My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 107KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #endif // ENABLE_AUTO_BED_LEVELING
  27. #include "ultralcd.h"
  28. #include "planner.h"
  29. #include "stepper.h"
  30. #include "temperature.h"
  31. #include "motion_control.h"
  32. #include "cardreader.h"
  33. #include "watchdog.h"
  34. #include "ConfigurationStore.h"
  35. #include "language.h"
  36. #include "pins_arduino.h"
  37. #ifdef BLINKM
  38. #include "BlinkM.h"
  39. #include "Wire.h"
  40. #endif
  41. #if NUM_SERVOS > 0
  42. #include "Servo.h"
  43. #endif
  44. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  45. #include <SPI.h>
  46. #endif
  47. #define VERSION_STRING "1.0.0"
  48. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  49. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  50. //Implemented Codes
  51. //-------------------
  52. // G0 -> G1
  53. // G1 - Coordinated Movement X Y Z E
  54. // G2 - CW ARC
  55. // G3 - CCW ARC
  56. // G4 - Dwell S<seconds> or P<milliseconds>
  57. // G10 - retract filament according to settings of M207
  58. // G11 - retract recover filament according to settings of M208
  59. // G28 - Home all Axis
  60. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  61. // G30 - Single Z Probe, probes bed at current XY location.
  62. // G90 - Use Absolute Coordinates
  63. // G91 - Use Relative Coordinates
  64. // G92 - Set current position to cordinates given
  65. // M Codes
  66. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  67. // M1 - Same as M0
  68. // M17 - Enable/Power all stepper motors
  69. // M18 - Disable all stepper motors; same as M84
  70. // M20 - List SD card
  71. // M21 - Init SD card
  72. // M22 - Release SD card
  73. // M23 - Select SD file (M23 filename.g)
  74. // M24 - Start/resume SD print
  75. // M25 - Pause SD print
  76. // M26 - Set SD position in bytes (M26 S12345)
  77. // M27 - Report SD print status
  78. // M28 - Start SD write (M28 filename.g)
  79. // M29 - Stop SD write
  80. // M30 - Delete file from SD (M30 filename.g)
  81. // M31 - Output time since last M109 or SD card start to serial
  82. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  83. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  84. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  85. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  86. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  87. // M80 - Turn on Power Supply
  88. // M81 - Turn off Power Supply
  89. // M82 - Set E codes absolute (default)
  90. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  91. // M84 - Disable steppers until next move,
  92. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  93. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  94. // M92 - Set axis_steps_per_unit - same syntax as G92
  95. // M104 - Set extruder target temp
  96. // M105 - Read current temp
  97. // M106 - Fan on
  98. // M107 - Fan off
  99. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  100. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  101. // M114 - Output current position to serial port
  102. // M115 - Capabilities string
  103. // M117 - display message
  104. // M119 - Output Endstop status to serial port
  105. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  106. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  107. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  108. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  109. // M140 - Set bed target temp
  110. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  111. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  112. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  113. // M200 - Set filament diameter
  114. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  115. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  116. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  117. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  118. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  119. // M206 - set additional homeing offset
  120. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  121. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  122. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  123. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  124. // M220 S<factor in percent>- set speed factor override percentage
  125. // M221 S<factor in percent>- set extrude factor override percentage
  126. // M240 - Trigger a camera to take a photograph
  127. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  128. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  129. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  130. // M301 - Set PID parameters P I and D
  131. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  132. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  133. // M304 - Set bed PID parameters P I and D
  134. // M400 - Finish all moves
  135. // M401 - Lower z-probe if present
  136. // M402 - Raise z-probe if present
  137. // M500 - stores paramters in EEPROM
  138. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  139. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  140. // M503 - print the current settings (from memory not from eeprom)
  141. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  142. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  143. // M666 - set delta endstop adjustemnt
  144. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  145. // M907 - Set digital trimpot motor current using axis codes.
  146. // M908 - Control digital trimpot directly.
  147. // M350 - Set microstepping mode.
  148. // M351 - Toggle MS1 MS2 pins directly.
  149. // M928 - Start SD logging (M928 filename.g) - ended by M29
  150. // M999 - Restart after being stopped by error
  151. //Stepper Movement Variables
  152. //===========================================================================
  153. //=============================imported variables============================
  154. //===========================================================================
  155. //===========================================================================
  156. //=============================public variables=============================
  157. //===========================================================================
  158. #ifdef SDSUPPORT
  159. CardReader card;
  160. #endif
  161. float homing_feedrate[] = HOMING_FEEDRATE;
  162. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  163. int feedmultiply=100; //100->1 200->2
  164. int saved_feedmultiply;
  165. int extrudemultiply=100; //100->1 200->2
  166. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  167. float add_homeing[3]={0,0,0};
  168. #ifdef DELTA
  169. float endstop_adj[3]={0,0,0};
  170. #endif
  171. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  172. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  173. // Extruder offset
  174. #if EXTRUDERS > 1
  175. #ifndef DUAL_X_CARRIAGE
  176. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  177. #else
  178. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  179. #endif
  180. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  181. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  182. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  183. #endif
  184. };
  185. #endif
  186. uint8_t active_extruder = 0;
  187. int fanSpeed=0;
  188. #ifdef SERVO_ENDSTOPS
  189. int servo_endstops[] = SERVO_ENDSTOPS;
  190. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  191. #endif
  192. #ifdef BARICUDA
  193. int ValvePressure=0;
  194. int EtoPPressure=0;
  195. #endif
  196. #ifdef FWRETRACT
  197. bool autoretract_enabled=true;
  198. bool retracted=false;
  199. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  200. float retract_recover_length=0, retract_recover_feedrate=8*60;
  201. #endif
  202. #ifdef ULTIPANEL
  203. bool powersupply = true;
  204. #endif
  205. #ifdef DELTA
  206. float delta[3] = {0.0, 0.0, 0.0};
  207. #endif
  208. //===========================================================================
  209. //=============================private variables=============================
  210. //===========================================================================
  211. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  212. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  213. static float offset[3] = {0.0, 0.0, 0.0};
  214. static bool home_all_axis = true;
  215. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  216. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  217. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  218. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  219. static bool fromsd[BUFSIZE];
  220. static int bufindr = 0;
  221. static int bufindw = 0;
  222. static int buflen = 0;
  223. //static int i = 0;
  224. static char serial_char;
  225. static int serial_count = 0;
  226. static boolean comment_mode = false;
  227. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  228. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  229. //static float tt = 0;
  230. //static float bt = 0;
  231. //Inactivity shutdown variables
  232. static unsigned long previous_millis_cmd = 0;
  233. static unsigned long max_inactive_time = 0;
  234. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  235. unsigned long starttime=0;
  236. unsigned long stoptime=0;
  237. static uint8_t tmp_extruder;
  238. bool Stopped=false;
  239. #if NUM_SERVOS > 0
  240. Servo servos[NUM_SERVOS];
  241. #endif
  242. bool CooldownNoWait = true;
  243. bool target_direction;
  244. //===========================================================================
  245. //=============================ROUTINES=============================
  246. //===========================================================================
  247. void get_arc_coordinates();
  248. bool setTargetedHotend(int code);
  249. void serial_echopair_P(const char *s_P, float v)
  250. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  251. void serial_echopair_P(const char *s_P, double v)
  252. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  253. void serial_echopair_P(const char *s_P, unsigned long v)
  254. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  255. extern "C"{
  256. extern unsigned int __bss_end;
  257. extern unsigned int __heap_start;
  258. extern void *__brkval;
  259. int freeMemory() {
  260. int free_memory;
  261. if((int)__brkval == 0)
  262. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  263. else
  264. free_memory = ((int)&free_memory) - ((int)__brkval);
  265. return free_memory;
  266. }
  267. }
  268. //adds an command to the main command buffer
  269. //thats really done in a non-safe way.
