My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

stepper.cpp 40KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t *current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #ifdef Z_DUAL_ENDSTOPS
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #ifdef ADVANCE
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static char step_loops;
  62. static unsigned short OCR1A_nominal;
  63. static unsigned short step_loops_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
  67. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  68. bool abort_on_endstop_hit = false;
  69. #endif
  70. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  71. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  72. #endif
  73. #if HAS_X_MIN
  74. static bool old_x_min_endstop = false;
  75. #endif
  76. #if HAS_X_MAX
  77. static bool old_x_max_endstop = false;
  78. #endif
  79. #if HAS_Y_MIN
  80. static bool old_y_min_endstop = false;
  81. #endif
  82. #if HAS_Y_MAX
  83. static bool old_y_max_endstop = false;
  84. #endif
  85. static bool old_z_min_endstop = false;
  86. static bool old_z_max_endstop = false;
  87. #ifdef Z_DUAL_ENDSTOPS
  88. static bool old_z2_min_endstop = false;
  89. static bool old_z2_max_endstop = false;
  90. #endif
  91. #ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this.
  92. static bool old_z_probe_endstop = false;
  93. #endif
  94. static bool check_endstops = true;
  95. volatile long count_position[NUM_AXIS] = { 0 };
  96. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. //===========================================================================
  98. //================================ functions ================================
  99. //===========================================================================
  100. #ifdef DUAL_X_CARRIAGE
  101. #define X_APPLY_DIR(v,ALWAYS) \
  102. if (extruder_duplication_enabled || ALWAYS) { \
  103. X_DIR_WRITE(v); \
  104. X2_DIR_WRITE(v); \
  105. } \
  106. else { \
  107. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  108. }
  109. #define X_APPLY_STEP(v,ALWAYS) \
  110. if (extruder_duplication_enabled || ALWAYS) { \
  111. X_STEP_WRITE(v); \
  112. X2_STEP_WRITE(v); \
  113. } \
  114. else { \
  115. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  116. }
  117. #else
  118. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  119. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  120. #endif
  121. #ifdef Y_DUAL_STEPPER_DRIVERS
  122. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  123. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  124. #else
  125. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  126. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  127. #endif
  128. #ifdef Z_DUAL_STEPPER_DRIVERS
  129. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  130. #ifdef Z_DUAL_ENDSTOPS
  131. #define Z_APPLY_STEP(v,Q) \
  132. if (performing_homing) { \
  133. if (Z_HOME_DIR > 0) {\
  134. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  135. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  136. } else {\
  137. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  138. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  139. } \
  140. } else { \
  141. Z_STEP_WRITE(v); \
  142. Z2_STEP_WRITE(v); \
  143. }
  144. #else
  145. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  146. #endif
  147. #else
  148. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  149. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  150. #endif
  151. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  152. // intRes = intIn1 * intIn2 >> 16
  153. // uses:
  154. // r26 to store 0
  155. // r27 to store the byte 1 of the 24 bit result
  156. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  157. asm volatile ( \
  158. "clr r26 \n\t" \
  159. "mul %A1, %B2 \n\t" \
  160. "movw %A0, r0 \n\t" \
  161. "mul %A1, %A2 \n\t" \
  162. "add %A0, r1 \n\t" \
  163. "adc %B0, r26 \n\t" \
  164. "lsr r0 \n\t" \
  165. "adc %A0, r26 \n\t" \
  166. "adc %B0, r26 \n\t" \
  167. "clr r1 \n\t" \
  168. : \
  169. "=&r" (intRes) \
  170. : \
  171. "d" (charIn1), \
  172. "d" (intIn2) \
  173. : \
  174. "r26" \
  175. )
  176. // intRes = longIn1 * longIn2 >> 24
  177. // uses:
  178. // r26 to store 0
  179. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  180. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  181. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  182. // B0 A0 are bits 24-39 and are the returned value
  183. // C1 B1 A1 is longIn1
  184. // D2 C2 B2 A2 is longIn2
  185. //
  186. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  187. asm volatile ( \
  188. "clr r26 \n\t" \
  189. "mul %A1, %B2 \n\t" \
  190. "mov r27, r1 \n\t" \
  191. "mul %B1, %C2 \n\t" \
  192. "movw %A0, r0 \n\t" \
  193. "mul %C1, %C2 \n\t" \
  194. "add %B0, r0 \n\t" \
  195. "mul %C1, %B2 \n\t" \
  196. "add %A0, r0 \n\t" \
  197. "adc %B0, r1 \n\t" \
  198. "mul %A1, %C2 \n\t" \
  199. "add r27, r0 \n\t" \
  200. "adc %A0, r1 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %B1, %B2 \n\t" \
  203. "add r27, r0 \n\t" \
  204. "adc %A0, r1 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %C1, %A2 \n\t" \
  207. "add r27, r0 \n\t" \
  208. "adc %A0, r1 \n\t" \
  209. "adc %B0, r26 \n\t" \
  210. "mul %B1, %A2 \n\t" \
  211. "add r27, r1 \n\t" \
  212. "adc %A0, r26 \n\t" \
  213. "adc %B0, r26 \n\t" \
  214. "lsr r27 \n\t" \
  215. "adc %A0, r26 \n\t" \
  216. "adc %B0, r26 \n\t" \
  217. "mul %D2, %A1 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %D2, %B1 \n\t" \
  221. "add %B0, r0 \n\t" \
  222. "clr r1 \n\t" \
  223. : \
  224. "=&r" (intRes) \
  225. : \
  226. "d" (longIn1), \
  227. "d" (longIn2) \
  228. : \
  229. "r26" , "r27" \
  230. )
  231. // Some useful constants
  232. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  233. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  234. void endstops_hit_on_purpose() {
  235. endstop_hit_bits = 0;
  236. }
  237. void checkHitEndstops() {
  238. if (endstop_hit_bits) { // #ifdef || endstop_z_probe_hit to save space if needed.
