My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G29.cpp 30KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * G29.cpp - Auto Bed Leveling
  24. */
  25. #include "../../../inc/MarlinConfig.h"
  26. #if HAS_ABL_NOT_UBL
  27. #include "../../gcode.h"
  28. #include "../../../feature/bedlevel/bedlevel.h"
  29. #include "../../../module/motion.h"
  30. #include "../../../module/planner.h"
  31. #include "../../../module/stepper.h"
  32. #include "../../../module/probe.h"
  33. #include "../../queue.h"
  34. #if ENABLED(PROBE_TEMP_COMPENSATION)
  35. #include "../../../feature/probe_temp_comp.h"
  36. #include "../../../module/temperature.h"
  37. #endif
  38. #if HAS_DISPLAY
  39. #include "../../../lcd/ultralcd.h"
  40. #endif
  41. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  42. #include "../../../libs/least_squares_fit.h"
  43. #endif
  44. #if ABL_PLANAR
  45. #include "../../../libs/vector_3.h"
  46. #endif
  47. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  48. #include "../../../core/debug_out.h"
  49. #if ENABLED(EXTENSIBLE_UI)
  50. #include "../../../lcd/extui/ui_api.h"
  51. #endif
  52. #if ENABLED(DWIN_CREALITY_LCD)
  53. #include "../../../lcd/dwin/dwin.h"
  54. #endif
  55. #if HAS_MULTI_HOTEND
  56. #include "../../../module/tool_change.h"
  57. #endif
  58. #if ABL_GRID
  59. #if ENABLED(PROBE_Y_FIRST)
  60. #define PR_OUTER_VAR meshCount.x
  61. #define PR_OUTER_END abl_grid_points.x
  62. #define PR_INNER_VAR meshCount.y
  63. #define PR_INNER_END abl_grid_points.y
  64. #else
  65. #define PR_OUTER_VAR meshCount.y
  66. #define PR_OUTER_END abl_grid_points.y
  67. #define PR_INNER_VAR meshCount.x
  68. #define PR_INNER_END abl_grid_points.x
  69. #endif
  70. #endif
  71. #define G29_RETURN(b) return TERN_(G29_RETRY_AND_RECOVER, b)
  72. /**
  73. * G29: Detailed Z probe, probes the bed at 3 or more points.
  74. * Will fail if the printer has not been homed with G28.
  75. *
  76. * Enhanced G29 Auto Bed Leveling Probe Routine
  77. *
  78. * O Auto-level only if needed
  79. *
  80. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  81. * or alter the bed level data. Useful to check the topology
  82. * after a first run of G29.
  83. *
  84. * J Jettison current bed leveling data
  85. *
  86. * V Set the verbose level (0-4). Example: "G29 V3"
  87. *
  88. * Parameters With LINEAR leveling only:
  89. *
  90. * P Set the size of the grid that will be probed (P x P points).
  91. * Example: "G29 P4"
  92. *
  93. * X Set the X size of the grid that will be probed (X x Y points).
  94. * Example: "G29 X7 Y5"
  95. *
  96. * Y Set the Y size of the grid that will be probed (X x Y points).
  97. *
  98. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  99. * This is useful for manual bed leveling and finding flaws in the bed (to
  100. * assist with part placement).
  101. * Not supported by non-linear delta printer bed leveling.
  102. *
  103. * Parameters With LINEAR and BILINEAR leveling only:
  104. *
  105. * S Set the XY travel speed between probe points (in units/min)
  106. *
  107. * H Set bounds to a centered square H x H units in size
  108. *
  109. * -or-
  110. *
  111. * F Set the Front limit of the probing grid
  112. * B Set the Back limit of the probing grid
  113. * L Set the Left limit of the probing grid
  114. * R Set the Right limit of the probing grid
  115. *
  116. * Parameters with DEBUG_LEVELING_FEATURE only:
  117. *
  118. * C Make a totally fake grid with no actual probing.
  119. * For use in testing when no probing is possible.
