My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

configuration_store.cpp 91KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V58"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #if ADD_PORT_ARG
  45. #define PORTARG_SOLO const int8_t port
  46. #define PORTARG_AFTER ,const int8_t port
  47. #define PORTVAR_SOLO port
  48. #else
  49. #define PORTARG_SOLO
  50. #define PORTARG_AFTER
  51. #define PORTVAR_SOLO
  52. #endif
  53. #include "endstops.h"
  54. #include "planner.h"
  55. #include "stepper.h"
  56. #include "temperature.h"
  57. #include "../lcd/ultralcd.h"
  58. #include "../core/language.h"
  59. #include "../libs/vector_3.h"
  60. #include "../gcode/gcode.h"
  61. #include "../Marlin.h"
  62. #if HAS_LEVELING
  63. #include "../feature/bedlevel/bedlevel.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_BED_PROBE
  69. #include "../module/probe.h"
  70. #endif
  71. #if HAS_TRINAMIC
  72. #include "stepper_indirection.h"
  73. #include "../feature/tmc_util.h"
  74. #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.axis_steps_per_mm[_AXIS(A)])
  75. #endif
  76. #if ENABLED(FWRETRACT)
  77. #include "../feature/fwretract.h"
  78. #endif
  79. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  80. #include "../feature/pause.h"
  81. #endif
  82. #if ENABLED(PID_EXTRUSION_SCALING)
  83. #define LPQ_LEN thermalManager.lpq_len
  84. #endif
  85. #pragma pack(push, 1) // No padding between variables
  86. typedef struct PID { float Kp, Ki, Kd; } PID;
  87. typedef struct PIDC { float Kp, Ki, Kd, Kc; } PIDC;
  88. /**
  89. * Current EEPROM Layout
  90. *
  91. * Keep this data structure up to date so
  92. * EEPROM size is known at compile time!
  93. */
  94. typedef struct SettingsDataStruct {
  95. char version[4]; // Vnn\0
  96. uint16_t crc; // Data Checksum
  97. //
  98. // DISTINCT_E_FACTORS
  99. //
  100. uint8_t esteppers; // XYZE_N - XYZ
  101. uint32_t planner_max_acceleration_mm_per_s2[XYZE_N], // M201 XYZE planner.max_acceleration_mm_per_s2[XYZE_N]
  102. planner_min_segment_time_us; // M205 B planner.min_segment_time_us
  103. float planner_axis_steps_per_mm[XYZE_N], // M92 XYZE planner.axis_steps_per_mm[XYZE_N]
  104. planner_max_feedrate_mm_s[XYZE_N], // M203 XYZE planner.max_feedrate_mm_s[XYZE_N]
  105. planner_acceleration, // M204 P planner.acceleration
  106. planner_retract_acceleration, // M204 R planner.retract_acceleration
  107. planner_travel_acceleration, // M204 T planner.travel_acceleration
  108. planner_min_feedrate_mm_s, // M205 S planner.min_feedrate_mm_s
  109. planner_min_travel_feedrate_mm_s, // M205 T planner.min_travel_feedrate_mm_s
  110. planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
  111. planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  112. float home_offset[XYZ]; // M206 XYZ
  113. #if HAS_HOTEND_OFFSET
  114. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  115. #endif
  116. //
  117. // ENABLE_LEVELING_FADE_HEIGHT
  118. //
  119. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  120. //
  121. // MESH_BED_LEVELING
  122. //
  123. float mbl_z_offset; // mbl.z_offset
  124. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  125. #if ENABLED(MESH_BED_LEVELING)
  126. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  127. #else
  128. float mbl_z_values[3][3];
  129. #endif
  130. //
  131. // HAS_BED_PROBE
  132. //
  133. float zprobe_zoffset; // M851 Z
  134. //
  135. // ABL_PLANAR
  136. //
  137. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  138. //
  139. // AUTO_BED_LEVELING_BILINEAR
  140. //
  141. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  142. int bilinear_grid_spacing[2],
  143. bilinear_start[2]; // G29 L F
  144. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  145. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  146. #else
  147. float z_values[3][3];
  148. #endif
  149. //
  150. // AUTO_BED_LEVELING_UBL
  151. //
  152. bool planner_leveling_active; // M420 S planner.leveling_active
  153. int8_t ubl_storage_slot; // ubl.storage_slot
  154. //
  155. // SERVO_ANGLES
  156. //
  157. uint16_t servo_angles[NUM_SERVO_PLUGS][2]; // M281 P L U
  158. //
  159. // DELTA / [XYZ]_DUAL_ENDSTOPS
  160. //
  161. #if ENABLED(DELTA)
  162. float delta_height, // M666 H
  163. delta_endstop_adj[ABC], // M666 XYZ
  164. delta_radius, // M665 R
  165. delta_diagonal_rod, // M665 L
  166. delta_segments_per_second, // M665 S
  167. delta_calibration_radius, // M665 B
  168. delta_tower_angle_trim[ABC]; // M665 XYZ
  169. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  170. float x2_endstop_adj, // M666 X
  171. y2_endstop_adj, // M666 Y
  172. z2_endstop_adj; // M666 Z
  173. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  174. float z3_endstop_adj; // M666 Z
  175. #endif
  176. #endif
  177. //
  178. // ULTIPANEL
  179. //
  180. int16_t lcd_preheat_hotend_temp[2], // M145 S0 H
  181. lcd_preheat_bed_temp[2], // M145 S0 B
  182. lcd_preheat_fan_speed[2]; // M145 S0 F
  183. //
  184. // PIDTEMP
  185. //
  186. PIDC hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
  187. int16_t lpq_len; // M301 L
  188. //
  189. // PIDTEMPBED
  190. //
  191. PID bedPID; // M304 PID / M303 E-1 U
  192. //
  193. // HAS_LCD_CONTRAST
  194. //
  195. int16_t lcd_contrast; // M250 C
  196. //
  197. // FWRETRACT
  198. //
  199. bool autoretract_enabled; // M209 S
  200. float retract_length, // M207 S
  201. retract_feedrate_mm_s, // M207 F
  202. retract_zlift, // M207 Z
  203. retract_recover_length, // M208 S
  204. retract_recover_feedrate_mm_s, // M208 F
  205. swap_retract_length, // M207 W
  206. swap_retract_recover_length, // M208 W
  207. swap_retract_recover_feedrate_mm_s; // M208 R
  208. //
  209. // !NO_VOLUMETRIC
  210. //
  211. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  212. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  213. //
  214. // HAS_TRINAMIC
  215. //
  216. #define TMC_AXES (MAX_EXTRUDERS + 7)
  217. uint16_t tmc_stepper_current[TMC_AXES]; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  218. uint32_t tmc_hybrid_threshold[TMC_AXES]; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  219. int16_t tmc_sgt[XYZ]; // M914 X Y Z
  220. //
  221. // LIN_ADVANCE
  222. //
  223. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  224. //
  225. // HAS_MOTOR_CURRENT_PWM
  226. //
  227. uint32_t motor_current_setting[XYZ]; // M907 X Z E
  228. //
  229. // CNC_COORDINATE_SYSTEMS
  230. //
  231. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  232. //
  233. // SKEW_CORRECTION
  234. //
  235. float planner_xy_skew_factor, // M852 I planner.xy_skew_factor
  236. planner_xz_skew_factor, // M852 J planner.xz_skew_factor
  237. planner_yz_skew_factor; // M852 K planner.yz_skew_factor
  238. //
  239. // ADVANCED_PAUSE_FEATURE
  240. //
  241. float filament_change_unload_length[EXTRUDERS], // M603 T U
  242. filament_change_load_length[EXTRUDERS]; // M603 T L
  243. } SettingsData;
  244. #pragma pack(pop)
  245. MarlinSettings settings;
  246. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  247. /**
  248. * Post-process after Retrieve or Reset
  249. */
  250. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  251. float new_z_fade_height;
  252. #endif
  253. void MarlinSettings::postprocess() {
  254. const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  255. // steps per s2 needs to be updated to agree with units per s2
  256. planner.reset_acceleration_rates();
  257. // Make sure delta kinematics are updated before refreshing the
  258. // planner position so the stepper counts will be set correctly.
  259. #if ENABLED(DELTA)
  260. recalc_delta_settings();
  261. #endif
  262. #if ENABLED(PIDTEMP)
  263. thermalManager.updatePID();
  264. #endif
  265. #if DISABLED(NO_VOLUMETRICS)
  266. planner.calculate_volumetric_multipliers();
  267. #else
  268. for (uint8_t i = COUNT(planner.e_factor); i--;)
  269. planner.refresh_e_factor(i);
  270. #endif
  271. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  272. // Software endstops depend on home_offset
  273. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  274. #endif
  275. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  276. set_z_fade_height(new_z_fade_height, false); // false = no report
  277. #endif
  278. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  279. refresh_bed_level();
  280. #endif
  281. #if HAS_MOTOR_CURRENT_PWM
  282. stepper.refresh_motor_power();
  283. #endif
  284. #if ENABLED(FWRETRACT)
  285. fwretract.refresh_autoretract();
  286. #endif
  287. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  288. planner.recalculate_max_e_jerk();
  289. #endif
  290. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  291. // and init stepper.count[], planner.position[] with current_position
  292. planner.refresh_positioning();
  293. // Various factors can change the current position
  294. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  295. report_current_position();
  296. }
  297. #if ENABLED(EEPROM_SETTINGS)
  298. #include "../HAL/shared/persistent_store_api.h"
  299. #define DUMMY_PID_VALUE 3000.0f
  300. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
  301. #define EEPROM_FINISH() persistentStore.access_finish()
  302. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  303. #define EEPROM_WRITE(VAR) persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  304. #define EEPROM_READ(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
  305. #define EEPROM_READ_ALWAYS(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  306. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, ERR); eeprom_error = true; }while(0)
  307. #if ENABLED(DEBUG_EEPROM_READWRITE)
  308. #define _FIELD_TEST(FIELD) \
  309. EEPROM_ASSERT( \
  310. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  311. "Field " STRINGIFY(FIELD) " mismatch." \
  312. )
  313. #else
  314. #define _FIELD_TEST(FIELD) NOOP
  315. #endif
  316. const char version[4] = EEPROM_VERSION;
  317. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  318. bool MarlinSettings::size_error(const uint16_t size PORTARG_AFTER) {
  319. if (size != datasize()) {
  320. #if ENABLED(EEPROM_CHITCHAT)
  321. SERIAL_ERROR_START_P(port);
  322. SERIAL_ERRORLNPGM_P(port, "EEPROM datasize error.");
  323. #endif
  324. return true;
  325. }
  326. return false;
  327. }
  328. /**
  329. * M500 - Store Configuration
  330. */
  331. bool MarlinSettings::save(PORTARG_SOLO) {
  332. float dummy = 0;
  333. char ver[4] = "ERR";
  334. uint16_t working_crc = 0;
  335. EEPROM_START();
  336. eeprom_error = false;
  337. #if ENABLED(FLASH_EEPROM_EMULATION)
  338. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  339. #else
  340. EEPROM_WRITE(ver); // invalidate data first
  341. #endif
  342. EEPROM_SKIP(working_crc); // Skip the checksum slot
  343. working_crc = 0; // clear before first "real data"
  344. _FIELD_TEST(esteppers);
  345. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  346. EEPROM_WRITE(esteppers);
  347. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  348. EEPROM_WRITE(planner.min_segment_time_us);
  349. EEPROM_WRITE(planner.axis_steps_per_mm);
  350. EEPROM_WRITE(planner.max_feedrate_mm_s);
  351. EEPROM_WRITE(planner.acceleration);
  352. EEPROM_WRITE(planner.retract_acceleration);
  353. EEPROM_WRITE(planner.travel_acceleration);
  354. EEPROM_WRITE(planner.min_feedrate_mm_s);
  355. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  356. #if HAS_CLASSIC_JERK
  357. EEPROM_WRITE(planner.max_jerk);
  358. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  359. dummy = float(DEFAULT_EJERK);
  360. EEPROM_WRITE(dummy);
  361. #endif
  362. #else
  363. const float planner_max_jerk[] = { float(DEFAULT_XJERK), float(DEFAULT_YJERK), float(DEFAULT_ZJERK), float(DEFAULT_EJERK) };
  364. EEPROM_WRITE(planner_max_jerk);
  365. #endif
  366. #if ENABLED(JUNCTION_DEVIATION)
  367. EEPROM_WRITE(planner.junction_deviation_mm);
  368. #else
  369. dummy = 0.02f;
  370. EEPROM_WRITE(dummy);
  371. #endif
  372. _FIELD_TEST(home_offset);
  373. #if !HAS_HOME_OFFSET
  374. const float home_offset[XYZ] = { 0 };
  375. #endif
  376. EEPROM_WRITE(home_offset);
  377. #if HAS_HOTEND_OFFSET
  378. // Skip hotend 0 which must be 0
  379. for (uint8_t e = 1; e < HOTENDS; e++)
  380. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  381. #endif
  382. //
  383. // Global Leveling
  384. //
  385. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  386. const float zfh = planner.z_fade_height;
  387. #else
  388. const float zfh = 10.0;
  389. #endif
  390. EEPROM_WRITE(zfh);
  391. //
  392. // Mesh Bed Leveling
  393. //
  394. #if ENABLED(MESH_BED_LEVELING)
  395. // Compile time test that sizeof(mbl.z_values) is as expected
  396. static_assert(
  397. sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
  398. "MBL Z array is the wrong size."
