My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

configuration_store.cpp 39KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V29"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V29 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM Checksum (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x7)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x7)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x7)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Mesh bed leveling:
  64. * 219 M420 S from mbl.status (bool)
  65. * 220 mbl.z_offset (float)
  66. * 224 MESH_NUM_X_POINTS (uint8 as set in firmware)
  67. * 225 MESH_NUM_Y_POINTS (uint8 as set in firmware)
  68. * 226 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81) +288
  69. *
  70. * AUTO BED LEVELING
  71. * 262 M851 zprobe_zoffset (float)
  72. *
  73. * ABL_PLANAR (or placeholder): 36 bytes
  74. * 266 planner.bed_level_matrix (matrix_3x3 = float x9)
  75. *
  76. * AUTO_BED_LEVELING_BILINEAR (or placeholder): 47 bytes
  77. * 302 ABL_GRID_MAX_POINTS_X (uint8_t)
  78. * 303 ABL_GRID_MAX_POINTS_Y (uint8_t)
  79. * 304 bilinear_grid_spacing (int x2) from G29: (B-F)/X, (R-L)/Y
  80. * 308 G29 L F bilinear_start (int x2)
  81. * 312 bed_level_grid[][] (float x9, up to float x256) +988
  82. *
  83. * DELTA (if deltabot): 36 bytes
  84. * 348 M666 XYZ endstop_adj (float x3)
  85. * 360 M665 R delta_radius (float)
  86. * 364 M665 L delta_diagonal_rod (float)
  87. * 368 M665 S delta_segments_per_second (float)
  88. * 372 M665 A delta_diagonal_rod_trim_tower_1 (float)
  89. * 376 M665 B delta_diagonal_rod_trim_tower_2 (float)
  90. * 380 M665 C delta_diagonal_rod_trim_tower_3 (float)
  91. *
  92. * Z_DUAL_ENDSTOPS: 4 bytes
  93. * 384 M666 Z z_endstop_adj (float)
  94. *
  95. * ULTIPANEL: 6 bytes
  96. * 388 M145 S0 H lcd_preheat_hotend_temp (int x2)
  97. * 392 M145 S0 B lcd_preheat_bed_temp (int x2)
  98. * 396 M145 S0 F lcd_preheat_fan_speed (int x2)
  99. *
  100. * PIDTEMP: 66 bytes
  101. * 400 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  102. * 416 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  103. * 432 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  104. * 448 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  105. * 464 M301 L lpq_len (int)
  106. *
  107. * PIDTEMPBED:
  108. * 466 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  109. *
  110. * DOGLCD: 2 bytes
  111. * 478 M250 C lcd_contrast (int)
  112. *
  113. * FWRETRACT: 29 bytes
  114. * 480 M209 S autoretract_enabled (bool)
  115. * 481 M207 S retract_length (float)
  116. * 485 M207 W retract_length_swap (float)
  117. * 489 M207 F retract_feedrate_mm_s (float)
  118. * 493 M207 Z retract_zlift (float)
  119. * 497 M208 S retract_recover_length (float)
  120. * 501 M208 W retract_recover_length_swap (float)
  121. * 505 M208 F retract_recover_feedrate_mm_s (float)
  122. *
  123. * Volumetric Extrusion: 17 bytes
  124. * 509 M200 D volumetric_enabled (bool)
  125. * 510 M200 T D filament_size (float x4) (T0..3)
  126. *
  127. * 526 Minimum end-point
  128. * 1847 (526 + 36 + 9 + 288 + 988) Maximum end-point
  129. *
  130. */
  131. #include "Marlin.h"
  132. #include "language.h"
  133. #include "endstops.h"
  134. #include "planner.h"
  135. #include "temperature.h"
  136. #include "ultralcd.h"
  137. #include "configuration_store.h"
  138. #if ENABLED(MESH_BED_LEVELING)
  139. #include "mesh_bed_leveling.h"
  140. #endif
  141. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  142. extern void bed_level_virt_interpolate();
  143. #endif
  144. /**
  145. * Post-process after Retrieve or Reset
  146. */
  147. void Config_Postprocess() {
  148. // steps per s2 needs to be updated to agree with units per s2
  149. planner.reset_acceleration_rates();
  150. // Make sure delta kinematics are updated before refreshing the
  151. // planner position so the stepper counts will be set correctly.
