My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_G29.cpp 72KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. //#include "vector_3.h"
  25. //#include "qr_solve.h"
  26. #include "ubl.h"
  27. #include "Marlin.h"
  28. #include "hex_print_routines.h"
  29. #include "configuration_store.h"
  30. #include "ultralcd.h"
  31. #include "stepper.h"
  32. #include <math.h>
  33. #include "least_squares_fit.h"
  34. extern float destination[XYZE];
  35. extern float current_position[XYZE];
  36. void lcd_return_to_status();
  37. bool lcd_clicked();
  38. void lcd_implementation_clear();
  39. void lcd_mesh_edit_setup(float initial);
  40. float lcd_mesh_edit();
  41. void lcd_z_offset_edit_setup(float);
  42. float lcd_z_offset_edit();
  43. extern float meshedit_done;
  44. extern long babysteps_done;
  45. extern float code_value_float();
  46. extern uint8_t code_value_byte();
  47. extern bool code_value_bool();
  48. extern bool code_has_value();
  49. extern float probe_pt(float x, float y, bool, int);
  50. extern bool set_probe_deployed(bool);
  51. void smart_fill_mesh();
  52. float measure_business_card_thickness(float &in_height);
  53. void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  54. bool ProbeStay = true;
  55. #define SIZE_OF_LITTLE_RAISE 1
  56. #define BIG_RAISE_NOT_NEEDED 0
  57. extern void lcd_status_screen();
  58. typedef void (*screenFunc_t)();
  59. extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
  60. /**
  61. * G29: Unified Bed Leveling by Roxy
  62. *
  63. * Parameters understood by this leveling system:
  64. *
  65. * A Activate Activate the Unified Bed Leveling system.
  66. *
  67. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
  68. * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
  69. * as a shim that the nozzle will pinch as it is lowered. The idea is that you
  70. * can easily feel the nozzle getting to the same height by the amount of resistance
  71. * the business card exhibits to movement. You should try to achieve the same amount
  72. * of resistance on each probed point to facilitate accurate and repeatable measurements.
  73. * You should be very careful not to drive the nozzle into the bussiness card with a
  74. * lot of force as it is very possible to cause damage to your printer if your are
  75. * careless. If you use the B option with G29 P2 B you can leave the number parameter off
  76. * on its first use to enable measurement of the business card thickness. Subsequent usage
  77. * of the B parameter can have the number previously measured supplied to the command.
  78. * Incidently, you are much better off using something like a Spark Gap feeler gauge than
  79. * something that compresses like a Business Card.
  80. *
  81. * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
  82. * further refine the behaviour of several other commands. Issuing a G29 P1 C will
  83. * continue the generation of a partially constructed Mesh without invalidating what has
  84. * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
  85. * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
  86. * it indicates to use the current location instead of defaulting to the center of the print bed.
  87. *
  88. * D Disable Disable the Unified Bed Leveling system.
  89. *
  90. * E Stow_probe Stow the probe after each sampled point.
  91. *
  92. * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
  93. * specified height, no correction is applied and natural printer kenimatics take over. If no
  94. * number is specified for the command, 10mm is assumed to be reasonable.
  95. *
  96. * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
  97. * default is 5mm.
  98. *
  99. * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
  100. * the X and Y parameter are used. If no number is specified, only the closest Mesh
  101. * point to the location is invalidated. The M parameter is available as well to produce
  102. * a map after the operation. This command is useful to invalidate a portion of the
  103. * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
  104. * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
  105. * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
  106. * the bed and use this feature to select the center of the area (or cell) you want to
  107. * invalidate.
  108. *
  109. * J # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  110. *
  111. * j EEPROM Dump This function probably goes away after debug is complete.
  112. *
  113. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  114. * command literally performs a diff between two Meshes.
  115. *
  116. * L Load * Load Mesh from the previously activated location in the EEPROM.
  117. *
  118. * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
  119. * for subsequent Load and Store operations.
  120. *
  121. * O Map * Display the Mesh Map Topology.
  122. * The parameter can be specified alone (ie. G29 O) or in combination with many of the
  123. * other commands. The Mesh Map option works with all of the Phase
  124. * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type
  125. * specified. A map type of 0 is the default is user readable. A map type of 1 can
  126. * be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
  127. * mesh.
  128. *
  129. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  130. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  131. * each additional Phase that processes it.
  132. *
  133. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  134. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  135. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  136. * a subsequent G or T leveling operation for backward compatibility.
  137. *
  138. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  139. * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
  140. * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
  141. * generated. This will be handled in Phase 2. If the Phase 1 command is given the
  142. * C (Continue) parameter it does not invalidate the Mesh prior to automatically
  143. * probing needed locations. This allows you to invalidate portions of the Mesh but still
  144. * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
  145. * parameter can be given to prioritize where the command should be trying to measure points.
  146. * If the X and Y parameters are not specified the current probe position is used. Phase 1
  147. * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
  148. * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
  149. * It will suspend generation of the Mesh if it sees the user request that. (This check is
  150. * only done between probe points. You will need to press and hold the switch until the
  151. * Phase 1 command can detect it.)
  152. *
  153. * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
  154. * parameter to control the height between Mesh points. The default height for movement
  155. * between Mesh points is 5mm. A smaller number can be used to make this part of the
  156. * calibration less time consuming. You will be running the nozzle down until it just barely
  157. * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
  158. * Use caution and move slowly. It is possible to damage your printer if you are careless.
  159. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
  160. * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
  161. *
  162. * The H parameter can be set negative if your Mesh dips in a large area. You can press
  163. * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
  164. * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
  165. * area you are manually probing. Note that the command tries to start you in a corner
  166. * of the bed where movement will be predictable. You can force the location to be used in
  167. * the distance calculations by using the X and Y parameters. You may find it is helpful to
  168. * print out a Mesh Map (G29 O) to understand where the mesh is invalidated and where
  169. * the nozzle will need to move in order to complete the command. The C parameter is
  170. * available on the Phase 2 command also and indicates the search for points to measure should
  171. * be done based on the current location of the nozzle.
  172. *
  173. * A B parameter is also available for this command and described up above. It places the
  174. * manual probe subsystem into Business Card mode where the thickness of a business care is
  175. * measured and then used to accurately set the nozzle height in all manual probing for the
  176. * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
  177. * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
  178. * better results if you use a flexible Shim that does not compress very much. That makes it
  179. * easier for you to get the nozzle to press with similar amounts of force against the shim so you
  180. * can get accurate measurements. As you are starting to touch the nozzle against the shim try
  181. * to get it to grasp the shim with the same force as when you measured the thickness of the
  182. * shim at the start of the command.
  183. *
  184. * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
  185. * of the Mesh being built.
