My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

Marlin_main.cpp 121KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  106. // M112 - Emergency stop
  107. // M114 - Output current position to serial port
  108. // M115 - Capabilities string
  109. // M117 - display message
  110. // M119 - Output Endstop status to serial port
  111. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  112. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  113. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  114. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M140 - Set bed target temp
  116. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  117. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  118. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  119. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  120. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  121. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  122. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  123. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  124. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  125. // M206 - set additional homing offset
  126. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  127. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  128. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  129. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  130. // M220 S<factor in percent>- set speed factor override percentage
  131. // M221 S<factor in percent>- set extrude factor override percentage
  132. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  133. // M240 - Trigger a camera to take a photograph
  134. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  135. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  136. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  137. // M301 - Set PID parameters P I and D
  138. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  139. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  140. // M304 - Set bed PID parameters P I and D
  141. // M400 - Finish all moves
  142. // M401 - Lower z-probe if present
  143. // M402 - Raise z-probe if present
  144. // M500 - stores parameters in EEPROM
  145. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  146. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  147. // M503 - print the current settings (from memory not from EEPROM)
  148. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  149. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  150. // M665 - set delta configurations
  151. // M666 - set delta endstop adjustment
  152. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  153. // M907 - Set digital trimpot motor current using axis codes.
  154. // M908 - Control digital trimpot directly.
  155. // M350 - Set microstepping mode.
  156. // M351 - Toggle MS1 MS2 pins directly.
  157. // M928 - Start SD logging (M928 filename.g) - ended by M29
  158. // M999 - Restart after being stopped by error
  159. //Stepper Movement Variables
  160. //===========================================================================
  161. //=============================imported variables============================
  162. //===========================================================================
  163. //===========================================================================
  164. //=============================public variables=============================
  165. //===========================================================================
  166. #ifdef SDSUPPORT
  167. CardReader card;
  168. #endif
  169. float homing_feedrate[] = HOMING_FEEDRATE;
  170. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  171. int feedmultiply=100; //100->1 200->2
  172. int saved_feedmultiply;
  173. int extrudemultiply=100; //100->1 200->2
  174. int extruder_multiply[EXTRUDERS] = {100
  175. #if EXTRUDERS > 1
  176. , 100
  177. #if EXTRUDERS > 2
  178. , 100
  179. #endif
  180. #endif
  181. };
  182. float volumetric_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. float add_homeing[3]={0,0,0};
  192. #ifdef DELTA
  193. float endstop_adj[3]={0,0,0};
  194. #endif
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = {false, false, false};
  198. float zprobe_zoffset;
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #ifndef DUAL_X_CARRIAGE
  202. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  203. #else
  204. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  205. #endif
  206. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  207. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  208. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  209. #endif
  210. };
  211. #endif
  212. uint8_t active_extruder = 0;
  213. int fanSpeed=0;
  214. #ifdef SERVO_ENDSTOPS
  215. int servo_endstops[] = SERVO_ENDSTOPS;
  216. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  217. #endif
  218. #ifdef BARICUDA
  219. int ValvePressure=0;
  220. int EtoPPressure=0;
  221. #endif
  222. #ifdef FWRETRACT
  223. bool autoretract_enabled=false;
  224. bool retracted=false;
  225. float retract_length = RETRACT_LENGTH;
  226. float retract_feedrate = RETRACT_FEEDRATE;
  227. float retract_zlift = RETRACT_ZLIFT;
  228. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  229. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  230. #endif
  231. #ifdef ULTIPANEL
  232. #ifdef PS_DEFAULT_OFF
  233. bool powersupply = false;
  234. #else
  235. bool powersupply = true;
  236. #endif
  237. #endif
  238. #ifdef DELTA
  239. float delta[3] = {0.0, 0.0, 0.0};
  240. #define SIN_60 0.8660254037844386
  241. #define COS_60 0.5
  242. // these are the default values, can be overriden with M665
  243. float delta_radius= DELTA_RADIUS;
  244. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  245. float delta_tower1_y= -COS_60*delta_radius;
  246. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  247. float delta_tower2_y= -COS_60*delta_radius;
  248. float delta_tower3_x= 0.0; // back middle tower
  249. float delta_tower3_y= delta_radius;
  250. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  251. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  252. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  253. #endif
  254. //===========================================================================
  255. //=============================Private Variables=============================
  256. //===========================================================================
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. static bool home_all_axis = true;
  261. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  262. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  263. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  264. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  265. static bool fromsd[BUFSIZE];
  266. static int bufindr = 0;
  267. static int bufindw = 0;
  268. static int buflen = 0;
  269. //static int i = 0;
  270. static char serial_char;
  271. static int serial_count = 0;
  272. static boolean comment_mode = false;
  273. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  274. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  275. //static float tt = 0;
  276. //static float bt = 0;
  277. //Inactivity shutdown variables
  278. static unsigned long previous_millis_cmd = 0;
  279. static unsigned long max_inactive_time = 0;
  280. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  281. unsigned long starttime=0;
  282. unsigned long stoptime=0;
  283. static uint8_t tmp_extruder;
  284. bool Stopped=false;
  285. #if NUM_SERVOS > 0
  286. Servo servos[NUM_SERVOS];
  287. #endif
  288. bool CooldownNoWait = true;
  289. bool target_direction;
  290. //Insert variables if CHDK is defined
  291. #ifdef CHDK
  292. unsigned long chdkHigh = 0;
  293. boolean chdkActive = false;
  294. #endif
  295. //===========================================================================
  296. //=============================Routines======================================
  297. //===========================================================================
  298. void get_arc_coordinates();
  299. bool setTargetedHotend(int code);
  300. void serial_echopair_P(const char *s_P, float v)
  301. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  302. void serial_echopair_P(const char *s_P, double v)
  303. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  304. void serial_echopair_P(const char *s_P, unsigned long v)
  305. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  306. extern "C"{
  307. extern unsigned int __bss_end;
  308. extern unsigned int __heap_start;
  309. extern void *__brkval;
  310. int freeMemory() {
  311. int free_memory;
  312. if((int)__brkval == 0)
  313. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  314. else
  315. free_memory = ((int)&free_memory) - ((int)__brkval);
  316. return free_memory;
  317. }
  318. }
  319. //adds an command to the main command buffer
  320. //thats really done in a non-safe way.
  321. //needs overworking someday
  322. void enquecommand(const char *cmd)
  323. {
  324. if(buflen < BUFSIZE)
  325. {
  326. //this is dangerous if a mixing of serial and this happens
  327. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  328. SERIAL_ECHO_START;
  329. SERIAL_ECHOPGM("enqueing \"");
  330. SERIAL_ECHO(cmdbuffer[bufindw]);
  331. SERIAL_ECHOLNPGM("\"");
  332. bufindw= (bufindw + 1)%BUFSIZE;
  333. buflen += 1;
  334. }
  335. }
  336. void enquecommand_P(const char *cmd)
  337. {
  338. if(buflen < BUFSIZE)
  339. {
  340. //this is dangerous if a mixing of serial and this happens
  341. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  342. SERIAL_ECHO_START;
  343. SERIAL_ECHOPGM("enqueing \"");
  344. SERIAL_ECHO(cmdbuffer[bufindw]);
  345. SERIAL_ECHOLNPGM("\"");
  346. bufindw= (bufindw + 1)%BUFSIZE;
  347. buflen += 1;
  348. }
  349. }
  350. void setup_killpin()
  351. {
  352. #if defined(KILL_PIN) && KILL_PIN > -1
  353. pinMode(KILL_PIN,INPUT);
  354. WRITE(KILL_PIN,HIGH);
  355. #endif
  356. }
  357. void setup_photpin()
  358. {
  359. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  360. SET_OUTPUT(PHOTOGRAPH_PIN);
  361. WRITE(PHOTOGRAPH_PIN, LOW);
  362. #endif
  363. }
  364. void setup_powerhold()
  365. {
  366. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  367. SET_OUTPUT(SUICIDE_PIN);
  368. WRITE(SUICIDE_PIN, HIGH);
  369. #endif
  370. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  371. SET_OUTPUT(PS_ON_PIN);
  372. #if defined(PS_DEFAULT_OFF)
  373. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  374. #else
  375. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  376. #endif
  377. #endif
  378. }
  379. void suicide()
  380. {
  381. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  382. SET_OUTPUT(SUICIDE_PIN);
  383. WRITE(SUICIDE_PIN, LOW);
  384. #endif
  385. }
  386. void servo_init()
  387. {
  388. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  389. servos[0].attach(SERVO0_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  392. servos[1].attach(SERVO1_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  395. servos[2].attach(SERVO2_PIN);
  396. #endif
  397. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  398. servos[3].attach(SERVO3_PIN);
  399. #endif
  400. #if (NUM_SERVOS >= 5)
  401. #error "TODO: enter initalisation code for more servos"
  402. #endif
  403. // Set position of Servo Endstops that are defined
  404. #ifdef SERVO_ENDSTOPS
  405. for(int8_t i = 0; i < 3; i++)
  406. {
  407. if(servo_endstops[i] > -1) {
  408. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  409. }
  410. }
  411. #endif
  412. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  413. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  414. servos[servo_endstops[Z_AXIS]].detach();
  415. #endif
  416. }
  417. void setup()
  418. {
  419. setup_killpin();
  420. setup_powerhold();
  421. MYSERIAL.begin(BAUDRATE);
  422. SERIAL_PROTOCOLLNPGM("start");
  423. SERIAL_ECHO_START;
  424. // Check startup - does nothing if bootloader sets MCUSR to 0
  425. byte mcu = MCUSR;
  426. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  427. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  428. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  429. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  430. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  431. MCUSR=0;
  432. SERIAL_ECHOPGM(MSG_MARLIN);
  433. SERIAL_ECHOLNPGM(VERSION_STRING);
  434. #ifdef STRING_VERSION_CONFIG_H
  435. #ifdef STRING_CONFIG_H_AUTHOR
  436. SERIAL_ECHO_START;
  437. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  438. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  439. SERIAL_ECHOPGM(MSG_AUTHOR);
  440. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  441. SERIAL_ECHOPGM("Compiled: ");
  442. SERIAL_ECHOLNPGM(__DATE__);
  443. #endif
  444. #endif
  445. SERIAL_ECHO_START;
  446. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  447. SERIAL_ECHO(freeMemory());
  448. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  449. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  450. for(int8_t i = 0; i < BUFSIZE; i++)
  451. {
  452. fromsd[i] = false;
  453. }
  454. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  455. Config_RetrieveSettings();
  456. tp_init(); // Initialize temperature loop
  457. plan_init(); // Initialize planner;
  458. watchdog_init();
  459. st_init(); // Initialize stepper, this enables interrupts!