  399. );
  400. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  401. EEPROM_WRITE(mbl.z_offset);
  402. EEPROM_WRITE(mesh_num_x);
  403. EEPROM_WRITE(mesh_num_y);
  404. EEPROM_WRITE(mbl.z_values);
  405. #else // For disabled MBL write a default mesh
  406. dummy = 0;
  407. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  408. EEPROM_WRITE(dummy); // z_offset
  409. EEPROM_WRITE(mesh_num_x);
  410. EEPROM_WRITE(mesh_num_y);
  411. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  412. #endif // MESH_BED_LEVELING
  413. _FIELD_TEST(zprobe_zoffset);
  414. #if !HAS_BED_PROBE
  415. const float zprobe_zoffset = 0;
  416. #endif
  417. EEPROM_WRITE(zprobe_zoffset);
  418. //
  419. // Planar Bed Leveling matrix
  420. //
  421. #if ABL_PLANAR
  422. EEPROM_WRITE(planner.bed_level_matrix);
  423. #else
  424. dummy = 0;
  425. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  426. #endif
  427. //
  428. // Bilinear Auto Bed Leveling
  429. //
  430. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  431. // Compile time test that sizeof(z_values) is as expected
  432. static_assert(
  433. sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
  434. "Bilinear Z array is the wrong size."
  435. );
  436. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  437. EEPROM_WRITE(grid_max_x); // 1 byte
  438. EEPROM_WRITE(grid_max_y); // 1 byte
  439. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  440. EEPROM_WRITE(bilinear_start); // 2 ints
  441. EEPROM_WRITE(z_values); // 9-256 floats
  442. #else
  443. // For disabled Bilinear Grid write an empty 3x3 grid
  444. const uint8_t grid_max_x = 3, grid_max_y = 3;
  445. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  446. dummy = 0;
  447. EEPROM_WRITE(grid_max_x);
  448. EEPROM_WRITE(grid_max_y);
  449. EEPROM_WRITE(bilinear_grid_spacing);
  450. EEPROM_WRITE(bilinear_start);
  451. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  452. #endif // AUTO_BED_LEVELING_BILINEAR
  453. _FIELD_TEST(planner_leveling_active);
  454. #if ENABLED(AUTO_BED_LEVELING_UBL)
  455. EEPROM_WRITE(planner.leveling_active);
  456. EEPROM_WRITE(ubl.storage_slot);
  457. #else
  458. const bool ubl_active = false;
  459. const int8_t storage_slot = -1;
  460. EEPROM_WRITE(ubl_active);
  461. EEPROM_WRITE(storage_slot);
  462. #endif // AUTO_BED_LEVELING_UBL
  463. #if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES)
  464. #if ENABLED(SWITCHING_EXTRUDER)
  465. constexpr uint16_t sesa[][2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  466. #endif
  467. constexpr uint16_t servo_angles[NUM_SERVO_PLUGS][2] = {
  468. #if ENABLED(SWITCHING_EXTRUDER)
  469. [SWITCHING_EXTRUDER_SERVO_NR] = { sesa[0], sesa[1] }
  470. #if EXTRUDERS > 3
  471. , [SWITCHING_EXTRUDER_E23_SERVO_NR] = { sesa[2], sesa[3] }
  472. #endif
  473. #elif ENABLED(SWITCHING_NOZZLE)
  474. [SWITCHING_NOZZLE_SERVO_NR] = SWITCHING_NOZZLE_SERVO_ANGLES
  475. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  476. [Z_PROBE_SERVO_NR] = Z_SERVO_ANGLES
  477. #endif
  478. };
  479. #endif
  480. EEPROM_WRITE(servo_angles);
  481. // 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
  482. #if ENABLED(DELTA)
  483. _FIELD_TEST(delta_height);
  484. EEPROM_WRITE(delta_height); // 1 float
  485. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  486. EEPROM_WRITE(delta_radius); // 1 float
  487. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  488. EEPROM_WRITE(delta_segments_per_second); // 1 float
  489. EEPROM_WRITE(delta_calibration_radius); // 1 float
  490. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  491. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  492. _FIELD_TEST(x2_endstop_adj);
  493. // Write dual endstops in X, Y, Z order. Unused = 0.0
  494. dummy = 0;
  495. #if ENABLED(X_DUAL_ENDSTOPS)
  496. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  497. #else
  498. EEPROM_WRITE(dummy);
  499. #endif
  500. #if ENABLED(Y_DUAL_ENDSTOPS)
  501. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  502. #else
  503. EEPROM_WRITE(dummy);
  504. #endif
  505. #if Z_MULTI_ENDSTOPS
  506. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  507. #else
  508. EEPROM_WRITE(dummy);
  509. #endif
  510. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  511. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  512. #else
  513. EEPROM_WRITE(dummy);
  514. #endif
  515. #endif
  516. _FIELD_TEST(lcd_preheat_hotend_temp);
  517. #if DISABLED(ULTIPANEL)
  518. constexpr int16_t lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  519. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  520. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  521. #endif
  522. EEPROM_WRITE(lcd_preheat_hotend_temp);
  523. EEPROM_WRITE(lcd_preheat_bed_temp);
  524. EEPROM_WRITE(lcd_preheat_fan_speed);
  525. for (uint8_t e = 0; e < HOTENDS; e++) {
  526. #if ENABLED(PIDTEMP)
  527. EEPROM_WRITE(PID_PARAM(Kp, e));
  528. EEPROM_WRITE(PID_PARAM(Ki, e));
  529. EEPROM_WRITE(PID_PARAM(Kd, e));
  530. #if ENABLED(PID_EXTRUSION_SCALING)
  531. EEPROM_WRITE(PID_PARAM(Kc, e));
  532. #else
  533. dummy = 1.0f; // 1.0 = default kc
  534. EEPROM_WRITE(dummy);
  535. #endif
  536. #else
  537. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  538. EEPROM_WRITE(dummy); // Kp
  539. dummy = 0;
  540. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  541. #endif
  542. } // Hotends Loop
  543. _FIELD_TEST(lpq_len);
  544. #if DISABLED(PID_EXTRUSION_SCALING)
  545. const int16_t LPQ_LEN = 20;
  546. #endif
  547. EEPROM_WRITE(LPQ_LEN);
  548. #if DISABLED(PIDTEMPBED)
  549. dummy = DUMMY_PID_VALUE;
  550. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  551. #else
  552. EEPROM_WRITE(thermalManager.bedKp);
  553. EEPROM_WRITE(thermalManager.bedKi);
  554. EEPROM_WRITE(thermalManager.bedKd);
  555. #endif
  556. _FIELD_TEST(lcd_contrast);
  557. #if !HAS_LCD_CONTRAST
  558. const int16_t lcd_contrast = 32;
  559. #endif
  560. EEPROM_WRITE(lcd_contrast);
  561. #if DISABLED(FWRETRACT)
  562. const bool autoretract_enabled = false;
  563. const float autoretract_defaults[] = { 3, 45, 0, 0, 0, 13, 0, 8 };
  564. EEPROM_WRITE(autoretract_enabled);
  565. EEPROM_WRITE(autoretract_defaults);
  566. #else
  567. EEPROM_WRITE(fwretract.autoretract_enabled);
  568. EEPROM_WRITE(fwretract.retract_length);
  569. EEPROM_WRITE(fwretract.retract_feedrate_mm_s);
  570. EEPROM_WRITE(fwretract.retract_zlift);
  571. EEPROM_WRITE(fwretract.retract_recover_length);
  572. EEPROM_WRITE(fwretract.retract_recover_feedrate_mm_s);
  573. EEPROM_WRITE(fwretract.swap_retract_length);
  574. EEPROM_WRITE(fwretract.swap_retract_recover_length);
  575. EEPROM_WRITE(fwretract.swap_retract_recover_feedrate_mm_s);
  576. #endif
  577. //
  578. // Volumetric & Filament Size
  579. //
  580. _FIELD_TEST(parser_volumetric_enabled);
  581. #if DISABLED(NO_VOLUMETRICS)
  582. EEPROM_WRITE(parser.volumetric_enabled);
  583. // Save filament sizes
  584. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  585. EEPROM_WRITE(planner.filament_size[q]);
  586. #else
  587. const bool volumetric_enabled = false;
  588. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  589. EEPROM_WRITE(volumetric_enabled);
  590. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  591. #endif
  592. //
  593. // Save TMC2130 or TMC2208 Configuration, and placeholder values
  594. //
  595. _FIELD_TEST(tmc_stepper_current);
  596. uint16_t tmc_stepper_current[TMC_AXES] = {
  597. #if HAS_TRINAMIC
  598. #if AXIS_IS_TMC(X)
  599. stepperX.getCurrent(),
  600. #else
  601. 0,
  602. #endif
  603. #if AXIS_IS_TMC(Y)
  604. stepperY.getCurrent(),
  605. #else
  606. 0,
  607. #endif
  608. #if AXIS_IS_TMC(Z)
  609. stepperZ.getCurrent(),
  610. #else
  611. 0,
  612. #endif
  613. #if AXIS_IS_TMC(X2)
  614. stepperX2.getCurrent(),
  615. #else
  616. 0,
  617. #endif
  618. #if AXIS_IS_TMC(Y2)
  619. stepperY2.getCurrent(),
  620. #else
  621. 0,
  622. #endif
  623. #if AXIS_IS_TMC(Z2)
  624. stepperZ2.getCurrent(),
  625. #else
  626. 0,
  627. #endif
  628. #if AXIS_IS_TMC(Z3)
  629. stepperZ3.getCurrent(),
  630. #else
  631. 0,
  632. #endif
  633. #if MAX_EXTRUDERS
  634. #if AXIS_IS_TMC(E0)
  635. stepperE0.getCurrent(),
  636. #else
  637. 0,
  638. #endif
  639. #if MAX_EXTRUDERS > 1
  640. #if AXIS_IS_TMC(E1)
  641. stepperE1.getCurrent(),
  642. #else
  643. 0,
  644. #endif
  645. #if MAX_EXTRUDERS > 2
  646. #if AXIS_IS_TMC(E2)
  647. stepperE2.getCurrent(),
  648. #else
  649. 0,
  650. #endif
  651. #if MAX_EXTRUDERS > 3
  652. #if AXIS_IS_TMC(E3)
  653. stepperE3.getCurrent(),
  654. #else
  655. 0,
  656. #endif
  657. #if MAX_EXTRUDERS > 4
  658. #if AXIS_IS_TMC(E4)
  659. stepperE4.getCurrent()
  660. #else
  661. 0
  662. #endif
  663. #if MAX_EXTRUDERS > 5
  664. #if AXIS_IS_TMC(E5)
  665. stepperE5.getCurrent()
  666. #else
  667. 0
  668. #endif
  669. #endif // MAX_EXTRUDERS > 5
  670. #endif // MAX_EXTRUDERS > 4
  671. #endif // MAX_EXTRUDERS > 3
  672. #endif // MAX_EXTRUDERS > 2
  673. #endif // MAX_EXTRUDERS > 1
  674. #endif // MAX_EXTRUDERS
  675. #else
  676. 0
  677. #endif
  678. };
  679. EEPROM_WRITE(tmc_stepper_current);
  680. //
  681. // Save TMC2130 or TMC2208 Hybrid Threshold, and placeholder values
  682. //
  683. _FIELD_TEST(tmc_hybrid_threshold);
  684. uint32_t tmc_hybrid_threshold[TMC_AXES] = {
  685. #if ENABLED(HYBRID_THRESHOLD)