  152. #if ENABLED(DELTA)
  153. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  154. #endif
  155. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  156. // and init stepper.count[], planner.position[] with current_position
  157. planner.refresh_positioning();
  158. #if ENABLED(PIDTEMP)
  159. thermalManager.updatePID();
  160. #endif
  161. calculate_volumetric_multipliers();
  162. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  163. // Software endstops depend on home_offset
  164. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  165. #endif
  166. }
  167. #if ENABLED(EEPROM_SETTINGS)
  168. uint16_t eeprom_checksum;
  169. const char version[4] = EEPROM_VERSION;
  170. bool eeprom_write_error;
  171. void _EEPROM_writeData(int &pos, const uint8_t* value, uint16_t size) {
  172. if (eeprom_write_error) return;
  173. while (size--) {
  174. uint8_t * const p = (uint8_t * const)pos;
  175. const uint8_t v = *value;
  176. // EEPROM has only ~100,000 write cycles,
  177. // so only write bytes that have changed!
  178. if (v != eeprom_read_byte(p)) {
  179. eeprom_write_byte(p, v);
  180. if (eeprom_read_byte(p) != v) {
  181. SERIAL_ECHO_START;
  182. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  183. eeprom_write_error = true;
  184. return;
  185. }
  186. }
  187. eeprom_checksum += v;
  188. pos++;
  189. value++;
  190. };
  191. }
  192. bool eeprom_read_error;
  193. void _EEPROM_readData(int &pos, uint8_t* value, uint16_t size) {
  194. do {
  195. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  196. if (!eeprom_read_error) *value = c;
  197. eeprom_checksum += c;
  198. pos++;
  199. value++;
  200. } while (--size);
  201. }
  202. #define DUMMY_PID_VALUE 3000.0f
  203. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  204. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  205. #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  206. #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  207. #define EEPROM_ASSERT(TST,ERR) if () do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error |= true; }while(0)
  208. /**
  209. * M500 - Store Configuration
  210. */
  211. void Config_StoreSettings() {
  212. float dummy = 0.0f;
  213. char ver[4] = "000";
  214. EEPROM_START();
  215. eeprom_write_error = false;
  216. EEPROM_WRITE(ver); // invalidate data first
  217. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  218. eeprom_checksum = 0; // clear before first "real data"
  219. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  220. EEPROM_WRITE(esteppers);
  221. EEPROM_WRITE(planner.axis_steps_per_mm);
  222. EEPROM_WRITE(planner.max_feedrate_mm_s);
  223. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  224. EEPROM_WRITE(planner.acceleration);
  225. EEPROM_WRITE(planner.retract_acceleration);
  226. EEPROM_WRITE(planner.travel_acceleration);
  227. EEPROM_WRITE(planner.min_feedrate_mm_s);
  228. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  229. EEPROM_WRITE(planner.min_segment_time);
  230. EEPROM_WRITE(planner.max_jerk);
  231. #if ENABLED(NO_WORKSPACE_OFFSETS)
  232. float home_offset[XYZ] = { 0 };
  233. #endif
  234. EEPROM_WRITE(home_offset);
  235. #if HOTENDS > 1
  236. // Skip hotend 0 which must be 0
  237. for (uint8_t e = 1; e < HOTENDS; e++)
  238. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  239. #endif
  240. //
  241. // Mesh Bed Leveling
  242. //
  243. #if ENABLED(MESH_BED_LEVELING)
  244. // Compile time test that sizeof(mbl.z_values) is as expected
  245. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  246. const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
  247. const uint8_t mesh_num_x = MESH_NUM_X_POINTS, mesh_num_y = MESH_NUM_Y_POINTS;
  248. EEPROM_WRITE(leveling_is_on);
  249. EEPROM_WRITE(mbl.z_offset);
  250. EEPROM_WRITE(mesh_num_x);
  251. EEPROM_WRITE(mesh_num_y);
  252. EEPROM_WRITE(mbl.z_values);
  253. #else
  254. // For disabled MBL write a default mesh
  255. const bool leveling_is_on = false;
  256. dummy = 0.0f;
  257. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  258. EEPROM_WRITE(leveling_is_on);
  259. EEPROM_WRITE(dummy); // z_offset
  260. EEPROM_WRITE(mesh_num_x);
  261. EEPROM_WRITE(mesh_num_y);
  262. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  263. #endif // MESH_BED_LEVELING
  264. #if !HAS_BED_PROBE
  265. float zprobe_zoffset = 0;
  266. #endif
  267. EEPROM_WRITE(zprobe_zoffset);
  268. //
  269. // Planar Bed Leveling matrix
  270. //
  271. #if ABL_PLANAR
  272. EEPROM_WRITE(planner.bed_level_matrix);
  273. #else
  274. dummy = 0.0;
  275. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  276. #endif
  277. //
  278. // Bilinear Auto Bed Leveling
