My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 184KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M48 - Measure Z_Probe repeatability. M48 [n # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  97. // M80 - Turn on Power Supply
  98. // M81 - Turn off Power Supply
  99. // M82 - Set E codes absolute (default)
  100. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  101. // M84 - Disable steppers until next move,
  102. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  103. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. // M92 - Set axis_steps_per_unit - same syntax as G92
  105. // M104 - Set extruder target temp
  106. // M105 - Read current temp
  107. // M106 - Fan on
  108. // M107 - Fan off
  109. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  110. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  111. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  112. // M112 - Emergency stop
  113. // M114 - Output current position to serial port
  114. // M115 - Capabilities string
  115. // M117 - display message
  116. // M119 - Output Endstop status to serial port
  117. // M120 - Enable endstop detection
  118. // M121 - Disable endstop detection
  119. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  120. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  121. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  123. // M140 - Set bed target temp
  124. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  125. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  127. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  128. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  129. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  130. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  131. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  132. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  133. // M206 - Set additional homing offset
  134. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  135. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  136. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  137. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  138. // M220 S<factor in percent>- set speed factor override percentage
  139. // M221 S<factor in percent>- set extrude factor override percentage
  140. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  141. // M240 - Trigger a camera to take a photograph
  142. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  143. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  144. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  145. // M301 - Set PID parameters P I and D
  146. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  147. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  148. // M304 - Set bed PID parameters P I and D
  149. // M380 - Activate solenoid on active extruder
  150. // M381 - Disable all solenoids
  151. // M400 - Finish all moves
  152. // M401 - Lower z-probe if present
  153. // M402 - Raise z-probe if present
  154. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  155. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  156. // M406 - Turn off Filament Sensor extrusion control
  157. // M407 - Display measured filament diameter
  158. // M500 - Store parameters in EEPROM
  159. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  160. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  161. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  162. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  163. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  164. // M665 - Set delta configurations
  165. // M666 - Set delta endstop adjustment
  166. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  167. // M907 - Set digital trimpot motor current using axis codes.
  168. // M908 - Control digital trimpot directly.
  169. // M350 - Set microstepping mode.
  170. // M351 - Toggle MS1 MS2 pins directly.
  171. // ************ SCARA Specific - This can change to suit future G-code regulations
  172. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  173. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  174. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  175. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  176. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  177. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  178. //************* SCARA End ***************
  179. // M928 - Start SD logging (M928 filename.g) - ended by M29
  180. // M999 - Restart after being stopped by error
  181. #ifdef SDSUPPORT
  182. CardReader card;
  183. #endif
  184. float homing_feedrate[] = HOMING_FEEDRATE;
  185. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  186. int feedmultiply = 100; //100->1 200->2
  187. int saved_feedmultiply;
  188. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  189. bool volumetric_enabled = false;
  190. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  191. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  192. float current_position[NUM_AXIS] = { 0.0 };
  193. float home_offset[3] = { 0 };
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = { false };
  197. uint8_t active_extruder = 0;
  198. int fanSpeed = 0;
  199. bool cancel_heatup = false;
  200. const char errormagic[] PROGMEM = "Error:";
  201. const char echomagic[] PROGMEM = "echo:";
  202. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  203. static float destination[NUM_AXIS] = { 0 };
  204. static float offset[3] = { 0 };
  205. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  206. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  207. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  208. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  209. static int bufindr = 0;
  210. static int bufindw = 0;
  211. static int buflen = 0;
  212. static char serial_char;
  213. static int serial_count = 0;
  214. static boolean comment_mode = false;
  215. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  216. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  217. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  218. // Inactivity shutdown
  219. unsigned long previous_millis_cmd = 0;
  220. static unsigned long max_inactive_time = 0;
  221. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  222. unsigned long starttime = 0; ///< Print job start time
  223. unsigned long stoptime = 0; ///< Print job stop time
  224. static uint8_t target_extruder;
  225. bool Stopped = false;
  226. bool CooldownNoWait = true;
  227. bool target_direction;
  228. #ifdef ENABLE_AUTO_BED_LEVELING
  229. int xy_travel_speed = XY_TRAVEL_SPEED;
  230. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  231. #endif
  232. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  233. float z_endstop_adj = 0;
  234. #endif
  235. // Extruder offsets
  236. #if EXTRUDERS > 1
  237. #ifndef EXTRUDER_OFFSET_X
  238. #define EXTRUDER_OFFSET_X { 0 }
  239. #endif
  240. #ifndef EXTRUDER_OFFSET_Y
  241. #define EXTRUDER_OFFSET_Y { 0 }
  242. #endif
  243. float extruder_offset[][EXTRUDERS] = {
  244. EXTRUDER_OFFSET_X,
  245. EXTRUDER_OFFSET_Y
  246. #ifdef DUAL_X_CARRIAGE
  247. , { 0 } // supports offsets in XYZ plane
  248. #endif
  249. };
  250. #endif
  251. #ifdef SERVO_ENDSTOPS
  252. int servo_endstops[] = SERVO_ENDSTOPS;
  253. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  254. #endif
  255. #ifdef BARICUDA
  256. int ValvePressure = 0;
  257. int EtoPPressure = 0;
  258. #endif
  259. #ifdef FWRETRACT
  260. bool autoretract_enabled = false;
  261. bool retracted[EXTRUDERS] = { false };
  262. bool retracted_swap[EXTRUDERS] = { false };
  263. float retract_length = RETRACT_LENGTH;
  264. float retract_length_swap = RETRACT_LENGTH_SWAP;
  265. float retract_feedrate = RETRACT_FEEDRATE;
  266. float retract_zlift = RETRACT_ZLIFT;
  267. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  268. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  269. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  270. #endif // FWRETRACT
  271. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  272. bool powersupply =
  273. #ifdef PS_DEFAULT_OFF
  274. false
  275. #else
  276. true
  277. #endif
  278. ;
  279. #endif
  280. #ifdef DELTA
  281. float delta[3] = { 0 };
  282. #define SIN_60 0.8660254037844386
  283. #define COS_60 0.5
  284. float endstop_adj[3] = { 0 };
  285. // these are the default values, can be overriden with M665
  286. float delta_radius = DELTA_RADIUS;
  287. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  288. float delta_tower1_y = -COS_60 * delta_radius;
  289. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  290. float delta_tower2_y = -COS_60 * delta_radius;
  291. float delta_tower3_x = 0; // back middle tower
  292. float delta_tower3_y = delta_radius;
  293. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  294. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  295. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  296. #ifdef ENABLE_AUTO_BED_LEVELING
  297. int delta_grid_spacing[2] = { 0, 0 };
  298. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  299. #endif
  300. #else
  301. static bool home_all_axis = true;
  302. #endif
  303. #ifdef SCARA
  304. static float delta[3] = { 0 };
  305. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  306. #endif
  307. #ifdef FILAMENT_SENSOR
  308. //Variables for Filament Sensor input
  309. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  310. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  311. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  312. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  313. int delay_index1 = 0; //index into ring buffer
  314. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  315. float delay_dist = 0; //delay distance counter
  316. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  317. #endif
  318. #ifdef FILAMENT_RUNOUT_SENSOR
  319. static bool filrunoutEnqued = false;
  320. #endif
  321. #ifdef SDSUPPORT
  322. static bool fromsd[BUFSIZE];
  323. #endif
  324. #if NUM_SERVOS > 0
  325. Servo servos[NUM_SERVOS];
  326. #endif
  327. #ifdef CHDK
  328. unsigned long chdkHigh = 0;
  329. boolean chdkActive = false;
  330. #endif
  331. //===========================================================================
  332. //================================ Functions ================================
  333. //===========================================================================
  334. void get_arc_coordinates();
  335. bool setTargetedHotend(int code);
  336. void serial_echopair_P(const char *s_P, float v)
  337. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  338. void serial_echopair_P(const char *s_P, double v)
  339. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  340. void serial_echopair_P(const char *s_P, unsigned long v)
  341. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  342. #ifdef SDSUPPORT
  343. #include "SdFatUtil.h"
  344. int freeMemory() { return SdFatUtil::FreeRam(); }
  345. #else
  346. extern "C" {
  347. extern unsigned int __bss_end;
  348. extern unsigned int __heap_start;
  349. extern void *__brkval;
  350. int freeMemory() {
  351. int free_memory;
  352. if ((int)__brkval == 0)
  353. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  354. else
  355. free_memory = ((int)&free_memory) - ((int)__brkval);
  356. return free_memory;
  357. }
  358. }
  359. #endif //!SDSUPPORT
  360. //Injects the next command from the pending sequence of commands, when possible
  361. //Return false if and only if no command was pending
  362. static bool drain_queued_commands_P() {
  363. if (!queued_commands_P) return false;
  364. // Get the next 30 chars from the sequence of gcodes to run
  365. char cmd[30];
  366. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  367. cmd[sizeof(cmd) - 1] = '\0';
  368. // Look for the end of line, or the end of sequence
  369. size_t i = 0;
  370. char c;
  371. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  372. cmd[i] = '\0';
  373. if (enquecommand(cmd)) { // buffer was not full (else we will retry later)
  374. if (c)
  375. queued_commands_P += i + 1; // move to next command
  376. else
  377. queued_commands_P = NULL; // will have no more commands in the sequence
  378. }
  379. return true;
  380. }
  381. //Record one or many commands to run from program memory.
  382. //Aborts the current queue, if any.
  383. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  384. void enquecommands_P(const char* pgcode) {
  385. queued_commands_P = pgcode;
  386. drain_queued_commands_P(); // first command executed asap (when possible)
  387. }
  388. //adds a single command to the main command buffer, from RAM
  389. //that is really done in a non-safe way.
  390. //needs overworking someday
  391. //Returns false if it failed to do so
  392. bool enquecommand(const char *cmd)
  393. {
  394. if(*cmd==';')
  395. return false;
  396. if(buflen >= BUFSIZE)
  397. return false;
  398. //this is dangerous if a mixing of serial and this happens
  399. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  400. SERIAL_ECHO_START;
  401. SERIAL_ECHOPGM(MSG_Enqueing);
  402. SERIAL_ECHO(cmdbuffer[bufindw]);
  403. SERIAL_ECHOLNPGM("\"");
  404. bufindw= (bufindw + 1)%BUFSIZE;
  405. buflen += 1;
  406. return true;
  407. }
  408. void setup_killpin()
  409. {
  410. #if HAS_KILL
  411. SET_INPUT(KILL_PIN);
  412. WRITE(KILL_PIN, HIGH);
  413. #endif
  414. }
  415. void setup_filrunoutpin()
  416. {
  417. #if HAS_FILRUNOUT
  418. pinMode(FILRUNOUT_PIN, INPUT);
  419. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  420. WRITE(FILLRUNOUT_PIN, HIGH);
  421. #endif
  422. #endif
  423. }
  424. // Set home pin
  425. void setup_homepin(void)
  426. {
  427. #if HAS_HOME
  428. SET_INPUT(HOME_PIN);
  429. WRITE(HOME_PIN, HIGH);
  430. #endif
  431. }
  432. void setup_photpin()
  433. {
  434. #if HAS_PHOTOGRAPH
  435. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  436. #endif
  437. }
  438. void setup_powerhold()
  439. {
  440. #if HAS_SUICIDE
  441. OUT_WRITE(SUICIDE_PIN, HIGH);
  442. #endif
  443. #if HAS_POWER_SWITCH
  444. #ifdef PS_DEFAULT_OFF
  445. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  446. #else
  447. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  448. #endif
  449. #endif
  450. }
  451. void suicide()
  452. {
  453. #if HAS_SUICIDE
  454. OUT_WRITE(SUICIDE_PIN, LOW);
  455. #endif
  456. }
  457. void servo_init()
  458. {
  459. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  460. servos[0].attach(SERVO0_PIN);
  461. #endif
  462. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  463. servos[1].attach(SERVO1_PIN);
  464. #endif
  465. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  466. servos[2].attach(SERVO2_PIN);
  467. #endif
  468. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  469. servos[3].attach(SERVO3_PIN);
  470. #endif
  471. // Set position of Servo Endstops that are defined
  472. #ifdef SERVO_ENDSTOPS
  473. for (int i = 0; i < 3; i++)
  474. if (servo_endstops[i] >= 0)
  475. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  476. #endif
  477. #if SERVO_LEVELING
  478. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  479. servos[servo_endstops[Z_AXIS]].detach();
  480. #endif
  481. }
  482. void setup()
  483. {
  484. setup_killpin();
  485. setup_filrunoutpin();
  486. setup_powerhold();
  487. MYSERIAL.begin(BAUDRATE);
  488. SERIAL_PROTOCOLLNPGM("start");
  489. SERIAL_ECHO_START;
  490. // Check startup - does nothing if bootloader sets MCUSR to 0
  491. byte mcu = MCUSR;
  492. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  493. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  494. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  495. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  496. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  497. MCUSR=0;
  498. SERIAL_ECHOPGM(MSG_MARLIN);
  499. SERIAL_ECHOLNPGM(STRING_VERSION);
  500. #ifdef STRING_VERSION_CONFIG_H
  501. #ifdef STRING_CONFIG_H_AUTHOR
  502. SERIAL_ECHO_START;
  503. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  504. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  505. SERIAL_ECHOPGM(MSG_AUTHOR);
  506. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  507. SERIAL_ECHOPGM("Compiled: ");
  508. SERIAL_ECHOLNPGM(__DATE__);
  509. #endif // STRING_CONFIG_H_AUTHOR
  510. #endif // STRING_VERSION_CONFIG_H
  511. SERIAL_ECHO_START;
  512. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  513. SERIAL_ECHO(freeMemory());
  514. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  515. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  516. #ifdef SDSUPPORT
  517. for(int8_t i = 0; i < BUFSIZE; i++)
  518. {
  519. fromsd[i] = false;
  520. }
  521. #endif //!SDSUPPORT
  522. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  523. Config_RetrieveSettings();
  524. tp_init(); // Initialize temperature loop
  525. plan_init(); // Initialize planner;
  526. watchdog_init();
  527. st_init(); // Initialize stepper, this enables interrupts!
  528. setup_photpin();
  529. servo_init();
  530. lcd_init();
  531. _delay_ms(1000); // wait 1sec to display the splash screen
  532. #if HAS_CONTROLLERFAN
  533. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  534. #endif
  535. #ifdef DIGIPOT_I2C
  536. digipot_i2c_init();
  537. #endif
  538. #ifdef Z_PROBE_SLED
  539. pinMode(SERVO0_PIN, OUTPUT);
  540. digitalWrite(SERVO0_PIN, LOW); // turn it off
  541. #endif // Z_PROBE_SLED
  542. setup_homepin();
  543. #ifdef STAT_LED_RED
  544. pinMode(STAT_LED_RED, OUTPUT);
  545. digitalWrite(STAT_LED_RED, LOW); // turn it off
  546. #endif
  547. #ifdef STAT_LED_BLUE
  548. pinMode(STAT_LED_BLUE, OUTPUT);
  549. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  550. #endif
  551. }
  552. void loop() {
  553. if (buflen < BUFSIZE - 1) get_command();
  554. #ifdef SDSUPPORT
  555. card.checkautostart(false);
  556. #endif
  557. if (buflen) {
  558. #ifdef SDSUPPORT
  559. if (card.saving) {
  560. if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
  561. card.write_command(cmdbuffer[bufindr]);
  562. if (card.logging)
  563. process_commands();
  564. else
  565. SERIAL_PROTOCOLLNPGM(MSG_OK);
  566. }
  567. else {
  568. card.closefile();
  569. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  570. }
  571. }
  572. else
  573. process_commands();
  574. #else
  575. process_commands();
  576. #endif // SDSUPPORT
  577. buflen--;
  578. bufindr = (bufindr + 1) % BUFSIZE;
  579. }
  580. // Check heater every n milliseconds
  581. manage_heater();
  582. manage_inactivity();
  583. checkHitEndstops();
  584. lcd_update();
  585. }
  586. void get_command()
  587. {
  588. if (drain_queued_commands_P()) // priority is given to non-serial commands
  589. return;
  590. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  591. serial_char = MYSERIAL.read();
  592. if(serial_char == '\n' ||
  593. serial_char == '\r' ||
  594. serial_count >= (MAX_CMD_SIZE - 1) )
  595. {
  596. // end of line == end of comment
  597. comment_mode = false;
  598. if(!serial_count) {
  599. // short cut for empty lines
  600. return;
  601. }
  602. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  603. #ifdef SDSUPPORT
  604. fromsd[bufindw] = false;
  605. #endif //!SDSUPPORT
  606. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  607. {
  608. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  609. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  610. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  611. SERIAL_ERROR_START;
  612. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  613. SERIAL_ERRORLN(gcode_LastN);
  614. //Serial.println(gcode_N);
  615. FlushSerialRequestResend();
  616. serial_count = 0;
  617. return;
  618. }
  619. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  620. {
  621. byte checksum = 0;
  622. byte count = 0;
  623. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  624. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  625. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  626. SERIAL_ERROR_START;
  627. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  628. SERIAL_ERRORLN(gcode_LastN);
  629. FlushSerialRequestResend();
  630. serial_count = 0;
  631. return;
  632. }
  633. //if no errors, continue parsing
  634. }
  635. else
  636. {
  637. SERIAL_ERROR_START;
  638. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  639. SERIAL_ERRORLN(gcode_LastN);
  640. FlushSerialRequestResend();
  641. serial_count = 0;
  642. return;
  643. }
  644. gcode_LastN = gcode_N;
  645. //if no errors, continue parsing
  646. }
  647. else // if we don't receive 'N' but still see '*'
  648. {
  649. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  650. {
  651. SERIAL_ERROR_START;
  652. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  653. SERIAL_ERRORLN(gcode_LastN);
  654. serial_count = 0;
  655. return;
  656. }
  657. }
  658. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  659. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  660. switch(strtol(strchr_pointer + 1, NULL, 10)){
  661. case 0:
  662. case 1:
  663. case 2:
  664. case 3:
  665. if (Stopped == true) {
  666. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  667. LCD_MESSAGEPGM(MSG_STOPPED);
  668. }
  669. break;
  670. default:
  671. break;
  672. }
  673. }
  674. //If command was e-stop process now
  675. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  676. kill();
  677. bufindw = (bufindw + 1)%BUFSIZE;
  678. buflen += 1;
  679. serial_count = 0; //clear buffer
  680. }
  681. else if(serial_char == '\\') { //Handle escapes
  682. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  683. // if we have one more character, copy it over
  684. serial_char = MYSERIAL.read();
  685. cmdbuffer[bufindw][serial_count++] = serial_char;
  686. }
  687. //otherwise do nothing
  688. }
  689. else { // its not a newline, carriage return or escape char
  690. if(serial_char == ';') comment_mode = true;
  691. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  692. }
  693. }
  694. #ifdef SDSUPPORT
  695. if(!card.sdprinting || serial_count!=0){
  696. return;
  697. }
  698. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  699. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  700. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  701. static bool stop_buffering=false;
  702. if(buflen==0) stop_buffering=false;
  703. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  704. int16_t n=card.get();
  705. serial_char = (char)n;
  706. if(serial_char == '\n' ||
  707. serial_char == '\r' ||
  708. (serial_char == '#' && comment_mode == false) ||
  709. (serial_char == ':' && comment_mode == false) ||
  710. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  711. {
  712. if(card.eof()){
  713. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  714. stoptime=millis();
  715. char time[30];
  716. unsigned long t=(stoptime-starttime)/1000;
  717. int hours, minutes;
  718. minutes=(t/60)%60;
  719. hours=t/60/60;
  720. sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
  721. SERIAL_ECHO_START;
  722. SERIAL_ECHOLN(time);
  723. lcd_setstatus(time, true);
  724. card.printingHasFinished();
  725. card.checkautostart(true);
  726. }
  727. if(serial_char=='#')
  728. stop_buffering=true;
  729. if(!serial_count)
  730. {
  731. comment_mode = false; //for new command
  732. return; //if empty line
  733. }
  734. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  735. // if(!comment_mode){
  736. fromsd[bufindw] = true;
  737. buflen += 1;
  738. bufindw = (bufindw + 1)%BUFSIZE;
  739. // }
  740. comment_mode = false; //for new command
  741. serial_count = 0; //clear buffer
  742. }
  743. else
  744. {
  745. if(serial_char == ';') comment_mode = true;
  746. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  747. }
  748. }
  749. #endif //SDSUPPORT
  750. }
  751. float code_value() {
  752. float ret;
  753. char *e = strchr(strchr_pointer, 'E');
  754. if (e) {
  755. *e = 0;
  756. ret = strtod(strchr_pointer+1, NULL);
  757. *e = 'E';
  758. }
  759. else
  760. ret = strtod(strchr_pointer+1, NULL);
  761. return ret;
  762. }
  763. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  764. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  765. bool code_seen(char code) {
  766. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  767. return (strchr_pointer != NULL); //Return True if a character was found
  768. }
  769. #define DEFINE_PGM_READ_ANY(type, reader) \
  770. static inline type pgm_read_any(const type *p) \
  771. { return pgm_read_##reader##_near(p); }
  772. DEFINE_PGM_READ_ANY(float, float);
  773. DEFINE_PGM_READ_ANY(signed char, byte);
  774. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  775. static const PROGMEM type array##_P[3] = \
  776. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  777. static inline type array(int axis) \
  778. { return pgm_read_any(&array##_P[axis]); }
  779. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  780. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  781. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  782. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  783. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  784. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  785. #ifdef DUAL_X_CARRIAGE
  786. #define DXC_FULL_CONTROL_MODE 0
  787. #define DXC_AUTO_PARK_MODE 1
  788. #define DXC_DUPLICATION_MODE 2
  789. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  790. static float x_home_pos(int extruder) {
  791. if (extruder == 0)
  792. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  793. else
  794. // In dual carriage mode the extruder offset provides an override of the
  795. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  796. // This allow soft recalibration of the second extruder offset position without firmware reflash
  797. // (through the M218 command).