  186. *
  187. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
  188. * user can go down. If the user specifies the value using the C parameter, the closest invalid
  189. * mesh points to the nozzle will be filled. The user can specify a repeat count using the R
  190. * parameter with the C version of the command.
  191. *
  192. * A second version of the fill command is available if no C constant is specified. Not
  193. * specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
  194. * from the edges of the mesh inward looking for invalid mesh points. It will look at the next
  195. * several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
  196. * upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
  197. * If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that
  198. * puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
  199. * usually safe way to populate the unprobed regions of your mesh so you can continue to the G26
  200. * Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified
  201. * numbers. You should use some scrutiny and caution.
  202. *
  203. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existence of
  204. * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
  205. * (More work and details on doing this later!)
  206. * The System will search for the closest Mesh Point to the nozzle. It will move the
  207. * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
  208. * so it is just barely touching the bed. When the user clicks the control, the System
  209. * will lock in that height for that point in the Mesh Compensation System.
  210. *
  211. * Phase 4 has several additional parameters that the user may find helpful. Phase 4
  212. * can be started at a specific location by specifying an X and Y parameter. Phase 4
  213. * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
  214. * parameter. If the Repetition count is not specified, it is assumed the user wishes
  215. * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
  216. * The command can be terminated early (or after the area of interest has been edited) by
  217. * pressing and holding the encoder wheel until the system recognizes the exit request.
  218. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
  219. *
  220. * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
  221. * information left on the printer's bed from the G26 command it is very straight forward
  222. * and easy to fine tune the Mesh. One concept that is important to remember and that
  223. * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
  224. * If you have too little clearance and not much plastic was extruded in an area, you want to
  225. * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
  226. * RAISE the Mesh Point at that location.
  227. *
  228. *
  229. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  230. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  231. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  232. * execute a G29 P6 C <mean height>.
  233. *
  234. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  235. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  236. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  237. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  238. * 0.000 at the Z Home location.
  239. *
  240. * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
  241. * command is not anticipated to be of much value to the typical user. It is intended
  242. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  243. *
  244. * R # Repeat Repeat this command the specified number of times. If no number is specified the
  245. * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
  246. *
  247. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  248. * current state of the Unified Bed Leveling system in the EEPROM.
  249. *
  250. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  251. * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
  252. * extend to a limit related to the available EEPROM storage.
  253. *
  254. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
  255. * at a later date. The GCode output can be saved and later replayed by the host software
  256. * to reconstruct the current mesh on another machine.
  257. *
  258. * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
  259. *
  260. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  261. * Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This
  262. * is useful when the entire bed does not need to be probed because it will be adjusted.
  263. *
  264. * W What? Display valuable data the Unified Bed Leveling System knows.
  265. *
  266. * X # * * X Location for this line of commands
  267. *
  268. * Y # * * Y Location for this line of commands
  269. *
  270. * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
  271. * by just doing a G29 Z
  272. *
  273. * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
  274. * zprobe_zoffset is added to the calculation.
  275. *
  276. *
  277. * Release Notes:
  278. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  279. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  280. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  281. * respectively.)
  282. *
  283. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  284. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  285. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  286. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  287. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  288. * perform a small print and check out your settings quicker. You do not need to populate the
  289. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  290. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  291. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  292. *
  293. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  294. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  295. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  296. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  297. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  298. * this is going to be helpful to the users!)
  299. *
  300. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  301. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
  302. * we now have the functionality and features of all three systems combined.
  303. */
  304. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
  305. static int g29_verbose_level, phase_value, repetition_cnt,
  306. storage_slot = 0, map_type, grid_size;
  307. static bool repeat_flag, c_flag, x_flag, y_flag;
  308. static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
  309. extern void lcd_setstatus(const char* message, const bool persist);
  310. extern void lcd_setstatuspgm(const char* message, const uint8_t level);
  311. void __attribute__((optimize("O0"))) gcode_G29() {
  312. if (ubl.eeprom_start < 0) {
  313. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  314. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  315. return;
  316. }
  317. // Don't allow auto-leveling without homing first
  318. if (!(code_seen('N') && code_value_bool()) && axis_unhomed_error()) // Warning! Use of 'N' flouts established standards.
  319. home_all_axes();
  320. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  321. // Invalidate Mesh Points. This command is a little bit asymetrical because
  322. // it directly specifies the repetition count and does not use the 'R' parameter.
  323. if (code_seen('I')) {
  324. uint8_t cnt = 0;
  325. repetition_cnt = code_has_value() ? code_value_int() : 1;
  326. while (repetition_cnt--) {
  327. if (cnt > 20) { cnt = 0; idle(); }
  328. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  329. if (location.x_index < 0) {
  330. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  331. break; // No more invalid Mesh Points to populate
  332. }
  333. ubl.z_values[location.x_index][location.y_index] = NAN;
  334. cnt++;
  335. }
  336. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  337. }
  338. if (code_seen('Q')) {
  339. const int test_pattern = code_has_value() ? code_value_int() : -1;
  340. if (!WITHIN(test_pattern, 0, 2)) {
  341. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
  342. return;
  343. }
  344. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  345. switch (test_pattern) {
  346. case 0:
  347. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  348. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  349. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
  350. p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
  351. ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
  352. }
  353. }
  354. break;
  355. case 1:
  356. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  357. ubl.z_values[x][x] += 9.999;
  358. ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  359. }
  360. break;
  361. case 2:
  362. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  363. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  364. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  365. ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
  366. break;
  367. }
  368. }
  369. if (code_seen('J')) {
  370. ubl.save_ubl_active_state_and_disable();
  371. ubl.tilt_mesh_based_on_probed_grid(code_seen('O') || code_seen('M')); // Warning! Use of 'M' flouts established standards.
  372. ubl.restore_ubl_active_state_and_leave();
  373. }
  374. if (code_seen('P')) {
  375. if (WITHIN(phase_value, 0, 1) && ubl.state.eeprom_storage_slot == -1) {
  376. ubl.state.eeprom_storage_slot = 0;
  377. SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.\n");
  378. }
  379. switch (phase_value) {
  380. case 0:
  381. //
  382. // Zero Mesh Data
  383. //
  384. ubl.reset();
  385. SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
  386. break;
  387. case 1:
  388. //
  389. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  390. //
  391. if (!code_seen('C')) {
  392. ubl.invalidate();
  393. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
  394. }
  395. if (g29_verbose_level > 1) {
  396. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos);
  397. SERIAL_PROTOCOLCHAR(',');
  398. SERIAL_PROTOCOL(y_pos);
  399. SERIAL_PROTOCOLLNPGM(").\n");
  400. }
  401. ubl.probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  402. code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U')); // Warning! Use of 'M' flouts established standards.
  403. break;
  404. case 2: {
  405. //
  406. // Manually Probe Mesh in areas that can't be reached by the probe
  407. //
  408. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
  409. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  410. if (!x_flag && !y_flag) {
  411. /**
  412. * Use a good default location for the path.
