My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

Marlin_main.cpp 123KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  106. // M112 - Emergency stop
  107. // M114 - Output current position to serial port
  108. // M115 - Capabilities string
  109. // M117 - display message
  110. // M119 - Output Endstop status to serial port
  111. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  112. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  113. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  114. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M140 - Set bed target temp
  116. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  117. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  118. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  119. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  120. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  121. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  122. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  123. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  124. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  125. // M206 - set additional homing offset
  126. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  127. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  128. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  129. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  130. // M220 S<factor in percent>- set speed factor override percentage
  131. // M221 S<factor in percent>- set extrude factor override percentage
  132. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  133. // M240 - Trigger a camera to take a photograph
  134. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  135. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  136. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  137. // M301 - Set PID parameters P I and D
  138. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  139. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  140. // M304 - Set bed PID parameters P I and D
  141. // M400 - Finish all moves
  142. // M401 - Lower z-probe if present
  143. // M402 - Raise z-probe if present
  144. // M500 - stores parameters in EEPROM
  145. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  146. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  147. // M503 - print the current settings (from memory not from EEPROM)
  148. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  149. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  150. // M665 - set delta configurations
  151. // M666 - set delta endstop adjustment
  152. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  153. // M907 - Set digital trimpot motor current using axis codes.
  154. // M908 - Control digital trimpot directly.
  155. // M350 - Set microstepping mode.
  156. // M351 - Toggle MS1 MS2 pins directly.
  157. // M928 - Start SD logging (M928 filename.g) - ended by M29
  158. // M999 - Restart after being stopped by error
  159. //Stepper Movement Variables
  160. //===========================================================================
  161. //=============================imported variables============================
  162. //===========================================================================
  163. //===========================================================================
  164. //=============================public variables=============================
  165. //===========================================================================
  166. #ifdef SDSUPPORT
  167. CardReader card;
  168. #endif
  169. float homing_feedrate[] = HOMING_FEEDRATE;
  170. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  171. int feedmultiply=100; //100->1 200->2
  172. int saved_feedmultiply;
  173. int extrudemultiply=100; //100->1 200->2
  174. int extruder_multiply[EXTRUDERS] = {100
  175. #if EXTRUDERS > 1
  176. , 100
  177. #if EXTRUDERS > 2
  178. , 100
  179. #endif
  180. #endif
  181. };
  182. float volumetric_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. float add_homeing[3]={0,0,0};
  192. #ifdef DELTA
  193. float endstop_adj[3]={0,0,0};
  194. #endif
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = {false, false, false};
  198. float zprobe_zoffset;
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #ifndef DUAL_X_CARRIAGE
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. #else
  204. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  205. #endif
  206. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  207. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  208. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  209. #endif
  210. };
  211. #endif
  212. uint8_t active_extruder = 0;
  213. int fanSpeed=0;
  214. #ifdef SERVO_ENDSTOPS
  215. int servo_endstops[] = SERVO_ENDSTOPS;
  216. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  217. #endif
  218. #ifdef BARICUDA
  219. int ValvePressure=0;
  220. int EtoPPressure=0;
  221. #endif
  222. #ifdef FWRETRACT
  223. bool autoretract_enabled=false;
  224. bool retracted[EXTRUDERS]={false
  225. #if EXTRUDERS > 1
  226. , false
  227. #if EXTRUDERS > 2
  228. , false
  229. #endif
  230. #endif
  231. };
  232. bool retracted_swap[EXTRUDERS]={false
  233. #if EXTRUDERS > 1
  234. , false
  235. #if EXTRUDERS > 2
  236. , false
  237. #endif
  238. #endif
  239. };
  240. float retract_length = RETRACT_LENGTH;
  241. float retract_length_swap = RETRACT_LENGTH_SWAP;
  242. float retract_feedrate = RETRACT_FEEDRATE;
  243. float retract_zlift = RETRACT_ZLIFT;
  244. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  245. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  246. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  247. #endif
  248. #ifdef ULTIPANEL
  249. #ifdef PS_DEFAULT_OFF
  250. bool powersupply = false;
  251. #else
  252. bool powersupply = true;
  253. #endif
  254. #endif
  255. #ifdef DELTA
  256. float delta[3] = {0.0, 0.0, 0.0};
  257. #define SIN_60 0.8660254037844386
  258. #define COS_60 0.5
  259. // these are the default values, can be overriden with M665
  260. float delta_radius= DELTA_RADIUS;
  261. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  262. float delta_tower1_y= -COS_60*delta_radius;
  263. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  264. float delta_tower2_y= -COS_60*delta_radius;
  265. float delta_tower3_x= 0.0; // back middle tower
  266. float delta_tower3_y= delta_radius;
  267. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  268. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  269. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  270. #endif
  271. bool cancel_heatup = false ;
  272. //===========================================================================
  273. //=============================Private Variables=============================
  274. //===========================================================================
  275. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  276. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  277. static float offset[3] = {0.0, 0.0, 0.0};
  278. static bool home_all_axis = true;
  279. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  280. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  281. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  282. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  283. static bool fromsd[BUFSIZE];
  284. static int bufindr = 0;
  285. static int bufindw = 0;
  286. static int buflen = 0;
  287. //static int i = 0;
  288. static char serial_char;
  289. static int serial_count = 0;
  290. static boolean comment_mode = false;
  291. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  292. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  293. //static float tt = 0;
  294. //static float bt = 0;
  295. //Inactivity shutdown variables
  296. static unsigned long previous_millis_cmd = 0;
  297. static unsigned long max_inactive_time = 0;
  298. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  299. unsigned long starttime=0;
  300. unsigned long stoptime=0;
  301. static uint8_t tmp_extruder;
  302. bool Stopped=false;
  303. #if NUM_SERVOS > 0
  304. Servo servos[NUM_SERVOS];
  305. #endif
  306. bool CooldownNoWait = true;
  307. bool target_direction;
  308. //Insert variables if CHDK is defined
  309. #ifdef CHDK
  310. unsigned long chdkHigh = 0;
  311. boolean chdkActive = false;
  312. #endif
  313. //===========================================================================
  314. //=============================Routines======================================
  315. //===========================================================================
  316. void get_arc_coordinates();
  317. bool setTargetedHotend(int code);
  318. void serial_echopair_P(const char *s_P, float v)
  319. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  320. void serial_echopair_P(const char *s_P, double v)
  321. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  322. void serial_echopair_P(const char *s_P, unsigned long v)
  323. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  324. extern "C"{
  325. extern unsigned int __bss_end;
  326. extern unsigned int __heap_start;
  327. extern void *__brkval;
  328. int freeMemory() {
  329. int free_memory;
  330. if((int)__brkval == 0)
  331. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  332. else
  333. free_memory = ((int)&free_memory) - ((int)__brkval);
  334. return free_memory;
  335. }
  336. }
  337. //adds an command to the main command buffer
  338. //thats really done in a non-safe way.
  339. //needs overworking someday
  340. void enquecommand(const char *cmd)
  341. {
  342. if(buflen < BUFSIZE)
  343. {
  344. //this is dangerous if a mixing of serial and this happens
  345. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  346. SERIAL_ECHO_START;
  347. SERIAL_ECHOPGM("enqueing \"");
  348. SERIAL_ECHO(cmdbuffer[bufindw]);
  349. SERIAL_ECHOLNPGM("\"");
  350. bufindw= (bufindw + 1)%BUFSIZE;
  351. buflen += 1;
  352. }
  353. }
  354. void enquecommand_P(const char *cmd)
  355. {
  356. if(buflen < BUFSIZE)
  357. {
  358. //this is dangerous if a mixing of serial and this happens
  359. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  360. SERIAL_ECHO_START;
  361. SERIAL_ECHOPGM("enqueing \"");
  362. SERIAL_ECHO(cmdbuffer[bufindw]);
  363. SERIAL_ECHOLNPGM("\"");
  364. bufindw= (bufindw + 1)%BUFSIZE;
  365. buflen += 1;
  366. }
  367. }
  368. void setup_killpin()
  369. {
  370. #if defined(KILL_PIN) && KILL_PIN > -1
  371. pinMode(KILL_PIN,INPUT);
  372. WRITE(KILL_PIN,HIGH);
  373. #endif
  374. }
  375. void setup_photpin()
  376. {
  377. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  378. SET_OUTPUT(PHOTOGRAPH_PIN);
  379. WRITE(PHOTOGRAPH_PIN, LOW);
  380. #endif
  381. }
  382. void setup_powerhold()
  383. {
  384. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  385. SET_OUTPUT(SUICIDE_PIN);
  386. WRITE(SUICIDE_PIN, HIGH);
  387. #endif
  388. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  389. SET_OUTPUT(PS_ON_PIN);
  390. #if defined(PS_DEFAULT_OFF)
  391. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  392. #else
  393. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  394. #endif
  395. #endif
  396. }
  397. void suicide()
  398. {
  399. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  400. SET_OUTPUT(SUICIDE_PIN);
  401. WRITE(SUICIDE_PIN, LOW);
  402. #endif
  403. }
  404. void servo_init()
  405. {
  406. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  407. servos[0].attach(SERVO0_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  410. servos[1].attach(SERVO1_PIN);
  411. #endif
  412. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  413. servos[2].attach(SERVO2_PIN);
  414. #endif
  415. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  416. servos[3].attach(SERVO3_PIN);
  417. #endif
  418. #if (NUM_SERVOS >= 5)
  419. #error "TODO: enter initalisation code for more servos"
  420. #endif
  421. // Set position of Servo Endstops that are defined
  422. #ifdef SERVO_ENDSTOPS
  423. for(int8_t i = 0; i < 3; i++)
  424. {
  425. if(servo_endstops[i] > -1) {
  426. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  427. }
  428. }
  429. #endif
  430. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  431. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  432. servos[servo_endstops[Z_AXIS]].detach();
  433. #endif
  434. }
  435. void setup()
  436. {
  437. setup_killpin();
  438. setup_powerhold();
  439. MYSERIAL.begin(BAUDRATE);
  440. SERIAL_PROTOCOLLNPGM("start");
  441. SERIAL_ECHO_START;
  442. // Check startup - does nothing if bootloader sets MCUSR to 0
  443. byte mcu = MCUSR;
  444. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  445. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  446. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  447. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  448. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  449. MCUSR=0;
  450. SERIAL_ECHOPGM(MSG_MARLIN);
  451. SERIAL_ECHOLNPGM(VERSION_STRING);
  452. #ifdef STRING_VERSION_CONFIG_H
  453. #ifdef STRING_CONFIG_H_AUTHOR
  454. SERIAL_ECHO_START;
  455. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  456. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  457. SERIAL_ECHOPGM(MSG_AUTHOR);
  458. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  459. SERIAL_ECHOPGM("Compiled: ");
  460. SERIAL_ECHOLNPGM(__DATE__);
  461. #endif
  462. #endif
  463. SERIAL_ECHO_START;
  464. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  465. SERIAL_ECHO(freeMemory());
  466. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  467. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  468. for(int8_t i = 0; i < BUFSIZE; i++)
  469. {
  470. fromsd[i] = false;
  471. }
  472. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  473. Config_RetrieveSettings();
  474. tp_init(); // Initialize temperature loop
  475. plan_init(); // Initialize planner;
  476. watchdog_init();
  477. st_init(); // Initialize stepper, this enables interrupts!