  798. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  799. }
  800. static int x_home_dir(int extruder) {
  801. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  802. }
  803. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  804. static bool active_extruder_parked = false; // used in mode 1 & 2
  805. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  806. static unsigned long delayed_move_time = 0; // used in mode 1
  807. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  808. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  809. bool extruder_duplication_enabled = false; // used in mode 2
  810. #endif //DUAL_X_CARRIAGE
  811. static void axis_is_at_home(int axis) {
  812. #ifdef DUAL_X_CARRIAGE
  813. if (axis == X_AXIS) {
  814. if (active_extruder != 0) {
  815. current_position[X_AXIS] = x_home_pos(active_extruder);
  816. min_pos[X_AXIS] = X2_MIN_POS;
  817. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  818. return;
  819. }
  820. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  821. float xoff = home_offset[X_AXIS];
  822. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  823. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  824. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  825. return;
  826. }
  827. }
  828. #endif
  829. #ifdef SCARA
  830. float homeposition[3];
  831. if (axis < 2) {
  832. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  833. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  834. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  835. // Works out real Homeposition angles using inverse kinematics,
  836. // and calculates homing offset using forward kinematics
  837. calculate_delta(homeposition);
  838. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  839. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  840. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  841. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  842. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  843. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  844. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  845. calculate_SCARA_forward_Transform(delta);
  846. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  847. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  848. current_position[axis] = delta[axis];
  849. // SCARA home positions are based on configuration since the actual limits are determined by the
  850. // inverse kinematic transform.
  851. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  852. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  853. }
  854. else {
  855. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  856. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  857. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  858. }
  859. #else
  860. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  861. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  862. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  863. #endif
  864. }
  865. /**
  866. * Some planner shorthand inline functions
  867. */
  868. inline void set_homing_bump_feedrate(AxisEnum axis) {
  869. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  870. if (homing_bump_divisor[axis] >= 1)
  871. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  872. else {
  873. feedrate = homing_feedrate[axis] / 10;
  874. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  875. }
  876. }
  877. inline void line_to_current_position() {
  878. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  879. }
  880. inline void line_to_z(float zPosition) {
  881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  882. }
  883. inline void line_to_destination() {
  884. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  885. }
  886. inline void sync_plan_position() {
  887. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  888. }
  889. #if defined(DELTA) || defined(SCARA)
  890. inline void sync_plan_position_delta() {
  891. calculate_delta(current_position);
  892. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  893. }
  894. #endif
  895. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  896. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  897. #ifdef ENABLE_AUTO_BED_LEVELING
  898. #ifdef DELTA
  899. /**
  900. * Calculate delta, start a line, and set current_position to destination
  901. */
  902. void prepare_move_raw() {
  903. refresh_cmd_timeout();
  904. calculate_delta(destination);
  905. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  906. set_current_to_destination();
  907. }
  908. #endif
  909. #ifdef AUTO_BED_LEVELING_GRID
  910. #ifndef DELTA
  911. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  912. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  913. planeNormal.debug("planeNormal");
  914. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  915. //bedLevel.debug("bedLevel");
  916. //plan_bed_level_matrix.debug("bed level before");
  917. //vector_3 uncorrected_position = plan_get_position_mm();
  918. //uncorrected_position.debug("position before");
  919. vector_3 corrected_position = plan_get_position();
  920. //corrected_position.debug("position after");
  921. current_position[X_AXIS] = corrected_position.x;
  922. current_position[Y_AXIS] = corrected_position.y;
  923. current_position[Z_AXIS] = corrected_position.z;
  924. sync_plan_position();
  925. }
  926. #endif // !DELTA
  927. #else // !AUTO_BED_LEVELING_GRID
  928. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  929. plan_bed_level_matrix.set_to_identity();
  930. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  931. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  932. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  933. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  934. if (planeNormal.z < 0) {
  935. planeNormal.x = -planeNormal.x;
  936. planeNormal.y = -planeNormal.y;
  937. planeNormal.z = -planeNormal.z;
  938. }
  939. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  940. vector_3 corrected_position = plan_get_position();
  941. current_position[X_AXIS] = corrected_position.x;
  942. current_position[Y_AXIS] = corrected_position.y;
  943. current_position[Z_AXIS] = corrected_position.z;
  944. sync_plan_position();
  945. }
  946. #endif // !AUTO_BED_LEVELING_GRID
  947. static void run_z_probe() {
  948. #ifdef DELTA
  949. float start_z = current_position[Z_AXIS];
  950. long start_steps = st_get_position(Z_AXIS);
  951. // move down slowly until you find the bed
  952. feedrate = homing_feedrate[Z_AXIS] / 4;
  953. destination[Z_AXIS] = -10;
  954. prepare_move_raw();
  955. st_synchronize();
  956. endstops_hit_on_purpose(); // clear endstop hit flags
  957. // we have to let the planner know where we are right now as it is not where we said to go.
  958. long stop_steps = st_get_position(Z_AXIS);
  959. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  960. current_position[Z_AXIS] = mm;
  961. sync_plan_position_delta();
  962. #else // !DELTA
  963. plan_bed_level_matrix.set_to_identity();
  964. feedrate = homing_feedrate[Z_AXIS];
  965. // move down until you find the bed
  966. float zPosition = -10;
  967. line_to_z(zPosition);
  968. st_synchronize();
  969. // we have to let the planner know where we are right now as it is not where we said to go.
  970. zPosition = st_get_position_mm(Z_AXIS);
  971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  972. // move up the retract distance
  973. zPosition += home_bump_mm(Z_AXIS);
  974. line_to_z(zPosition);
  975. st_synchronize();
  976. endstops_hit_on_purpose(); // clear endstop hit flags
  977. // move back down slowly to find bed
  978. set_homing_bump_feedrate(Z_AXIS);
  979. zPosition -= home_bump_mm(Z_AXIS) * 2;
  980. line_to_z(zPosition);
  981. st_synchronize();
  982. endstops_hit_on_purpose(); // clear endstop hit flags
  983. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  984. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  985. sync_plan_position();
  986. #endif // !DELTA
  987. }
  988. /**
  989. *
  990. */
  991. static void do_blocking_move_to(float x, float y, float z) {
  992. float oldFeedRate = feedrate;
  993. #ifdef DELTA
  994. feedrate = XY_TRAVEL_SPEED;
  995. destination[X_AXIS] = x;
  996. destination[Y_AXIS] = y;
  997. destination[Z_AXIS] = z;
  998. prepare_move_raw();
  999. st_synchronize();
  1000. #else
  1001. feedrate = homing_feedrate[Z_AXIS];
  1002. current_position[Z_AXIS] = z;
  1003. line_to_current_position();
  1004. st_synchronize();
  1005. feedrate = xy_travel_speed;
  1006. current_position[X_AXIS] = x;
  1007. current_position[Y_AXIS] = y;
  1008. line_to_current_position();
  1009. st_synchronize();
  1010. #endif
  1011. feedrate = oldFeedRate;
  1012. }
  1013. static void setup_for_endstop_move() {
  1014. saved_feedrate = feedrate;
  1015. saved_feedmultiply = feedmultiply;
  1016. feedmultiply = 100;
  1017. refresh_cmd_timeout();
  1018. enable_endstops(true);
  1019. }
  1020. static void clean_up_after_endstop_move() {
  1021. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1022. enable_endstops(false);
  1023. #endif
  1024. feedrate = saved_feedrate;
  1025. feedmultiply = saved_feedmultiply;
  1026. refresh_cmd_timeout();
  1027. }
  1028. static void deploy_z_probe() {
  1029. #ifdef SERVO_ENDSTOPS
  1030. // Engage Z Servo endstop if enabled
  1031. if (servo_endstops[Z_AXIS] >= 0) {
  1032. #if SERVO_LEVELING
  1033. servos[servo_endstops[Z_AXIS]].attach(0);
  1034. #endif
  1035. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1036. #if SERVO_LEVELING
  1037. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1038. servos[servo_endstops[Z_AXIS]].detach();
  1039. #endif
  1040. }
  1041. #elif defined(Z_PROBE_ALLEN_KEY)
  1042. feedrate = homing_feedrate[X_AXIS];
  1043. // Move to the start position to initiate deployment
  1044. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1045. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1046. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1047. prepare_move_raw();
  1048. // Home X to touch the belt
  1049. feedrate = homing_feedrate[X_AXIS]/10;
  1050. destination[X_AXIS] = 0;
  1051. prepare_move_raw();
  1052. // Home Y for safety
  1053. feedrate = homing_feedrate[X_AXIS]/2;
  1054. destination[Y_AXIS] = 0;
  1055. prepare_move_raw();
  1056. st_synchronize();
  1057. #ifdef Z_PROBE_ENDSTOP
  1058. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1059. if (z_probe_endstop)
  1060. #else
  1061. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1062. if (z_min_endstop)
  1063. #endif
  1064. {
  1065. if (!Stopped) {
  1066. SERIAL_ERROR_START;
  1067. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1068. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1069. }
  1070. Stop();
  1071. }
  1072. #endif // Z_PROBE_ALLEN_KEY
  1073. }
  1074. static void stow_z_probe() {
  1075. #ifdef SERVO_ENDSTOPS
  1076. // Retract Z Servo endstop if enabled
  1077. if (servo_endstops[Z_AXIS] >= 0) {
  1078. #if Z_RAISE_AFTER_PROBING > 0
  1079. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1080. st_synchronize();
  1081. #endif
  1082. #if SERVO_LEVELING
  1083. servos[servo_endstops[Z_AXIS]].attach(0);
  1084. #endif
  1085. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1086. #if SERVO_LEVELING
  1087. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1088. servos[servo_endstops[Z_AXIS]].detach();
  1089. #endif
  1090. }
  1091. #elif defined(Z_PROBE_ALLEN_KEY)
  1092. // Move up for safety
  1093. feedrate = homing_feedrate[X_AXIS];
  1094. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1095. prepare_move_raw();
  1096. // Move to the start position to initiate retraction
  1097. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1098. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1099. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1100. prepare_move_raw();
  1101. // Move the nozzle down to push the probe into retracted position
  1102. feedrate = homing_feedrate[Z_AXIS]/10;
  1103. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1104. prepare_move_raw();
  1105. // Move up for safety
  1106. feedrate = homing_feedrate[Z_AXIS]/2;
  1107. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1108. prepare_move_raw();
  1109. // Home XY for safety
  1110. feedrate = homing_feedrate[X_AXIS]/2;
  1111. destination[X_AXIS] = 0;
  1112. destination[Y_AXIS] = 0;
  1113. prepare_move_raw();
  1114. st_synchronize();
  1115. #ifdef Z_PROBE_ENDSTOP
  1116. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1117. if (!z_probe_endstop)
  1118. #else
  1119. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1120. if (!z_min_endstop)
  1121. #endif
  1122. {
  1123. if (!Stopped) {
  1124. SERIAL_ERROR_START;
  1125. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1126. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1127. }
  1128. Stop();
  1129. }
  1130. #endif
  1131. }
  1132. enum ProbeAction {
  1133. ProbeStay = 0,
  1134. ProbeDeploy = BIT(0),
  1135. ProbeStow = BIT(1),
  1136. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1137. };
  1138. // Probe bed height at position (x,y), returns the measured z value
  1139. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1140. // move to right place
  1141. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1142. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1143. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1144. if (retract_action & ProbeDeploy) deploy_z_probe();
  1145. #endif
  1146. run_z_probe();
  1147. float measured_z = current_position[Z_AXIS];
  1148. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1149. if (retract_action == ProbeStay) {
  1150. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1151. st_synchronize();
  1152. }
  1153. #endif
  1154. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1155. if (retract_action & ProbeStow) stow_z_probe();
  1156. #endif
  1157. if (verbose_level > 2) {
  1158. SERIAL_PROTOCOLPGM(MSG_BED);
  1159. SERIAL_PROTOCOLPGM(" X: ");
  1160. SERIAL_PROTOCOL_F(x, 3);
  1161. SERIAL_PROTOCOLPGM(" Y: ");
  1162. SERIAL_PROTOCOL_F(y, 3);
  1163. SERIAL_PROTOCOLPGM(" Z: ");
  1164. SERIAL_PROTOCOL_F(measured_z, 3);
  1165. SERIAL_EOL;
  1166. }
  1167. return measured_z;
  1168. }
  1169. #ifdef DELTA
  1170. /**
  1171. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1172. */
  1173. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1174. if (bed_level[x][y] != 0.0) {
  1175. return; // Don't overwrite good values.
  1176. }
  1177. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1178. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1179. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1180. float median = c; // Median is robust (ignores outliers).
  1181. if (a < b) {
  1182. if (b < c) median = b;
  1183. if (c < a) median = a;
  1184. } else { // b <= a
  1185. if (c < b) median = b;
  1186. if (a < c) median = a;
  1187. }
  1188. bed_level[x][y] = median;
  1189. }
  1190. // Fill in the unprobed points (corners of circular print surface)
  1191. // using linear extrapolation, away from the center.
  1192. static void extrapolate_unprobed_bed_level() {
  1193. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1194. for (int y = 0; y <= half; y++) {
  1195. for (int x = 0; x <= half; x++) {
  1196. if (x + y < 3) continue;
  1197. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1198. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1199. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1200. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1201. }
  1202. }
  1203. }
  1204. // Print calibration results for plotting or manual frame adjustment.
  1205. static void print_bed_level() {
  1206. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1207. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1208. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1209. SERIAL_PROTOCOLCHAR(' ');
  1210. }
  1211. SERIAL_EOL;
  1212. }
  1213. }
  1214. // Reset calibration results to zero.
  1215. void reset_bed_level() {
  1216. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1217. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1218. bed_level[x][y] = 0.0;
  1219. }
  1220. }
  1221. }
  1222. #endif // DELTA
  1223. #endif // ENABLE_AUTO_BED_LEVELING
  1224. /**
  1225. * Home an individual axis
  1226. */
  1227. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1228. static void homeaxis(AxisEnum axis) {
  1229. #define HOMEAXIS_DO(LETTER) \
  1230. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1231. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1232. int axis_home_dir;
  1233. #ifdef DUAL_X_CARRIAGE
  1234. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1235. #else
  1236. axis_home_dir = home_dir(axis);
  1237. #endif
  1238. // Set the axis position as setup for the move
  1239. current_position[axis] = 0;
  1240. sync_plan_position();
  1241. // Engage Servo endstop if enabled
  1242. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1243. #if SERVO_LEVELING
  1244. if (axis == Z_AXIS) deploy_z_probe(); else
  1245. #endif
  1246. {
  1247. if (servo_endstops[axis] > -1)
  1248. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1249. }
  1250. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1251. #ifdef Z_DUAL_ENDSTOPS
  1252. if (axis == Z_AXIS) In_Homing_Process(true);
  1253. #endif
  1254. // Move towards the endstop until an endstop is triggered
  1255. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1256. feedrate = homing_feedrate[axis];
  1257. line_to_destination();
  1258. st_synchronize();
  1259. // Set the axis position as setup for the move
  1260. current_position[axis] = 0;
  1261. sync_plan_position();
  1262. // Move away from the endstop by the axis HOME_BUMP_MM
  1263. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1264. line_to_destination();
  1265. st_synchronize();
  1266. // Slow down the feedrate for the next move
  1267. set_homing_bump_feedrate(axis);
  1268. // Move slowly towards the endstop until triggered
  1269. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1270. line_to_destination();
  1271. st_synchronize();
  1272. #ifdef Z_DUAL_ENDSTOPS
  1273. if (axis == Z_AXIS) {
  1274. float adj = fabs(z_endstop_adj);
  1275. bool lockZ1;
  1276. if (axis_home_dir > 0) {
  1277. adj = -adj;
  1278. lockZ1 = (z_endstop_adj > 0);
  1279. }
  1280. else
  1281. lockZ1 = (z_endstop_adj < 0);
  1282. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1283. sync_plan_position();
  1284. // Move to the adjusted endstop height
  1285. feedrate = homing_feedrate[axis];
  1286. destination[Z_AXIS] = adj;
  1287. line_to_destination();
  1288. st_synchronize();
  1289. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1290. In_Homing_Process(false);
  1291. } // Z_AXIS
  1292. #endif
  1293. #ifdef DELTA
  1294. // retrace by the amount specified in endstop_adj
  1295. if (endstop_adj[axis] * axis_home_dir < 0) {
  1296. sync_plan_position();
  1297. destination[axis] = endstop_adj[axis];
  1298. line_to_destination();
  1299. st_synchronize();
  1300. }
  1301. #endif
  1302. // Set the axis position to its home position (plus home offsets)
  1303. axis_is_at_home(axis);
  1304. destination[axis] = current_position[axis];
  1305. feedrate = 0.0;
  1306. endstops_hit_on_purpose(); // clear endstop hit flags
  1307. axis_known_position[axis] = true;
  1308. // Retract Servo endstop if enabled
  1309. #ifdef SERVO_ENDSTOPS
  1310. if (servo_endstops[axis] > -1)
  1311. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1312. #endif
  1313. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1314. if (axis == Z_AXIS) stow_z_probe();
  1315. #endif
  1316. }
  1317. }
  1318. #ifdef FWRETRACT
  1319. void retract(bool retracting, bool swapretract = false) {
  1320. if (retracting == retracted[active_extruder]) return;
  1321. float oldFeedrate = feedrate;
  1322. set_destination_to_current();
  1323. if (retracting) {
  1324. feedrate = retract_feedrate * 60;
  1325. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1326. plan_set_e_position(current_position[E_AXIS]);
  1327. prepare_move();
  1328. if (retract_zlift > 0.01) {
  1329. current_position[Z_AXIS] -= retract_zlift;
  1330. #ifdef DELTA
  1331. sync_plan_position_delta();
  1332. #else
  1333. sync_plan_position();
  1334. #endif
  1335. prepare_move();
  1336. }
  1337. }
  1338. else {
  1339. if (retract_zlift > 0.01) {
  1340. current_position[Z_AXIS] += retract_zlift;
  1341. #ifdef DELTA
  1342. sync_plan_position_delta();
  1343. #else
  1344. sync_plan_position();
  1345. #endif
  1346. //prepare_move();
  1347. }
  1348. feedrate = retract_recover_feedrate * 60;
  1349. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1350. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1351. plan_set_e_position(current_position[E_AXIS]);
  1352. prepare_move();
  1353. }
  1354. feedrate = oldFeedrate;
  1355. retracted[active_extruder] = retracting;
  1356. } // retract()
  1357. #endif // FWRETRACT
  1358. #ifdef Z_PROBE_SLED
  1359. #ifndef SLED_DOCKING_OFFSET
  1360. #define SLED_DOCKING_OFFSET 0
  1361. #endif
  1362. //
  1363. // Method to dock/undock a sled designed by Charles Bell.