  460. setup_photpin();
  461. servo_init();
  462. lcd_init();
  463. _delay_ms(1000); // wait 1sec to display the splash screen
  464. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  465. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  466. #endif
  467. #ifdef DIGIPOT_I2C
  468. digipot_i2c_init();
  469. #endif
  470. }
  471. void loop()
  472. {
  473. if(buflen < (BUFSIZE-1))
  474. get_command();
  475. #ifdef SDSUPPORT
  476. card.checkautostart(false);
  477. #endif
  478. if(buflen)
  479. {
  480. #ifdef SDSUPPORT
  481. if(card.saving)
  482. {
  483. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  484. {
  485. card.write_command(cmdbuffer[bufindr]);
  486. if(card.logging)
  487. {
  488. process_commands();
  489. }
  490. else
  491. {
  492. SERIAL_PROTOCOLLNPGM(MSG_OK);
  493. }
  494. }
  495. else
  496. {
  497. card.closefile();
  498. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  499. }
  500. }
  501. else
  502. {
  503. process_commands();
  504. }
  505. #else
  506. process_commands();
  507. #endif //SDSUPPORT
  508. buflen = (buflen-1);
  509. bufindr = (bufindr + 1)%BUFSIZE;
  510. }
  511. //check heater every n milliseconds
  512. manage_heater();
  513. manage_inactivity();
  514. checkHitEndstops();
  515. lcd_update();
  516. }
  517. void get_command()
  518. {
  519. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  520. serial_char = MYSERIAL.read();
  521. if(serial_char == '\n' ||
  522. serial_char == '\r' ||
  523. (serial_char == ':' && comment_mode == false) ||
  524. serial_count >= (MAX_CMD_SIZE - 1) )
  525. {
  526. if(!serial_count) { //if empty line
  527. comment_mode = false; //for new command
  528. return;
  529. }
  530. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  531. if(!comment_mode){
  532. comment_mode = false; //for new command
  533. fromsd[bufindw] = false;
  534. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  535. {
  536. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  537. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  538. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  539. SERIAL_ERROR_START;
  540. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  541. SERIAL_ERRORLN(gcode_LastN);
  542. //Serial.println(gcode_N);
  543. FlushSerialRequestResend();
  544. serial_count = 0;
  545. return;
  546. }
  547. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  548. {
  549. byte checksum = 0;
  550. byte count = 0;
  551. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  552. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  553. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  554. SERIAL_ERROR_START;
  555. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  556. SERIAL_ERRORLN(gcode_LastN);
  557. FlushSerialRequestResend();
  558. serial_count = 0;
  559. return;
  560. }
  561. //if no errors, continue parsing
  562. }
  563. else
  564. {
  565. SERIAL_ERROR_START;
  566. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  567. SERIAL_ERRORLN(gcode_LastN);
  568. FlushSerialRequestResend();
  569. serial_count = 0;
  570. return;
  571. }
  572. gcode_LastN = gcode_N;
  573. //if no errors, continue parsing
  574. }
  575. else // if we don't receive 'N' but still see '*'
  576. {
  577. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  578. {
  579. SERIAL_ERROR_START;
  580. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  581. SERIAL_ERRORLN(gcode_LastN);
  582. serial_count = 0;
  583. return;
  584. }
  585. }
  586. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  587. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  588. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  589. case 0:
  590. case 1:
  591. case 2:
  592. case 3:
  593. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  594. #ifdef SDSUPPORT
  595. if(card.saving)
  596. break;
  597. #endif //SDSUPPORT
  598. SERIAL_PROTOCOLLNPGM(MSG_OK);
  599. }
  600. else {
  601. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  602. LCD_MESSAGEPGM(MSG_STOPPED);
  603. }
  604. break;
  605. default:
  606. break;
  607. }
  608. }
  609. //If command was e-stop process now
  610. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  611. kill();
  612. bufindw = (bufindw + 1)%BUFSIZE;
  613. buflen += 1;
  614. }
  615. serial_count = 0; //clear buffer
  616. }
  617. else
  618. {
  619. if(serial_char == ';') comment_mode = true;
  620. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  621. }
  622. }
  623. #ifdef SDSUPPORT
  624. if(!card.sdprinting || serial_count!=0){
  625. return;
  626. }
  627. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  628. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  629. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  630. static bool stop_buffering=false;
  631. if(buflen==0) stop_buffering=false;
  632. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  633. int16_t n=card.get();
  634. serial_char = (char)n;
  635. if(serial_char == '\n' ||
  636. serial_char == '\r' ||
  637. (serial_char == '#' && comment_mode == false) ||
  638. (serial_char == ':' && comment_mode == false) ||
  639. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  640. {
  641. if(card.eof()){
  642. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  643. stoptime=millis();
  644. char time[30];
  645. unsigned long t=(stoptime-starttime)/1000;
  646. int hours, minutes;
  647. minutes=(t/60)%60;
  648. hours=t/60/60;
  649. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  650. SERIAL_ECHO_START;
  651. SERIAL_ECHOLN(time);
  652. lcd_setstatus(time);
  653. card.printingHasFinished();
  654. card.checkautostart(true);
  655. }
  656. if(serial_char=='#')
  657. stop_buffering=true;
  658. if(!serial_count)
  659. {
  660. comment_mode = false; //for new command
  661. return; //if empty line
  662. }
  663. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  664. // if(!comment_mode){
  665. fromsd[bufindw] = true;
  666. buflen += 1;
  667. bufindw = (bufindw + 1)%BUFSIZE;
  668. // }
  669. comment_mode = false; //for new command
  670. serial_count = 0; //clear buffer
  671. }
  672. else
  673. {
  674. if(serial_char == ';') comment_mode = true;
  675. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  676. }
  677. }
  678. #endif //SDSUPPORT
  679. }
  680. float code_value()
  681. {
  682. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  683. }
  684. long code_value_long()
  685. {
  686. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  687. }
  688. bool code_seen(char code)
  689. {
  690. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  691. return (strchr_pointer != NULL); //Return True if a character was found
  692. }
  693. #define DEFINE_PGM_READ_ANY(type, reader) \
  694. static inline type pgm_read_any(const type *p) \
  695. { return pgm_read_##reader##_near(p); }
  696. DEFINE_PGM_READ_ANY(float, float);
  697. DEFINE_PGM_READ_ANY(signed char, byte);
  698. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  699. static const PROGMEM type array##_P[3] = \
  700. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  701. static inline type array(int axis) \
  702. { return pgm_read_any(&array##_P[axis]); }
  703. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  704. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  705. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  706. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  707. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  708. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  709. #ifdef DUAL_X_CARRIAGE
  710. #if EXTRUDERS == 1 || defined(COREXY) \
  711. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  712. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  713. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  714. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  715. #endif
  716. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  717. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  718. #endif
  719. #define DXC_FULL_CONTROL_MODE 0
  720. #define DXC_AUTO_PARK_MODE 1
  721. #define DXC_DUPLICATION_MODE 2
  722. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  723. static float x_home_pos(int extruder) {
  724. if (extruder == 0)
  725. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  726. else
  727. // In dual carriage mode the extruder offset provides an override of the
  728. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  729. // This allow soft recalibration of the second extruder offset position without firmware reflash
  730. // (through the M218 command).
  731. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  732. }
  733. static int x_home_dir(int extruder) {
  734. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  735. }
  736. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  737. static bool active_extruder_parked = false; // used in mode 1 & 2
  738. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  739. static unsigned long delayed_move_time = 0; // used in mode 1
  740. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  741. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  742. bool extruder_duplication_enabled = false; // used in mode 2
  743. #endif //DUAL_X_CARRIAGE
  744. static void axis_is_at_home(int axis) {
  745. #ifdef DUAL_X_CARRIAGE
  746. if (axis == X_AXIS) {
  747. if (active_extruder != 0) {
  748. current_position[X_AXIS] = x_home_pos(active_extruder);
  749. min_pos[X_AXIS] = X2_MIN_POS;
  750. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  751. return;
  752. }
  753. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  754. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  755. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  756. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  757. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  758. return;
  759. }
  760. }
  761. #endif
  762. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  763. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  764. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  765. }
  766. #ifdef ENABLE_AUTO_BED_LEVELING
  767. #ifdef AUTO_BED_LEVELING_GRID
  768. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  769. {
  770. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  771. planeNormal.debug("planeNormal");
  772. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  773. //bedLevel.debug("bedLevel");
  774. //plan_bed_level_matrix.debug("bed level before");
  775. //vector_3 uncorrected_position = plan_get_position_mm();
  776. //uncorrected_position.debug("position before");
  777. vector_3 corrected_position = plan_get_position();
  778. // corrected_position.debug("position after");
  779. current_position[X_AXIS] = corrected_position.x;
  780. current_position[Y_AXIS] = corrected_position.y;
  781. current_position[Z_AXIS] = corrected_position.z;
  782. // but the bed at 0 so we don't go below it.
  783. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  784. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  785. }
  786. #else // not AUTO_BED_LEVELING_GRID
  787. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  788. plan_bed_level_matrix.set_to_identity();
  789. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  790. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  791. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  792. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  793. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  794. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  795. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  796. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  797. vector_3 corrected_position = plan_get_position();
  798. current_position[X_AXIS] = corrected_position.x;
  799. current_position[Y_AXIS] = corrected_position.y;
  800. current_position[Z_AXIS] = corrected_position.z;
  801. // put the bed at 0 so we don't go below it.
  802. current_position[Z_AXIS] = zprobe_zoffset;
  803. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  804. }
  805. #endif // AUTO_BED_LEVELING_GRID
  806. static void run_z_probe() {
  807. plan_bed_level_matrix.set_to_identity();
  808. feedrate = homing_feedrate[Z_AXIS];
  809. // move down until you find the bed
  810. float zPosition = -10;
  811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  812. st_synchronize();
  813. // we have to let the planner know where we are right now as it is not where we said to go.
  814. zPosition = st_get_position_mm(Z_AXIS);
  815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  816. // move up the retract distance
  817. zPosition += home_retract_mm(Z_AXIS);
  818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  819. st_synchronize();
  820. // move back down slowly to find bed
  821. feedrate = homing_feedrate[Z_AXIS]/4;
  822. zPosition -= home_retract_mm(Z_AXIS) * 2;
  823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  824. st_synchronize();
  825. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  826. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  828. }
  829. static void do_blocking_move_to(float x, float y, float z) {
  830. float oldFeedRate = feedrate;
  831. feedrate = XY_TRAVEL_SPEED;
  832. current_position[X_AXIS] = x;
  833. current_position[Y_AXIS] = y;
  834. current_position[Z_AXIS] = z;
  835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  836. st_synchronize();
  837. feedrate = oldFeedRate;
  838. }
  839. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  840. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  841. }
  842. static void setup_for_endstop_move() {
  843. saved_feedrate = feedrate;
  844. saved_feedmultiply = feedmultiply;
  845. feedmultiply = 100;
  846. previous_millis_cmd = millis();
  847. enable_endstops(true);
  848. }
  849. static void clean_up_after_endstop_move() {
  850. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  851. enable_endstops(false);
  852. #endif
  853. feedrate = saved_feedrate;
  854. feedmultiply = saved_feedmultiply;
  855. previous_millis_cmd = millis();
  856. }
  857. static void engage_z_probe() {
  858. // Engage Z Servo endstop if enabled
  859. #ifdef SERVO_ENDSTOPS
  860. if (servo_endstops[Z_AXIS] > -1) {
  861. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  862. servos[servo_endstops[Z_AXIS]].attach(0);
  863. #endif
  864. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  865. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  866. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  867. servos[servo_endstops[Z_AXIS]].detach();
  868. #endif
  869. }
  870. #endif
  871. }
  872. static void retract_z_probe() {
  873. // Retract Z Servo endstop if enabled
  874. #ifdef SERVO_ENDSTOPS
  875. if (servo_endstops[Z_AXIS] > -1) {
  876. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  877. servos[servo_endstops[Z_AXIS]].attach(0);
  878. #endif
  879. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  880. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  881. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  882. servos[servo_endstops[Z_AXIS]].detach();
  883. #endif
  884. }
  885. #endif
  886. }
  887. /// Probe bed height at position (x,y), returns the measured z value
  888. static float probe_pt(float x, float y, float z_before) {
  889. // move to right place
  890. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  891. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  892. engage_z_probe(); // Engage Z Servo endstop if available
  893. run_z_probe();
  894. float measured_z = current_position[Z_AXIS];
  895. retract_z_probe();
  896. SERIAL_PROTOCOLPGM(MSG_BED);
  897. SERIAL_PROTOCOLPGM(" x: ");
  898. SERIAL_PROTOCOL(x);
  899. SERIAL_PROTOCOLPGM(" y: ");
  900. SERIAL_PROTOCOL(y);
  901. SERIAL_PROTOCOLPGM(" z: ");
  902. SERIAL_PROTOCOL(measured_z);
  903. SERIAL_PROTOCOLPGM("\n");
  904. return measured_z;
  905. }
  906. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  907. static void homeaxis(int axis) {
  908. #define HOMEAXIS_DO(LETTER) \
  909. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  910. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  911. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  912. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  913. 0) {
  914. int axis_home_dir = home_dir(axis);
  915. #ifdef DUAL_X_CARRIAGE
  916. if (axis == X_AXIS)
  917. axis_home_dir = x_home_dir(active_extruder);
  918. #endif
  919. current_position[axis] = 0;
  920. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  921. // Engage Servo endstop if enabled
  922. #ifdef SERVO_ENDSTOPS