  270. //needs overworking someday
  271. void enquecommand(const char *cmd)
  272. {
  273. if(buflen < BUFSIZE)
  274. {
  275. //this is dangerous if a mixing of serial and this happsens
  276. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  277. SERIAL_ECHO_START;
  278. SERIAL_ECHOPGM("enqueing \"");
  279. SERIAL_ECHO(cmdbuffer[bufindw]);
  280. SERIAL_ECHOLNPGM("\"");
  281. bufindw= (bufindw + 1)%BUFSIZE;
  282. buflen += 1;
  283. }
  284. }
  285. void enquecommand_P(const char *cmd)
  286. {
  287. if(buflen < BUFSIZE)
  288. {
  289. //this is dangerous if a mixing of serial and this happsens
  290. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  291. SERIAL_ECHO_START;
  292. SERIAL_ECHOPGM("enqueing \"");
  293. SERIAL_ECHO(cmdbuffer[bufindw]);
  294. SERIAL_ECHOLNPGM("\"");
  295. bufindw= (bufindw + 1)%BUFSIZE;
  296. buflen += 1;
  297. }
  298. }
  299. void setup_killpin()
  300. {
  301. #if defined(KILL_PIN) && KILL_PIN > -1
  302. pinMode(KILL_PIN,INPUT);
  303. WRITE(KILL_PIN,HIGH);
  304. #endif
  305. }
  306. void setup_photpin()
  307. {
  308. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  309. SET_OUTPUT(PHOTOGRAPH_PIN);
  310. WRITE(PHOTOGRAPH_PIN, LOW);
  311. #endif
  312. }
  313. void setup_powerhold()
  314. {
  315. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  316. SET_OUTPUT(SUICIDE_PIN);
  317. WRITE(SUICIDE_PIN, HIGH);
  318. #endif
  319. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  320. SET_OUTPUT(PS_ON_PIN);
  321. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  322. #endif
  323. }
  324. void suicide()
  325. {
  326. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  327. SET_OUTPUT(SUICIDE_PIN);
  328. WRITE(SUICIDE_PIN, LOW);
  329. #endif
  330. }
  331. void servo_init()
  332. {
  333. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  334. servos[0].attach(SERVO0_PIN);
  335. #endif
  336. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  337. servos[1].attach(SERVO1_PIN);
  338. #endif
  339. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  340. servos[2].attach(SERVO2_PIN);
  341. #endif
  342. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  343. servos[3].attach(SERVO3_PIN);
  344. #endif
  345. #if (NUM_SERVOS >= 5)
  346. #error "TODO: enter initalisation code for more servos"
  347. #endif
  348. // Set position of Servo Endstops that are defined
  349. #ifdef SERVO_ENDSTOPS
  350. for(int8_t i = 0; i < 3; i++)
  351. {
  352. if(servo_endstops[i] > -1) {
  353. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  354. }
  355. }
  356. #endif
  357. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  358. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  359. servos[servo_endstops[Z_AXIS]].detach();
  360. #endif
  361. }
  362. void setup()
  363. {
  364. setup_killpin();
  365. setup_powerhold();
  366. MYSERIAL.begin(BAUDRATE);
  367. SERIAL_PROTOCOLLNPGM("start");
  368. SERIAL_ECHO_START;
  369. // Check startup - does nothing if bootloader sets MCUSR to 0
  370. byte mcu = MCUSR;
  371. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  372. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  373. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  374. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  375. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  376. MCUSR=0;
  377. SERIAL_ECHOPGM(MSG_MARLIN);
  378. SERIAL_ECHOLNPGM(VERSION_STRING);
  379. #ifdef STRING_VERSION_CONFIG_H
  380. #ifdef STRING_CONFIG_H_AUTHOR
  381. SERIAL_ECHO_START;
  382. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  383. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  384. SERIAL_ECHOPGM(MSG_AUTHOR);
  385. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  386. SERIAL_ECHOPGM("Compiled: ");
  387. SERIAL_ECHOLNPGM(__DATE__);
  388. #endif
  389. #endif
  390. SERIAL_ECHO_START;
  391. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  392. SERIAL_ECHO(freeMemory());
  393. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  394. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  395. for(int8_t i = 0; i < BUFSIZE; i++)
  396. {
  397. fromsd[i] = false;
  398. }
  399. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  400. Config_RetrieveSettings();
  401. tp_init(); // Initialize temperature loop
  402. plan_init(); // Initialize planner;
  403. watchdog_init();
  404. st_init(); // Initialize stepper, this enables interrupts!
  405. setup_photpin();
  406. servo_init();
  407. lcd_init();
  408. _delay_ms(1000); // wait 1sec to display the splash screen
  409. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  410. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  411. #endif
  412. }
  413. void loop()
  414. {
  415. if(buflen < (BUFSIZE-1))
  416. get_command();
  417. #ifdef SDSUPPORT
  418. card.checkautostart(false);
  419. #endif
  420. if(buflen)
  421. {
  422. #ifdef SDSUPPORT
  423. if(card.saving)
  424. {
  425. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  426. {
  427. card.write_command(cmdbuffer[bufindr]);
  428. if(card.logging)
  429. {
  430. process_commands();
  431. }
  432. else
  433. {
  434. SERIAL_PROTOCOLLNPGM(MSG_OK);
  435. }
  436. }
  437. else
  438. {
  439. card.closefile();
  440. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  441. }
  442. }
  443. else
  444. {
  445. process_commands();
  446. }
  447. #else
  448. process_commands();
  449. #endif //SDSUPPORT
  450. buflen = (buflen-1);
  451. bufindr = (bufindr + 1)%BUFSIZE;
  452. }
  453. //check heater every n milliseconds
  454. manage_heater();
  455. manage_inactivity();
  456. checkHitEndstops();
  457. lcd_update();
  458. }
  459. void get_command()
  460. {
  461. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  462. serial_char = MYSERIAL.read();
  463. if(serial_char == '\n' ||
  464. serial_char == '\r' ||
  465. (serial_char == ':' && comment_mode == false) ||
  466. serial_count >= (MAX_CMD_SIZE - 1) )
  467. {
  468. if(!serial_count) { //if empty line
  469. comment_mode = false; //for new command
  470. return;
  471. }
  472. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  473. if(!comment_mode){
  474. comment_mode = false; //for new command
  475. fromsd[bufindw] = false;
  476. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  477. {
  478. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  479. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  480. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  481. SERIAL_ERROR_START;
  482. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  483. SERIAL_ERRORLN(gcode_LastN);
  484. //Serial.println(gcode_N);
  485. FlushSerialRequestResend();
  486. serial_count = 0;
  487. return;
  488. }
  489. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  490. {
  491. byte checksum = 0;
  492. byte count = 0;
  493. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  494. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  495. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  496. SERIAL_ERROR_START;
  497. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  498. SERIAL_ERRORLN(gcode_LastN);
  499. FlushSerialRequestResend();
  500. serial_count = 0;
  501. return;
  502. }
  503. //if no errors, continue parsing
  504. }
  505. else
  506. {
  507. SERIAL_ERROR_START;
  508. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  509. SERIAL_ERRORLN(gcode_LastN);
  510. FlushSerialRequestResend();
  511. serial_count = 0;
  512. return;
  513. }
  514. gcode_LastN = gcode_N;
  515. //if no errors, continue parsing
  516. }
  517. else // if we don't receive 'N' but still see '*'
  518. {
  519. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  520. {
  521. SERIAL_ERROR_START;
  522. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  523. SERIAL_ERRORLN(gcode_LastN);
  524. serial_count = 0;
  525. return;
  526. }
  527. }
  528. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  529. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  530. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  531. case 0:
  532. case 1:
  533. case 2:
  534. case 3:
  535. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  536. #ifdef SDSUPPORT
  537. if(card.saving)
  538. break;
  539. #endif //SDSUPPORT
  540. SERIAL_PROTOCOLLNPGM(MSG_OK);
  541. }
  542. else {
  543. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  544. LCD_MESSAGEPGM(MSG_STOPPED);
  545. }
  546. break;
  547. default:
  548. break;
  549. }
  550. }
  551. bufindw = (bufindw + 1)%BUFSIZE;
  552. buflen += 1;
  553. }
  554. serial_count = 0; //clear buffer
  555. }
  556. else
  557. {
  558. if(serial_char == ';') comment_mode = true;
  559. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  560. }
  561. }
  562. #ifdef SDSUPPORT
  563. if(!card.sdprinting || serial_count!=0){
  564. return;
  565. }
  566. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  567. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  568. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  569. static bool stop_buffering=false;
  570. if(buflen==0) stop_buffering=false;
  571. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  572. int16_t n=card.get();
  573. serial_char = (char)n;
  574. if(serial_char == '\n' ||
  575. serial_char == '\r' ||
  576. (serial_char == '#' && comment_mode == false) ||
  577. (serial_char == ':' && comment_mode == false) ||
  578. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  579. {
  580. if(card.eof()){
  581. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  582. stoptime=millis();
  583. char time[30];
  584. unsigned long t=(stoptime-starttime)/1000;
  585. int hours, minutes;
  586. minutes=(t/60)%60;
  587. hours=t/60/60;
  588. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  589. SERIAL_ECHO_START;
  590. SERIAL_ECHOLN(time);
  591. lcd_setstatus(time);
  592. card.printingHasFinished();
  593. card.checkautostart(true);
  594. }
  595. if(serial_char=='#')
  596. stop_buffering=true;
  597. if(!serial_count)
  598. {
  599. comment_mode = false; //for new command
  600. return; //if empty line
  601. }
  602. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  603. // if(!comment_mode){
  604. fromsd[bufindw] = true;
  605. buflen += 1;
  606. bufindw = (bufindw + 1)%BUFSIZE;
  607. // }
  608. comment_mode = false; //for new command
  609. serial_count = 0; //clear buffer
  610. }
  611. else
  612. {
  613. if(serial_char == ';') comment_mode = true;
  614. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  615. }
  616. }
  617. #endif //SDSUPPORT
  618. }
  619. float code_value()
  620. {
  621. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  622. }
  623. long code_value_long()
  624. {
  625. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  626. }
  627. bool code_seen(char code)
  628. {
  629. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  630. return (strchr_pointer != NULL); //Return True if a character was found
  631. }
  632. #define DEFINE_PGM_READ_ANY(type, reader) \
  633. static inline type pgm_read_any(const type *p) \
  634. { return pgm_read_##reader##_near(p); }
  635. DEFINE_PGM_READ_ANY(float, float);
  636. DEFINE_PGM_READ_ANY(signed char, byte);
  637. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  638. static const PROGMEM type array##_P[3] = \
  639. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  640. static inline type array(int axis) \
  641. { return pgm_read_any(&array##_P[axis]); }
  642. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  643. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  644. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  645. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  646. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  647. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  648. #ifdef DUAL_X_CARRIAGE
  649. #if EXTRUDERS == 1 || defined(COREXY) \
  650. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  651. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  652. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  653. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  654. #endif
  655. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  656. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  657. #endif
  658. #define DXC_FULL_CONTROL_MODE 0
  659. #define DXC_AUTO_PARK_MODE 1
  660. #define DXC_DUPLICATION_MODE 2
  661. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  662. static float x_home_pos(int extruder) {
  663. if (extruder == 0)
  664. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  665. else
  666. // In dual carriage mode the extruder offset provides an override of the
  667. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  668. // This allow soft recalibration of the second extruder offset position without firmware reflash
  669. // (through the M218 command).