  279. //
  280. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  281. // Compile time test that sizeof(bed_level_grid) is as expected
  282. typedef char c_assert[(sizeof(bed_level_grid) == (ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
  283. const uint8_t grid_max_x = ABL_GRID_MAX_POINTS_X, grid_max_y = ABL_GRID_MAX_POINTS_Y;
  284. EEPROM_WRITE(grid_max_x); // 1 byte
  285. EEPROM_WRITE(grid_max_y); // 1 byte
  286. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  287. EEPROM_WRITE(bilinear_start); // 2 ints
  288. EEPROM_WRITE(bed_level_grid); // 9-256 floats
  289. #else
  290. // For disabled Bilinear Grid write an empty 3x3 grid
  291. const uint8_t grid_max_x = 3, grid_max_y = 3;
  292. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  293. dummy = 0.0f;
  294. EEPROM_WRITE(grid_max_x);
  295. EEPROM_WRITE(grid_max_y);
  296. EEPROM_WRITE(bilinear_grid_spacing);
  297. EEPROM_WRITE(bilinear_start);
  298. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  299. #endif // AUTO_BED_LEVELING_BILINEAR
  300. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  301. #if ENABLED(DELTA)
  302. EEPROM_WRITE(endstop_adj); // 3 floats
  303. EEPROM_WRITE(delta_radius); // 1 float
  304. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  305. EEPROM_WRITE(delta_segments_per_second); // 1 float
  306. EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
  307. EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
  308. EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
  309. #elif ENABLED(Z_DUAL_ENDSTOPS)
  310. EEPROM_WRITE(z_endstop_adj); // 1 float
  311. dummy = 0.0f;
  312. for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
  313. #else
  314. dummy = 0.0f;
  315. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  316. #endif
  317. #if DISABLED(ULTIPANEL)
  318. const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  319. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  320. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  321. #endif // !ULTIPANEL
  322. EEPROM_WRITE(lcd_preheat_hotend_temp);
  323. EEPROM_WRITE(lcd_preheat_bed_temp);
  324. EEPROM_WRITE(lcd_preheat_fan_speed);
  325. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  326. #if ENABLED(PIDTEMP)
  327. if (e < HOTENDS) {
  328. EEPROM_WRITE(PID_PARAM(Kp, e));
  329. EEPROM_WRITE(PID_PARAM(Ki, e));
  330. EEPROM_WRITE(PID_PARAM(Kd, e));
  331. #if ENABLED(PID_EXTRUSION_SCALING)
  332. EEPROM_WRITE(PID_PARAM(Kc, e));
  333. #else
  334. dummy = 1.0f; // 1.0 = default kc
  335. EEPROM_WRITE(dummy);
  336. #endif
  337. }
  338. else
  339. #endif // !PIDTEMP
  340. {
  341. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  342. EEPROM_WRITE(dummy); // Kp
  343. dummy = 0.0f;
  344. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  345. }
  346. } // Hotends Loop
  347. #if DISABLED(PID_EXTRUSION_SCALING)
  348. int lpq_len = 20;
  349. #endif
  350. EEPROM_WRITE(lpq_len);
  351. #if DISABLED(PIDTEMPBED)
  352. dummy = DUMMY_PID_VALUE;
  353. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  354. #else
  355. EEPROM_WRITE(thermalManager.bedKp);
  356. EEPROM_WRITE(thermalManager.bedKi);
  357. EEPROM_WRITE(thermalManager.bedKd);
  358. #endif
  359. #if !HAS_LCD_CONTRAST
  360. const int lcd_contrast = 32;
  361. #endif
  362. EEPROM_WRITE(lcd_contrast);
  363. #if ENABLED(FWRETRACT)
  364. EEPROM_WRITE(autoretract_enabled);
  365. EEPROM_WRITE(retract_length);
  366. #if EXTRUDERS > 1
  367. EEPROM_WRITE(retract_length_swap);
  368. #else
  369. dummy = 0.0f;
  370. EEPROM_WRITE(dummy);
  371. #endif
  372. EEPROM_WRITE(retract_feedrate_mm_s);
  373. EEPROM_WRITE(retract_zlift);
  374. EEPROM_WRITE(retract_recover_length);
  375. #if EXTRUDERS > 1
  376. EEPROM_WRITE(retract_recover_length_swap);
  377. #else
  378. dummy = 0.0f;
  379. EEPROM_WRITE(dummy);
  380. #endif
  381. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  382. #endif // FWRETRACT
  383. EEPROM_WRITE(volumetric_enabled);
  384. // Save filament sizes
  385. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  386. if (q < COUNT(filament_size)) dummy = filament_size[q];
  387. EEPROM_WRITE(dummy);
  388. }
  389. if (!eeprom_write_error) {
  390. uint16_t final_checksum = eeprom_checksum,
  391. eeprom_size = eeprom_index;
  392. // Write the EEPROM header
  393. eeprom_index = EEPROM_OFFSET;
  394. EEPROM_WRITE(version);
  395. EEPROM_WRITE(final_checksum);
  396. // Report storage size
  397. SERIAL_ECHO_START;
  398. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  399. SERIAL_ECHOLNPGM(" bytes)");
  400. }
  401. }
  402. /**
  403. * M501 - Retrieve Configuration
  404. */
  405. void Config_RetrieveSettings() {