  120. *
  121. * Parameters with BILINEAR leveling only:
  122. *
  123. * Z Supply an additional Z probe offset
  124. *
  125. * Extra parameters with PROBE_MANUALLY:
  126. *
  127. * To do manual probing simply repeat G29 until the procedure is complete.
  128. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  129. *
  130. * Q Query leveling and G29 state
  131. *
  132. * A Abort current leveling procedure
  133. *
  134. * Extra parameters with BILINEAR only:
  135. *
  136. * W Write a mesh point. (If G29 is idle.)
  137. * I X index for mesh point
  138. * J Y index for mesh point
  139. * X X for mesh point, overrides I
  140. * Y Y for mesh point, overrides J
  141. * Z Z for mesh point. Otherwise, raw current Z.
  142. *
  143. * Without PROBE_MANUALLY:
  144. *
  145. * E By default G29 will engage the Z probe, test the bed, then disengage.
  146. * Include "E" to engage/disengage the Z probe for each sample.
  147. * There's no extra effect if you have a fixed Z probe.
  148. *
  149. */
  150. G29_TYPE GcodeSuite::G29() {
  151. reset_stepper_timeout();
  152. const bool seenQ = EITHER(DEBUG_LEVELING_FEATURE, PROBE_MANUALLY) && parser.seen('Q');
  153. // G29 Q is also available if debugging
  154. #if ENABLED(DEBUG_LEVELING_FEATURE)
  155. const uint8_t old_debug_flags = marlin_debug_flags;
  156. if (seenQ) marlin_debug_flags |= MARLIN_DEBUG_LEVELING;
  157. if (DEBUGGING(LEVELING)) {
  158. DEBUG_POS(">>> G29", current_position);
  159. log_machine_info();
  160. }
  161. marlin_debug_flags = old_debug_flags;
  162. if (DISABLED(PROBE_MANUALLY) && seenQ) G29_RETURN(false);
  163. #endif
  164. const bool seenA = TERN0(PROBE_MANUALLY, parser.seen('A')),
  165. no_action = seenA || seenQ,
  166. faux = ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY) ? parser.boolval('C') : no_action;
  167. // Don't allow auto-leveling without homing first
  168. if (axis_unhomed_error()) G29_RETURN(false);
  169. if (!no_action && planner.leveling_active && parser.boolval('O')) { // Auto-level only if needed
  170. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Auto-level not needed, skip\n<<< G29");
  171. G29_RETURN(false);
  172. }
  173. // Define local vars 'static' for manual probing, 'auto' otherwise
  174. #define ABL_VAR TERN_(PROBE_MANUALLY, static)
  175. ABL_VAR int verbose_level;
  176. ABL_VAR xy_pos_t probePos;
  177. ABL_VAR float measured_z;
  178. ABL_VAR bool dryrun, abl_should_enable;
  179. #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
  180. ABL_VAR int abl_probe_index;
  181. #endif
  182. #if BOTH(HAS_SOFTWARE_ENDSTOPS, PROBE_MANUALLY)
  183. ABL_VAR bool saved_soft_endstops_state = true;
  184. #endif
  185. #if ABL_GRID
  186. #if ENABLED(PROBE_MANUALLY)
  187. ABL_VAR xy_int8_t meshCount;
  188. #endif
  189. ABL_VAR xy_pos_t probe_position_lf, probe_position_rb;
  190. ABL_VAR xy_float_t gridSpacing = { 0, 0 };
  191. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  192. ABL_VAR bool do_topography_map;
  193. ABL_VAR xy_uint8_t abl_grid_points;
  194. #else // Bilinear
  195. constexpr xy_uint8_t abl_grid_points = { GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y };
  196. #endif
  197. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  198. ABL_VAR int abl_points;
  199. #elif ENABLED(PROBE_MANUALLY) // Bilinear
  200. int constexpr abl_points = GRID_MAX_POINTS;
  201. #endif
  202. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  203. ABL_VAR float zoffset;
  204. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  205. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  206. ABL_VAR float eqnAMatrix[(GRID_MAX_POINTS) * 3], // "A" matrix of the linear system of equations
  207. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  208. mean;
  209. #endif
  210. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  211. #if ENABLED(PROBE_MANUALLY)
  212. int constexpr abl_points = 3; // used to show total points
  213. #endif
  214. vector_3 points[3];
  215. probe.get_three_points(points);
  216. #endif // AUTO_BED_LEVELING_3POINT
  217. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  218. struct linear_fit_data lsf_results;
  219. incremental_LSF_reset(&lsf_results);
  220. #endif
  221. /**
  222. * On the initial G29 fetch command parameters.