  670. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  671. }
  672. static int x_home_dir(int extruder) {
  673. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  674. }
  675. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  676. static bool active_extruder_parked = false; // used in mode 1 & 2
  677. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  678. static unsigned long delayed_move_time = 0; // used in mode 1
  679. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  680. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  681. bool extruder_duplication_enabled = false; // used in mode 2
  682. #endif //DUAL_X_CARRIAGE
  683. static void axis_is_at_home(int axis) {
  684. #ifdef DUAL_X_CARRIAGE
  685. if (axis == X_AXIS) {
  686. if (active_extruder != 0) {
  687. current_position[X_AXIS] = x_home_pos(active_extruder);
  688. min_pos[X_AXIS] = X2_MIN_POS;
  689. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  690. return;
  691. }
  692. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  693. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  694. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  695. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  696. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  697. return;
  698. }
  699. }
  700. #endif
  701. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  702. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  703. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  704. }
  705. #ifdef ENABLE_AUTO_BED_LEVELING
  706. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  707. plan_bed_level_matrix.set_to_identity();
  708. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  709. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  710. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  711. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  712. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  713. vector_3 planeNormal = vector_3::cross(yPositive, xPositive).get_normal();
  714. //planeNormal.debug("planeNormal");
  715. //yPositive.debug("yPositive");
  716. matrix_3x3 bedLevel = matrix_3x3::create_look_at(planeNormal, yPositive);
  717. //bedLevel.debug("bedLevel");
  718. //plan_bed_level_matrix.debug("bed level before");
  719. //vector_3 uncorrected_position = plan_get_position_mm();
  720. //uncorrected_position.debug("position before");
  721. // and set our bed level equation to do the right thing
  722. plan_bed_level_matrix = matrix_3x3::create_inverse(bedLevel);
  723. //plan_bed_level_matrix.debug("bed level after");
  724. vector_3 corrected_position = plan_get_position();
  725. //corrected_position.debug("position after");
  726. current_position[X_AXIS] = corrected_position.x;
  727. current_position[Y_AXIS] = corrected_position.y;
  728. current_position[Z_AXIS] = corrected_position.z;
  729. // but the bed at 0 so we don't go below it.
  730. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  731. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  732. }
  733. static void run_z_probe() {
  734. plan_bed_level_matrix.set_to_identity();
  735. feedrate = homing_feedrate[Z_AXIS];
  736. // move down until you find the bed
  737. float zPosition = -10;
  738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  739. st_synchronize();
  740. // we have to let the planner know where we are right now as it is not where we said to go.
  741. zPosition = st_get_position_mm(Z_AXIS);
  742. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  743. // move up the retract distance
  744. zPosition += home_retract_mm(Z_AXIS);
  745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  746. st_synchronize();
  747. // move back down slowly to find bed
  748. feedrate = homing_feedrate[Z_AXIS]/4;
  749. zPosition -= home_retract_mm(Z_AXIS) * 2;
  750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  751. st_synchronize();
  752. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  753. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  754. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  755. }
  756. static void do_blocking_move_to(float x, float y, float z) {
  757. float oldFeedRate = feedrate;
  758. feedrate = XY_TRAVEL_SPEED;
  759. current_position[X_AXIS] = x;
  760. current_position[Y_AXIS] = y;
  761. current_position[Z_AXIS] = z;
  762. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  763. st_synchronize();
  764. feedrate = oldFeedRate;
  765. }
  766. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  767. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  768. }
  769. static void setup_for_endstop_move() {
  770. saved_feedrate = feedrate;
  771. saved_feedmultiply = feedmultiply;
  772. feedmultiply = 100;
  773. previous_millis_cmd = millis();
  774. enable_endstops(true);
  775. }
  776. static void clean_up_after_endstop_move() {
  777. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  778. enable_endstops(false);
  779. #endif
  780. feedrate = saved_feedrate;
  781. feedmultiply = saved_feedmultiply;
  782. previous_millis_cmd = millis();
  783. }
  784. static void engage_z_probe() {
  785. // Engage Z Servo endstop if enabled
  786. #ifdef SERVO_ENDSTOPS
  787. if (servo_endstops[Z_AXIS] > -1) {
  788. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  789. servos[servo_endstops[Z_AXIS]].attach(0);
  790. #endif
  791. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  792. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  793. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  794. servos[servo_endstops[Z_AXIS]].detach();
  795. #endif
  796. }
  797. #endif
  798. }
  799. static void retract_z_probe() {
  800. // Retract Z Servo endstop if enabled
  801. #ifdef SERVO_ENDSTOPS
  802. if (servo_endstops[Z_AXIS] > -1) {
  803. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  804. servos[servo_endstops[Z_AXIS]].attach(0);
  805. #endif
  806. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  807. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  808. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  809. servos[servo_endstops[Z_AXIS]].detach();
  810. #endif
  811. }
  812. #endif
  813. }
  814. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  815. static void homeaxis(int axis) {
  816. #define HOMEAXIS_DO(LETTER) \
  817. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  818. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  819. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  820. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  821. 0) {
  822. int axis_home_dir = home_dir(axis);
  823. #ifdef DUAL_X_CARRIAGE
  824. if (axis == X_AXIS)
  825. axis_home_dir = x_home_dir(active_extruder);
  826. #endif
  827. current_position[axis] = 0;
  828. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  829. // Engage Servo endstop if enabled
  830. #ifdef SERVO_ENDSTOPS
  831. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  832. if (axis==Z_AXIS) {
  833. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  834. destination[axis] = Z_RAISE_BEFORE_HOMING * axis_home_dir * (-1); // Set destination away from bed
  835. feedrate = max_feedrate[axis];
  836. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  837. st_synchronize();
  838. #endif
  839. engage_z_probe();
  840. }
  841. else
  842. #endif
  843. if (servo_endstops[axis] > -1) {
  844. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  845. }
  846. #endif
  847. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  848. feedrate = homing_feedrate[axis];
  849. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  850. st_synchronize();
  851. current_position[axis] = 0;
  852. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  853. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  854. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  855. st_synchronize();
  856. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  857. #ifdef DELTA
  858. feedrate = homing_feedrate[axis]/10;
  859. #else
  860. feedrate = homing_feedrate[axis]/2 ;
  861. #endif
  862. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  863. st_synchronize();
  864. #ifdef DELTA
  865. // retrace by the amount specified in endstop_adj
  866. if (endstop_adj[axis] * axis_home_dir < 0) {
  867. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  868. destination[axis] = endstop_adj[axis];
  869. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  870. st_synchronize();
  871. }
  872. #endif
  873. axis_is_at_home(axis);
  874. destination[axis] = current_position[axis];
  875. feedrate = 0.0;
  876. endstops_hit_on_purpose();
  877. // Retract Servo endstop if enabled
  878. #ifdef SERVO_ENDSTOPS
  879. if (servo_endstops[axis] > -1) {
  880. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  881. }
  882. #endif
  883. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  884. if (axis==Z_AXIS) retract_z_probe();
  885. #endif
  886. }
  887. }
  888. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  889. void process_commands()
  890. {
  891. unsigned long codenum; //throw away variable
  892. char *starpos = NULL;
  893. #ifdef ENABLE_AUTO_BED_LEVELING
  894. float x_tmp, y_tmp, z_tmp, real_z;
  895. #endif
  896. if(code_seen('G'))
  897. {
  898. switch((int)code_value())
  899. {
  900. case 0: // G0 -> G1
  901. case 1: // G1
  902. if(Stopped == false) {
  903. get_coordinates(); // For X Y Z E F
  904. prepare_move();
  905. //ClearToSend();
  906. return;
  907. }
  908. //break;
  909. case 2: // G2 - CW ARC
  910. if(Stopped == false) {
  911. get_arc_coordinates();
  912. prepare_arc_move(true);
  913. return;
  914. }
  915. case 3: // G3 - CCW ARC
  916. if(Stopped == false) {
  917. get_arc_coordinates();
  918. prepare_arc_move(false);
  919. return;
  920. }
  921. case 4: // G4 dwell
  922. LCD_MESSAGEPGM(MSG_DWELL);
  923. codenum = 0;
  924. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  925. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  926. st_synchronize();
  927. codenum += millis(); // keep track of when we started waiting
  928. previous_millis_cmd = millis();
  929. while(millis() < codenum ){
  930. manage_heater();
  931. manage_inactivity();
  932. lcd_update();
  933. }
  934. break;
  935. #ifdef FWRETRACT
  936. case 10: // G10 retract
  937. if(!retracted)
  938. {
  939. destination[X_AXIS]=current_position[X_AXIS];
  940. destination[Y_AXIS]=current_position[Y_AXIS];
  941. destination[Z_AXIS]=current_position[Z_AXIS];
  942. current_position[Z_AXIS]+=-retract_zlift;
  943. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  944. feedrate=retract_feedrate;
  945. retracted=true;
  946. prepare_move();
  947. }
  948. break;
  949. case 11: // G11 retract_recover
  950. if(retracted)
  951. {
  952. destination[X_AXIS]=current_position[X_AXIS];
  953. destination[Y_AXIS]=current_position[Y_AXIS];
  954. destination[Z_AXIS]=current_position[Z_AXIS];
  955. current_position[Z_AXIS]+=retract_zlift;
  956. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  957. feedrate=retract_recover_feedrate;
  958. retracted=false;
  959. prepare_move();
  960. }
  961. break;
  962. #endif //FWRETRACT
  963. case 28: //G28 Home all Axis one at a time
  964. #ifdef ENABLE_AUTO_BED_LEVELING
  965. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  966. #endif //ENABLE_AUTO_BED_LEVELING
  967. saved_feedrate = feedrate;
  968. saved_feedmultiply = feedmultiply;
  969. feedmultiply = 100;
  970. previous_millis_cmd = millis();
  971. enable_endstops(true);
  972. for(int8_t i=0; i < NUM_AXIS; i++) {
  973. destination[i] = current_position[i];
  974. }
  975. feedrate = 0.0;
  976. #ifdef DELTA
  977. // A delta can only safely home all axis at the same time
  978. // all axis have to home at the same time
  979. // Move all carriages up together until the first endstop is hit.