  239. SERIAL_ECHO_START;
  240. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  241. if (endstop_hit_bits & BIT(X_MIN)) {
  242. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  243. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  244. }
  245. if (endstop_hit_bits & BIT(Y_MIN)) {
  246. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  247. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  248. }
  249. if (endstop_hit_bits & BIT(Z_MIN)) {
  250. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  251. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  252. }
  253. #ifdef Z_PROBE_ENDSTOP
  254. if (endstop_hit_bits & BIT(Z_PROBE)) {
  255. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  256. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  257. }
  258. #endif
  259. SERIAL_EOL;
  260. endstops_hit_on_purpose();
  261. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  262. if (abort_on_endstop_hit) {
  263. card.sdprinting = false;
  264. card.closefile();
  265. quickStop();
  266. setTargetHotend0(0);
  267. setTargetHotend1(0);
  268. setTargetHotend2(0);
  269. setTargetHotend3(0);
  270. setTargetBed(0);
  271. }
  272. #endif
  273. }
  274. }
  275. void enable_endstops(bool check) { check_endstops = check; }
  276. // __________________________
  277. // /| |\ _________________ ^
  278. // / | | \ /| |\ |
  279. // / | | \ / | | \ s
  280. // / | | | | | \ p
  281. // / | | | | | \ e
  282. // +-----+------------------------+---+--+---------------+----+ e
  283. // | BLOCK 1 | BLOCK 2 | d
  284. //
  285. // time ----->
  286. //
  287. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  288. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  289. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  290. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  291. void st_wake_up() {
  292. // TCNT1 = 0;
  293. ENABLE_STEPPER_DRIVER_INTERRUPT();
  294. }
  295. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  296. unsigned short timer;
  297. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  298. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  299. step_rate = (step_rate >> 2) & 0x3fff;
  300. step_loops = 4;
  301. }
  302. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  303. step_rate = (step_rate >> 1) & 0x7fff;
  304. step_loops = 2;
  305. }
  306. else {
  307. step_loops = 1;
  308. }
  309. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  310. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  311. if (step_rate >= (8 * 256)) { // higher step rate
  312. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  313. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  314. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  315. MultiU16X8toH16(timer, tmp_step_rate, gain);
  316. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  317. }
  318. else { // lower step rates
  319. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  320. table_address += ((step_rate)>>1) & 0xfffc;
  321. timer = (unsigned short)pgm_read_word_near(table_address);
  322. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  323. }
  324. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  325. return timer;
  326. }
  327. // Initializes the trapezoid generator from the current block. Called whenever a new
  328. // block begins.
  329. FORCE_INLINE void trapezoid_generator_reset() {
  330. #ifdef ADVANCE
  331. advance = current_block->initial_advance;
  332. final_advance = current_block->final_advance;
  333. // Do E steps + advance steps
  334. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  335. old_advance = advance >>8;
  336. #endif
  337. deceleration_time = 0;
  338. // step_rate to timer interval
  339. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  340. // make a note of the number of step loops required at nominal speed
  341. step_loops_nominal = step_loops;
  342. acc_step_rate = current_block->initial_rate;
  343. acceleration_time = calc_timer(acc_step_rate);
  344. OCR1A = acceleration_time;
  345. // SERIAL_ECHO_START;
  346. // SERIAL_ECHOPGM("advance :");
  347. // SERIAL_ECHO(current_block->advance/256.0);
  348. // SERIAL_ECHOPGM("advance rate :");
  349. // SERIAL_ECHO(current_block->advance_rate/256.0);
  350. // SERIAL_ECHOPGM("initial advance :");
  351. // SERIAL_ECHO(current_block->initial_advance/256.0);
  352. // SERIAL_ECHOPGM("final advance :");
  353. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  354. }
  355. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  356. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  357. ISR(TIMER1_COMPA_vect) {
  358. if(cleaning_buffer_counter)
  359. {
  360. current_block = NULL;
  361. plan_discard_current_block();
  362. #ifdef SD_FINISHED_RELEASECOMMAND
  363. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  364. #endif
  365. cleaning_buffer_counter--;
  366. OCR1A = 200;
  367. return;
  368. }
  369. // If there is no current block, attempt to pop one from the buffer
  370. if (!current_block) {
  371. // Anything in the buffer?