  406. EEPROM_START();
  407. eeprom_read_error = false; // If set EEPROM_READ won't write into RAM
  408. char stored_ver[4];
  409. EEPROM_READ(stored_ver);
  410. uint16_t stored_checksum;
  411. EEPROM_READ(stored_checksum);
  412. // Version has to match or defaults are used
  413. if (strncmp(version, stored_ver, 3) != 0) {
  414. if (stored_ver[0] != 'V') {
  415. stored_ver[0] = '?';
  416. stored_ver[1] = '\0';
  417. }
  418. SERIAL_ECHO_START;
  419. SERIAL_ECHOPGM("EEPROM version mismatch ");
  420. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  421. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  422. Config_ResetDefault();
  423. }
  424. else {
  425. float dummy = 0;
  426. eeprom_checksum = 0; // clear before reading first "real data"
  427. // Number of esteppers may change
  428. uint8_t esteppers;
  429. EEPROM_READ(esteppers);
  430. // Get only the number of E stepper parameters previously stored
  431. // Any steppers added later are set to their defaults
  432. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  433. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  434. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  435. uint32_t tmp3[XYZ + esteppers];
  436. EEPROM_READ(tmp1);
  437. EEPROM_READ(tmp2);
  438. EEPROM_READ(tmp3);
  439. LOOP_XYZE_N(i) {
  440. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  441. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  442. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  443. }
  444. EEPROM_READ(planner.acceleration);
  445. EEPROM_READ(planner.retract_acceleration);
  446. EEPROM_READ(planner.travel_acceleration);
  447. EEPROM_READ(planner.min_feedrate_mm_s);
  448. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  449. EEPROM_READ(planner.min_segment_time);
  450. EEPROM_READ(planner.max_jerk);
  451. #if ENABLED(NO_WORKSPACE_OFFSETS)
  452. float home_offset[XYZ];
  453. #endif
  454. EEPROM_READ(home_offset);
  455. #if HOTENDS > 1
  456. // Skip hotend 0 which must be 0
  457. for (uint8_t e = 1; e < HOTENDS; e++)
  458. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  459. #endif
  460. //
  461. // Mesh (Manual) Bed Leveling
  462. //
  463. bool leveling_is_on;
  464. uint8_t mesh_num_x, mesh_num_y;
  465. EEPROM_READ(leveling_is_on);
  466. EEPROM_READ(dummy);
  467. EEPROM_READ(mesh_num_x);
  468. EEPROM_READ(mesh_num_y);
  469. #if ENABLED(MESH_BED_LEVELING)
  470. mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
  471. mbl.z_offset = dummy;
  472. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  473. // EEPROM data fits the current mesh
  474. EEPROM_READ(mbl.z_values);
  475. }
  476. else {
  477. // EEPROM data is stale
  478. mbl.reset();
  479. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  480. }
  481. #else
  482. // MBL is disabled - skip the stored data
  483. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  484. #endif // MESH_BED_LEVELING
  485. #if !HAS_BED_PROBE
  486. float zprobe_zoffset = 0;
  487. #endif
  488. EEPROM_READ(zprobe_zoffset);
  489. //
  490. // Planar Bed Leveling matrix
  491. //
  492. #if ABL_PLANAR
  493. EEPROM_READ(planner.bed_level_matrix);
  494. #else
  495. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  496. #endif
  497. //
  498. // Bilinear Auto Bed Leveling
  499. //
  500. uint8_t grid_max_x, grid_max_y;
  501. EEPROM_READ(grid_max_x); // 1 byte
  502. EEPROM_READ(grid_max_y); // 1 byte
  503. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  504. if (grid_max_x == ABL_GRID_MAX_POINTS_X && grid_max_y == ABL_GRID_MAX_POINTS_Y) {
  505. set_bed_leveling_enabled(false);
  506. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  507. EEPROM_READ(bilinear_start); // 2 ints
  508. EEPROM_READ(bed_level_grid); // 9 to 256 floats
  509. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  510. bed_level_virt_interpolate();
  511. #endif
  512. //set_bed_leveling_enabled(leveling_is_on);
  513. }
  514. else // EEPROM data is stale
  515. #endif // AUTO_BED_LEVELING_BILINEAR
  516. {
  517. // Skip past disabled (or stale) Bilinear Grid data
  518. int bgs[2], bs[2];
  519. EEPROM_READ(bgs);
  520. EEPROM_READ(bs);
  521. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  522. }
  523. #if ENABLED(DELTA)
  524. EEPROM_READ(endstop_adj); // 3 floats
  525. EEPROM_READ(delta_radius); // 1 float
  526. EEPROM_READ(delta_diagonal_rod); // 1 float
  527. EEPROM_READ(delta_segments_per_second); // 1 float
  528. EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
  529. EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
  530. EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
  531. #elif ENABLED(Z_DUAL_ENDSTOPS)