  413. * The flipped > and < operators in these comparisons is intentional.
  414. * It should cause the probed points to follow a nice path on Cartesian printers.
  415. * It may make sense to have Delta printers default to the center of the bed.
  416. * Until that is decided, this can be forced with the X and Y parameters.
  417. */
  418. #if IS_KINEMATIC
  419. x_pos = X_HOME_POS;
  420. y_pos = Y_HOME_POS;
  421. #else // cartesian
  422. x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
  423. y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
  424. #endif
  425. }
  426. if (code_seen('C')) {
  427. x_pos = current_position[X_AXIS];
  428. y_pos = current_position[Y_AXIS];
  429. }
  430. float height = Z_CLEARANCE_BETWEEN_PROBES;
  431. if (code_seen('B')) {
  432. card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
  433. if (fabs(card_thickness) > 1.5) {
  434. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
  435. return;
  436. }
  437. }
  438. if (code_seen('H') && code_has_value()) height = code_value_float();
  439. if ( !position_is_reachable_xy( x_pos, y_pos )) {
  440. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  441. return;
  442. }
  443. manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M')); // Warning! Use of 'M' flouts established standards.
  444. SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
  445. } break;
  446. case 3: {
  447. /**
  448. * Populate invalid mesh areas. Proceed with caution.
  449. * Two choices are available:
  450. * - Specify a constant with the 'C' parameter.
  451. * - Allow 'G29 P3' to choose a 'reasonable' constant.
  452. */
  453. if (c_flag) {
  454. if (repetition_cnt >= GRID_MAX_POINTS) {
  455. for ( uint8_t x = 0; x < GRID_MAX_POINTS_X; x++ ) {
  456. for ( uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++ ) {
  457. ubl.z_values[x][y] = ubl_constant;
  458. }
  459. }
  460. } else {
  461. while (repetition_cnt--) { // this only populates reachable mesh points near
  462. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  463. if (location.x_index < 0) break; // No more reachable invalid Mesh Points to populate
  464. ubl.z_values[location.x_index][location.y_index] = ubl_constant;
  465. }
  466. }
  467. } else {
  468. smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
  469. }
  470. break;
  471. }
  472. case 4:
  473. //
  474. // Fine Tune (i.e., Edit) the Mesh
  475. //
  476. fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M')); // Warning! Use of 'M' flouts established standards.
  477. break;
  478. case 5: ubl.find_mean_mesh_height(); break;
  479. case 6: ubl.shift_mesh_height(); break;
  480. }
  481. }
  482. if (code_seen('T')) {
  483. float z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level),
  484. z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level),
  485. z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
  486. if ( isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
  487. SERIAL_ERROR_START;
  488. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  489. goto LEAVE;
  490. }
  491. // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
  492. // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
  493. ubl.save_ubl_active_state_and_disable();
  494. z1 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
  495. z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
  496. z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
  497. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  498. ubl.tilt_mesh_based_on_3pts(z1, z2, z3);
  499. ubl.restore_ubl_active_state_and_leave();
  500. }
  501. //
  502. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  503. // good to have the extra information. Soon... we prune this to just a few items
  504. //
  505. if (code_seen('W')) ubl.g29_what_command();
  506. //
  507. // When we are fully debugged, the EEPROM dump command will get deleted also. But
  508. // right now, it is good to have the extra information. Soon... we prune this.
  509. //
  510. if (code_seen('j')) g29_eeprom_dump(); // Warning! Use of lowercase flouts established standards.
  511. //
  512. // When we are fully debugged, this may go away. But there are some valid
  513. // use cases for the users. So we can wait and see what to do with it.
  514. //
  515. if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  516. g29_compare_current_mesh_to_stored_mesh();
  517. //
  518. // Load a Mesh from the EEPROM
  519. //
  520. if (code_seen('L')) { // Load Current Mesh Data
  521. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  522. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  523. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  524. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  525. return;
  526. }
  527. ubl.load_mesh(storage_slot);
  528. ubl.state.eeprom_storage_slot = storage_slot;
  529. SERIAL_PROTOCOLLNPGM("Done.\n");
  530. }
  531. //
  532. // Store a Mesh in the EEPROM
  533. //
  534. if (code_seen('S')) { // Store (or Save) Current Mesh Data
  535. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  536. if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  537. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  538. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  539. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  540. if (!isnan(ubl.z_values[x][y])) {
  541. SERIAL_ECHOPAIR("M421 I ", x);
  542. SERIAL_ECHOPAIR(" J ", y);
  543. SERIAL_ECHOPGM(" Z ");
  544. SERIAL_ECHO_F(ubl.z_values[x][y], 6);
  545. SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x])));
  546. SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y])));
  547. SERIAL_EOL;
  548. }
  549. return;
  550. }
  551. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  552. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  553. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  554. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
  555. goto LEAVE;
  556. }
  557. ubl.store_mesh(storage_slot);
  558. ubl.state.eeprom_storage_slot = storage_slot;
  559. SERIAL_PROTOCOLLNPGM("Done.\n");
  560. }
  561. if (code_seen('O') || code_seen('M')) // Warning! Use of 'M' flouts established standards.
  562. ubl.display_map(code_has_value() ? code_value_int() : 0);
  563. if (code_seen('Z')) {
  564. if (code_has_value())
  565. ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
  566. else {
  567. ubl.save_ubl_active_state_and_disable();
  568. //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
  569. ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware
  570. measured_z = 1.5;
  571. do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
  572. // The user is not going to be locking in a new Z-Offset very often so
  573. // it won't be that painful to spin the Encoder Wheel for 1.5mm
  574. lcd_implementation_clear();
  575. lcd_z_offset_edit_setup(measured_z);
  576. KEEPALIVE_STATE(PAUSED_FOR_USER);
  577. do {
  578. measured_z = lcd_z_offset_edit();
  579. idle();
  580. do_blocking_move_to_z(measured_z);
  581. } while (!ubl_lcd_clicked());
  582. ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
  583. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  584. // or here. So, until we are done looking for a long Encoder Wheel Press,
  585. // we need to take control of the panel
  586. KEEPALIVE_STATE(IN_HANDLER);
  587. lcd_return_to_status();
  588. const millis_t nxt = millis() + 1500UL;
  589. while (ubl_lcd_clicked()) { // debounce and watch for abort
  590. idle();
  591. if (ELAPSED(millis(), nxt)) {
  592. SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
  593. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  594. LCD_MESSAGEPGM("Z-Offset Stopped");
  595. ubl.restore_ubl_active_state_and_leave();
  596. goto LEAVE;
  597. }
  598. }
  599. ubl.has_control_of_lcd_panel = false;
  600. safe_delay(20); // We don't want any switch noise.