  372. current_block = plan_get_current_block();
  373. if (current_block) {
  374. current_block->busy = true;
  375. trapezoid_generator_reset();
  376. counter_x = -(current_block->step_event_count >> 1);
  377. counter_y = counter_z = counter_e = counter_x;
  378. step_events_completed = 0;
  379. #ifdef Z_LATE_ENABLE
  380. if (current_block->steps[Z_AXIS] > 0) {
  381. enable_z();
  382. OCR1A = 2000; //1ms wait
  383. return;
  384. }
  385. #endif
  386. // #ifdef ADVANCE
  387. // e_steps[current_block->active_extruder] = 0;
  388. // #endif
  389. }
  390. else {
  391. OCR1A = 2000; // 1kHz.
  392. }
  393. }
  394. if (current_block != NULL) {
  395. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  396. out_bits = current_block->direction_bits;
  397. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  398. if (TEST(out_bits, X_AXIS)) {
  399. X_APPLY_DIR(INVERT_X_DIR,0);
  400. count_direction[X_AXIS] = -1;
  401. }
  402. else {
  403. X_APPLY_DIR(!INVERT_X_DIR,0);
  404. count_direction[X_AXIS] = 1;
  405. }
  406. if (TEST(out_bits, Y_AXIS)) {
  407. Y_APPLY_DIR(INVERT_Y_DIR,0);
  408. count_direction[Y_AXIS] = -1;
  409. }
  410. else {
  411. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  412. count_direction[Y_AXIS] = 1;
  413. }
  414. #define _ENDSTOP(axis, minmax) axis ##_## minmax ##_endstop
  415. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  416. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  417. #define _OLD_ENDSTOP(axis, minmax) old_## axis ##_## minmax ##_endstop
  418. #define _AXIS(AXIS) AXIS ##_AXIS
  419. #define _HIT_BIT(AXIS) AXIS ##_MIN
  420. #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_HIT_BIT(AXIS))
  421. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  422. bool _ENDSTOP(axis, minmax) = (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)); \
  423. if (_ENDSTOP(axis, minmax) && _OLD_ENDSTOP(axis, minmax) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
  424. endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
  425. _ENDSTOP_HIT(AXIS); \
  426. step_events_completed = current_block->step_event_count; \
  427. } \
  428. _OLD_ENDSTOP(axis, minmax) = _ENDSTOP(axis, minmax);
  429. // Check X and Y endstops
  430. if (check_endstops) {
  431. #ifdef COREXY
  432. // Head direction in -X axis for CoreXY bots.
  433. // If DeltaX == -DeltaY, the movement is only in Y axis
  434. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  435. if (TEST(out_bits, X_HEAD))
  436. #else
  437. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  438. #endif
  439. { // -direction
  440. #ifdef DUAL_X_CARRIAGE
  441. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  442. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  443. #endif
  444. {
  445. #if HAS_X_MIN
  446. UPDATE_ENDSTOP(x, X, min, MIN);
  447. #endif
  448. }
  449. }
  450. else { // +direction
  451. #ifdef DUAL_X_CARRIAGE
  452. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  453. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  454. #endif
  455. {
  456. #if HAS_X_MAX
  457. UPDATE_ENDSTOP(x, X, max, MAX);
  458. #endif
  459. }
  460. }
  461. #ifdef COREXY
  462. }
  463. // Head direction in -Y axis for CoreXY bots.