  686. #if AXIS_HAS_STEALTHCHOP(X)
  687. TMC_GET_PWMTHRS(X, X),
  688. #else
  689. X_HYBRID_THRESHOLD,
  690. #endif
  691. #if AXIS_HAS_STEALTHCHOP(Y)
  692. TMC_GET_PWMTHRS(Y, Y),
  693. #else
  694. Y_HYBRID_THRESHOLD,
  695. #endif
  696. #if AXIS_HAS_STEALTHCHOP(Z)
  697. TMC_GET_PWMTHRS(Z, Z),
  698. #else
  699. Z_HYBRID_THRESHOLD,
  700. #endif
  701. #if AXIS_HAS_STEALTHCHOP(X2)
  702. TMC_GET_PWMTHRS(X, X2),
  703. #else
  704. X2_HYBRID_THRESHOLD,
  705. #endif
  706. #if AXIS_HAS_STEALTHCHOP(Y2)
  707. TMC_GET_PWMTHRS(Y, Y2),
  708. #else
  709. Y2_HYBRID_THRESHOLD,
  710. #endif
  711. #if AXIS_HAS_STEALTHCHOP(Z2)
  712. TMC_GET_PWMTHRS(Z, Z2),
  713. #else
  714. Z2_HYBRID_THRESHOLD,
  715. #endif
  716. #if AXIS_HAS_STEALTHCHOP(Z3)
  717. TMC_GET_PWMTHRS(Z, Z3),
  718. #else
  719. Z3_HYBRID_THRESHOLD,
  720. #endif
  721. #if MAX_EXTRUDERS
  722. #if AXIS_HAS_STEALTHCHOP(E0)
  723. TMC_GET_PWMTHRS(E, E0),
  724. #else
  725. E0_HYBRID_THRESHOLD,
  726. #endif
  727. #if MAX_EXTRUDERS > 1
  728. #if AXIS_HAS_STEALTHCHOP(E1)
  729. TMC_GET_PWMTHRS(E, E1),
  730. #else
  731. E1_HYBRID_THRESHOLD,
  732. #endif
  733. #if MAX_EXTRUDERS > 2
  734. #if AXIS_HAS_STEALTHCHOP(E2)
  735. TMC_GET_PWMTHRS(E, E2),
  736. #else
  737. E2_HYBRID_THRESHOLD,
  738. #endif
  739. #if MAX_EXTRUDERS > 3
  740. #if AXIS_HAS_STEALTHCHOP(E3)
  741. TMC_GET_PWMTHRS(E, E3),
  742. #else
  743. E3_HYBRID_THRESHOLD,
  744. #endif
  745. #if MAX_EXTRUDERS > 4
  746. #if AXIS_HAS_STEALTHCHOP(E4)
  747. TMC_GET_PWMTHRS(E, E4)
  748. #else
  749. E4_HYBRID_THRESHOLD
  750. #endif
  751. #if MAX_EXTRUDERS > 5
  752. #if AXIS_HAS_STEALTHCHOP(E5)
  753. TMC_GET_PWMTHRS(E, E5)
  754. #else
  755. E5_HYBRID_THRESHOLD
  756. #endif
  757. #endif // MAX_EXTRUDERS > 5
  758. #endif // MAX_EXTRUDERS > 4
  759. #endif // MAX_EXTRUDERS > 3
  760. #endif // MAX_EXTRUDERS > 2
  761. #endif // MAX_EXTRUDERS > 1
  762. #endif // MAX_EXTRUDERS
  763. #else
  764. 100, 100, 3, // X, Y, Z
  765. 100, 100, 3, 3 // X2, Y2, Z2, Z3
  766. #if MAX_EXTRUDERS
  767. , 30 // E0
  768. #if MAX_EXTRUDERS > 1
  769. , 30 // E1
  770. #if MAX_EXTRUDERS > 2
  771. , 30 // E2
  772. #if MAX_EXTRUDERS > 3
  773. , 30 // E3
  774. #if MAX_EXTRUDERS > 4
  775. , 30 // E4
  776. #if MAX_EXTRUDERS > 5
  777. , 30 // E5
  778. #endif
  779. #endif
  780. #endif
  781. #endif
  782. #endif
  783. #endif
  784. #endif
  785. };
  786. EEPROM_WRITE(tmc_hybrid_threshold);
  787. //
  788. // TMC2130 Sensorless homing threshold
  789. //
  790. int16_t tmc_sgt[XYZ] = {
  791. #if ENABLED(SENSORLESS_HOMING)
  792. #if X_SENSORLESS
  793. stepperX.sgt(),
  794. #else
  795. 0,
  796. #endif
  797. #if Y_SENSORLESS
  798. stepperY.sgt(),
  799. #else
  800. 0,
  801. #endif
  802. #if Z_SENSORLESS
  803. stepperZ.sgt()
  804. #else
  805. 0
  806. #endif
  807. #else
  808. 0
  809. #endif
  810. };
  811. EEPROM_WRITE(tmc_sgt);
  812. //
  813. // Linear Advance
  814. //
  815. _FIELD_TEST(planner_extruder_advance_K);
  816. #if ENABLED(LIN_ADVANCE)
  817. LOOP_L_N(i, EXTRUDERS) EEPROM_WRITE(planner.extruder_advance_K[i]);
  818. #else
  819. dummy = 0;
  820. LOOP_L_N(i, EXTRUDERS) EEPROM_WRITE(dummy);
  821. #endif
  822. _FIELD_TEST(motor_current_setting);
  823. #if HAS_MOTOR_CURRENT_PWM
  824. for (uint8_t q = XYZ; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
  825. #else
  826. const uint32_t dummyui32[XYZ] = { 0 };
  827. EEPROM_WRITE(dummyui32);
  828. #endif
  829. //
  830. // CNC Coordinate Systems
  831. //
  832. _FIELD_TEST(coordinate_system);
  833. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  834. EEPROM_WRITE(gcode.coordinate_system); // 27 floats
  835. #else
  836. dummy = 0;
  837. for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_WRITE(dummy);
  838. #endif
  839. //
  840. // Skew correction factors
  841. //
  842. _FIELD_TEST(planner_xy_skew_factor);
  843. #if ENABLED(SKEW_CORRECTION)
  844. EEPROM_WRITE(planner.xy_skew_factor);
  845. EEPROM_WRITE(planner.xz_skew_factor);
  846. EEPROM_WRITE(planner.yz_skew_factor);
  847. #else
  848. dummy = 0;
  849. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  850. #endif
  851. //
  852. // Advanced Pause filament load & unload lengths
  853. //
  854. _FIELD_TEST(filament_change_unload_length);
  855. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  856. for (uint8_t q = 0; q < COUNT(filament_change_unload_length); q++) {
  857. EEPROM_WRITE(filament_change_unload_length[q]);
  858. EEPROM_WRITE(filament_change_load_length[q]);
  859. }
  860. #else
  861. dummy = 0;
  862. for (uint8_t q = EXTRUDERS * 2; q--;) EEPROM_WRITE(dummy);
  863. #endif
  864. //
  865. // Validate CRC and Data Size
  866. //
  867. if (!eeprom_error) {
  868. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  869. final_crc = working_crc;
  870. // Write the EEPROM header
  871. eeprom_index = EEPROM_OFFSET;
  872. EEPROM_WRITE(version);
  873. EEPROM_WRITE(final_crc);
  874. // Report storage size
  875. #if ENABLED(EEPROM_CHITCHAT)
  876. SERIAL_ECHO_START_P(port);
  877. SERIAL_ECHOPAIR_P(port, "Settings Stored (", eeprom_size);
  878. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)final_crc);
  879. SERIAL_ECHOLNPGM_P(port, ")");
  880. #endif
  881. eeprom_error |= size_error(eeprom_size);
  882. }
  883. EEPROM_FINISH();
  884. //
  885. // UBL Mesh
  886. //
  887. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  888. if (ubl.storage_slot >= 0)
  889. store_mesh(ubl.storage_slot);
  890. #endif
  891. return !eeprom_error;
  892. }
  893. /**
  894. * M501 - Retrieve Configuration
  895. */
  896. bool MarlinSettings::_load(PORTARG_SOLO) {
  897. uint16_t working_crc = 0;
  898. EEPROM_START();
  899. char stored_ver[4];
  900. EEPROM_READ_ALWAYS(stored_ver);
  901. uint16_t stored_crc;
  902. EEPROM_READ_ALWAYS(stored_crc);
  903. // Version has to match or defaults are used
  904. if (strncmp(version, stored_ver, 3) != 0) {
  905. if (stored_ver[3] != '\0') {
  906. stored_ver[0] = '?';
  907. stored_ver[1] = '\0';
  908. }
  909. #if ENABLED(EEPROM_CHITCHAT)
  910. SERIAL_ECHO_START_P(port);
  911. SERIAL_ECHOPGM_P(port, "EEPROM version mismatch ");
  912. SERIAL_ECHOPAIR_P(port, "(EEPROM=", stored_ver);
  913. SERIAL_ECHOLNPGM_P(port, " Marlin=" EEPROM_VERSION ")");
  914. #endif
  915. eeprom_error = true;
  916. }
  917. else {
  918. float dummy = 0;
  919. #if DISABLED(AUTO_BED_LEVELING_UBL) || DISABLED(FWRETRACT) || ENABLED(NO_VOLUMETRICS)
  920. bool dummyb;
  921. #endif
  922. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  923. _FIELD_TEST(esteppers);
  924. // Number of esteppers may change
  925. uint8_t esteppers;
  926. EEPROM_READ_ALWAYS(esteppers);
  927. //
  928. // Planner Motion
  929. //
  930. // Get only the number of E stepper parameters previously stored
  931. // Any steppers added later are set to their defaults
  932. const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
  933. const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
  934. uint32_t tmp1[XYZ + esteppers];
  935. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  936. EEPROM_READ(planner.min_segment_time_us);
  937. float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
  938. EEPROM_READ(tmp2); // axis_steps_per_mm
  939. EEPROM_READ(tmp3); // max_feedrate_mm_s
  940. if (!validating) LOOP_XYZE_N(i) {
  941. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  942. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  943. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  944. }
  945. EEPROM_READ(planner.acceleration);
  946. EEPROM_READ(planner.retract_acceleration);
  947. EEPROM_READ(planner.travel_acceleration);
  948. EEPROM_READ(planner.min_feedrate_mm_s);
  949. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  950. #if HAS_CLASSIC_JERK
  951. EEPROM_READ(planner.max_jerk);
  952. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  953. EEPROM_READ(dummy);
  954. #endif
  955. #else
  956. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  957. #endif
  958. #if ENABLED(JUNCTION_DEVIATION)
  959. EEPROM_READ(planner.junction_deviation_mm);
  960. #else
  961. EEPROM_READ(dummy);
  962. #endif
  963. //
  964. // Home Offset (M206)
  965. //
  966. _FIELD_TEST(home_offset);
  967. #if !HAS_HOME_OFFSET
  968. float home_offset[XYZ];
  969. #endif
  970. EEPROM_READ(home_offset);
  971. //
  972. // Hotend Offsets, if any
  973. //
  974. #if HAS_HOTEND_OFFSET
  975. // Skip hotend 0 which must be 0
  976. for (uint8_t e = 1; e < HOTENDS; e++)
  977. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  978. #endif
  979. //
  980. // Global Leveling
  981. //
  982. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  983. EEPROM_READ(new_z_fade_height);
  984. #else
  985. EEPROM_READ(dummy);
  986. #endif
  987. //
  988. // Mesh (Manual) Bed Leveling
  989. //
  990. uint8_t mesh_num_x, mesh_num_y;
  991. EEPROM_READ(dummy);
  992. EEPROM_READ_ALWAYS(mesh_num_x);
  993. EEPROM_READ_ALWAYS(mesh_num_y);
  994. #if ENABLED(MESH_BED_LEVELING)
  995. if (!validating) mbl.z_offset = dummy;
  996. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  997. // EEPROM data fits the current mesh
  998. EEPROM_READ(mbl.z_values);
  999. }
  1000. else {
  1001. // EEPROM data is stale
  1002. if (!validating) mbl.reset();
  1003. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1004. }