  532. EEPROM_READ(z_endstop_adj);
  533. dummy = 0.0f;
  534. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  535. #else
  536. dummy = 0.0f;
  537. for (uint8_t q=9; q--;) EEPROM_READ(dummy);
  538. #endif
  539. #if DISABLED(ULTIPANEL)
  540. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  541. #endif
  542. EEPROM_READ(lcd_preheat_hotend_temp);
  543. EEPROM_READ(lcd_preheat_bed_temp);
  544. EEPROM_READ(lcd_preheat_fan_speed);
  545. #if ENABLED(PIDTEMP)
  546. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  547. EEPROM_READ(dummy); // Kp
  548. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  549. // do not need to scale PID values as the values in EEPROM are already scaled
  550. PID_PARAM(Kp, e) = dummy;
  551. EEPROM_READ(PID_PARAM(Ki, e));
  552. EEPROM_READ(PID_PARAM(Kd, e));
  553. #if ENABLED(PID_EXTRUSION_SCALING)
  554. EEPROM_READ(PID_PARAM(Kc, e));
  555. #else
  556. EEPROM_READ(dummy);
  557. #endif
  558. }
  559. else {
  560. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  561. }
  562. }
  563. #else // !PIDTEMP
  564. // 4 x 4 = 16 slots for PID parameters
  565. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  566. #endif // !PIDTEMP
  567. #if DISABLED(PID_EXTRUSION_SCALING)
  568. int lpq_len;
  569. #endif
  570. EEPROM_READ(lpq_len);
  571. #if ENABLED(PIDTEMPBED)
  572. EEPROM_READ(dummy); // bedKp
  573. if (dummy != DUMMY_PID_VALUE) {
  574. thermalManager.bedKp = dummy;
  575. EEPROM_READ(thermalManager.bedKi);
  576. EEPROM_READ(thermalManager.bedKd);
  577. }
  578. #else
  579. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  580. #endif
  581. #if !HAS_LCD_CONTRAST
  582. int lcd_contrast;
  583. #endif
  584. EEPROM_READ(lcd_contrast);
  585. #if ENABLED(FWRETRACT)
  586. EEPROM_READ(autoretract_enabled);
  587. EEPROM_READ(retract_length);
  588. #if EXTRUDERS > 1
  589. EEPROM_READ(retract_length_swap);
  590. #else
  591. EEPROM_READ(dummy);
  592. #endif
  593. EEPROM_READ(retract_feedrate_mm_s);
  594. EEPROM_READ(retract_zlift);
  595. EEPROM_READ(retract_recover_length);
  596. #if EXTRUDERS > 1
  597. EEPROM_READ(retract_recover_length_swap);
  598. #else
  599. EEPROM_READ(dummy);
  600. #endif
  601. EEPROM_READ(retract_recover_feedrate_mm_s);
  602. #endif // FWRETRACT
  603. EEPROM_READ(volumetric_enabled);
  604. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  605. EEPROM_READ(dummy);
  606. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  607. }
  608. if (eeprom_checksum == stored_checksum) {
  609. if (eeprom_read_error)
  610. Config_ResetDefault();
  611. else {
  612. Config_Postprocess();
  613. SERIAL_ECHO_START;
  614. SERIAL_ECHO(version);
  615. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  616. SERIAL_ECHOLNPGM(" bytes)");
  617. }
  618. }
  619. else {
  620. SERIAL_ERROR_START;
  621. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  622. Config_ResetDefault();
  623. }
  624. }
  625. #if ENABLED(EEPROM_CHITCHAT)
  626. Config_PrintSettings();
  627. #endif
  628. }
  629. #else // !EEPROM_SETTINGS
  630. void Config_StoreSettings() {
  631. SERIAL_ERROR_START;
  632. SERIAL_ERRORLNPGM("EEPROM disabled");
  633. }
  634. #endif // !EEPROM_SETTINGS
  635. /**
  636. * M502 - Reset Configuration
  637. */
  638. void Config_ResetDefault() {
  639. const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
  640. const uint32_t tmp3[] = DEFAULT_MAX_ACCELERATION;
  641. LOOP_XYZE_N(i) {
  642. planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
  643. planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
  644. planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
  645. }
  646. planner.acceleration = DEFAULT_ACCELERATION;
  647. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  648. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  649. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  650. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  651. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  652. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  653. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  654. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  655. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  656. #if DISABLED(NO_WORKSPACE_OFFSETS)
  657. ZERO(home_offset);
  658. #endif
  659. #if HOTENDS > 1
  660. constexpr float tmp4[XYZ][HOTENDS] = {
  661. HOTEND_OFFSET_X,
  662. HOTEND_OFFSET_Y
  663. #ifdef HOTEND_OFFSET_Z
  664. , HOTEND_OFFSET_Z
  665. #else
  666. , { 0 }
  667. #endif
  668. };
  669. static_assert(
  670. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  671. "Offsets for the first hotend must be 0.0."