  1364. //
  1365. // dock[in] If true, move to MAX_X and engage the electromagnet
  1366. // offset[in] The additional distance to move to adjust docking location
  1367. //
  1368. static void dock_sled(bool dock, int offset=0) {
  1369. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1370. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1371. SERIAL_ECHO_START;
  1372. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1373. return;
  1374. }
  1375. if (dock) {
  1376. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
  1377. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1378. } else {
  1379. float z_loc = current_position[Z_AXIS];
  1380. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1381. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1382. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1383. }
  1384. }
  1385. #endif // Z_PROBE_SLED
  1386. /**
  1387. *
  1388. * G-Code Handler functions
  1389. *
  1390. */
  1391. /**
  1392. * G0, G1: Coordinated movement of X Y Z E axes
  1393. */
  1394. inline void gcode_G0_G1() {
  1395. if (!Stopped) {
  1396. get_coordinates(); // For X Y Z E F
  1397. #ifdef FWRETRACT
  1398. if (autoretract_enabled)
  1399. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1400. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1401. // Is this move an attempt to retract or recover?
  1402. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1403. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1404. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1405. retract(!retracted[active_extruder]);
  1406. return;
  1407. }
  1408. }
  1409. #endif //FWRETRACT
  1410. prepare_move();
  1411. //ClearToSend();
  1412. }
  1413. }
  1414. /**
  1415. * G2: Clockwise Arc
  1416. * G3: Counterclockwise Arc
  1417. */
  1418. inline void gcode_G2_G3(bool clockwise) {
  1419. if (!Stopped) {
  1420. get_arc_coordinates();
  1421. prepare_arc_move(clockwise);
  1422. }
  1423. }
  1424. /**
  1425. * G4: Dwell S<seconds> or P<milliseconds>
  1426. */
  1427. inline void gcode_G4() {
  1428. unsigned long codenum = 0;
  1429. LCD_MESSAGEPGM(MSG_DWELL);
  1430. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1431. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1432. st_synchronize();
  1433. refresh_cmd_timeout();
  1434. codenum += previous_millis_cmd; // keep track of when we started waiting
  1435. while (millis() < codenum) {
  1436. manage_heater();
  1437. manage_inactivity();
  1438. lcd_update();
  1439. }
  1440. }
  1441. #ifdef FWRETRACT
  1442. /**
  1443. * G10 - Retract filament according to settings of M207
  1444. * G11 - Recover filament according to settings of M208
  1445. */
  1446. inline void gcode_G10_G11(bool doRetract=false) {
  1447. #if EXTRUDERS > 1
  1448. if (doRetract) {
  1449. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1450. }
  1451. #endif
  1452. retract(doRetract
  1453. #if EXTRUDERS > 1
  1454. , retracted_swap[active_extruder]
  1455. #endif
  1456. );
  1457. }
  1458. #endif //FWRETRACT
  1459. /**
  1460. * G28: Home all axes according to settings
  1461. *
  1462. * Parameters
  1463. *
  1464. * None Home to all axes with no parameters.
  1465. * With QUICK_HOME enabled XY will home together, then Z.
  1466. *
  1467. * Cartesian parameters
  1468. *
  1469. * X Home to the X endstop
  1470. * Y Home to the Y endstop
  1471. * Z Home to the Z endstop
  1472. *
  1473. * If numbers are included with XYZ set the position as with G92
  1474. * Currently adds the home_offset, which may be wrong and removed soon.
  1475. *
  1476. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1477. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1478. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1479. */
  1480. inline void gcode_G28() {
  1481. // For auto bed leveling, clear the level matrix
  1482. #ifdef ENABLE_AUTO_BED_LEVELING
  1483. plan_bed_level_matrix.set_to_identity();
  1484. #ifdef DELTA
  1485. reset_bed_level();
  1486. #endif
  1487. #endif
  1488. // For manual bed leveling deactivate the matrix temporarily
  1489. #ifdef MESH_BED_LEVELING
  1490. uint8_t mbl_was_active = mbl.active;
  1491. mbl.active = 0;
  1492. #endif
  1493. saved_feedrate = feedrate;
  1494. saved_feedmultiply = feedmultiply;
  1495. feedmultiply = 100;
  1496. refresh_cmd_timeout();
  1497. enable_endstops(true);
  1498. set_destination_to_current();
  1499. feedrate = 0.0;
  1500. #ifdef DELTA
  1501. // A delta can only safely home all axis at the same time
  1502. // all axis have to home at the same time
  1503. // Pretend the current position is 0,0,0
  1504. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1505. sync_plan_position();
  1506. // Move all carriages up together until the first endstop is hit.
  1507. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1508. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1509. line_to_destination();
  1510. st_synchronize();
  1511. endstops_hit_on_purpose(); // clear endstop hit flags
  1512. // Destination reached
  1513. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1514. // take care of back off and rehome now we are all at the top
  1515. HOMEAXIS(X);
  1516. HOMEAXIS(Y);
  1517. HOMEAXIS(Z);
  1518. sync_plan_position_delta();
  1519. #else // NOT DELTA
  1520. bool homeX = code_seen(axis_codes[X_AXIS]),
  1521. homeY = code_seen(axis_codes[Y_AXIS]),
  1522. homeZ = code_seen(axis_codes[Z_AXIS]);
  1523. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1524. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1525. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1526. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1527. // Raise Z before homing any other axes
  1528. if (home_all_axis || homeZ) {
  1529. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1530. feedrate = max_feedrate[Z_AXIS] * 60;
  1531. line_to_destination();
  1532. st_synchronize();
  1533. }
  1534. #endif
  1535. #ifdef QUICK_HOME
  1536. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1537. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1538. #ifdef DUAL_X_CARRIAGE
  1539. int x_axis_home_dir = x_home_dir(active_extruder);
  1540. extruder_duplication_enabled = false;
  1541. #else
  1542. int x_axis_home_dir = home_dir(X_AXIS);
  1543. #endif
  1544. sync_plan_position();
  1545. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1546. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1547. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1548. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1549. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1550. line_to_destination();
  1551. st_synchronize();
  1552. axis_is_at_home(X_AXIS);
  1553. axis_is_at_home(Y_AXIS);
  1554. sync_plan_position();
  1555. destination[X_AXIS] = current_position[X_AXIS];
  1556. destination[Y_AXIS] = current_position[Y_AXIS];
  1557. line_to_destination();
  1558. feedrate = 0.0;
  1559. st_synchronize();
  1560. endstops_hit_on_purpose(); // clear endstop hit flags
  1561. current_position[X_AXIS] = destination[X_AXIS];
  1562. current_position[Y_AXIS] = destination[Y_AXIS];
  1563. #ifndef SCARA
  1564. current_position[Z_AXIS] = destination[Z_AXIS];
  1565. #endif
  1566. }
  1567. #endif // QUICK_HOME
  1568. // Home X
  1569. if (home_all_axis || homeX) {
  1570. #ifdef DUAL_X_CARRIAGE
  1571. int tmp_extruder = active_extruder;
  1572. extruder_duplication_enabled = false;
  1573. active_extruder = !active_extruder;
  1574. HOMEAXIS(X);
  1575. inactive_extruder_x_pos = current_position[X_AXIS];
  1576. active_extruder = tmp_extruder;
  1577. HOMEAXIS(X);
  1578. // reset state used by the different modes
  1579. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1580. delayed_move_time = 0;
  1581. active_extruder_parked = true;
  1582. #else
  1583. HOMEAXIS(X);
  1584. #endif
  1585. }
  1586. // Home Y
  1587. if (home_all_axis || homeY) HOMEAXIS(Y);
  1588. // Set the X position, if included
  1589. // Adds the home_offset as well, which may be wrong
  1590. if (code_seen(axis_codes[X_AXIS])) {
  1591. float v = code_value();
  1592. if (v) current_position[X_AXIS] = v
  1593. #ifndef SCARA
  1594. + home_offset[X_AXIS]
  1595. #endif
  1596. ;
  1597. }
  1598. // Set the Y position, if included
  1599. // Adds the home_offset as well, which may be wrong
  1600. if (code_seen(axis_codes[Y_AXIS])) {
  1601. float v = code_value();
  1602. if (v) current_position[Y_AXIS] = v
  1603. #ifndef SCARA
  1604. + home_offset[Y_AXIS]
  1605. #endif
  1606. ;
  1607. }
  1608. // Home Z last if homing towards the bed
  1609. #if Z_HOME_DIR < 0
  1610. #ifndef Z_SAFE_HOMING
  1611. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1612. #else // Z_SAFE_HOMING
  1613. if (home_all_axis) {
  1614. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1615. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1616. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1617. feedrate = XY_TRAVEL_SPEED;
  1618. current_position[Z_AXIS] = 0;
  1619. sync_plan_position();
  1620. line_to_destination();
  1621. st_synchronize();
  1622. current_position[X_AXIS] = destination[X_AXIS];
  1623. current_position[Y_AXIS] = destination[Y_AXIS];
  1624. HOMEAXIS(Z);
  1625. }
  1626. // Let's see if X and Y are homed and probe is inside bed area.
  1627. if (homeZ) {
  1628. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1629. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1630. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1631. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1632. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1633. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1634. current_position[Z_AXIS] = 0;
  1635. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]);
  1636. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1637. feedrate = max_feedrate[Z_AXIS] * 60; // max_feedrate is in mm/s. line_to_destination is feedrate/60.
  1638. line_to_destination();
  1639. st_synchronize();
  1640. HOMEAXIS(Z);
  1641. }
  1642. else {
  1643. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1644. SERIAL_ECHO_START;
  1645. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1646. }
  1647. }
  1648. else {
  1649. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1650. SERIAL_ECHO_START;
  1651. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1652. }
  1653. }
  1654. #endif // Z_SAFE_HOMING
  1655. #endif // Z_HOME_DIR < 0
  1656. // Set the Z position, if included
  1657. // Adds the home_offset as well, which may be wrong
  1658. if (code_seen(axis_codes[Z_AXIS])) {
  1659. float v = code_value();
  1660. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1661. }
  1662. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1663. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1664. #endif
  1665. sync_plan_position();
  1666. #endif // else DELTA
  1667. #ifdef SCARA
  1668. sync_plan_position_delta();
  1669. #endif
  1670. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1671. enable_endstops(false);
  1672. #endif
  1673. // For manual leveling move back to 0,0
  1674. #ifdef MESH_BED_LEVELING
  1675. if (mbl_was_active) {
  1676. current_position[X_AXIS] = mbl.get_x(0);
  1677. current_position[Y_AXIS] = mbl.get_y(0);
  1678. set_destination_to_current();
  1679. feedrate = homing_feedrate[X_AXIS];
  1680. line_to_destination();
  1681. st_synchronize();
  1682. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1683. sync_plan_position();
  1684. mbl.active = 1;
  1685. }
  1686. #endif
  1687. feedrate = saved_feedrate;
  1688. feedmultiply = saved_feedmultiply;
  1689. refresh_cmd_timeout();
  1690. endstops_hit_on_purpose(); // clear endstop hit flags
  1691. }
  1692. #ifdef MESH_BED_LEVELING
  1693. enum MeshLevelingState { MeshReport, MeshStart, MeshNext };
  1694. /**
  1695. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1696. * mesh to compensate for variable bed height
  1697. *
  1698. * Parameters With MESH_BED_LEVELING:
  1699. *
  1700. * S0 Produce a mesh report
  1701. * S1 Start probing mesh points
  1702. * S2 Probe the next mesh point
  1703. *
  1704. */
  1705. inline void gcode_G29() {
  1706. static int probe_point = -1;
  1707. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1708. if (state < 0 || state > 2) {
  1709. SERIAL_PROTOCOLLNPGM("S out of range (0-2).");
  1710. return;
  1711. }
  1712. switch(state) {
  1713. case MeshReport:
  1714. if (mbl.active) {
  1715. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1716. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1717. SERIAL_PROTOCOLCHAR(',');
  1718. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1719. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1720. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1721. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1722. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1723. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1724. SERIAL_PROTOCOLPGM(" ");
  1725. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1726. }
  1727. SERIAL_EOL;
  1728. }
  1729. }
  1730. else
  1731. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1732. break;
  1733. case MeshStart:
  1734. mbl.reset();
  1735. probe_point = 0;
  1736. enquecommands_P(PSTR("G28\nG29 S2"));
  1737. break;
  1738. case MeshNext:
  1739. if (probe_point < 0) {
  1740. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1741. return;
  1742. }
  1743. int ix, iy;
  1744. if (probe_point == 0) {
  1745. // Set Z to a positive value before recording the first Z.
  1746. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1747. sync_plan_position();
  1748. }
  1749. else {
  1750. // For others, save the Z of the previous point, then raise Z again.
  1751. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1752. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1753. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1754. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1755. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1757. st_synchronize();
  1758. }
  1759. // Is there another point to sample? Move there.
  1760. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1761. ix = probe_point % MESH_NUM_X_POINTS;
  1762. iy = probe_point / MESH_NUM_X_POINTS;
  1763. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1764. current_position[X_AXIS] = mbl.get_x(ix);
  1765. current_position[Y_AXIS] = mbl.get_y(iy);
  1766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1767. st_synchronize();
  1768. probe_point++;
  1769. }
  1770. else {
  1771. // After recording the last point, activate the mbl and home
  1772. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1773. probe_point = -1;
  1774. mbl.active = 1;
  1775. enquecommands_P(PSTR("G28"));
  1776. }
  1777. } // switch(state)
  1778. }
  1779. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1780. /**
  1781. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1782. * Will fail if the printer has not been homed with G28.
  1783. *
  1784. * Enhanced G29 Auto Bed Leveling Probe Routine
  1785. *
  1786. * Parameters With AUTO_BED_LEVELING_GRID:
  1787. *
  1788. * P Set the size of the grid that will be probed (P x P points).
  1789. * Not supported by non-linear delta printer bed leveling.
  1790. * Example: "G29 P4"
  1791. *
  1792. * S Set the XY travel speed between probe points (in mm/min)
  1793. *
  1794. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1795. * or clean the rotation Matrix. Useful to check the topology
  1796. * after a first run of G29.
  1797. *
  1798. * V Set the verbose level (0-4). Example: "G29 V3"
  1799. *
  1800. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1801. * This is useful for manual bed leveling and finding flaws in the bed (to
  1802. * assist with part placement).
  1803. * Not supported by non-linear delta printer bed leveling.
  1804. *
  1805. * F Set the Front limit of the probing grid
  1806. * B Set the Back limit of the probing grid
  1807. * L Set the Left limit of the probing grid
  1808. * R Set the Right limit of the probing grid
  1809. *
  1810. * Global Parameters:
  1811. *
  1812. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1813. * Include "E" to engage/disengage the probe for each sample.
  1814. * There's no extra effect if you have a fixed probe.
  1815. * Usage: "G29 E" or "G29 e"
  1816. *
  1817. */
  1818. inline void gcode_G29() {
  1819. // Don't allow auto-leveling without homing first
  1820. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1821. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1822. SERIAL_ECHO_START;
  1823. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1824. return;
  1825. }
  1826. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1827. if (verbose_level < 0 || verbose_level > 4) {
  1828. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1829. return;
  1830. }
  1831. bool dryrun = code_seen('D') || code_seen('d'),
  1832. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1833. #ifdef AUTO_BED_LEVELING_GRID
  1834. #ifndef DELTA
  1835. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1836. #endif
  1837. if (verbose_level > 0) {
  1838. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1839. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1840. }
  1841. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1842. #ifndef DELTA
  1843. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1844. if (auto_bed_leveling_grid_points < 2) {
  1845. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1846. return;
  1847. }
  1848. #endif
  1849. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1850. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1851. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1852. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1853. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1854. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1855. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1856. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1857. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1858. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1859. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1860. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1861. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1862. if (left_out || right_out || front_out || back_out) {
  1863. if (left_out) {
  1864. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1865. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1866. }
  1867. if (right_out) {
  1868. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1869. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1870. }
  1871. if (front_out) {
  1872. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1873. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1874. }
  1875. if (back_out) {
  1876. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1877. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1878. }
  1879. return;
  1880. }
  1881. #endif // AUTO_BED_LEVELING_GRID
  1882. #ifdef Z_PROBE_SLED
  1883. dock_sled(false); // engage (un-dock) the probe
  1884. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1885. deploy_z_probe();
  1886. #endif
  1887. st_synchronize();
  1888. if (!dryrun) {
  1889. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1890. plan_bed_level_matrix.set_to_identity();
  1891. #ifdef DELTA
  1892. reset_bed_level();
  1893. #else //!DELTA
  1894. //vector_3 corrected_position = plan_get_position_mm();
  1895. //corrected_position.debug("position before G29");
  1896. vector_3 uncorrected_position = plan_get_position();
  1897. //uncorrected_position.debug("position during G29");
  1898. current_position[X_AXIS] = uncorrected_position.x;
  1899. current_position[Y_AXIS] = uncorrected_position.y;
  1900. current_position[Z_AXIS] = uncorrected_position.z;
  1901. sync_plan_position();
  1902. #endif // !DELTA
  1903. }
  1904. setup_for_endstop_move();
  1905. feedrate = homing_feedrate[Z_AXIS];
  1906. #ifdef AUTO_BED_LEVELING_GRID
  1907. // probe at the points of a lattice grid
  1908. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1909. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1910. #ifdef DELTA
  1911. delta_grid_spacing[0] = xGridSpacing;
  1912. delta_grid_spacing[1] = yGridSpacing;
  1913. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1914. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1915. #else // !DELTA
  1916. // solve the plane equation ax + by + d = z
  1917. // A is the matrix with rows [x y 1] for all the probed points
  1918. // B is the vector of the Z positions
  1919. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1920. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1921. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1922. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1923. eqnBVector[abl2], // "B" vector of Z points
  1924. mean = 0.0;
  1925. #endif // !DELTA
  1926. int probePointCounter = 0;
  1927. bool zig = true;
  1928. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1929. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1930. int xStart, xStop, xInc;
  1931. if (zig) {
  1932. xStart = 0;
  1933. xStop = auto_bed_leveling_grid_points;
  1934. xInc = 1;
  1935. }
  1936. else {
  1937. xStart = auto_bed_leveling_grid_points - 1;
  1938. xStop = -1;
  1939. xInc = -1;
  1940. }
  1941. #ifndef DELTA
  1942. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1943. // This gets the probe points in more readable order.