  601. ubl.state.z_offset = measured_z;
  602. lcd_implementation_clear();
  603. ubl.restore_ubl_active_state_and_leave();
  604. }
  605. }
  606. LEAVE:
  607. lcd_reset_alert_level();
  608. LCD_MESSAGEPGM("");
  609. lcd_quick_feedback();
  610. ubl.has_control_of_lcd_panel = false;
  611. }
  612. void unified_bed_leveling::find_mean_mesh_height() {
  613. float sum = 0.0;
  614. int n = 0;
  615. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  616. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  617. if (!isnan(ubl.z_values[x][y])) {
  618. sum += ubl.z_values[x][y];
  619. n++;
  620. }
  621. const float mean = sum / n;
  622. //
  623. // Now do the sumation of the squares of difference from mean
  624. //
  625. float sum_of_diff_squared = 0.0;
  626. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  627. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  628. if (!isnan(ubl.z_values[x][y]))
  629. sum_of_diff_squared += sq(ubl.z_values[x][y] - mean);
  630. SERIAL_ECHOLNPAIR("# of samples: ", n);
  631. SERIAL_ECHOPGM("Mean Mesh Height: ");
  632. SERIAL_ECHO_F(mean, 6);
  633. SERIAL_EOL;
  634. const float sigma = sqrt(sum_of_diff_squared / (n + 1));
  635. SERIAL_ECHOPGM("Standard Deviation: ");
  636. SERIAL_ECHO_F(sigma, 6);
  637. SERIAL_EOL;
  638. if (c_flag)
  639. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  640. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  641. if (!isnan(ubl.z_values[x][y]))
  642. ubl.z_values[x][y] -= mean + ubl_constant;
  643. }
  644. void unified_bed_leveling::shift_mesh_height() {
  645. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  646. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  647. if (!isnan(ubl.z_values[x][y]))
  648. ubl.z_values[x][y] += ubl_constant;
  649. }
  650. /**
  651. * Probe all invalidated locations of the mesh that can be reached by the probe.
  652. * This attempts to fill in locations closest to the nozzle's start location first.
  653. */
  654. void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
  655. mesh_index_pair location;
  656. ubl.has_control_of_lcd_panel = true;
  657. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  658. DEPLOY_PROBE();
  659. uint16_t max_iterations = GRID_MAX_POINTS;
  660. do {
  661. if (ubl_lcd_clicked()) {
  662. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  663. lcd_quick_feedback();
  664. STOW_PROBE();
  665. while (ubl_lcd_clicked()) idle();
  666. ubl.has_control_of_lcd_panel = false;
  667. ubl.restore_ubl_active_state_and_leave();
  668. safe_delay(50); // Debounce the Encoder wheel
  669. return;
  670. }
  671. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, do_furthest);
  672. if (location.x_index >= 0) { // mesh point found and is reachable by probe
  673. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  674. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  675. const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
  676. ubl.z_values[location.x_index][location.y_index] = measured_z;
  677. }
  678. if (do_ubl_mesh_map) ubl.display_map(map_type);
  679. } while ((location.x_index >= 0) && (--max_iterations));
  680. STOW_PROBE();
  681. ubl.restore_ubl_active_state_and_leave();
  682. do_blocking_move_to_xy(
  683. constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
  684. constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
  685. );
  686. }
  687. void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
  688. matrix_3x3 rotation;
  689. vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
  690. (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
  691. (z1 - z2) ),
  692. v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
  693. (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
  694. (z3 - z2) ),
  695. normal = vector_3::cross(v1, v2);
  696. normal = normal.get_normal();
  697. /**
  698. * This vector is normal to the tilted plane.
  699. * However, we don't know its direction. We need it to point up. So if
  700. * Z is negative, we need to invert the sign of all components of the vector
  701. */
  702. if (normal.z < 0.0) {
  703. normal.x = -normal.x;
  704. normal.y = -normal.y;
  705. normal.z = -normal.z;
  706. }
  707. rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
  708. if (g29_verbose_level > 2) {
  709. SERIAL_ECHOPGM("bed plane normal = [");
  710. SERIAL_PROTOCOL_F(normal.x, 7);
  711. SERIAL_PROTOCOLCHAR(',');
  712. SERIAL_PROTOCOL_F(normal.y, 7);
  713. SERIAL_PROTOCOLCHAR(',');
  714. SERIAL_PROTOCOL_F(normal.z, 7);
  715. SERIAL_ECHOLNPGM("]");
  716. rotation.debug(PSTR("rotation matrix:"));
  717. }
  718. //
  719. // All of 3 of these points should give us the same d constant
  720. //
  721. float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
  722. d = t + normal.z * z1;
  723. if (g29_verbose_level>2) {
  724. SERIAL_ECHOPGM("D constant: ");
  725. SERIAL_PROTOCOL_F(d, 7);
  726. SERIAL_ECHOLNPGM(" ");
  727. }
  728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  729. if (DEBUGGING(LEVELING)) {
  730. SERIAL_ECHOPGM("d from 1st point: ");
  731. SERIAL_ECHO_F(d, 6);
  732. SERIAL_EOL;
  733. t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
  734. d = t + normal.z * z2;
  735. SERIAL_ECHOPGM("d from 2nd point: ");
  736. SERIAL_ECHO_F(d, 6);
  737. SERIAL_EOL;
  738. t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
  739. d = t + normal.z * z3;
  740. SERIAL_ECHOPGM("d from 3rd point: ");
  741. SERIAL_ECHO_F(d, 6);
  742. SERIAL_EOL;
  743. }
  744. #endif
  745. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  746. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  747. float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
  748. y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
  749. z_tmp = ubl.z_values[i][j];
  750. #if ENABLED(DEBUG_LEVELING_FEATURE)
  751. if (DEBUGGING(LEVELING)) {
  752. SERIAL_ECHOPGM("before rotation = [");
  753. SERIAL_PROTOCOL_F(x_tmp, 7);
  754. SERIAL_PROTOCOLCHAR(',');
  755. SERIAL_PROTOCOL_F(y_tmp, 7);
  756. SERIAL_PROTOCOLCHAR(',');
  757. SERIAL_PROTOCOL_F(z_tmp, 7);
  758. SERIAL_ECHOPGM("] ---> ");
  759. safe_delay(20);
  760. }
  761. #endif
  762. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  763. #if ENABLED(DEBUG_LEVELING_FEATURE)
  764. if (DEBUGGING(LEVELING)) {
  765. SERIAL_ECHOPGM("after rotation = [");
  766. SERIAL_PROTOCOL_F(x_tmp, 7);
  767. SERIAL_PROTOCOLCHAR(',');
  768. SERIAL_PROTOCOL_F(y_tmp, 7);
  769. SERIAL_PROTOCOLCHAR(',');
  770. SERIAL_PROTOCOL_F(z_tmp, 7);
  771. SERIAL_ECHOLNPGM("]");
  772. safe_delay(55);
  773. }
  774. #endif
  775. ubl.z_values[i][j] += z_tmp - d;
  776. }
  777. }
  778. }
  779. float use_encoder_wheel_to_measure_point() {
  780. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  781. delay(50); // debounce
  782. KEEPALIVE_STATE(PAUSED_FOR_USER);
  783. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  784. idle();
  785. if (ubl.encoder_diff) {
  786. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
  787. ubl.encoder_diff = 0;
  788. }
  789. }
  790. KEEPALIVE_STATE(IN_HANDLER);
  791. return current_position[Z_AXIS];
  792. }
  793. static void say_and_take_a_measurement() {
  794. SERIAL_PROTOCOLLNPGM(" and take a measurement.");
  795. }
  796. float measure_business_card_thickness(float &in_height) {