  980. current_position[X_AXIS] = 0;
  981. current_position[Y_AXIS] = 0;
  982. current_position[Z_AXIS] = 0;
  983. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  984. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  985. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  986. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  987. feedrate = 1.732 * homing_feedrate[X_AXIS];
  988. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  989. st_synchronize();
  990. endstops_hit_on_purpose();
  991. current_position[X_AXIS] = destination[X_AXIS];
  992. current_position[Y_AXIS] = destination[Y_AXIS];
  993. current_position[Z_AXIS] = destination[Z_AXIS];
  994. // take care of back off and rehome now we are all at the top
  995. HOMEAXIS(X);
  996. HOMEAXIS(Y);
  997. HOMEAXIS(Z);
  998. calculate_delta(current_position);
  999. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1000. #else // NOT DELTA
  1001. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1002. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1003. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1004. HOMEAXIS(Z);
  1005. }
  1006. #endif
  1007. #ifdef QUICK_HOME
  1008. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1009. {
  1010. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1011. #ifndef DUAL_X_CARRIAGE
  1012. int x_axis_home_dir = home_dir(X_AXIS);
  1013. #else
  1014. int x_axis_home_dir = x_home_dir(active_extruder);
  1015. extruder_duplication_enabled = false;
  1016. #endif
  1017. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1018. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1019. feedrate = homing_feedrate[X_AXIS];
  1020. if(homing_feedrate[Y_AXIS]<feedrate)
  1021. feedrate =homing_feedrate[Y_AXIS];
  1022. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1023. st_synchronize();
  1024. axis_is_at_home(X_AXIS);
  1025. axis_is_at_home(Y_AXIS);
  1026. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1027. destination[X_AXIS] = current_position[X_AXIS];
  1028. destination[Y_AXIS] = current_position[Y_AXIS];
  1029. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1030. feedrate = 0.0;
  1031. st_synchronize();
  1032. endstops_hit_on_purpose();
  1033. current_position[X_AXIS] = destination[X_AXIS];
  1034. current_position[Y_AXIS] = destination[Y_AXIS];
  1035. current_position[Z_AXIS] = destination[Z_AXIS];
  1036. }
  1037. #endif
  1038. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1039. {
  1040. #ifdef DUAL_X_CARRIAGE
  1041. int tmp_extruder = active_extruder;
  1042. extruder_duplication_enabled = false;
  1043. active_extruder = !active_extruder;
  1044. HOMEAXIS(X);
  1045. inactive_extruder_x_pos = current_position[X_AXIS];
  1046. active_extruder = tmp_extruder;
  1047. HOMEAXIS(X);
  1048. // reset state used by the different modes
  1049. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1050. delayed_move_time = 0;
  1051. active_extruder_parked = true;
  1052. #else
  1053. HOMEAXIS(X);
  1054. #endif
  1055. }
  1056. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1057. HOMEAXIS(Y);
  1058. }
  1059. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1060. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1061. HOMEAXIS(Z);
  1062. }
  1063. #endif
  1064. if(code_seen(axis_codes[X_AXIS]))
  1065. {
  1066. if(code_value_long() != 0) {
  1067. current_position[X_AXIS]=code_value()+add_homeing[0];
  1068. }
  1069. }
  1070. if(code_seen(axis_codes[Y_AXIS])) {
  1071. if(code_value_long() != 0) {
  1072. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1073. }
  1074. }
  1075. if(code_seen(axis_codes[Z_AXIS])) {
  1076. if(code_value_long() != 0) {
  1077. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1078. }
  1079. }
  1080. #ifdef ENABLE_AUTO_BED_LEVELING
  1081. current_position[Z_AXIS] -= Z_PROBE_OFFSET_FROM_EXTRUDER; //Add Z_Probe offset (the distance is negative)
  1082. #endif
  1083. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1084. #endif // else DELTA
  1085. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1086. enable_endstops(false);
  1087. #endif
  1088. feedrate = saved_feedrate;
  1089. feedmultiply = saved_feedmultiply;
  1090. previous_millis_cmd = millis();
  1091. endstops_hit_on_purpose();
  1092. break;
  1093. #ifdef ENABLE_AUTO_BED_LEVELING
  1094. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1095. {
  1096. #if Z_MIN_PIN == -1
  1097. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1098. #endif
  1099. st_synchronize();
  1100. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1101. //vector_3 corrected_position = plan_get_position_mm();
  1102. //corrected_position.debug("position before G29");
  1103. plan_bed_level_matrix.set_to_identity();
  1104. vector_3 uncorrected_position = plan_get_position();
  1105. //uncorrected_position.debug("position durring G29");
  1106. current_position[X_AXIS] = uncorrected_position.x;
  1107. current_position[Y_AXIS] = uncorrected_position.y;
  1108. current_position[Z_AXIS] = uncorrected_position.z;
  1109. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1110. setup_for_endstop_move();
  1111. feedrate = homing_feedrate[Z_AXIS];
  1112. // prob 1
  1113. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1114. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1115. engage_z_probe(); // Engage Z Servo endstop if available
  1116. run_z_probe();
  1117. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1118. SERIAL_PROTOCOLPGM("Bed x: ");
  1119. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1120. SERIAL_PROTOCOLPGM(" y: ");
  1121. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1122. SERIAL_PROTOCOLPGM(" z: ");
  1123. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1124. SERIAL_PROTOCOLPGM("\n");
  1125. // prob 2
  1126. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1127. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1128. run_z_probe();
  1129. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1130. SERIAL_PROTOCOLPGM("Bed x: ");
  1131. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1132. SERIAL_PROTOCOLPGM(" y: ");
  1133. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1134. SERIAL_PROTOCOLPGM(" z: ");
  1135. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1136. SERIAL_PROTOCOLPGM("\n");
  1137. // prob 3
  1138. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1139. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1140. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1141. run_z_probe();
  1142. float z_at_xRight_yFront = current_position[Z_AXIS];
  1143. SERIAL_PROTOCOLPGM("Bed x: ");
  1144. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1145. SERIAL_PROTOCOLPGM(" y: ");
  1146. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1147. SERIAL_PROTOCOLPGM(" z: ");
  1148. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1149. SERIAL_PROTOCOLPGM("\n");
  1150. clean_up_after_endstop_move();
  1151. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1152. retract_z_probe(); // Retract Z Servo endstop if available
  1153. st_synchronize();
  1154. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1155. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1156. // When the bed is uneven, this height must be corrected.