  478. setup_photpin();
  479. servo_init();
  480. lcd_init();
  481. _delay_ms(1000); // wait 1sec to display the splash screen
  482. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  483. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  484. #endif
  485. #ifdef DIGIPOT_I2C
  486. digipot_i2c_init();
  487. #endif
  488. }
  489. void loop()
  490. {
  491. if(buflen < (BUFSIZE-1))
  492. get_command();
  493. #ifdef SDSUPPORT
  494. card.checkautostart(false);
  495. #endif
  496. if(buflen)
  497. {
  498. #ifdef SDSUPPORT
  499. if(card.saving)
  500. {
  501. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  502. {
  503. card.write_command(cmdbuffer[bufindr]);
  504. if(card.logging)
  505. {
  506. process_commands();
  507. }
  508. else
  509. {
  510. SERIAL_PROTOCOLLNPGM(MSG_OK);
  511. }
  512. }
  513. else
  514. {
  515. card.closefile();
  516. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  517. }
  518. }
  519. else
  520. {
  521. process_commands();
  522. }
  523. #else
  524. process_commands();
  525. #endif //SDSUPPORT
  526. buflen = (buflen-1);
  527. bufindr = (bufindr + 1)%BUFSIZE;
  528. }
  529. //check heater every n milliseconds
  530. manage_heater();
  531. manage_inactivity();
  532. checkHitEndstops();
  533. lcd_update();
  534. }
  535. void get_command()
  536. {
  537. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  538. serial_char = MYSERIAL.read();
  539. if(serial_char == '\n' ||
  540. serial_char == '\r' ||
  541. (serial_char == ':' && comment_mode == false) ||
  542. serial_count >= (MAX_CMD_SIZE - 1) )
  543. {
  544. if(!serial_count) { //if empty line
  545. comment_mode = false; //for new command
  546. return;
  547. }
  548. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  549. if(!comment_mode){
  550. comment_mode = false; //for new command
  551. fromsd[bufindw] = false;
  552. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  553. {
  554. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  555. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  556. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  557. SERIAL_ERROR_START;
  558. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  559. SERIAL_ERRORLN(gcode_LastN);
  560. //Serial.println(gcode_N);
  561. FlushSerialRequestResend();
  562. serial_count = 0;
  563. return;
  564. }
  565. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  566. {
  567. byte checksum = 0;
  568. byte count = 0;
  569. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  570. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  571. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  572. SERIAL_ERROR_START;
  573. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  574. SERIAL_ERRORLN(gcode_LastN);
  575. FlushSerialRequestResend();
  576. serial_count = 0;
  577. return;
  578. }
  579. //if no errors, continue parsing
  580. }
  581. else
  582. {
  583. SERIAL_ERROR_START;
  584. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  585. SERIAL_ERRORLN(gcode_LastN);
  586. FlushSerialRequestResend();
  587. serial_count = 0;
  588. return;
  589. }
  590. gcode_LastN = gcode_N;
  591. //if no errors, continue parsing
  592. }
  593. else // if we don't receive 'N' but still see '*'
  594. {
  595. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  596. {
  597. SERIAL_ERROR_START;
  598. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  599. SERIAL_ERRORLN(gcode_LastN);
  600. serial_count = 0;
  601. return;
  602. }
  603. }
  604. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  605. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  606. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  607. case 0:
  608. case 1:
  609. case 2:
  610. case 3:
  611. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  612. #ifdef SDSUPPORT
  613. if(card.saving)
  614. break;
  615. #endif //SDSUPPORT
  616. SERIAL_PROTOCOLLNPGM(MSG_OK);
  617. }
  618. else {
  619. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  620. LCD_MESSAGEPGM(MSG_STOPPED);
  621. }
  622. break;
  623. default:
  624. break;
  625. }
  626. }
  627. //If command was e-stop process now
  628. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  629. kill();
  630. bufindw = (bufindw + 1)%BUFSIZE;
  631. buflen += 1;
  632. }
  633. serial_count = 0; //clear buffer
  634. }
  635. else
  636. {
  637. if(serial_char == ';') comment_mode = true;
  638. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  639. }
  640. }
  641. #ifdef SDSUPPORT
  642. if(!card.sdprinting || serial_count!=0){
  643. return;
  644. }
  645. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  646. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  647. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  648. static bool stop_buffering=false;
  649. if(buflen==0) stop_buffering=false;
  650. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  651. int16_t n=card.get();
  652. serial_char = (char)n;
  653. if(serial_char == '\n' ||
  654. serial_char == '\r' ||
  655. (serial_char == '#' && comment_mode == false) ||
  656. (serial_char == ':' && comment_mode == false) ||
  657. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  658. {
  659. if(card.eof()){
  660. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  661. stoptime=millis();
  662. char time[30];
  663. unsigned long t=(stoptime-starttime)/1000;
  664. int hours, minutes;
  665. minutes=(t/60)%60;
  666. hours=t/60/60;
  667. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  668. SERIAL_ECHO_START;
  669. SERIAL_ECHOLN(time);
  670. lcd_setstatus(time);
  671. card.printingHasFinished();
  672. card.checkautostart(true);
  673. }
  674. if(serial_char=='#')
  675. stop_buffering=true;
  676. if(!serial_count)
  677. {
  678. comment_mode = false; //for new command
  679. return; //if empty line
  680. }
  681. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  682. // if(!comment_mode){
  683. fromsd[bufindw] = true;
  684. buflen += 1;
  685. bufindw = (bufindw + 1)%BUFSIZE;
  686. // }
  687. comment_mode = false; //for new command
  688. serial_count = 0; //clear buffer
  689. }
  690. else
  691. {
  692. if(serial_char == ';') comment_mode = true;
  693. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  694. }
  695. }
  696. #endif //SDSUPPORT
  697. }
  698. float code_value()
  699. {
  700. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  701. }
  702. long code_value_long()
  703. {
  704. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  705. }
  706. bool code_seen(char code)
  707. {
  708. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  709. return (strchr_pointer != NULL); //Return True if a character was found
  710. }
  711. #define DEFINE_PGM_READ_ANY(type, reader) \
  712. static inline type pgm_read_any(const type *p) \
  713. { return pgm_read_##reader##_near(p); }
  714. DEFINE_PGM_READ_ANY(float, float);
  715. DEFINE_PGM_READ_ANY(signed char, byte);
  716. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  717. static const PROGMEM type array##_P[3] = \
  718. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  719. static inline type array(int axis) \
  720. { return pgm_read_any(&array##_P[axis]); }
  721. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  722. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  723. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  724. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  725. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  726. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  727. #ifdef DUAL_X_CARRIAGE
  728. #if EXTRUDERS == 1 || defined(COREXY) \
  729. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  730. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  731. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  732. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  733. #endif
  734. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  735. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  736. #endif
  737. #define DXC_FULL_CONTROL_MODE 0
  738. #define DXC_AUTO_PARK_MODE 1
  739. #define DXC_DUPLICATION_MODE 2
  740. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  741. static float x_home_pos(int extruder) {
  742. if (extruder == 0)
  743. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  744. else
  745. // In dual carriage mode the extruder offset provides an override of the
  746. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  747. // This allow soft recalibration of the second extruder offset position without firmware reflash
  748. // (through the M218 command).
  749. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  750. }
  751. static int x_home_dir(int extruder) {
  752. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  753. }
  754. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  755. static bool active_extruder_parked = false; // used in mode 1 & 2
  756. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  757. static unsigned long delayed_move_time = 0; // used in mode 1
  758. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  759. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  760. bool extruder_duplication_enabled = false; // used in mode 2
  761. #endif //DUAL_X_CARRIAGE
  762. static void axis_is_at_home(int axis) {
  763. #ifdef DUAL_X_CARRIAGE
  764. if (axis == X_AXIS) {
  765. if (active_extruder != 0) {
  766. current_position[X_AXIS] = x_home_pos(active_extruder);
  767. min_pos[X_AXIS] = X2_MIN_POS;
  768. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  769. return;
  770. }
  771. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  772. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  773. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  774. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  775. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  776. return;
  777. }
  778. }
  779. #endif
  780. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  781. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  782. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  783. }
  784. #ifdef ENABLE_AUTO_BED_LEVELING
  785. #ifdef AUTO_BED_LEVELING_GRID
  786. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  787. {
  788. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  789. planeNormal.debug("planeNormal");
  790. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  791. //bedLevel.debug("bedLevel");
  792. //plan_bed_level_matrix.debug("bed level before");
  793. //vector_3 uncorrected_position = plan_get_position_mm();
  794. //uncorrected_position.debug("position before");
  795. vector_3 corrected_position = plan_get_position();
  796. // corrected_position.debug("position after");
  797. current_position[X_AXIS] = corrected_position.x;
  798. current_position[Y_AXIS] = corrected_position.y;
  799. current_position[Z_AXIS] = corrected_position.z;
  800. // but the bed at 0 so we don't go below it.
  801. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  802. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  803. }
  804. #else // not AUTO_BED_LEVELING_GRID
  805. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  806. plan_bed_level_matrix.set_to_identity();
  807. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  808. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  809. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  810. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  811. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  812. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  813. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  814. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  815. vector_3 corrected_position = plan_get_position();
  816. current_position[X_AXIS] = corrected_position.x;
  817. current_position[Y_AXIS] = corrected_position.y;
  818. current_position[Z_AXIS] = corrected_position.z;
  819. // put the bed at 0 so we don't go below it.
  820. current_position[Z_AXIS] = zprobe_zoffset;
  821. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  822. }
  823. #endif // AUTO_BED_LEVELING_GRID
  824. static void run_z_probe() {
  825. plan_bed_level_matrix.set_to_identity();
  826. feedrate = homing_feedrate[Z_AXIS];
  827. // move down until you find the bed
  828. float zPosition = -10;
  829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  830. st_synchronize();
  831. // we have to let the planner know where we are right now as it is not where we said to go.
  832. zPosition = st_get_position_mm(Z_AXIS);
  833. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  834. // move up the retract distance
  835. zPosition += home_retract_mm(Z_AXIS);
  836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  837. st_synchronize();
  838. // move back down slowly to find bed
  839. feedrate = homing_feedrate[Z_AXIS]/4;
  840. zPosition -= home_retract_mm(Z_AXIS) * 2;
  841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  842. st_synchronize();
  843. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  844. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  845. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  846. }
  847. static void do_blocking_move_to(float x, float y, float z) {
  848. float oldFeedRate = feedrate;
  849. feedrate = XY_TRAVEL_SPEED;
  850. current_position[X_AXIS] = x;
  851. current_position[Y_AXIS] = y;
  852. current_position[Z_AXIS] = z;
  853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  854. st_synchronize();
  855. feedrate = oldFeedRate;
  856. }
  857. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  858. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  859. }
  860. static void setup_for_endstop_move() {
  861. saved_feedrate = feedrate;
  862. saved_feedmultiply = feedmultiply;
  863. feedmultiply = 100;
  864. previous_millis_cmd = millis();
  865. enable_endstops(true);
  866. }
  867. static void clean_up_after_endstop_move() {
  868. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  869. enable_endstops(false);