  797. ubl.has_control_of_lcd_panel = true;
  798. ubl.save_ubl_active_state_and_disable(); // Disable bed level correction for probing
  799. do_blocking_move_to_z(in_height);
  800. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  801. //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
  802. stepper.synchronize();
  803. SERIAL_PROTOCOLPGM("Place shim under nozzle");
  804. LCD_MESSAGEPGM("Place shim & measure");
  805. lcd_goto_screen(lcd_status_screen);
  806. say_and_take_a_measurement();
  807. const float z1 = use_encoder_wheel_to_measure_point();
  808. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  809. stepper.synchronize();
  810. SERIAL_PROTOCOLPGM("Remove shim");
  811. LCD_MESSAGEPGM("Remove & measure bed");
  812. say_and_take_a_measurement();
  813. const float z2 = use_encoder_wheel_to_measure_point();
  814. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
  815. const float thickness = abs(z1 - z2);
  816. if (g29_verbose_level > 1) {
  817. SERIAL_PROTOCOLPGM("Business Card is ");
  818. SERIAL_PROTOCOL_F(thickness, 4);
  819. SERIAL_PROTOCOLLNPGM("mm thick.");
  820. }
  821. in_height = current_position[Z_AXIS]; // do manual probing at lower height
  822. ubl.has_control_of_lcd_panel = false;
  823. ubl.restore_ubl_active_state_and_leave();
  824. return thickness;
  825. }
  826. void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
  827. ubl.has_control_of_lcd_panel = true;
  828. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  829. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  830. do_blocking_move_to_xy(lx, ly);
  831. lcd_goto_screen(lcd_status_screen);
  832. mesh_index_pair location;
  833. do {
  834. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
  835. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  836. if (location.x_index < 0 && location.y_index < 0) continue;
  837. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  838. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]),
  839. xProbe = LOGICAL_X_POSITION(rawx),
  840. yProbe = LOGICAL_Y_POSITION(rawy);
  841. if (!position_is_reachable_raw_xy(rawx, rawy)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
  842. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  843. LCD_MESSAGEPGM("Moving to next");
  844. do_blocking_move_to_xy(xProbe, yProbe);
  845. do_blocking_move_to_z(z_clearance);
  846. KEEPALIVE_STATE(PAUSED_FOR_USER);
  847. ubl.has_control_of_lcd_panel = true;
  848. if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
  849. if (code_seen('B')) {LCD_MESSAGEPGM("Place shim & measure");}
  850. else {LCD_MESSAGEPGM("Measure");}
  851. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  852. delay(50); // debounce
  853. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  854. idle();
  855. if (ubl.encoder_diff) {
  856. do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
  857. ubl.encoder_diff = 0;
  858. }
  859. }
  860. const millis_t nxt = millis() + 1500L;
  861. while (ubl_lcd_clicked()) { // debounce and watch for abort
  862. idle();
  863. if (ELAPSED(millis(), nxt)) {
  864. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  865. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  866. lcd_quick_feedback();
  867. while (ubl_lcd_clicked()) idle();
  868. ubl.has_control_of_lcd_panel = false;
  869. KEEPALIVE_STATE(IN_HANDLER);
  870. ubl.restore_ubl_active_state_and_leave();
  871. return;
  872. }
  873. }
  874. ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
  875. if (g29_verbose_level > 2) {
  876. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  877. SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
  878. SERIAL_EOL;
  879. }
  880. } while (location.x_index >= 0 && location.y_index >= 0);
  881. if (do_ubl_mesh_map) ubl.display_map(map_type);
  882. LEAVE:
  883. ubl.restore_ubl_active_state_and_leave();
  884. KEEPALIVE_STATE(IN_HANDLER);
  885. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  886. do_blocking_move_to_xy(lx, ly);
  887. }
  888. static void say_ubl_name() {
  889. SERIAL_PROTOCOLPGM("Unified Bed Leveling ");
  890. }
  891. static void report_ubl_state() {
  892. say_ubl_name();
  893. SERIAL_PROTOCOLPGM("System ");
  894. if (!ubl.state.active) SERIAL_PROTOCOLPGM("de");
  895. SERIAL_PROTOCOLLNPGM("activated.\n");
  896. }
  897. bool g29_parameter_parsing() {
  898. bool err_flag = false;
  899. LCD_MESSAGEPGM("Doing G29 UBL!");
  900. lcd_quick_feedback();
  901. ubl_constant = 0.0;
  902. repetition_cnt = 0;
  903. x_flag = code_seen('X') && code_has_value();
  904. x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
  905. y_flag = code_seen('Y') && code_has_value();
  906. y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
  907. repeat_flag = code_seen('R');
  908. if (repeat_flag) {
  909. repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS;
  910. NOMORE(repetition_cnt, GRID_MAX_POINTS);
  911. if (repetition_cnt < 1) {
  912. SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
  913. return UBL_ERR;
  914. }
  915. }
  916. g29_verbose_level = code_seen('V') ? code_value_int() : 0;
  917. if (!WITHIN(g29_verbose_level, 0, 4)) {
  918. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
  919. err_flag = true;
  920. }
  921. if (code_seen('P')) {
  922. phase_value = code_value_int();
  923. if (!WITHIN(phase_value, 0, 6)) {
  924. SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
  925. err_flag = true;
  926. }
  927. }
  928. if (code_seen('J')) {
  929. grid_size = code_has_value() ? code_value_int() : 3;
  930. if (!WITHIN(grid_size, 2, 9)) {
  931. SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
  932. err_flag = true;
  933. }
  934. }
  935. if (x_flag != y_flag) {
  936. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  937. err_flag = true;
  938. }
  939. if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
  940. SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
  941. err_flag = true;
  942. }
  943. if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
  944. SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
  945. err_flag = true;
  946. }
  947. if (err_flag) return UBL_ERR;
  948. // Activate or deactivate UBL
  949. if (code_seen('A')) {
  950. if (code_seen('D')) {
  951. SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
  952. return UBL_ERR;
  953. }
  954. ubl.state.active = 1;
  955. report_ubl_state();
  956. }
  957. else if (code_seen('D')) {
  958. ubl.state.active = 0;
  959. report_ubl_state();
  960. }
  961. // Set global 'C' flag and its value
  962. if ((c_flag = code_seen('C')))
  963. ubl_constant = code_value_float();
  964. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  965. if (code_seen('F') && code_has_value()) {
  966. const float fh = code_value_float();
  967. if (!WITHIN(fh, 0.0, 100.0)) {
  968. SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
  969. return UBL_ERR;
  970. }
  971. set_z_fade_height(fh);
  972. }
  973. #endif
  974. map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
  975. if (!WITHIN(map_type, 0, 1)) {
  976. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  977. return UBL_ERR;
  978. }
  979. // Check if a map type was specified
  980. if (code_seen('M')) { // Warning! Use of 'M' flouts established standards.