  464. // If DeltaX == DeltaY, the movement is only in X axis
  465. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  466. if (TEST(out_bits, Y_HEAD))
  467. #else
  468. if (TEST(out_bits, Y_AXIS)) // -direction
  469. #endif
  470. { // -direction
  471. #if HAS_Y_MIN
  472. UPDATE_ENDSTOP(y, Y, min, MIN);
  473. #endif
  474. }
  475. else { // +direction
  476. #if HAS_Y_MAX
  477. UPDATE_ENDSTOP(y, Y, max, MAX);
  478. #endif
  479. }
  480. #ifdef COREXY
  481. }
  482. #endif
  483. }
  484. if (TEST(out_bits, Z_AXIS)) { // -direction
  485. Z_APPLY_DIR(INVERT_Z_DIR,0);
  486. count_direction[Z_AXIS] = -1;
  487. if (check_endstops) {
  488. #if HAS_Z_MIN
  489. #ifdef Z_DUAL_ENDSTOPS
  490. bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
  491. z2_min_endstop =
  492. #if HAS_Z2_MIN
  493. READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
  494. #else
  495. z_min_endstop
  496. #endif
  497. ;
  498. bool z_min_both = z_min_endstop && old_z_min_endstop,
  499. z2_min_both = z2_min_endstop && old_z2_min_endstop;
  500. if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
  501. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  502. endstop_hit_bits |= BIT(Z_MIN);
  503. if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
  504. step_events_completed = current_block->step_event_count;
  505. }
  506. old_z_min_endstop = z_min_endstop;
  507. old_z2_min_endstop = z2_min_endstop;
  508. #else // !Z_DUAL_ENDSTOPS
  509. UPDATE_ENDSTOP(z, Z, min, MIN);
  510. #endif // !Z_DUAL_ENDSTOPS
  511. #endif // Z_MIN_PIN
  512. #ifdef Z_PROBE_ENDSTOP
  513. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  514. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  515. if(z_probe_endstop && old_z_probe_endstop)
  516. {
  517. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  518. endstop_hit_bits |= BIT(Z_PROBE);
  519. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  520. }
  521. old_z_probe_endstop = z_probe_endstop;
  522. #endif
  523. } // check_endstops
  524. }
  525. else { // +direction
  526. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  527. count_direction[Z_AXIS] = 1;
  528. if (check_endstops) {
  529. #if HAS_Z_MAX
  530. #ifdef Z_DUAL_ENDSTOPS
  531. bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
  532. z2_max_endstop =
  533. #if HAS_Z2_MAX
  534. READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
  535. #else
  536. z_max_endstop
  537. #endif
  538. ;
  539. bool z_max_both = z_max_endstop && old_z_max_endstop,
  540. z2_max_both = z2_max_endstop && old_z2_max_endstop;
  541. if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
  542. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  543. endstop_hit_bits |= BIT(Z_MIN);
  544. // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
  545. // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
  546. if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
  547. step_events_completed = current_block->step_event_count;
  548. }
  549. old_z_max_endstop = z_max_endstop;
  550. old_z2_max_endstop = z2_max_endstop;
  551. #else // !Z_DUAL_ENDSTOPS
  552. UPDATE_ENDSTOP(z, Z, max, MAX);
  553. #endif // !Z_DUAL_ENDSTOPS
  554. #endif // Z_MAX_PIN
  555. #ifdef Z_PROBE_ENDSTOP
  556. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  557. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  558. if(z_probe_endstop && old_z_probe_endstop)
  559. {
  560. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  561. endstop_hit_bits |= BIT(Z_PROBE);
  562. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  563. }
  564. old_z_probe_endstop = z_probe_endstop;
  565. #endif
  566. } // check_endstops
  567. } // +direction
  568. #ifndef ADVANCE
  569. if (TEST(out_bits, E_AXIS)) { // -direction
  570. REV_E_DIR();
  571. count_direction[E_AXIS] = -1;
  572. }
  573. else { // +direction
  574. NORM_E_DIR();
  575. count_direction[E_AXIS] = 1;
  576. }
  577. #endif //!ADVANCE
  578. // Take multiple steps per interrupt (For high speed moves)