  870. #endif
  871. feedrate = saved_feedrate;
  872. feedmultiply = saved_feedmultiply;
  873. previous_millis_cmd = millis();
  874. }
  875. static void engage_z_probe() {
  876. // Engage Z Servo endstop if enabled
  877. #ifdef SERVO_ENDSTOPS
  878. if (servo_endstops[Z_AXIS] > -1) {
  879. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  880. servos[servo_endstops[Z_AXIS]].attach(0);
  881. #endif
  882. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  883. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  884. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  885. servos[servo_endstops[Z_AXIS]].detach();
  886. #endif
  887. }
  888. #endif
  889. }
  890. static void retract_z_probe() {
  891. // Retract Z Servo endstop if enabled
  892. #ifdef SERVO_ENDSTOPS
  893. if (servo_endstops[Z_AXIS] > -1) {
  894. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  895. servos[servo_endstops[Z_AXIS]].attach(0);
  896. #endif
  897. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  898. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  899. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  900. servos[servo_endstops[Z_AXIS]].detach();
  901. #endif
  902. }
  903. #endif
  904. }
  905. /// Probe bed height at position (x,y), returns the measured z value
  906. static float probe_pt(float x, float y, float z_before) {
  907. // move to right place
  908. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  909. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  910. engage_z_probe(); // Engage Z Servo endstop if available
  911. run_z_probe();
  912. float measured_z = current_position[Z_AXIS];
  913. retract_z_probe();
  914. SERIAL_PROTOCOLPGM(MSG_BED);
  915. SERIAL_PROTOCOLPGM(" x: ");
  916. SERIAL_PROTOCOL(x);
  917. SERIAL_PROTOCOLPGM(" y: ");
  918. SERIAL_PROTOCOL(y);
  919. SERIAL_PROTOCOLPGM(" z: ");
  920. SERIAL_PROTOCOL(measured_z);
  921. SERIAL_PROTOCOLPGM("\n");
  922. return measured_z;
  923. }
  924. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  925. static void homeaxis(int axis) {
  926. #define HOMEAXIS_DO(LETTER) \
  927. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  928. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  929. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  930. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  931. 0) {
  932. int axis_home_dir = home_dir(axis);
  933. #ifdef DUAL_X_CARRIAGE
  934. if (axis == X_AXIS)
  935. axis_home_dir = x_home_dir(active_extruder);
  936. #endif
  937. current_position[axis] = 0;
  938. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  939. // Engage Servo endstop if enabled
  940. #ifdef SERVO_ENDSTOPS
  941. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  942. if (axis==Z_AXIS) {
  943. engage_z_probe();
  944. }
  945. else
  946. #endif
  947. if (servo_endstops[axis] > -1) {
  948. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  949. }
  950. #endif
  951. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  952. feedrate = homing_feedrate[axis];
  953. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  954. st_synchronize();
  955. current_position[axis] = 0;
  956. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  957. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  958. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  959. st_synchronize();
  960. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  961. #ifdef DELTA
  962. feedrate = homing_feedrate[axis]/10;
  963. #else
  964. feedrate = homing_feedrate[axis]/2 ;
  965. #endif
  966. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  967. st_synchronize();
  968. #ifdef DELTA
  969. // retrace by the amount specified in endstop_adj
  970. if (endstop_adj[axis] * axis_home_dir < 0) {
  971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  972. destination[axis] = endstop_adj[axis];
  973. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  974. st_synchronize();
  975. }
  976. #endif
  977. axis_is_at_home(axis);
  978. destination[axis] = current_position[axis];
  979. feedrate = 0.0;
  980. endstops_hit_on_purpose();
  981. axis_known_position[axis] = true;
  982. // Retract Servo endstop if enabled
  983. #ifdef SERVO_ENDSTOPS
  984. if (servo_endstops[axis] > -1) {
  985. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  986. }
  987. #endif
  988. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  989. if (axis==Z_AXIS) retract_z_probe();
  990. #endif
  991. }
  992. }
  993. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  994. void refresh_cmd_timeout(void)
  995. {
  996. previous_millis_cmd = millis();
  997. }
  998. #ifdef FWRETRACT
  999. void retract(bool retracting, bool swapretract = false) {
  1000. if(retracting && !retracted[active_extruder]) {
  1001. destination[X_AXIS]=current_position[X_AXIS];
  1002. destination[Y_AXIS]=current_position[Y_AXIS];
  1003. destination[Z_AXIS]=current_position[Z_AXIS];
  1004. destination[E_AXIS]=current_position[E_AXIS];
  1005. if (swapretract) {
  1006. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1007. } else {
  1008. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1009. }
  1010. plan_set_e_position(current_position[E_AXIS]);
  1011. float oldFeedrate = feedrate;
  1012. feedrate=retract_feedrate*60;
  1013. retracted[active_extruder]=true;
  1014. prepare_move();
  1015. current_position[Z_AXIS]-=retract_zlift;
  1016. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1017. prepare_move();
  1018. feedrate = oldFeedrate;
  1019. } else if(!retracting && retracted[active_extruder]) {
  1020. destination[X_AXIS]=current_position[X_AXIS];
  1021. destination[Y_AXIS]=current_position[Y_AXIS];
  1022. destination[Z_AXIS]=current_position[Z_AXIS];
  1023. destination[E_AXIS]=current_position[E_AXIS];
  1024. current_position[Z_AXIS]+=retract_zlift;
  1025. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1026. //prepare_move();
  1027. if (swapretract) {
  1028. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1029. } else {
  1030. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1031. }
  1032. plan_set_e_position(current_position[E_AXIS]);
  1033. float oldFeedrate = feedrate;
  1034. feedrate=retract_recover_feedrate*60;
  1035. retracted[active_extruder]=false;
  1036. prepare_move();
  1037. feedrate = oldFeedrate;
  1038. }
  1039. } //retract
  1040. #endif //FWRETRACT
  1041. void process_commands()
  1042. {
  1043. unsigned long codenum; //throw away variable
  1044. char *starpos = NULL;
  1045. #ifdef ENABLE_AUTO_BED_LEVELING
  1046. float x_tmp, y_tmp, z_tmp, real_z;
  1047. #endif
  1048. if(code_seen('G'))
  1049. {
  1050. switch((int)code_value())
  1051. {
  1052. case 0: // G0 -> G1
  1053. case 1: // G1
  1054. if(Stopped == false) {
  1055. get_coordinates(); // For X Y Z E F
  1056. #ifdef FWRETRACT
  1057. if(autoretract_enabled)
  1058. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1059. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1060. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1061. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1062. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1063. retract(!retracted);
  1064. return;
  1065. }
  1066. }
  1067. #endif //FWRETRACT
  1068. prepare_move();
  1069. //ClearToSend();
  1070. return;
  1071. }
  1072. break;
  1073. case 2: // G2 - CW ARC
  1074. if(Stopped == false) {
  1075. get_arc_coordinates();
  1076. prepare_arc_move(true);
  1077. return;
  1078. }
  1079. break;
  1080. case 3: // G3 - CCW ARC
  1081. if(Stopped == false) {
  1082. get_arc_coordinates();
  1083. prepare_arc_move(false);
  1084. return;
  1085. }
  1086. break;
  1087. case 4: // G4 dwell
  1088. LCD_MESSAGEPGM(MSG_DWELL);
  1089. codenum = 0;
  1090. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1091. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1092. st_synchronize();
  1093. codenum += millis(); // keep track of when we started waiting
  1094. previous_millis_cmd = millis();
  1095. while(millis() < codenum ){
  1096. manage_heater();
  1097. manage_inactivity();
  1098. lcd_update();
  1099. }
  1100. break;
  1101. #ifdef FWRETRACT
  1102. case 10: // G10 retract
  1103. #if EXTRUDERS > 1
  1104. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1105. retract(true,retracted_swap[active_extruder]);
  1106. #else
  1107. retract(true);
  1108. #endif
  1109. break;
  1110. case 11: // G11 retract_recover
  1111. #if EXTRUDERS > 1
  1112. retract(false,retracted_swap[active_extruder]);
  1113. #else
  1114. retract(false);
  1115. #endif
  1116. break;
  1117. #endif //FWRETRACT
  1118. case 28: //G28 Home all Axis one at a time
  1119. #ifdef ENABLE_AUTO_BED_LEVELING
  1120. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1121. #endif //ENABLE_AUTO_BED_LEVELING
  1122. saved_feedrate = feedrate;
  1123. saved_feedmultiply = feedmultiply;
  1124. feedmultiply = 100;
  1125. previous_millis_cmd = millis();
  1126. enable_endstops(true);
  1127. for(int8_t i=0; i < NUM_AXIS; i++) {
  1128. destination[i] = current_position[i];
  1129. }
  1130. feedrate = 0.0;
  1131. #ifdef DELTA
  1132. // A delta can only safely home all axis at the same time
  1133. // all axis have to home at the same time
  1134. // Move all carriages up together until the first endstop is hit.
  1135. current_position[X_AXIS] = 0;
  1136. current_position[Y_AXIS] = 0;
  1137. current_position[Z_AXIS] = 0;
  1138. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1139. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1140. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1141. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1142. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1143. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1144. st_synchronize();
  1145. endstops_hit_on_purpose();
  1146. current_position[X_AXIS] = destination[X_AXIS];
  1147. current_position[Y_AXIS] = destination[Y_AXIS];
  1148. current_position[Z_AXIS] = destination[Z_AXIS];
  1149. // take care of back off and rehome now we are all at the top
  1150. HOMEAXIS(X);
  1151. HOMEAXIS(Y);
  1152. HOMEAXIS(Z);
  1153. calculate_delta(current_position);
  1154. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1155. #else // NOT DELTA
  1156. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1157. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1158. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1159. HOMEAXIS(Z);
  1160. }
  1161. #endif
  1162. #ifdef QUICK_HOME
  1163. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1164. {
  1165. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1166. #ifndef DUAL_X_CARRIAGE
  1167. int x_axis_home_dir = home_dir(X_AXIS);
  1168. #else
  1169. int x_axis_home_dir = x_home_dir(active_extruder);
  1170. extruder_duplication_enabled = false;
  1171. #endif
  1172. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1173. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1174. feedrate = homing_feedrate[X_AXIS];
  1175. if(homing_feedrate[Y_AXIS]<feedrate)
  1176. feedrate = homing_feedrate[Y_AXIS];
  1177. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1178. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1179. } else {
  1180. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1181. }
  1182. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1183. st_synchronize();
  1184. axis_is_at_home(X_AXIS);
  1185. axis_is_at_home(Y_AXIS);
  1186. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1187. destination[X_AXIS] = current_position[X_AXIS];
  1188. destination[Y_AXIS] = current_position[Y_AXIS];
  1189. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1190. feedrate = 0.0;
  1191. st_synchronize();
  1192. endstops_hit_on_purpose();
  1193. current_position[X_AXIS] = destination[X_AXIS];
  1194. current_position[Y_AXIS] = destination[Y_AXIS];
  1195. current_position[Z_AXIS] = destination[Z_AXIS];
  1196. }
  1197. #endif
  1198. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1199. {
  1200. #ifdef DUAL_X_CARRIAGE
  1201. int tmp_extruder = active_extruder;
  1202. extruder_duplication_enabled = false;
  1203. active_extruder = !active_extruder;
  1204. HOMEAXIS(X);
  1205. inactive_extruder_x_pos = current_position[X_AXIS];
  1206. active_extruder = tmp_extruder;
  1207. HOMEAXIS(X);
  1208. // reset state used by the different modes
  1209. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1210. delayed_move_time = 0;
  1211. active_extruder_parked = true;
  1212. #else
  1213. HOMEAXIS(X);
  1214. #endif
  1215. }
  1216. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1217. HOMEAXIS(Y);
  1218. }
  1219. if(code_seen(axis_codes[X_AXIS]))
  1220. {
  1221. if(code_value_long() != 0) {
  1222. current_position[X_AXIS]=code_value()+add_homeing[0];
  1223. }
  1224. }
  1225. if(code_seen(axis_codes[Y_AXIS])) {
  1226. if(code_value_long() != 0) {
  1227. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1228. }
  1229. }
  1230. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1231. #ifndef Z_SAFE_HOMING
  1232. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1233. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1234. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1235. feedrate = max_feedrate[Z_AXIS];
  1236. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1237. st_synchronize();
  1238. #endif
  1239. HOMEAXIS(Z);
  1240. }
  1241. #else // Z Safe mode activated.
  1242. if(home_all_axis) {
  1243. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1244. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1245. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1246. feedrate = XY_TRAVEL_SPEED;
  1247. current_position[Z_AXIS] = 0;
  1248. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1249. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1250. st_synchronize();
  1251. current_position[X_AXIS] = destination[X_AXIS];
  1252. current_position[Y_AXIS] = destination[Y_AXIS];
  1253. HOMEAXIS(Z);
  1254. }
  1255. // Let's see if X and Y are homed and probe is inside bed area.