  1005. #else
  1006. // MBL is disabled - skip the stored data
  1007. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1008. #endif // MESH_BED_LEVELING
  1009. _FIELD_TEST(zprobe_zoffset);
  1010. #if !HAS_BED_PROBE
  1011. float zprobe_zoffset;
  1012. #endif
  1013. EEPROM_READ(zprobe_zoffset);
  1014. //
  1015. // Planar Bed Leveling matrix
  1016. //
  1017. #if ABL_PLANAR
  1018. EEPROM_READ(planner.bed_level_matrix);
  1019. #else
  1020. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  1021. #endif
  1022. //
  1023. // Bilinear Auto Bed Leveling
  1024. //
  1025. uint8_t grid_max_x, grid_max_y;
  1026. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1027. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1028. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1029. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1030. if (!validating) set_bed_leveling_enabled(false);
  1031. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1032. EEPROM_READ(bilinear_start); // 2 ints
  1033. EEPROM_READ(z_values); // 9 to 256 floats
  1034. }
  1035. else // EEPROM data is stale
  1036. #endif // AUTO_BED_LEVELING_BILINEAR
  1037. {
  1038. // Skip past disabled (or stale) Bilinear Grid data
  1039. int bgs[2], bs[2];
  1040. EEPROM_READ(bgs);
  1041. EEPROM_READ(bs);
  1042. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1043. }
  1044. //
  1045. // Unified Bed Leveling active state
  1046. //
  1047. _FIELD_TEST(planner_leveling_active);
  1048. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1049. EEPROM_READ(planner.leveling_active);
  1050. EEPROM_READ(ubl.storage_slot);
  1051. #else
  1052. uint8_t dummyui8;
  1053. EEPROM_READ(dummyb);
  1054. EEPROM_READ(dummyui8);
  1055. #endif // AUTO_BED_LEVELING_UBL
  1056. //
  1057. // SERVO_ANGLES
  1058. //
  1059. #if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES)
  1060. uint16_t servo_angles[NUM_SERVO_PLUGS][2];
  1061. #endif
  1062. EEPROM_READ(servo_angles);
  1063. //
  1064. // DELTA Geometry or Dual Endstops offsets
  1065. //
  1066. #if ENABLED(DELTA)
  1067. _FIELD_TEST(delta_height);
  1068. EEPROM_READ(delta_height); // 1 float
  1069. EEPROM_READ(delta_endstop_adj); // 3 floats
  1070. EEPROM_READ(delta_radius); // 1 float
  1071. EEPROM_READ(delta_diagonal_rod); // 1 float
  1072. EEPROM_READ(delta_segments_per_second); // 1 float
  1073. EEPROM_READ(delta_calibration_radius); // 1 float
  1074. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1075. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1076. _FIELD_TEST(x2_endstop_adj);
  1077. #if ENABLED(X_DUAL_ENDSTOPS)
  1078. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1079. #else
  1080. EEPROM_READ(dummy);
  1081. #endif
  1082. #if ENABLED(Y_DUAL_ENDSTOPS)
  1083. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1084. #else
  1085. EEPROM_READ(dummy);
  1086. #endif
  1087. #if Z_MULTI_ENDSTOPS
  1088. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1089. #else
  1090. EEPROM_READ(dummy);
  1091. #endif
  1092. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1093. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1094. #else
  1095. EEPROM_READ(dummy);
  1096. #endif
  1097. #endif
  1098. //
  1099. // LCD Preheat settings
  1100. //
  1101. _FIELD_TEST(lcd_preheat_hotend_temp);
  1102. #if DISABLED(ULTIPANEL)
  1103. int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  1104. #endif
  1105. EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
  1106. EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
  1107. EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
  1108. //EEPROM_ASSERT(
  1109. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  1110. // "lcd_preheat_fan_speed out of range"
  1111. //);
  1112. //
  1113. // Hotend PID
  1114. //
  1115. #if ENABLED(PIDTEMP)
  1116. for (uint8_t e = 0; e < HOTENDS; e++) {
  1117. EEPROM_READ(dummy); // Kp
  1118. if (dummy != DUMMY_PID_VALUE) {
  1119. // do not need to scale PID values as the values in EEPROM are already scaled
  1120. if (!validating) PID_PARAM(Kp, e) = dummy;
  1121. EEPROM_READ(PID_PARAM(Ki, e));
  1122. EEPROM_READ(PID_PARAM(Kd, e));
  1123. #if ENABLED(PID_EXTRUSION_SCALING)
  1124. EEPROM_READ(PID_PARAM(Kc, e));
  1125. #else
  1126. EEPROM_READ(dummy);
  1127. #endif
  1128. }
  1129. else
  1130. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  1131. }
  1132. #else // !PIDTEMP
  1133. // 4 x 4 = 16 slots for PID parameters
  1134. for (uint8_t q = HOTENDS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  1135. #endif // !PIDTEMP
  1136. //
  1137. // PID Extrusion Scaling
  1138. //
  1139. _FIELD_TEST(lpq_len);
  1140. #if DISABLED(PID_EXTRUSION_SCALING)
  1141. int16_t LPQ_LEN;
  1142. #endif
  1143. EEPROM_READ(LPQ_LEN);
  1144. //
  1145. // Heated Bed PID
  1146. //
  1147. #if ENABLED(PIDTEMPBED)
  1148. EEPROM_READ(dummy); // bedKp
  1149. if (dummy != DUMMY_PID_VALUE) {
  1150. if (!validating) thermalManager.bedKp = dummy;
  1151. EEPROM_READ(thermalManager.bedKi);
  1152. EEPROM_READ(thermalManager.bedKd);
  1153. }
  1154. #else
  1155. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  1156. #endif
  1157. //
  1158. // LCD Contrast
  1159. //
  1160. _FIELD_TEST(lcd_contrast);
  1161. #if !HAS_LCD_CONTRAST
  1162. int16_t lcd_contrast;
  1163. #endif
  1164. EEPROM_READ(lcd_contrast);
  1165. //
  1166. // Firmware Retraction
  1167. //
  1168. #if ENABLED(FWRETRACT)
  1169. EEPROM_READ(fwretract.autoretract_enabled);
  1170. EEPROM_READ(fwretract.retract_length);
  1171. EEPROM_READ(fwretract.retract_feedrate_mm_s);
  1172. EEPROM_READ(fwretract.retract_zlift);
  1173. EEPROM_READ(fwretract.retract_recover_length);
  1174. EEPROM_READ(fwretract.retract_recover_feedrate_mm_s);
  1175. EEPROM_READ(fwretract.swap_retract_length);
  1176. EEPROM_READ(fwretract.swap_retract_recover_length);
  1177. EEPROM_READ(fwretract.swap_retract_recover_feedrate_mm_s);
  1178. #else
  1179. EEPROM_READ(dummyb);
  1180. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  1181. #endif
  1182. //
  1183. // Volumetric & Filament Size
  1184. //
  1185. _FIELD_TEST(parser_volumetric_enabled);
  1186. #if DISABLED(NO_VOLUMETRICS)
  1187. EEPROM_READ(parser.volumetric_enabled);
  1188. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++) {
  1189. EEPROM_READ(dummy);
  1190. if (!validating) planner.filament_size[q] = dummy;
  1191. }
  1192. #else
  1193. EEPROM_READ(dummyb);
  1194. for (uint8_t q=EXTRUDERS; q--;) EEPROM_READ(dummy);
  1195. #endif
  1196. if (!validating) reset_stepper_drivers();
  1197. //
  1198. // TMC2130 Stepper Settings
  1199. //
  1200. _FIELD_TEST(tmc_stepper_current);
  1201. #if HAS_TRINAMIC
  1202. #define SET_CURR(Q) stepper##Q.setCurrent(currents[TMC_##Q] ? currents[TMC_##Q] : Q##_CURRENT, R_SENSE, HOLD_MULTIPLIER)
  1203. uint16_t currents[TMC_AXES];
  1204. EEPROM_READ(currents);
  1205. if (!validating) {
  1206. #if AXIS_IS_TMC(X)
  1207. SET_CURR(X);
  1208. #endif
  1209. #if AXIS_IS_TMC(Y)
  1210. SET_CURR(Y);
  1211. #endif
  1212. #if AXIS_IS_TMC(Z)
  1213. SET_CURR(Z);
  1214. #endif
  1215. #if AXIS_IS_TMC(X2)
  1216. SET_CURR(X2);
  1217. #endif
  1218. #if AXIS_IS_TMC(Y2)
  1219. SET_CURR(Y2);
  1220. #endif
  1221. #if AXIS_IS_TMC(Z2)
  1222. SET_CURR(Z2);
  1223. #endif
  1224. #if AXIS_IS_TMC(Z3)
  1225. SET_CURR(Z3);
  1226. #endif
  1227. #if AXIS_IS_TMC(E0)
  1228. SET_CURR(E0);
  1229. #endif
  1230. #if AXIS_IS_TMC(E1)
  1231. SET_CURR(E1);
  1232. #endif
  1233. #if AXIS_IS_TMC(E2)
  1234. SET_CURR(E2);
  1235. #endif
  1236. #if AXIS_IS_TMC(E3)
  1237. SET_CURR(E3);
  1238. #endif
  1239. #if AXIS_IS_TMC(E4)
  1240. SET_CURR(E4);
  1241. #endif
  1242. #if AXIS_IS_TMC(E5)
  1243. SET_CURR(E5);
  1244. #endif
  1245. }
  1246. #else
  1247. uint16_t val;
  1248. for (uint8_t q=TMC_AXES; q--;) EEPROM_READ(val);
  1249. #endif
  1250. #if ENABLED(HYBRID_THRESHOLD)
  1251. #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold[TMC_##Q], planner.axis_steps_per_mm[_AXIS(A)])
  1252. uint32_t tmc_hybrid_threshold[TMC_AXES];
  1253. EEPROM_READ(tmc_hybrid_threshold);
  1254. if (!validating) {
  1255. #if AXIS_HAS_STEALTHCHOP(X)
  1256. TMC_SET_PWMTHRS(X, X);
  1257. #endif
  1258. #if AXIS_HAS_STEALTHCHOP(Y)
  1259. TMC_SET_PWMTHRS(Y, Y);
  1260. #endif
  1261. #if AXIS_HAS_STEALTHCHOP(Z)
  1262. TMC_SET_PWMTHRS(Z, Z);
  1263. #endif
  1264. #if AXIS_HAS_STEALTHCHOP(X2)
  1265. TMC_SET_PWMTHRS(X, X2);
  1266. #endif
  1267. #if AXIS_HAS_STEALTHCHOP(Y2)
  1268. TMC_SET_PWMTHRS(Y, Y2);
  1269. #endif
  1270. #if AXIS_HAS_STEALTHCHOP(Z2)
  1271. TMC_SET_PWMTHRS(Z, Z2);
  1272. #endif
  1273. #if AXIS_HAS_STEALTHCHOP(Z3)
  1274. TMC_SET_PWMTHRS(Z, Z3);
  1275. #endif
  1276. #if AXIS_HAS_STEALTHCHOP(E0)
  1277. TMC_SET_PWMTHRS(E, E0);
  1278. #endif
  1279. #if AXIS_HAS_STEALTHCHOP(E1)
  1280. TMC_SET_PWMTHRS(E, E1);
  1281. #endif
  1282. #if AXIS_HAS_STEALTHCHOP(E2)
  1283. TMC_SET_PWMTHRS(E, E2);
  1284. #endif
  1285. #if AXIS_HAS_STEALTHCHOP(E3)
  1286. TMC_SET_PWMTHRS(E, E3);
  1287. #endif
  1288. #if AXIS_HAS_STEALTHCHOP(E4)
  1289. TMC_SET_PWMTHRS(E, E4);
  1290. #endif
  1291. #if AXIS_HAS_STEALTHCHOP(E5)
  1292. TMC_SET_PWMTHRS(E, E5);
  1293. #endif
  1294. }
  1295. #else
  1296. uint32_t thrs_val;
  1297. for (uint8_t q=TMC_AXES; q--;) EEPROM_READ(thrs_val);
  1298. #endif
  1299. /*
  1300. * TMC2130 Sensorless homing threshold.