  223. */
  224. if (!g29_in_progress) {
  225. TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0));
  226. #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
  227. abl_probe_index = -1;
  228. #endif
  229. abl_should_enable = planner.leveling_active;
  230. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  231. const bool seen_w = parser.seen('W');
  232. if (seen_w) {
  233. if (!leveling_is_valid()) {
  234. SERIAL_ERROR_MSG("No bilinear grid");
  235. G29_RETURN(false);
  236. }
  237. const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position.z;
  238. if (!WITHIN(rz, -10, 10)) {
  239. SERIAL_ERROR_MSG("Bad Z value");
  240. G29_RETURN(false);
  241. }
  242. const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
  243. ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
  244. int8_t i = parser.byteval('I', -1), j = parser.byteval('J', -1);
  245. if (!isnan(rx) && !isnan(ry)) {
  246. // Get nearest i / j from rx / ry
  247. i = (rx - bilinear_start.x + 0.5 * gridSpacing.x) / gridSpacing.x;
  248. j = (ry - bilinear_start.y + 0.5 * gridSpacing.y) / gridSpacing.y;
  249. LIMIT(i, 0, GRID_MAX_POINTS_X - 1);
  250. LIMIT(j, 0, GRID_MAX_POINTS_Y - 1);
  251. }
  252. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  253. set_bed_leveling_enabled(false);
  254. z_values[i][j] = rz;
  255. TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
  256. TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, rz));
  257. set_bed_leveling_enabled(abl_should_enable);
  258. if (abl_should_enable) report_current_position();
  259. }
  260. G29_RETURN(false);
  261. } // parser.seen('W')
  262. #else
  263. constexpr bool seen_w = false;
  264. #endif
  265. // Jettison bed leveling data
  266. if (!seen_w && parser.seen('J')) {
  267. reset_bed_level();
  268. G29_RETURN(false);
  269. }
  270. verbose_level = parser.intval('V');
  271. if (!WITHIN(verbose_level, 0, 4)) {
  272. SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
  273. G29_RETURN(false);
  274. }
  275. dryrun = parser.boolval('D') || TERN0(PROBE_MANUALLY, no_action);
  276. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  277. do_topography_map = verbose_level > 2 || parser.boolval('T');
  278. // X and Y specify points in each direction, overriding the default
  279. // These values may be saved with the completed mesh
  280. abl_grid_points.set(
  281. parser.byteval('X', GRID_MAX_POINTS_X),
  282. parser.byteval('Y', GRID_MAX_POINTS_Y)
  283. );
  284. if (parser.seenval('P')) abl_grid_points.x = abl_grid_points.y = parser.value_int();
  285. if (!WITHIN(abl_grid_points.x, 2, GRID_MAX_POINTS_X)) {
  286. SERIAL_ECHOLNPGM("?Probe points (X) implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  287. G29_RETURN(false);
  288. }
  289. if (!WITHIN(abl_grid_points.y, 2, GRID_MAX_POINTS_Y)) {
  290. SERIAL_ECHOLNPGM("?Probe points (Y) implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  291. G29_RETURN(false);
  292. }
  293. abl_points = abl_grid_points.x * abl_grid_points.y;
  294. mean = 0;
  295. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  296. zoffset = parser.linearval('Z');
  297. #endif