  923. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  924. if (axis==Z_AXIS) {
  925. engage_z_probe();
  926. }
  927. else
  928. #endif
  929. if (servo_endstops[axis] > -1) {
  930. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  931. }
  932. #endif
  933. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  934. feedrate = homing_feedrate[axis];
  935. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  936. st_synchronize();
  937. current_position[axis] = 0;
  938. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  939. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  941. st_synchronize();
  942. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  943. #ifdef DELTA
  944. feedrate = homing_feedrate[axis]/10;
  945. #else
  946. feedrate = homing_feedrate[axis]/2 ;
  947. #endif
  948. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  949. st_synchronize();
  950. #ifdef DELTA
  951. // retrace by the amount specified in endstop_adj
  952. if (endstop_adj[axis] * axis_home_dir < 0) {
  953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  954. destination[axis] = endstop_adj[axis];
  955. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  956. st_synchronize();
  957. }
  958. #endif
  959. axis_is_at_home(axis);
  960. destination[axis] = current_position[axis];
  961. feedrate = 0.0;
  962. endstops_hit_on_purpose();
  963. axis_known_position[axis] = true;
  964. // Retract Servo endstop if enabled
  965. #ifdef SERVO_ENDSTOPS
  966. if (servo_endstops[axis] > -1) {
  967. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  968. }
  969. #endif
  970. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  971. if (axis==Z_AXIS) retract_z_probe();
  972. #endif
  973. }
  974. }
  975. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  976. void refresh_cmd_timeout(void)
  977. {
  978. previous_millis_cmd = millis();
  979. }
  980. #ifdef FWRETRACT
  981. void retract(bool retracting) {
  982. if(retracting && !retracted) {
  983. destination[X_AXIS]=current_position[X_AXIS];
  984. destination[Y_AXIS]=current_position[Y_AXIS];
  985. destination[Z_AXIS]=current_position[Z_AXIS];
  986. destination[E_AXIS]=current_position[E_AXIS];
  987. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  988. plan_set_e_position(current_position[E_AXIS]);
  989. float oldFeedrate = feedrate;
  990. feedrate=retract_feedrate*60;
  991. retracted=true;
  992. prepare_move();
  993. current_position[Z_AXIS]-=retract_zlift;
  994. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  995. prepare_move();
  996. feedrate = oldFeedrate;
  997. } else if(!retracting && retracted) {
  998. destination[X_AXIS]=current_position[X_AXIS];
  999. destination[Y_AXIS]=current_position[Y_AXIS];
  1000. destination[Z_AXIS]=current_position[Z_AXIS];
  1001. destination[E_AXIS]=current_position[E_AXIS];
  1002. current_position[Z_AXIS]+=retract_zlift;
  1003. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1004. //prepare_move();
  1005. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1006. plan_set_e_position(current_position[E_AXIS]);
  1007. float oldFeedrate = feedrate;
  1008. feedrate=retract_recover_feedrate*60;
  1009. retracted=false;
  1010. prepare_move();
  1011. feedrate = oldFeedrate;
  1012. }
  1013. } //retract
  1014. #endif //FWRETRACT
  1015. void process_commands()
  1016. {
  1017. unsigned long codenum; //throw away variable
  1018. char *starpos = NULL;
  1019. #ifdef ENABLE_AUTO_BED_LEVELING
  1020. float x_tmp, y_tmp, z_tmp, real_z;
  1021. #endif
  1022. if(code_seen('G'))
  1023. {
  1024. switch((int)code_value())
  1025. {
  1026. case 0: // G0 -> G1
  1027. case 1: // G1
  1028. if(Stopped == false) {
  1029. get_coordinates(); // For X Y Z E F
  1030. #ifdef FWRETRACT
  1031. if(autoretract_enabled)
  1032. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1033. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1034. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1035. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1036. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1037. retract(!retracted);
  1038. return;
  1039. }
  1040. }
  1041. #endif //FWRETRACT
  1042. prepare_move();
  1043. //ClearToSend();
  1044. return;
  1045. }
  1046. break;
  1047. case 2: // G2 - CW ARC
  1048. if(Stopped == false) {
  1049. get_arc_coordinates();
  1050. prepare_arc_move(true);
  1051. return;
  1052. }
  1053. break;
  1054. case 3: // G3 - CCW ARC
  1055. if(Stopped == false) {
  1056. get_arc_coordinates();
  1057. prepare_arc_move(false);
  1058. return;
  1059. }
  1060. break;
  1061. case 4: // G4 dwell
  1062. LCD_MESSAGEPGM(MSG_DWELL);
  1063. codenum = 0;
  1064. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1065. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1066. st_synchronize();
  1067. codenum += millis(); // keep track of when we started waiting
  1068. previous_millis_cmd = millis();
  1069. while(millis() < codenum ){
  1070. manage_heater();
  1071. manage_inactivity();
  1072. lcd_update();
  1073. }
  1074. break;
  1075. #ifdef FWRETRACT
  1076. case 10: // G10 retract
  1077. retract(true);
  1078. break;
  1079. case 11: // G11 retract_recover
  1080. retract(false);
  1081. break;
  1082. #endif //FWRETRACT
  1083. case 28: //G28 Home all Axis one at a time
  1084. #ifdef ENABLE_AUTO_BED_LEVELING
  1085. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1086. #endif //ENABLE_AUTO_BED_LEVELING
  1087. saved_feedrate = feedrate;
  1088. saved_feedmultiply = feedmultiply;
  1089. feedmultiply = 100;
  1090. previous_millis_cmd = millis();
  1091. enable_endstops(true);
  1092. for(int8_t i=0; i < NUM_AXIS; i++) {
  1093. destination[i] = current_position[i];
  1094. }
  1095. feedrate = 0.0;
  1096. #ifdef DELTA
  1097. // A delta can only safely home all axis at the same time
  1098. // all axis have to home at the same time
  1099. // Move all carriages up together until the first endstop is hit.
  1100. current_position[X_AXIS] = 0;
  1101. current_position[Y_AXIS] = 0;
  1102. current_position[Z_AXIS] = 0;
  1103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1104. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1105. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1106. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1107. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1108. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1109. st_synchronize();
  1110. endstops_hit_on_purpose();
  1111. current_position[X_AXIS] = destination[X_AXIS];
  1112. current_position[Y_AXIS] = destination[Y_AXIS];
  1113. current_position[Z_AXIS] = destination[Z_AXIS];
  1114. // take care of back off and rehome now we are all at the top
  1115. HOMEAXIS(X);
  1116. HOMEAXIS(Y);
  1117. HOMEAXIS(Z);
  1118. calculate_delta(current_position);
  1119. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1120. #else // NOT DELTA
  1121. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1122. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1123. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1124. HOMEAXIS(Z);
  1125. }
  1126. #endif
  1127. #ifdef QUICK_HOME
  1128. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1129. {
  1130. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1131. #ifndef DUAL_X_CARRIAGE
  1132. int x_axis_home_dir = home_dir(X_AXIS);
  1133. #else
  1134. int x_axis_home_dir = x_home_dir(active_extruder);
  1135. extruder_duplication_enabled = false;
  1136. #endif
  1137. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1138. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1139. feedrate = homing_feedrate[X_AXIS];
  1140. if(homing_feedrate[Y_AXIS]<feedrate)
  1141. feedrate = homing_feedrate[Y_AXIS];
  1142. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1143. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1144. } else {
  1145. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1146. }
  1147. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1148. st_synchronize();
  1149. axis_is_at_home(X_AXIS);
  1150. axis_is_at_home(Y_AXIS);
  1151. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1152. destination[X_AXIS] = current_position[X_AXIS];
  1153. destination[Y_AXIS] = current_position[Y_AXIS];
  1154. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1155. feedrate = 0.0;
  1156. st_synchronize();
  1157. endstops_hit_on_purpose();
  1158. current_position[X_AXIS] = destination[X_AXIS];
  1159. current_position[Y_AXIS] = destination[Y_AXIS];
  1160. current_position[Z_AXIS] = destination[Z_AXIS];
  1161. }
  1162. #endif
  1163. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1164. {
  1165. #ifdef DUAL_X_CARRIAGE
  1166. int tmp_extruder = active_extruder;
  1167. extruder_duplication_enabled = false;
  1168. active_extruder = !active_extruder;
  1169. HOMEAXIS(X);
  1170. inactive_extruder_x_pos = current_position[X_AXIS];
  1171. active_extruder = tmp_extruder;
  1172. HOMEAXIS(X);
  1173. // reset state used by the different modes
  1174. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1175. delayed_move_time = 0;
  1176. active_extruder_parked = true;
  1177. #else
  1178. HOMEAXIS(X);
  1179. #endif
  1180. }
  1181. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1182. HOMEAXIS(Y);
  1183. }
  1184. if(code_seen(axis_codes[X_AXIS]))
  1185. {
  1186. if(code_value_long() != 0) {
  1187. current_position[X_AXIS]=code_value()+add_homeing[0];
  1188. }
  1189. }
  1190. if(code_seen(axis_codes[Y_AXIS])) {
  1191. if(code_value_long() != 0) {
  1192. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1193. }
  1194. }
  1195. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1196. #ifndef Z_SAFE_HOMING
  1197. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1198. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1199. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1200. feedrate = max_feedrate[Z_AXIS];
  1201. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1202. st_synchronize();
  1203. #endif
  1204. HOMEAXIS(Z);
  1205. }
  1206. #else // Z Safe mode activated.
  1207. if(home_all_axis) {
  1208. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1209. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1210. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1211. feedrate = XY_TRAVEL_SPEED;
  1212. current_position[Z_AXIS] = 0;
  1213. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1214. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1215. st_synchronize();
  1216. current_position[X_AXIS] = destination[X_AXIS];
  1217. current_position[Y_AXIS] = destination[Y_AXIS];
  1218. HOMEAXIS(Z);
  1219. }
  1220. // Let's see if X and Y are homed and probe is inside bed area.
  1221. if(code_seen(axis_codes[Z_AXIS])) {
  1222. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1223. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1224. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1225. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1226. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1227. current_position[Z_AXIS] = 0;
  1228. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1229. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1230. feedrate = max_feedrate[Z_AXIS];
  1231. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1232. st_synchronize();
  1233. HOMEAXIS(Z);
  1234. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1235. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1236. SERIAL_ECHO_START;
  1237. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1238. } else {
  1239. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1240. SERIAL_ECHO_START;
  1241. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1242. }
  1243. }
  1244. #endif
  1245. #endif
  1246. if(code_seen(axis_codes[Z_AXIS])) {
  1247. if(code_value_long() != 0) {
  1248. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1249. }
  1250. }
  1251. #ifdef ENABLE_AUTO_BED_LEVELING
  1252. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1253. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1254. }
  1255. #endif
  1256. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1257. #endif // else DELTA
  1258. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1259. enable_endstops(false);
  1260. #endif
  1261. feedrate = saved_feedrate;
  1262. feedmultiply = saved_feedmultiply;
  1263. previous_millis_cmd = millis();
  1264. endstops_hit_on_purpose();
  1265. break;
  1266. #ifdef ENABLE_AUTO_BED_LEVELING
  1267. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1268. {
  1269. #if Z_MIN_PIN == -1
  1270. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1271. #endif
  1272. // Prevent user from running a G29 without first homing in X and Y
  1273. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1274. {
  1275. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1276. SERIAL_ECHO_START;
  1277. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1278. break; // abort G29, since we don't know where we are
  1279. }
  1280. st_synchronize();
  1281. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1282. //vector_3 corrected_position = plan_get_position_mm();
  1283. //corrected_position.debug("position before G29");
  1284. plan_bed_level_matrix.set_to_identity();
  1285. vector_3 uncorrected_position = plan_get_position();
  1286. //uncorrected_position.debug("position durring G29");
  1287. current_position[X_AXIS] = uncorrected_position.x;
  1288. current_position[Y_AXIS] = uncorrected_position.y;
  1289. current_position[Z_AXIS] = uncorrected_position.z;
  1290. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1291. setup_for_endstop_move();
  1292. feedrate = homing_feedrate[Z_AXIS];
  1293. #ifdef AUTO_BED_LEVELING_GRID
  1294. // probe at the points of a lattice grid
  1295. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1296. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1297. // solve the plane equation ax + by + d = z
  1298. // A is the matrix with rows [x y 1] for all the probed points
  1299. // B is the vector of the Z positions
  1300. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1301. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1302. // "A" matrix of the linear system of equations
  1303. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1304. // "B" vector of Z points
  1305. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1306. int probePointCounter = 0;
  1307. bool zig = true;
  1308. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1309. {
  1310. int xProbe, xInc;
  1311. if (zig)
  1312. {
  1313. xProbe = LEFT_PROBE_BED_POSITION;
  1314. //xEnd = RIGHT_PROBE_BED_POSITION;
  1315. xInc = xGridSpacing;
  1316. zig = false;
  1317. } else // zag
  1318. {
  1319. xProbe = RIGHT_PROBE_BED_POSITION;
  1320. //xEnd = LEFT_PROBE_BED_POSITION;
  1321. xInc = -xGridSpacing;
  1322. zig = true;
  1323. }
  1324. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1325. {
  1326. float z_before;
  1327. if (probePointCounter == 0)
  1328. {
  1329. // raise before probing
  1330. z_before = Z_RAISE_BEFORE_PROBING;
  1331. } else
  1332. {
  1333. // raise extruder
  1334. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1335. }
  1336. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1337. eqnBVector[probePointCounter] = measured_z;
  1338. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1339. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1340. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1341. probePointCounter++;
  1342. xProbe += xInc;
  1343. }
  1344. }
  1345. clean_up_after_endstop_move();
  1346. // solve lsq problem
  1347. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1348. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1349. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1350. SERIAL_PROTOCOLPGM(" b: ");
  1351. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1352. SERIAL_PROTOCOLPGM(" d: ");
  1353. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1354. set_bed_level_equation_lsq(plane_equation_coefficients);
  1355. free(plane_equation_coefficients);
  1356. #else // AUTO_BED_LEVELING_GRID not defined
  1357. // Probe at 3 arbitrary points
  1358. // probe 1
  1359. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1360. // probe 2
  1361. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1362. // probe 3
  1363. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1364. clean_up_after_endstop_move();
  1365. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1366. #endif // AUTO_BED_LEVELING_GRID
  1367. st_synchronize();
  1368. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1369. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1370. // When the bed is uneven, this height must be corrected.