  1256. if(code_seen(axis_codes[Z_AXIS])) {
  1257. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1258. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1259. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1260. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1261. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1262. current_position[Z_AXIS] = 0;
  1263. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1264. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1265. feedrate = max_feedrate[Z_AXIS];
  1266. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1267. st_synchronize();
  1268. HOMEAXIS(Z);
  1269. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1270. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1271. SERIAL_ECHO_START;
  1272. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1273. } else {
  1274. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1275. SERIAL_ECHO_START;
  1276. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1277. }
  1278. }
  1279. #endif
  1280. #endif
  1281. if(code_seen(axis_codes[Z_AXIS])) {
  1282. if(code_value_long() != 0) {
  1283. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1284. }
  1285. }
  1286. #ifdef ENABLE_AUTO_BED_LEVELING
  1287. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1288. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1289. }
  1290. #endif
  1291. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1292. #endif // else DELTA
  1293. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1294. enable_endstops(false);
  1295. #endif
  1296. feedrate = saved_feedrate;
  1297. feedmultiply = saved_feedmultiply;
  1298. previous_millis_cmd = millis();
  1299. endstops_hit_on_purpose();
  1300. break;
  1301. #ifdef ENABLE_AUTO_BED_LEVELING
  1302. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1303. {
  1304. #if Z_MIN_PIN == -1
  1305. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1306. #endif
  1307. // Prevent user from running a G29 without first homing in X and Y
  1308. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1309. {
  1310. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1311. SERIAL_ECHO_START;
  1312. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1313. break; // abort G29, since we don't know where we are
  1314. }
  1315. st_synchronize();
  1316. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1317. //vector_3 corrected_position = plan_get_position_mm();
  1318. //corrected_position.debug("position before G29");
  1319. plan_bed_level_matrix.set_to_identity();
  1320. vector_3 uncorrected_position = plan_get_position();
  1321. //uncorrected_position.debug("position durring G29");
  1322. current_position[X_AXIS] = uncorrected_position.x;
  1323. current_position[Y_AXIS] = uncorrected_position.y;
  1324. current_position[Z_AXIS] = uncorrected_position.z;
  1325. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1326. setup_for_endstop_move();
  1327. feedrate = homing_feedrate[Z_AXIS];
  1328. #ifdef AUTO_BED_LEVELING_GRID
  1329. // probe at the points of a lattice grid
  1330. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1331. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1332. // solve the plane equation ax + by + d = z
  1333. // A is the matrix with rows [x y 1] for all the probed points
  1334. // B is the vector of the Z positions
  1335. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1336. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1337. // "A" matrix of the linear system of equations
  1338. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1339. // "B" vector of Z points
  1340. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1341. int probePointCounter = 0;
  1342. bool zig = true;
  1343. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1344. {
  1345. int xProbe, xInc;
  1346. if (zig)
  1347. {
  1348. xProbe = LEFT_PROBE_BED_POSITION;
  1349. //xEnd = RIGHT_PROBE_BED_POSITION;
  1350. xInc = xGridSpacing;
  1351. zig = false;
  1352. } else // zag
  1353. {
  1354. xProbe = RIGHT_PROBE_BED_POSITION;
  1355. //xEnd = LEFT_PROBE_BED_POSITION;
  1356. xInc = -xGridSpacing;
  1357. zig = true;
  1358. }
  1359. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1360. {
  1361. float z_before;
  1362. if (probePointCounter == 0)
  1363. {
  1364. // raise before probing
  1365. z_before = Z_RAISE_BEFORE_PROBING;
  1366. } else
  1367. {
  1368. // raise extruder
  1369. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1370. }
  1371. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1372. eqnBVector[probePointCounter] = measured_z;
  1373. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1374. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1375. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1376. probePointCounter++;
  1377. xProbe += xInc;
  1378. }
  1379. }
  1380. clean_up_after_endstop_move();
  1381. // solve lsq problem
  1382. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1383. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1384. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1385. SERIAL_PROTOCOLPGM(" b: ");
  1386. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1387. SERIAL_PROTOCOLPGM(" d: ");
  1388. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1389. set_bed_level_equation_lsq(plane_equation_coefficients);
  1390. free(plane_equation_coefficients);
  1391. #else // AUTO_BED_LEVELING_GRID not defined
  1392. // Probe at 3 arbitrary points
  1393. // probe 1
  1394. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1395. // probe 2
  1396. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1397. // probe 3
  1398. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1399. clean_up_after_endstop_move();
  1400. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1401. #endif // AUTO_BED_LEVELING_GRID
  1402. st_synchronize();
  1403. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1404. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1405. // When the bed is uneven, this height must be corrected.
  1406. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1407. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1408. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1409. z_tmp = current_position[Z_AXIS];
  1410. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1411. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1412. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1413. }
  1414. break;
  1415. case 30: // G30 Single Z Probe
  1416. {
  1417. engage_z_probe(); // Engage Z Servo endstop if available
  1418. st_synchronize();
  1419. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1420. setup_for_endstop_move();
  1421. feedrate = homing_feedrate[Z_AXIS];
  1422. run_z_probe();
  1423. SERIAL_PROTOCOLPGM(MSG_BED);
  1424. SERIAL_PROTOCOLPGM(" X: ");
  1425. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1426. SERIAL_PROTOCOLPGM(" Y: ");
  1427. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1428. SERIAL_PROTOCOLPGM(" Z: ");
  1429. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1430. SERIAL_PROTOCOLPGM("\n");
  1431. clean_up_after_endstop_move();
  1432. retract_z_probe(); // Retract Z Servo endstop if available
  1433. }
  1434. break;
  1435. #endif // ENABLE_AUTO_BED_LEVELING
  1436. case 90: // G90
  1437. relative_mode = false;
  1438. break;
  1439. case 91: // G91
  1440. relative_mode = true;
  1441. break;
  1442. case 92: // G92
  1443. if(!code_seen(axis_codes[E_AXIS]))
  1444. st_synchronize();
  1445. for(int8_t i=0; i < NUM_AXIS; i++) {
  1446. if(code_seen(axis_codes[i])) {
  1447. if(i == E_AXIS) {
  1448. current_position[i] = code_value();
  1449. plan_set_e_position(current_position[E_AXIS]);
  1450. }
  1451. else {
  1452. current_position[i] = code_value()+add_homeing[i];
  1453. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1454. }
  1455. }
  1456. }
  1457. break;
  1458. }
  1459. }
  1460. else if(code_seen('M'))
  1461. {
  1462. switch( (int)code_value() )
  1463. {
  1464. #ifdef ULTIPANEL
  1465. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1466. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1467. {
  1468. LCD_MESSAGEPGM(MSG_USERWAIT);
  1469. codenum = 0;
  1470. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1471. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1472. st_synchronize();
  1473. previous_millis_cmd = millis();
  1474. if (codenum > 0){
  1475. codenum += millis(); // keep track of when we started waiting
  1476. while(millis() < codenum && !lcd_clicked()){
  1477. manage_heater();
  1478. manage_inactivity();
  1479. lcd_update();
  1480. }
  1481. }else{
  1482. while(!lcd_clicked()){
  1483. manage_heater();
  1484. manage_inactivity();
  1485. lcd_update();
  1486. }
  1487. }
  1488. LCD_MESSAGEPGM(MSG_RESUMING);
  1489. }
  1490. break;
  1491. #endif
  1492. case 17:
  1493. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1494. enable_x();
  1495. enable_y();
  1496. enable_z();
  1497. enable_e0();
  1498. enable_e1();
  1499. enable_e2();
  1500. break;
  1501. #ifdef SDSUPPORT
  1502. case 20: // M20 - list SD card
  1503. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1504. card.ls();
  1505. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1506. break;
  1507. case 21: // M21 - init SD card
  1508. card.initsd();
  1509. break;
  1510. case 22: //M22 - release SD card
  1511. card.release();
  1512. break;
  1513. case 23: //M23 - Select file
  1514. starpos = (strchr(strchr_pointer + 4,'*'));
  1515. if(starpos!=NULL)
  1516. *(starpos)='\0';
  1517. card.openFile(strchr_pointer + 4,true);
  1518. break;
  1519. case 24: //M24 - Start SD print
  1520. card.startFileprint();
  1521. starttime=millis();
  1522. break;
  1523. case 25: //M25 - Pause SD print
  1524. card.pauseSDPrint();
  1525. break;
  1526. case 26: //M26 - Set SD index
  1527. if(card.cardOK && code_seen('S')) {
  1528. card.setIndex(code_value_long());
  1529. }
  1530. break;
  1531. case 27: //M27 - Get SD status
  1532. card.getStatus();
  1533. break;
  1534. case 28: //M28 - Start SD write
  1535. starpos = (strchr(strchr_pointer + 4,'*'));
  1536. if(starpos != NULL){
  1537. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1538. strchr_pointer = strchr(npos,' ') + 1;
  1539. *(starpos) = '\0';
  1540. }
  1541. card.openFile(strchr_pointer+4,false);
  1542. break;
  1543. case 29: //M29 - Stop SD write
  1544. //processed in write to file routine above
  1545. //card,saving = false;
  1546. break;
  1547. case 30: //M30 <filename> Delete File
  1548. if (card.cardOK){
  1549. card.closefile();
  1550. starpos = (strchr(strchr_pointer + 4,'*'));
  1551. if(starpos != NULL){
  1552. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1553. strchr_pointer = strchr(npos,' ') + 1;
  1554. *(starpos) = '\0';
  1555. }
  1556. card.removeFile(strchr_pointer + 4);
  1557. }
  1558. break;
  1559. case 32: //M32 - Select file and start SD print
  1560. {
  1561. if(card.sdprinting) {
  1562. st_synchronize();
  1563. }
  1564. starpos = (strchr(strchr_pointer + 4,'*'));
  1565. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1566. if(namestartpos==NULL)
  1567. {
  1568. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1569. }
  1570. else
  1571. namestartpos++; //to skip the '!'
  1572. if(starpos!=NULL)
  1573. *(starpos)='\0';
  1574. bool call_procedure=(code_seen('P'));
  1575. if(strchr_pointer>namestartpos)
  1576. call_procedure=false; //false alert, 'P' found within filename
  1577. if( card.cardOK )
  1578. {
  1579. card.openFile(namestartpos,true,!call_procedure);
  1580. if(code_seen('S'))
  1581. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1582. card.setIndex(code_value_long());
  1583. card.startFileprint();
  1584. if(!call_procedure)
  1585. starttime=millis(); //procedure calls count as normal print time.
  1586. }
  1587. } break;
  1588. case 928: //M928 - Start SD write
  1589. starpos = (strchr(strchr_pointer + 5,'*'));
  1590. if(starpos != NULL){
  1591. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1592. strchr_pointer = strchr(npos,' ') + 1;
  1593. *(starpos) = '\0';
  1594. }
  1595. card.openLogFile(strchr_pointer+5);
  1596. break;
  1597. #endif //SDSUPPORT
  1598. case 31: //M31 take time since the start of the SD print or an M109 command
  1599. {
  1600. stoptime=millis();
  1601. char time[30];
  1602. unsigned long t=(stoptime-starttime)/1000;
  1603. int sec,min;
  1604. min=t/60;
  1605. sec=t%60;
  1606. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1607. SERIAL_ECHO_START;
  1608. SERIAL_ECHOLN(time);
  1609. lcd_setstatus(time);
  1610. autotempShutdown();
  1611. }
  1612. break;
  1613. case 42: //M42 -Change pin status via gcode
  1614. if (code_seen('S'))
  1615. {
  1616. int pin_status = code_value();
  1617. int pin_number = LED_PIN;
  1618. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1619. pin_number = code_value();
  1620. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1621. {
  1622. if (sensitive_pins[i] == pin_number)
  1623. {
  1624. pin_number = -1;
  1625. break;
  1626. }
  1627. }
  1628. #if defined(FAN_PIN) && FAN_PIN > -1
  1629. if (pin_number == FAN_PIN)
  1630. fanSpeed = pin_status;
  1631. #endif
  1632. if (pin_number > -1)
  1633. {
  1634. pinMode(pin_number, OUTPUT);
  1635. digitalWrite(pin_number, pin_status);
  1636. analogWrite(pin_number, pin_status);
  1637. }
  1638. }
  1639. break;
  1640. case 104: // M104
  1641. if(setTargetedHotend(104)){
  1642. break;
  1643. }
  1644. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1645. #ifdef DUAL_X_CARRIAGE
  1646. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1647. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1648. #endif
  1649. setWatch();
  1650. break;
  1651. case 112: // M112 -Emergency Stop
  1652. kill();
  1653. break;
  1654. case 140: // M140 set bed temp
  1655. if (code_seen('S')) setTargetBed(code_value());
  1656. break;
  1657. case 105 : // M105
  1658. if(setTargetedHotend(105)){
  1659. break;
  1660. }
  1661. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1662. SERIAL_PROTOCOLPGM("ok T:");
  1663. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1664. SERIAL_PROTOCOLPGM(" /");
  1665. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1666. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1667. SERIAL_PROTOCOLPGM(" B:");
  1668. SERIAL_PROTOCOL_F(degBed(),1);
  1669. SERIAL_PROTOCOLPGM(" /");
  1670. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1671. #endif //TEMP_BED_PIN
  1672. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1673. SERIAL_PROTOCOLPGM(" T");
  1674. SERIAL_PROTOCOL(cur_extruder);
  1675. SERIAL_PROTOCOLPGM(":");
  1676. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1677. SERIAL_PROTOCOLPGM(" /");
  1678. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1679. }
  1680. #else
  1681. SERIAL_ERROR_START;
  1682. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1683. #endif
  1684. SERIAL_PROTOCOLPGM(" @:");
  1685. #ifdef EXTRUDER_WATTS
  1686. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1687. SERIAL_PROTOCOLPGM("W");
  1688. #else
  1689. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1690. #endif
  1691. SERIAL_PROTOCOLPGM(" B@:");
  1692. #ifdef BED_WATTS
  1693. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1694. SERIAL_PROTOCOLPGM("W");
  1695. #else
  1696. SERIAL_PROTOCOL(getHeaterPower(-1));
  1697. #endif
  1698. #ifdef SHOW_TEMP_ADC_VALUES
  1699. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1700. SERIAL_PROTOCOLPGM(" ADC B:");
  1701. SERIAL_PROTOCOL_F(degBed(),1);
  1702. SERIAL_PROTOCOLPGM("C->");
  1703. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1704. #endif
  1705. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1706. SERIAL_PROTOCOLPGM(" T");
  1707. SERIAL_PROTOCOL(cur_extruder);
  1708. SERIAL_PROTOCOLPGM(":");
  1709. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1710. SERIAL_PROTOCOLPGM("C->");
  1711. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1712. }
  1713. #endif
  1714. SERIAL_PROTOCOLLN("");
  1715. return;
  1716. break;
  1717. case 109:
  1718. {// M109 - Wait for extruder heater to reach target.