  1157. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1158. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1159. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1160. z_tmp = current_position[Z_AXIS];
  1161. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1162. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1163. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1164. }
  1165. break;
  1166. case 30: // G30 Single Z Probe
  1167. {
  1168. engage_z_probe(); // Engage Z Servo endstop if available
  1169. st_synchronize();
  1170. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1171. setup_for_endstop_move();
  1172. feedrate = homing_feedrate[Z_AXIS];
  1173. run_z_probe();
  1174. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1175. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1176. SERIAL_PROTOCOLPGM(" Y: ");
  1177. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1178. SERIAL_PROTOCOLPGM(" Z: ");
  1179. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1180. SERIAL_PROTOCOLPGM("\n");
  1181. clean_up_after_endstop_move();
  1182. retract_z_probe(); // Retract Z Servo endstop if available
  1183. }
  1184. break;
  1185. #endif // ENABLE_AUTO_BED_LEVELING
  1186. case 90: // G90
  1187. relative_mode = false;
  1188. break;
  1189. case 91: // G91
  1190. relative_mode = true;
  1191. break;
  1192. case 92: // G92
  1193. if(!code_seen(axis_codes[E_AXIS]))
  1194. st_synchronize();
  1195. for(int8_t i=0; i < NUM_AXIS; i++) {
  1196. if(code_seen(axis_codes[i])) {
  1197. if(i == E_AXIS) {
  1198. current_position[i] = code_value();
  1199. plan_set_e_position(current_position[E_AXIS]);
  1200. }
  1201. else {
  1202. current_position[i] = code_value()+add_homeing[i];
  1203. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1204. }
  1205. }
  1206. }
  1207. break;
  1208. }
  1209. }
  1210. else if(code_seen('M'))
  1211. {
  1212. switch( (int)code_value() )
  1213. {
  1214. #ifdef ULTIPANEL
  1215. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1216. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1217. {
  1218. LCD_MESSAGEPGM(MSG_USERWAIT);
  1219. codenum = 0;
  1220. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1221. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1222. st_synchronize();
  1223. previous_millis_cmd = millis();
  1224. if (codenum > 0){
  1225. codenum += millis(); // keep track of when we started waiting
  1226. while(millis() < codenum && !lcd_clicked()){
  1227. manage_heater();
  1228. manage_inactivity();
  1229. lcd_update();
  1230. }
  1231. }else{
  1232. while(!lcd_clicked()){
  1233. manage_heater();
  1234. manage_inactivity();
  1235. lcd_update();
  1236. }
  1237. }
  1238. LCD_MESSAGEPGM(MSG_RESUMING);
  1239. }
  1240. break;
  1241. #endif
  1242. case 17:
  1243. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1244. enable_x();
  1245. enable_y();
  1246. enable_z();
  1247. enable_e0();
  1248. enable_e1();
  1249. enable_e2();
  1250. break;
  1251. #ifdef SDSUPPORT
  1252. case 20: // M20 - list SD card
  1253. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1254. card.ls();
  1255. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1256. break;
  1257. case 21: // M21 - init SD card
  1258. card.initsd();
  1259. break;
  1260. case 22: //M22 - release SD card
  1261. card.release();
  1262. break;
  1263. case 23: //M23 - Select file
  1264. starpos = (strchr(strchr_pointer + 4,'*'));
  1265. if(starpos!=NULL)
  1266. *(starpos-1)='\0';
  1267. card.openFile(strchr_pointer + 4,true);
  1268. break;
  1269. case 24: //M24 - Start SD print
  1270. card.startFileprint();
  1271. starttime=millis();
  1272. break;
  1273. case 25: //M25 - Pause SD print
  1274. card.pauseSDPrint();
  1275. break;
  1276. case 26: //M26 - Set SD index
  1277. if(card.cardOK && code_seen('S')) {
  1278. card.setIndex(code_value_long());
  1279. }
  1280. break;
  1281. case 27: //M27 - Get SD status
  1282. card.getStatus();
  1283. break;
  1284. case 28: //M28 - Start SD write
  1285. starpos = (strchr(strchr_pointer + 4,'*'));
  1286. if(starpos != NULL){
  1287. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1288. strchr_pointer = strchr(npos,' ') + 1;
  1289. *(starpos-1) = '\0';
  1290. }
  1291. card.openFile(strchr_pointer+4,false);
  1292. break;
  1293. case 29: //M29 - Stop SD write
  1294. //processed in write to file routine above
  1295. //card,saving = false;
  1296. break;
  1297. case 30: //M30 <filename> Delete File
  1298. if (card.cardOK){
  1299. card.closefile();
  1300. starpos = (strchr(strchr_pointer + 4,'*'));
  1301. if(starpos != NULL){
  1302. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1303. strchr_pointer = strchr(npos,' ') + 1;
  1304. *(starpos-1) = '\0';
  1305. }
  1306. card.removeFile(strchr_pointer + 4);
  1307. }
  1308. break;
  1309. case 32: //M32 - Select file and start SD print
  1310. {
  1311. if(card.sdprinting) {
  1312. st_synchronize();
  1313. }
  1314. starpos = (strchr(strchr_pointer + 4,'*'));
  1315. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1316. if(namestartpos==NULL)
  1317. {
  1318. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1319. }
  1320. else
  1321. namestartpos++; //to skip the '!'
  1322. if(starpos!=NULL)
  1323. *(starpos-1)='\0';
  1324. bool call_procedure=(code_seen('P'));
  1325. if(strchr_pointer>namestartpos)
  1326. call_procedure=false; //false alert, 'P' found within filename
  1327. if( card.cardOK )
  1328. {
  1329. card.openFile(namestartpos,true,!call_procedure);
  1330. if(code_seen('S'))
  1331. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1332. card.setIndex(code_value_long());
  1333. card.startFileprint();
  1334. if(!call_procedure)
  1335. starttime=millis(); //procedure calls count as normal print time.
  1336. }
  1337. } break;
  1338. case 928: //M928 - Start SD write
  1339. starpos = (strchr(strchr_pointer + 5,'*'));
  1340. if(starpos != NULL){
  1341. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1342. strchr_pointer = strchr(npos,' ') + 1;
  1343. *(starpos-1) = '\0';
  1344. }
  1345. card.openLogFile(strchr_pointer+5);
  1346. break;
  1347. #endif //SDSUPPORT
  1348. case 31: //M31 take time since the start of the SD print or an M109 command
  1349. {
  1350. stoptime=millis();
  1351. char time[30];
  1352. unsigned long t=(stoptime-starttime)/1000;
  1353. int sec,min;
  1354. min=t/60;
  1355. sec=t%60;
  1356. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1357. SERIAL_ECHO_START;
  1358. SERIAL_ECHOLN(time);
  1359. lcd_setstatus(time);
  1360. autotempShutdown();
  1361. }
  1362. break;
  1363. case 42: //M42 -Change pin status via gcode
  1364. if (code_seen('S'))
  1365. {
  1366. int pin_status = code_value();
  1367. int pin_number = LED_PIN;
  1368. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1369. pin_number = code_value();
  1370. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1371. {
  1372. if (sensitive_pins[i] == pin_number)
  1373. {
  1374. pin_number = -1;
  1375. break;
  1376. }
  1377. }
  1378. #if defined(FAN_PIN) && FAN_PIN > -1
  1379. if (pin_number == FAN_PIN)
  1380. fanSpeed = pin_status;
  1381. #endif
  1382. if (pin_number > -1)
  1383. {
  1384. pinMode(pin_number, OUTPUT);
  1385. digitalWrite(pin_number, pin_status);
  1386. analogWrite(pin_number, pin_status);
  1387. }
  1388. }
  1389. break;
  1390. case 104: // M104
  1391. if(setTargetedHotend(104)){
  1392. break;
  1393. }
  1394. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1395. #ifdef DUAL_X_CARRIAGE
  1396. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1397. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1398. #endif
  1399. setWatch();
  1400. break;
  1401. case 140: // M140 set bed temp
  1402. if (code_seen('S')) setTargetBed(code_value());
  1403. break;
  1404. case 105 : // M105
  1405. if(setTargetedHotend(105)){
  1406. break;
  1407. }
  1408. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1409. SERIAL_PROTOCOLPGM("ok T:");
  1410. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1411. SERIAL_PROTOCOLPGM(" /");
  1412. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1413. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1414. SERIAL_PROTOCOLPGM(" B:");
  1415. SERIAL_PROTOCOL_F(degBed(),1);
  1416. SERIAL_PROTOCOLPGM(" /");
  1417. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1418. #endif //TEMP_BED_PIN
  1419. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1420. SERIAL_PROTOCOLPGM(" T");
  1421. SERIAL_PROTOCOL(cur_extruder);
  1422. SERIAL_PROTOCOLPGM(":");
  1423. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1424. SERIAL_PROTOCOLPGM(" /");
  1425. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1426. }
  1427. #else
  1428. SERIAL_ERROR_START;
  1429. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1430. #endif
  1431. SERIAL_PROTOCOLPGM(" @:");
  1432. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1433. SERIAL_PROTOCOLPGM(" B@:");
  1434. SERIAL_PROTOCOL(getHeaterPower(-1));
  1435. #ifdef SHOW_TEMP_ADC_VALUES
  1436. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1437. SERIAL_PROTOCOLPGM(" ADC B:");
  1438. SERIAL_PROTOCOL_F(degBed(),1);
  1439. SERIAL_PROTOCOLPGM("C->");
  1440. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1441. #endif
  1442. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1443. SERIAL_PROTOCOLPGM(" T");
  1444. SERIAL_PROTOCOL(cur_extruder);
  1445. SERIAL_PROTOCOLPGM(":");
  1446. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1447. SERIAL_PROTOCOLPGM("C->");
  1448. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1449. }
  1450. #endif
  1451. SERIAL_PROTOCOLLN("");
  1452. return;
  1453. break;
  1454. case 109:
  1455. {// M109 - Wait for extruder heater to reach target.