  1301. * X and X2 use the same value
  1302. * Y and Y2 use the same value
  1303. * Z, Z2 and Z3 use the same value
  1304. */
  1305. int16_t tmc_sgt[XYZ];
  1306. EEPROM_READ(tmc_sgt);
  1307. #if ENABLED(SENSORLESS_HOMING)
  1308. if (!validating) {
  1309. #ifdef X_HOMING_SENSITIVITY
  1310. #if AXIS_HAS_STALLGUARD(X)
  1311. stepperX.sgt(tmc_sgt[0]);
  1312. #endif
  1313. #if AXIS_HAS_STALLGUARD(X2)
  1314. stepperX2.sgt(tmc_sgt[0]);
  1315. #endif
  1316. #endif
  1317. #ifdef Y_HOMING_SENSITIVITY
  1318. #if AXIS_HAS_STALLGUARD(Y)
  1319. stepperY.sgt(tmc_sgt[1]);
  1320. #endif
  1321. #if AXIS_HAS_STALLGUARD(Y2)
  1322. stepperY2.sgt(tmc_sgt[1]);
  1323. #endif
  1324. #endif
  1325. #ifdef Z_HOMING_SENSITIVITY
  1326. #if AXIS_HAS_STALLGUARD(Z)
  1327. stepperZ.sgt(tmc_sgt[2]);
  1328. #endif
  1329. #if AXIS_HAS_STALLGUARD(Z2)
  1330. stepperZ2.sgt(tmc_sgt[2]);
  1331. #endif
  1332. #if AXIS_HAS_STALLGUARD(Z3)
  1333. stepperZ3.sgt(tmc_sgt[2]);
  1334. #endif
  1335. #endif
  1336. }
  1337. #endif
  1338. //
  1339. // Linear Advance
  1340. //
  1341. _FIELD_TEST(planner_extruder_advance_K);
  1342. LOOP_L_N(i, EXTRUDERS) {
  1343. #if ENABLED(LIN_ADVANCE)
  1344. EEPROM_READ(planner.extruder_advance_K[i]);
  1345. #else
  1346. EEPROM_READ(dummy);
  1347. #endif
  1348. }
  1349. //
  1350. // Motor Current PWM
  1351. //
  1352. _FIELD_TEST(motor_current_setting);
  1353. #if HAS_MOTOR_CURRENT_PWM
  1354. for (uint8_t q = XYZ; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
  1355. #else
  1356. uint32_t dummyui32[XYZ];
  1357. EEPROM_READ(dummyui32);
  1358. #endif
  1359. //
  1360. // CNC Coordinate System
  1361. //
  1362. _FIELD_TEST(coordinate_system);
  1363. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1364. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1365. EEPROM_READ(gcode.coordinate_system); // 27 floats
  1366. #else
  1367. for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_READ(dummy);
  1368. #endif
  1369. //
  1370. // Skew correction factors
  1371. //
  1372. _FIELD_TEST(planner_xy_skew_factor);
  1373. #if ENABLED(SKEW_CORRECTION_GCODE)
  1374. EEPROM_READ(planner.xy_skew_factor);
  1375. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1376. EEPROM_READ(planner.xz_skew_factor);
  1377. EEPROM_READ(planner.yz_skew_factor);
  1378. #else
  1379. EEPROM_READ(dummy);
  1380. EEPROM_READ(dummy);
  1381. #endif
  1382. #else
  1383. for (uint8_t q = 3; q--;) EEPROM_READ(dummy);
  1384. #endif
  1385. //
  1386. // Advanced Pause filament load & unload lengths
  1387. //
  1388. _FIELD_TEST(filament_change_unload_length);
  1389. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1390. for (uint8_t q = 0; q < COUNT(filament_change_unload_length); q++) {
  1391. EEPROM_READ(dummy);
  1392. if (!validating && q < COUNT(filament_change_unload_length)) filament_change_unload_length[q] = dummy;
  1393. EEPROM_READ(dummy);
  1394. if (!validating && q < COUNT(filament_change_load_length)) filament_change_load_length[q] = dummy;
  1395. }
  1396. #else
  1397. for (uint8_t q = EXTRUDERS * 2; q--;) EEPROM_READ(dummy);
  1398. #endif
  1399. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1400. if (eeprom_error) {
  1401. #if ENABLED(EEPROM_CHITCHAT)
  1402. SERIAL_ECHO_START_P(port);
  1403. SERIAL_ECHOPAIR_P(port, "Index: ", int(eeprom_index - (EEPROM_OFFSET)));
  1404. SERIAL_ECHOLNPAIR_P(port, " Size: ", datasize());
  1405. #endif
  1406. }
  1407. else if (working_crc != stored_crc) {
  1408. eeprom_error = true;
  1409. #if ENABLED(EEPROM_CHITCHAT)
  1410. SERIAL_ERROR_START_P(port);
  1411. SERIAL_ERRORPGM_P(port, "EEPROM CRC mismatch - (stored) ");
  1412. SERIAL_ERROR_P(port, stored_crc);
  1413. SERIAL_ERRORPGM_P(port, " != ");
  1414. SERIAL_ERROR_P(port, working_crc);
  1415. SERIAL_ERRORLNPGM_P(port, " (calculated)!");
  1416. #endif
  1417. }
  1418. else if (!validating) {
  1419. #if ENABLED(EEPROM_CHITCHAT)
  1420. SERIAL_ECHO_START_P(port);
  1421. SERIAL_ECHO_P(port, version);
  1422. SERIAL_ECHOPAIR_P(port, " stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  1423. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)working_crc);
  1424. SERIAL_ECHOLNPGM_P(port, ")");
  1425. #endif
  1426. }
  1427. if (!validating && !eeprom_error) postprocess();
  1428. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1429. if (!validating) {
  1430. ubl.report_state();
  1431. if (!ubl.sanity_check()) {
  1432. SERIAL_EOL_P(port);
  1433. #if ENABLED(EEPROM_CHITCHAT)
  1434. ubl.echo_name();
  1435. SERIAL_ECHOLNPGM_P(port, " initialized.\n");
  1436. #endif
  1437. }
  1438. else {
  1439. eeprom_error = true;
  1440. #if ENABLED(EEPROM_CHITCHAT)
  1441. SERIAL_PROTOCOLPGM_P(port, "?Can't enable ");
  1442. ubl.echo_name();
  1443. SERIAL_PROTOCOLLNPGM_P(port, ".");
  1444. #endif
  1445. ubl.reset();
  1446. }
  1447. if (ubl.storage_slot >= 0) {
  1448. load_mesh(ubl.storage_slot);
  1449. #if ENABLED(EEPROM_CHITCHAT)
  1450. SERIAL_ECHOPAIR_P(port, "Mesh ", ubl.storage_slot);
  1451. SERIAL_ECHOLNPGM_P(port, " loaded from storage.");
  1452. #endif
  1453. }
  1454. else {
  1455. ubl.reset();
  1456. #if ENABLED(EEPROM_CHITCHAT)
  1457. SERIAL_ECHOLNPGM_P(port, "UBL System reset()");
  1458. #endif
  1459. }
  1460. }
  1461. #endif
  1462. }
  1463. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1464. if (!validating) report(PORTVAR_SOLO);
  1465. #endif
  1466. EEPROM_FINISH();
  1467. return !eeprom_error;
  1468. }
  1469. bool MarlinSettings::validate(PORTARG_SOLO) {
  1470. validating = true;
  1471. const bool success = _load(PORTVAR_SOLO);
  1472. validating = false;
  1473. return success;
  1474. }
  1475. bool MarlinSettings::load(PORTARG_SOLO) {
  1476. if (validate(PORTVAR_SOLO)) return _load(PORTVAR_SOLO);
  1477. reset();
  1478. return true;
  1479. }
  1480. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1481. #if ENABLED(EEPROM_CHITCHAT)
  1482. void ubl_invalid_slot(const int s) {
  1483. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  1484. SERIAL_PROTOCOL(s);
  1485. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  1486. }
  1487. #endif
  1488. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1489. // is a placeholder for the size of the MAT; the MAT will always
  1490. // live at the very end of the eeprom
  1491. uint16_t MarlinSettings::meshes_start_index() {
  1492. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1493. // or down a little bit without disrupting the mesh data
  1494. }
  1495. uint16_t MarlinSettings::calc_num_meshes() {
  1496. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1497. }
  1498. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1499. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1500. }
  1501. void MarlinSettings::store_mesh(const int8_t slot) {
  1502. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1503. const int16_t a = calc_num_meshes();
  1504. if (!WITHIN(slot, 0, a - 1)) {
  1505. #if ENABLED(EEPROM_CHITCHAT)
  1506. ubl_invalid_slot(a);
  1507. SERIAL_PROTOCOLPAIR("E2END=", persistentStore.capacity() - 1);
  1508. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  1509. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  1510. SERIAL_EOL();
  1511. #endif
  1512. return;
  1513. }
  1514. int pos = mesh_slot_offset(slot);
  1515. uint16_t crc = 0;
  1516. persistentStore.access_start();
  1517. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1518. persistentStore.access_finish();
  1519. if (status)
  1520. SERIAL_PROTOCOLPGM("?Unable to save mesh data.\n");
  1521. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1522. #if ENABLED(EEPROM_CHITCHAT)
  1523. if (!status)
  1524. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  1525. #endif
  1526. #else
  1527. // Other mesh types
  1528. #endif
  1529. }
  1530. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
  1531. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1532. const int16_t a = settings.calc_num_meshes();
  1533. if (!WITHIN(slot, 0, a - 1)) {
  1534. #if ENABLED(EEPROM_CHITCHAT)
  1535. ubl_invalid_slot(a);
  1536. #endif
  1537. return;
  1538. }
  1539. int pos = mesh_slot_offset(slot);
  1540. uint16_t crc = 0;
  1541. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1542. persistentStore.access_start();
  1543. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1544. persistentStore.access_finish();
  1545. if (status)
  1546. SERIAL_PROTOCOLPGM("?Unable to load mesh data.\n");
  1547. #if ENABLED(EEPROM_CHITCHAT)
  1548. else
  1549. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1550. #endif
  1551. EEPROM_FINISH();
  1552. #else
  1553. // Other mesh types
  1554. #endif
  1555. }
  1556. //void MarlinSettings::delete_mesh() { return; }
  1557. //void MarlinSettings::defrag_meshes() { return; }
  1558. #endif // AUTO_BED_LEVELING_UBL
  1559. #else // !EEPROM_SETTINGS
  1560. bool MarlinSettings::save(PORTARG_SOLO) {
  1561. #if ENABLED(EEPROM_CHITCHAT)
  1562. SERIAL_ERROR_START_P(port);
  1563. SERIAL_ERRORLNPGM_P(port, "EEPROM disabled");
  1564. #endif
  1565. return false;
  1566. }
  1567. #endif // !EEPROM_SETTINGS
  1568. /**
  1569. * M502 - Reset Configuration
  1570. */
  1571. void MarlinSettings::reset(PORTARG_SOLO) {
  1572. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1573. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1574. LOOP_XYZE_N(i) {
  1575. planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
  1576. planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
  1577. planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
  1578. }
  1579. planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1580. planner.acceleration = DEFAULT_ACCELERATION;
  1581. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1582. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1583. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1584. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1585. #if ENABLED(JUNCTION_DEVIATION)
  1586. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  1587. #endif
  1588. #if HAS_CLASSIC_JERK
  1589. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1590. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1591. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1592. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1593. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1594. #endif
  1595. #endif
  1596. #if HAS_HOME_OFFSET
  1597. ZERO(home_offset);
  1598. #endif
  1599. #if HAS_HOTEND_OFFSET
  1600. constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
  1601. static_assert(
  1602. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1603. "Offsets for the first hotend must be 0.0."