  298. #if ABL_GRID
  299. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  300. const float x_min = probe.min_x(), x_max = probe.max_x(),
  301. y_min = probe.min_y(), y_max = probe.max_y();
  302. if (parser.seen('H')) {
  303. const int16_t size = (int16_t)parser.value_linear_units();
  304. probe_position_lf.set(
  305. _MAX(X_CENTER - size / 2, x_min),
  306. _MAX(Y_CENTER - size / 2, y_min)
  307. );
  308. probe_position_rb.set(
  309. _MIN(probe_position_lf.x + size, x_max),
  310. _MIN(probe_position_lf.y + size, y_max)
  311. );
  312. }
  313. else {
  314. probe_position_lf.set(
  315. parser.seenval('L') ? RAW_X_POSITION(parser.value_linear_units()) : x_min,
  316. parser.seenval('F') ? RAW_Y_POSITION(parser.value_linear_units()) : y_min
  317. );
  318. probe_position_rb.set(
  319. parser.seenval('R') ? RAW_X_POSITION(parser.value_linear_units()) : x_max,
  320. parser.seenval('B') ? RAW_Y_POSITION(parser.value_linear_units()) : y_max
  321. );
  322. }
  323. if (!probe.good_bounds(probe_position_lf, probe_position_rb)) {
  324. SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds.");
  325. G29_RETURN(false);
  326. }
  327. // probe at the points of a lattice grid
  328. gridSpacing.set((probe_position_rb.x - probe_position_lf.x) / (abl_grid_points.x - 1),
  329. (probe_position_rb.y - probe_position_lf.y) / (abl_grid_points.y - 1));
  330. #endif // ABL_GRID
  331. if (verbose_level > 0) {
  332. SERIAL_ECHOPGM("G29 Auto Bed Leveling");
  333. if (dryrun) SERIAL_ECHOPGM(" (DRYRUN)");
  334. SERIAL_EOL();
  335. }
  336. planner.synchronize();
  337. if (!faux) remember_feedrate_scaling_off();
  338. // Disable auto bed leveling during G29.
  339. // Be formal so G29 can be done successively without G28.
  340. if (!no_action) set_bed_leveling_enabled(false);
  341. // Deploy certain probes before starting probing
  342. #if HAS_BED_PROBE
  343. if (ENABLED(BLTOUCH))
  344. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  345. else if (probe.deploy()) {
  346. set_bed_leveling_enabled(abl_should_enable);
  347. G29_RETURN(false);
  348. }
  349. #endif
  350. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  351. if (TERN1(PROBE_MANUALLY, !no_action)
  352. && (gridSpacing != bilinear_grid_spacing || probe_position_lf != bilinear_start)
  353. ) {
  354. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  355. reset_bed_level();
  356. // Initialize a grid with the given dimensions
  357. bilinear_grid_spacing = gridSpacing;
  358. bilinear_start = probe_position_lf;
  359. // Can't re-enable (on error) until the new grid is written
  360. abl_should_enable = false;
  361. }
  362. #endif // AUTO_BED_LEVELING_BILINEAR
  363. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  364. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> 3-point Leveling");
  365. // Probe at 3 arbitrary points
  366. points[0].z = points[1].z = points[2].z = 0;
  367. #endif // AUTO_BED_LEVELING_3POINT
  368. } // !g29_in_progress
  369. #if ENABLED(PROBE_MANUALLY)
  370. // For manual probing, get the next index to probe now.
  371. // On the first probe this will be incremented to 0.
