_len);
  769. #endif
  770. SERIAL_EOL;
  771. }
  772. #endif // PIDTEMP
  773. #if ENABLED(PIDTEMPBED)
  774. CONFIG_ECHO_START;
  775. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  776. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  777. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  778. SERIAL_EOL;
  779. #endif
  780. #endif // PIDTEMP || PIDTEMPBED
  781. #if HAS_LCD_CONTRAST
  782. CONFIG_ECHO_START;
  783. if (!forReplay) {
  784. SERIAL_ECHOLNPGM("LCD Contrast:");
  785. CONFIG_ECHO_START;
  786. }
  787. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  788. SERIAL_EOL;
  789. #endif
  790. #if ENABLED(FWRETRACT)
  791. CONFIG_ECHO_START;
  792. if (!forReplay) {
  793. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  794. CONFIG_ECHO_START;
  795. }
  796. SERIAL_ECHOPAIR(" M207 S", retract_length);
  797. #if EXTRUDERS > 1
  798. SERIAL_ECHOPAIR(" W", retract_length_swap);
  799. #endif
  800. SERIAL_ECHOPAIR(" F", retract_feedrate_mm_s * 60);
  801. SERIAL_ECHOPAIR(" Z", retract_zlift);
  802. SERIAL_EOL;
  803. CONFIG_ECHO_START;
  804. if (!forReplay) {
  805. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  806. CONFIG_ECHO_START;
  807. }
  808. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  809. #if EXTRUDERS > 1
  810. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  811. #endif
  812. SERIAL_ECHOPAIR(" F", retract_recover_feedrate * 60);
  813. SERIAL_EOL;
  814. CONFIG_ECHO_START;
  815. if (!forReplay) {
  816. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  817. CONFIG_ECHO_START;
  818. }
  819. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  820. SERIAL_EOL;
  821. #endif // FWRETRACT
  822. /**
  823. * Volumetric extrusion M200
  824. */
  825. if (!forReplay) {
  826. CONFIG_ECHO_START;
  827. SERIAL_ECHOPGM("Filament settings:");
  828. if (volumetric_enabled)
  829. SERIAL_EOL;
  830. else
  831. SERIAL_ECHOLNPGM(" Disabled");
  832. }
  833. CONFIG_ECHO_START;
  834. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  835. SERIAL_EOL;
  836. #if EXTRUDERS > 1
  837. CONFIG_ECHO_START;
  838. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  839. SERIAL_EOL;
  840. #if EXTRUDERS > 2
  841. CONFIG_ECHO_START;
  842. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  843. SERIAL_EOL;
  844. #if EXTRUDERS > 3
  845. CONFIG_ECHO_START;
  846. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  847. SERIAL_EOL;
  848. #endif
  849. #endif
  850. #endif
  851. if (!volumetric_enabled) {
  852. CONFIG_ECHO_START;
  853. SERIAL_ECHOLNPGM(" M200 D0");
  854. }
  855. /**
  856. * Auto Bed Leveling
  857. */
  858. #if HAS_BED_PROBE
  859. if (!forReplay) {
  860. CONFIG_ECHO_START;
  861. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  862. }
  863. CONFIG_ECHO_START;
  864. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  865. SERIAL_EOL;
  866. #endif
  867. }
  868. #endif // !DISABLE_M503