  1371. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1372. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1373. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1374. z_tmp = current_position[Z_AXIS];
  1375. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1376. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1377. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1378. }
  1379. break;
  1380. case 30: // G30 Single Z Probe
  1381. {
  1382. engage_z_probe(); // Engage Z Servo endstop if available
  1383. st_synchronize();
  1384. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1385. setup_for_endstop_move();
  1386. feedrate = homing_feedrate[Z_AXIS];
  1387. run_z_probe();
  1388. SERIAL_PROTOCOLPGM(MSG_BED);
  1389. SERIAL_PROTOCOLPGM(" X: ");
  1390. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1391. SERIAL_PROTOCOLPGM(" Y: ");
  1392. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1393. SERIAL_PROTOCOLPGM(" Z: ");
  1394. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1395. SERIAL_PROTOCOLPGM("\n");
  1396. clean_up_after_endstop_move();
  1397. retract_z_probe(); // Retract Z Servo endstop if available
  1398. }
  1399. break;
  1400. #endif // ENABLE_AUTO_BED_LEVELING
  1401. case 90: // G90
  1402. relative_mode = false;
  1403. break;
  1404. case 91: // G91
  1405. relative_mode = true;
  1406. break;
  1407. case 92: // G92
  1408. if(!code_seen(axis_codes[E_AXIS]))
  1409. st_synchronize();
  1410. for(int8_t i=0; i < NUM_AXIS; i++) {
  1411. if(code_seen(axis_codes[i])) {
  1412. if(i == E_AXIS) {
  1413. current_position[i] = code_value();
  1414. plan_set_e_position(current_position[E_AXIS]);
  1415. }
  1416. else {
  1417. current_position[i] = code_value()+add_homeing[i];
  1418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1419. }
  1420. }
  1421. }
  1422. break;
  1423. }
  1424. }
  1425. else if(code_seen('M'))
  1426. {
  1427. switch( (int)code_value() )
  1428. {
  1429. #ifdef ULTIPANEL
  1430. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1431. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1432. {
  1433. LCD_MESSAGEPGM(MSG_USERWAIT);
  1434. codenum = 0;
  1435. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1436. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1437. st_synchronize();
  1438. previous_millis_cmd = millis();
  1439. if (codenum > 0){
  1440. codenum += millis(); // keep track of when we started waiting
  1441. while(millis() < codenum && !lcd_clicked()){
  1442. manage_heater();
  1443. manage_inactivity();
  1444. lcd_update();
  1445. }
  1446. }else{
  1447. while(!lcd_clicked()){
  1448. manage_heater();
  1449. manage_inactivity();
  1450. lcd_update();
  1451. }
  1452. }
  1453. LCD_MESSAGEPGM(MSG_RESUMING);
  1454. }
  1455. break;
  1456. #endif
  1457. case 17:
  1458. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1459. enable_x();
  1460. enable_y();
  1461. enable_z();
  1462. enable_e0();
  1463. enable_e1();
  1464. enable_e2();
  1465. break;
  1466. #ifdef SDSUPPORT
  1467. case 20: // M20 - list SD card
  1468. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1469. card.ls();
  1470. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1471. break;
  1472. case 21: // M21 - init SD card
  1473. card.initsd();
  1474. break;
  1475. case 22: //M22 - release SD card
  1476. card.release();
  1477. break;
  1478. case 23: //M23 - Select file
  1479. starpos = (strchr(strchr_pointer + 4,'*'));
  1480. if(starpos!=NULL)
  1481. *(starpos-1)='\0';
  1482. card.openFile(strchr_pointer + 4,true);
  1483. break;
  1484. case 24: //M24 - Start SD print
  1485. card.startFileprint();
  1486. starttime=millis();
  1487. break;
  1488. case 25: //M25 - Pause SD print
  1489. card.pauseSDPrint();
  1490. break;
  1491. case 26: //M26 - Set SD index
  1492. if(card.cardOK && code_seen('S')) {
  1493. card.setIndex(code_value_long());
  1494. }
  1495. break;
  1496. case 27: //M27 - Get SD status
  1497. card.getStatus();
  1498. break;
  1499. case 28: //M28 - Start SD write
  1500. starpos = (strchr(strchr_pointer + 4,'*'));
  1501. if(starpos != NULL){
  1502. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1503. strchr_pointer = strchr(npos,' ') + 1;
  1504. *(starpos-1) = '\0';
  1505. }
  1506. card.openFile(strchr_pointer+4,false);
  1507. break;
  1508. case 29: //M29 - Stop SD write
  1509. //processed in write to file routine above
  1510. //card,saving = false;
  1511. break;
  1512. case 30: //M30 <filename> Delete File
  1513. if (card.cardOK){
  1514. card.closefile();
  1515. starpos = (strchr(strchr_pointer + 4,'*'));
  1516. if(starpos != NULL){
  1517. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1518. strchr_pointer = strchr(npos,' ') + 1;
  1519. *(starpos-1) = '\0';
  1520. }
  1521. card.removeFile(strchr_pointer + 4);
  1522. }
  1523. break;
  1524. case 32: //M32 - Select file and start SD print
  1525. {
  1526. if(card.sdprinting) {
  1527. st_synchronize();
  1528. }
  1529. starpos = (strchr(strchr_pointer + 4,'*'));
  1530. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1531. if(namestartpos==NULL)
  1532. {
  1533. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1534. }
  1535. else
  1536. namestartpos++; //to skip the '!'
  1537. if(starpos!=NULL)
  1538. *(starpos-1)='\0';
  1539. bool call_procedure=(code_seen('P'));
  1540. if(strchr_pointer>namestartpos)
  1541. call_procedure=false; //false alert, 'P' found within filename
  1542. if( card.cardOK )
  1543. {
  1544. card.openFile(namestartpos,true,!call_procedure);
  1545. if(code_seen('S'))
  1546. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1547. card.setIndex(code_value_long());
  1548. card.startFileprint();
  1549. if(!call_procedure)
  1550. starttime=millis(); //procedure calls count as normal print time.
  1551. }
  1552. } break;
  1553. case 928: //M928 - Start SD write
  1554. starpos = (strchr(strchr_pointer + 5,'*'));
  1555. if(starpos != NULL){
  1556. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1557. strchr_pointer = strchr(npos,' ') + 1;
  1558. *(starpos-1) = '\0';
  1559. }
  1560. card.openLogFile(strchr_pointer+5);
  1561. break;
  1562. #endif //SDSUPPORT
  1563. case 31: //M31 take time since the start of the SD print or an M109 command
  1564. {
  1565. stoptime=millis();
  1566. char time[30];
  1567. unsigned long t=(stoptime-starttime)/1000;
  1568. int sec,min;
  1569. min=t/60;
  1570. sec=t%60;
  1571. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1572. SERIAL_ECHO_START;
  1573. SERIAL_ECHOLN(time);
  1574. lcd_setstatus(time);
  1575. autotempShutdown();
  1576. }
  1577. break;
  1578. case 42: //M42 -Change pin status via gcode
  1579. if (code_seen('S'))
  1580. {
  1581. int pin_status = code_value();
  1582. int pin_number = LED_PIN;
  1583. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1584. pin_number = code_value();
  1585. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1586. {
  1587. if (sensitive_pins[i] == pin_number)
  1588. {
  1589. pin_number = -1;
  1590. break;
  1591. }
  1592. }
  1593. #if defined(FAN_PIN) && FAN_PIN > -1
  1594. if (pin_number == FAN_PIN)
  1595. fanSpeed = pin_status;
  1596. #endif
  1597. if (pin_number > -1)
  1598. {
  1599. pinMode(pin_number, OUTPUT);
  1600. digitalWrite(pin_number, pin_status);
  1601. analogWrite(pin_number, pin_status);
  1602. }
  1603. }
  1604. break;
  1605. case 104: // M104
  1606. if(setTargetedHotend(104)){
  1607. break;
  1608. }
  1609. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1610. #ifdef DUAL_X_CARRIAGE
  1611. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1612. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1613. #endif
  1614. setWatch();
  1615. break;
  1616. case 112: // M112 -Emergency Stop
  1617. kill();
  1618. break;
  1619. case 140: // M140 set bed temp
  1620. if (code_seen('S')) setTargetBed(code_value());
  1621. break;
  1622. case 105 : // M105
  1623. if(setTargetedHotend(105)){
  1624. break;
  1625. }
  1626. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1627. SERIAL_PROTOCOLPGM("ok T:");
  1628. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1629. SERIAL_PROTOCOLPGM(" /");
  1630. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1631. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1632. SERIAL_PROTOCOLPGM(" B:");
  1633. SERIAL_PROTOCOL_F(degBed(),1);
  1634. SERIAL_PROTOCOLPGM(" /");
  1635. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1636. #endif //TEMP_BED_PIN
  1637. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1638. SERIAL_PROTOCOLPGM(" T");
  1639. SERIAL_PROTOCOL(cur_extruder);
  1640. SERIAL_PROTOCOLPGM(":");
  1641. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1642. SERIAL_PROTOCOLPGM(" /");
  1643. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1644. }
  1645. #else
  1646. SERIAL_ERROR_START;
  1647. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1648. #endif
  1649. SERIAL_PROTOCOLPGM(" @:");
  1650. #ifdef EXTRUDER_WATTS
  1651. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1652. SERIAL_PROTOCOLPGM("W");
  1653. #else
  1654. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1655. #endif
  1656. SERIAL_PROTOCOLPGM(" B@:");
  1657. #ifdef BED_WATTS
  1658. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1659. SERIAL_PROTOCOLPGM("W");
  1660. #else
  1661. SERIAL_PROTOCOL(getHeaterPower(-1));
  1662. #endif
  1663. #ifdef SHOW_TEMP_ADC_VALUES
  1664. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1665. SERIAL_PROTOCOLPGM(" ADC B:");
  1666. SERIAL_PROTOCOL_F(degBed(),1);
  1667. SERIAL_PROTOCOLPGM("C->");
  1668. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1669. #endif
  1670. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1671. SERIAL_PROTOCOLPGM(" T");
  1672. SERIAL_PROTOCOL(cur_extruder);
  1673. SERIAL_PROTOCOLPGM(":");
  1674. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1675. SERIAL_PROTOCOLPGM("C->");
  1676. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1677. }
  1678. #endif
  1679. SERIAL_PROTOCOLLN("");
  1680. return;
  1681. break;
  1682. case 109:
  1683. {// M109 - Wait for extruder heater to reach target.