  1944. if (!do_topography_map) zig = !zig;
  1945. #endif
  1946. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1947. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1948. // raise extruder
  1949. float measured_z,
  1950. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  1951. #ifdef DELTA
  1952. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1953. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1954. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1955. #endif //DELTA
  1956. ProbeAction act;
  1957. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  1958. act = ProbeDeployAndStow;
  1959. else if (yCount == 0 && xCount == 0)
  1960. act = ProbeDeploy;
  1961. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  1962. act = ProbeStow;
  1963. else
  1964. act = ProbeStay;
  1965. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1966. #ifndef DELTA
  1967. mean += measured_z;
  1968. eqnBVector[probePointCounter] = measured_z;
  1969. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1970. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1971. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1972. #else
  1973. bed_level[xCount][yCount] = measured_z + z_offset;
  1974. #endif
  1975. probePointCounter++;
  1976. manage_heater();
  1977. manage_inactivity();
  1978. lcd_update();
  1979. } //xProbe
  1980. } //yProbe
  1981. clean_up_after_endstop_move();
  1982. #ifdef DELTA
  1983. if (!dryrun) extrapolate_unprobed_bed_level();
  1984. print_bed_level();
  1985. #else // !DELTA
  1986. // solve lsq problem
  1987. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1988. mean /= abl2;
  1989. if (verbose_level) {
  1990. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1991. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1992. SERIAL_PROTOCOLPGM(" b: ");
  1993. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1994. SERIAL_PROTOCOLPGM(" d: ");
  1995. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1996. SERIAL_EOL;
  1997. if (verbose_level > 2) {
  1998. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1999. SERIAL_PROTOCOL_F(mean, 8);
  2000. SERIAL_EOL;
  2001. }
  2002. }
  2003. // Show the Topography map if enabled
  2004. if (do_topography_map) {
  2005. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2006. SERIAL_PROTOCOLPGM("+-----------+\n");
  2007. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2008. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2009. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2010. SERIAL_PROTOCOLPGM("+-----------+\n");
  2011. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2012. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2013. int ind = yy * auto_bed_leveling_grid_points + xx;
  2014. float diff = eqnBVector[ind] - mean;
  2015. if (diff >= 0.0)
  2016. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2017. else
  2018. SERIAL_PROTOCOLCHAR(' ');
  2019. SERIAL_PROTOCOL_F(diff, 5);
  2020. } // xx
  2021. SERIAL_EOL;
  2022. } // yy
  2023. SERIAL_EOL;
  2024. } //do_topography_map
  2025. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2026. free(plane_equation_coefficients);
  2027. #endif //!DELTA
  2028. #else // !AUTO_BED_LEVELING_GRID
  2029. // Actions for each probe
  2030. ProbeAction p1, p2, p3;
  2031. if (deploy_probe_for_each_reading)
  2032. p1 = p2 = p3 = ProbeDeployAndStow;
  2033. else
  2034. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2035. // Probe at 3 arbitrary points
  2036. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2037. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2038. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2039. clean_up_after_endstop_move();
  2040. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2041. #endif // !AUTO_BED_LEVELING_GRID
  2042. #ifndef DELTA
  2043. if (verbose_level > 0)
  2044. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2045. if (!dryrun) {
  2046. // Correct the Z height difference from z-probe position and hotend tip position.
  2047. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2048. // When the bed is uneven, this height must be corrected.
  2049. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2050. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2051. z_tmp = current_position[Z_AXIS],
  2052. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2053. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2054. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2055. sync_plan_position();
  2056. }
  2057. #endif // !DELTA
  2058. #ifdef Z_PROBE_SLED
  2059. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2060. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2061. stow_z_probe();
  2062. #endif
  2063. #ifdef Z_PROBE_END_SCRIPT
  2064. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2065. st_synchronize();
  2066. #endif
  2067. }
  2068. #ifndef Z_PROBE_SLED
  2069. inline void gcode_G30() {
  2070. deploy_z_probe(); // Engage Z Servo endstop if available
  2071. st_synchronize();
  2072. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2073. setup_for_endstop_move();
  2074. feedrate = homing_feedrate[Z_AXIS];
  2075. run_z_probe();
  2076. SERIAL_PROTOCOLPGM(MSG_BED);
  2077. SERIAL_PROTOCOLPGM(" X: ");
  2078. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2079. SERIAL_PROTOCOLPGM(" Y: ");
  2080. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2081. SERIAL_PROTOCOLPGM(" Z: ");
  2082. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2083. SERIAL_EOL;
  2084. clean_up_after_endstop_move();
  2085. stow_z_probe(); // Retract Z Servo endstop if available
  2086. }
  2087. #endif //!Z_PROBE_SLED
  2088. #endif //ENABLE_AUTO_BED_LEVELING
  2089. /**
  2090. * G92: Set current position to given X Y Z E
  2091. */
  2092. inline void gcode_G92() {
  2093. if (!code_seen(axis_codes[E_AXIS]))
  2094. st_synchronize();
  2095. bool didXYZ = false;
  2096. for (int i = 0; i < NUM_AXIS; i++) {
  2097. if (code_seen(axis_codes[i])) {
  2098. float v = current_position[i] = code_value();
  2099. if (i == E_AXIS)
  2100. plan_set_e_position(v);
  2101. else
  2102. didXYZ = true;
  2103. }
  2104. }
  2105. if (didXYZ) sync_plan_position();
  2106. }
  2107. #ifdef ULTIPANEL
  2108. /**
  2109. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2110. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2111. */
  2112. inline void gcode_M0_M1() {
  2113. char *src = strchr_pointer + 2;
  2114. unsigned long codenum = 0;
  2115. bool hasP = false, hasS = false;
  2116. if (code_seen('P')) {
  2117. codenum = code_value_short(); // milliseconds to wait
  2118. hasP = codenum > 0;
  2119. }
  2120. if (code_seen('S')) {
  2121. codenum = code_value_short() * 1000UL; // seconds to wait
  2122. hasS = codenum > 0;
  2123. }
  2124. char* starpos = strchr(src, '*');
  2125. if (starpos != NULL) *(starpos) = '\0';
  2126. while (*src == ' ') ++src;
  2127. if (!hasP && !hasS && *src != '\0')
  2128. lcd_setstatus(src, true);
  2129. else {
  2130. LCD_MESSAGEPGM(MSG_USERWAIT);
  2131. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2132. dontExpireStatus();
  2133. #endif
  2134. }
  2135. lcd_ignore_click();
  2136. st_synchronize();
  2137. refresh_cmd_timeout();
  2138. if (codenum > 0) {
  2139. codenum += previous_millis_cmd; // keep track of when we started waiting
  2140. while(millis() < codenum && !lcd_clicked()) {
  2141. manage_heater();
  2142. manage_inactivity();
  2143. lcd_update();
  2144. }
  2145. lcd_ignore_click(false);
  2146. }
  2147. else {
  2148. if (!lcd_detected()) return;
  2149. while (!lcd_clicked()) {
  2150. manage_heater();
  2151. manage_inactivity();
  2152. lcd_update();
  2153. }
  2154. }
  2155. if (IS_SD_PRINTING)
  2156. LCD_MESSAGEPGM(MSG_RESUMING);
  2157. else
  2158. LCD_MESSAGEPGM(WELCOME_MSG);
  2159. }
  2160. #endif // ULTIPANEL
  2161. /**
  2162. * M17: Enable power on all stepper motors
  2163. */
  2164. inline void gcode_M17() {
  2165. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2166. enable_all_steppers();
  2167. }
  2168. #ifdef SDSUPPORT
  2169. /**
  2170. * M20: List SD card to serial output
  2171. */
  2172. inline void gcode_M20() {
  2173. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2174. card.ls();
  2175. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2176. }
  2177. /**
  2178. * M21: Init SD Card
  2179. */
  2180. inline void gcode_M21() {
  2181. card.initsd();
  2182. }
  2183. /**
  2184. * M22: Release SD Card
  2185. */
  2186. inline void gcode_M22() {
  2187. card.release();
  2188. }
  2189. /**
  2190. * M23: Select a file
  2191. */
  2192. inline void gcode_M23() {
  2193. char* codepos = strchr_pointer + 4;
  2194. char* starpos = strchr(codepos, '*');
  2195. if (starpos) *starpos = '\0';
  2196. card.openFile(codepos, true);
  2197. }
  2198. /**
  2199. * M24: Start SD Print
  2200. */
  2201. inline void gcode_M24() {
  2202. card.startFileprint();
  2203. starttime = millis();
  2204. }
  2205. /**
  2206. * M25: Pause SD Print
  2207. */
  2208. inline void gcode_M25() {
  2209. card.pauseSDPrint();
  2210. }
  2211. /**
  2212. * M26: Set SD Card file index
  2213. */
  2214. inline void gcode_M26() {
  2215. if (card.cardOK && code_seen('S'))
  2216. card.setIndex(code_value_short());
  2217. }
  2218. /**
  2219. * M27: Get SD Card status
  2220. */
  2221. inline void gcode_M27() {
  2222. card.getStatus();
  2223. }
  2224. /**
  2225. * M28: Start SD Write
  2226. */
  2227. inline void gcode_M28() {
  2228. char* codepos = strchr_pointer + 4;
  2229. char* starpos = strchr(codepos, '*');
  2230. if (starpos) {
  2231. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2232. strchr_pointer = strchr(npos, ' ') + 1;
  2233. *(starpos) = '\0';
  2234. }
  2235. card.openFile(codepos, false);
  2236. }
  2237. /**
  2238. * M29: Stop SD Write
  2239. * Processed in write to file routine above
  2240. */
  2241. inline void gcode_M29() {
  2242. // card.saving = false;
  2243. }
  2244. /**
  2245. * M30 <filename>: Delete SD Card file
  2246. */
  2247. inline void gcode_M30() {
  2248. if (card.cardOK) {
  2249. card.closefile();
  2250. char* starpos = strchr(strchr_pointer + 4, '*');
  2251. if (starpos) {
  2252. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2253. strchr_pointer = strchr(npos, ' ') + 1;
  2254. *(starpos) = '\0';
  2255. }
  2256. card.removeFile(strchr_pointer + 4);
  2257. }
  2258. }
  2259. #endif
  2260. /**
  2261. * M31: Get the time since the start of SD Print (or last M109)
  2262. */
  2263. inline void gcode_M31() {
  2264. stoptime = millis();
  2265. unsigned long t = (stoptime - starttime) / 1000;
  2266. int min = t / 60, sec = t % 60;
  2267. char time[30];
  2268. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2269. SERIAL_ECHO_START;
  2270. SERIAL_ECHOLN(time);
  2271. lcd_setstatus(time);
  2272. autotempShutdown();
  2273. }
  2274. #ifdef SDSUPPORT
  2275. /**
  2276. * M32: Select file and start SD Print
  2277. */
  2278. inline void gcode_M32() {
  2279. if (card.sdprinting)
  2280. st_synchronize();
  2281. char* codepos = strchr_pointer + 4;
  2282. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2283. if (! namestartpos)
  2284. namestartpos = codepos; //default name position, 4 letters after the M
  2285. else
  2286. namestartpos++; //to skip the '!'
  2287. char* starpos = strchr(codepos, '*');
  2288. if (starpos) *(starpos) = '\0';
  2289. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2290. if (card.cardOK) {
  2291. card.openFile(namestartpos, true, !call_procedure);
  2292. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2293. card.setIndex(code_value_short());
  2294. card.startFileprint();
  2295. if (!call_procedure)
  2296. starttime = millis(); //procedure calls count as normal print time.
  2297. }
  2298. }
  2299. /**
  2300. * M928: Start SD Write
  2301. */
  2302. inline void gcode_M928() {
  2303. char* starpos = strchr(strchr_pointer + 5, '*');
  2304. if (starpos) {
  2305. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2306. strchr_pointer = strchr(npos, ' ') + 1;
  2307. *(starpos) = '\0';
  2308. }
  2309. card.openLogFile(strchr_pointer + 5);
  2310. }
  2311. #endif // SDSUPPORT
  2312. /**
  2313. * M42: Change pin status via GCode
  2314. */
  2315. inline void gcode_M42() {
  2316. if (code_seen('S')) {
  2317. int pin_status = code_value_short(),
  2318. pin_number = LED_PIN;
  2319. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2320. pin_number = code_value_short();
  2321. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2322. if (sensitive_pins[i] == pin_number) {
  2323. pin_number = -1;
  2324. break;
  2325. }
  2326. }
  2327. #if HAS_FAN
  2328. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2329. #endif
  2330. if (pin_number > -1) {
  2331. pinMode(pin_number, OUTPUT);
  2332. digitalWrite(pin_number, pin_status);
  2333. analogWrite(pin_number, pin_status);
  2334. }
  2335. } // code_seen('S')
  2336. }
  2337. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2338. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2339. #ifdef Z_PROBE_ENDSTOP
  2340. #if !HAS_Z_PROBE
  2341. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2342. #endif
  2343. #elif !HAS_Z_MIN
  2344. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2345. #endif
  2346. /**
  2347. * M48: Z-Probe repeatability measurement function.
  2348. *
  2349. * Usage:
  2350. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2351. * P = Number of sampled points (4-50, default 10)
  2352. * X = Sample X position
  2353. * Y = Sample Y position
  2354. * V = Verbose level (0-4, default=1)
  2355. * E = Engage probe for each reading
  2356. * L = Number of legs of movement before probe
  2357. *
  2358. * This function assumes the bed has been homed. Specifically, that a G28 command
  2359. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2360. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2361. * regenerated.
  2362. *
  2363. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2364. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2365. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2366. */
  2367. inline void gcode_M48() {
  2368. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2369. int verbose_level = 1, n_samples = 10, n_legs = 0;
  2370. if (code_seen('V') || code_seen('v')) {
  2371. verbose_level = code_value_short();
  2372. if (verbose_level < 0 || verbose_level > 4 ) {
  2373. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2374. return;
  2375. }
  2376. }
  2377. if (verbose_level > 0)
  2378. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2379. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2380. n_samples = code_value_short();
  2381. if (n_samples < 4 || n_samples > 50) {
  2382. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2383. return;
  2384. }
  2385. }
  2386. double X_probe_location, Y_probe_location,
  2387. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2388. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2389. Z_current = st_get_position_mm(Z_AXIS),
  2390. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2391. ext_position = st_get_position_mm(E_AXIS);
  2392. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2393. if (code_seen('X') || code_seen('x')) {
  2394. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2395. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2396. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2397. return;
  2398. }
  2399. }
  2400. if (code_seen('Y') || code_seen('y')) {
  2401. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2402. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2403. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2404. return;
  2405. }
  2406. }
  2407. if (code_seen('L') || code_seen('l')) {
  2408. n_legs = code_value_short();
  2409. if (n_legs == 1) n_legs = 2;
  2410. if (n_legs < 0 || n_legs > 15) {
  2411. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2412. return;
  2413. }
  2414. }
  2415. //
  2416. // Do all the preliminary setup work. First raise the probe.
  2417. //
  2418. st_synchronize();
  2419. plan_bed_level_matrix.set_to_identity();
  2420. plan_buffer_line(X_current, Y_current, Z_start_location,
  2421. ext_position,
  2422. homing_feedrate[Z_AXIS] / 60,
  2423. active_extruder);
  2424. st_synchronize();
  2425. //
  2426. // Now get everything to the specified probe point So we can safely do a probe to
  2427. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2428. // use that as a starting point for each probe.
  2429. //
  2430. if (verbose_level > 2)
  2431. SERIAL_PROTOCOL("Positioning the probe...\n");
  2432. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2433. ext_position,
  2434. homing_feedrate[X_AXIS]/60,
  2435. active_extruder);
  2436. st_synchronize();
  2437. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2438. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2439. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2440. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2441. //
  2442. // OK, do the inital probe to get us close to the bed.