  672. );
  673. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  674. #endif
  675. // Applies to all MBL and ABL
  676. #if PLANNER_LEVELING
  677. reset_bed_level();
  678. #endif
  679. #if HAS_BED_PROBE
  680. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  681. #endif
  682. #if ENABLED(DELTA)
  683. const float adj[ABC] = DELTA_ENDSTOP_ADJ;
  684. endstop_adj[A_AXIS] = adj[A_AXIS];
  685. endstop_adj[B_AXIS] = adj[B_AXIS];
  686. endstop_adj[C_AXIS] = adj[C_AXIS];
  687. delta_radius = DELTA_RADIUS;
  688. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  689. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  690. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  691. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  692. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  693. #elif ENABLED(Z_DUAL_ENDSTOPS)
  694. z_endstop_adj = 0;
  695. #endif
  696. #if ENABLED(ULTIPANEL)
  697. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  698. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  699. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  700. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  701. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  702. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  703. #endif
  704. #if HAS_LCD_CONTRAST
  705. lcd_contrast = DEFAULT_LCD_CONTRAST;
  706. #endif
  707. #if ENABLED(PIDTEMP)
  708. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  709. HOTEND_LOOP()
  710. #endif
  711. {
  712. PID_PARAM(Kp, e) = DEFAULT_Kp;
  713. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  714. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  715. #if ENABLED(PID_EXTRUSION_SCALING)
  716. PID_PARAM(Kc, e) = DEFAULT_Kc;
  717. #endif
  718. }
  719. #if ENABLED(PID_EXTRUSION_SCALING)
  720. lpq_len = 20; // default last-position-queue size
  721. #endif
  722. #endif // PIDTEMP
  723. #if ENABLED(PIDTEMPBED)
  724. thermalManager.bedKp = DEFAULT_bedKp;
  725. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  726. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  727. #endif
  728. #if ENABLED(FWRETRACT)
  729. autoretract_enabled = false;
  730. retract_length = RETRACT_LENGTH;
  731. #if EXTRUDERS > 1
  732. retract_length_swap = RETRACT_LENGTH_SWAP;
  733. #endif
  734. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  735. retract_zlift = RETRACT_ZLIFT;
  736. retract_recover_length = RETRACT_RECOVER_LENGTH;
  737. #if EXTRUDERS > 1
  738. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  739. #endif
  740. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  741. #endif
  742. volumetric_enabled =
  743. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  744. true
  745. #else
  746. false
  747. #endif
  748. ;
  749. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  750. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  751. endstops.enable_globally(
  752. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  753. (true)
  754. #else
  755. (false)
  756. #endif
  757. );
  758. Config_Postprocess();
  759. SERIAL_ECHO_START;
  760. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  761. }
  762. #if DISABLED(DISABLE_M503)
  763. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  764. /**
  765. * M503 - Print Configuration
  766. */
  767. void Config_PrintSettings(bool forReplay) {
  768. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  769. CONFIG_ECHO_START;
  770. if (!forReplay) {
  771. SERIAL_ECHOLNPGM("Steps per unit:");
  772. CONFIG_ECHO_START;
  773. }
  774. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  775. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  776. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  777. #if DISABLED(DISTINCT_E_FACTORS)
  778. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  779. #endif
  780. SERIAL_EOL;
  781. #if ENABLED(DISTINCT_E_FACTORS)
  782. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  783. SERIAL_ECHOPAIR(" M92 T", (int)i);
  784. SERIAL_ECHOLNPAIR(" E", planner.axis_steps_per_mm[E_AXIS + i]);
  785. }
  786. #endif
  787. CONFIG_ECHO_START;
  788. if (!forReplay) {
  789. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  790. CONFIG_ECHO_START;
  791. }
  792. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  793. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  794. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  795. #if DISABLED(DISTINCT_E_FACTORS)
  796. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  797. #endif
  798. SERIAL_EOL;
  799. #if ENABLED(DISTINCT_E_FACTORS)