  1684. if(setTargetedHotend(109)){
  1685. break;
  1686. }
  1687. LCD_MESSAGEPGM(MSG_HEATING);
  1688. #ifdef AUTOTEMP
  1689. autotemp_enabled=false;
  1690. #endif
  1691. if (code_seen('S')) {
  1692. setTargetHotend(code_value(), tmp_extruder);
  1693. #ifdef DUAL_X_CARRIAGE
  1694. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1695. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1696. #endif
  1697. CooldownNoWait = true;
  1698. } else if (code_seen('R')) {
  1699. setTargetHotend(code_value(), tmp_extruder);
  1700. #ifdef DUAL_X_CARRIAGE
  1701. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1702. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1703. #endif
  1704. CooldownNoWait = false;
  1705. }
  1706. #ifdef AUTOTEMP
  1707. if (code_seen('S')) autotemp_min=code_value();
  1708. if (code_seen('B')) autotemp_max=code_value();
  1709. if (code_seen('F'))
  1710. {
  1711. autotemp_factor=code_value();
  1712. autotemp_enabled=true;
  1713. }
  1714. #endif
  1715. setWatch();
  1716. codenum = millis();
  1717. /* See if we are heating up or cooling down */
  1718. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1719. forced_heating_stop = true;
  1720. #ifdef TEMP_RESIDENCY_TIME
  1721. long residencyStart;
  1722. residencyStart = -1;
  1723. /* continue to loop until we have reached the target temp
  1724. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1725. while((forced_heating_stop == true)&&((residencyStart == -1) ||
  1726. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  1727. #else
  1728. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1729. #endif //TEMP_RESIDENCY_TIME
  1730. if( (millis() - codenum) > 1000UL )
  1731. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1732. SERIAL_PROTOCOLPGM("T:");
  1733. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1734. SERIAL_PROTOCOLPGM(" E:");
  1735. SERIAL_PROTOCOL((int)tmp_extruder);
  1736. #ifdef TEMP_RESIDENCY_TIME
  1737. SERIAL_PROTOCOLPGM(" W:");
  1738. if(residencyStart > -1)
  1739. {
  1740. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1741. SERIAL_PROTOCOLLN( codenum );
  1742. }
  1743. else
  1744. {
  1745. SERIAL_PROTOCOLLN( "?" );
  1746. }
  1747. #else
  1748. SERIAL_PROTOCOLLN("");
  1749. #endif
  1750. codenum = millis();
  1751. }
  1752. manage_heater();
  1753. manage_inactivity();
  1754. lcd_update();
  1755. #ifdef TEMP_RESIDENCY_TIME
  1756. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1757. or when current temp falls outside the hysteresis after target temp was reached */
  1758. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1759. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1760. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1761. {
  1762. residencyStart = millis();
  1763. }
  1764. #endif //TEMP_RESIDENCY_TIME
  1765. }
  1766. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1767. starttime=millis();
  1768. previous_millis_cmd = millis();
  1769. }
  1770. break;
  1771. case 190: // M190 - Wait for bed heater to reach target.
  1772. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1773. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1774. if (code_seen('S')) {
  1775. setTargetBed(code_value());
  1776. CooldownNoWait = true;
  1777. } else if (code_seen('R')) {
  1778. setTargetBed(code_value());
  1779. CooldownNoWait = false;
  1780. }
  1781. codenum = millis();
  1782. target_direction = isHeatingBed(); // true if heating, false if cooling
  1783. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1784. {
  1785. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1786. {
  1787. float tt=degHotend(active_extruder);
  1788. SERIAL_PROTOCOLPGM("T:");
  1789. SERIAL_PROTOCOL(tt);
  1790. SERIAL_PROTOCOLPGM(" E:");
  1791. SERIAL_PROTOCOL((int)active_extruder);
  1792. SERIAL_PROTOCOLPGM(" B:");
  1793. SERIAL_PROTOCOL_F(degBed(),1);
  1794. SERIAL_PROTOCOLLN("");
  1795. codenum = millis();
  1796. }
  1797. manage_heater();
  1798. manage_inactivity();
  1799. lcd_update();
  1800. }
  1801. LCD_MESSAGEPGM(MSG_BED_DONE);
  1802. previous_millis_cmd = millis();
  1803. #endif
  1804. break;
  1805. #if defined(FAN_PIN) && FAN_PIN > -1
  1806. case 106: //M106 Fan On
  1807. if (code_seen('S')){
  1808. fanSpeed=constrain(code_value(),0,255);
  1809. }
  1810. else {
  1811. fanSpeed=255;
  1812. }
  1813. break;
  1814. case 107: //M107 Fan Off
  1815. fanSpeed = 0;
  1816. break;
  1817. #endif //FAN_PIN
  1818. #ifdef BARICUDA
  1819. // PWM for HEATER_1_PIN
  1820. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1821. case 126: //M126 valve open
  1822. if (code_seen('S')){
  1823. ValvePressure=constrain(code_value(),0,255);
  1824. }
  1825. else {
  1826. ValvePressure=255;
  1827. }
  1828. break;
  1829. case 127: //M127 valve closed
  1830. ValvePressure = 0;
  1831. break;
  1832. #endif //HEATER_1_PIN
  1833. // PWM for HEATER_2_PIN
  1834. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1835. case 128: //M128 valve open
  1836. if (code_seen('S')){
  1837. EtoPPressure=constrain(code_value(),0,255);
  1838. }
  1839. else {
  1840. EtoPPressure=255;
  1841. }
  1842. break;
  1843. case 129: //M129 valve closed
  1844. EtoPPressure = 0;
  1845. break;
  1846. #endif //HEATER_2_PIN
  1847. #endif
  1848. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1849. case 80: // M80 - Turn on Power Supply
  1850. SET_OUTPUT(PS_ON_PIN); //GND
  1851. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1852. // If you have a switch on suicide pin, this is useful
  1853. // if you want to start another print with suicide feature after
  1854. // a print without suicide...
  1855. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1856. SET_OUTPUT(SUICIDE_PIN);
  1857. WRITE(SUICIDE_PIN, HIGH);
  1858. #endif
  1859. #ifdef ULTIPANEL
  1860. powersupply = true;
  1861. LCD_MESSAGEPGM(WELCOME_MSG);
  1862. lcd_update();
  1863. #endif
  1864. break;
  1865. #endif
  1866. case 81: // M81 - Turn off Power Supply
  1867. disable_heater();
  1868. st_synchronize();
  1869. disable_e0();
  1870. disable_e1();
  1871. disable_e2();
  1872. finishAndDisableSteppers();
  1873. fanSpeed = 0;
  1874. delay(1000); // Wait a little before to switch off
  1875. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1876. st_synchronize();
  1877. suicide();
  1878. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1879. SET_OUTPUT(PS_ON_PIN);
  1880. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1881. #endif
  1882. #ifdef ULTIPANEL
  1883. powersupply = false;
  1884. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1885. lcd_update();
  1886. #endif
  1887. break;
  1888. case 82:
  1889. axis_relative_modes[3] = false;
  1890. break;
  1891. case 83:
  1892. axis_relative_modes[3] = true;
  1893. break;
  1894. case 18: //compatibility
  1895. case 84: // M84
  1896. if(code_seen('S')){
  1897. stepper_inactive_time = code_value() * 1000;
  1898. }
  1899. else
  1900. {
  1901. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1902. if(all_axis)
  1903. {
  1904. st_synchronize();
  1905. disable_e0();
  1906. disable_e1();
  1907. disable_e2();
  1908. finishAndDisableSteppers();
  1909. }
  1910. else
  1911. {
  1912. st_synchronize();
  1913. if(code_seen('X')) disable_x();
  1914. if(code_seen('Y')) disable_y();
  1915. if(code_seen('Z')) disable_z();
  1916. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1917. if(code_seen('E')) {
  1918. disable_e0();
  1919. disable_e1();
  1920. disable_e2();
  1921. }
  1922. #endif
  1923. }
  1924. }
  1925. break;
  1926. case 85: // M85
  1927. if(code_seen('S')) {
  1928. max_inactive_time = code_value() * 1000;
  1929. }
  1930. break;
  1931. case 92: // M92
  1932. for(int8_t i=0; i < NUM_AXIS; i++)
  1933. {
  1934. if(code_seen(axis_codes[i]))
  1935. {
  1936. if(i == 3) { // E
  1937. float value = code_value();
  1938. if(value < 20.0) {
  1939. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1940. max_e_jerk *= factor;
  1941. max_feedrate[i] *= factor;
  1942. axis_steps_per_sqr_second[i] *= factor;
  1943. }
  1944. axis_steps_per_unit[i] = value;
  1945. }
  1946. else {
  1947. axis_steps_per_unit[i] = code_value();
  1948. }
  1949. }
  1950. }
  1951. break;
  1952. case 115: // M115
  1953. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1954. break;
  1955. case 117: // M117 display message
  1956. starpos = (strchr(strchr_pointer + 5,'*'));
  1957. if(starpos!=NULL)
  1958. *(starpos-1)='\0';
  1959. lcd_setstatus(strchr_pointer + 5);
  1960. break;
  1961. case 114: // M114
  1962. SERIAL_PROTOCOLPGM("X:");
  1963. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1964. SERIAL_PROTOCOLPGM(" Y:");
  1965. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1966. SERIAL_PROTOCOLPGM(" Z:");
  1967. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1968. SERIAL_PROTOCOLPGM(" E:");
  1969. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1970. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1971. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1972. SERIAL_PROTOCOLPGM(" Y:");
  1973. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1974. SERIAL_PROTOCOLPGM(" Z:");
  1975. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1976. SERIAL_PROTOCOLLN("");
  1977. break;
  1978. case 120: // M120
  1979. enable_endstops(false) ;
  1980. break;
  1981. case 121: // M121
  1982. enable_endstops(true) ;
  1983. break;
  1984. case 119: // M119
  1985. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1986. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1987. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1988. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1989. #endif
  1990. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1991. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1992. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1993. #endif
  1994. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1995. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1996. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1997. #endif
  1998. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1999. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2000. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2001. #endif
  2002. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2003. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2004. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2005. #endif
  2006. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2007. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2008. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2009. #endif
  2010. break;
  2011. //TODO: update for all axis, use for loop
  2012. #ifdef BLINKM
  2013. case 150: // M150
  2014. {
  2015. byte red;
  2016. byte grn;
  2017. byte blu;
  2018. if(code_seen('R')) red = code_value();
  2019. if(code_seen('U')) grn = code_value();
  2020. if(code_seen('B')) blu = code_value();
  2021. SendColors(red,grn,blu);
  2022. }
  2023. break;
  2024. #endif //BLINKM
  2025. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2026. {
  2027. float area = .0;
  2028. float radius = .0;
  2029. if(code_seen('D')) {
  2030. radius = (float)code_value() * .5;
  2031. if(radius == 0) {
  2032. area = 1;
  2033. } else {
  2034. area = M_PI * pow(radius, 2);
  2035. }
  2036. } else {
  2037. //reserved for setting filament diameter via UFID or filament measuring device
  2038. break;
  2039. }
  2040. tmp_extruder = active_extruder;
  2041. if(code_seen('T')) {
  2042. tmp_extruder = code_value();
  2043. if(tmp_extruder >= EXTRUDERS) {
  2044. SERIAL_ECHO_START;
  2045. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2046. break;
  2047. }
  2048. }
  2049. volumetric_multiplier[tmp_extruder] = 1 / area;
  2050. }
  2051. break;
  2052. case 201: // M201
  2053. for(int8_t i=0; i < NUM_AXIS; i++)
  2054. {
  2055. if(code_seen(axis_codes[i]))
  2056. {
  2057. max_acceleration_units_per_sq_second[i] = code_value();
  2058. }
  2059. }
  2060. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2061. reset_acceleration_rates();
  2062. break;
  2063. #if 0 // Not used for Sprinter/grbl gen6
  2064. case 202: // M202
  2065. for(int8_t i=0; i < NUM_AXIS; i++) {
  2066. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2067. }
  2068. break;
  2069. #endif
  2070. case 203: // M203 max feedrate mm/sec
  2071. for(int8_t i=0; i < NUM_AXIS; i++) {
  2072. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2073. }