  2443. // Then retrace the right amount and use that in subsequent probes
  2444. //
  2445. deploy_z_probe();
  2446. setup_for_endstop_move();
  2447. run_z_probe();
  2448. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2449. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2450. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2451. ext_position,
  2452. homing_feedrate[X_AXIS]/60,
  2453. active_extruder);
  2454. st_synchronize();
  2455. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2456. if (deploy_probe_for_each_reading) stow_z_probe();
  2457. for (uint16_t n=0; n < n_samples; n++) {
  2458. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2459. if (n_legs) {
  2460. unsigned long ms = millis();
  2461. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2462. theta = RADIANS(ms % 360L);
  2463. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2464. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2465. //SERIAL_ECHOPAIR(" theta: ",theta);
  2466. //SERIAL_ECHOPAIR(" direction: ",dir);
  2467. //SERIAL_EOL;
  2468. for (int l = 0; l < n_legs - 1; l++) {
  2469. ms = millis();
  2470. theta += RADIANS(dir * (ms % 20L));
  2471. radius += (ms % 10L) - 5L;
  2472. if (radius < 0.0) radius = -radius;
  2473. X_current = X_probe_location + cos(theta) * radius;
  2474. Y_current = Y_probe_location + sin(theta) * radius;
  2475. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2476. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2477. if (verbose_level > 3) {
  2478. SERIAL_ECHOPAIR("x: ", X_current);
  2479. SERIAL_ECHOPAIR("y: ", Y_current);
  2480. SERIAL_EOL;
  2481. }
  2482. do_blocking_move_to(X_current, Y_current, Z_current);
  2483. } // n_legs loop
  2484. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2485. } // n_legs
  2486. if (deploy_probe_for_each_reading) {
  2487. deploy_z_probe();
  2488. delay(1000);
  2489. }
  2490. setup_for_endstop_move();
  2491. run_z_probe();
  2492. sample_set[n] = current_position[Z_AXIS];
  2493. //
  2494. // Get the current mean for the data points we have so far
  2495. //
  2496. sum = 0.0;
  2497. for (int j = 0; j <= n; j++) sum += sample_set[j];
  2498. mean = sum / (n + 1);
  2499. //
  2500. // Now, use that mean to calculate the standard deviation for the
  2501. // data points we have so far
  2502. //
  2503. sum = 0.0;
  2504. for (int j = 0; j <= n; j++) {
  2505. float ss = sample_set[j] - mean;
  2506. sum += ss * ss;
  2507. }
  2508. sigma = sqrt(sum / (n + 1));
  2509. if (verbose_level > 1) {
  2510. SERIAL_PROTOCOL(n+1);
  2511. SERIAL_PROTOCOLPGM(" of ");
  2512. SERIAL_PROTOCOL(n_samples);
  2513. SERIAL_PROTOCOLPGM(" z: ");
  2514. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2515. if (verbose_level > 2) {
  2516. SERIAL_PROTOCOLPGM(" mean: ");
  2517. SERIAL_PROTOCOL_F(mean,6);
  2518. SERIAL_PROTOCOLPGM(" sigma: ");
  2519. SERIAL_PROTOCOL_F(sigma,6);
  2520. }
  2521. }
  2522. if (verbose_level > 0) SERIAL_EOL;
  2523. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2524. st_synchronize();
  2525. if (deploy_probe_for_each_reading) {
  2526. stow_z_probe();
  2527. delay(1000);
  2528. }
  2529. }
  2530. if (!deploy_probe_for_each_reading) {
  2531. stow_z_probe();
  2532. delay(1000);
  2533. }
  2534. clean_up_after_endstop_move();
  2535. // enable_endstops(true);
  2536. if (verbose_level > 0) {
  2537. SERIAL_PROTOCOLPGM("Mean: ");
  2538. SERIAL_PROTOCOL_F(mean, 6);
  2539. SERIAL_EOL;
  2540. }
  2541. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2542. SERIAL_PROTOCOL_F(sigma, 6);
  2543. SERIAL_EOL; SERIAL_EOL;
  2544. }
  2545. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2546. /**
  2547. * M104: Set hot end temperature
  2548. */
  2549. inline void gcode_M104() {
  2550. if (setTargetedHotend(104)) return;
  2551. if (code_seen('S')) {
  2552. float temp = code_value();
  2553. setTargetHotend(temp, target_extruder);
  2554. #ifdef DUAL_X_CARRIAGE
  2555. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2556. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2557. #endif
  2558. setWatch();
  2559. }
  2560. }
  2561. /**
  2562. * M105: Read hot end and bed temperature
  2563. */
  2564. inline void gcode_M105() {
  2565. if (setTargetedHotend(105)) return;
  2566. #if HAS_TEMP_0 || HAS_TEMP_BED
  2567. SERIAL_PROTOCOLPGM("ok");
  2568. #if HAS_TEMP_0
  2569. SERIAL_PROTOCOLPGM(" T:");
  2570. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2571. SERIAL_PROTOCOLPGM(" /");
  2572. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2573. #endif
  2574. #if HAS_TEMP_BED
  2575. SERIAL_PROTOCOLPGM(" B:");
  2576. SERIAL_PROTOCOL_F(degBed(), 1);
  2577. SERIAL_PROTOCOLPGM(" /");
  2578. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2579. #endif
  2580. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2581. SERIAL_PROTOCOLPGM(" T");
  2582. SERIAL_PROTOCOL(e);
  2583. SERIAL_PROTOCOLCHAR(':');
  2584. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2585. SERIAL_PROTOCOLPGM(" /");
  2586. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2587. }
  2588. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2589. SERIAL_ERROR_START;
  2590. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2591. #endif
  2592. SERIAL_PROTOCOLPGM(" @:");
  2593. #ifdef EXTRUDER_WATTS
  2594. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2595. SERIAL_PROTOCOLCHAR('W');
  2596. #else
  2597. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2598. #endif
  2599. SERIAL_PROTOCOLPGM(" B@:");
  2600. #ifdef BED_WATTS
  2601. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2602. SERIAL_PROTOCOLCHAR('W');
  2603. #else
  2604. SERIAL_PROTOCOL(getHeaterPower(-1));
  2605. #endif
  2606. #ifdef SHOW_TEMP_ADC_VALUES
  2607. #if HAS_TEMP_BED
  2608. SERIAL_PROTOCOLPGM(" ADC B:");
  2609. SERIAL_PROTOCOL_F(degBed(),1);
  2610. SERIAL_PROTOCOLPGM("C->");
  2611. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2612. #endif
  2613. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2614. SERIAL_PROTOCOLPGM(" T");
  2615. SERIAL_PROTOCOL(cur_extruder);
  2616. SERIAL_PROTOCOLCHAR(':');
  2617. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2618. SERIAL_PROTOCOLPGM("C->");
  2619. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2620. }
  2621. #endif
  2622. SERIAL_EOL;
  2623. }
  2624. #if HAS_FAN
  2625. /**
  2626. * M106: Set Fan Speed
  2627. */
  2628. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2629. /**
  2630. * M107: Fan Off
  2631. */
  2632. inline void gcode_M107() { fanSpeed = 0; }
  2633. #endif // HAS_FAN
  2634. /**
  2635. * M109: Wait for extruder(s) to reach temperature
  2636. */
  2637. inline void gcode_M109() {
  2638. if (setTargetedHotend(109)) return;
  2639. LCD_MESSAGEPGM(MSG_HEATING);
  2640. CooldownNoWait = code_seen('S');
  2641. if (CooldownNoWait || code_seen('R')) {
  2642. float temp = code_value();
  2643. setTargetHotend(temp, target_extruder);
  2644. #ifdef DUAL_X_CARRIAGE
  2645. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2646. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2647. #endif
  2648. }
  2649. #ifdef AUTOTEMP
  2650. autotemp_enabled = code_seen('F');
  2651. if (autotemp_enabled) autotemp_factor = code_value();
  2652. if (code_seen('S')) autotemp_min = code_value();
  2653. if (code_seen('B')) autotemp_max = code_value();
  2654. #endif
  2655. setWatch();
  2656. unsigned long timetemp = millis();
  2657. /* See if we are heating up or cooling down */
  2658. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2659. cancel_heatup = false;
  2660. #ifdef TEMP_RESIDENCY_TIME
  2661. long residencyStart = -1;
  2662. /* continue to loop until we have reached the target temp
  2663. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2664. while((!cancel_heatup)&&((residencyStart == -1) ||
  2665. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2666. #else
  2667. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(CooldownNoWait==false)) )
  2668. #endif //TEMP_RESIDENCY_TIME
  2669. { // while loop
  2670. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2671. SERIAL_PROTOCOLPGM("T:");
  2672. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2673. SERIAL_PROTOCOLPGM(" E:");
  2674. SERIAL_PROTOCOL((int)target_extruder);
  2675. #ifdef TEMP_RESIDENCY_TIME
  2676. SERIAL_PROTOCOLPGM(" W:");
  2677. if (residencyStart > -1) {
  2678. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2679. SERIAL_PROTOCOLLN( timetemp );
  2680. }
  2681. else {
  2682. SERIAL_PROTOCOLLNPGM("?");
  2683. }
  2684. #else
  2685. SERIAL_EOL;
  2686. #endif
  2687. timetemp = millis();
  2688. }
  2689. manage_heater();
  2690. manage_inactivity();
  2691. lcd_update();
  2692. #ifdef TEMP_RESIDENCY_TIME
  2693. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2694. // or when current temp falls outside the hysteresis after target temp was reached
  2695. if ((residencyStart == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2696. (residencyStart == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2697. (residencyStart > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2698. {
  2699. residencyStart = millis();
  2700. }
  2701. #endif //TEMP_RESIDENCY_TIME
  2702. }
  2703. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2704. refresh_cmd_timeout();
  2705. starttime = previous_millis_cmd;
  2706. }
  2707. #if HAS_TEMP_BED
  2708. /**
  2709. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2710. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2711. */
  2712. inline void gcode_M190() {
  2713. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2714. CooldownNoWait = code_seen('S');
  2715. if (CooldownNoWait || code_seen('R'))
  2716. setTargetBed(code_value());
  2717. unsigned long timetemp = millis();
  2718. cancel_heatup = false;
  2719. target_direction = isHeatingBed(); // true if heating, false if cooling
  2720. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2721. unsigned long ms = millis();
  2722. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2723. timetemp = ms;
  2724. float tt = degHotend(active_extruder);
  2725. SERIAL_PROTOCOLPGM("T:");
  2726. SERIAL_PROTOCOL(tt);
  2727. SERIAL_PROTOCOLPGM(" E:");
  2728. SERIAL_PROTOCOL((int)active_extruder);
  2729. SERIAL_PROTOCOLPGM(" B:");
  2730. SERIAL_PROTOCOL_F(degBed(), 1);
  2731. SERIAL_EOL;
  2732. }
  2733. manage_heater();
  2734. manage_inactivity();
  2735. lcd_update();
  2736. }
  2737. LCD_MESSAGEPGM(MSG_BED_DONE);
  2738. refresh_cmd_timeout();
  2739. }
  2740. #endif // HAS_TEMP_BED
  2741. /**
  2742. * M112: Emergency Stop
  2743. */
  2744. inline void gcode_M112() {
  2745. kill();
  2746. }
  2747. #ifdef BARICUDA
  2748. #if HAS_HEATER_1
  2749. /**
  2750. * M126: Heater 1 valve open
  2751. */
  2752. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2753. /**
  2754. * M127: Heater 1 valve close
  2755. */
  2756. inline void gcode_M127() { ValvePressure = 0; }
  2757. #endif
  2758. #if HAS_HEATER_2
  2759. /**
  2760. * M128: Heater 2 valve open
  2761. */
  2762. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2763. /**
  2764. * M129: Heater 2 valve close
  2765. */
  2766. inline void gcode_M129() { EtoPPressure = 0; }
  2767. #endif
  2768. #endif //BARICUDA
  2769. /**
  2770. * M140: Set bed temperature
  2771. */
  2772. inline void gcode_M140() {
  2773. if (code_seen('S')) setTargetBed(code_value());
  2774. }
  2775. #if HAS_POWER_SWITCH
  2776. /**
  2777. * M80: Turn on Power Supply
  2778. */
  2779. inline void gcode_M80() {
  2780. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2781. // If you have a switch on suicide pin, this is useful
  2782. // if you want to start another print with suicide feature after
  2783. // a print without suicide...
  2784. #if HAS_SUICIDE
  2785. OUT_WRITE(SUICIDE_PIN, HIGH);
  2786. #endif
  2787. #ifdef ULTIPANEL
  2788. powersupply = true;
  2789. LCD_MESSAGEPGM(WELCOME_MSG);
  2790. lcd_update();
  2791. #endif
  2792. }
  2793. #endif // HAS_POWER_SWITCH
  2794. /**
  2795. * M81: Turn off Power, including Power Supply, if there is one.
  2796. *
  2797. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2798. */
  2799. inline void gcode_M81() {
  2800. disable_heater();
  2801. st_synchronize();
  2802. disable_e0();
  2803. disable_e1();
  2804. disable_e2();
  2805. disable_e3();
  2806. finishAndDisableSteppers();
  2807. fanSpeed = 0;
  2808. delay(1000); // Wait 1 second before switching off
  2809. #if HAS_SUICIDE
  2810. st_synchronize();
  2811. suicide();
  2812. #elif HAS_POWER_SWITCH
  2813. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2814. #endif
  2815. #ifdef ULTIPANEL
  2816. #if HAS_POWER_SWITCH
  2817. powersupply = false;
  2818. #endif
  2819. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2820. lcd_update();
  2821. #endif
  2822. }
  2823. /**
  2824. * M82: Set E codes absolute (default)
  2825. */
  2826. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2827. /**
  2828. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2829. */
  2830. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2831. /**
  2832. * M18, M84: Disable all stepper motors
  2833. */
  2834. inline void gcode_M18_M84() {
  2835. if (code_seen('S')) {
  2836. stepper_inactive_time = code_value() * 1000;
  2837. }
  2838. else {
  2839. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2840. if (all_axis) {
  2841. st_synchronize();
  2842. disable_e0();
  2843. disable_e1();
  2844. disable_e2();
  2845. disable_e3();
  2846. finishAndDisableSteppers();
  2847. }
  2848. else {
  2849. st_synchronize();
  2850. if (code_seen('X')) disable_x();
  2851. if (code_seen('Y')) disable_y();
  2852. if (code_seen('Z')) disable_z();
  2853. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2854. if (code_seen('E')) {
  2855. disable_e0();
  2856. disable_e1();
  2857. disable_e2();
  2858. disable_e3();
  2859. }
  2860. #endif
  2861. }
  2862. }
  2863. }
  2864. /**
  2865. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2866. */
  2867. inline void gcode_M85() {
  2868. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2869. }
  2870. /**
  2871. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2872. */
  2873. inline void gcode_M92() {
  2874. for(int8_t i=0; i < NUM_AXIS; i++) {
  2875. if (code_seen(axis_codes[i])) {
  2876. if (i == E_AXIS) {
  2877. float value = code_value();
  2878. if (value < 20.0) {
  2879. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2880. max_e_jerk *= factor;
  2881. max_feedrate[i] *= factor;
  2882. axis_steps_per_sqr_second[i] *= factor;
  2883. }
  2884. axis_steps_per_unit[i] = value;
  2885. }
  2886. else {
  2887. axis_steps_per_unit[i] = code_value();
  2888. }
  2889. }
  2890. }
  2891. }
  2892. /**
  2893. * M114: Output current position to serial port
  2894. */
  2895. inline void gcode_M114() {
  2896. SERIAL_PROTOCOLPGM("X:");
  2897. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2898. SERIAL_PROTOCOLPGM(" Y:");
  2899. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2900. SERIAL_PROTOCOLPGM(" Z:");
  2901. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2902. SERIAL_PROTOCOLPGM(" E:");
  2903. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2904. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2905. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2906. SERIAL_PROTOCOLPGM(" Y:");
  2907. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2908. SERIAL_PROTOCOLPGM(" Z:");
  2909. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2910. SERIAL_EOL;
  2911. #ifdef SCARA
  2912. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2913. SERIAL_PROTOCOL(delta[X_AXIS]);
  2914. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2915. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2916. SERIAL_EOL;
  2917. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2918. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2919. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2920. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2921. SERIAL_EOL;
  2922. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2923. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2924. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2925. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2926. SERIAL_EOL; SERIAL_EOL;
  2927. #endif
  2928. }
  2929. /**
  2930. * M115: Capabilities string
  2931. */
  2932. inline void gcode_M115() {
  2933. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2934. }
  2935. /**
  2936. * M117: Set LCD Status Message
  2937. */
  2938. inline void gcode_M117() {
  2939. char* codepos = strchr_pointer + 5;
  2940. char* starpos = strchr(codepos, '*');
  2941. if (starpos) *starpos = '\0';
  2942. lcd_setstatus(codepos);
  2943. }
  2944. /**
  2945. * M119: Output endstop states to serial output
  2946. */
  2947. inline void gcode_M119() {
  2948. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2949. #if HAS_X_MIN
  2950. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2951. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2952. #endif
  2953. #if HAS_X_MAX
  2954. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2955. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2956. #endif
  2957. #if HAS_Y_MIN
  2958. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2959. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2960. #endif
  2961. #if HAS_Y_MAX
  2962. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2963. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2964. #endif
  2965. #if HAS_Z_MIN
  2966. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2967. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2968. #endif
  2969. #if HAS_Z_MAX
  2970. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2971. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2972. #endif
  2973. #if HAS_Z2_MAX
  2974. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2975. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2976. #endif
  2977. #if HAS_Z_PROBE
  2978. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  2979. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2980. #endif
  2981. }
  2982. /**
  2983. * M120: Enable endstops
  2984. */
  2985. inline void gcode_M120() { enable_endstops(false); }
  2986. /**
  2987. * M121: Disable endstops
  2988. */
  2989. inline void gcode_M121() { enable_endstops(true); }
  2990. #ifdef BLINKM
  2991. /**
  2992. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2993. */
  2994. inline void gcode_M150() {
  2995. SendColors(
  2996. code_seen('R') ? (byte)code_value_short() : 0,
  2997. code_seen('U') ? (byte)code_value_short() : 0,
  2998. code_seen('B') ? (byte)code_value_short() : 0
  2999. );
  3000. }
  3001. #endif // BLINKM
  3002. /**
  3003. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3004. * T<extruder>
  3005. * D<millimeters>
  3006. */
  3007. inline void gcode_M200() {
  3008. int tmp_extruder = active_extruder;
  3009. if (code_seen('T')) {
  3010. tmp_extruder = code_value_short();
  3011. if (tmp_extruder >= EXTRUDERS) {
  3012. SERIAL_ECHO_START;
  3013. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3014. return;
  3015. }
  3016. }
  3017. if (code_seen('D')) {
  3018. float diameter = code_value();
  3019. // setting any extruder filament size disables volumetric on the assumption that
  3020. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3021. // for all extruders
  3022. volumetric_enabled = (diameter != 0.0);
  3023. if (volumetric_enabled) {
  3024. filament_size[tmp_extruder] = diameter;
  3025. // make sure all extruders have some sane value for the filament size
  3026. for (int i=0; i<EXTRUDERS; i++)
  3027. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3028. }
  3029. }
  3030. else {
  3031. //reserved for setting filament diameter via UFID or filament measuring device
  3032. return;
  3033. }
  3034. calculate_volumetric_multipliers();
  3035. }
  3036. /**
  3037. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3038. */
  3039. inline void gcode_M201() {
  3040. for (int8_t i=0; i < NUM_AXIS; i++) {
  3041. if (code_seen(axis_codes[i])) {
  3042. max_acceleration_units_per_sq_second[i] = code_value();
  3043. }
  3044. }
  3045. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3046. reset_acceleration_rates();
  3047. }
  3048. #if 0 // Not used for Sprinter/grbl gen6
  3049. inline void gcode_M202() {
  3050. for(int8_t i=0; i < NUM_AXIS; i++) {
  3051. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3052. }
  3053. }
  3054. #endif
  3055. /**
  3056. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3057. */
  3058. inline void gcode_M203() {
  3059. for (int8_t i=0; i < NUM_AXIS; i++) {
  3060. if (code_seen(axis_codes[i])) {
  3061. max_feedrate[i] = code_value();
  3062. }
  3063. }
  3064. }
  3065. /**
  3066. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3067. *
  3068. * P = Printing moves
  3069. * R = Retract only (no X, Y, Z) moves
  3070. * T = Travel (non printing) moves
  3071. *
  3072. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3073. */
  3074. inline void gcode_M204() {
  3075. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3076. acceleration = code_value();
  3077. travel_acceleration = acceleration;
  3078. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3079. SERIAL_EOL;
  3080. }
  3081. if (code_seen('P')) {
  3082. acceleration = code_value();
  3083. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3084. SERIAL_EOL;
  3085. }
  3086. if (code_seen('R')) {
  3087. retract_acceleration = code_value();
  3088. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3089. SERIAL_EOL;
  3090. }
  3091. if (code_seen('T')) {
  3092. travel_acceleration = code_value();
  3093. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3094. SERIAL_EOL;
  3095. }
  3096. }
  3097. /**
  3098. * M205: Set Advanced Settings
  3099. *
  3100. * S = Min Feed Rate (mm/s)
  3101. * T = Min Travel Feed Rate (mm/s)
  3102. * B = Min Segment Time (µs)
  3103. * X = Max XY Jerk (mm/s/s)
  3104. * Z = Max Z Jerk (mm/s/s)
  3105. * E = Max E Jerk (mm/s/s)
  3106. */
  3107. inline void gcode_M205() {
  3108. if (code_seen('S')) minimumfeedrate = code_value();