  1604. );
  1605. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1606. #if ENABLED(DUAL_X_CARRIAGE)
  1607. hotend_offset[X_AXIS][1] = MAX(X2_HOME_POS, X2_MAX_POS);
  1608. #endif
  1609. #endif
  1610. //
  1611. // Global Leveling
  1612. //
  1613. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1614. new_z_fade_height = 0.0;
  1615. #endif
  1616. #if HAS_LEVELING
  1617. reset_bed_level();
  1618. #endif
  1619. #if HAS_BED_PROBE
  1620. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1621. #endif
  1622. //
  1623. // Servo Angles
  1624. //
  1625. #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
  1626. #if ENABLED(SWITCHING_EXTRUDER)
  1627. #if EXTRUDERS > 3
  1628. #define REQ_ANGLES 4
  1629. #else
  1630. #define REQ_ANGLES 2
  1631. #endif
  1632. constexpr uint16_t extruder_angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  1633. static_assert(COUNT(extruder_angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  1634. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][0] = extruder_angles[0];
  1635. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][1] = extruder_angles[1];
  1636. #if EXTRUDERS > 3
  1637. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][0] = extruder_angles[2];
  1638. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][1] = extruder_angles[3];
  1639. #endif
  1640. #elif ENABLED(SWITCHING_NOZZLE)
  1641. constexpr uint16_t nozzle_angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  1642. servo_angles[SWITCHING_NOZZLE_SERVO_NR][0] = nozzle_angles[0];
  1643. servo_angles[SWITCHING_NOZZLE_SERVO_NR][1] = nozzle_angles[1];
  1644. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  1645. constexpr uint16_t z_probe_angles[2] = Z_SERVO_ANGLES;
  1646. servo_angles[Z_PROBE_SERVO_NR][0] = z_probe_angles[0];
  1647. servo_angles[Z_PROBE_SERVO_NR][1] = z_probe_angles[1];
  1648. #endif
  1649. #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
  1650. #if ENABLED(DELTA)
  1651. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  1652. dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1653. delta_height = DELTA_HEIGHT;
  1654. COPY(delta_endstop_adj, adj);
  1655. delta_radius = DELTA_RADIUS;
  1656. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1657. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1658. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1659. COPY(delta_tower_angle_trim, dta);
  1660. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1661. #if ENABLED(X_DUAL_ENDSTOPS)
  1662. endstops.x2_endstop_adj = (
  1663. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1664. X_DUAL_ENDSTOPS_ADJUSTMENT
  1665. #else
  1666. 0
  1667. #endif
  1668. );
  1669. #endif
  1670. #if ENABLED(Y_DUAL_ENDSTOPS)
  1671. endstops.y2_endstop_adj = (
  1672. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1673. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1674. #else
  1675. 0
  1676. #endif
  1677. );
  1678. #endif
  1679. #if ENABLED(Z_DUAL_ENDSTOPS)
  1680. endstops.z2_endstop_adj = (
  1681. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1682. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1683. #else
  1684. 0
  1685. #endif
  1686. );
  1687. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  1688. endstops.z2_endstop_adj = (
  1689. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1690. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1691. #else
  1692. 0
  1693. #endif
  1694. );
  1695. endstops.z3_endstop_adj = (
  1696. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1697. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1698. #else
  1699. 0
  1700. #endif
  1701. );
  1702. #endif
  1703. #endif
  1704. #if ENABLED(ULTIPANEL)
  1705. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1706. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1707. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1708. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1709. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1710. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1711. #endif
  1712. #if ENABLED(PIDTEMP)
  1713. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  1714. HOTEND_LOOP()
  1715. #endif
  1716. {
  1717. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  1718. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1719. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1720. #if ENABLED(PID_EXTRUSION_SCALING)
  1721. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1722. #endif
  1723. }
  1724. #if ENABLED(PID_EXTRUSION_SCALING)
  1725. thermalManager.lpq_len = 20; // default last-position-queue size
  1726. #endif
  1727. #endif // PIDTEMP
  1728. #if ENABLED(PIDTEMPBED)
  1729. thermalManager.bedKp = DEFAULT_bedKp;
  1730. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  1731. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  1732. #endif
  1733. #if HAS_LCD_CONTRAST
  1734. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1735. #endif
  1736. #if ENABLED(FWRETRACT)
  1737. fwretract.reset();
  1738. #endif
  1739. #if DISABLED(NO_VOLUMETRICS)
  1740. parser.volumetric_enabled =
  1741. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1742. true
  1743. #else
  1744. false
  1745. #endif
  1746. ;
  1747. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1748. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1749. #endif
  1750. endstops.enable_globally(
  1751. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1752. true
  1753. #else
  1754. false
  1755. #endif
  1756. );
  1757. reset_stepper_drivers();
  1758. #if ENABLED(LIN_ADVANCE)
  1759. LOOP_L_N(i, EXTRUDERS) planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  1760. #endif
  1761. #if HAS_MOTOR_CURRENT_PWM
  1762. uint32_t tmp_motor_current_setting[XYZ] = PWM_MOTOR_CURRENT;
  1763. for (uint8_t q = XYZ; q--;)
  1764. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1765. #endif
  1766. #if ENABLED(SKEW_CORRECTION_GCODE)
  1767. planner.xy_skew_factor = XY_SKEW_FACTOR;
  1768. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1769. planner.xz_skew_factor = XZ_SKEW_FACTOR;
  1770. planner.yz_skew_factor = YZ_SKEW_FACTOR;
  1771. #endif
  1772. #endif
  1773. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1774. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  1775. filament_change_unload_length[e] = FILAMENT_CHANGE_UNLOAD_LENGTH;
  1776. filament_change_load_length[e] = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  1777. }
  1778. #endif
  1779. postprocess();
  1780. #if ENABLED(EEPROM_CHITCHAT)
  1781. SERIAL_ECHO_START_P(port);
  1782. SERIAL_ECHOLNPGM_P(port, "Hardcoded Default Settings Loaded");
  1783. #endif
  1784. }
  1785. #if DISABLED(DISABLE_M503)
  1786. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START_P(port); }while(0)
  1787. #if HAS_TRINAMIC
  1788. void say_M906(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M906"); }
  1789. #if ENABLED(HYBRID_THRESHOLD)
  1790. void say_M913(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M913"); }
  1791. #endif
  1792. #if ENABLED(SENSORLESS_HOMING)
  1793. void say_M914(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M914"); }
  1794. #endif
  1795. #endif
  1796. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1797. void say_M603(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M603 "); }
  1798. #endif
  1799. inline void say_units(
  1800. #if NUM_SERIAL > 1
  1801. const int8_t port,
  1802. #endif
  1803. const bool colon
  1804. ) {
  1805. serialprintPGM_P(port,
  1806. #if ENABLED(INCH_MODE_SUPPORT)
  1807. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  1808. #endif
  1809. PSTR(" (mm)")
  1810. );
  1811. if (colon) SERIAL_ECHOLNPGM_P(port, ":");
  1812. }
  1813. #if NUM_SERIAL > 1
  1814. #define SAY_UNITS_P(PORT, COLON) say_units(PORT, COLON)
  1815. #else
  1816. #define SAY_UNITS_P(PORT, COLON) say_units(COLON)
  1817. #endif
  1818. /**
  1819. * M503 - Report current settings in RAM
  1820. *
  1821. * Unless specifically disabled, M503 is available even without EEPROM
  1822. */
  1823. void MarlinSettings::report(const bool forReplay
  1824. #if NUM_SERIAL > 1
  1825. , const int8_t port/*=-1*/
  1826. #endif
  1827. ) {
  1828. /**
  1829. * Announce current units, in case inches are being displayed
  1830. */
  1831. CONFIG_ECHO_START;
  1832. #if ENABLED(INCH_MODE_SUPPORT)
  1833. #define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor)
  1834. #define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
  1835. SERIAL_ECHOPGM_P(port, " G2");
  1836. SERIAL_CHAR_P(port, parser.linear_unit_factor == 1.0 ? '1' : '0');
  1837. SERIAL_ECHOPGM_P(port, " ;");
  1838. SAY_UNITS_P(port, false);
  1839. #else
  1840. #define LINEAR_UNIT(N) (N)
  1841. #define VOLUMETRIC_UNIT(N) (N)
  1842. SERIAL_ECHOPGM_P(port, " G21 ; Units in mm");
  1843. SAY_UNITS_P(port, false);
  1844. #endif
  1845. SERIAL_EOL_P(port);
  1846. #if ENABLED(ULTIPANEL)
  1847. // Temperature units - for Ultipanel temperature options
  1848. CONFIG_ECHO_START;
  1849. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1850. #define TEMP_UNIT(N) parser.to_temp_units(N)
  1851. SERIAL_ECHOPGM_P(port, " M149 ");
  1852. SERIAL_CHAR_P(port, parser.temp_units_code());
  1853. SERIAL_ECHOPGM_P(port, " ; Units in ");
  1854. serialprintPGM_P(port, parser.temp_units_name());
  1855. #else
  1856. #define TEMP_UNIT(N) (N)
  1857. SERIAL_ECHOLNPGM_P(port, " M149 C ; Units in Celsius");
  1858. #endif
  1859. #endif
  1860. SERIAL_EOL_P(port);
  1861. #if DISABLED(NO_VOLUMETRICS)
  1862. /**
  1863. * Volumetric extrusion M200
  1864. */
  1865. if (!forReplay) {
  1866. CONFIG_ECHO_START;
  1867. SERIAL_ECHOPGM_P(port, "Filament settings:");
  1868. if (parser.volumetric_enabled)
  1869. SERIAL_EOL_P(port);
  1870. else
  1871. SERIAL_ECHOLNPGM_P(port, " Disabled");
  1872. }
  1873. CONFIG_ECHO_START;
  1874. SERIAL_ECHOPAIR_P(port, " M200 D", LINEAR_UNIT(planner.filament_size[0]));
  1875. SERIAL_EOL_P(port);
  1876. #if EXTRUDERS > 1
  1877. CONFIG_ECHO_START;
  1878. SERIAL_ECHOPAIR_P(port, " M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  1879. SERIAL_EOL_P(port);
  1880. #if EXTRUDERS > 2
  1881. CONFIG_ECHO_START;
  1882. SERIAL_ECHOPAIR_P(port, " M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  1883. SERIAL_EOL_P(port);
  1884. #if EXTRUDERS > 3
  1885. CONFIG_ECHO_START;
  1886. SERIAL_ECHOPAIR_P(port, " M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  1887. SERIAL_EOL_P(port);
  1888. #if EXTRUDERS > 4
  1889. CONFIG_ECHO_START;
  1890. SERIAL_ECHOPAIR_P(port, " M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  1891. SERIAL_EOL_P(port);
  1892. #if EXTRUDERS > 5
  1893. CONFIG_ECHO_START;
  1894. SERIAL_ECHOPAIR_P(port, " M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  1895. SERIAL_EOL_P(port);
  1896. #endif // EXTRUDERS > 5
  1897. #endif // EXTRUDERS > 4
  1898. #endif // EXTRUDERS > 3
  1899. #endif // EXTRUDERS > 2
  1900. #endif // EXTRUDERS > 1
  1901. if (!parser.volumetric_enabled) {
  1902. CONFIG_ECHO_START;
  1903. SERIAL_ECHOLNPGM_P(port, " M200 D0");
  1904. }
  1905. #endif // !NO_VOLUMETRICS
  1906. if (!forReplay) {
  1907. CONFIG_ECHO_START;
  1908. SERIAL_ECHOLNPGM_P(port, "Steps per unit:");
  1909. }
  1910. CONFIG_ECHO_START;
  1911. SERIAL_ECHOPAIR_P(port, " M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1912. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1913. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1914. #if DISABLED(DISTINCT_E_FACTORS)
  1915. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1916. #endif
  1917. SERIAL_EOL_P(port);
  1918. #if ENABLED(DISTINCT_E_FACTORS)
  1919. CONFIG_ECHO_START;
  1920. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1921. SERIAL_ECHOPAIR_P(port, " M92 T", (int)i);
  1922. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1923. }
  1924. #endif
  1925. if (!forReplay) {
  1926. CONFIG_ECHO_START;
  1927. SERIAL_ECHOLNPGM_P(port, "Maximum feedrates (units/s):");
  1928. }
  1929. CONFIG_ECHO_START;
  1930. SERIAL_ECHOPAIR_P(port, " M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1931. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1932. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1933. #if DISABLED(DISTINCT_E_FACTORS)
  1934. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1935. #endif
  1936. SERIAL_EOL_P(port);
  1937. #if ENABLED(DISTINCT_E_FACTORS)
  1938. CONFIG_ECHO_START;
  1939. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1940. SERIAL_ECHOPAIR_P(port, " M203 T", (int)i);
  1941. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1942. }
  1943. #endif
  1944. if (!forReplay) {
  1945. CONFIG_ECHO_START;
  1946. SERIAL_ECHOLNPGM_P(port, "Maximum Acceleration (units/s2):");
  1947. }
  1948. CONFIG_ECHO_START;
  1949. SERIAL_ECHOPAIR_P(port, " M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1950. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1951. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1952. #if DISABLED(DISTINCT_E_FACTORS)
  1953. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1954. #endif
  1955. SERIAL_EOL_P(port);
  1956. #if ENABLED(DISTINCT_E_FACTORS)
  1957. CONFIG_ECHO_START;
  1958. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1959. SERIAL_ECHOPAIR_P(port, " M201 T", (int)i);
  1960. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1961. }
  1962. #endif
  1963. if (!forReplay) {
  1964. CONFIG_ECHO_START;
  1965. SERIAL_ECHOLNPGM_P(port, "Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1966. }
  1967. CONFIG_ECHO_START;
  1968. SERIAL_ECHOPAIR_P(port, " M204 P", LINEAR_UNIT(planner.acceleration));
  1969. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(planner.retract_acceleration));
  1970. SERIAL_ECHOLNPAIR_P(port, " T", LINEAR_UNIT(planner.travel_acceleration));
  1971. if (!forReplay) {
  1972. CONFIG_ECHO_START;
  1973. SERIAL_ECHOPGM_P(port, "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  1974. #if ENABLED(JUNCTION_DEVIATION)
  1975. SERIAL_ECHOPGM_P(port, " J<junc_dev>");
  1976. #endif
  1977. #if HAS_CLASSIC_JERK
  1978. SERIAL_ECHOPGM_P(port, " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  1979. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1980. SERIAL_ECHOPGM_P(port, " E<max_e_jerk>");
  1981. #endif
  1982. #endif
  1983. SERIAL_EOL_P(port);
  1984. }
  1985. CONFIG_ECHO_START;
  1986. SERIAL_ECHOPAIR_P(port, " M205 B", LINEAR_UNIT(planner.min_segment_time_us));
  1987. SERIAL_ECHOPAIR_P(port, " S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1988. SERIAL_ECHOPAIR_P(port, " T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1989. #if ENABLED(JUNCTION_DEVIATION)
  1990. SERIAL_ECHOPAIR_P(port, " J", LINEAR_UNIT(planner.junction_deviation_mm));
  1991. #endif
  1992. #if HAS_CLASSIC_JERK
  1993. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1994. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1995. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1996. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1997. SERIAL_ECHOPAIR_P(port, " E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1998. #endif
  1999. #endif
  2000. SERIAL_EOL_P(port);
  2001. #if HAS_M206_COMMAND
  2002. if (!forReplay) {
  2003. CONFIG_ECHO_START;
  2004. SERIAL_ECHOLNPGM_P(port, "Home offset:");
  2005. }
  2006. CONFIG_ECHO_START;
  2007. SERIAL_ECHOPAIR_P(port, " M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  2008. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  2009. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  2010. #endif
  2011. #if HAS_HOTEND_OFFSET
  2012. if (!forReplay) {
  2013. CONFIG_ECHO_START;
  2014. SERIAL_ECHOLNPGM_P(port, "Hotend offsets:");
  2015. }
  2016. CONFIG_ECHO_START;
  2017. for (uint8_t e = 1; e < HOTENDS; e++) {
  2018. SERIAL_ECHOPAIR_P(port, " M218 T", (int)e);
  2019. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  2020. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  2021. SERIAL_ECHO_P(port, " Z");
  2022. SERIAL_ECHO_F_P(port, LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
  2023. SERIAL_EOL_P(port);
  2024. }
  2025. #endif
  2026. /**
  2027. * Bed Leveling
  2028. */
  2029. #if HAS_LEVELING
  2030. #if ENABLED(MESH_BED_LEVELING)
  2031. if (!forReplay) {
  2032. CONFIG_ECHO_START;
  2033. SERIAL_ECHOLNPGM_P(port, "Mesh Bed Leveling:");
  2034. }
  2035. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2036. if (!forReplay) {
  2037. CONFIG_ECHO_START;
  2038. ubl.echo_name();
  2039. SERIAL_ECHOLNPGM_P(port, ":");
  2040. }
  2041. #elif HAS_ABL
  2042. if (!forReplay) {
  2043. CONFIG_ECHO_START;
  2044. SERIAL_ECHOLNPGM_P(port, "Auto Bed Leveling:");
  2045. }
  2046. #endif
  2047. CONFIG_ECHO_START;
  2048. SERIAL_ECHOPAIR_P(port, " M420 S", planner.leveling_active ? 1 : 0);
  2049. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2050. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.z_fade_height));
  2051. #endif
  2052. SERIAL_EOL_P(port);
  2053. #if ENABLED(MESH_BED_LEVELING)
  2054. if (leveling_is_valid()) {
  2055. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2056. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2057. CONFIG_ECHO_START;
  2058. SERIAL_ECHOPAIR_P(port, " G29 S3 X", (int)px + 1);
  2059. SERIAL_ECHOPAIR_P(port, " Y", (int)py + 1);
  2060. SERIAL_ECHOPGM_P(port, " Z");
  2061. SERIAL_ECHO_F_P(port, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2062. SERIAL_EOL_P(port);
  2063. }
  2064. }
  2065. }
  2066. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2067. if (!forReplay) {
  2068. SERIAL_EOL_P(port);
  2069. ubl.report_state();
  2070. SERIAL_ECHOLNPAIR_P(port, "\nActive Mesh Slot: ", ubl.storage_slot);
  2071. SERIAL_ECHOPAIR_P(port, "EEPROM can hold ", calc_num_meshes());
  2072. SERIAL_ECHOLNPGM_P(port, " meshes.\n");
  2073. }
  2074. // ubl.report_current_mesh(PORTVAR_SOLO); // This is too verbose for large mesh's. A better (more terse)
  2075. // solution needs to be found.