  800. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  801. SERIAL_ECHOPAIR(" M203 T", (int)i);
  802. SERIAL_ECHOLNPAIR(" E", planner.max_feedrate_mm_s[E_AXIS + i]);
  803. }
  804. #endif
  805. CONFIG_ECHO_START;
  806. if (!forReplay) {
  807. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  808. CONFIG_ECHO_START;
  809. }
  810. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  811. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  812. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  813. #if DISABLED(DISTINCT_E_FACTORS)
  814. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  815. #endif
  816. SERIAL_EOL;
  817. #if ENABLED(DISTINCT_E_FACTORS)
  818. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  819. SERIAL_ECHOPAIR(" M201 T", (int)i);
  820. SERIAL_ECHOLNPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]);
  821. }
  822. #endif
  823. CONFIG_ECHO_START;
  824. if (!forReplay) {
  825. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  826. CONFIG_ECHO_START;
  827. }
  828. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  829. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  830. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  831. SERIAL_EOL;
  832. CONFIG_ECHO_START;
  833. if (!forReplay) {
  834. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  835. CONFIG_ECHO_START;
  836. }
  837. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  838. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  839. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  840. SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
  841. SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
  842. SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
  843. SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
  844. SERIAL_EOL;
  845. #if DISABLED(NO_WORKSPACE_OFFSETS)
  846. CONFIG_ECHO_START;
  847. if (!forReplay) {
  848. SERIAL_ECHOLNPGM("Home offset (mm)");
  849. CONFIG_ECHO_START;
  850. }
  851. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  852. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  853. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  854. SERIAL_EOL;
  855. #endif
  856. #if HOTENDS > 1
  857. CONFIG_ECHO_START;
  858. if (!forReplay) {
  859. SERIAL_ECHOLNPGM("Hotend offsets (mm)");
  860. CONFIG_ECHO_START;
  861. }
  862. for (uint8_t e = 1; e < HOTENDS; e++) {
  863. SERIAL_ECHOPAIR(" M218 T", (int)e);
  864. SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS][e]);
  865. SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS][e]);
  866. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  867. SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS][e]);
  868. #endif
  869. SERIAL_EOL;
  870. }
  871. #endif
  872. #if ENABLED(MESH_BED_LEVELING)
  873. if (!forReplay) {
  874. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  875. CONFIG_ECHO_START;
  876. }
  877. SERIAL_ECHOLNPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  878. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  879. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  880. CONFIG_ECHO_START;
  881. SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
  882. SERIAL_ECHOPAIR(" Y", (int)py);
  883. SERIAL_ECHOPGM(" Z");
  884. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  885. SERIAL_EOL;
  886. }
  887. }
  888. #elif HAS_ABL
  889. if (!forReplay) {
  890. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  891. CONFIG_ECHO_START;
  892. }
  893. SERIAL_ECHOLNPAIR(" M420 S", planner.abl_enabled ? 1 : 0);
  894. #endif
  895. #if ENABLED(DELTA)
  896. CONFIG_ECHO_START;
  897. if (!forReplay) {
  898. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  899. CONFIG_ECHO_START;
  900. }
  901. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  902. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  903. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  904. SERIAL_EOL;
  905. CONFIG_ECHO_START;
  906. if (!forReplay) {
  907. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  908. CONFIG_ECHO_START;
  909. }
  910. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  911. SERIAL_ECHOPAIR(" R", delta_radius);
  912. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  913. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  914. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  915. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  916. SERIAL_EOL;
  917. #elif ENABLED(Z_DUAL_ENDSTOPS)
  918. CONFIG_ECHO_START;
  919. if (!forReplay) {
  920. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  921. CONFIG_ECHO_START;
  922. }
  923. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  924. SERIAL_EOL;