  3109. if (code_seen('T')) mintravelfeedrate = code_value();
  3110. if (code_seen('B')) minsegmenttime = code_value();
  3111. if (code_seen('X')) max_xy_jerk = code_value();
  3112. if (code_seen('Z')) max_z_jerk = code_value();
  3113. if (code_seen('E')) max_e_jerk = code_value();
  3114. }
  3115. /**
  3116. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3117. */
  3118. inline void gcode_M206() {
  3119. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3120. if (code_seen(axis_codes[i])) {
  3121. home_offset[i] = code_value();
  3122. }
  3123. }
  3124. #ifdef SCARA
  3125. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3126. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3127. #endif
  3128. }
  3129. #ifdef DELTA
  3130. /**
  3131. * M665: Set delta configurations
  3132. *
  3133. * L = diagonal rod
  3134. * R = delta radius
  3135. * S = segments per second
  3136. */
  3137. inline void gcode_M665() {
  3138. if (code_seen('L')) delta_diagonal_rod = code_value();
  3139. if (code_seen('R')) delta_radius = code_value();
  3140. if (code_seen('S')) delta_segments_per_second = code_value();
  3141. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3142. }
  3143. /**
  3144. * M666: Set delta endstop adjustment
  3145. */
  3146. inline void gcode_M666() {
  3147. for (int8_t i = 0; i < 3; i++) {
  3148. if (code_seen(axis_codes[i])) {
  3149. endstop_adj[i] = code_value();
  3150. }
  3151. }
  3152. }
  3153. #elif defined(Z_DUAL_ENDSTOPS)
  3154. /**
  3155. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3156. */
  3157. inline void gcode_M666() {
  3158. if (code_seen('Z')) z_endstop_adj = code_value();
  3159. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3160. SERIAL_EOL;
  3161. }
  3162. #endif // DELTA
  3163. #ifdef FWRETRACT
  3164. /**
  3165. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3166. */
  3167. inline void gcode_M207() {
  3168. if (code_seen('S')) retract_length = code_value();
  3169. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3170. if (code_seen('Z')) retract_zlift = code_value();
  3171. }
  3172. /**
  3173. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3174. */
  3175. inline void gcode_M208() {
  3176. if (code_seen('S')) retract_recover_length = code_value();
  3177. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3178. }
  3179. /**
  3180. * M209: Enable automatic retract (M209 S1)
  3181. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3182. */
  3183. inline void gcode_M209() {
  3184. if (code_seen('S')) {
  3185. int t = code_value_short();
  3186. switch(t) {
  3187. case 0:
  3188. autoretract_enabled = false;
  3189. break;
  3190. case 1:
  3191. autoretract_enabled = true;
  3192. break;
  3193. default:
  3194. SERIAL_ECHO_START;
  3195. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3196. SERIAL_ECHO(cmdbuffer[bufindr]);
  3197. SERIAL_ECHOLNPGM("\"");
  3198. return;
  3199. }
  3200. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3201. }
  3202. }
  3203. #endif // FWRETRACT
  3204. #if EXTRUDERS > 1
  3205. /**
  3206. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3207. */
  3208. inline void gcode_M218() {
  3209. if (setTargetedHotend(218)) return;
  3210. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3211. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3212. #ifdef DUAL_X_CARRIAGE
  3213. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3214. #endif
  3215. SERIAL_ECHO_START;
  3216. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3217. for (int e = 0; e < EXTRUDERS; e++) {
  3218. SERIAL_CHAR(' ');
  3219. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3220. SERIAL_CHAR(',');
  3221. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3222. #ifdef DUAL_X_CARRIAGE
  3223. SERIAL_CHAR(',');
  3224. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3225. #endif
  3226. }
  3227. SERIAL_EOL;
  3228. }
  3229. #endif // EXTRUDERS > 1
  3230. /**
  3231. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3232. */
  3233. inline void gcode_M220() {
  3234. if (code_seen('S')) feedmultiply = code_value();
  3235. }
  3236. /**
  3237. * M221: Set extrusion percentage (M221 T0 S95)
  3238. */
  3239. inline void gcode_M221() {
  3240. if (code_seen('S')) {
  3241. int sval = code_value();
  3242. if (code_seen('T')) {
  3243. if (setTargetedHotend(221)) return;
  3244. extruder_multiply[target_extruder] = sval;
  3245. }
  3246. else {
  3247. extruder_multiply[active_extruder] = sval;
  3248. }
  3249. }
  3250. }
  3251. /**
  3252. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3253. */
  3254. inline void gcode_M226() {
  3255. if (code_seen('P')) {
  3256. int pin_number = code_value();
  3257. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3258. if (pin_state >= -1 && pin_state <= 1) {
  3259. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3260. if (sensitive_pins[i] == pin_number) {
  3261. pin_number = -1;
  3262. break;
  3263. }
  3264. }
  3265. if (pin_number > -1) {
  3266. int target = LOW;
  3267. st_synchronize();
  3268. pinMode(pin_number, INPUT);
  3269. switch(pin_state){
  3270. case 1:
  3271. target = HIGH;
  3272. break;
  3273. case 0:
  3274. target = LOW;
  3275. break;
  3276. case -1:
  3277. target = !digitalRead(pin_number);
  3278. break;
  3279. }
  3280. while(digitalRead(pin_number) != target) {
  3281. manage_heater();
  3282. manage_inactivity();
  3283. lcd_update();
  3284. }
  3285. } // pin_number > -1
  3286. } // pin_state -1 0 1
  3287. } // code_seen('P')
  3288. }
  3289. #if NUM_SERVOS > 0
  3290. /**
  3291. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3292. */
  3293. inline void gcode_M280() {
  3294. int servo_index = code_seen('P') ? code_value() : -1;
  3295. int servo_position = 0;
  3296. if (code_seen('S')) {
  3297. servo_position = code_value();
  3298. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3299. #if SERVO_LEVELING
  3300. servos[servo_index].attach(0);
  3301. #endif
  3302. servos[servo_index].write(servo_position);
  3303. #if SERVO_LEVELING
  3304. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3305. servos[servo_index].detach();
  3306. #endif
  3307. }
  3308. else {
  3309. SERIAL_ECHO_START;
  3310. SERIAL_ECHO("Servo ");
  3311. SERIAL_ECHO(servo_index);
  3312. SERIAL_ECHOLN(" out of range");
  3313. }
  3314. }
  3315. else if (servo_index >= 0) {
  3316. SERIAL_PROTOCOL(MSG_OK);
  3317. SERIAL_PROTOCOL(" Servo ");
  3318. SERIAL_PROTOCOL(servo_index);
  3319. SERIAL_PROTOCOL(": ");
  3320. SERIAL_PROTOCOL(servos[servo_index].read());
  3321. SERIAL_EOL;
  3322. }
  3323. }
  3324. #endif // NUM_SERVOS > 0
  3325. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3326. /**
  3327. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3328. */
  3329. inline void gcode_M300() {
  3330. int beepS = code_seen('S') ? code_value() : 110;
  3331. int beepP = code_seen('P') ? code_value() : 1000;
  3332. if (beepS > 0) {
  3333. #if BEEPER > 0
  3334. tone(BEEPER, beepS);
  3335. delay(beepP);
  3336. noTone(BEEPER);
  3337. #elif defined(ULTRALCD)
  3338. lcd_buzz(beepS, beepP);
  3339. #elif defined(LCD_USE_I2C_BUZZER)
  3340. lcd_buzz(beepP, beepS);
  3341. #endif
  3342. }
  3343. else {
  3344. delay(beepP);
  3345. }
  3346. }
  3347. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3348. #ifdef PIDTEMP
  3349. /**
  3350. * M301: Set PID parameters P I D (and optionally C)
  3351. */
  3352. inline void gcode_M301() {
  3353. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3354. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3355. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3356. if (e < EXTRUDERS) { // catch bad input value
  3357. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3358. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3359. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3360. #ifdef PID_ADD_EXTRUSION_RATE
  3361. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3362. #endif
  3363. updatePID();
  3364. SERIAL_PROTOCOL(MSG_OK);
  3365. #ifdef PID_PARAMS_PER_EXTRUDER
  3366. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3367. SERIAL_PROTOCOL(e);
  3368. #endif // PID_PARAMS_PER_EXTRUDER
  3369. SERIAL_PROTOCOL(" p:");
  3370. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3371. SERIAL_PROTOCOL(" i:");
  3372. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3373. SERIAL_PROTOCOL(" d:");
  3374. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3375. #ifdef PID_ADD_EXTRUSION_RATE
  3376. SERIAL_PROTOCOL(" c:");
  3377. //Kc does not have scaling applied above, or in resetting defaults
  3378. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3379. #endif
  3380. SERIAL_EOL;
  3381. }
  3382. else {
  3383. SERIAL_ECHO_START;
  3384. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3385. }
  3386. }
  3387. #endif // PIDTEMP
  3388. #ifdef PIDTEMPBED
  3389. inline void gcode_M304() {
  3390. if (code_seen('P')) bedKp = code_value();
  3391. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3392. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3393. updatePID();
  3394. SERIAL_PROTOCOL(MSG_OK);
  3395. SERIAL_PROTOCOL(" p:");
  3396. SERIAL_PROTOCOL(bedKp);
  3397. SERIAL_PROTOCOL(" i:");
  3398. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3399. SERIAL_PROTOCOL(" d:");
  3400. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3401. SERIAL_EOL;
  3402. }
  3403. #endif // PIDTEMPBED
  3404. #if defined(CHDK) || HAS_PHOTOGRAPH
  3405. /**
  3406. * M240: Trigger a camera by emulating a Canon RC-1
  3407. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3408. */
  3409. inline void gcode_M240() {
  3410. #ifdef CHDK
  3411. OUT_WRITE(CHDK, HIGH);
  3412. chdkHigh = millis();
  3413. chdkActive = true;
  3414. #elif HAS_PHOTOGRAPH
  3415. const uint8_t NUM_PULSES = 16;
  3416. const float PULSE_LENGTH = 0.01524;
  3417. for (int i = 0; i < NUM_PULSES; i++) {
  3418. WRITE(PHOTOGRAPH_PIN, HIGH);
  3419. _delay_ms(PULSE_LENGTH);
  3420. WRITE(PHOTOGRAPH_PIN, LOW);
  3421. _delay_ms(PULSE_LENGTH);
  3422. }
  3423. delay(7.33);
  3424. for (int i = 0; i < NUM_PULSES; i++) {
  3425. WRITE(PHOTOGRAPH_PIN, HIGH);
  3426. _delay_ms(PULSE_LENGTH);
  3427. WRITE(PHOTOGRAPH_PIN, LOW);
  3428. _delay_ms(PULSE_LENGTH);
  3429. }
  3430. #endif // !CHDK && HAS_PHOTOGRAPH
  3431. }
  3432. #endif // CHDK || PHOTOGRAPH_PIN
  3433. #ifdef DOGLCD
  3434. /**
  3435. * M250: Read and optionally set the LCD contrast
  3436. */
  3437. inline void gcode_M250() {
  3438. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3439. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3440. SERIAL_PROTOCOL(lcd_contrast);
  3441. SERIAL_EOL;
  3442. }
  3443. #endif // DOGLCD
  3444. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3445. /**
  3446. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3447. */
  3448. inline void gcode_M302() {
  3449. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3450. }
  3451. #endif // PREVENT_DANGEROUS_EXTRUDE
  3452. /**
  3453. * M303: PID relay autotune
  3454. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3455. * E<extruder> (-1 for the bed)
  3456. * C<cycles>
  3457. */
  3458. inline void gcode_M303() {
  3459. int e = code_seen('E') ? code_value_short() : 0;
  3460. int c = code_seen('C') ? code_value_short() : 5;
  3461. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3462. PID_autotune(temp, e, c);
  3463. }
  3464. #ifdef SCARA
  3465. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3466. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3467. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3468. if (! Stopped) {
  3469. //get_coordinates(); // For X Y Z E F
  3470. delta[X_AXIS] = delta_x;
  3471. delta[Y_AXIS] = delta_y;
  3472. calculate_SCARA_forward_Transform(delta);
  3473. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3474. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3475. prepare_move();
  3476. //ClearToSend();
  3477. return true;
  3478. }
  3479. return false;
  3480. }
  3481. /**
  3482. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3483. */
  3484. inline bool gcode_M360() {
  3485. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3486. return SCARA_move_to_cal(0, 120);
  3487. }
  3488. /**
  3489. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3490. */
  3491. inline bool gcode_M361() {
  3492. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3493. return SCARA_move_to_cal(90, 130);
  3494. }
  3495. /**
  3496. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3497. */
  3498. inline bool gcode_M362() {
  3499. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3500. return SCARA_move_to_cal(60, 180);
  3501. }
  3502. /**
  3503. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3504. */
  3505. inline bool gcode_M363() {
  3506. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3507. return SCARA_move_to_cal(50, 90);
  3508. }
  3509. /**
  3510. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3511. */
  3512. inline bool gcode_M364() {
  3513. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3514. return SCARA_move_to_cal(45, 135);
  3515. }
  3516. /**
  3517. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3518. */
  3519. inline void gcode_M365() {
  3520. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3521. if (code_seen(axis_codes[i])) {
  3522. axis_scaling[i] = code_value();
  3523. }
  3524. }
  3525. }
  3526. #endif // SCARA
  3527. #ifdef EXT_SOLENOID
  3528. void enable_solenoid(uint8_t num) {
  3529. switch(num) {
  3530. case 0:
  3531. OUT_WRITE(SOL0_PIN, HIGH);
  3532. break;
  3533. #if HAS_SOLENOID_1
  3534. case 1:
  3535. OUT_WRITE(SOL1_PIN, HIGH);
  3536. break;
  3537. #endif
  3538. #if HAS_SOLENOID_2
  3539. case 2:
  3540. OUT_WRITE(SOL2_PIN, HIGH);
  3541. break;
  3542. #endif
  3543. #if HAS_SOLENOID_3
  3544. case 3:
  3545. OUT_WRITE(SOL3_PIN, HIGH);
  3546. break;
  3547. #endif
  3548. default:
  3549. SERIAL_ECHO_START;
  3550. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3551. break;
  3552. }
  3553. }
  3554. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3555. void disable_all_solenoids() {
  3556. OUT_WRITE(SOL0_PIN, LOW);
  3557. OUT_WRITE(SOL1_PIN, LOW);
  3558. OUT_WRITE(SOL2_PIN, LOW);
  3559. OUT_WRITE(SOL3_PIN, LOW);
  3560. }
  3561. /**
  3562. * M380: Enable solenoid on the active extruder
  3563. */
  3564. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3565. /**
  3566. * M381: Disable all solenoids
  3567. */
  3568. inline void gcode_M381() { disable_all_solenoids(); }
  3569. #endif // EXT_SOLENOID
  3570. /**
  3571. * M400: Finish all moves
  3572. */
  3573. inline void gcode_M400() { st_synchronize(); }
  3574. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3575. /**
  3576. * M401: Engage Z Servo endstop if available
  3577. */
  3578. inline void gcode_M401() { deploy_z_probe(); }
  3579. /**
  3580. * M402: Retract Z Servo endstop if enabled
  3581. */
  3582. inline void gcode_M402() { stow_z_probe(); }
  3583. #endif
  3584. #ifdef FILAMENT_SENSOR
  3585. /**
  3586. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3587. */
  3588. inline void gcode_M404() {
  3589. #if HAS_FILWIDTH
  3590. if (code_seen('W')) {
  3591. filament_width_nominal = code_value();
  3592. }
  3593. else {
  3594. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3595. SERIAL_PROTOCOLLN(filament_width_nominal);
  3596. }
  3597. #endif
  3598. }
  3599. /**
  3600. * M405: Turn on filament sensor for control
  3601. */
  3602. inline void gcode_M405() {
  3603. if (code_seen('D')) meas_delay_cm = code_value();
  3604. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3605. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3606. int temp_ratio = widthFil_to_size_ratio();
  3607. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3608. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3609. delay_index1 = delay_index2 = 0;
  3610. }
  3611. filament_sensor = true;
  3612. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3613. //SERIAL_PROTOCOL(filament_width_meas);
  3614. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3615. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3616. }
  3617. /**
  3618. * M406: Turn off filament sensor for control
  3619. */
  3620. inline void gcode_M406() { filament_sensor = false; }
  3621. /**
  3622. * M407: Get measured filament diameter on serial output
  3623. */
  3624. inline void gcode_M407() {
  3625. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3626. SERIAL_PROTOCOLLN(filament_width_meas);
  3627. }
  3628. #endif // FILAMENT_SENSOR
  3629. /**
  3630. * M500: Store settings in EEPROM
  3631. */
  3632. inline void gcode_M500() {
  3633. Config_StoreSettings();
  3634. }
  3635. /**
  3636. * M501: Read settings from EEPROM
  3637. */
  3638. inline void gcode_M501() {
  3639. Config_RetrieveSettings();
  3640. }
  3641. /**
  3642. * M502: Revert to default settings
  3643. */
  3644. inline void gcode_M502() {
  3645. Config_ResetDefault();
  3646. }
  3647. /**
  3648. * M503: print settings currently in memory
  3649. */
  3650. inline void gcode_M503() {
  3651. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3652. }
  3653. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3654. /**
  3655. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3656. */
  3657. inline void gcode_M540() {
  3658. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3659. }
  3660. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3661. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3662. inline void gcode_SET_Z_PROBE_OFFSET() {
  3663. float value;
  3664. if (code_seen('Z')) {
  3665. value = code_value();
  3666. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3667. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3668. SERIAL_ECHO_START;
  3669. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3670. SERIAL_EOL;
  3671. }
  3672. else {
  3673. SERIAL_ECHO_START;
  3674. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3675. SERIAL_ECHOPGM(MSG_Z_MIN);
  3676. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3677. SERIAL_ECHOPGM(MSG_Z_MAX);
  3678. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3679. SERIAL_EOL;
  3680. }
  3681. }
  3682. else {
  3683. SERIAL_ECHO_START;
  3684. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3685. SERIAL_ECHO(-zprobe_zoffset);
  3686. SERIAL_EOL;
  3687. }
  3688. }
  3689. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3690. #ifdef FILAMENTCHANGEENABLE
  3691. /**
  3692. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3693. */
  3694. inline void gcode_M600() {
  3695. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3696. for (int i=0; i<NUM_AXIS; i++)
  3697. target[i] = lastpos[i] = current_position[i];
  3698. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3699. #ifdef DELTA
  3700. #define RUNPLAN calculate_delta(target); BASICPLAN
  3701. #else
  3702. #define RUNPLAN BASICPLAN
  3703. #endif
  3704. //retract by E
  3705. if (code_seen('E')) target[E_AXIS] += code_value();
  3706. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3707. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3708. #endif
  3709. RUNPLAN;
  3710. //lift Z
  3711. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3712. #ifdef FILAMENTCHANGE_ZADD
  3713. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3714. #endif
  3715. RUNPLAN;
  3716. //move xy
  3717. if (code_seen('X')) target[X_AXIS] = code_value();
  3718. #ifdef FILAMENTCHANGE_XPOS
  3719. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3720. #endif
  3721. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3722. #ifdef FILAMENTCHANGE_YPOS
  3723. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3724. #endif
  3725. RUNPLAN;
  3726. if (code_seen('L')) target[E_AXIS] += code_value();
  3727. #ifdef FILAMENTCHANGE_FINALRETRACT
  3728. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3729. #endif
  3730. RUNPLAN;
  3731. //finish moves
  3732. st_synchronize();
  3733. //disable extruder steppers so filament can be removed
  3734. disable_e0();
  3735. disable_e1();
  3736. disable_e2();
  3737. disable_e3();
  3738. delay(100);
  3739. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3740. uint8_t cnt = 0;
  3741. while (!lcd_clicked()) {
  3742. cnt++;
  3743. manage_heater();
  3744. manage_inactivity(true);
  3745. lcd_update();
  3746. if (cnt == 0) {
  3747. #if BEEPER > 0
  3748. OUT_WRITE(BEEPER,HIGH);
  3749. delay(3);
  3750. WRITE(BEEPER,LOW);
  3751. delay(3);
  3752. #else
  3753. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3754. lcd_buzz(1000/6, 100);
  3755. #else
  3756. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3757. #endif
  3758. #endif
  3759. }
  3760. } // while(!lcd_clicked)
  3761. //return to normal
  3762. if (code_seen('L')) target[E_AXIS] -= code_value();
  3763. #ifdef FILAMENTCHANGE_FINALRETRACT
  3764. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3765. #endif
  3766. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3767. plan_set_e_position(current_position[E_AXIS]);
  3768. RUNPLAN; //should do nothing
  3769. lcd_reset_alert_level();
  3770. #ifdef DELTA
  3771. calculate_delta(lastpos);
  3772. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3773. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3774. #else
  3775. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3776. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3777. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3778. #endif
  3779. #ifdef FILAMENT_RUNOUT_SENSOR
  3780. filrunoutEnqued = false;
  3781. #endif
  3782. }
  3783. #endif // FILAMENTCHANGEENABLE
  3784. #ifdef DUAL_X_CARRIAGE
  3785. /**
  3786. * M605: Set dual x-carriage movement mode
  3787. *
  3788. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3789. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3790. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3791. * millimeters x-offset and an optional differential hotend temperature of
  3792. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3793. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3794. *
  3795. * Note: the X axis should be homed after changing dual x-carriage mode.