  981. map_type = code_has_value() ? code_value_int() : 0;
  982. if (!WITHIN(map_type, 0, 1)) {
  983. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  984. return UBL_ERR;
  985. }
  986. }
  987. return UBL_OK;
  988. }
  989. /**
  990. * This function goes away after G29 debug is complete. But for right now, it is a handy
  991. * routine to dump binary data structures.
  992. */
  993. /*
  994. void dump(char * const str, const float &f) {
  995. char *ptr;
  996. SERIAL_PROTOCOL(str);
  997. SERIAL_PROTOCOL_F(f, 8);
  998. SERIAL_PROTOCOLPGM(" ");
  999. ptr = (char*)&f;
  1000. for (uint8_t i = 0; i < 4; i++)
  1001. SERIAL_PROTOCOLPAIR(" ", hex_byte(*ptr++));
  1002. SERIAL_PROTOCOLPAIR(" isnan()=", isnan(f));
  1003. SERIAL_PROTOCOLPAIR(" isinf()=", isinf(f));
  1004. if (f == -INFINITY)
  1005. SERIAL_PROTOCOLPGM(" Minus Infinity detected.");
  1006. SERIAL_EOL;
  1007. }
  1008. //*/
  1009. static int ubl_state_at_invocation = 0,
  1010. ubl_state_recursion_chk = 0;
  1011. void unified_bed_leveling::save_ubl_active_state_and_disable() {
  1012. ubl_state_recursion_chk++;
  1013. if (ubl_state_recursion_chk != 1) {
  1014. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  1015. LCD_MESSAGEPGM("save_UBL_active() error");
  1016. lcd_quick_feedback();
  1017. return;
  1018. }
  1019. ubl_state_at_invocation = ubl.state.active;
  1020. ubl.state.active = 0;
  1021. }
  1022. void unified_bed_leveling::restore_ubl_active_state_and_leave() {
  1023. if (--ubl_state_recursion_chk) {
  1024. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  1025. LCD_MESSAGEPGM("restore_UBL_active() error");
  1026. lcd_quick_feedback();
  1027. return;
  1028. }
  1029. ubl.state.active = ubl_state_at_invocation;
  1030. }
  1031. /**
  1032. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  1033. * good to have the extra information. Soon... we prune this to just a few items
  1034. */
  1035. void unified_bed_leveling::g29_what_command() {
  1036. const uint16_t k = E2END - ubl.eeprom_start;
  1037. say_ubl_name();
  1038. SERIAL_PROTOCOLPGM("System Version " UBL_VERSION " ");
  1039. if (ubl.state.active)
  1040. SERIAL_PROTOCOLCHAR('A');
  1041. else
  1042. SERIAL_PROTOCOLPGM("Ina");
  1043. SERIAL_PROTOCOLLNPGM("ctive.\n");
  1044. safe_delay(50);
  1045. if (ubl.state.eeprom_storage_slot == -1)
  1046. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  1047. else {
  1048. SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
  1049. SERIAL_PROTOCOLPGM(" Loaded.");
  1050. }
  1051. SERIAL_EOL;
  1052. safe_delay(50);
  1053. SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
  1054. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1055. SERIAL_PROTOCOL("planner.z_fade_height : ");
  1056. SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
  1057. SERIAL_EOL;
  1058. #endif
  1059. SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
  1060. SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
  1061. SERIAL_EOL;
  1062. SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", hex_address((void*)ubl.eeprom_start));
  1063. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1064. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1065. safe_delay(25);
  1066. SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
  1067. SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
  1068. safe_delay(25);
  1069. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1070. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1071. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[i])), 3);
  1072. SERIAL_PROTOCOLPGM(" ");
  1073. safe_delay(25);
  1074. }
  1075. SERIAL_EOL;
  1076. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1077. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  1078. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[i])), 3);
  1079. SERIAL_PROTOCOLPGM(" ");
  1080. safe_delay(25);
  1081. }
  1082. SERIAL_EOL;
  1083. SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: ", hex_address((void*)ubl.eeprom_start));
  1084. SERIAL_PROTOCOLLNPAIR("end of EEPROM: ", hex_address((void*)E2END));
  1085. safe_delay(25);
  1086. SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
  1087. SERIAL_EOL;
  1088. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
  1089. SERIAL_EOL;
  1090. safe_delay(25);
  1091. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)k));
  1092. safe_delay(25);
  1093. SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
  1094. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1095. safe_delay(25);
  1096. SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1097. SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1098. safe_delay(25);
  1099. SERIAL_EOL;
  1100. SERIAL_ECHOPGM("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X));
  1101. SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_X );
  1102. SERIAL_ECHOPGM("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y));
  1103. SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_Y );
  1104. safe_delay(25);
  1105. SERIAL_ECHOPGM("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X));
  1106. SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_X);
  1107. SERIAL_ECHOPGM("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y));
  1108. SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_Y);
  1109. safe_delay(25);
  1110. if (!ubl.sanity_check()) {
  1111. say_ubl_name();
  1112. SERIAL_PROTOCOLLNPGM("sanity checks passed.");
  1113. }
  1114. }
  1115. /**
  1116. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1117. * right now, it is good to have the extra information. Soon... we prune this.
  1118. */
  1119. void g29_eeprom_dump() {
  1120. unsigned char cccc;
  1121. uint16_t kkkk;
  1122. SERIAL_ECHO_START;
  1123. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1124. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1125. if (!(i & 0x3)) idle();
  1126. print_hex_word(i);
  1127. SERIAL_ECHOPGM(": ");
  1128. for (uint16_t j = 0; j < 16; j++) {
  1129. kkkk = i + j;
  1130. eeprom_read_block(&cccc, (void *)kkkk, 1);
  1131. print_hex_byte(cccc);
  1132. SERIAL_ECHO(' ');
  1133. }
  1134. SERIAL_EOL;
  1135. }
  1136. SERIAL_EOL;
  1137. }
  1138. /**
  1139. * When we are fully debugged, this may go away. But there are some valid
  1140. * use cases for the users. So we can wait and see what to do with it.