  1456. if(setTargetedHotend(109)){
  1457. break;
  1458. }
  1459. LCD_MESSAGEPGM(MSG_HEATING);
  1460. #ifdef AUTOTEMP
  1461. autotemp_enabled=false;
  1462. #endif
  1463. if (code_seen('S')) {
  1464. setTargetHotend(code_value(), tmp_extruder);
  1465. #ifdef DUAL_X_CARRIAGE
  1466. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1467. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1468. #endif
  1469. CooldownNoWait = true;
  1470. } else if (code_seen('R')) {
  1471. setTargetHotend(code_value(), tmp_extruder);
  1472. #ifdef DUAL_X_CARRIAGE
  1473. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1474. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1475. #endif
  1476. CooldownNoWait = false;
  1477. }
  1478. #ifdef AUTOTEMP
  1479. if (code_seen('S')) autotemp_min=code_value();
  1480. if (code_seen('B')) autotemp_max=code_value();
  1481. if (code_seen('F'))
  1482. {
  1483. autotemp_factor=code_value();
  1484. autotemp_enabled=true;
  1485. }
  1486. #endif
  1487. setWatch();
  1488. codenum = millis();
  1489. /* See if we are heating up or cooling down */
  1490. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1491. #ifdef TEMP_RESIDENCY_TIME
  1492. long residencyStart;
  1493. residencyStart = -1;
  1494. /* continue to loop until we have reached the target temp
  1495. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1496. while((residencyStart == -1) ||
  1497. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1498. #else
  1499. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1500. #endif //TEMP_RESIDENCY_TIME
  1501. if( (millis() - codenum) > 1000UL )
  1502. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1503. SERIAL_PROTOCOLPGM("T:");
  1504. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1505. SERIAL_PROTOCOLPGM(" E:");
  1506. SERIAL_PROTOCOL((int)tmp_extruder);
  1507. #ifdef TEMP_RESIDENCY_TIME
  1508. SERIAL_PROTOCOLPGM(" W:");
  1509. if(residencyStart > -1)
  1510. {
  1511. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1512. SERIAL_PROTOCOLLN( codenum );
  1513. }
  1514. else
  1515. {
  1516. SERIAL_PROTOCOLLN( "?" );
  1517. }
  1518. #else
  1519. SERIAL_PROTOCOLLN("");
  1520. #endif
  1521. codenum = millis();
  1522. }
  1523. manage_heater();
  1524. manage_inactivity();
  1525. lcd_update();
  1526. #ifdef TEMP_RESIDENCY_TIME
  1527. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1528. or when current temp falls outside the hysteresis after target temp was reached */
  1529. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1530. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1531. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1532. {
  1533. residencyStart = millis();
  1534. }
  1535. #endif //TEMP_RESIDENCY_TIME
  1536. }
  1537. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1538. starttime=millis();
  1539. previous_millis_cmd = millis();
  1540. }
  1541. break;
  1542. case 190: // M190 - Wait for bed heater to reach target.
  1543. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1544. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1545. if (code_seen('S')) {
  1546. setTargetBed(code_value());
  1547. CooldownNoWait = true;
  1548. } else if (code_seen('R')) {
  1549. setTargetBed(code_value());
  1550. CooldownNoWait = false;
  1551. }
  1552. codenum = millis();
  1553. target_direction = isHeatingBed(); // true if heating, false if cooling
  1554. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1555. {
  1556. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1557. {
  1558. float tt=degHotend(active_extruder);
  1559. SERIAL_PROTOCOLPGM("T:");
  1560. SERIAL_PROTOCOL(tt);
  1561. SERIAL_PROTOCOLPGM(" E:");
  1562. SERIAL_PROTOCOL((int)active_extruder);
  1563. SERIAL_PROTOCOLPGM(" B:");
  1564. SERIAL_PROTOCOL_F(degBed(),1);
  1565. SERIAL_PROTOCOLLN("");
  1566. codenum = millis();
  1567. }
  1568. manage_heater();
  1569. manage_inactivity();
  1570. lcd_update();
  1571. }
  1572. LCD_MESSAGEPGM(MSG_BED_DONE);
  1573. previous_millis_cmd = millis();
  1574. #endif
  1575. break;
  1576. #if defined(FAN_PIN) && FAN_PIN > -1
  1577. case 106: //M106 Fan On
  1578. if (code_seen('S')){
  1579. fanSpeed=constrain(code_value(),0,255);
  1580. }
  1581. else {
  1582. fanSpeed=255;
  1583. }
  1584. break;
  1585. case 107: //M107 Fan Off
  1586. fanSpeed = 0;
  1587. break;
  1588. #endif //FAN_PIN
  1589. #ifdef BARICUDA
  1590. // PWM for HEATER_1_PIN
  1591. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1592. case 126: //M126 valve open
  1593. if (code_seen('S')){
  1594. ValvePressure=constrain(code_value(),0,255);
  1595. }
  1596. else {
  1597. ValvePressure=255;
  1598. }
  1599. break;
  1600. case 127: //M127 valve closed
  1601. ValvePressure = 0;
  1602. break;
  1603. #endif //HEATER_1_PIN
  1604. // PWM for HEATER_2_PIN
  1605. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1606. case 128: //M128 valve open
  1607. if (code_seen('S')){
  1608. EtoPPressure=constrain(code_value(),0,255);
  1609. }
  1610. else {
  1611. EtoPPressure=255;
  1612. }
  1613. break;
  1614. case 129: //M129 valve closed
  1615. EtoPPressure = 0;
  1616. break;
  1617. #endif //HEATER_2_PIN
  1618. #endif
  1619. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1620. case 80: // M80 - Turn on Power Supply
  1621. SET_OUTPUT(PS_ON_PIN); //GND
  1622. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1623. #ifdef ULTIPANEL
  1624. powersupply = true;
  1625. LCD_MESSAGEPGM(WELCOME_MSG);
  1626. lcd_update();
  1627. #endif
  1628. break;
  1629. #endif
  1630. case 81: // M81 - Turn off Power Supply
  1631. disable_heater();
  1632. st_synchronize();
  1633. disable_e0();
  1634. disable_e1();
  1635. disable_e2();
  1636. finishAndDisableSteppers();
  1637. fanSpeed = 0;
  1638. delay(1000); // Wait a little before to switch off
  1639. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1640. st_synchronize();
  1641. suicide();
  1642. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1643. SET_OUTPUT(PS_ON_PIN);
  1644. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1645. #endif
  1646. #ifdef ULTIPANEL
  1647. powersupply = false;
  1648. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1649. lcd_update();
  1650. #endif
  1651. break;
  1652. case 82:
  1653. axis_relative_modes[3] = false;
  1654. break;
  1655. case 83:
  1656. axis_relative_modes[3] = true;
  1657. break;
  1658. case 18: //compatibility
  1659. case 84: // M84
  1660. if(code_seen('S')){
  1661. stepper_inactive_time = code_value() * 1000;
  1662. }
  1663. else
  1664. {
  1665. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1666. if(all_axis)
  1667. {
  1668. st_synchronize();
  1669. disable_e0();
  1670. disable_e1();
  1671. disable_e2();
  1672. finishAndDisableSteppers();
  1673. }
  1674. else
  1675. {
  1676. st_synchronize();
  1677. if(code_seen('X')) disable_x();
  1678. if(code_seen('Y')) disable_y();
  1679. if(code_seen('Z')) disable_z();
  1680. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1681. if(code_seen('E')) {
  1682. disable_e0();
  1683. disable_e1();
  1684. disable_e2();
  1685. }
  1686. #endif
  1687. }
  1688. }
  1689. break;
  1690. case 85: // M85
  1691. code_seen('S');
  1692. max_inactive_time = code_value() * 1000;
  1693. break;
  1694. case 92: // M92
  1695. for(int8_t i=0; i < NUM_AXIS; i++)
  1696. {
  1697. if(code_seen(axis_codes[i]))
  1698. {
  1699. if(i == 3) { // E
  1700. float value = code_value();
  1701. if(value < 20.0) {
  1702. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1703. max_e_jerk *= factor;
  1704. max_feedrate[i] *= factor;
  1705. axis_steps_per_sqr_second[i] *= factor;
  1706. }
  1707. axis_steps_per_unit[i] = value;
  1708. }
  1709. else {
  1710. axis_steps_per_unit[i] = code_value();
  1711. }
  1712. }
  1713. }
  1714. break;
  1715. case 115: // M115
  1716. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1717. break;
  1718. case 117: // M117 display message
  1719. starpos = (strchr(strchr_pointer + 5,'*'));
  1720. if(starpos!=NULL)
  1721. *(starpos-1)='\0';
  1722. lcd_setstatus(strchr_pointer + 5);
  1723. break;
  1724. case 114: // M114
  1725. SERIAL_PROTOCOLPGM("X:");
  1726. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1727. SERIAL_PROTOCOLPGM("Y:");
  1728. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1729. SERIAL_PROTOCOLPGM("Z:");
  1730. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1731. SERIAL_PROTOCOLPGM("E:");
  1732. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1733. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1734. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1735. SERIAL_PROTOCOLPGM("Y:");
  1736. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1737. SERIAL_PROTOCOLPGM("Z:");
  1738. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1739. SERIAL_PROTOCOLLN("");
  1740. break;
  1741. case 120: // M120
  1742. enable_endstops(false) ;
  1743. break;
  1744. case 121: // M121
  1745. enable_endstops(true) ;
  1746. break;
  1747. case 119: // M119
  1748. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1749. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1750. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1751. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1752. #endif
  1753. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1754. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1755. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1756. #endif
  1757. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1758. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1759. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1760. #endif
  1761. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1762. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1763. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1764. #endif
