My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

delta.cpp 9.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * delta.cpp
  24. */
  25. #include "../inc/MarlinConfig.h"
  26. #if ENABLED(DELTA)
  27. #include "delta.h"
  28. #include "motion.h"
  29. // For homing:
  30. #include "stepper.h"
  31. #include "endstops.h"
  32. #include "../lcd/ultralcd.h"
  33. #include "../Marlin.h"
  34. // Initialized by settings.load()
  35. float delta_height,
  36. delta_endstop_adj[ABC] = { 0 },
  37. delta_radius,
  38. delta_diagonal_rod,
  39. delta_segments_per_second,
  40. delta_calibration_radius,
  41. delta_tower_angle_trim[ABC];
  42. float delta_tower[ABC][2],
  43. delta_diagonal_rod_2_tower[ABC],
  44. delta_clip_start_height = Z_MAX_POS;
  45. float delta_safe_distance_from_top();
  46. /**
  47. * Recalculate factors used for delta kinematics whenever
  48. * settings have been changed (e.g., by M665).
  49. */
  50. void recalc_delta_settings() {
  51. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  52. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  53. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower
  54. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);
  55. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower
  56. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);
  57. delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower
  58. delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);
  59. delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);
  60. delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
  61. delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
  62. update_software_endstops(Z_AXIS);
  63. axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
  64. }
  65. /**
  66. * Delta Inverse Kinematics
  67. *
  68. * Calculate the tower positions for a given machine
  69. * position, storing the result in the delta[] array.
  70. *
  71. * This is an expensive calculation, requiring 3 square
  72. * roots per segmented linear move, and strains the limits
  73. * of a Mega2560 with a Graphical Display.
  74. *
  75. * Suggested optimizations include:
  76. *
  77. * - Disable the home_offset (M206) and/or position_shift (G92)
  78. * features to remove up to 12 float additions.
  79. *
  80. * - Use a fast-inverse-sqrt function and add the reciprocal.
  81. * (see above)
  82. */
  83. #if ENABLED(DELTA_FAST_SQRT) && defined(__AVR__)
  84. /**
  85. * Fast inverse sqrt from Quake III Arena
  86. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  87. */
  88. float Q_rsqrt(float number) {
  89. long i;
  90. float x2, y;
  91. const float threehalfs = 1.5f;
  92. x2 = number * 0.5f;
  93. y = number;
  94. i = * ( long * ) &y; // evil floating point bit level hacking
  95. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  96. y = * ( float * ) &i;
  97. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  98. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  99. return y;
  100. }
  101. #endif
  102. #define DELTA_DEBUG() do { \
  103. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  104. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  105. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  106. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  107. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  108. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  109. }while(0)
  110. void inverse_kinematics(const float raw[XYZ]) {
  111. DELTA_IK(raw);
  112. // DELTA_DEBUG();
  113. }
  114. /**
  115. * Calculate the highest Z position where the
  116. * effector has the full range of XY motion.
  117. */
  118. float delta_safe_distance_from_top() {
  119. float cartesian[XYZ] = { 0, 0, 0 };
  120. inverse_kinematics(cartesian);
  121. float distance = delta[A_AXIS];
  122. cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
  123. inverse_kinematics(cartesian);
  124. return FABS(distance - delta[A_AXIS]);
  125. }
  126. /**
  127. * Delta Forward Kinematics
  128. *
  129. * See the Wikipedia article "Trilateration"
  130. * https://en.wikipedia.org/wiki/Trilateration
  131. *
  132. * Establish a new coordinate system in the plane of the
  133. * three carriage points. This system has its origin at
  134. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  135. * plane with a Z component of zero.
  136. * We will define unit vectors in this coordinate system
  137. * in our original coordinate system. Then when we calculate
  138. * the Xnew, Ynew and Znew values, we can translate back into
  139. * the original system by moving along those unit vectors
  140. * by the corresponding values.
  141. *
  142. * Variable names matched to Marlin, c-version, and avoid the
  143. * use of any vector library.
  144. *
  145. * by Andreas Hardtung 2016-06-07
  146. * based on a Java function from "Delta Robot Kinematics V3"
  147. * by Steve Graves
  148. *
  149. * The result is stored in the cartes[] array.
  150. */
  151. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  152. // Create a vector in old coordinates along x axis of new coordinate
  153. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  154. // Get the Magnitude of vector.
  155. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  156. // Create unit vector by dividing by magnitude.
  157. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  158. // Get the vector from the origin of the new system to the third point.
  159. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  160. // Use the dot product to find the component of this vector on the X axis.
  161. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  162. // Create a vector along the x axis that represents the x component of p13.
  163. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  164. // Subtract the X component from the original vector leaving only Y. We use the
  165. // variable that will be the unit vector after we scale it.
  166. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  167. // The magnitude of Y component
  168. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  169. // Convert to a unit vector
  170. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  171. // The cross product of the unit x and y is the unit z
  172. // float[] ez = vectorCrossProd(ex, ey);
  173. float ez[3] = {
  174. ex[1] * ey[2] - ex[2] * ey[1],
  175. ex[2] * ey[0] - ex[0] * ey[2],
  176. ex[0] * ey[1] - ex[1] * ey[0]
  177. };
  178. // We now have the d, i and j values defined in Wikipedia.
  179. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  180. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  181. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  182. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  183. // Start from the origin of the old coordinates and add vectors in the
  184. // old coords that represent the Xnew, Ynew and Znew to find the point
  185. // in the old system.
  186. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  187. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  188. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  189. }
  190. /**
  191. * A delta can only safely home all axes at the same time
  192. * This is like quick_home_xy() but for 3 towers.
  193. */
  194. bool home_delta() {
  195. #if ENABLED(DEBUG_LEVELING_FEATURE)
  196. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  197. #endif
  198. // Init the current position of all carriages to 0,0,0
  199. ZERO(current_position);
  200. sync_plan_position();
  201. // Move all carriages together linearly until an endstop is hit.
  202. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (delta_height + 10);
  203. feedrate_mm_s = homing_feedrate(X_AXIS);
  204. line_to_current_position();
  205. stepper.synchronize();
  206. // If an endstop was not hit, then damage can occur if homing is continued.
  207. // This can occur if the delta height not set correctly.
  208. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  209. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  210. SERIAL_ERROR_START();
  211. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  212. return false;
  213. }
  214. endstops.hit_on_purpose(); // clear endstop hit flags
  215. // At least one carriage has reached the top.
  216. // Now re-home each carriage separately.
  217. HOMEAXIS(A);
  218. HOMEAXIS(B);
  219. HOMEAXIS(C);
  220. // Set all carriages to their home positions
  221. // Do this here all at once for Delta, because
  222. // XYZ isn't ABC. Applying this per-tower would
  223. // give the impression that they are the same.
  224. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  225. SYNC_PLAN_POSITION_KINEMATIC();
  226. #if ENABLED(DEBUG_LEVELING_FEATURE)
  227. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  228. #endif
  229. return true;
  230. }
  231. #endif // DELTA