  3796. */
  3797. inline void gcode_M605() {
  3798. st_synchronize();
  3799. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3800. switch(dual_x_carriage_mode) {
  3801. case DXC_DUPLICATION_MODE:
  3802. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3803. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3804. SERIAL_ECHO_START;
  3805. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3806. SERIAL_CHAR(' ');
  3807. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3808. SERIAL_CHAR(',');
  3809. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3810. SERIAL_CHAR(' ');
  3811. SERIAL_ECHO(duplicate_extruder_x_offset);
  3812. SERIAL_CHAR(',');
  3813. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3814. break;
  3815. case DXC_FULL_CONTROL_MODE:
  3816. case DXC_AUTO_PARK_MODE:
  3817. break;
  3818. default:
  3819. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3820. break;
  3821. }
  3822. active_extruder_parked = false;
  3823. extruder_duplication_enabled = false;
  3824. delayed_move_time = 0;
  3825. }
  3826. #endif // DUAL_X_CARRIAGE
  3827. /**
  3828. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3829. */
  3830. inline void gcode_M907() {
  3831. #if HAS_DIGIPOTSS
  3832. for (int i=0;i<NUM_AXIS;i++)
  3833. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3834. if (code_seen('B')) digipot_current(4, code_value());
  3835. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3836. #endif
  3837. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3838. if (code_seen('X')) digipot_current(0, code_value());
  3839. #endif
  3840. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3841. if (code_seen('Z')) digipot_current(1, code_value());
  3842. #endif
  3843. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3844. if (code_seen('E')) digipot_current(2, code_value());
  3845. #endif
  3846. #ifdef DIGIPOT_I2C
  3847. // this one uses actual amps in floating point
  3848. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3849. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3850. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3851. #endif
  3852. }
  3853. #if HAS_DIGIPOTSS
  3854. /**
  3855. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3856. */
  3857. inline void gcode_M908() {
  3858. digitalPotWrite(
  3859. code_seen('P') ? code_value() : 0,
  3860. code_seen('S') ? code_value() : 0
  3861. );
  3862. }
  3863. #endif // HAS_DIGIPOTSS
  3864. #if HAS_MICROSTEPS
  3865. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3866. inline void gcode_M350() {
  3867. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3868. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3869. if(code_seen('B')) microstep_mode(4,code_value());
  3870. microstep_readings();
  3871. }
  3872. /**
  3873. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3874. * S# determines MS1 or MS2, X# sets the pin high/low.
  3875. */
  3876. inline void gcode_M351() {
  3877. if (code_seen('S')) switch(code_value_short()) {
  3878. case 1:
  3879. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3880. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3881. break;
  3882. case 2:
  3883. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3884. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3885. break;
  3886. }
  3887. microstep_readings();
  3888. }
  3889. #endif // HAS_MICROSTEPS
  3890. /**
  3891. * M999: Restart after being stopped
  3892. */
  3893. inline void gcode_M999() {
  3894. Stopped = false;
  3895. lcd_reset_alert_level();
  3896. gcode_LastN = Stopped_gcode_LastN;
  3897. FlushSerialRequestResend();
  3898. }
  3899. inline void gcode_T() {
  3900. int tmp_extruder = code_value();
  3901. if (tmp_extruder >= EXTRUDERS) {
  3902. SERIAL_ECHO_START;
  3903. SERIAL_CHAR('T');
  3904. SERIAL_ECHO(tmp_extruder);
  3905. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3906. }
  3907. else {
  3908. target_extruder = tmp_extruder;
  3909. #if EXTRUDERS > 1
  3910. bool make_move = false;
  3911. #endif
  3912. if (code_seen('F')) {
  3913. #if EXTRUDERS > 1
  3914. make_move = true;
  3915. #endif
  3916. next_feedrate = code_value();
  3917. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3918. }
  3919. #if EXTRUDERS > 1
  3920. if (tmp_extruder != active_extruder) {
  3921. // Save current position to return to after applying extruder offset
  3922. set_destination_to_current();
  3923. #ifdef DUAL_X_CARRIAGE
  3924. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3925. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3926. // Park old head: 1) raise 2) move to park position 3) lower
  3927. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3928. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3929. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3930. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3931. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3932. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3933. st_synchronize();
  3934. }
  3935. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3936. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3937. extruder_offset[Y_AXIS][active_extruder] +
  3938. extruder_offset[Y_AXIS][tmp_extruder];
  3939. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3940. extruder_offset[Z_AXIS][active_extruder] +
  3941. extruder_offset[Z_AXIS][tmp_extruder];
  3942. active_extruder = tmp_extruder;
  3943. // This function resets the max/min values - the current position may be overwritten below.
  3944. axis_is_at_home(X_AXIS);
  3945. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3946. current_position[X_AXIS] = inactive_extruder_x_pos;
  3947. inactive_extruder_x_pos = destination[X_AXIS];
  3948. }
  3949. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3950. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3951. if (active_extruder == 0 || active_extruder_parked)
  3952. current_position[X_AXIS] = inactive_extruder_x_pos;
  3953. else
  3954. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3955. inactive_extruder_x_pos = destination[X_AXIS];
  3956. extruder_duplication_enabled = false;
  3957. }
  3958. else {
  3959. // record raised toolhead position for use by unpark
  3960. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3961. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3962. active_extruder_parked = true;
  3963. delayed_move_time = 0;
  3964. }
  3965. #else // !DUAL_X_CARRIAGE
  3966. // Offset extruder (only by XY)
  3967. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3968. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3969. // Set the new active extruder and position
  3970. active_extruder = tmp_extruder;
  3971. #endif // !DUAL_X_CARRIAGE
  3972. #ifdef DELTA
  3973. sync_plan_position_delta();
  3974. #else
  3975. sync_plan_position();
  3976. #endif
  3977. // Move to the old position if 'F' was in the parameters
  3978. if (make_move && !Stopped) prepare_move();
  3979. }
  3980. #ifdef EXT_SOLENOID
  3981. st_synchronize();
  3982. disable_all_solenoids();
  3983. enable_solenoid_on_active_extruder();
  3984. #endif // EXT_SOLENOID
  3985. #endif // EXTRUDERS > 1
  3986. SERIAL_ECHO_START;
  3987. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3988. SERIAL_PROTOCOLLN((int)active_extruder);
  3989. }
  3990. }
  3991. /**
  3992. * Process Commands and dispatch them to handlers
  3993. * This is called from the main loop()
  3994. */
  3995. void process_commands() {
  3996. if (code_seen('G')) {
  3997. int gCode = code_value_short();
  3998. switch(gCode) {
  3999. // G0, G1
  4000. case 0:
  4001. case 1:
  4002. gcode_G0_G1();
  4003. break;
  4004. // G2, G3
  4005. #ifndef SCARA
  4006. case 2: // G2 - CW ARC
  4007. case 3: // G3 - CCW ARC
  4008. gcode_G2_G3(gCode == 2);
  4009. break;
  4010. #endif
  4011. // G4 Dwell
  4012. case 4:
  4013. gcode_G4();
  4014. break;
  4015. #ifdef FWRETRACT
  4016. case 10: // G10: retract
  4017. case 11: // G11: retract_recover
  4018. gcode_G10_G11(gCode == 10);
  4019. break;
  4020. #endif //FWRETRACT
  4021. case 28: // G28: Home all axes, one at a time
  4022. gcode_G28();
  4023. break;
  4024. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4025. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4026. gcode_G29();
  4027. break;
  4028. #endif
  4029. #ifdef ENABLE_AUTO_BED_LEVELING
  4030. #ifndef Z_PROBE_SLED
  4031. case 30: // G30 Single Z Probe
  4032. gcode_G30();
  4033. break;
  4034. #else // Z_PROBE_SLED
  4035. case 31: // G31: dock the sled
  4036. case 32: // G32: undock the sled
  4037. dock_sled(gCode == 31);
  4038. break;
  4039. #endif // Z_PROBE_SLED
  4040. #endif // ENABLE_AUTO_BED_LEVELING
  4041. case 90: // G90
  4042. relative_mode = false;
  4043. break;
  4044. case 91: // G91
  4045. relative_mode = true;
  4046. break;
  4047. case 92: // G92
  4048. gcode_G92();
  4049. break;
  4050. }
  4051. }
  4052. else if (code_seen('M')) {
  4053. switch(code_value_short()) {
  4054. #ifdef ULTIPANEL
  4055. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4056. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4057. gcode_M0_M1();
  4058. break;
  4059. #endif // ULTIPANEL
  4060. case 17:
  4061. gcode_M17();
  4062. break;
  4063. #ifdef SDSUPPORT
  4064. case 20: // M20 - list SD card
  4065. gcode_M20(); break;
  4066. case 21: // M21 - init SD card
  4067. gcode_M21(); break;
  4068. case 22: //M22 - release SD card
  4069. gcode_M22(); break;
  4070. case 23: //M23 - Select file
  4071. gcode_M23(); break;
  4072. case 24: //M24 - Start SD print
  4073. gcode_M24(); break;
  4074. case 25: //M25 - Pause SD print
  4075. gcode_M25(); break;
  4076. case 26: //M26 - Set SD index
  4077. gcode_M26(); break;
  4078. case 27: //M27 - Get SD status
  4079. gcode_M27(); break;
  4080. case 28: //M28 - Start SD write
  4081. gcode_M28(); break;
  4082. case 29: //M29 - Stop SD write
  4083. gcode_M29(); break;
  4084. case 30: //M30 <filename> Delete File
  4085. gcode_M30(); break;
  4086. case 32: //M32 - Select file and start SD print
  4087. gcode_M32(); break;
  4088. case 928: //M928 - Start SD write
  4089. gcode_M928(); break;
  4090. #endif //SDSUPPORT
  4091. case 31: //M31 take time since the start of the SD print or an M109 command
  4092. gcode_M31();
  4093. break;
  4094. case 42: //M42 -Change pin status via gcode
  4095. gcode_M42();
  4096. break;
  4097. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4098. case 48: // M48 Z-Probe repeatability
  4099. gcode_M48();
  4100. break;
  4101. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4102. case 104: // M104
  4103. gcode_M104();
  4104. break;
  4105. case 112: // M112 Emergency Stop
  4106. gcode_M112();
  4107. break;
  4108. case 140: // M140 Set bed temp
  4109. gcode_M140();
  4110. break;
  4111. case 105: // M105 Read current temperature
  4112. gcode_M105();
  4113. return;
  4114. break;
  4115. case 109: // M109 Wait for temperature
  4116. gcode_M109();
  4117. break;
  4118. #if HAS_TEMP_BED
  4119. case 190: // M190 - Wait for bed heater to reach target.
  4120. gcode_M190();
  4121. break;
  4122. #endif // HAS_TEMP_BED
  4123. #if HAS_FAN
  4124. case 106: //M106 Fan On
  4125. gcode_M106();
  4126. break;
  4127. case 107: //M107 Fan Off
  4128. gcode_M107();
  4129. break;
  4130. #endif // HAS_FAN
  4131. #ifdef BARICUDA
  4132. // PWM for HEATER_1_PIN
  4133. #if HAS_HEATER_1
  4134. case 126: // M126 valve open
  4135. gcode_M126();
  4136. break;
  4137. case 127: // M127 valve closed
  4138. gcode_M127();
  4139. break;
  4140. #endif // HAS_HEATER_1
  4141. // PWM for HEATER_2_PIN
  4142. #if HAS_HEATER_2
  4143. case 128: // M128 valve open
  4144. gcode_M128();
  4145. break;
  4146. case 129: // M129 valve closed
  4147. gcode_M129();
  4148. break;
  4149. #endif // HAS_HEATER_2
  4150. #endif // BARICUDA
  4151. #if HAS_POWER_SWITCH
  4152. case 80: // M80 - Turn on Power Supply
  4153. gcode_M80();
  4154. break;
  4155. #endif // HAS_POWER_SWITCH
  4156. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4157. gcode_M81();
  4158. break;
  4159. case 82:
  4160. gcode_M82();
  4161. break;
  4162. case 83:
  4163. gcode_M83();
  4164. break;
  4165. case 18: //compatibility
  4166. case 84: // M84
  4167. gcode_M18_M84();
  4168. break;
  4169. case 85: // M85
  4170. gcode_M85();
  4171. break;
  4172. case 92: // M92
  4173. gcode_M92();
  4174. break;
  4175. case 115: // M115
  4176. gcode_M115();
  4177. break;
  4178. case 117: // M117 display message
  4179. gcode_M117();
  4180. break;
  4181. case 114: // M114
  4182. gcode_M114();
  4183. break;
  4184. case 120: // M120
  4185. gcode_M120();
  4186. break;
  4187. case 121: // M121
  4188. gcode_M121();
  4189. break;
  4190. case 119: // M119
  4191. gcode_M119();
  4192. break;
  4193. //TODO: update for all axis, use for loop
  4194. #ifdef BLINKM
  4195. case 150: // M150
  4196. gcode_M150();
  4197. break;
  4198. #endif //BLINKM
  4199. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4200. gcode_M200();
  4201. break;
  4202. case 201: // M201
  4203. gcode_M201();
  4204. break;
  4205. #if 0 // Not used for Sprinter/grbl gen6
  4206. case 202: // M202
  4207. gcode_M202();
  4208. break;
  4209. #endif
  4210. case 203: // M203 max feedrate mm/sec
  4211. gcode_M203();
  4212. break;
  4213. case 204: // M204 acclereration S normal moves T filmanent only moves
  4214. gcode_M204();
  4215. break;
  4216. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4217. gcode_M205();
  4218. break;
  4219. case 206: // M206 additional homing offset
  4220. gcode_M206();
  4221. break;
  4222. #ifdef DELTA
  4223. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4224. gcode_M665();
  4225. break;
  4226. #endif
  4227. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4228. case 666: // M666 set delta / dual endstop adjustment
  4229. gcode_M666();
  4230. break;
  4231. #endif
  4232. #ifdef FWRETRACT
  4233. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4234. gcode_M207();
  4235. break;
  4236. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4237. gcode_M208();
  4238. break;
  4239. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4240. gcode_M209();
  4241. break;
  4242. #endif // FWRETRACT
  4243. #if EXTRUDERS > 1
  4244. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4245. gcode_M218();
  4246. break;
  4247. #endif
  4248. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4249. gcode_M220();
  4250. break;
  4251. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4252. gcode_M221();
  4253. break;
  4254. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4255. gcode_M226();
  4256. break;
  4257. #if NUM_SERVOS > 0
  4258. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4259. gcode_M280();
  4260. break;
  4261. #endif // NUM_SERVOS > 0
  4262. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4263. case 300: // M300 - Play beep tone
  4264. gcode_M300();
  4265. break;
  4266. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4267. #ifdef PIDTEMP
  4268. case 301: // M301
  4269. gcode_M301();
  4270. break;
  4271. #endif // PIDTEMP
  4272. #ifdef PIDTEMPBED
  4273. case 304: // M304
  4274. gcode_M304();
  4275. break;
  4276. #endif // PIDTEMPBED
  4277. #if defined(CHDK) || HAS_PHOTOGRAPH
  4278. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4279. gcode_M240();
  4280. break;
  4281. #endif // CHDK || PHOTOGRAPH_PIN
  4282. #ifdef DOGLCD
  4283. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4284. gcode_M250();
  4285. break;
  4286. #endif // DOGLCD
  4287. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4288. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4289. gcode_M302();
  4290. break;
  4291. #endif // PREVENT_DANGEROUS_EXTRUDE
  4292. case 303: // M303 PID autotune
  4293. gcode_M303();
  4294. break;
  4295. #ifdef SCARA
  4296. case 360: // M360 SCARA Theta pos1
  4297. if (gcode_M360()) return;
  4298. break;
  4299. case 361: // M361 SCARA Theta pos2
  4300. if (gcode_M361()) return;
  4301. break;
  4302. case 362: // M362 SCARA Psi pos1
  4303. if (gcode_M362()) return;
  4304. break;
  4305. case 363: // M363 SCARA Psi pos2
  4306. if (gcode_M363()) return;
  4307. break;
  4308. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4309. if (gcode_M364()) return;
  4310. break;
  4311. case 365: // M365 Set SCARA scaling for X Y Z
  4312. gcode_M365();
  4313. break;
  4314. #endif // SCARA
  4315. case 400: // M400 finish all moves
  4316. gcode_M400();
  4317. break;
  4318. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4319. case 401:
  4320. gcode_M401();
  4321. break;
  4322. case 402:
  4323. gcode_M402();
  4324. break;
  4325. #endif
  4326. #ifdef FILAMENT_SENSOR
  4327. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4328. gcode_M404();
  4329. break;
  4330. case 405: //M405 Turn on filament sensor for control
  4331. gcode_M405();
  4332. break;
  4333. case 406: //M406 Turn off filament sensor for control
  4334. gcode_M406();
  4335. break;
  4336. case 407: //M407 Display measured filament diameter
  4337. gcode_M407();
  4338. break;
  4339. #endif // FILAMENT_SENSOR
  4340. case 500: // M500 Store settings in EEPROM
  4341. gcode_M500();
  4342. break;
  4343. case 501: // M501 Read settings from EEPROM
  4344. gcode_M501();
  4345. break;
  4346. case 502: // M502 Revert to default settings
  4347. gcode_M502();
  4348. break;
  4349. case 503: // M503 print settings currently in memory
  4350. gcode_M503();
  4351. break;
  4352. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4353. case 540:
  4354. gcode_M540();
  4355. break;
  4356. #endif
  4357. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4358. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4359. gcode_SET_Z_PROBE_OFFSET();
  4360. break;
  4361. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4362. #ifdef FILAMENTCHANGEENABLE
  4363. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4364. gcode_M600();
  4365. break;
  4366. #endif // FILAMENTCHANGEENABLE
  4367. #ifdef DUAL_X_CARRIAGE
  4368. case 605:
  4369. gcode_M605();
  4370. break;
  4371. #endif // DUAL_X_CARRIAGE
  4372. case 907: // M907 Set digital trimpot motor current using axis codes.
  4373. gcode_M907();
  4374. break;
  4375. #if HAS_DIGIPOTSS
  4376. case 908: // M908 Control digital trimpot directly.
  4377. gcode_M908();
  4378. break;
  4379. #endif // HAS_DIGIPOTSS
  4380. #if HAS_MICROSTEPS
  4381. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4382. gcode_M350();
  4383. break;
  4384. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4385. gcode_M351();
  4386. break;
  4387. #endif // HAS_MICROSTEPS
  4388. case 999: // M999: Restart after being Stopped
  4389. gcode_M999();
  4390. break;
  4391. }
  4392. }
  4393. else if (code_seen('T')) {
  4394. gcode_T();
  4395. }
  4396. else {
  4397. SERIAL_ECHO_START;
  4398. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4399. SERIAL_ECHO(cmdbuffer[bufindr]);
  4400. SERIAL_ECHOLNPGM("\"");
  4401. }
  4402. ClearToSend();
  4403. }
  4404. void FlushSerialRequestResend() {
  4405. //char cmdbuffer[bufindr][100]="Resend:";
  4406. MYSERIAL.flush();
  4407. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4408. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4409. ClearToSend();
  4410. }
  4411. void ClearToSend() {
  4412. refresh_cmd_timeout();
  4413. #ifdef SDSUPPORT
  4414. if (fromsd[bufindr]) return;
  4415. #endif
  4416. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4417. }
  4418. void get_coordinates() {
  4419. for (int i = 0; i < NUM_AXIS; i++) {
  4420. if (code_seen(axis_codes[i]))
  4421. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4422. else
  4423. destination[i] = current_position[i];
  4424. }
  4425. if (code_seen('F')) {
  4426. next_feedrate = code_value();
  4427. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4428. }
  4429. }
  4430. void get_arc_coordinates() {
  4431. #ifdef SF_ARC_FIX
  4432. bool relative_mode_backup = relative_mode;
  4433. relative_mode = true;
  4434. #endif
  4435. get_coordinates();
  4436. #ifdef SF_ARC_FIX
  4437. relative_mode = relative_mode_backup;
  4438. #endif
  4439. offset[0] = code_seen('I') ? code_value() : 0;
  4440. offset[1] = code_seen('J') ? code_value() : 0;
  4441. }
  4442. void clamp_to_software_endstops(float target[3])
  4443. {
  4444. if (min_software_endstops) {
  4445. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4446. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4447. float negative_z_offset = 0;
  4448. #ifdef ENABLE_AUTO_BED_LEVELING
  4449. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4450. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4451. #endif
  4452. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4453. }
  4454. if (max_software_endstops) {
  4455. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4456. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4457. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4458. }
  4459. }
  4460. #ifdef DELTA
  4461. void recalc_delta_settings(float radius, float diagonal_rod) {
  4462. delta_tower1_x = -SIN_60 * radius; // front left tower
  4463. delta_tower1_y = -COS_60 * radius;
  4464. delta_tower2_x = SIN_60 * radius; // front right tower
  4465. delta_tower2_y = -COS_60 * radius;
  4466. delta_tower3_x = 0.0; // back middle tower
  4467. delta_tower3_y = radius;
  4468. delta_diagonal_rod_2 = sq(diagonal_rod);
  4469. }
  4470. void calculate_delta(float cartesian[3]) {
  4471. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4472. - sq(delta_tower1_x-cartesian[X_AXIS])
  4473. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4474. ) + cartesian[Z_AXIS];
  4475. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4476. - sq(delta_tower2_x-cartesian[X_AXIS])
  4477. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4478. ) + cartesian[Z_AXIS];
  4479. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4480. - sq(delta_tower3_x-cartesian[X_AXIS])
  4481. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4482. ) + cartesian[Z_AXIS];
  4483. /*
  4484. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4485. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4486. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4487. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4488. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4489. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4490. */
  4491. }
  4492. #ifdef ENABLE_AUTO_BED_LEVELING
  4493. // Adjust print surface height by linear interpolation over the bed_level array.