  1719. if(setTargetedHotend(109)){
  1720. break;
  1721. }
  1722. LCD_MESSAGEPGM(MSG_HEATING);
  1723. #ifdef AUTOTEMP
  1724. autotemp_enabled=false;
  1725. #endif
  1726. if (code_seen('S')) {
  1727. setTargetHotend(code_value(), tmp_extruder);
  1728. #ifdef DUAL_X_CARRIAGE
  1729. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1730. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1731. #endif
  1732. CooldownNoWait = true;
  1733. } else if (code_seen('R')) {
  1734. setTargetHotend(code_value(), tmp_extruder);
  1735. #ifdef DUAL_X_CARRIAGE
  1736. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1737. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1738. #endif
  1739. CooldownNoWait = false;
  1740. }
  1741. #ifdef AUTOTEMP
  1742. if (code_seen('S')) autotemp_min=code_value();
  1743. if (code_seen('B')) autotemp_max=code_value();
  1744. if (code_seen('F'))
  1745. {
  1746. autotemp_factor=code_value();
  1747. autotemp_enabled=true;
  1748. }
  1749. #endif
  1750. setWatch();
  1751. codenum = millis();
  1752. /* See if we are heating up or cooling down */
  1753. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1754. cancel_heatup = false;
  1755. #ifdef TEMP_RESIDENCY_TIME
  1756. long residencyStart;
  1757. residencyStart = -1;
  1758. /* continue to loop until we have reached the target temp
  1759. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1760. while((!cancel_heatup)&&((residencyStart == -1) ||
  1761. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  1762. #else
  1763. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1764. #endif //TEMP_RESIDENCY_TIME
  1765. if( (millis() - codenum) > 1000UL )
  1766. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1767. SERIAL_PROTOCOLPGM("T:");
  1768. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1769. SERIAL_PROTOCOLPGM(" E:");
  1770. SERIAL_PROTOCOL((int)tmp_extruder);
  1771. #ifdef TEMP_RESIDENCY_TIME
  1772. SERIAL_PROTOCOLPGM(" W:");
  1773. if(residencyStart > -1)
  1774. {
  1775. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1776. SERIAL_PROTOCOLLN( codenum );
  1777. }
  1778. else
  1779. {
  1780. SERIAL_PROTOCOLLN( "?" );
  1781. }
  1782. #else
  1783. SERIAL_PROTOCOLLN("");
  1784. #endif
  1785. codenum = millis();
  1786. }
  1787. manage_heater();
  1788. manage_inactivity();
  1789. lcd_update();
  1790. #ifdef TEMP_RESIDENCY_TIME
  1791. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1792. or when current temp falls outside the hysteresis after target temp was reached */
  1793. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1794. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1795. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1796. {
  1797. residencyStart = millis();
  1798. }
  1799. #endif //TEMP_RESIDENCY_TIME
  1800. }
  1801. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1802. starttime=millis();
  1803. previous_millis_cmd = millis();
  1804. }
  1805. break;
  1806. case 190: // M190 - Wait for bed heater to reach target.
  1807. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1808. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1809. if (code_seen('S')) {
  1810. setTargetBed(code_value());
  1811. CooldownNoWait = true;
  1812. } else if (code_seen('R')) {
  1813. setTargetBed(code_value());
  1814. CooldownNoWait = false;
  1815. }
  1816. codenum = millis();
  1817. cancel_heatup = false;
  1818. target_direction = isHeatingBed(); // true if heating, false if cooling
  1819. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1820. {
  1821. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1822. {
  1823. float tt=degHotend(active_extruder);
  1824. SERIAL_PROTOCOLPGM("T:");
  1825. SERIAL_PROTOCOL(tt);
  1826. SERIAL_PROTOCOLPGM(" E:");
  1827. SERIAL_PROTOCOL((int)active_extruder);
  1828. SERIAL_PROTOCOLPGM(" B:");
  1829. SERIAL_PROTOCOL_F(degBed(),1);
  1830. SERIAL_PROTOCOLLN("");
  1831. codenum = millis();
  1832. }
  1833. manage_heater();
  1834. manage_inactivity();
  1835. lcd_update();
  1836. }
  1837. LCD_MESSAGEPGM(MSG_BED_DONE);
  1838. previous_millis_cmd = millis();
  1839. #endif
  1840. break;
  1841. #if defined(FAN_PIN) && FAN_PIN > -1
  1842. case 106: //M106 Fan On
  1843. if (code_seen('S')){
  1844. fanSpeed=constrain(code_value(),0,255);
  1845. }
  1846. else {
  1847. fanSpeed=255;
  1848. }
  1849. break;
  1850. case 107: //M107 Fan Off
  1851. fanSpeed = 0;
  1852. break;
  1853. #endif //FAN_PIN
  1854. #ifdef BARICUDA
  1855. // PWM for HEATER_1_PIN
  1856. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1857. case 126: //M126 valve open
  1858. if (code_seen('S')){
  1859. ValvePressure=constrain(code_value(),0,255);
  1860. }
  1861. else {
  1862. ValvePressure=255;
  1863. }
  1864. break;
  1865. case 127: //M127 valve closed
  1866. ValvePressure = 0;
  1867. break;
  1868. #endif //HEATER_1_PIN
  1869. // PWM for HEATER_2_PIN
  1870. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1871. case 128: //M128 valve open
  1872. if (code_seen('S')){
  1873. EtoPPressure=constrain(code_value(),0,255);
  1874. }
  1875. else {
  1876. EtoPPressure=255;
  1877. }
  1878. break;
  1879. case 129: //M129 valve closed
  1880. EtoPPressure = 0;
  1881. break;
  1882. #endif //HEATER_2_PIN
  1883. #endif
  1884. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1885. case 80: // M80 - Turn on Power Supply
  1886. SET_OUTPUT(PS_ON_PIN); //GND
  1887. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1888. // If you have a switch on suicide pin, this is useful
  1889. // if you want to start another print with suicide feature after
  1890. // a print without suicide...
  1891. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1892. SET_OUTPUT(SUICIDE_PIN);
  1893. WRITE(SUICIDE_PIN, HIGH);
  1894. #endif
  1895. #ifdef ULTIPANEL
  1896. powersupply = true;
  1897. LCD_MESSAGEPGM(WELCOME_MSG);
  1898. lcd_update();
  1899. #endif
  1900. break;
  1901. #endif
  1902. case 81: // M81 - Turn off Power Supply
  1903. disable_heater();
  1904. st_synchronize();
  1905. disable_e0();
  1906. disable_e1();
  1907. disable_e2();
  1908. finishAndDisableSteppers();
  1909. fanSpeed = 0;
  1910. delay(1000); // Wait a little before to switch off
  1911. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1912. st_synchronize();
  1913. suicide();
  1914. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1915. SET_OUTPUT(PS_ON_PIN);
  1916. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1917. #endif
  1918. #ifdef ULTIPANEL
  1919. powersupply = false;
  1920. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1921. lcd_update();
  1922. #endif
  1923. break;
  1924. case 82:
  1925. axis_relative_modes[3] = false;
  1926. break;
  1927. case 83:
  1928. axis_relative_modes[3] = true;
  1929. break;
  1930. case 18: //compatibility
  1931. case 84: // M84
  1932. if(code_seen('S')){
  1933. stepper_inactive_time = code_value() * 1000;
  1934. }
  1935. else
  1936. {
  1937. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1938. if(all_axis)
  1939. {
  1940. st_synchronize();
  1941. disable_e0();
  1942. disable_e1();
  1943. disable_e2();
  1944. finishAndDisableSteppers();
  1945. }
  1946. else
  1947. {
  1948. st_synchronize();
  1949. if(code_seen('X')) disable_x();
  1950. if(code_seen('Y')) disable_y();
  1951. if(code_seen('Z')) disable_z();
  1952. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1953. if(code_seen('E')) {
  1954. disable_e0();
  1955. disable_e1();
  1956. disable_e2();
  1957. }
  1958. #endif
  1959. }
  1960. }
  1961. break;
  1962. case 85: // M85
  1963. if(code_seen('S')) {
  1964. max_inactive_time = code_value() * 1000;
  1965. }
  1966. break;
  1967. case 92: // M92
  1968. for(int8_t i=0; i < NUM_AXIS; i++)
  1969. {
  1970. if(code_seen(axis_codes[i]))
  1971. {
  1972. if(i == 3) { // E
  1973. float value = code_value();
  1974. if(value < 20.0) {
  1975. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1976. max_e_jerk *= factor;
  1977. max_feedrate[i] *= factor;
  1978. axis_steps_per_sqr_second[i] *= factor;
  1979. }
  1980. axis_steps_per_unit[i] = value;
  1981. }
  1982. else {
  1983. axis_steps_per_unit[i] = code_value();
  1984. }
  1985. }
  1986. }
  1987. break;
  1988. case 115: // M115
  1989. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1990. break;
  1991. case 117: // M117 display message
  1992. starpos = (strchr(strchr_pointer + 5,'*'));
  1993. if(starpos!=NULL)
  1994. *(starpos)='\0';
  1995. lcd_setstatus(strchr_pointer + 5);
  1996. break;
  1997. case 114: // M114
  1998. SERIAL_PROTOCOLPGM("X:");
  1999. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2000. SERIAL_PROTOCOLPGM(" Y:");
  2001. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2002. SERIAL_PROTOCOLPGM(" Z:");
  2003. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2004. SERIAL_PROTOCOLPGM(" E:");
  2005. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2006. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2007. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2008. SERIAL_PROTOCOLPGM(" Y:");
  2009. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2010. SERIAL_PROTOCOLPGM(" Z:");
  2011. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2012. SERIAL_PROTOCOLLN("");
  2013. break;
  2014. case 120: // M120
  2015. enable_endstops(false) ;
  2016. break;
  2017. case 121: // M121
  2018. enable_endstops(true) ;
  2019. break;
  2020. case 119: // M119
  2021. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2022. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2023. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2024. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2025. #endif
  2026. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2027. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2028. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2029. #endif
  2030. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2031. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2032. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2033. #endif
  2034. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2035. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2036. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2037. #endif
  2038. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2039. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2040. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2041. #endif
  2042. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2043. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2044. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2045. #endif
  2046. break;
  2047. //TODO: update for all axis, use for loop
  2048. #ifdef BLINKM
  2049. case 150: // M150
  2050. {
  2051. byte red;
  2052. byte grn;
  2053. byte blu;
  2054. if(code_seen('R')) red = code_value();
  2055. if(code_seen('U')) grn = code_value();
  2056. if(code_seen('B')) blu = code_value();
  2057. SendColors(red,grn,blu);
  2058. }
  2059. break;
  2060. #endif //BLINKM
  2061. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2062. {
  2063. float area = .0;
  2064. float radius = .0;
  2065. if(code_seen('D')) {
  2066. radius = (float)code_value() * .5;
  2067. if(radius == 0) {
  2068. area = 1;
  2069. } else {
  2070. area = M_PI * pow(radius, 2);
  2071. }
  2072. } else {
  2073. //reserved for setting filament diameter via UFID or filament measuring device
  2074. break;
  2075. }
  2076. tmp_extruder = active_extruder;
  2077. if(code_seen('T')) {
  2078. tmp_extruder = code_value();
  2079. if(tmp_extruder >= EXTRUDERS) {
  2080. SERIAL_ECHO_START;
  2081. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2082. break;
  2083. }
  2084. }
  2085. volumetric_multiplier[tmp_extruder] = 1 / area;
  2086. }
  2087. break;
  2088. case 201: // M201
  2089. for(int8_t i=0; i < NUM_AXIS; i++)
  2090. {
  2091. if(code_seen(axis_codes[i]))
  2092. {
  2093. max_acceleration_units_per_sq_second[i] = code_value();
  2094. }
  2095. }
  2096. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2097. reset_acceleration_rates();
  2098. break;
  2099. #if 0 // Not used for Sprinter/grbl gen6
  2100. case 202: // M202
  2101. for(int8_t i=0; i < NUM_AXIS; i++) {
  2102. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2103. }
  2104. break;
  2105. #endif
  2106. case 203: // M203 max feedrate mm/sec
  2107. for(int8_t i=0; i < NUM_AXIS; i++) {
  2108. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2109. }
  2110. break;
  2111. case 204: // M204 acclereration S normal moves T filmanent only moves