  579. for (int8_t i = 0; i < step_loops; i++) {
  580. #ifndef AT90USB
  581. MSerial.checkRx(); // Check for serial chars.
  582. #endif
  583. #ifdef ADVANCE
  584. counter_e += current_block->steps[E_AXIS];
  585. if (counter_e > 0) {
  586. counter_e -= current_block->step_event_count;
  587. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  588. }
  589. #endif //ADVANCE
  590. #define _COUNTER(axis) counter_## axis
  591. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  592. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  593. #define STEP_ADD(axis, AXIS) \
  594. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  595. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  596. STEP_ADD(x,X);
  597. STEP_ADD(y,Y);
  598. STEP_ADD(z,Z);
  599. #ifndef ADVANCE
  600. STEP_ADD(e,E);
  601. #endif
  602. #define STEP_IF_COUNTER(axis, AXIS) \
  603. if (_COUNTER(axis) > 0) { \
  604. _COUNTER(axis) -= current_block->step_event_count; \
  605. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  606. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  607. }
  608. STEP_IF_COUNTER(x, X);
  609. STEP_IF_COUNTER(y, Y);
  610. STEP_IF_COUNTER(z, Z);
  611. #ifndef ADVANCE
  612. STEP_IF_COUNTER(e, E);
  613. #endif
  614. step_events_completed++;
  615. if (step_events_completed >= current_block->step_event_count) break;
  616. }
  617. // Calculate new timer value
  618. unsigned short timer;
  619. unsigned short step_rate;
  620. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  621. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  622. acc_step_rate += current_block->initial_rate;
  623. // upper limit
  624. if (acc_step_rate > current_block->nominal_rate)
  625. acc_step_rate = current_block->nominal_rate;
  626. // step_rate to timer interval
  627. timer = calc_timer(acc_step_rate);
  628. OCR1A = timer;
  629. acceleration_time += timer;
  630. #ifdef ADVANCE
  631. for(int8_t i=0; i < step_loops; i++) {
  632. advance += advance_rate;
  633. }
  634. //if (advance > current_block->advance) advance = current_block->advance;
  635. // Do E steps + advance steps
  636. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  637. old_advance = advance >>8;
  638. #endif
  639. }
  640. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  641. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  642. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  643. step_rate = current_block->final_rate;
  644. }
  645. else {
  646. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  647. }
  648. // lower limit
  649. if (step_rate < current_block->final_rate)
  650. step_rate = current_block->final_rate;
  651. // step_rate to timer interval
  652. timer = calc_timer(step_rate);
  653. OCR1A = timer;
  654. deceleration_time += timer;
  655. #ifdef ADVANCE
  656. for(int8_t i=0; i < step_loops; i++) {
  657. advance -= advance_rate;
  658. }
  659. if (advance < final_advance) advance = final_advance;
  660. // Do E steps + advance steps
  661. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  662. old_advance = advance >>8;
  663. #endif //ADVANCE
  664. }
  665. else {
  666. OCR1A = OCR1A_nominal;
  667. // ensure we're running at the correct step rate, even if we just came off an acceleration
  668. step_loops = step_loops_nominal;
  669. }
  670. // If current block is finished, reset pointer
  671. if (step_events_completed >= current_block->step_event_count) {
  672. current_block = NULL;
  673. plan_discard_current_block();
  674. }
  675. }
  676. }
  677. #ifdef ADVANCE
  678. unsigned char old_OCR0A;
  679. // Timer interrupt for E. e_steps is set in the main routine;
  680. // Timer 0 is shared with millies
  681. ISR(TIMER0_COMPA_vect)
  682. {
  683. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  684. OCR0A = old_OCR0A;
  685. // Set E direction (Depends on E direction + advance)
  686. for(unsigned char i=0; i<4;i++) {
  687. if (e_steps[0] != 0) {
  688. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  689. if (e_steps[0] < 0) {
  690. E0_DIR_WRITE(INVERT_E0_DIR);
  691. e_steps[0]++;
  692. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  693. }
  694. else if (e_steps[0] > 0) {
  695. E0_DIR_WRITE(!INVERT_E0_DIR);
  696. e_steps[0]--;
  697. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  698. }
  699. }
  700. #if EXTRUDERS > 1
  701. if (e_steps[1] != 0) {
  702. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  703. if (e_steps[1] < 0) {
  704. E1_DIR_WRITE(INVERT_E1_DIR);
  705. e_steps[1]++;
  706. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  707. }
  708. else if (e_steps[1] > 0) {
  709. E1_DIR_WRITE(!INVERT_E1_DIR);
  710. e_steps[1]--;
  711. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  712. }
  713. }
  714. #endif
  715. #if EXTRUDERS > 2
  716. if (e_steps[2] != 0) {
  717. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  718. if (e_steps[2] < 0) {
  719. E2_DIR_WRITE(INVERT_E2_DIR);
  720. e_steps[2]++;
  721. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  722. }
  723. else if (e_steps[2] > 0) {
  724. E2_DIR_WRITE(!INVERT_E2_DIR);
  725. e_steps[2]--;
  726. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  727. }
  728. }
  729. #endif
  730. #if EXTRUDERS > 3
  731. if (e_steps[3] != 0) {
  732. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  733. if (e_steps[3] < 0) {
  734. E3_DIR_WRITE(INVERT_E3_DIR);
  735. e_steps[3]++;
  736. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  737. }
  738. else if (e_steps[3] > 0) {
  739. E3_DIR_WRITE(!INVERT_E3_DIR);
  740. e_steps[3]--;
  741. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  742. }
  743. }
  744. #endif
  745. }
  746. }
  747. #endif // ADVANCE
  748. void st_init() {
  749. digipot_init(); //Initialize Digipot Motor Current
  750. microstep_init(); //Initialize Microstepping Pins
  751. // initialise TMC Steppers
  752. #ifdef HAVE_TMCDRIVER
  753. tmc_init();
  754. #endif
  755. // initialise L6470 Steppers
  756. #ifdef HAVE_L6470DRIVER
  757. L6470_init();
  758. #endif
  759. // Initialize Dir Pins
  760. #if HAS_X_DIR
  761. X_DIR_INIT;
  762. #endif
  763. #if HAS_X2_DIR
  764. X2_DIR_INIT;
  765. #endif
  766. #if HAS_Y_DIR
  767. Y_DIR_INIT;
  768. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  769. Y2_DIR_INIT;
  770. #endif
  771. #endif
  772. #if HAS_Z_DIR
  773. Z_DIR_INIT;
  774. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  775. Z2_DIR_INIT;
  776. #endif
  777. #endif
  778. #if HAS_E0_DIR
  779. E0_DIR_INIT;
  780. #endif
  781. #if HAS_E1_DIR
  782. E1_DIR_INIT;
  783. #endif
  784. #if HAS_E2_DIR
  785. E2_DIR_INIT;
  786. #endif
  787. #if HAS_E3_DIR
  788. E3_DIR_INIT;
  789. #endif
  790. //Initialize Enable Pins - steppers default to disabled.