  372. if (!no_action) {
  373. ++abl_probe_index;
  374. g29_in_progress = true;
  375. }
  376. // Abort current G29 procedure, go back to idle state
  377. if (seenA && g29_in_progress) {
  378. SERIAL_ECHOLNPGM("Manual G29 aborted");
  379. TERN_(HAS_SOFTWARE_ENDSTOPS, soft_endstops_enabled = saved_soft_endstops_state);
  380. set_bed_leveling_enabled(abl_should_enable);
  381. g29_in_progress = false;
  382. TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
  383. }
  384. // Query G29 status
  385. if (verbose_level || seenQ) {
  386. SERIAL_ECHOPGM("Manual G29 ");
  387. if (g29_in_progress) {
  388. SERIAL_ECHOPAIR("point ", _MIN(abl_probe_index + 1, abl_points));
  389. SERIAL_ECHOLNPAIR(" of ", abl_points);
  390. }
  391. else
  392. SERIAL_ECHOLNPGM("idle");
  393. }
  394. if (no_action) G29_RETURN(false);
  395. if (abl_probe_index == 0) {
  396. // For the initial G29 S2 save software endstop state
  397. TERN_(HAS_SOFTWARE_ENDSTOPS, saved_soft_endstops_state = soft_endstops_enabled);
  398. // Move close to the bed before the first point
  399. do_blocking_move_to_z(0);
  400. }
  401. else {
  402. #if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT)
  403. const uint16_t index = abl_probe_index - 1;
  404. #endif
  405. // For G29 after adjusting Z.
  406. // Save the previous Z before going to the next point
  407. measured_z = current_position.z;
  408. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  409. mean += measured_z;
  410. eqnBVector[index] = measured_z;
  411. eqnAMatrix[index + 0 * abl_points] = probePos.x;
  412. eqnAMatrix[index + 1 * abl_points] = probePos.y;
  413. eqnAMatrix[index + 2 * abl_points] = 1;
  414. incremental_LSF(&lsf_results, probePos, measured_z);
  415. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  416. points[index].z = measured_z;
  417. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  418. const float newz = measured_z + zoffset;
  419. z_values[meshCount.x][meshCount.y] = newz;
  420. TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(meshCount, newz));
  421. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_P(PSTR("Save X"), meshCount.x, SP_Y_STR, meshCount.y, SP_Z_STR, measured_z + zoffset);
  422. #endif
  423. }
  424. //
  425. // If there's another point to sample, move there with optional lift.
  426. //
  427. #if ABL_GRID
  428. // Skip any unreachable points
  429. while (abl_probe_index < abl_points) {
  430. // Set meshCount.x, meshCount.y based on abl_probe_index, with zig-zag
  431. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  432. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  433. // Probe in reverse order for every other row/column
  434. const bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  435. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  436. probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
  437. TERN_(AUTO_BED_LEVELING_LINEAR, indexIntoAB[meshCount.x][meshCount.y] = abl_probe_index);
  438. // Keep looping till a reachable point is found
  439. if (position_is_reachable(probePos)) break;
  440. ++abl_probe_index;
  441. }
  442. // Is there a next point to move to?
  443. if (abl_probe_index < abl_points) {
  444. _manual_goto_xy(probePos); // Can be used here too!