  1141. */
  1142. void g29_compare_current_mesh_to_stored_mesh() {
  1143. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1144. if (!code_has_value()) {
  1145. SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
  1146. return;
  1147. }
  1148. storage_slot = code_value_int();
  1149. int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
  1150. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  1151. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  1152. return;
  1153. }
  1154. j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
  1155. eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
  1156. SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
  1157. SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_address((void*)j)); // Soon, we can remove the extra clutter of printing
  1158. // the address in the EEPROM where the Mesh is stored.
  1159. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1160. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1161. ubl.z_values[x][y] -= tmp_z_values[x][y];
  1162. }
  1163. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
  1164. mesh_index_pair out_mesh;
  1165. out_mesh.x_index = out_mesh.y_index = -1;
  1166. const float current_x = current_position[X_AXIS],
  1167. current_y = current_position[Y_AXIS];
  1168. // Get our reference position. Either the nozzle or probe location.
  1169. const float px = lx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1170. py = ly - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1171. float closest = far_flag ? -99999.99 : 99999.99;
  1172. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1173. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1174. if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
  1175. || (type == REAL && !isnan(ubl.z_values[i][j]))
  1176. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1177. ) {
  1178. // We only get here if we found a Mesh Point of the specified type
  1179. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // Check if we can probe this mesh location
  1180. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
  1181. // If using the probe as the reference there are some unreachable locations.
  1182. // Also for round beds, there are grid points outside the bed that nozzle can't reach.
  1183. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1184. bool reachable = probe_as_reference ?
  1185. position_is_reachable_by_probe_raw_xy( rawx, rawy ) :
  1186. position_is_reachable_raw_xy( rawx, rawy );
  1187. if ( ! reachable )
  1188. continue;
  1189. // Reachable. Check if it's the closest location to the nozzle.
  1190. // Add in a weighting factor that considers the current location of the nozzle.
  1191. const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
  1192. my = LOGICAL_Y_POSITION(rawy);
  1193. float distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
  1194. /**
  1195. * If doing the far_flag action, we want to be as far as possible
  1196. * from the starting point and from any other probed points. We
  1197. * want the next point spread out and filling in any blank spaces
  1198. * in the mesh. So we add in some of the distance to every probed
  1199. * point we can find.
  1200. */
  1201. if (far_flag) {
  1202. for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
  1203. for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
  1204. if (!isnan(ubl.z_values[k][l])) {
  1205. distance += sq(i - k) * (MESH_X_DIST) * .05
  1206. + sq(j - l) * (MESH_Y_DIST) * .05;
  1207. }
  1208. }
  1209. }
  1210. }
  1211. // if far_flag, look for farthest point
  1212. if (far_flag == (distance > closest) && distance != closest) {
  1213. closest = distance; // We found a closer/farther location with
  1214. out_mesh.x_index = i; // the specified type of mesh value.
  1215. out_mesh.y_index = j;
  1216. out_mesh.distance = closest;
  1217. }
  1218. }
  1219. } // for j
  1220. } // for i
  1221. return out_mesh;
  1222. }
  1223. void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
  1224. if (!code_seen('R')) // fine_tune_mesh() is special. If no repetion count flag is specified
  1225. repetition_cnt = 1; // we know to do exactly one mesh location. Otherwise we use what the parser decided.
  1226. mesh_index_pair location;
  1227. uint16_t not_done[16];
  1228. int32_t round_off;
  1229. if ( ! position_is_reachable_xy( lx, ly )) {
  1230. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  1231. return;
  1232. }
  1233. ubl.save_ubl_active_state_and_disable();
  1234. memset(not_done, 0xFF, sizeof(not_done));
  1235. LCD_MESSAGEPGM("Fine Tuning Mesh");
  1236. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1237. do_blocking_move_to_xy(lx, ly);
  1238. do {
  1239. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
  1240. if (location.x_index < 0 ) break; // stop when we can't find any more reachable points.
  1241. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1242. // different location the next time through the loop
  1243. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  1244. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  1245. if ( ! position_is_reachable_raw_xy( rawx, rawy )) { // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
  1246. break;
  1247. }
  1248. float new_z = ubl.z_values[location.x_index][location.y_index];
  1249. if (!isnan(new_z)) { //can't fine tune a point that hasn't been probed
  1250. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
  1251. do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
  1252. round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
  1253. new_z = float(round_off) / 1000.0;
  1254. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1255. ubl.has_control_of_lcd_panel = true;
  1256. if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
  1257. lcd_implementation_clear();
  1258. lcd_mesh_edit_setup(new_z);
  1259. do {
  1260. new_z = lcd_mesh_edit();
  1261. idle();
  1262. } while (!ubl_lcd_clicked());
  1263. lcd_return_to_status();
  1264. // There is a race condition for the Encoder Wheel getting clicked.
  1265. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  1266. // or here.
  1267. ubl.has_control_of_lcd_panel = true;
  1268. }
  1269. const millis_t nxt = millis() + 1500UL;
  1270. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1271. idle();
  1272. if (ELAPSED(millis(), nxt)) {
  1273. lcd_return_to_status();
  1274. //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
  1275. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1276. LCD_MESSAGEPGM("Mesh Editing Stopped");
  1277. while (ubl_lcd_clicked()) idle();
  1278. goto FINE_TUNE_EXIT;
  1279. }
  1280. }
  1281. safe_delay(20); // We don't want any switch noise.
  1282. ubl.z_values[location.x_index][location.y_index] = new_z;
  1283. lcd_implementation_clear();
  1284. } while (( location.x_index >= 0 ) && (--repetition_cnt>0));
  1285. FINE_TUNE_EXIT:
  1286. ubl.has_control_of_lcd_panel = false;
  1287. KEEPALIVE_STATE(IN_HANDLER);
  1288. if (do_ubl_mesh_map) ubl.display_map(map_type);
  1289. ubl.restore_ubl_active_state_and_leave();
  1290. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1291. do_blocking_move_to_xy(lx, ly);
  1292. LCD_MESSAGEPGM("Done Editing Mesh");
  1293. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1294. }
  1295. /**
  1296. * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
  1297. * If an invalid location is found, use the next two points (if valid) to
  1298. * calculate a 'reasonable' value for the unprobed mesh point.
  1299. */
  1300. bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  1301. const int8_t x1 = x + xdir, x2 = x1 + xdir,
  1302. y1 = y + ydir, y2 = y1 + ydir;
  1303. // A NAN next to a pair of real values?