  791. #if HAS_X_ENABLE
  792. X_ENABLE_INIT;
  793. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  794. #endif
  795. #if HAS_X2_ENABLE
  796. X2_ENABLE_INIT;
  797. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  798. #endif
  799. #if HAS_Y_ENABLE
  800. Y_ENABLE_INIT;
  801. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  802. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  803. Y2_ENABLE_INIT;
  804. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  805. #endif
  806. #endif
  807. #if HAS_Z_ENABLE
  808. Z_ENABLE_INIT;
  809. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  810. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  811. Z2_ENABLE_INIT;
  812. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  813. #endif
  814. #endif
  815. #if HAS_E0_ENABLE
  816. E0_ENABLE_INIT;
  817. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  818. #endif
  819. #if HAS_E1_ENABLE
  820. E1_ENABLE_INIT;
  821. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  822. #endif
  823. #if HAS_E2_ENABLE
  824. E2_ENABLE_INIT;
  825. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  826. #endif
  827. #if HAS_E3_ENABLE
  828. E3_ENABLE_INIT;
  829. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  830. #endif
  831. //endstops and pullups
  832. #if HAS_X_MIN
  833. SET_INPUT(X_MIN_PIN);
  834. #ifdef ENDSTOPPULLUP_XMIN
  835. WRITE(X_MIN_PIN,HIGH);
  836. #endif
  837. #endif
  838. #if HAS_Y_MIN
  839. SET_INPUT(Y_MIN_PIN);
  840. #ifdef ENDSTOPPULLUP_YMIN
  841. WRITE(Y_MIN_PIN,HIGH);
  842. #endif
  843. #endif
  844. #if HAS_Z_MIN
  845. SET_INPUT(Z_MIN_PIN);
  846. #ifdef ENDSTOPPULLUP_ZMIN
  847. WRITE(Z_MIN_PIN,HIGH);
  848. #endif
  849. #endif
  850. #if HAS_X_MAX
  851. SET_INPUT(X_MAX_PIN);
  852. #ifdef ENDSTOPPULLUP_XMAX
  853. WRITE(X_MAX_PIN,HIGH);
  854. #endif
  855. #endif
  856. #if HAS_Y_MAX
  857. SET_INPUT(Y_MAX_PIN);
  858. #ifdef ENDSTOPPULLUP_YMAX
  859. WRITE(Y_MAX_PIN,HIGH);
  860. #endif
  861. #endif
  862. #if HAS_Z_MAX
  863. SET_INPUT(Z_MAX_PIN);
  864. #ifdef ENDSTOPPULLUP_ZMAX
  865. WRITE(Z_MAX_PIN,HIGH);
  866. #endif
  867. #endif
  868. #if HAS_Z2_MAX
  869. SET_INPUT(Z2_MAX_PIN);
  870. #ifdef ENDSTOPPULLUP_ZMAX
  871. WRITE(Z2_MAX_PIN,HIGH);
  872. #endif
  873. #endif
  874. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  875. SET_INPUT(Z_PROBE_PIN);
  876. #ifdef ENDSTOPPULLUP_ZPROBE
  877. WRITE(Z_PROBE_PIN,HIGH);
  878. #endif
  879. #endif
  880. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  881. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  882. #define _DISABLE(axis) disable_## axis()
  883. #define AXIS_INIT(axis, AXIS, PIN) \
  884. _STEP_INIT(AXIS); \
  885. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  886. _DISABLE(axis)
  887. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  888. // Initialize Step Pins
  889. #if HAS_X_STEP
  890. AXIS_INIT(x, X, X);
  891. #endif
  892. #if HAS_X2_STEP
  893. AXIS_INIT(x, X2, X);
  894. #endif
  895. #if HAS_Y_STEP
  896. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  897. Y2_STEP_INIT;
  898. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  899. #endif
  900. AXIS_INIT(y, Y, Y);
  901. #endif
  902. #if HAS_Z_STEP
  903. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  904. Z2_STEP_INIT;
  905. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  906. #endif
  907. AXIS_INIT(z, Z, Z);
  908. #endif
  909. #if HAS_E0_STEP
  910. E_AXIS_INIT(0);
  911. #endif
  912. #if HAS_E1_STEP
  913. E_AXIS_INIT(1);
  914. #endif
  915. #if HAS_E2_STEP
  916. E_AXIS_INIT(2);
  917. #endif
  918. #if HAS_E3_STEP
  919. E_AXIS_INIT(3);
  920. #endif
  921. // waveform generation = 0100 = CTC
  922. TCCR1B &= ~BIT(WGM13);
  923. TCCR1B |= BIT(WGM12);
  924. TCCR1A &= ~BIT(WGM11);
  925. TCCR1A &= ~BIT(WGM10);
  926. // output mode = 00 (disconnected)
  927. TCCR1A &= ~(3<<COM1A0);
  928. TCCR1A &= ~(3<<COM1B0);
  929. // Set the timer pre-scaler