  445. // Disable software endstops to allow manual adjustment
  446. // If G29 is not completed, they will not be re-enabled
  447. TERN_(HAS_SOFTWARE_ENDSTOPS, soft_endstops_enabled = false);
  448. G29_RETURN(false);
  449. }
  450. else {
  451. // Leveling done! Fall through to G29 finishing code below
  452. SERIAL_ECHOLNPGM("Grid probing done.");
  453. // Re-enable software endstops, if needed
  454. TERN_(HAS_SOFTWARE_ENDSTOPS, soft_endstops_enabled = saved_soft_endstops_state);
  455. }
  456. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  457. // Probe at 3 arbitrary points
  458. if (abl_probe_index < abl_points) {
  459. probePos = points[abl_probe_index];
  460. _manual_goto_xy(probePos);
  461. // Disable software endstops to allow manual adjustment
  462. // If G29 is not completed, they will not be re-enabled
  463. TERN_(HAS_SOFTWARE_ENDSTOPS, soft_endstops_enabled = false);
  464. G29_RETURN(false);
  465. }
  466. else {
  467. SERIAL_ECHOLNPGM("3-point probing done.");
  468. // Re-enable software endstops, if needed
  469. TERN_(HAS_SOFTWARE_ENDSTOPS, soft_endstops_enabled = saved_soft_endstops_state);
  470. if (!dryrun) {
  471. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  472. if (planeNormal.z < 0) planeNormal *= -1;
  473. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  474. // Can't re-enable (on error) until the new grid is written
  475. abl_should_enable = false;
  476. }
  477. }
  478. #endif // AUTO_BED_LEVELING_3POINT
  479. #else // !PROBE_MANUALLY
  480. {
  481. const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
  482. measured_z = 0;
  483. #if ABL_GRID
  484. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  485. measured_z = 0;
  486. xy_int8_t meshCount;
  487. // Outer loop is X with PROBE_Y_FIRST enabled
  488. // Outer loop is Y with PROBE_Y_FIRST disabled
  489. for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  490. int8_t inStart, inStop, inInc;
  491. if (zig) { // Zig away from origin
  492. inStart = 0; // Left or front
  493. inStop = PR_INNER_END; // Right or back
  494. inInc = 1; // Zig right
  495. }
  496. else { // Zag towards origin
  497. inStart = PR_INNER_END - 1; // Right or back
  498. inStop = -1; // Left or front
  499. inInc = -1; // Zag left
  500. }
  501. zig ^= true; // zag
  502. // An index to print current state
  503. uint8_t pt_index = (PR_OUTER_VAR) * (PR_INNER_END) + 1;
  504. // Inner loop is Y with PROBE_Y_FIRST enabled
  505. // Inner loop is X with PROBE_Y_FIRST disabled
  506. for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; pt_index++, PR_INNER_VAR += inInc) {
  507. probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
  508. TERN_(AUTO_BED_LEVELING_LINEAR, indexIntoAB[meshCount.x][meshCount.y] = ++abl_probe_index); // 0...
  509. // Avoid probing outside the round or hexagonal area
  510. if (TERN0(IS_KINEMATIC, !probe.can_reach(probePos))) continue;
  511. if (verbose_level) SERIAL_ECHOLNPAIR("Probing mesh point ", int(pt_index), "/", int(GRID_MAX_POINTS), ".");
  512. TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), int(pt_index), int(GRID_MAX_POINTS)));
  513. measured_z = faux ? 0.001f * random(-100, 101) : probe.probe_at_point(probePos, raise_after, verbose_level);
  514. if (isnan(measured_z)) {
  515. set_bed_leveling_enabled(abl_should_enable);
  516. break; // Breaks out of both loops
  517. }
  518. #if ENABLED(PROBE_TEMP_COMPENSATION)
  519. temp_comp.compensate_measurement(TSI_BED, thermalManager.degBed(), measured_z);
  520. temp_comp.compensate_measurement(TSI_PROBE, thermalManager.degProbe(), measured_z);
  521. TERN_(USE_TEMP_EXT_COMPENSATION, temp_comp.compensate_measurement(TSI_EXT, thermalManager.degHotend(), measured_z));
  522. #endif
  523. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  524. mean += measured_z;
  525. eqnBVector[abl_probe_index] = measured_z;
  526. eqnAMatrix[abl_probe_index + 0 * abl_points] = probePos.x;
  527. eqnAMatrix[abl_probe_index + 1 * abl_points] = probePos.y;
  528. eqnAMatrix[abl_probe_index + 2 * abl_points] = 1;
  529. incremental_LSF(&lsf_results, probePos, measured_z);
  530. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  531. z_values[meshCount.x][meshCount.y] = measured_z + zoffset;
  532. TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(meshCount, z_values[meshCount.x][meshCount.y]));
  533. #endif
  534. abl_should_enable = false;
  535. idle_no_sleep();
  536. } // inner
  537. } // outer
  538. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  539. // Probe at 3 arbitrary points
  540. LOOP_L_N(i, 3) {
  541. if (verbose_level) SERIAL_ECHOLNPAIR("Probing point ", int(i), "/3.");
  542. TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i)));
  543. // Retain the last probe position
  544. probePos = points[i];
  545. measured_z = faux ? 0.001 * random(-100, 101) : probe.probe_at_point(probePos, raise_after, verbose_level);
  546. if (isnan(measured_z)) {
  547. set_bed_leveling_enabled(abl_should_enable);
  548. break;
  549. }
  550. points[i].z = measured_z;
  551. }
  552. if (!dryrun && !isnan(measured_z)) {
  553. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  554. if (planeNormal.z < 0) planeNormal *= -1;
  555. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  556. // Can't re-enable (on error) until the new grid is written
  557. abl_should_enable = false;
  558. }
  559. #endif // AUTO_BED_LEVELING_3POINT
  560. TERN_(HAS_DISPLAY, ui.reset_status());
  561. // Stow the probe. No raise for FIX_MOUNTED_PROBE.