  2112. {
  2113. if(code_seen('S')) acceleration = code_value() ;
  2114. if(code_seen('T')) retract_acceleration = code_value() ;
  2115. }
  2116. break;
  2117. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2118. {
  2119. if(code_seen('S')) minimumfeedrate = code_value();
  2120. if(code_seen('T')) mintravelfeedrate = code_value();
  2121. if(code_seen('B')) minsegmenttime = code_value() ;
  2122. if(code_seen('X')) max_xy_jerk = code_value() ;
  2123. if(code_seen('Z')) max_z_jerk = code_value() ;
  2124. if(code_seen('E')) max_e_jerk = code_value() ;
  2125. }
  2126. break;
  2127. case 206: // M206 additional homeing offset
  2128. for(int8_t i=0; i < 3; i++)
  2129. {
  2130. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2131. }
  2132. break;
  2133. #ifdef DELTA
  2134. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2135. if(code_seen('L')) {
  2136. delta_diagonal_rod= code_value();
  2137. }
  2138. if(code_seen('R')) {
  2139. delta_radius= code_value();
  2140. }
  2141. if(code_seen('S')) {
  2142. delta_segments_per_second= code_value();
  2143. }
  2144. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2145. break;
  2146. case 666: // M666 set delta endstop adjustemnt
  2147. for(int8_t i=0; i < 3; i++)
  2148. {
  2149. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2150. }
  2151. break;
  2152. #endif
  2153. #ifdef FWRETRACT
  2154. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2155. {
  2156. if(code_seen('S'))
  2157. {
  2158. retract_length = code_value() ;
  2159. }
  2160. if(code_seen('F'))
  2161. {
  2162. retract_feedrate = code_value()/60 ;
  2163. }
  2164. if(code_seen('Z'))
  2165. {
  2166. retract_zlift = code_value() ;
  2167. }
  2168. }break;
  2169. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2170. {
  2171. if(code_seen('S'))
  2172. {
  2173. retract_recover_length = code_value() ;
  2174. }
  2175. if(code_seen('F'))
  2176. {
  2177. retract_recover_feedrate = code_value()/60 ;
  2178. }
  2179. }break;
  2180. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2181. {
  2182. if(code_seen('S'))
  2183. {
  2184. int t= code_value() ;
  2185. switch(t)
  2186. {
  2187. case 0:
  2188. {
  2189. autoretract_enabled=false;
  2190. retracted[0]=false;
  2191. #if EXTRUDERS > 1
  2192. retracted[1]=false;
  2193. #endif
  2194. #if EXTRUDERS > 2
  2195. retracted[2]=false;
  2196. #endif
  2197. }break;
  2198. case 1:
  2199. {
  2200. autoretract_enabled=true;
  2201. retracted[0]=false;
  2202. #if EXTRUDERS > 1
  2203. retracted[1]=false;
  2204. #endif
  2205. #if EXTRUDERS > 2
  2206. retracted[2]=false;
  2207. #endif
  2208. }break;
  2209. default:
  2210. SERIAL_ECHO_START;
  2211. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2212. SERIAL_ECHO(cmdbuffer[bufindr]);
  2213. SERIAL_ECHOLNPGM("\"");
  2214. }
  2215. }
  2216. }break;
  2217. #endif // FWRETRACT
  2218. #if EXTRUDERS > 1
  2219. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2220. {
  2221. if(setTargetedHotend(218)){
  2222. break;
  2223. }
  2224. if(code_seen('X'))
  2225. {
  2226. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2227. }
  2228. if(code_seen('Y'))
  2229. {
  2230. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2231. }
  2232. #ifdef DUAL_X_CARRIAGE
  2233. if(code_seen('Z'))
  2234. {
  2235. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2236. }
  2237. #endif
  2238. SERIAL_ECHO_START;
  2239. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2240. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2241. {
  2242. SERIAL_ECHO(" ");
  2243. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2244. SERIAL_ECHO(",");
  2245. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2246. #ifdef DUAL_X_CARRIAGE
  2247. SERIAL_ECHO(",");
  2248. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2249. #endif
  2250. }
  2251. SERIAL_ECHOLN("");
  2252. }break;
  2253. #endif
  2254. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2255. {
  2256. if(code_seen('S'))
  2257. {
  2258. feedmultiply = code_value() ;
  2259. }
  2260. }
  2261. break;
  2262. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2263. {
  2264. if(code_seen('S'))
  2265. {
  2266. int tmp_code = code_value();
  2267. if (code_seen('T'))
  2268. {
  2269. if(setTargetedHotend(221)){
  2270. break;
  2271. }
  2272. extruder_multiply[tmp_extruder] = tmp_code;
  2273. }
  2274. else
  2275. {
  2276. extrudemultiply = tmp_code ;
  2277. }
  2278. }
  2279. }
  2280. break;
  2281. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2282. {
  2283. if(code_seen('P')){
  2284. int pin_number = code_value(); // pin number
  2285. int pin_state = -1; // required pin state - default is inverted
  2286. if(code_seen('S')) pin_state = code_value(); // required pin state
  2287. if(pin_state >= -1 && pin_state <= 1){
  2288. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2289. {
  2290. if (sensitive_pins[i] == pin_number)
  2291. {
  2292. pin_number = -1;
  2293. break;
  2294. }
  2295. }
  2296. if (pin_number > -1)
  2297. {
  2298. st_synchronize();
  2299. pinMode(pin_number, INPUT);
  2300. int target;
  2301. switch(pin_state){
  2302. case 1:
  2303. target = HIGH;
  2304. break;
  2305. case 0:
  2306. target = LOW;
  2307. break;
  2308. case -1:
  2309. target = !digitalRead(pin_number);
  2310. break;
  2311. }
  2312. while(digitalRead(pin_number) != target){
  2313. manage_heater();
  2314. manage_inactivity();
  2315. lcd_update();
  2316. }
  2317. }
  2318. }
  2319. }
  2320. }
  2321. break;
  2322. #if NUM_SERVOS > 0
  2323. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2324. {
  2325. int servo_index = -1;
  2326. int servo_position = 0;
  2327. if (code_seen('P'))
  2328. servo_index = code_value();
  2329. if (code_seen('S')) {
  2330. servo_position = code_value();
  2331. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2332. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2333. servos[servo_index].attach(0);
  2334. #endif
  2335. servos[servo_index].write(servo_position);
  2336. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2337. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2338. servos[servo_index].detach();
  2339. #endif
  2340. }
  2341. else {
  2342. SERIAL_ECHO_START;
  2343. SERIAL_ECHO("Servo ");
  2344. SERIAL_ECHO(servo_index);
  2345. SERIAL_ECHOLN(" out of range");
  2346. }
  2347. }
  2348. else if (servo_index >= 0) {
  2349. SERIAL_PROTOCOL(MSG_OK);
  2350. SERIAL_PROTOCOL(" Servo ");
  2351. SERIAL_PROTOCOL(servo_index);
  2352. SERIAL_PROTOCOL(": ");
  2353. SERIAL_PROTOCOL(servos[servo_index].read());
  2354. SERIAL_PROTOCOLLN("");
  2355. }
  2356. }
  2357. break;
  2358. #endif // NUM_SERVOS > 0
  2359. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2360. case 300: // M300
  2361. {
  2362. int beepS = code_seen('S') ? code_value() : 110;
  2363. int beepP = code_seen('P') ? code_value() : 1000;
  2364. if (beepS > 0)
  2365. {
  2366. #if BEEPER > 0
  2367. tone(BEEPER, beepS);
  2368. delay(beepP);
  2369. noTone(BEEPER);
  2370. #elif defined(ULTRALCD)
  2371. lcd_buzz(beepS, beepP);
  2372. #elif defined(LCD_USE_I2C_BUZZER)
  2373. lcd_buzz(beepP, beepS);
  2374. #endif
  2375. }
  2376. else
  2377. {
  2378. delay(beepP);
  2379. }
  2380. }
  2381. break;
  2382. #endif // M300
  2383. #ifdef PIDTEMP
  2384. case 301: // M301
  2385. {
  2386. if(code_seen('P')) Kp = code_value();
  2387. if(code_seen('I')) Ki = scalePID_i(code_value());
  2388. if(code_seen('D')) Kd = scalePID_d(code_value());
  2389. #ifdef PID_ADD_EXTRUSION_RATE
  2390. if(code_seen('C')) Kc = code_value();
  2391. #endif
  2392. updatePID();
  2393. SERIAL_PROTOCOL(MSG_OK);
  2394. SERIAL_PROTOCOL(" p:");
  2395. SERIAL_PROTOCOL(Kp);
  2396. SERIAL_PROTOCOL(" i:");
  2397. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2398. SERIAL_PROTOCOL(" d:");
  2399. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2400. #ifdef PID_ADD_EXTRUSION_RATE
  2401. SERIAL_PROTOCOL(" c:");
  2402. //Kc does not have scaling applied above, or in resetting defaults
  2403. SERIAL_PROTOCOL(Kc);
  2404. #endif
  2405. SERIAL_PROTOCOLLN("");
  2406. }
  2407. break;
  2408. #endif //PIDTEMP
  2409. #ifdef PIDTEMPBED
  2410. case 304: // M304
  2411. {
  2412. if(code_seen('P')) bedKp = code_value();
  2413. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2414. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2415. updatePID();
  2416. SERIAL_PROTOCOL(MSG_OK);
  2417. SERIAL_PROTOCOL(" p:");
  2418. SERIAL_PROTOCOL(bedKp);
  2419. SERIAL_PROTOCOL(" i:");
  2420. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2421. SERIAL_PROTOCOL(" d:");
  2422. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2423. SERIAL_PROTOCOLLN("");
  2424. }
  2425. break;
  2426. #endif //PIDTEMP
  2427. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2428. {
  2429. #ifdef CHDK
  2430. SET_OUTPUT(CHDK);
  2431. WRITE(CHDK, HIGH);
  2432. chdkHigh = millis();
  2433. chdkActive = true;
  2434. #else
  2435. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2436. const uint8_t NUM_PULSES=16;
  2437. const float PULSE_LENGTH=0.01524;
  2438. for(int i=0; i < NUM_PULSES; i++) {
  2439. WRITE(PHOTOGRAPH_PIN, HIGH);
  2440. _delay_ms(PULSE_LENGTH);
  2441. WRITE(PHOTOGRAPH_PIN, LOW);
  2442. _delay_ms(PULSE_LENGTH);
  2443. }
  2444. delay(7.33);
  2445. for(int i=0; i < NUM_PULSES; i++) {
  2446. WRITE(PHOTOGRAPH_PIN, HIGH);
  2447. _delay_ms(PULSE_LENGTH);
  2448. WRITE(PHOTOGRAPH_PIN, LOW);
  2449. _delay_ms(PULSE_LENGTH);
  2450. }
  2451. #endif
  2452. #endif //chdk end if
  2453. }
  2454. break;
  2455. #ifdef DOGLCD
  2456. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2457. {
  2458. if (code_seen('C')) {
  2459. lcd_setcontrast( ((int)code_value())&63 );
  2460. }
  2461. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2462. SERIAL_PROTOCOL(lcd_contrast);
  2463. SERIAL_PROTOCOLLN("");
  2464. }
  2465. break;
  2466. #endif
  2467. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2468. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2469. {
  2470. float temp = .0;
  2471. if (code_seen('S')) temp=code_value();
  2472. set_extrude_min_temp(temp);
  2473. }
  2474. break;
  2475. #endif
  2476. case 303: // M303 PID autotune
  2477. {
  2478. float temp = 150.0;
  2479. int e=0;
  2480. int c=5;
  2481. if (code_seen('E')) e=code_value();
  2482. if (e<0)
  2483. temp=70;
  2484. if (code_seen('S')) temp=code_value();
  2485. if (code_seen('C')) c=code_value();
  2486. PID_autotune(temp, e, c);
  2487. }
  2488. break;
  2489. case 400: // M400 finish all moves
  2490. {
  2491. st_synchronize();
  2492. }
  2493. break;
  2494. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2495. case 401:
  2496. {
  2497. engage_z_probe(); // Engage Z Servo endstop if available
  2498. }
  2499. break;
  2500. case 402:
  2501. {
  2502. retract_z_probe(); // Retract Z Servo endstop if enabled
  2503. }
  2504. break;
  2505. #endif
  2506. case 500: // M500 Store settings in EEPROM
  2507. {
  2508. Config_StoreSettings();
  2509. }
  2510. break;
  2511. case 501: // M501 Read settings from EEPROM
  2512. {
  2513. Config_RetrieveSettings();
  2514. }
  2515. break;
  2516. case 502: // M502 Revert to default settings
  2517. {
  2518. Config_ResetDefault();
  2519. }
  2520. break;
  2521. case 503: // M503 print settings currently in memory
  2522. {
  2523. Config_PrintSettings();
  2524. }
  2525. break;
  2526. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2527. case 540:
  2528. {
  2529. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2530. }
  2531. break;
  2532. #endif
  2533. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2534. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  2535. {
  2536. float value;
  2537. if (code_seen('Z'))
  2538. {
  2539. value = code_value();
  2540. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  2541. {
  2542. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  2543. SERIAL_ECHO_START;
  2544. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  2545. SERIAL_PROTOCOLLN("");
  2546. }
  2547. else
  2548. {
  2549. SERIAL_ECHO_START;
  2550. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  2551. SERIAL_ECHOPGM(MSG_Z_MIN);
  2552. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  2553. SERIAL_ECHOPGM(MSG_Z_MAX);
  2554. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  2555. SERIAL_PROTOCOLLN("");
  2556. }
  2557. }
  2558. else
  2559. {
  2560. SERIAL_ECHO_START;
  2561. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  2562. SERIAL_ECHO(-zprobe_zoffset);