  930. // Generally we use a divider of 8, resulting in a 2MHz timer
  931. // frequency on a 16MHz MCU. If you are going to change this, be
  932. // sure to regenerate speed_lookuptable.h with
  933. // create_speed_lookuptable.py
  934. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  935. OCR1A = 0x4000;
  936. TCNT1 = 0;
  937. ENABLE_STEPPER_DRIVER_INTERRUPT();
  938. #ifdef ADVANCE
  939. #if defined(TCCR0A) && defined(WGM01)
  940. TCCR0A &= ~BIT(WGM01);
  941. TCCR0A &= ~BIT(WGM00);
  942. #endif
  943. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  944. TIMSK0 |= BIT(OCIE0A);
  945. #endif //ADVANCE
  946. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  947. sei();
  948. }
  949. // Block until all buffered steps are executed
  950. void st_synchronize() {
  951. while (blocks_queued()) {
  952. manage_heater();
  953. manage_inactivity();
  954. lcd_update();
  955. }
  956. }
  957. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  958. CRITICAL_SECTION_START;
  959. count_position[X_AXIS] = x;
  960. count_position[Y_AXIS] = y;
  961. count_position[Z_AXIS] = z;
  962. count_position[E_AXIS] = e;
  963. CRITICAL_SECTION_END;
  964. }
  965. void st_set_e_position(const long &e) {
  966. CRITICAL_SECTION_START;
  967. count_position[E_AXIS] = e;
  968. CRITICAL_SECTION_END;
  969. }
  970. long st_get_position(uint8_t axis) {
  971. long count_pos;
  972. CRITICAL_SECTION_START;
  973. count_pos = count_position[axis];
  974. CRITICAL_SECTION_END;
  975. return count_pos;
  976. }
  977. #ifdef ENABLE_AUTO_BED_LEVELING
  978. float st_get_position_mm(AxisEnum axis) {
  979. return st_get_position(axis) / axis_steps_per_unit[axis];
  980. }
  981. #endif // ENABLE_AUTO_BED_LEVELING
  982. void finishAndDisableSteppers() {
  983. st_synchronize();
  984. disable_all_steppers();
  985. }
  986. void quickStop() {
  987. cleaning_buffer_counter = 5000;
  988. DISABLE_STEPPER_DRIVER_INTERRUPT();
  989. while (blocks_queued()) plan_discard_current_block();
  990. current_block = NULL;
  991. ENABLE_STEPPER_DRIVER_INTERRUPT();
  992. }
  993. #ifdef BABYSTEPPING
  994. // MUST ONLY BE CALLED BY AN ISR,
  995. // No other ISR should ever interrupt this!
  996. void babystep(const uint8_t axis, const bool direction) {
  997. #define _ENABLE(axis) enable_## axis()
  998. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  999. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1000. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1001. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1002. _ENABLE(axis); \
  1003. uint8_t old_pin = _READ_DIR(AXIS); \
  1004. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1005. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1006. delayMicroseconds(2); \
  1007. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1008. _APPLY_DIR(AXIS, old_pin); \
  1009. }
  1010. switch(axis) {
  1011. case X_AXIS:
  1012. BABYSTEP_AXIS(x, X, false);
  1013. break;
  1014. case Y_AXIS:
  1015. BABYSTEP_AXIS(y, Y, false);
  1016. break;
  1017. case Z_AXIS: {
  1018. #ifndef DELTA
  1019. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1020. #else // DELTA
  1021. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1022. enable_x();
  1023. enable_y();
  1024. enable_z();
  1025. uint8_t old_x_dir_pin = X_DIR_READ,
  1026. old_y_dir_pin = Y_DIR_READ,
  1027. old_z_dir_pin = Z_DIR_READ;
  1028. //setup new step
  1029. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1030. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1031. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1032. //perform step
  1033. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1034. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1035. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1036. delayMicroseconds(2);
  1037. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1038. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1039. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1040. //get old pin state back.