  2074. break;
  2075. case 204: // M204 acclereration S normal moves T filmanent only moves
  2076. {
  2077. if(code_seen('S')) acceleration = code_value() ;
  2078. if(code_seen('T')) retract_acceleration = code_value() ;
  2079. }
  2080. break;
  2081. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2082. {
  2083. if(code_seen('S')) minimumfeedrate = code_value();
  2084. if(code_seen('T')) mintravelfeedrate = code_value();
  2085. if(code_seen('B')) minsegmenttime = code_value() ;
  2086. if(code_seen('X')) max_xy_jerk = code_value() ;
  2087. if(code_seen('Z')) max_z_jerk = code_value() ;
  2088. if(code_seen('E')) max_e_jerk = code_value() ;
  2089. }
  2090. break;
  2091. case 206: // M206 additional homeing offset
  2092. for(int8_t i=0; i < 3; i++)
  2093. {
  2094. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2095. }
  2096. break;
  2097. #ifdef DELTA
  2098. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2099. if(code_seen('L')) {
  2100. delta_diagonal_rod= code_value();
  2101. }
  2102. if(code_seen('R')) {
  2103. delta_radius= code_value();
  2104. }
  2105. if(code_seen('S')) {
  2106. delta_segments_per_second= code_value();
  2107. }
  2108. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2109. break;
  2110. case 666: // M666 set delta endstop adjustemnt
  2111. for(int8_t i=0; i < 3; i++)
  2112. {
  2113. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2114. }
  2115. break;
  2116. #endif
  2117. #ifdef FWRETRACT
  2118. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2119. {
  2120. if(code_seen('S'))
  2121. {
  2122. retract_length = code_value() ;
  2123. }
  2124. if(code_seen('F'))
  2125. {
  2126. retract_feedrate = code_value()/60 ;
  2127. }
  2128. if(code_seen('Z'))
  2129. {
  2130. retract_zlift = code_value() ;
  2131. }
  2132. }break;
  2133. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2134. {
  2135. if(code_seen('S'))
  2136. {
  2137. retract_recover_length = code_value() ;
  2138. }
  2139. if(code_seen('F'))
  2140. {
  2141. retract_recover_feedrate = code_value()/60 ;
  2142. }
  2143. }break;
  2144. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2145. {
  2146. if(code_seen('S'))
  2147. {
  2148. int t= code_value() ;
  2149. switch(t)
  2150. {
  2151. case 0: autoretract_enabled=false;retracted=false;break;
  2152. case 1: autoretract_enabled=true;retracted=false;break;
  2153. default:
  2154. SERIAL_ECHO_START;
  2155. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2156. SERIAL_ECHO(cmdbuffer[bufindr]);
  2157. SERIAL_ECHOLNPGM("\"");
  2158. }
  2159. }
  2160. }break;
  2161. #endif // FWRETRACT
  2162. #if EXTRUDERS > 1
  2163. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2164. {
  2165. if(setTargetedHotend(218)){
  2166. break;
  2167. }
  2168. if(code_seen('X'))
  2169. {
  2170. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2171. }
  2172. if(code_seen('Y'))
  2173. {
  2174. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2175. }
  2176. #ifdef DUAL_X_CARRIAGE
  2177. if(code_seen('Z'))
  2178. {
  2179. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2180. }
  2181. #endif
  2182. SERIAL_ECHO_START;
  2183. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2184. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2185. {
  2186. SERIAL_ECHO(" ");
  2187. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2188. SERIAL_ECHO(",");
  2189. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2190. #ifdef DUAL_X_CARRIAGE
  2191. SERIAL_ECHO(",");
  2192. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2193. #endif
  2194. }
  2195. SERIAL_ECHOLN("");
  2196. }break;
  2197. #endif
  2198. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2199. {
  2200. if(code_seen('S'))
  2201. {
  2202. feedmultiply = code_value() ;
  2203. }
  2204. }
  2205. break;
  2206. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2207. {
  2208. if(code_seen('S'))
  2209. {
  2210. int tmp_code = code_value();
  2211. if (code_seen('T'))
  2212. {
  2213. if(setTargetedHotend(221)){
  2214. break;
  2215. }
  2216. extruder_multiply[tmp_extruder] = tmp_code;
  2217. }
  2218. else
  2219. {
  2220. extrudemultiply = tmp_code ;
  2221. }
  2222. }
  2223. }
  2224. break;
  2225. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2226. {
  2227. if(code_seen('P')){
  2228. int pin_number = code_value(); // pin number
  2229. int pin_state = -1; // required pin state - default is inverted
  2230. if(code_seen('S')) pin_state = code_value(); // required pin state
  2231. if(pin_state >= -1 && pin_state <= 1){
  2232. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2233. {
  2234. if (sensitive_pins[i] == pin_number)
  2235. {
  2236. pin_number = -1;
  2237. break;
  2238. }
  2239. }
  2240. if (pin_number > -1)
  2241. {
  2242. st_synchronize();
  2243. pinMode(pin_number, INPUT);
  2244. int target;
  2245. switch(pin_state){
  2246. case 1:
  2247. target = HIGH;
  2248. break;
  2249. case 0:
  2250. target = LOW;
  2251. break;
  2252. case -1:
  2253. target = !digitalRead(pin_number);
  2254. break;
  2255. }
  2256. while(digitalRead(pin_number) != target){
  2257. manage_heater();
  2258. manage_inactivity();
  2259. lcd_update();
  2260. }
  2261. }
  2262. }
  2263. }
  2264. }
  2265. break;
  2266. #if NUM_SERVOS > 0
  2267. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2268. {
  2269. int servo_index = -1;
  2270. int servo_position = 0;
  2271. if (code_seen('P'))
  2272. servo_index = code_value();
  2273. if (code_seen('S')) {
  2274. servo_position = code_value();
  2275. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2276. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2277. servos[servo_index].attach(0);
  2278. #endif
  2279. servos[servo_index].write(servo_position);
  2280. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2281. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2282. servos[servo_index].detach();
  2283. #endif
  2284. }
  2285. else {
  2286. SERIAL_ECHO_START;
  2287. SERIAL_ECHO("Servo ");
  2288. SERIAL_ECHO(servo_index);
  2289. SERIAL_ECHOLN(" out of range");
  2290. }
  2291. }
  2292. else if (servo_index >= 0) {
  2293. SERIAL_PROTOCOL(MSG_OK);
  2294. SERIAL_PROTOCOL(" Servo ");
  2295. SERIAL_PROTOCOL(servo_index);
  2296. SERIAL_PROTOCOL(": ");
  2297. SERIAL_PROTOCOL(servos[servo_index].read());
  2298. SERIAL_PROTOCOLLN("");
  2299. }
  2300. }
  2301. break;
  2302. #endif // NUM_SERVOS > 0
  2303. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2304. case 300: // M300
  2305. {
  2306. int beepS = code_seen('S') ? code_value() : 110;
  2307. int beepP = code_seen('P') ? code_value() : 1000;
  2308. if (beepS > 0)
  2309. {
  2310. #if BEEPER > 0
  2311. tone(BEEPER, beepS);
  2312. delay(beepP);
  2313. noTone(BEEPER);
  2314. #elif defined(ULTRALCD)
  2315. lcd_buzz(beepS, beepP);
  2316. #elif defined(LCD_USE_I2C_BUZZER)
  2317. lcd_buzz(beepP, beepS);
  2318. #endif
  2319. }
  2320. else
  2321. {
  2322. delay(beepP);
  2323. }
  2324. }
  2325. break;
  2326. #endif // M300
  2327. #ifdef PIDTEMP
  2328. case 301: // M301
  2329. {
  2330. if(code_seen('P')) Kp = code_value();
  2331. if(code_seen('I')) Ki = scalePID_i(code_value());
  2332. if(code_seen('D')) Kd = scalePID_d(code_value());
  2333. #ifdef PID_ADD_EXTRUSION_RATE
  2334. if(code_seen('C')) Kc = code_value();
  2335. #endif
  2336. updatePID();
  2337. SERIAL_PROTOCOL(MSG_OK);
  2338. SERIAL_PROTOCOL(" p:");
  2339. SERIAL_PROTOCOL(Kp);
  2340. SERIAL_PROTOCOL(" i:");
  2341. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2342. SERIAL_PROTOCOL(" d:");
  2343. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2344. #ifdef PID_ADD_EXTRUSION_RATE
  2345. SERIAL_PROTOCOL(" c:");
  2346. //Kc does not have scaling applied above, or in resetting defaults
  2347. SERIAL_PROTOCOL(Kc);
  2348. #endif
  2349. SERIAL_PROTOCOLLN("");
  2350. }
  2351. break;
  2352. #endif //PIDTEMP
  2353. #ifdef PIDTEMPBED
  2354. case 304: // M304
  2355. {
  2356. if(code_seen('P')) bedKp = code_value();
  2357. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2358. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2359. updatePID();
  2360. SERIAL_PROTOCOL(MSG_OK);
  2361. SERIAL_PROTOCOL(" p:");
  2362. SERIAL_PROTOCOL(bedKp);
  2363. SERIAL_PROTOCOL(" i:");
  2364. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2365. SERIAL_PROTOCOL(" d:");
  2366. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2367. SERIAL_PROTOCOLLN("");
  2368. }
  2369. break;
  2370. #endif //PIDTEMP
  2371. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2372. {
  2373. #ifdef CHDK
  2374. SET_OUTPUT(CHDK);
  2375. WRITE(CHDK, HIGH);
  2376. chdkHigh = millis();
  2377. chdkActive = true;
  2378. #else
  2379. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2380. const uint8_t NUM_PULSES=16;
  2381. const float PULSE_LENGTH=0.01524;
  2382. for(int i=0; i < NUM_PULSES; i++) {
  2383. WRITE(PHOTOGRAPH_PIN, HIGH);
  2384. _delay_ms(PULSE_LENGTH);
  2385. WRITE(PHOTOGRAPH_PIN, LOW);
  2386. _delay_ms(PULSE_LENGTH);
  2387. }
  2388. delay(7.33);
  2389. for(int i=0; i < NUM_PULSES; i++) {
  2390. WRITE(PHOTOGRAPH_PIN, HIGH);
  2391. _delay_ms(PULSE_LENGTH);
  2392. WRITE(PHOTOGRAPH_PIN, LOW);
  2393. _delay_ms(PULSE_LENGTH);
  2394. }
  2395. #endif
  2396. #endif //chdk end if
  2397. }
  2398. break;
  2399. #ifdef DOGLCD
  2400. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2401. {
  2402. if (code_seen('C')) {
  2403. lcd_setcontrast( ((int)code_value())&63 );
  2404. }
  2405. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2406. SERIAL_PROTOCOL(lcd_contrast);
  2407. SERIAL_PROTOCOLLN("");
  2408. }
  2409. break;
  2410. #endif
  2411. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2412. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2413. {
  2414. float temp = .0;
  2415. if (code_seen('S')) temp=code_value();
  2416. set_extrude_min_temp(temp);
  2417. }
  2418. break;
  2419. #endif
  2420. case 303: // M303 PID autotune
  2421. {
  2422. float temp = 150.0;
  2423. int e=0;
  2424. int c=5;
  2425. if (code_seen('E')) e=code_value();
  2426. if (e<0)
  2427. temp=70;
  2428. if (code_seen('S')) temp=code_value();
  2429. if (code_seen('C')) c=code_value();
  2430. PID_autotune(temp, e, c);
  2431. }
  2432. break;
  2433. case 400: // M400 finish all moves
  2434. {
  2435. st_synchronize();
  2436. }
  2437. break;
  2438. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2439. case 401:
  2440. {
  2441. engage_z_probe(); // Engage Z Servo endstop if available
  2442. }
  2443. break;
  2444. case 402:
  2445. {
  2446. retract_z_probe(); // Retract Z Servo endstop if enabled
  2447. }
  2448. break;
  2449. #endif
  2450. case 500: // M500 Store settings in EEPROM
  2451. {
  2452. Config_StoreSettings();
  2453. }
  2454. break;
  2455. case 501: // M501 Read settings from EEPROM
  2456. {
  2457. Config_RetrieveSettings();
  2458. }
  2459. break;
  2460. case 502: // M502 Revert to default settings
  2461. {
  2462. Config_ResetDefault();
  2463. }
  2464. break;
  2465. case 503: // M503 print settings currently in memory
  2466. {
  2467. Config_PrintSettings();
  2468. }
  2469. break;
  2470. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2471. case 540:
  2472. {
  2473. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2474. }
  2475. break;
  2476. #endif
  2477. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2478. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  2479. {
  2480. float value;
  2481. if (code_seen('Z'))
  2482. {
  2483. value = code_value();
  2484. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  2485. {
  2486. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  2487. SERIAL_ECHO_START;
  2488. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  2489. SERIAL_PROTOCOLLN("");
  2490. }
  2491. else
  2492. {
  2493. SERIAL_ECHO_START;
  2494. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  2495. SERIAL_ECHOPGM(MSG_Z_MIN);
  2496. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  2497. SERIAL_ECHOPGM(MSG_Z_MAX);
  2498. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  2499. SERIAL_PROTOCOLLN("");
  2500. }
  2501. }
  2502. else
  2503. {
  2504. SERIAL_ECHO_START;
  2505. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  2506. SERIAL_ECHO(-zprobe_zoffset);
  2507. SERIAL_PROTOCOLLN("");
  2508. }
  2509. break;
  2510. }