  1304. if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) {
  1305. if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2]) // Angled downward?
  1306. ubl.z_values[x][y] = ubl.z_values[x1][y1]; // Use nearest (maybe a little too high.)
  1307. else
  1308. ubl.z_values[x][y] = 2.0 * ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward...
  1309. return true;
  1310. }
  1311. return false;
  1312. }
  1313. typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
  1314. void smart_fill_mesh() {
  1315. const smart_fill_info info[] = {
  1316. { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
  1317. { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
  1318. { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
  1319. { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } // Right side of the mesh looking left
  1320. };
  1321. for (uint8_t i = 0; i < COUNT(info); ++i) {
  1322. const smart_fill_info &f = info[i];
  1323. if (f.yfirst) {
  1324. const int8_t dir = f.ex > f.sx ? 1 : -1;
  1325. for (uint8_t y = f.sy; y != f.ey; ++y)
  1326. for (uint8_t x = f.sx; x != f.ex; x += dir)
  1327. if (smart_fill_one(x, y, dir, 0)) break;
  1328. }
  1329. else {
  1330. const int8_t dir = f.ey > f.sy ? 1 : -1;
  1331. for (uint8_t x = f.sx; x != f.ex; ++x)
  1332. for (uint8_t y = f.sy; y != f.ey; y += dir)
  1333. if (smart_fill_one(x, y, 0, dir)) break;
  1334. }
  1335. }
  1336. }
  1337. void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
  1338. constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
  1339. x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
  1340. y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
  1341. y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
  1342. const float dx = float(x_max - x_min) / (grid_size - 1.0),
  1343. dy = float(y_max - y_min) / (grid_size - 1.0);
  1344. struct linear_fit_data lsf_results;
  1345. incremental_LSF_reset(&lsf_results);
  1346. bool zig_zag = false;
  1347. for (uint8_t ix = 0; ix < grid_size; ix++) {
  1348. const float x = float(x_min) + ix * dx;
  1349. for (int8_t iy = 0; iy < grid_size; iy++) {
  1350. const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy);
  1351. float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level);
  1352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1353. if (DEBUGGING(LEVELING)) {
  1354. SERIAL_CHAR('(');
  1355. SERIAL_PROTOCOL_F(x, 7);
  1356. SERIAL_CHAR(',');
  1357. SERIAL_PROTOCOL_F(y, 7);
  1358. SERIAL_ECHOPGM(") logical: ");
  1359. SERIAL_CHAR('(');
  1360. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
  1361. SERIAL_CHAR(',');
  1362. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
  1363. SERIAL_ECHOPGM(") measured: ");
  1364. SERIAL_PROTOCOL_F(measured_z, 7);
  1365. SERIAL_ECHOPGM(" correction: ");
  1366. SERIAL_PROTOCOL_F(ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
  1367. }
  1368. #endif
  1369. measured_z -= ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
  1370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1371. if (DEBUGGING(LEVELING)) {
  1372. SERIAL_ECHOPGM(" final >>>---> ");
  1373. SERIAL_PROTOCOL_F(measured_z, 7);
  1374. SERIAL_EOL;
  1375. }
  1376. #endif
  1377. incremental_LSF(&lsf_results, x, y, measured_z);
  1378. }
  1379. zig_zag ^= true;
  1380. }
  1381. if (finish_incremental_LSF(&lsf_results)) {
  1382. SERIAL_ECHOPGM("Could not complete LSF!");
  1383. return;
  1384. }
  1385. if (g29_verbose_level > 3) {
  1386. SERIAL_ECHOPGM("LSF Results A=");
  1387. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1388. SERIAL_ECHOPGM(" B=");
  1389. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1390. SERIAL_ECHOPGM(" D=");
  1391. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1392. SERIAL_EOL;
  1393. }
  1394. vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
  1395. if (g29_verbose_level > 2) {
  1396. SERIAL_ECHOPGM("bed plane normal = [");
  1397. SERIAL_PROTOCOL_F(normal.x, 7);
  1398. SERIAL_PROTOCOLCHAR(',');
  1399. SERIAL_PROTOCOL_F(normal.y, 7);
  1400. SERIAL_PROTOCOLCHAR(',');
  1401. SERIAL_PROTOCOL_F(normal.z, 7);
  1402. SERIAL_ECHOLNPGM("]");
  1403. }
  1404. matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
  1405. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1406. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1407. float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
  1408. y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
  1409. z_tmp = ubl.z_values[i][j];
  1410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1411. if (DEBUGGING(LEVELING)) {
  1412. SERIAL_ECHOPGM("before rotation = [");
  1413. SERIAL_PROTOCOL_F(x_tmp, 7);
  1414. SERIAL_PROTOCOLCHAR(',');
  1415. SERIAL_PROTOCOL_F(y_tmp, 7);
  1416. SERIAL_PROTOCOLCHAR(',');
  1417. SERIAL_PROTOCOL_F(z_tmp, 7);
  1418. SERIAL_ECHOPGM("] ---> ");
  1419. safe_delay(20);
  1420. }
  1421. #endif
  1422. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  1423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1424. if (DEBUGGING(LEVELING)) {
  1425. SERIAL_ECHOPGM("after rotation = [");
  1426. SERIAL_PROTOCOL_F(x_tmp, 7);
  1427. SERIAL_PROTOCOLCHAR(',');
  1428. SERIAL_PROTOCOL_F(y_tmp, 7);
  1429. SERIAL_PROTOCOLCHAR(',');
  1430. SERIAL_PROTOCOL_F(z_tmp, 7);
  1431. SERIAL_ECHOLNPGM("]");
  1432. safe_delay(55);
  1433. }
  1434. #endif
  1435. ubl.z_values[i][j] += z_tmp - lsf_results.D;
  1436. }
  1437. }
  1438. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1439. if (DEBUGGING(LEVELING)) {
  1440. rotation.debug(PSTR("rotation matrix:"));
  1441. SERIAL_ECHOPGM("LSF Results A=");
  1442. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1443. SERIAL_ECHOPGM(" B=");
  1444. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1445. SERIAL_ECHOPGM(" D=");
  1446. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1447. SERIAL_EOL;
  1448. safe_delay(55);
  1449. SERIAL_ECHOPGM("bed plane normal = [");
  1450. SERIAL_PROTOCOL_F(normal.x, 7);
  1451. SERIAL_PROTOCOLCHAR(',');
  1452. SERIAL_PROTOCOL_F(normal.y, 7);
  1453. SERIAL_PROTOCOLCHAR(',');
  1454. SERIAL_PROTOCOL_F(normal.z, 7);
  1455. SERIAL_ECHOPGM("]\n");
  1456. SERIAL_EOL;
  1457. }
  1458. #endif
  1459. }
  1460. #endif // AUTO_BED_LEVELING_UBL