  1765. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1766. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1767. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1768. #endif
  1769. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1770. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1771. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1772. #endif
  1773. break;
  1774. //TODO: update for all axis, use for loop
  1775. #ifdef BLINKM
  1776. case 150: // M150
  1777. {
  1778. byte red;
  1779. byte grn;
  1780. byte blu;
  1781. if(code_seen('R')) red = code_value();
  1782. if(code_seen('U')) grn = code_value();
  1783. if(code_seen('B')) blu = code_value();
  1784. SendColors(red,grn,blu);
  1785. }
  1786. break;
  1787. #endif //BLINKM
  1788. case 201: // M201
  1789. for(int8_t i=0; i < NUM_AXIS; i++)
  1790. {
  1791. if(code_seen(axis_codes[i]))
  1792. {
  1793. max_acceleration_units_per_sq_second[i] = code_value();
  1794. }
  1795. }
  1796. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1797. reset_acceleration_rates();
  1798. break;
  1799. #if 0 // Not used for Sprinter/grbl gen6
  1800. case 202: // M202
  1801. for(int8_t i=0; i < NUM_AXIS; i++) {
  1802. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1803. }
  1804. break;
  1805. #endif
  1806. case 203: // M203 max feedrate mm/sec
  1807. for(int8_t i=0; i < NUM_AXIS; i++) {
  1808. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1809. }
  1810. break;
  1811. case 204: // M204 acclereration S normal moves T filmanent only moves
  1812. {
  1813. if(code_seen('S')) acceleration = code_value() ;
  1814. if(code_seen('T')) retract_acceleration = code_value() ;
  1815. }
  1816. break;
  1817. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1818. {
  1819. if(code_seen('S')) minimumfeedrate = code_value();
  1820. if(code_seen('T')) mintravelfeedrate = code_value();
  1821. if(code_seen('B')) minsegmenttime = code_value() ;
  1822. if(code_seen('X')) max_xy_jerk = code_value() ;
  1823. if(code_seen('Z')) max_z_jerk = code_value() ;
  1824. if(code_seen('E')) max_e_jerk = code_value() ;
  1825. }
  1826. break;
  1827. case 206: // M206 additional homeing offset
  1828. for(int8_t i=0; i < 3; i++)
  1829. {
  1830. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1831. }
  1832. break;
  1833. #ifdef DELTA
  1834. case 666: // M666 set delta endstop adjustemnt
  1835. for(int8_t i=0; i < 3; i++)
  1836. {
  1837. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1838. }
  1839. break;
  1840. #endif
  1841. #ifdef FWRETRACT
  1842. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1843. {
  1844. if(code_seen('S'))
  1845. {
  1846. retract_length = code_value() ;
  1847. }
  1848. if(code_seen('F'))
  1849. {
  1850. retract_feedrate = code_value() ;
  1851. }
  1852. if(code_seen('Z'))
  1853. {
  1854. retract_zlift = code_value() ;
  1855. }
  1856. }break;
  1857. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1858. {
  1859. if(code_seen('S'))
  1860. {
  1861. retract_recover_length = code_value() ;
  1862. }
  1863. if(code_seen('F'))
  1864. {
  1865. retract_recover_feedrate = code_value() ;
  1866. }
  1867. }break;
  1868. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1869. {
  1870. if(code_seen('S'))
  1871. {
  1872. int t= code_value() ;
  1873. switch(t)
  1874. {
  1875. case 0: autoretract_enabled=false;retracted=false;break;
  1876. case 1: autoretract_enabled=true;retracted=false;break;
  1877. default:
  1878. SERIAL_ECHO_START;
  1879. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1880. SERIAL_ECHO(cmdbuffer[bufindr]);
  1881. SERIAL_ECHOLNPGM("\"");
  1882. }
  1883. }
  1884. }break;
  1885. #endif // FWRETRACT
  1886. #if EXTRUDERS > 1
  1887. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1888. {
  1889. if(setTargetedHotend(218)){
  1890. break;
  1891. }
  1892. if(code_seen('X'))
  1893. {
  1894. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1895. }
  1896. if(code_seen('Y'))
  1897. {
  1898. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1899. }
  1900. #ifdef DUAL_X_CARRIAGE
  1901. if(code_seen('Z'))
  1902. {
  1903. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  1904. }
  1905. #endif
  1906. SERIAL_ECHO_START;
  1907. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1908. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1909. {
  1910. SERIAL_ECHO(" ");
  1911. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1912. SERIAL_ECHO(",");
  1913. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1914. #ifdef DUAL_X_CARRIAGE
  1915. SERIAL_ECHO(",");
  1916. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  1917. #endif
  1918. }
  1919. SERIAL_ECHOLN("");
  1920. }break;
  1921. #endif
  1922. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1923. {
  1924. if(code_seen('S'))
  1925. {
  1926. feedmultiply = code_value() ;
  1927. }
  1928. }
  1929. break;
  1930. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1931. {
  1932. if(code_seen('S'))
  1933. {
  1934. extrudemultiply = code_value() ;
  1935. }
  1936. }
  1937. break;
  1938. #if NUM_SERVOS > 0
  1939. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  1940. {
  1941. int servo_index = -1;
  1942. int servo_position = 0;
  1943. if (code_seen('P'))
  1944. servo_index = code_value();
  1945. if (code_seen('S')) {
  1946. servo_position = code_value();
  1947. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  1948. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1949. servos[servo_index].attach(0);
  1950. #endif
  1951. servos[servo_index].write(servo_position);
  1952. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1953. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1954. servos[servo_index].detach();
  1955. #endif
  1956. }
  1957. else {
  1958. SERIAL_ECHO_START;
  1959. SERIAL_ECHO("Servo ");
  1960. SERIAL_ECHO(servo_index);
  1961. SERIAL_ECHOLN(" out of range");
  1962. }
  1963. }
  1964. else if (servo_index >= 0) {
  1965. SERIAL_PROTOCOL(MSG_OK);
  1966. SERIAL_PROTOCOL(" Servo ");
  1967. SERIAL_PROTOCOL(servo_index);
  1968. SERIAL_PROTOCOL(": ");
  1969. SERIAL_PROTOCOL(servos[servo_index].read());
  1970. SERIAL_PROTOCOLLN("");
  1971. }
  1972. }
  1973. break;
  1974. #endif // NUM_SERVOS > 0
  1975. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  1976. case 300: // M300
  1977. {
  1978. int beepS = code_seen('S') ? code_value() : 110;
  1979. int beepP = code_seen('P') ? code_value() : 1000;
  1980. if (beepS > 0)
  1981. {
  1982. #if BEEPER > 0
  1983. tone(BEEPER, beepS);
  1984. delay(beepP);
  1985. noTone(BEEPER);
  1986. #elif defined(ULTRALCD)
  1987. lcd_buzz(beepS, beepP);
  1988. #endif
  1989. }
  1990. else
  1991. {
  1992. delay(beepP);
  1993. }
  1994. }
  1995. break;
  1996. #endif // M300
  1997. #ifdef PIDTEMP
  1998. case 301: // M301
  1999. {
  2000. if(code_seen('P')) Kp = code_value();
  2001. if(code_seen('I')) Ki = scalePID_i(code_value());
  2002. if(code_seen('D')) Kd = scalePID_d(code_value());
  2003. #ifdef PID_ADD_EXTRUSION_RATE
  2004. if(code_seen('C')) Kc = code_value();
  2005. #endif
  2006. updatePID();
  2007. SERIAL_PROTOCOL(MSG_OK);
  2008. SERIAL_PROTOCOL(" p:");
  2009. SERIAL_PROTOCOL(Kp);
  2010. SERIAL_PROTOCOL(" i:");
  2011. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2012. SERIAL_PROTOCOL(" d:");
  2013. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2014. #ifdef PID_ADD_EXTRUSION_RATE
  2015. SERIAL_PROTOCOL(" c:");
  2016. //Kc does not have scaling applied above, or in resetting defaults
  2017. SERIAL_PROTOCOL(Kc);
  2018. #endif
  2019. SERIAL_PROTOCOLLN("");
  2020. }
  2021. break;
  2022. #endif //PIDTEMP
  2023. #ifdef PIDTEMPBED
  2024. case 304: // M304
  2025. {
  2026. if(code_seen('P')) bedKp = code_value();
  2027. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2028. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2029. updatePID();
  2030. SERIAL_PROTOCOL(MSG_OK);
  2031. SERIAL_PROTOCOL(" p:");
  2032. SERIAL_PROTOCOL(bedKp);
  2033. SERIAL_PROTOCOL(" i:");
  2034. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2035. SERIAL_PROTOCOL(" d:");
  2036. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2037. SERIAL_PROTOCOLLN("");
  2038. }
  2039. break;
  2040. #endif //PIDTEMP
  2041. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2042. {
  2043. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2044. const uint8_t NUM_PULSES=16;
  2045. const float PULSE_LENGTH=0.01524;
  2046. for(int i=0; i < NUM_PULSES; i++) {
  2047. WRITE(PHOTOGRAPH_PIN, HIGH);
  2048. _delay_ms(PULSE_LENGTH);
  2049. WRITE(PHOTOGRAPH_PIN, LOW);
  2050. _delay_ms(PULSE_LENGTH);
  2051. }
  2052. delay(7.33);
  2053. for(int i=0; i < NUM_PULSES; i++) {
  2054. WRITE(PHOTOGRAPH_PIN, HIGH);
  2055. _delay_ms(PULSE_LENGTH);
  2056. WRITE(PHOTOGRAPH_PIN, LOW);
  2057. _delay_ms(PULSE_LENGTH);
  2058. }
  2059. #endif
  2060. }
  2061. break;
  2062. #ifdef DOGLCD
  2063. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2064. {
  2065. if (code_seen('C')) {
  2066. lcd_setcontrast( ((int)code_value())&63 );
  2067. }
  2068. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2069. SERIAL_PROTOCOL(lcd_contrast);
  2070. SERIAL_PROTOCOLLN("");
  2071. }
  2072. break;
  2073. #endif
  2074. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2075. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2076. {
  2077. float temp = .0;
  2078. if (code_seen('S')) temp=code_value();
  2079. set_extrude_min_temp(temp);
  2080. }
  2081. break;
  2082. #endif
  2083. case 303: // M303 PID autotune
  2084. {
  2085. float temp = 150.0;
  2086. int e=0;
  2087. int c=5;
  2088. if (code_seen('E')) e=code_value();
  2089. if (e<0)
  2090. temp=70;
  2091. if (code_seen('S')) temp=code_value();
  2092. if (code_seen('C')) c=code_value();
  2093. PID_autotune(temp, e, c);
  2094. }
  2095. break;
  2096. case 400: // M400 finish all moves
  2097. {
  2098. st_synchronize();
  2099. }
  2100. break;