  2511. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2512. #ifdef FILAMENTCHANGEENABLE
  2513. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2514. {
  2515. float target[4];
  2516. float lastpos[4];
  2517. target[X_AXIS]=current_position[X_AXIS];
  2518. target[Y_AXIS]=current_position[Y_AXIS];
  2519. target[Z_AXIS]=current_position[Z_AXIS];
  2520. target[E_AXIS]=current_position[E_AXIS];
  2521. lastpos[X_AXIS]=current_position[X_AXIS];
  2522. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2523. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2524. lastpos[E_AXIS]=current_position[E_AXIS];
  2525. //retract by E
  2526. if(code_seen('E'))
  2527. {
  2528. target[E_AXIS]+= code_value();
  2529. }
  2530. else
  2531. {
  2532. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2533. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2534. #endif
  2535. }
  2536. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2537. //lift Z
  2538. if(code_seen('Z'))
  2539. {
  2540. target[Z_AXIS]+= code_value();
  2541. }
  2542. else
  2543. {
  2544. #ifdef FILAMENTCHANGE_ZADD
  2545. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2546. #endif
  2547. }
  2548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2549. //move xy
  2550. if(code_seen('X'))
  2551. {
  2552. target[X_AXIS]+= code_value();
  2553. }
  2554. else
  2555. {
  2556. #ifdef FILAMENTCHANGE_XPOS
  2557. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2558. #endif
  2559. }
  2560. if(code_seen('Y'))
  2561. {
  2562. target[Y_AXIS]= code_value();
  2563. }
  2564. else
  2565. {
  2566. #ifdef FILAMENTCHANGE_YPOS
  2567. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2568. #endif
  2569. }
  2570. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2571. if(code_seen('L'))
  2572. {
  2573. target[E_AXIS]+= code_value();
  2574. }
  2575. else
  2576. {
  2577. #ifdef FILAMENTCHANGE_FINALRETRACT
  2578. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2579. #endif
  2580. }
  2581. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2582. //finish moves
  2583. st_synchronize();
  2584. //disable extruder steppers so filament can be removed
  2585. disable_e0();
  2586. disable_e1();
  2587. disable_e2();
  2588. delay(100);
  2589. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2590. uint8_t cnt=0;
  2591. while(!lcd_clicked()){
  2592. cnt++;
  2593. manage_heater();
  2594. manage_inactivity();
  2595. lcd_update();
  2596. if(cnt==0)
  2597. {
  2598. #if BEEPER > 0
  2599. SET_OUTPUT(BEEPER);
  2600. WRITE(BEEPER,HIGH);
  2601. delay(3);
  2602. WRITE(BEEPER,LOW);
  2603. delay(3);
  2604. #else
  2605. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2606. lcd_buzz(1000/6,100);
  2607. #else
  2608. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2609. #endif
  2610. #endif
  2611. }
  2612. }
  2613. //return to normal
  2614. if(code_seen('L'))
  2615. {
  2616. target[E_AXIS]+= -code_value();
  2617. }
  2618. else
  2619. {
  2620. #ifdef FILAMENTCHANGE_FINALRETRACT
  2621. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2622. #endif
  2623. }
  2624. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2625. plan_set_e_position(current_position[E_AXIS]);
  2626. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2627. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2628. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2629. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2630. }
  2631. break;
  2632. #endif //FILAMENTCHANGEENABLE
  2633. #ifdef DUAL_X_CARRIAGE
  2634. case 605: // Set dual x-carriage movement mode:
  2635. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2636. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2637. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2638. // millimeters x-offset and an optional differential hotend temperature of
  2639. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2640. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2641. //
  2642. // Note: the X axis should be homed after changing dual x-carriage mode.
  2643. {
  2644. st_synchronize();
  2645. if (code_seen('S'))
  2646. dual_x_carriage_mode = code_value();
  2647. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2648. {
  2649. if (code_seen('X'))
  2650. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2651. if (code_seen('R'))
  2652. duplicate_extruder_temp_offset = code_value();
  2653. SERIAL_ECHO_START;
  2654. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2655. SERIAL_ECHO(" ");
  2656. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2657. SERIAL_ECHO(",");
  2658. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2659. SERIAL_ECHO(" ");
  2660. SERIAL_ECHO(duplicate_extruder_x_offset);
  2661. SERIAL_ECHO(",");
  2662. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2663. }
  2664. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2665. {
  2666. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2667. }
  2668. active_extruder_parked = false;
  2669. extruder_duplication_enabled = false;
  2670. delayed_move_time = 0;
  2671. }
  2672. break;
  2673. #endif //DUAL_X_CARRIAGE
  2674. case 907: // M907 Set digital trimpot motor current using axis codes.
  2675. {
  2676. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2677. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2678. if(code_seen('B')) digipot_current(4,code_value());
  2679. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2680. #endif
  2681. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2682. if(code_seen('X')) digipot_current(0, code_value());
  2683. #endif
  2684. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2685. if(code_seen('Z')) digipot_current(1, code_value());
  2686. #endif
  2687. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2688. if(code_seen('E')) digipot_current(2, code_value());
  2689. #endif
  2690. #ifdef DIGIPOT_I2C
  2691. // this one uses actual amps in floating point
  2692. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2693. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2694. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2695. #endif
  2696. }
  2697. break;
  2698. case 908: // M908 Control digital trimpot directly.
  2699. {
  2700. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2701. uint8_t channel,current;
  2702. if(code_seen('P')) channel=code_value();
  2703. if(code_seen('S')) current=code_value();
  2704. digitalPotWrite(channel, current);
  2705. #endif
  2706. }
  2707. break;
  2708. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2709. {
  2710. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2711. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2712. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2713. if(code_seen('B')) microstep_mode(4,code_value());
  2714. microstep_readings();
  2715. #endif
  2716. }
  2717. break;
  2718. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2719. {
  2720. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2721. if(code_seen('S')) switch((int)code_value())
  2722. {
  2723. case 1:
  2724. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2725. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2726. break;
  2727. case 2:
  2728. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2729. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2730. break;
  2731. }
  2732. microstep_readings();
  2733. #endif
  2734. }
  2735. break;
  2736. case 999: // M999: Restart after being stopped
  2737. Stopped = false;
  2738. lcd_reset_alert_level();
  2739. gcode_LastN = Stopped_gcode_LastN;
  2740. FlushSerialRequestResend();
  2741. break;
  2742. }
  2743. }
  2744. else if(code_seen('T'))
  2745. {
  2746. tmp_extruder = code_value();
  2747. if(tmp_extruder >= EXTRUDERS) {
  2748. SERIAL_ECHO_START;
  2749. SERIAL_ECHO("T");
  2750. SERIAL_ECHO(tmp_extruder);
  2751. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2752. }
  2753. else {
  2754. boolean make_move = false;
  2755. if(code_seen('F')) {
  2756. make_move = true;
  2757. next_feedrate = code_value();
  2758. if(next_feedrate > 0.0) {
  2759. feedrate = next_feedrate;
  2760. }
  2761. }
  2762. #if EXTRUDERS > 1
  2763. if(tmp_extruder != active_extruder) {
  2764. // Save current position to return to after applying extruder offset
  2765. memcpy(destination, current_position, sizeof(destination));
  2766. #ifdef DUAL_X_CARRIAGE
  2767. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2768. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2769. {
  2770. // Park old head: 1) raise 2) move to park position 3) lower
  2771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2772. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2773. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2774. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2775. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2776. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2777. st_synchronize();
  2778. }
  2779. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2780. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2781. extruder_offset[Y_AXIS][active_extruder] +
  2782. extruder_offset[Y_AXIS][tmp_extruder];
  2783. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2784. extruder_offset[Z_AXIS][active_extruder] +
  2785. extruder_offset[Z_AXIS][tmp_extruder];
  2786. active_extruder = tmp_extruder;
  2787. // This function resets the max/min values - the current position may be overwritten below.
  2788. axis_is_at_home(X_AXIS);
  2789. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2790. {
  2791. current_position[X_AXIS] = inactive_extruder_x_pos;
  2792. inactive_extruder_x_pos = destination[X_AXIS];
  2793. }
  2794. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2795. {
  2796. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2797. if (active_extruder == 0 || active_extruder_parked)
  2798. current_position[X_AXIS] = inactive_extruder_x_pos;
  2799. else
  2800. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2801. inactive_extruder_x_pos = destination[X_AXIS];
  2802. extruder_duplication_enabled = false;
  2803. }
  2804. else
  2805. {
  2806. // record raised toolhead position for use by unpark
  2807. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2808. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2809. active_extruder_parked = true;
  2810. delayed_move_time = 0;
  2811. }
  2812. #else
  2813. // Offset extruder (only by XY)
  2814. int i;
  2815. for(i = 0; i < 2; i++) {
  2816. current_position[i] = current_position[i] -
  2817. extruder_offset[i][active_extruder] +
  2818. extruder_offset[i][tmp_extruder];
  2819. }
  2820. // Set the new active extruder and position
  2821. active_extruder = tmp_extruder;
  2822. #endif //else DUAL_X_CARRIAGE
  2823. #ifdef DELTA
  2824. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  2825. //sent position to plan_set_position();
  2826. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  2827. #else
  2828. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2829. #endif
  2830. // Move to the old position if 'F' was in the parameters
  2831. if(make_move && Stopped == false) {
  2832. prepare_move();
  2833. }
  2834. }
  2835. #endif
  2836. SERIAL_ECHO_START;
  2837. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2838. SERIAL_PROTOCOLLN((int)active_extruder);
  2839. }
  2840. }
  2841. else
  2842. {
  2843. SERIAL_ECHO_START;
  2844. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2845. SERIAL_ECHO(cmdbuffer[bufindr]);
  2846. SERIAL_ECHOLNPGM("\"");
  2847. }
  2848. ClearToSend();
  2849. }
  2850. void FlushSerialRequestResend()
  2851. {
  2852. //char cmdbuffer[bufindr][100]="Resend:";
  2853. MYSERIAL.flush();
  2854. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2855. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2856. ClearToSend();
  2857. }
  2858. void ClearToSend()
  2859. {
  2860. previous_millis_cmd = millis();
  2861. #ifdef SDSUPPORT
  2862. if(fromsd[bufindr])
  2863. return;
  2864. #endif //SDSUPPORT
  2865. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2866. }
  2867. void get_coordinates()
  2868. {
  2869. bool seen[4]={false,false,false,false};
  2870. for(int8_t i=0; i < NUM_AXIS; i++) {
  2871. if(code_seen(axis_codes[i]))
  2872. {
  2873. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2874. seen[i]=true;
  2875. }
  2876. else destination[i] = current_position[i]; //Are these else lines really needed?