  925. #endif // DELTA
  926. #if ENABLED(ULTIPANEL)
  927. CONFIG_ECHO_START;
  928. if (!forReplay) {
  929. SERIAL_ECHOLNPGM("Material heatup parameters:");
  930. CONFIG_ECHO_START;
  931. }
  932. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  933. SERIAL_ECHOPAIR(" M145 S", (int)i);
  934. SERIAL_ECHOPAIR(" H", lcd_preheat_hotend_temp[i]);
  935. SERIAL_ECHOPAIR(" B", lcd_preheat_bed_temp[i]);
  936. SERIAL_ECHOPAIR(" F", lcd_preheat_fan_speed[i]);
  937. SERIAL_EOL;
  938. }
  939. #endif // ULTIPANEL
  940. #if HAS_PID_HEATING
  941. CONFIG_ECHO_START;
  942. if (!forReplay) {
  943. SERIAL_ECHOLNPGM("PID settings:");
  944. }
  945. #if ENABLED(PIDTEMP)
  946. #if HOTENDS > 1
  947. if (forReplay) {
  948. HOTEND_LOOP() {
  949. CONFIG_ECHO_START;
  950. SERIAL_ECHOPAIR(" M301 E", e);
  951. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  952. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  953. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  954. #if ENABLED(PID_EXTRUSION_SCALING)
  955. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  956. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  957. #endif
  958. SERIAL_EOL;
  959. }
  960. }
  961. else
  962. #endif // HOTENDS > 1
  963. // !forReplay || HOTENDS == 1
  964. {
  965. CONFIG_ECHO_START;
  966. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  967. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  968. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  969. #if ENABLED(PID_EXTRUSION_SCALING)
  970. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  971. SERIAL_ECHOPAIR(" L", lpq_len);
  972. #endif
  973. SERIAL_EOL;
  974. }
  975. #endif // PIDTEMP
  976. #if ENABLED(PIDTEMPBED)
  977. CONFIG_ECHO_START;
  978. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  979. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  980. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  981. SERIAL_EOL;
  982. #endif
  983. #endif // PIDTEMP || PIDTEMPBED
  984. #if HAS_LCD_CONTRAST
  985. CONFIG_ECHO_START;
  986. if (!forReplay) {
  987. SERIAL_ECHOLNPGM("LCD Contrast:");
  988. CONFIG_ECHO_START;
  989. }
  990. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  991. SERIAL_EOL;
  992. #endif
  993. #if ENABLED(FWRETRACT)
  994. CONFIG_ECHO_START;
  995. if (!forReplay) {
  996. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  997. CONFIG_ECHO_START;
  998. }
  999. SERIAL_ECHOPAIR(" M207 S", retract_length);
  1000. #if EXTRUDERS > 1
  1001. SERIAL_ECHOPAIR(" W", retract_length_swap);
  1002. #endif
  1003. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  1004. SERIAL_ECHOPAIR(" Z", retract_zlift);
  1005. SERIAL_EOL;
  1006. CONFIG_ECHO_START;
  1007. if (!forReplay) {
  1008. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  1009. CONFIG_ECHO_START;
  1010. }
  1011. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  1012. #if EXTRUDERS > 1
  1013. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  1014. #endif
  1015. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  1016. SERIAL_EOL;
  1017. CONFIG_ECHO_START;
  1018. if (!forReplay) {
  1019. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  1020. CONFIG_ECHO_START;
  1021. }
  1022. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1023. SERIAL_EOL;
  1024. #endif // FWRETRACT
  1025. /**
  1026. * Volumetric extrusion M200
  1027. */
  1028. if (!forReplay) {
  1029. CONFIG_ECHO_START;
  1030. SERIAL_ECHOPGM("Filament settings:");
  1031. if (volumetric_enabled)
  1032. SERIAL_EOL;
  1033. else
  1034. SERIAL_ECHOLNPGM(" Disabled");
  1035. }
  1036. CONFIG_ECHO_START;
  1037. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1038. SERIAL_EOL;
  1039. #if EXTRUDERS > 1
  1040. CONFIG_ECHO_START;
  1041. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1042. SERIAL_EOL;
  1043. #if EXTRUDERS > 2
  1044. CONFIG_ECHO_START;
  1045. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1046. SERIAL_EOL;
  1047. #if EXTRUDERS > 3
  1048. CONFIG_ECHO_START;
  1049. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1050. SERIAL_EOL;
  1051. #endif
  1052. #endif
  1053. #endif
  1054. if (!volumetric_enabled) {
  1055. CONFIG_ECHO_START;
  1056. SERIAL_ECHOLNPGM(" M200 D0");
  1057. }
  1058. /**
  1059. * Auto Bed Leveling
  1060. */
  1061. #if HAS_BED_PROBE
  1062. if (!forReplay) {
  1063. CONFIG_ECHO_START;
  1064. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1065. }
  1066. CONFIG_ECHO_START;
  1067. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  1068. SERIAL_EOL;
  1069. #endif
  1070. }
  1071. #endif // !DISABLE_M503