  2076. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2077. if (leveling_is_valid()) {
  2078. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2079. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2080. CONFIG_ECHO_START;
  2081. SERIAL_ECHOPAIR_P(port, " G29 W I", (int)px);
  2082. SERIAL_ECHOPAIR_P(port, " J", (int)py);
  2083. SERIAL_ECHOPGM_P(port, " Z");
  2084. SERIAL_ECHO_F_P(port, LINEAR_UNIT(z_values[px][py]), 5);
  2085. SERIAL_EOL_P(port);
  2086. }
  2087. }
  2088. }
  2089. #endif
  2090. #endif // HAS_LEVELING
  2091. #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
  2092. if (!forReplay) {
  2093. CONFIG_ECHO_START;
  2094. SERIAL_ECHOLNPGM_P(port, "Servo Angles:");
  2095. }
  2096. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2097. switch (i) {
  2098. #if ENABLED(SWITCHING_EXTRUDER)
  2099. case SWITCHING_EXTRUDER_SERVO_NR:
  2100. #if EXTRUDERS > 3
  2101. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2102. #endif
  2103. #elif ENABLED(SWITCHING_NOZZLE)
  2104. case SWITCHING_NOZZLE_SERVO_NR:
  2105. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  2106. case Z_PROBE_SERVO_NR:
  2107. #endif
  2108. CONFIG_ECHO_START;
  2109. SERIAL_ECHOPAIR_P(port, " M281 P", int(i));
  2110. SERIAL_ECHOPAIR_P(port, " L", servo_angles[i][0]);
  2111. SERIAL_ECHOPAIR_P(port, " U", servo_angles[i][1]);
  2112. SERIAL_EOL_P(port);
  2113. default: break;
  2114. }
  2115. }
  2116. #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
  2117. #if ENABLED(DELTA)
  2118. if (!forReplay) {
  2119. CONFIG_ECHO_START;
  2120. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  2121. }
  2122. CONFIG_ECHO_START;
  2123. SERIAL_ECHOPAIR_P(port, " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  2124. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  2125. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  2126. if (!forReplay) {
  2127. CONFIG_ECHO_START;
  2128. SERIAL_ECHOLNPGM_P(port, "Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  2129. }
  2130. CONFIG_ECHO_START;
  2131. SERIAL_ECHOPAIR_P(port, " M665 L", LINEAR_UNIT(delta_diagonal_rod));
  2132. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(delta_radius));
  2133. SERIAL_ECHOPAIR_P(port, " H", LINEAR_UNIT(delta_height));
  2134. SERIAL_ECHOPAIR_P(port, " S", delta_segments_per_second);
  2135. SERIAL_ECHOPAIR_P(port, " B", LINEAR_UNIT(delta_calibration_radius));
  2136. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  2137. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  2138. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  2139. SERIAL_EOL_P(port);
  2140. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2141. if (!forReplay) {
  2142. CONFIG_ECHO_START;
  2143. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  2144. }
  2145. CONFIG_ECHO_START;
  2146. SERIAL_ECHOPGM_P(port, " M666");
  2147. #if ENABLED(X_DUAL_ENDSTOPS)
  2148. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(endstops.x2_endstop_adj));
  2149. #endif
  2150. #if ENABLED(Y_DUAL_ENDSTOPS)
  2151. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(endstops.y2_endstop_adj));
  2152. #endif
  2153. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2154. SERIAL_ECHOLNPAIR_P(port, "S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2155. CONFIG_ECHO_START;
  2156. SERIAL_ECHOPAIR_P(port, " M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2157. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2158. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2159. #endif
  2160. SERIAL_EOL_P(port);
  2161. #endif // [XYZ]_DUAL_ENDSTOPS
  2162. #if ENABLED(ULTIPANEL)
  2163. if (!forReplay) {
  2164. CONFIG_ECHO_START;
  2165. SERIAL_ECHOLNPGM_P(port, "Material heatup parameters:");
  2166. }
  2167. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  2168. CONFIG_ECHO_START;
  2169. SERIAL_ECHOPAIR_P(port, " M145 S", (int)i);
  2170. SERIAL_ECHOPAIR_P(port, " H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  2171. SERIAL_ECHOPAIR_P(port, " B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  2172. SERIAL_ECHOLNPAIR_P(port, " F", lcd_preheat_fan_speed[i]);
  2173. }
  2174. #endif // ULTIPANEL
  2175. #if HAS_PID_HEATING
  2176. if (!forReplay) {
  2177. CONFIG_ECHO_START;
  2178. SERIAL_ECHOLNPGM_P(port, "PID settings:");
  2179. }
  2180. #if ENABLED(PIDTEMP)
  2181. #if HOTENDS > 1
  2182. if (forReplay) {
  2183. HOTEND_LOOP() {
  2184. CONFIG_ECHO_START;
  2185. SERIAL_ECHOPAIR_P(port, " M301 E", e);
  2186. SERIAL_ECHOPAIR_P(port, " P", PID_PARAM(Kp, e));
  2187. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, e)));
  2188. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, e)));
  2189. #if ENABLED(PID_EXTRUSION_SCALING)
  2190. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, e));
  2191. if (e == 0) SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2192. #endif
  2193. SERIAL_EOL_P(port);
  2194. }
  2195. }
  2196. else
  2197. #endif // HOTENDS > 1
  2198. // !forReplay || HOTENDS == 1
  2199. {
  2200. CONFIG_ECHO_START;
  2201. SERIAL_ECHOPAIR_P(port, " M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  2202. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, 0)));
  2203. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, 0)));
  2204. #if ENABLED(PID_EXTRUSION_SCALING)
  2205. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, 0));
  2206. SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2207. #endif
  2208. SERIAL_EOL_P(port);
  2209. }
  2210. #endif // PIDTEMP
  2211. #if ENABLED(PIDTEMPBED)
  2212. CONFIG_ECHO_START;
  2213. SERIAL_ECHOPAIR_P(port, " M304 P", thermalManager.bedKp);
  2214. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(thermalManager.bedKi));
  2215. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(thermalManager.bedKd));
  2216. SERIAL_EOL_P(port);
  2217. #endif
  2218. #endif // PIDTEMP || PIDTEMPBED
  2219. #if HAS_LCD_CONTRAST
  2220. if (!forReplay) {
  2221. CONFIG_ECHO_START;
  2222. SERIAL_ECHOLNPGM_P(port, "LCD Contrast:");
  2223. }
  2224. CONFIG_ECHO_START;
  2225. SERIAL_ECHOLNPAIR_P(port, " M250 C", lcd_contrast);
  2226. #endif
  2227. #if ENABLED(FWRETRACT)
  2228. if (!forReplay) {
  2229. CONFIG_ECHO_START;
  2230. SERIAL_ECHOLNPGM_P(port, "Retract: S<length> F<units/m> Z<lift>");
  2231. }
  2232. CONFIG_ECHO_START;
  2233. SERIAL_ECHOPAIR_P(port, " M207 S", LINEAR_UNIT(fwretract.retract_length));
  2234. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.swap_retract_length));
  2235. SERIAL_ECHOPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_feedrate_mm_s)));
  2236. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(fwretract.retract_zlift));
  2237. if (!forReplay) {
  2238. CONFIG_ECHO_START;
  2239. SERIAL_ECHOLNPGM_P(port, "Recover: S<length> F<units/m>");
  2240. }
  2241. CONFIG_ECHO_START;
  2242. SERIAL_ECHOPAIR_P(port, " M208 S", LINEAR_UNIT(fwretract.retract_recover_length));
  2243. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.swap_retract_recover_length));
  2244. SERIAL_ECHOLNPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_recover_feedrate_mm_s)));
  2245. if (!forReplay) {
  2246. CONFIG_ECHO_START;
  2247. SERIAL_ECHOLNPGM_P(port, "Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2248. }
  2249. CONFIG_ECHO_START;
  2250. SERIAL_ECHOLNPAIR_P(port, " M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2251. #endif // FWRETRACT
  2252. /**
  2253. * Probe Offset
  2254. */
  2255. #if HAS_BED_PROBE
  2256. if (!forReplay) {
  2257. CONFIG_ECHO_START;
  2258. SERIAL_ECHOPGM_P(port, "Z-Probe Offset (mm):");
  2259. SAY_UNITS_P(port, true);
  2260. }
  2261. CONFIG_ECHO_START;
  2262. SERIAL_ECHOLNPAIR_P(port, " M851 Z", LINEAR_UNIT(zprobe_zoffset));
  2263. #endif
  2264. /**
  2265. * Bed Skew Correction
  2266. */
  2267. #if ENABLED(SKEW_CORRECTION_GCODE)
  2268. if (!forReplay) {
  2269. CONFIG_ECHO_START;
  2270. SERIAL_ECHOLNPGM_P(port, "Skew Factor: ");
  2271. }
  2272. CONFIG_ECHO_START;
  2273. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2274. SERIAL_ECHOPGM_P(port, " M852 I");
  2275. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xy_skew_factor), 6);
  2276. SERIAL_ECHOPGM_P(port, " J");
  2277. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xz_skew_factor), 6);
  2278. SERIAL_ECHOPGM_P(port, " K");
  2279. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.yz_skew_factor), 6);
  2280. SERIAL_EOL_P(port);
  2281. #else
  2282. SERIAL_ECHOPGM_P(port, " M852 S");
  2283. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xy_skew_factor), 6);
  2284. SERIAL_EOL_P(port);
  2285. #endif
  2286. #endif
  2287. #if HAS_TRINAMIC
  2288. /**
  2289. * TMC2130 / TMC2208 stepper driver current
  2290. */
  2291. if (!forReplay) {
  2292. CONFIG_ECHO_START;
  2293. SERIAL_ECHOLNPGM_P(port, "Stepper driver current:");
  2294. }
  2295. CONFIG_ECHO_START;
  2296. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2297. say_M906(PORTVAR_SOLO);
  2298. #endif
  2299. #if AXIS_IS_TMC(X)
  2300. SERIAL_ECHOPAIR_P(port, " X", stepperX.getCurrent());
  2301. #endif
  2302. #if AXIS_IS_TMC(Y)
  2303. SERIAL_ECHOPAIR_P(port, " Y", stepperY.getCurrent());
  2304. #endif
  2305. #if AXIS_IS_TMC(Z)