  2563. SERIAL_PROTOCOLLN("");
  2564. }
  2565. break;
  2566. }
  2567. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2568. #ifdef FILAMENTCHANGEENABLE
  2569. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2570. {
  2571. float target[4];
  2572. float lastpos[4];
  2573. target[X_AXIS]=current_position[X_AXIS];
  2574. target[Y_AXIS]=current_position[Y_AXIS];
  2575. target[Z_AXIS]=current_position[Z_AXIS];
  2576. target[E_AXIS]=current_position[E_AXIS];
  2577. lastpos[X_AXIS]=current_position[X_AXIS];
  2578. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2579. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2580. lastpos[E_AXIS]=current_position[E_AXIS];
  2581. //retract by E
  2582. if(code_seen('E'))
  2583. {
  2584. target[E_AXIS]+= code_value();
  2585. }
  2586. else
  2587. {
  2588. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2589. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2590. #endif
  2591. }
  2592. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2593. //lift Z
  2594. if(code_seen('Z'))
  2595. {
  2596. target[Z_AXIS]+= code_value();
  2597. }
  2598. else
  2599. {
  2600. #ifdef FILAMENTCHANGE_ZADD
  2601. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2602. #endif
  2603. }
  2604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2605. //move xy
  2606. if(code_seen('X'))
  2607. {
  2608. target[X_AXIS]+= code_value();
  2609. }
  2610. else
  2611. {
  2612. #ifdef FILAMENTCHANGE_XPOS
  2613. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2614. #endif
  2615. }
  2616. if(code_seen('Y'))
  2617. {
  2618. target[Y_AXIS]= code_value();
  2619. }
  2620. else
  2621. {
  2622. #ifdef FILAMENTCHANGE_YPOS
  2623. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2624. #endif
  2625. }
  2626. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2627. if(code_seen('L'))
  2628. {
  2629. target[E_AXIS]+= code_value();
  2630. }
  2631. else
  2632. {
  2633. #ifdef FILAMENTCHANGE_FINALRETRACT
  2634. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2635. #endif
  2636. }
  2637. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2638. //finish moves
  2639. st_synchronize();
  2640. //disable extruder steppers so filament can be removed
  2641. disable_e0();
  2642. disable_e1();
  2643. disable_e2();
  2644. delay(100);
  2645. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2646. uint8_t cnt=0;
  2647. while(!lcd_clicked()){
  2648. cnt++;
  2649. manage_heater();
  2650. manage_inactivity();
  2651. lcd_update();
  2652. if(cnt==0)
  2653. {
  2654. #if BEEPER > 0
  2655. SET_OUTPUT(BEEPER);
  2656. WRITE(BEEPER,HIGH);
  2657. delay(3);
  2658. WRITE(BEEPER,LOW);
  2659. delay(3);
  2660. #else
  2661. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2662. lcd_buzz(1000/6,100);
  2663. #else
  2664. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2665. #endif
  2666. #endif
  2667. }
  2668. }
  2669. //return to normal
  2670. if(code_seen('L'))
  2671. {
  2672. target[E_AXIS]+= -code_value();
  2673. }
  2674. else
  2675. {
  2676. #ifdef FILAMENTCHANGE_FINALRETRACT
  2677. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2678. #endif
  2679. }
  2680. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2681. plan_set_e_position(current_position[E_AXIS]);
  2682. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2683. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2684. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2685. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2686. }
  2687. break;
  2688. #endif //FILAMENTCHANGEENABLE
  2689. #ifdef DUAL_X_CARRIAGE
  2690. case 605: // Set dual x-carriage movement mode:
  2691. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2692. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2693. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2694. // millimeters x-offset and an optional differential hotend temperature of
  2695. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2696. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2697. //
  2698. // Note: the X axis should be homed after changing dual x-carriage mode.
  2699. {
  2700. st_synchronize();
  2701. if (code_seen('S'))
  2702. dual_x_carriage_mode = code_value();
  2703. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2704. {
  2705. if (code_seen('X'))
  2706. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2707. if (code_seen('R'))
  2708. duplicate_extruder_temp_offset = code_value();
  2709. SERIAL_ECHO_START;
  2710. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2711. SERIAL_ECHO(" ");
  2712. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2713. SERIAL_ECHO(",");
  2714. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2715. SERIAL_ECHO(" ");
  2716. SERIAL_ECHO(duplicate_extruder_x_offset);
  2717. SERIAL_ECHO(",");
  2718. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2719. }
  2720. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2721. {
  2722. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2723. }
  2724. active_extruder_parked = false;
  2725. extruder_duplication_enabled = false;
  2726. delayed_move_time = 0;
  2727. }
  2728. break;
  2729. #endif //DUAL_X_CARRIAGE
  2730. case 907: // M907 Set digital trimpot motor current using axis codes.
  2731. {
  2732. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2733. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2734. if(code_seen('B')) digipot_current(4,code_value());
  2735. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2736. #endif
  2737. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2738. if(code_seen('X')) digipot_current(0, code_value());
  2739. #endif
  2740. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2741. if(code_seen('Z')) digipot_current(1, code_value());
  2742. #endif
  2743. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2744. if(code_seen('E')) digipot_current(2, code_value());
  2745. #endif
  2746. #ifdef DIGIPOT_I2C
  2747. // this one uses actual amps in floating point
  2748. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2749. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2750. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2751. #endif
  2752. }
  2753. break;
  2754. case 908: // M908 Control digital trimpot directly.
  2755. {
  2756. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2757. uint8_t channel,current;
  2758. if(code_seen('P')) channel=code_value();
  2759. if(code_seen('S')) current=code_value();
  2760. digitalPotWrite(channel, current);
  2761. #endif
  2762. }
  2763. break;
  2764. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2765. {
  2766. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2767. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2768. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2769. if(code_seen('B')) microstep_mode(4,code_value());
  2770. microstep_readings();
  2771. #endif
  2772. }
  2773. break;
  2774. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2775. {
  2776. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2777. if(code_seen('S')) switch((int)code_value())
  2778. {
  2779. case 1:
  2780. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2781. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2782. break;
  2783. case 2:
  2784. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2785. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2786. break;
  2787. }
  2788. microstep_readings();
  2789. #endif
  2790. }
  2791. break;
  2792. case 999: // M999: Restart after being stopped
  2793. Stopped = false;
  2794. lcd_reset_alert_level();
  2795. gcode_LastN = Stopped_gcode_LastN;
  2796. FlushSerialRequestResend();
  2797. break;
  2798. }
  2799. }
  2800. else if(code_seen('T'))
  2801. {
  2802. tmp_extruder = code_value();
  2803. if(tmp_extruder >= EXTRUDERS) {
  2804. SERIAL_ECHO_START;
  2805. SERIAL_ECHO("T");
  2806. SERIAL_ECHO(tmp_extruder);
  2807. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2808. }
  2809. else {
  2810. boolean make_move = false;
  2811. if(code_seen('F')) {
  2812. make_move = true;
  2813. next_feedrate = code_value();
  2814. if(next_feedrate > 0.0) {
  2815. feedrate = next_feedrate;
  2816. }
  2817. }
  2818. #if EXTRUDERS > 1
  2819. if(tmp_extruder != active_extruder) {
  2820. // Save current position to return to after applying extruder offset
  2821. memcpy(destination, current_position, sizeof(destination));
  2822. #ifdef DUAL_X_CARRIAGE
  2823. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2824. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2825. {
  2826. // Park old head: 1) raise 2) move to park position 3) lower
  2827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2828. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2829. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2830. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2831. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2832. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2833. st_synchronize();
  2834. }
  2835. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2836. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2837. extruder_offset[Y_AXIS][active_extruder] +
  2838. extruder_offset[Y_AXIS][tmp_extruder];
  2839. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2840. extruder_offset[Z_AXIS][active_extruder] +
  2841. extruder_offset[Z_AXIS][tmp_extruder];
  2842. active_extruder = tmp_extruder;
  2843. // This function resets the max/min values - the current position may be overwritten below.
  2844. axis_is_at_home(X_AXIS);
  2845. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2846. {
  2847. current_position[X_AXIS] = inactive_extruder_x_pos;
  2848. inactive_extruder_x_pos = destination[X_AXIS];
  2849. }
  2850. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2851. {
  2852. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2853. if (active_extruder == 0 || active_extruder_parked)
  2854. current_position[X_AXIS] = inactive_extruder_x_pos;
  2855. else
  2856. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2857. inactive_extruder_x_pos = destination[X_AXIS];
  2858. extruder_duplication_enabled = false;
  2859. }
  2860. else
  2861. {
  2862. // record raised toolhead position for use by unpark
  2863. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2864. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2865. active_extruder_parked = true;
  2866. delayed_move_time = 0;
  2867. }
  2868. #else
  2869. // Offset extruder (only by XY)
  2870. int i;
  2871. for(i = 0; i < 2; i++) {
  2872. current_position[i] = current_position[i] -
  2873. extruder_offset[i][active_extruder] +
  2874. extruder_offset[i][tmp_extruder];
  2875. }
  2876. // Set the new active extruder and position
  2877. active_extruder = tmp_extruder;
  2878. #endif //else DUAL_X_CARRIAGE
  2879. #ifdef DELTA
  2880. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  2881. //sent position to plan_set_position();
  2882. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  2883. #else
  2884. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2885. #endif
  2886. // Move to the old position if 'F' was in the parameters
  2887. if(make_move && Stopped == false) {
  2888. prepare_move();
  2889. }
  2890. }
  2891. #endif
  2892. SERIAL_ECHO_START;
  2893. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2894. SERIAL_PROTOCOLLN((int)active_extruder);
  2895. }
  2896. }
  2897. else
  2898. {
  2899. SERIAL_ECHO_START;
  2900. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2901. SERIAL_ECHO(cmdbuffer[bufindr]);
  2902. SERIAL_ECHOLNPGM("\"");
  2903. }
  2904. ClearToSend();
  2905. }
  2906. void FlushSerialRequestResend()
  2907. {
  2908. //char cmdbuffer[bufindr][100]="Resend:";
  2909. MYSERIAL.flush();
  2910. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2911. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2912. ClearToSend();
  2913. }
  2914. void ClearToSend()
  2915. {
  2916. previous_millis_cmd = millis();
  2917. #ifdef SDSUPPORT
  2918. if(fromsd[bufindr])
  2919. return;
  2920. #endif //SDSUPPORT
  2921. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2922. }
  2923. void get_coordinates()
  2924. {
  2925. bool seen[4]={false,false,false,false};
  2926. for(int8_t i=0; i < NUM_AXIS; i++) {
  2927. if(code_seen(axis_codes[i]))
  2928. {
  2929. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2930. seen[i]=true;
  2931. }
  2932. else destination[i] = current_position[i]; //Are these else lines really needed?