  2877. }
  2878. if(code_seen('F')) {
  2879. next_feedrate = code_value();
  2880. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2881. }
  2882. }
  2883. void get_arc_coordinates()
  2884. {
  2885. #ifdef SF_ARC_FIX
  2886. bool relative_mode_backup = relative_mode;
  2887. relative_mode = true;
  2888. #endif
  2889. get_coordinates();
  2890. #ifdef SF_ARC_FIX
  2891. relative_mode=relative_mode_backup;
  2892. #endif
  2893. if(code_seen('I')) {
  2894. offset[0] = code_value();
  2895. }
  2896. else {
  2897. offset[0] = 0.0;
  2898. }
  2899. if(code_seen('J')) {
  2900. offset[1] = code_value();
  2901. }
  2902. else {
  2903. offset[1] = 0.0;
  2904. }
  2905. }
  2906. void clamp_to_software_endstops(float target[3])
  2907. {
  2908. if (min_software_endstops) {
  2909. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2910. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2911. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2912. }
  2913. if (max_software_endstops) {
  2914. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2915. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2916. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2917. }
  2918. }
  2919. #ifdef DELTA
  2920. void recalc_delta_settings(float radius, float diagonal_rod)
  2921. {
  2922. delta_tower1_x= -SIN_60*radius; // front left tower
  2923. delta_tower1_y= -COS_60*radius;
  2924. delta_tower2_x= SIN_60*radius; // front right tower
  2925. delta_tower2_y= -COS_60*radius;
  2926. delta_tower3_x= 0.0; // back middle tower
  2927. delta_tower3_y= radius;
  2928. delta_diagonal_rod_2= sq(diagonal_rod);
  2929. }
  2930. void calculate_delta(float cartesian[3])
  2931. {
  2932. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  2933. - sq(delta_tower1_x-cartesian[X_AXIS])
  2934. - sq(delta_tower1_y-cartesian[Y_AXIS])
  2935. ) + cartesian[Z_AXIS];
  2936. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  2937. - sq(delta_tower2_x-cartesian[X_AXIS])
  2938. - sq(delta_tower2_y-cartesian[Y_AXIS])
  2939. ) + cartesian[Z_AXIS];
  2940. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  2941. - sq(delta_tower3_x-cartesian[X_AXIS])
  2942. - sq(delta_tower3_y-cartesian[Y_AXIS])
  2943. ) + cartesian[Z_AXIS];
  2944. /*
  2945. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2946. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2947. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2948. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2949. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2950. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2951. */
  2952. }
  2953. #endif
  2954. void prepare_move()
  2955. {
  2956. clamp_to_software_endstops(destination);
  2957. previous_millis_cmd = millis();
  2958. #ifdef DELTA
  2959. float difference[NUM_AXIS];
  2960. for (int8_t i=0; i < NUM_AXIS; i++) {
  2961. difference[i] = destination[i] - current_position[i];
  2962. }
  2963. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2964. sq(difference[Y_AXIS]) +
  2965. sq(difference[Z_AXIS]));
  2966. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2967. if (cartesian_mm < 0.000001) { return; }
  2968. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2969. int steps = max(1, int(delta_segments_per_second * seconds));
  2970. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2971. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2972. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2973. for (int s = 1; s <= steps; s++) {
  2974. float fraction = float(s) / float(steps);
  2975. for(int8_t i=0; i < NUM_AXIS; i++) {
  2976. destination[i] = current_position[i] + difference[i] * fraction;
  2977. }
  2978. calculate_delta(destination);
  2979. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2980. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2981. active_extruder);
  2982. }
  2983. #else
  2984. #ifdef DUAL_X_CARRIAGE
  2985. if (active_extruder_parked)
  2986. {
  2987. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2988. {
  2989. // move duplicate extruder into correct duplication position.
  2990. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2991. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2992. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2993. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2994. st_synchronize();
  2995. extruder_duplication_enabled = true;
  2996. active_extruder_parked = false;
  2997. }
  2998. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2999. {
  3000. if (current_position[E_AXIS] == destination[E_AXIS])
  3001. {
  3002. // this is a travel move - skit it but keep track of current position (so that it can later
  3003. // be used as start of first non-travel move)
  3004. if (delayed_move_time != 0xFFFFFFFFUL)
  3005. {
  3006. memcpy(current_position, destination, sizeof(current_position));
  3007. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3008. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3009. delayed_move_time = millis();
  3010. return;
  3011. }
  3012. }
  3013. delayed_move_time = 0;
  3014. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3015. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3017. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3019. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3020. active_extruder_parked = false;
  3021. }
  3022. }
  3023. #endif //DUAL_X_CARRIAGE
  3024. // Do not use feedmultiply for E or Z only moves
  3025. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3026. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3027. }
  3028. else {
  3029. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3030. }
  3031. #endif //else DELTA
  3032. for(int8_t i=0; i < NUM_AXIS; i++) {
  3033. current_position[i] = destination[i];
  3034. }
  3035. }
  3036. void prepare_arc_move(char isclockwise) {
  3037. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3038. // Trace the arc
  3039. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3040. // As far as the parser is concerned, the position is now == target. In reality the
  3041. // motion control system might still be processing the action and the real tool position
  3042. // in any intermediate location.
  3043. for(int8_t i=0; i < NUM_AXIS; i++) {
  3044. current_position[i] = destination[i];
  3045. }
  3046. previous_millis_cmd = millis();
  3047. }
  3048. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3049. #if defined(FAN_PIN)
  3050. #if CONTROLLERFAN_PIN == FAN_PIN
  3051. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3052. #endif
  3053. #endif
  3054. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3055. unsigned long lastMotorCheck = 0;
  3056. void controllerFan()
  3057. {
  3058. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3059. {
  3060. lastMotorCheck = millis();
  3061. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3062. #if EXTRUDERS > 2
  3063. || !READ(E2_ENABLE_PIN)
  3064. #endif
  3065. #if EXTRUDER > 1
  3066. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3067. || !READ(X2_ENABLE_PIN)
  3068. #endif
  3069. || !READ(E1_ENABLE_PIN)
  3070. #endif
  3071. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3072. {
  3073. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3074. }
  3075. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3076. {
  3077. digitalWrite(CONTROLLERFAN_PIN, 0);
  3078. analogWrite(CONTROLLERFAN_PIN, 0);
  3079. }
  3080. else
  3081. {
  3082. // allows digital or PWM fan output to be used (see M42 handling)
  3083. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3084. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3085. }
  3086. }
  3087. }
  3088. #endif
  3089. #ifdef TEMP_STAT_LEDS
  3090. static bool blue_led = false;
  3091. static bool red_led = false;
  3092. static uint32_t stat_update = 0;
  3093. void handle_status_leds(void) {
  3094. float max_temp = 0.0;
  3095. if(millis() > stat_update) {
  3096. stat_update += 500; // Update every 0.5s
  3097. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3098. max_temp = max(max_temp, degHotend(cur_extruder));
  3099. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3100. }
  3101. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3102. max_temp = max(max_temp, degTargetBed());
  3103. max_temp = max(max_temp, degBed());
  3104. #endif
  3105. if((max_temp > 55.0) && (red_led == false)) {
  3106. digitalWrite(STAT_LED_RED, 1);
  3107. digitalWrite(STAT_LED_BLUE, 0);
  3108. red_led = true;
  3109. blue_led = false;
  3110. }
  3111. if((max_temp < 54.0) && (blue_led == false)) {
  3112. digitalWrite(STAT_LED_RED, 0);
  3113. digitalWrite(STAT_LED_BLUE, 1);
  3114. red_led = false;
  3115. blue_led = true;
  3116. }
  3117. }
  3118. }
  3119. #endif
  3120. void manage_inactivity()
  3121. {
  3122. if(buflen < (BUFSIZE-1))
  3123. get_command();
  3124. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3125. if(max_inactive_time)
  3126. kill();
  3127. if(stepper_inactive_time) {
  3128. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3129. {
  3130. if(blocks_queued() == false) {
  3131. disable_x();
  3132. disable_y();
  3133. disable_z();
  3134. disable_e0();
  3135. disable_e1();
  3136. disable_e2();
  3137. }
  3138. }
  3139. }
  3140. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3141. if (chdkActive)
  3142. {
  3143. chdkActive = false;
  3144. if (millis()-chdkHigh < CHDK_DELAY) return;
  3145. WRITE(CHDK, LOW);
  3146. }
  3147. #endif
  3148. #if defined(KILL_PIN) && KILL_PIN > -1
  3149. if( 0 == READ(KILL_PIN) )
  3150. kill();
  3151. #endif
  3152. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3153. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3154. #endif
  3155. #ifdef EXTRUDER_RUNOUT_PREVENT
  3156. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3157. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3158. {
  3159. bool oldstatus=READ(E0_ENABLE_PIN);
  3160. enable_e0();
  3161. float oldepos=current_position[E_AXIS];
  3162. float oldedes=destination[E_AXIS];
  3163. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3164. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3165. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3166. current_position[E_AXIS]=oldepos;
  3167. destination[E_AXIS]=oldedes;
  3168. plan_set_e_position(oldepos);
  3169. previous_millis_cmd=millis();
  3170. st_synchronize();
  3171. WRITE(E0_ENABLE_PIN,oldstatus);
  3172. }
  3173. #endif
  3174. #if defined(DUAL_X_CARRIAGE)
  3175. // handle delayed move timeout
  3176. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3177. {
  3178. // travel moves have been received so enact them
  3179. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3180. memcpy(destination,current_position,sizeof(destination));
  3181. prepare_move();
  3182. }
  3183. #endif
  3184. #ifdef TEMP_STAT_LEDS
  3185. handle_status_leds();
  3186. #endif
  3187. check_axes_activity();
  3188. }
  3189. void kill()
  3190. {
  3191. cli(); // Stop interrupts
  3192. disable_heater();
  3193. disable_x();
  3194. disable_y();
  3195. disable_z();
  3196. disable_e0();
  3197. disable_e1();
  3198. disable_e2();
  3199. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3200. pinMode(PS_ON_PIN,INPUT);
  3201. #endif
  3202. SERIAL_ERROR_START;
  3203. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3204. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3205. suicide();
  3206. while(1) { /* Intentionally left empty */ } // Wait for reset
  3207. }
  3208. void Stop()
  3209. {
  3210. disable_heater();
  3211. if(Stopped == false) {
  3212. Stopped = true;
  3213. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3214. SERIAL_ERROR_START;
  3215. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3216. LCD_MESSAGEPGM(MSG_STOPPED);
  3217. }
  3218. }
  3219. bool IsStopped() { return Stopped; };
  3220. #ifdef FAST_PWM_FAN
  3221. void setPwmFrequency(uint8_t pin, int val)
  3222. {
  3223. val &= 0x07;
  3224. switch(digitalPinToTimer(pin))
  3225. {
  3226. #if defined(TCCR0A)
  3227. case TIMER0A:
  3228. case TIMER0B:
  3229. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3230. // TCCR0B |= val;
  3231. break;
  3232. #endif
  3233. #if defined(TCCR1A)
  3234. case TIMER1A:
  3235. case TIMER1B:
  3236. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3237. // TCCR1B |= val;
  3238. break;
  3239. #endif
  3240. #if defined(TCCR2)
  3241. case TIMER2:
  3242. case TIMER2:
  3243. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3244. TCCR2 |= val;
  3245. break;
  3246. #endif
  3247. #if defined(TCCR2A)
  3248. case TIMER2A:
  3249. case TIMER2B:
  3250. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3251. TCCR2B |= val;
  3252. break;
  3253. #endif
  3254. #if defined(TCCR3A)
  3255. case TIMER3A:
  3256. case TIMER3B:
  3257. case TIMER3C:
  3258. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3259. TCCR3B |= val;
  3260. break;
  3261. #endif
  3262. #if defined(TCCR4A)
  3263. case TIMER4A:
  3264. case TIMER4B:
  3265. case TIMER4C:
  3266. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3267. TCCR4B |= val;
  3268. break;
  3269. #endif
  3270. #if defined(TCCR5A)
  3271. case TIMER5A:
  3272. case TIMER5B:
  3273. case TIMER5C:
  3274. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3275. TCCR5B |= val;
  3276. break;
  3277. #endif
  3278. }
  3279. }
  3280. #endif //FAST_PWM_FAN
  3281. bool setTargetedHotend(int code){
  3282. tmp_extruder = active_extruder;
  3283. if(code_seen('T')) {
  3284. tmp_extruder = code_value();
  3285. if(tmp_extruder >= EXTRUDERS) {
  3286. SERIAL_ECHO_START;
  3287. switch(code){
  3288. case 104:
  3289. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3290. break;
  3291. case 105:
  3292. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3293. break;
  3294. case 109:
  3295. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3296. break;
  3297. case 218:
  3298. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3299. break;
  3300. case 221:
  3301. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3302. break;
  3303. }
  3304. SERIAL_ECHOLN(tmp_extruder);
  3305. return true;
  3306. }
  3307. }
  3308. return false;
  3309. }