  2306. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.getCurrent());
  2307. #endif
  2308. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2309. SERIAL_EOL_P(port);
  2310. #endif
  2311. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2312. say_M906(PORTVAR_SOLO);
  2313. SERIAL_ECHOPGM_P(port, " I1");
  2314. #endif
  2315. #if AXIS_IS_TMC(X2)
  2316. SERIAL_ECHOPAIR_P(port, " X", stepperX2.getCurrent());
  2317. #endif
  2318. #if AXIS_IS_TMC(Y2)
  2319. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.getCurrent());
  2320. #endif
  2321. #if AXIS_IS_TMC(Z2)
  2322. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.getCurrent());
  2323. #endif
  2324. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2325. SERIAL_EOL_P(port);
  2326. #endif
  2327. #if AXIS_IS_TMC(Z3)
  2328. say_M906(PORTVAR_SOLO);
  2329. SERIAL_ECHOLNPAIR_P(port, " I2 Z", stepperZ3.getCurrent());
  2330. #endif
  2331. #if AXIS_IS_TMC(E0)
  2332. say_M906(PORTVAR_SOLO);
  2333. SERIAL_ECHOLNPAIR_P(port, " T0 E", stepperE0.getCurrent());
  2334. #endif
  2335. #if AXIS_IS_TMC(E1)
  2336. say_M906(PORTVAR_SOLO);
  2337. SERIAL_ECHOLNPAIR_P(port, " T1 E", stepperE1.getCurrent());
  2338. #endif
  2339. #if AXIS_IS_TMC(E2)
  2340. say_M906(PORTVAR_SOLO);
  2341. SERIAL_ECHOLNPAIR_P(port, " T2 E", stepperE2.getCurrent());
  2342. #endif
  2343. #if AXIS_IS_TMC(E3)
  2344. say_M906(PORTVAR_SOLO);
  2345. SERIAL_ECHOLNPAIR_P(port, " T3 E", stepperE3.getCurrent());
  2346. #endif
  2347. #if AXIS_IS_TMC(E4)
  2348. say_M906(PORTVAR_SOLO);
  2349. SERIAL_ECHOLNPAIR_P(port, " T4 E", stepperE4.getCurrent());
  2350. #endif
  2351. #if AXIS_IS_TMC(E5)
  2352. say_M906(PORTVAR_SOLO);
  2353. SERIAL_ECHOLNPAIR_P(port, " T5 E", stepperE5.getCurrent());
  2354. #endif
  2355. SERIAL_EOL_P(port);
  2356. /**
  2357. * TMC2130 / TMC2208 / TRAMS Hybrid Threshold
  2358. */
  2359. #if ENABLED(HYBRID_THRESHOLD)
  2360. if (!forReplay) {
  2361. CONFIG_ECHO_START;
  2362. SERIAL_ECHOLNPGM_P(port, "Hybrid Threshold:");
  2363. }
  2364. CONFIG_ECHO_START;
  2365. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2366. say_M913(PORTVAR_SOLO);
  2367. #endif
  2368. #if AXIS_IS_TMC(X)
  2369. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X));
  2370. #endif
  2371. #if AXIS_IS_TMC(Y)
  2372. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y));
  2373. #endif
  2374. #if AXIS_IS_TMC(Z)
  2375. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z));
  2376. #endif
  2377. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2378. SERIAL_EOL_P(port);
  2379. #endif
  2380. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2381. say_M913(PORTVAR_SOLO);
  2382. SERIAL_ECHOPGM_P(port, " I1");
  2383. #endif
  2384. #if AXIS_IS_TMC(X2)
  2385. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X2));
  2386. #endif
  2387. #if AXIS_IS_TMC(Y2)
  2388. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y2));
  2389. #endif
  2390. #if AXIS_IS_TMC(Z2)
  2391. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z2));
  2392. #endif
  2393. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2394. SERIAL_EOL_P(port);
  2395. #endif
  2396. #if AXIS_IS_TMC(Z3)
  2397. say_M913(PORTVAR_SOLO);
  2398. SERIAL_ECHOPGM_P(port, " I2");
  2399. SERIAL_ECHOLNPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z3));
  2400. #endif
  2401. #if AXIS_IS_TMC(E0)
  2402. say_M913(PORTVAR_SOLO);
  2403. SERIAL_ECHOLNPAIR_P(port, " T0 E", TMC_GET_PWMTHRS(E, E0));
  2404. #endif
  2405. #if AXIS_IS_TMC(E1)
  2406. say_M913(PORTVAR_SOLO);
  2407. SERIAL_ECHOLNPAIR_P(port, " T1 E", TMC_GET_PWMTHRS(E, E1));
  2408. #endif
  2409. #if AXIS_IS_TMC(E2)
  2410. say_M913(PORTVAR_SOLO);
  2411. SERIAL_ECHOLNPAIR_P(port, " T2 E", TMC_GET_PWMTHRS(E, E2));
  2412. #endif
  2413. #if AXIS_IS_TMC(E3)
  2414. say_M913(PORTVAR_SOLO);
  2415. SERIAL_ECHOLNPAIR_P(port, " T3 E", TMC_GET_PWMTHRS(E, E3));
  2416. #endif
  2417. #if AXIS_IS_TMC(E4)
  2418. say_M913(PORTVAR_SOLO);
  2419. SERIAL_ECHOLNPAIR_P(port, " T4 E", TMC_GET_PWMTHRS(E, E4));
  2420. #endif
  2421. #if AXIS_IS_TMC(E5)
  2422. say_M913(PORTVAR_SOLO);
  2423. SERIAL_ECHOLNPAIR_P(port, " T5 E", TMC_GET_PWMTHRS(E, E5));
  2424. #endif
  2425. SERIAL_EOL_P(port);
  2426. #endif // HYBRID_THRESHOLD
  2427. /**
  2428. * TMC2130 Sensorless homing thresholds
  2429. */
  2430. #if ENABLED(SENSORLESS_HOMING)
  2431. if (!forReplay) {
  2432. CONFIG_ECHO_START;
  2433. SERIAL_ECHOLNPGM_P(port, "Sensorless homing threshold:");
  2434. }
  2435. CONFIG_ECHO_START;
  2436. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2437. say_M914(PORTVAR_SOLO);
  2438. #if X_SENSORLESS
  2439. SERIAL_ECHOPAIR_P(port, " X", stepperX.sgt());
  2440. #endif
  2441. #if Y_SENSORLESS
  2442. SERIAL_ECHOPAIR_P(port, " Y", stepperY.sgt());
  2443. #endif
  2444. #if Z_SENSORLESS
  2445. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.sgt());
  2446. #endif
  2447. SERIAL_EOL_P(port);
  2448. #endif
  2449. #define HAS_X2_SENSORLESS (defined(X_HOMING_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
  2450. #define HAS_Y2_SENSORLESS (defined(Y_HOMING_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
  2451. #define HAS_Z2_SENSORLESS (defined(Z_HOMING_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
  2452. #define HAS_Z3_SENSORLESS (defined(Z_HOMING_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
  2453. #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
  2454. say_M914(PORTVAR_SOLO);
  2455. SERIAL_ECHOPGM_P(port, " I1");
  2456. #if HAS_X2_SENSORLESS
  2457. SERIAL_ECHOPAIR_P(port, " X", stepperX2.sgt());
  2458. #endif
  2459. #if HAS_Y2_SENSORLESS
  2460. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.sgt());
  2461. #endif
  2462. #if HAS_Z2_SENSORLESS
  2463. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.sgt());
  2464. #endif
  2465. SERIAL_EOL_P(port);
  2466. #endif
  2467. #if HAS_Z3_SENSORLESS
  2468. say_M914(PORTVAR_SOLO);
  2469. SERIAL_ECHOPGM_P(port, " I2");
  2470. SERIAL_ECHOLNPAIR_P(port, " Z", stepperZ3.sgt());
  2471. #endif
  2472. #endif // SENSORLESS_HOMING
  2473. #endif // HAS_TRINAMIC
  2474. /**
  2475. * Linear Advance
  2476. */
  2477. #if ENABLED(LIN_ADVANCE)
  2478. if (!forReplay) {
  2479. CONFIG_ECHO_START;
  2480. SERIAL_ECHOLNPGM_P(port, "Linear Advance:");
  2481. }
  2482. CONFIG_ECHO_START;
  2483. #if EXTRUDERS < 2
  2484. SERIAL_ECHOLNPAIR_P(port, " M900 K", planner.extruder_advance_K[0]);
  2485. #else
  2486. LOOP_L_N(i, EXTRUDERS) {
  2487. SERIAL_ECHOPAIR_P(port, " M900 T", int(i));
  2488. SERIAL_ECHOLNPAIR_P(port, " K", planner.extruder_advance_K[i]);
  2489. }
  2490. #endif
  2491. #endif
  2492. #if HAS_MOTOR_CURRENT_PWM
  2493. CONFIG_ECHO_START;
  2494. if (!forReplay) {
  2495. SERIAL_ECHOLNPGM_P(port, "Stepper motor currents:");
  2496. CONFIG_ECHO_START;
  2497. }
  2498. SERIAL_ECHOPAIR_P(port, " M907 X", stepper.motor_current_setting[0]);
  2499. SERIAL_ECHOPAIR_P(port, " Z", stepper.motor_current_setting[1]);
  2500. SERIAL_ECHOPAIR_P(port, " E", stepper.motor_current_setting[2]);
  2501. SERIAL_EOL_P(port);
  2502. #endif
  2503. /**
  2504. * Advanced Pause filament load & unload lengths
  2505. */
  2506. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2507. if (!forReplay) {
  2508. CONFIG_ECHO_START;
  2509. SERIAL_ECHOLNPGM_P(port, "Filament load/unload lengths:");
  2510. }
  2511. CONFIG_ECHO_START;
  2512. #if EXTRUDERS == 1
  2513. say_M603(PORTVAR_SOLO);
  2514. SERIAL_ECHOPAIR_P(port, "L", LINEAR_UNIT(filament_change_load_length[0]));
  2515. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[0]));
  2516. #else
  2517. say_M603(PORTVAR_SOLO);
  2518. SERIAL_ECHOPAIR_P(port, "T0 L", LINEAR_UNIT(filament_change_load_length[0]));
  2519. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[0]));
  2520. CONFIG_ECHO_START;
  2521. say_M603(PORTVAR_SOLO);
  2522. SERIAL_ECHOPAIR_P(port, "T1 L", LINEAR_UNIT(filament_change_load_length[1]));
  2523. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[1]));
  2524. #if EXTRUDERS > 2
  2525. CONFIG_ECHO_START;
  2526. say_M603(PORTVAR_SOLO);
  2527. SERIAL_ECHOPAIR_P(port, "T2 L", LINEAR_UNIT(filament_change_load_length[2]));
  2528. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[2]));
  2529. #if EXTRUDERS > 3
  2530. CONFIG_ECHO_START;
  2531. say_M603(PORTVAR_SOLO);
  2532. SERIAL_ECHOPAIR_P(port, "T3 L", LINEAR_UNIT(filament_change_load_length[3]));
  2533. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[3]));
  2534. #if EXTRUDERS > 4
  2535. CONFIG_ECHO_START;
  2536. say_M603(PORTVAR_SOLO);
  2537. SERIAL_ECHOPAIR_P(port, "T4 L", LINEAR_UNIT(filament_change_load_length[4]));
  2538. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[4]));
  2539. #if EXTRUDERS > 5
  2540. CONFIG_ECHO_START;
  2541. say_M603(PORTVAR_SOLO);
  2542. SERIAL_ECHOPAIR_P(port, "T5 L", LINEAR_UNIT(filament_change_load_length[5]));
  2543. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[5]));
  2544. #endif // EXTRUDERS > 5
  2545. #endif // EXTRUDERS > 4
  2546. #endif // EXTRUDERS > 3
  2547. #endif // EXTRUDERS > 2
  2548. #endif // EXTRUDERS == 1
  2549. #endif // ADVANCED_PAUSE_FEATURE
  2550. }
  2551. #endif // !DISABLE_M503