  562. if (probe.stow()) {
  563. set_bed_leveling_enabled(abl_should_enable);
  564. measured_z = NAN;
  565. }
  566. }
  567. #endif // !PROBE_MANUALLY
  568. //
  569. // G29 Finishing Code
  570. //
  571. // Unless this is a dry run, auto bed leveling will
  572. // definitely be enabled after this point.
  573. //
  574. // If code above wants to continue leveling, it should
  575. // return or loop before this point.
  576. //
  577. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  578. #if ENABLED(PROBE_MANUALLY)
  579. g29_in_progress = false;
  580. TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
  581. #endif
  582. // Calculate leveling, print reports, correct the position
  583. if (!isnan(measured_z)) {
  584. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  585. if (!dryrun) extrapolate_unprobed_bed_level();
  586. print_bilinear_leveling_grid();
  587. refresh_bed_level();
  588. TERN_(ABL_BILINEAR_SUBDIVISION, print_bilinear_leveling_grid_virt());
  589. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  590. // For LINEAR leveling calculate matrix, print reports, correct the position
  591. /**
  592. * solve the plane equation ax + by + d = z
  593. * A is the matrix with rows [x y 1] for all the probed points
  594. * B is the vector of the Z positions
  595. * the normal vector to the plane is formed by the coefficients of the
  596. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  597. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  598. */
  599. struct { float a, b, d; } plane_equation_coefficients;
  600. finish_incremental_LSF(&lsf_results);
  601. plane_equation_coefficients.a = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  602. plane_equation_coefficients.b = -lsf_results.B; // but that is not yet tested.
  603. plane_equation_coefficients.d = -lsf_results.D;
  604. mean /= abl_points;
  605. if (verbose_level) {
  606. SERIAL_ECHOPAIR_F("Eqn coefficients: a: ", plane_equation_coefficients.a, 8);
  607. SERIAL_ECHOPAIR_F(" b: ", plane_equation_coefficients.b, 8);
  608. SERIAL_ECHOPAIR_F(" d: ", plane_equation_coefficients.d, 8);
  609. if (verbose_level > 2)
  610. SERIAL_ECHOPAIR_F("\nMean of sampled points: ", mean, 8);
  611. SERIAL_EOL();
  612. }
  613. // Create the matrix but don't correct the position yet
  614. if (!dryrun)
  615. planner.bed_level_matrix = matrix_3x3::create_look_at(
  616. vector_3(-plane_equation_coefficients.a, -plane_equation_coefficients.b, 1) // We can eliminate the '-' here and up above
  617. );
  618. // Show the Topography map if enabled
  619. if (do_topography_map) {
  620. float min_diff = 999;
  621. auto print_topo_map = [&](PGM_P const title, const bool get_min) {
  622. serialprintPGM(title);
  623. for (int8_t yy = abl_grid_points.y - 1; yy >= 0; yy--) {
  624. LOOP_L_N(xx, abl_grid_points.x) {
  625. const int ind = indexIntoAB[xx][yy];
  626. xyz_float_t tmp = { eqnAMatrix[ind + 0 * abl_points],
  627. eqnAMatrix[ind + 1 * abl_points], 0 };
  628. apply_rotation_xyz(planner.bed_level_matrix, tmp);
  629. if (get_min) NOMORE(min_diff, eqnBVector[ind] - tmp.z);
  630. const float subval = get_min ? mean : tmp.z + min_diff,
  631. diff = eqnBVector[ind] - subval;
  632. SERIAL_CHAR(' '); if (diff >= 0.0) SERIAL_CHAR('+'); // Include + for column alignment