  4494. void adjust_delta(float cartesian[3]) {
  4495. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4496. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4497. float h1 = 0.001 - half, h2 = half - 0.001,
  4498. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4499. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4500. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4501. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4502. z1 = bed_level[floor_x + half][floor_y + half],
  4503. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4504. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4505. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4506. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4507. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4508. offset = (1 - ratio_x) * left + ratio_x * right;
  4509. delta[X_AXIS] += offset;
  4510. delta[Y_AXIS] += offset;
  4511. delta[Z_AXIS] += offset;
  4512. /*
  4513. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4514. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4515. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4516. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4517. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4518. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4519. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4520. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4521. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4522. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4523. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4524. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4525. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4526. */
  4527. }
  4528. #endif // ENABLE_AUTO_BED_LEVELING
  4529. #endif // DELTA
  4530. #ifdef MESH_BED_LEVELING
  4531. #if !defined(MIN)
  4532. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4533. #endif // ! MIN
  4534. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4535. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4536. {
  4537. if (!mbl.active) {
  4538. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4539. set_current_to_destination();
  4540. return;
  4541. }
  4542. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4543. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4544. int ix = mbl.select_x_index(x);
  4545. int iy = mbl.select_y_index(y);
  4546. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4547. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4548. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4549. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4550. if (pix == ix && piy == iy) {
  4551. // Start and end on same mesh square
  4552. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4553. set_current_to_destination();
  4554. return;
  4555. }
  4556. float nx, ny, ne, normalized_dist;
  4557. if (ix > pix && (x_splits) & BIT(ix)) {
  4558. nx = mbl.get_x(ix);
  4559. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4560. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4561. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4562. x_splits ^= BIT(ix);
  4563. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4564. nx = mbl.get_x(pix);
  4565. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4566. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4567. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4568. x_splits ^= BIT(pix);
  4569. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4570. ny = mbl.get_y(iy);
  4571. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4572. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4573. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4574. y_splits ^= BIT(iy);
  4575. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4576. ny = mbl.get_y(piy);
  4577. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4578. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4579. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4580. y_splits ^= BIT(piy);
  4581. } else {
  4582. // Already split on a border
  4583. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4584. set_current_to_destination();
  4585. return;
  4586. }
  4587. // Do the split and look for more borders
  4588. destination[X_AXIS] = nx;
  4589. destination[Y_AXIS] = ny;
  4590. destination[E_AXIS] = ne;
  4591. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4592. destination[X_AXIS] = x;
  4593. destination[Y_AXIS] = y;
  4594. destination[E_AXIS] = e;
  4595. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4596. }
  4597. #endif // MESH_BED_LEVELING
  4598. void prepare_move() {
  4599. clamp_to_software_endstops(destination);
  4600. refresh_cmd_timeout();
  4601. #ifdef SCARA //for now same as delta-code
  4602. float difference[NUM_AXIS];
  4603. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4604. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4605. sq(difference[Y_AXIS]) +
  4606. sq(difference[Z_AXIS]));
  4607. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4608. if (cartesian_mm < 0.000001) { return; }
  4609. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4610. int steps = max(1, int(scara_segments_per_second * seconds));
  4611. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4612. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4613. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4614. for (int s = 1; s <= steps; s++) {
  4615. float fraction = float(s) / float(steps);
  4616. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4617. destination[i] = current_position[i] + difference[i] * fraction;
  4618. }
  4619. calculate_delta(destination);
  4620. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4621. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4622. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4623. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4624. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4625. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4626. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4627. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4628. active_extruder);
  4629. }
  4630. #endif // SCARA
  4631. #ifdef DELTA
  4632. float difference[NUM_AXIS];
  4633. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4634. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4635. sq(difference[Y_AXIS]) +
  4636. sq(difference[Z_AXIS]));
  4637. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4638. if (cartesian_mm < 0.000001) return;
  4639. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4640. int steps = max(1, int(delta_segments_per_second * seconds));
  4641. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4642. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4643. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4644. for (int s = 1; s <= steps; s++) {
  4645. float fraction = float(s) / float(steps);
  4646. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4647. calculate_delta(destination);
  4648. #ifdef ENABLE_AUTO_BED_LEVELING
  4649. adjust_delta(destination);
  4650. #endif
  4651. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4652. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4653. active_extruder);
  4654. }
  4655. #endif // DELTA
  4656. #ifdef DUAL_X_CARRIAGE
  4657. if (active_extruder_parked) {
  4658. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4659. // move duplicate extruder into correct duplication position.
  4660. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4661. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4662. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4663. sync_plan_position();
  4664. st_synchronize();
  4665. extruder_duplication_enabled = true;
  4666. active_extruder_parked = false;
  4667. }
  4668. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4669. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4670. // this is a travel move - skit it but keep track of current position (so that it can later
  4671. // be used as start of first non-travel move)
  4672. if (delayed_move_time != 0xFFFFFFFFUL) {
  4673. set_current_to_destination();
  4674. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4675. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4676. delayed_move_time = millis();
  4677. return;
  4678. }
  4679. }
  4680. delayed_move_time = 0;
  4681. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4682. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4684. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4685. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4686. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4687. active_extruder_parked = false;
  4688. }
  4689. }
  4690. #endif // DUAL_X_CARRIAGE
  4691. #if !defined(DELTA) && !defined(SCARA)
  4692. // Do not use feedmultiply for E or Z only moves
  4693. if ( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4694. line_to_destination();
  4695. }
  4696. else {
  4697. #ifdef MESH_BED_LEVELING
  4698. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4699. return;
  4700. #else
  4701. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4702. #endif // MESH_BED_LEVELING
  4703. }
  4704. #endif // !(DELTA || SCARA)
  4705. set_current_to_destination();
  4706. }
  4707. void prepare_arc_move(char isclockwise) {
  4708. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4709. // Trace the arc
  4710. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4711. // As far as the parser is concerned, the position is now == target. In reality the
  4712. // motion control system might still be processing the action and the real tool position
  4713. // in any intermediate location.
  4714. set_current_to_destination();
  4715. refresh_cmd_timeout();
  4716. }
  4717. #if HAS_CONTROLLERFAN
  4718. unsigned long lastMotor = 0; // Last time a motor was turned on
  4719. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4720. void controllerFan() {
  4721. uint32_t ms = millis();
  4722. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4723. lastMotorCheck = ms;
  4724. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4725. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4726. #if EXTRUDERS > 1
  4727. || E1_ENABLE_READ == E_ENABLE_ON
  4728. #if HAS_X2_ENABLE
  4729. || X2_ENABLE_READ == X_ENABLE_ON
  4730. #endif
  4731. #if EXTRUDERS > 2
  4732. || E2_ENABLE_READ == E_ENABLE_ON
  4733. #if EXTRUDERS > 3
  4734. || E3_ENABLE_READ == E_ENABLE_ON
  4735. #endif
  4736. #endif
  4737. #endif
  4738. ) {
  4739. lastMotor = ms; //... set time to NOW so the fan will turn on
  4740. }
  4741. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4742. // allows digital or PWM fan output to be used (see M42 handling)
  4743. digitalWrite(CONTROLLERFAN_PIN, speed);
  4744. analogWrite(CONTROLLERFAN_PIN, speed);
  4745. }
  4746. }
  4747. #endif
  4748. #ifdef SCARA
  4749. void calculate_SCARA_forward_Transform(float f_scara[3])
  4750. {
  4751. // Perform forward kinematics, and place results in delta[3]
  4752. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4753. float x_sin, x_cos, y_sin, y_cos;
  4754. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4755. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4756. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4757. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4758. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4759. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4760. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4761. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4762. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4763. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4764. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4765. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4766. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4767. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4768. }
  4769. void calculate_delta(float cartesian[3]){
  4770. //reverse kinematics.
  4771. // Perform reversed kinematics, and place results in delta[3]
  4772. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4773. float SCARA_pos[2];
  4774. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4775. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4776. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4777. #if (Linkage_1 == Linkage_2)
  4778. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4779. #else
  4780. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4781. #endif
  4782. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4783. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4784. SCARA_K2 = Linkage_2 * SCARA_S2;
  4785. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4786. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4787. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4788. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4789. delta[Z_AXIS] = cartesian[Z_AXIS];
  4790. /*
  4791. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4792. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4793. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4794. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4795. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4796. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4797. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4798. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4799. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4800. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4801. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4802. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4803. SERIAL_ECHOLN(" ");*/
  4804. }
  4805. #endif
  4806. #ifdef TEMP_STAT_LEDS
  4807. static bool blue_led = false;
  4808. static bool red_led = false;
  4809. static uint32_t stat_update = 0;
  4810. void handle_status_leds(void) {
  4811. float max_temp = 0.0;
  4812. if(millis() > stat_update) {
  4813. stat_update += 500; // Update every 0.5s
  4814. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4815. max_temp = max(max_temp, degHotend(cur_extruder));
  4816. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4817. }
  4818. #if HAS_TEMP_BED
  4819. max_temp = max(max_temp, degTargetBed());
  4820. max_temp = max(max_temp, degBed());
  4821. #endif
  4822. if((max_temp > 55.0) && (red_led == false)) {
  4823. digitalWrite(STAT_LED_RED, 1);
  4824. digitalWrite(STAT_LED_BLUE, 0);
  4825. red_led = true;
  4826. blue_led = false;
  4827. }
  4828. if((max_temp < 54.0) && (blue_led == false)) {
  4829. digitalWrite(STAT_LED_RED, 0);
  4830. digitalWrite(STAT_LED_BLUE, 1);
  4831. red_led = false;
  4832. blue_led = true;
  4833. }
  4834. }
  4835. }
  4836. #endif
  4837. void enable_all_steppers() {
  4838. enable_x();
  4839. enable_y();
  4840. enable_z();
  4841. enable_e0();
  4842. enable_e1();
  4843. enable_e2();
  4844. enable_e3();
  4845. }
  4846. void disable_all_steppers() {
  4847. disable_x();
  4848. disable_y();
  4849. disable_z();
  4850. disable_e0();
  4851. disable_e1();
  4852. disable_e2();
  4853. disable_e3();
  4854. }
  4855. /**
  4856. * Manage several activities:
  4857. * - Check for Filament Runout
  4858. * - Keep the command buffer full
  4859. * - Check for maximum inactive time between commands
  4860. * - Check for maximum inactive time between stepper commands
  4861. * - Check if pin CHDK needs to go LOW
  4862. * - Check for KILL button held down
  4863. * - Check for HOME button held down
  4864. * - Check if cooling fan needs to be switched on
  4865. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  4866. */
  4867. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4868. #if HAS_FILRUNOUT
  4869. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4870. filrunout();
  4871. #endif
  4872. if (buflen < BUFSIZE - 1) get_command();
  4873. unsigned long ms = millis();
  4874. if (max_inactive_time && ms > previous_millis_cmd + max_inactive_time) kill();
  4875. if (stepper_inactive_time && ms > previous_millis_cmd + stepper_inactive_time
  4876. && !ignore_stepper_queue && !blocks_queued())
  4877. disable_all_steppers();
  4878. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  4879. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4880. chdkActive = false;
  4881. WRITE(CHDK, LOW);
  4882. }
  4883. #endif
  4884. #if HAS_KILL
  4885. // Check if the kill button was pressed and wait just in case it was an accidental
  4886. // key kill key press
  4887. // -------------------------------------------------------------------------------
  4888. static int killCount = 0; // make the inactivity button a bit less responsive
  4889. const int KILL_DELAY = 750;
  4890. if (!READ(KILL_PIN))
  4891. killCount++;
  4892. else if (killCount > 0)
  4893. killCount--;
  4894. // Exceeded threshold and we can confirm that it was not accidental
  4895. // KILL the machine
  4896. // ----------------------------------------------------------------
  4897. if (killCount >= KILL_DELAY) kill();
  4898. #endif
  4899. #if HAS_HOME
  4900. // Check to see if we have to home, use poor man's debouncer
  4901. // ---------------------------------------------------------
  4902. static int homeDebounceCount = 0; // poor man's debouncing count
  4903. const int HOME_DEBOUNCE_DELAY = 750;
  4904. if (!READ(HOME_PIN)) {
  4905. if (!homeDebounceCount) {
  4906. enquecommands_P(PSTR("G28"));
  4907. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4908. }
  4909. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4910. homeDebounceCount++;
  4911. else
  4912. homeDebounceCount = 0;
  4913. }
  4914. #endif
  4915. #if HAS_CONTROLLERFAN
  4916. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  4917. #endif
  4918. #ifdef EXTRUDER_RUNOUT_PREVENT
  4919. if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
  4920. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4921. bool oldstatus;
  4922. switch(active_extruder) {
  4923. case 0:
  4924. oldstatus = E0_ENABLE_READ;
  4925. enable_e0();
  4926. break;
  4927. #if EXTRUDERS > 1
  4928. case 1:
  4929. oldstatus = E1_ENABLE_READ;
  4930. enable_e1();
  4931. break;
  4932. #if EXTRUDERS > 2
  4933. case 2:
  4934. oldstatus = E2_ENABLE_READ;
  4935. enable_e2();
  4936. break;
  4937. #if EXTRUDERS > 3
  4938. case 3:
  4939. oldstatus = E3_ENABLE_READ;
  4940. enable_e3();
  4941. break;
  4942. #endif
  4943. #endif
  4944. #endif
  4945. }
  4946. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  4947. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4948. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  4949. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  4950. current_position[E_AXIS] = oldepos;
  4951. destination[E_AXIS] = oldedes;
  4952. plan_set_e_position(oldepos);
  4953. previous_millis_cmd = ms; // refresh_cmd_timeout()
  4954. st_synchronize();
  4955. switch(active_extruder) {
  4956. case 0:
  4957. E0_ENABLE_WRITE(oldstatus);
  4958. break;
  4959. #if EXTRUDERS > 1
  4960. case 1:
  4961. E1_ENABLE_WRITE(oldstatus);
  4962. break;
  4963. #if EXTRUDERS > 2
  4964. case 2:
  4965. E2_ENABLE_WRITE(oldstatus);
  4966. break;
  4967. #if EXTRUDERS > 3
  4968. case 3:
  4969. E3_ENABLE_WRITE(oldstatus);
  4970. break;
  4971. #endif
  4972. #endif
  4973. #endif
  4974. }
  4975. }
  4976. #endif
  4977. #ifdef DUAL_X_CARRIAGE
  4978. // handle delayed move timeout
  4979. if (delayed_move_time && ms > delayed_move_time + 1000 && !Stopped) {
  4980. // travel moves have been received so enact them
  4981. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4982. set_destination_to_current();
  4983. prepare_move();
  4984. }
  4985. #endif
  4986. #ifdef TEMP_STAT_LEDS
  4987. handle_status_leds();
  4988. #endif
  4989. check_axes_activity();
  4990. }
  4991. void kill()
  4992. {
  4993. cli(); // Stop interrupts
  4994. disable_heater();
  4995. disable_all_steppers();
  4996. #if HAS_POWER_SWITCH
  4997. pinMode(PS_ON_PIN, INPUT);
  4998. #endif
  4999. SERIAL_ERROR_START;
  5000. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5001. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5002. // FMC small patch to update the LCD before ending
  5003. sei(); // enable interrupts
  5004. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5005. cli(); // disable interrupts
  5006. suicide();
  5007. while(1) { /* Intentionally left empty */ } // Wait for reset
  5008. }
  5009. #ifdef FILAMENT_RUNOUT_SENSOR
  5010. void filrunout()
  5011. {
  5012. if filrunoutEnqued == false {
  5013. filrunoutEnqued = true;
  5014. enquecommand("M600");
  5015. }
  5016. }
  5017. #endif
  5018. void Stop()
  5019. {
  5020. disable_heater();
  5021. if(Stopped == false) {
  5022. Stopped = true;
  5023. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5024. SERIAL_ERROR_START;
  5025. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5026. LCD_MESSAGEPGM(MSG_STOPPED);
  5027. }
  5028. }
  5029. bool IsStopped() { return Stopped; };
  5030. #ifdef FAST_PWM_FAN
  5031. void setPwmFrequency(uint8_t pin, int val)
  5032. {
  5033. val &= 0x07;
  5034. switch(digitalPinToTimer(pin))
  5035. {
  5036. #if defined(TCCR0A)
  5037. case TIMER0A:
  5038. case TIMER0B:
  5039. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5040. // TCCR0B |= val;
  5041. break;
  5042. #endif
  5043. #if defined(TCCR1A)
  5044. case TIMER1A:
  5045. case TIMER1B:
  5046. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5047. // TCCR1B |= val;
  5048. break;
  5049. #endif
  5050. #if defined(TCCR2)
  5051. case TIMER2:
  5052. case TIMER2:
  5053. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5054. TCCR2 |= val;
  5055. break;
  5056. #endif
  5057. #if defined(TCCR2A)
  5058. case TIMER2A:
  5059. case TIMER2B:
  5060. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5061. TCCR2B |= val;
  5062. break;
  5063. #endif
  5064. #if defined(TCCR3A)
  5065. case TIMER3A:
  5066. case TIMER3B:
  5067. case TIMER3C:
  5068. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5069. TCCR3B |= val;
  5070. break;
  5071. #endif
  5072. #if defined(TCCR4A)
  5073. case TIMER4A:
  5074. case TIMER4B:
  5075. case TIMER4C:
  5076. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5077. TCCR4B |= val;
  5078. break;
  5079. #endif
  5080. #if defined(TCCR5A)
  5081. case TIMER5A:
  5082. case TIMER5B:
  5083. case TIMER5C:
  5084. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5085. TCCR5B |= val;
  5086. break;
  5087. #endif
  5088. }
  5089. }
  5090. #endif //FAST_PWM_FAN
  5091. bool setTargetedHotend(int code){
  5092. target_extruder = active_extruder;
  5093. if (code_seen('T')) {
  5094. target_extruder = code_value_short();
  5095. if (target_extruder >= EXTRUDERS) {
  5096. SERIAL_ECHO_START;
  5097. switch(code){
  5098. case 104:
  5099. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5100. break;
  5101. case 105:
  5102. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5103. break;
  5104. case 109:
  5105. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5106. break;
  5107. case 218:
  5108. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5109. break;
  5110. case 221:
  5111. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5112. break;
  5113. }
  5114. SERIAL_ECHOLN(target_extruder);
  5115. return true;
  5116. }
  5117. }
  5118. return false;
  5119. }
  5120. float calculate_volumetric_multiplier(float diameter) {
  5121. if (!volumetric_enabled || diameter == 0) return 1.0;
  5122. float d2 = diameter * 0.5;
  5123. return 1.0 / (M_PI * d2 * d2);
  5124. }
  5125. void calculate_volumetric_multipliers() {
  5126. for (int i=0; i<EXTRUDERS; i++)
  5127. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5128. }