  2933. }
  2934. if(code_seen('F')) {
  2935. next_feedrate = code_value();
  2936. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2937. }
  2938. }
  2939. void get_arc_coordinates()
  2940. {
  2941. #ifdef SF_ARC_FIX
  2942. bool relative_mode_backup = relative_mode;
  2943. relative_mode = true;
  2944. #endif
  2945. get_coordinates();
  2946. #ifdef SF_ARC_FIX
  2947. relative_mode=relative_mode_backup;
  2948. #endif
  2949. if(code_seen('I')) {
  2950. offset[0] = code_value();
  2951. }
  2952. else {
  2953. offset[0] = 0.0;
  2954. }
  2955. if(code_seen('J')) {
  2956. offset[1] = code_value();
  2957. }
  2958. else {
  2959. offset[1] = 0.0;
  2960. }
  2961. }
  2962. void clamp_to_software_endstops(float target[3])
  2963. {
  2964. if (min_software_endstops) {
  2965. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2966. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2967. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2968. }
  2969. if (max_software_endstops) {
  2970. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2971. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2972. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2973. }
  2974. }
  2975. #ifdef DELTA
  2976. void recalc_delta_settings(float radius, float diagonal_rod)
  2977. {
  2978. delta_tower1_x= -SIN_60*radius; // front left tower
  2979. delta_tower1_y= -COS_60*radius;
  2980. delta_tower2_x= SIN_60*radius; // front right tower
  2981. delta_tower2_y= -COS_60*radius;
  2982. delta_tower3_x= 0.0; // back middle tower
  2983. delta_tower3_y= radius;
  2984. delta_diagonal_rod_2= sq(diagonal_rod);
  2985. }
  2986. void calculate_delta(float cartesian[3])
  2987. {
  2988. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  2989. - sq(delta_tower1_x-cartesian[X_AXIS])
  2990. - sq(delta_tower1_y-cartesian[Y_AXIS])
  2991. ) + cartesian[Z_AXIS];
  2992. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  2993. - sq(delta_tower2_x-cartesian[X_AXIS])
  2994. - sq(delta_tower2_y-cartesian[Y_AXIS])
  2995. ) + cartesian[Z_AXIS];
  2996. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  2997. - sq(delta_tower3_x-cartesian[X_AXIS])
  2998. - sq(delta_tower3_y-cartesian[Y_AXIS])
  2999. ) + cartesian[Z_AXIS];
  3000. /*
  3001. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3002. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3003. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3004. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3005. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3006. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3007. */
  3008. }
  3009. #endif
  3010. void prepare_move()
  3011. {
  3012. clamp_to_software_endstops(destination);
  3013. previous_millis_cmd = millis();
  3014. #ifdef DELTA
  3015. float difference[NUM_AXIS];
  3016. for (int8_t i=0; i < NUM_AXIS; i++) {
  3017. difference[i] = destination[i] - current_position[i];
  3018. }
  3019. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3020. sq(difference[Y_AXIS]) +
  3021. sq(difference[Z_AXIS]));
  3022. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3023. if (cartesian_mm < 0.000001) { return; }
  3024. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3025. int steps = max(1, int(delta_segments_per_second * seconds));
  3026. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3027. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3028. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3029. for (int s = 1; s <= steps; s++) {
  3030. float fraction = float(s) / float(steps);
  3031. for(int8_t i=0; i < NUM_AXIS; i++) {
  3032. destination[i] = current_position[i] + difference[i] * fraction;
  3033. }
  3034. calculate_delta(destination);
  3035. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3036. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3037. active_extruder);
  3038. }
  3039. #else
  3040. #ifdef DUAL_X_CARRIAGE
  3041. if (active_extruder_parked)
  3042. {
  3043. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3044. {
  3045. // move duplicate extruder into correct duplication position.
  3046. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3047. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3048. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3049. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3050. st_synchronize();
  3051. extruder_duplication_enabled = true;
  3052. active_extruder_parked = false;
  3053. }
  3054. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3055. {
  3056. if (current_position[E_AXIS] == destination[E_AXIS])
  3057. {
  3058. // this is a travel move - skit it but keep track of current position (so that it can later
  3059. // be used as start of first non-travel move)
  3060. if (delayed_move_time != 0xFFFFFFFFUL)
  3061. {
  3062. memcpy(current_position, destination, sizeof(current_position));
  3063. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3064. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3065. delayed_move_time = millis();
  3066. return;
  3067. }
  3068. }
  3069. delayed_move_time = 0;
  3070. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3071. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3072. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3073. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3074. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3075. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3076. active_extruder_parked = false;
  3077. }
  3078. }
  3079. #endif //DUAL_X_CARRIAGE
  3080. // Do not use feedmultiply for E or Z only moves
  3081. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3082. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3083. }
  3084. else {
  3085. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3086. }
  3087. #endif //else DELTA
  3088. for(int8_t i=0; i < NUM_AXIS; i++) {
  3089. current_position[i] = destination[i];
  3090. }
  3091. }
  3092. void prepare_arc_move(char isclockwise) {
  3093. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3094. // Trace the arc
  3095. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3096. // As far as the parser is concerned, the position is now == target. In reality the
  3097. // motion control system might still be processing the action and the real tool position
  3098. // in any intermediate location.
  3099. for(int8_t i=0; i < NUM_AXIS; i++) {
  3100. current_position[i] = destination[i];
  3101. }
  3102. previous_millis_cmd = millis();
  3103. }
  3104. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3105. #if defined(FAN_PIN)
  3106. #if CONTROLLERFAN_PIN == FAN_PIN
  3107. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3108. #endif
  3109. #endif
  3110. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3111. unsigned long lastMotorCheck = 0;
  3112. void controllerFan()
  3113. {
  3114. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3115. {
  3116. lastMotorCheck = millis();
  3117. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3118. #if EXTRUDERS > 2
  3119. || !READ(E2_ENABLE_PIN)
  3120. #endif
  3121. #if EXTRUDER > 1
  3122. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3123. || !READ(X2_ENABLE_PIN)
  3124. #endif
  3125. || !READ(E1_ENABLE_PIN)
  3126. #endif
  3127. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3128. {
  3129. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3130. }
  3131. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3132. {
  3133. digitalWrite(CONTROLLERFAN_PIN, 0);
  3134. analogWrite(CONTROLLERFAN_PIN, 0);
  3135. }
  3136. else
  3137. {
  3138. // allows digital or PWM fan output to be used (see M42 handling)
  3139. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3140. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3141. }
  3142. }
  3143. }
  3144. #endif
  3145. #ifdef TEMP_STAT_LEDS
  3146. static bool blue_led = false;
  3147. static bool red_led = false;
  3148. static uint32_t stat_update = 0;
  3149. void handle_status_leds(void) {
  3150. float max_temp = 0.0;
  3151. if(millis() > stat_update) {
  3152. stat_update += 500; // Update every 0.5s
  3153. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3154. max_temp = max(max_temp, degHotend(cur_extruder));
  3155. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3156. }
  3157. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3158. max_temp = max(max_temp, degTargetBed());
  3159. max_temp = max(max_temp, degBed());
  3160. #endif
  3161. if((max_temp > 55.0) && (red_led == false)) {
  3162. digitalWrite(STAT_LED_RED, 1);
  3163. digitalWrite(STAT_LED_BLUE, 0);
  3164. red_led = true;
  3165. blue_led = false;
  3166. }
  3167. if((max_temp < 54.0) && (blue_led == false)) {
  3168. digitalWrite(STAT_LED_RED, 0);
  3169. digitalWrite(STAT_LED_BLUE, 1);
  3170. red_led = false;
  3171. blue_led = true;
  3172. }
  3173. }
  3174. }
  3175. #endif
  3176. void manage_inactivity()
  3177. {
  3178. if(buflen < (BUFSIZE-1))
  3179. get_command();
  3180. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3181. if(max_inactive_time)
  3182. kill();
  3183. if(stepper_inactive_time) {
  3184. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3185. {
  3186. if(blocks_queued() == false) {
  3187. disable_x();
  3188. disable_y();
  3189. disable_z();
  3190. disable_e0();
  3191. disable_e1();
  3192. disable_e2();
  3193. }
  3194. }
  3195. }
  3196. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3197. if (chdkActive)
  3198. {
  3199. chdkActive = false;
  3200. if (millis()-chdkHigh < CHDK_DELAY) return;
  3201. WRITE(CHDK, LOW);
  3202. }
  3203. #endif
  3204. #if defined(KILL_PIN) && KILL_PIN > -1
  3205. if( 0 == READ(KILL_PIN) )
  3206. kill();
  3207. #endif
  3208. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3209. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3210. #endif
  3211. #ifdef EXTRUDER_RUNOUT_PREVENT
  3212. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3213. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3214. {
  3215. bool oldstatus=READ(E0_ENABLE_PIN);
  3216. enable_e0();
  3217. float oldepos=current_position[E_AXIS];
  3218. float oldedes=destination[E_AXIS];
  3219. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3220. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3221. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3222. current_position[E_AXIS]=oldepos;
  3223. destination[E_AXIS]=oldedes;
  3224. plan_set_e_position(oldepos);
  3225. previous_millis_cmd=millis();
  3226. st_synchronize();
  3227. WRITE(E0_ENABLE_PIN,oldstatus);
  3228. }
  3229. #endif
  3230. #if defined(DUAL_X_CARRIAGE)
  3231. // handle delayed move timeout
  3232. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3233. {
  3234. // travel moves have been received so enact them
  3235. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3236. memcpy(destination,current_position,sizeof(destination));
  3237. prepare_move();
  3238. }
  3239. #endif
  3240. #ifdef TEMP_STAT_LEDS
  3241. handle_status_leds();
  3242. #endif
  3243. check_axes_activity();
  3244. }
  3245. void kill()
  3246. {
  3247. cli(); // Stop interrupts
  3248. disable_heater();
  3249. disable_x();
  3250. disable_y();
  3251. disable_z();
  3252. disable_e0();
  3253. disable_e1();
  3254. disable_e2();
  3255. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3256. pinMode(PS_ON_PIN,INPUT);
  3257. #endif
  3258. SERIAL_ERROR_START;
  3259. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3260. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3261. suicide();
  3262. while(1) { /* Intentionally left empty */ } // Wait for reset
  3263. }
  3264. void Stop()
  3265. {
  3266. disable_heater();
  3267. if(Stopped == false) {
  3268. Stopped = true;
  3269. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3270. SERIAL_ERROR_START;
  3271. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3272. LCD_MESSAGEPGM(MSG_STOPPED);
  3273. }
  3274. }
  3275. bool IsStopped() { return Stopped; };
  3276. #ifdef FAST_PWM_FAN
  3277. void setPwmFrequency(uint8_t pin, int val)
  3278. {
  3279. val &= 0x07;
  3280. switch(digitalPinToTimer(pin))
  3281. {
  3282. #if defined(TCCR0A)
  3283. case TIMER0A:
  3284. case TIMER0B:
  3285. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3286. // TCCR0B |= val;
  3287. break;
  3288. #endif
  3289. #if defined(TCCR1A)
  3290. case TIMER1A:
  3291. case TIMER1B:
  3292. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3293. // TCCR1B |= val;
  3294. break;
  3295. #endif
  3296. #if defined(TCCR2)
  3297. case TIMER2:
  3298. case TIMER2:
  3299. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3300. TCCR2 |= val;
  3301. break;
  3302. #endif
  3303. #if defined(TCCR2A)
  3304. case TIMER2A:
  3305. case TIMER2B:
  3306. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3307. TCCR2B |= val;
  3308. break;
  3309. #endif
  3310. #if defined(TCCR3A)
  3311. case TIMER3A:
  3312. case TIMER3B:
  3313. case TIMER3C:
  3314. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3315. TCCR3B |= val;
  3316. break;
  3317. #endif
  3318. #if defined(TCCR4A)
  3319. case TIMER4A:
  3320. case TIMER4B:
  3321. case TIMER4C:
  3322. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3323. TCCR4B |= val;
  3324. break;
  3325. #endif
  3326. #if defined(TCCR5A)
  3327. case TIMER5A:
  3328. case TIMER5B:
  3329. case TIMER5C:
  3330. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3331. TCCR5B |= val;
  3332. break;
  3333. #endif
  3334. }
  3335. }
  3336. #endif //FAST_PWM_FAN
  3337. bool setTargetedHotend(int code){
  3338. tmp_extruder = active_extruder;
  3339. if(code_seen('T')) {
  3340. tmp_extruder = code_value();
  3341. if(tmp_extruder >= EXTRUDERS) {
  3342. SERIAL_ECHO_START;
  3343. switch(code){
  3344. case 104:
  3345. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3346. break;
  3347. case 105:
  3348. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3349. break;
  3350. case 109:
  3351. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3352. break;
  3353. case 218:
  3354. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3355. break;
  3356. case 221:
  3357. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3358. break;
  3359. }
  3360. SERIAL_ECHOLN(tmp_extruder);
  3361. return true;
  3362. }
  3363. }
  3364. return false;
  3365. }