  633. SERIAL_ECHO_F(diff, 5);
  634. } // xx
  635. SERIAL_EOL();
  636. } // yy
  637. SERIAL_EOL();
  638. };
  639. print_topo_map(PSTR("\nBed Height Topography:\n"
  640. " +--- BACK --+\n"
  641. " | |\n"
  642. " L | (+) | R\n"
  643. " E | | I\n"
  644. " F | (-) N (+) | G\n"
  645. " T | | H\n"
  646. " | (-) | T\n"
  647. " | |\n"
  648. " O-- FRONT --+\n"
  649. " (0,0)\n"), true);
  650. if (verbose_level > 3)
  651. print_topo_map(PSTR("\nCorrected Bed Height vs. Bed Topology:\n"), false);
  652. } //do_topography_map
  653. #endif // AUTO_BED_LEVELING_LINEAR
  654. #if ABL_PLANAR
  655. // For LINEAR and 3POINT leveling correct the current position
  656. if (verbose_level > 0)
  657. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  658. if (!dryrun) {
  659. //
  660. // Correct the current XYZ position based on the tilted plane.
  661. //
  662. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  663. xyze_pos_t converted = current_position;
  664. planner.force_unapply_leveling(converted); // use conversion machinery
  665. // Use the last measured distance to the bed, if possible
  666. if ( NEAR(current_position.x, probePos.x - probe.offset_xy.x)
  667. && NEAR(current_position.y, probePos.y - probe.offset_xy.y)
  668. ) {
  669. const float simple_z = current_position.z - measured_z;
  670. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Probed Z", simple_z, " Matrix Z", converted.z, " Discrepancy ", simple_z - converted.z);
  671. converted.z = simple_z;
  672. }
  673. // The rotated XY and corrected Z are now current_position
  674. current_position = converted;
  675. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  676. }
  677. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  678. if (!dryrun) {
  679. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("G29 uncorrected Z:", current_position.z);
  680. // Unapply the offset because it is going to be immediately applied
  681. // and cause compensation movement in Z
  682. const float fade_scaling_factor = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.fade_scaling_factor_for_z(current_position.z), 1);
  683. current_position.z -= fade_scaling_factor * bilinear_z_offset(current_position);
  684. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(" corrected Z:", current_position.z);
  685. }
  686. #endif // ABL_PLANAR
  687. // Auto Bed Leveling is complete! Enable if possible.
  688. planner.leveling_active = dryrun ? abl_should_enable : true;
  689. } // !isnan(measured_z)
  690. // Restore state after probing
  691. if (!faux) restore_feedrate_and_scaling();
  692. // Sync the planner from the current_position
  693. if (planner.leveling_active) sync_plan_position();
  694. #if HAS_BED_PROBE && defined(Z_AFTER_PROBING)
  695. probe.move_z_after_probing();
  696. #endif
  697. #ifdef Z_PROBE_END_SCRIPT
  698. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  699. planner.synchronize();
  700. process_subcommands_now_P(PSTR(Z_PROBE_END_SCRIPT));
  701. #endif
  702. #if ENABLED(DWIN_CREALITY_LCD)
  703. DWIN_CompletedLeveling();
  704. #endif
  705. report_current_position();
  706. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< G29");
  707. G29_RETURN(isnan(measured_z));
  708. }
  709. #endif // HAS_ABL_NOT_UBL