  1041. X_DIR_WRITE(old_x_dir_pin);
  1042. Y_DIR_WRITE(old_y_dir_pin);
  1043. Z_DIR_WRITE(old_z_dir_pin);
  1044. #endif
  1045. } break;
  1046. default: break;
  1047. }
  1048. }
  1049. #endif //BABYSTEPPING
  1050. // From Arduino DigitalPotControl example
  1051. void digitalPotWrite(int address, int value) {
  1052. #if HAS_DIGIPOTSS
  1053. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1054. SPI.transfer(address); // send in the address and value via SPI:
  1055. SPI.transfer(value);
  1056. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1057. //delay(10);
  1058. #endif
  1059. }
  1060. // Initialize Digipot Motor Current
  1061. void digipot_init() {
  1062. #if HAS_DIGIPOTSS
  1063. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1064. SPI.begin();
  1065. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1066. for (int i = 0; i <= 4; i++) {
  1067. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1068. digipot_current(i,digipot_motor_current[i]);
  1069. }
  1070. #endif
  1071. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1072. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1073. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1074. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1075. digipot_current(0, motor_current_setting[0]);
  1076. digipot_current(1, motor_current_setting[1]);
  1077. digipot_current(2, motor_current_setting[2]);
  1078. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1079. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1080. #endif
  1081. }
  1082. void digipot_current(uint8_t driver, int current) {
  1083. #if HAS_DIGIPOTSS
  1084. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1085. digitalPotWrite(digipot_ch[driver], current);
  1086. #endif
  1087. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1088. switch(driver) {
  1089. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1090. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1091. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1092. }
  1093. #endif
  1094. }
  1095. void microstep_init() {
  1096. #if HAS_MICROSTEPS_E1
  1097. pinMode(E1_MS1_PIN,OUTPUT);
  1098. pinMode(E1_MS2_PIN,OUTPUT);
  1099. #endif
  1100. #if HAS_MICROSTEPS
  1101. pinMode(X_MS1_PIN,OUTPUT);
  1102. pinMode(X_MS2_PIN,OUTPUT);
  1103. pinMode(Y_MS1_PIN,OUTPUT);
  1104. pinMode(Y_MS2_PIN,OUTPUT);
  1105. pinMode(Z_MS1_PIN,OUTPUT);
  1106. pinMode(Z_MS2_PIN,OUTPUT);
  1107. pinMode(E0_MS1_PIN,OUTPUT);
  1108. pinMode(E0_MS2_PIN,OUTPUT);
  1109. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1110. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1111. microstep_mode(i, microstep_modes[i]);
  1112. #endif
  1113. }
  1114. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1115. if (ms1 >= 0) switch(driver) {
  1116. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1117. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1118. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1119. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1120. #if HAS_MICROSTEPS_E1
  1121. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1122. #endif
  1123. }
  1124. if (ms2 >= 0) switch(driver) {
  1125. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1126. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1127. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1128. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1129. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1130. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1131. #endif
  1132. }
  1133. }
  1134. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1135. switch(stepping_mode) {
  1136. case 1: microstep_ms(driver,MICROSTEP1); break;
  1137. case 2: microstep_ms(driver,MICROSTEP2); break;
  1138. case 4: microstep_ms(driver,MICROSTEP4); break;
  1139. case 8: microstep_ms(driver,MICROSTEP8); break;
  1140. case 16: microstep_ms(driver,MICROSTEP16); break;
  1141. }
  1142. }
  1143. void microstep_readings() {
  1144. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1145. SERIAL_PROTOCOLPGM("X: ");
  1146. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1147. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1148. SERIAL_PROTOCOLPGM("Y: ");
  1149. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1150. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1151. SERIAL_PROTOCOLPGM("Z: ");
  1152. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1153. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1154. SERIAL_PROTOCOLPGM("E0: ");
  1155. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1156. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1157. #if HAS_MICROSTEPS_E1
  1158. SERIAL_PROTOCOLPGM("E1: ");
  1159. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1160. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1161. #endif
  1162. }
  1163. #ifdef Z_DUAL_ENDSTOPS
  1164. void In_Homing_Process(bool state) { performing_homing = state; }
  1165. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1166. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1167. #endif