  2101. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2102. case 401:
  2103. {
  2104. engage_z_probe(); // Engage Z Servo endstop if available
  2105. }
  2106. break;
  2107. case 402:
  2108. {
  2109. retract_z_probe(); // Retract Z Servo endstop if enabled
  2110. }
  2111. break;
  2112. #endif
  2113. case 500: // M500 Store settings in EEPROM
  2114. {
  2115. Config_StoreSettings();
  2116. }
  2117. break;
  2118. case 501: // M501 Read settings from EEPROM
  2119. {
  2120. Config_RetrieveSettings();
  2121. }
  2122. break;
  2123. case 502: // M502 Revert to default settings
  2124. {
  2125. Config_ResetDefault();
  2126. }
  2127. break;
  2128. case 503: // M503 print settings currently in memory
  2129. {
  2130. Config_PrintSettings();
  2131. }
  2132. break;
  2133. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2134. case 540:
  2135. {
  2136. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2137. }
  2138. break;
  2139. #endif
  2140. #ifdef FILAMENTCHANGEENABLE
  2141. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2142. {
  2143. float target[4];
  2144. float lastpos[4];
  2145. target[X_AXIS]=current_position[X_AXIS];
  2146. target[Y_AXIS]=current_position[Y_AXIS];
  2147. target[Z_AXIS]=current_position[Z_AXIS];
  2148. target[E_AXIS]=current_position[E_AXIS];
  2149. lastpos[X_AXIS]=current_position[X_AXIS];
  2150. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2151. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2152. lastpos[E_AXIS]=current_position[E_AXIS];
  2153. //retract by E
  2154. if(code_seen('E'))
  2155. {
  2156. target[E_AXIS]+= code_value();
  2157. }
  2158. else
  2159. {
  2160. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2161. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2162. #endif
  2163. }
  2164. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2165. //lift Z
  2166. if(code_seen('Z'))
  2167. {
  2168. target[Z_AXIS]+= code_value();
  2169. }
  2170. else
  2171. {
  2172. #ifdef FILAMENTCHANGE_ZADD
  2173. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2174. #endif
  2175. }
  2176. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2177. //move xy
  2178. if(code_seen('X'))
  2179. {
  2180. target[X_AXIS]+= code_value();
  2181. }
  2182. else
  2183. {
  2184. #ifdef FILAMENTCHANGE_XPOS
  2185. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2186. #endif
  2187. }
  2188. if(code_seen('Y'))
  2189. {
  2190. target[Y_AXIS]= code_value();
  2191. }
  2192. else
  2193. {
  2194. #ifdef FILAMENTCHANGE_YPOS
  2195. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2196. #endif
  2197. }
  2198. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2199. if(code_seen('L'))
  2200. {
  2201. target[E_AXIS]+= code_value();
  2202. }
  2203. else
  2204. {
  2205. #ifdef FILAMENTCHANGE_FINALRETRACT
  2206. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2207. #endif
  2208. }
  2209. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2210. //finish moves
  2211. st_synchronize();
  2212. //disable extruder steppers so filament can be removed
  2213. disable_e0();
  2214. disable_e1();
  2215. disable_e2();
  2216. delay(100);
  2217. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2218. uint8_t cnt=0;
  2219. while(!lcd_clicked()){
  2220. cnt++;
  2221. manage_heater();
  2222. manage_inactivity();
  2223. lcd_update();
  2224. if(cnt==0)
  2225. {
  2226. #if BEEPER > 0
  2227. SET_OUTPUT(BEEPER);
  2228. WRITE(BEEPER,HIGH);
  2229. delay(3);
  2230. WRITE(BEEPER,LOW);
  2231. delay(3);
  2232. #else
  2233. lcd_buzz(1000/6,100);
  2234. #endif
  2235. }
  2236. }
  2237. //return to normal
  2238. if(code_seen('L'))
  2239. {
  2240. target[E_AXIS]+= -code_value();
  2241. }
  2242. else
  2243. {
  2244. #ifdef FILAMENTCHANGE_FINALRETRACT
  2245. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2246. #endif
  2247. }
  2248. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2249. plan_set_e_position(current_position[E_AXIS]);
  2250. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2251. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2252. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2253. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2254. }
  2255. break;
  2256. #endif //FILAMENTCHANGEENABLE
  2257. #ifdef DUAL_X_CARRIAGE
  2258. case 605: // Set dual x-carriage movement mode:
  2259. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2260. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2261. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2262. // millimeters x-offset and an optional differential hotend temperature of
  2263. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2264. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2265. //
  2266. // Note: the X axis should be homed after changing dual x-carriage mode.
  2267. {
  2268. st_synchronize();
  2269. if (code_seen('S'))
  2270. dual_x_carriage_mode = code_value();
  2271. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2272. {
  2273. if (code_seen('X'))
  2274. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2275. if (code_seen('R'))
  2276. duplicate_extruder_temp_offset = code_value();
  2277. SERIAL_ECHO_START;
  2278. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2279. SERIAL_ECHO(" ");
  2280. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2281. SERIAL_ECHO(",");
  2282. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2283. SERIAL_ECHO(" ");
  2284. SERIAL_ECHO(duplicate_extruder_x_offset);
  2285. SERIAL_ECHO(",");
  2286. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2287. }
  2288. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2289. {
  2290. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2291. }
  2292. active_extruder_parked = false;
  2293. extruder_duplication_enabled = false;
  2294. delayed_move_time = 0;
  2295. }
  2296. break;
  2297. #endif //DUAL_X_CARRIAGE
  2298. case 907: // M907 Set digital trimpot motor current using axis codes.
  2299. {
  2300. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2301. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2302. if(code_seen('B')) digipot_current(4,code_value());
  2303. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2304. #endif
  2305. }
  2306. break;
  2307. case 908: // M908 Control digital trimpot directly.
  2308. {
  2309. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2310. uint8_t channel,current;
  2311. if(code_seen('P')) channel=code_value();
  2312. if(code_seen('S')) current=code_value();
  2313. digitalPotWrite(channel, current);
  2314. #endif
  2315. }
  2316. break;
  2317. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2318. {
  2319. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2320. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2321. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2322. if(code_seen('B')) microstep_mode(4,code_value());
  2323. microstep_readings();
  2324. #endif
  2325. }
  2326. break;
  2327. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2328. {
  2329. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2330. if(code_seen('S')) switch((int)code_value())
  2331. {
  2332. case 1:
  2333. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2334. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2335. break;
  2336. case 2:
  2337. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2338. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2339. break;
  2340. }
  2341. microstep_readings();
  2342. #endif
  2343. }
  2344. break;
  2345. case 999: // M999: Restart after being stopped
  2346. Stopped = false;
  2347. lcd_reset_alert_level();
  2348. gcode_LastN = Stopped_gcode_LastN;
  2349. FlushSerialRequestResend();
  2350. break;
  2351. }
  2352. }
  2353. else if(code_seen('T'))
  2354. {
  2355. tmp_extruder = code_value();
  2356. if(tmp_extruder >= EXTRUDERS) {
  2357. SERIAL_ECHO_START;
  2358. SERIAL_ECHO("T");
  2359. SERIAL_ECHO(tmp_extruder);
  2360. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2361. }
  2362. else {
  2363. boolean make_move = false;
  2364. if(code_seen('F')) {
  2365. make_move = true;
  2366. next_feedrate = code_value();
  2367. if(next_feedrate > 0.0) {
  2368. feedrate = next_feedrate;
  2369. }
  2370. }
  2371. #if EXTRUDERS > 1
  2372. if(tmp_extruder != active_extruder) {
  2373. // Save current position to return to after applying extruder offset
  2374. memcpy(destination, current_position, sizeof(destination));
  2375. #ifdef DUAL_X_CARRIAGE
  2376. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2377. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2378. {
  2379. // Park old head: 1) raise 2) move to park position 3) lower
  2380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2381. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2382. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2383. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2384. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2385. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2386. st_synchronize();
  2387. }
  2388. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2389. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2390. extruder_offset[Y_AXIS][active_extruder] +
  2391. extruder_offset[Y_AXIS][tmp_extruder];
  2392. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2393. extruder_offset[Z_AXIS][active_extruder] +
  2394. extruder_offset[Z_AXIS][tmp_extruder];
  2395. active_extruder = tmp_extruder;
  2396. // This function resets the max/min values - the current position may be overwritten below.
  2397. axis_is_at_home(X_AXIS);
  2398. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2399. {
  2400. current_position[X_AXIS] = inactive_extruder_x_pos;
  2401. inactive_extruder_x_pos = destination[X_AXIS];
  2402. }
  2403. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2404. {
  2405. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2406. if (active_extruder == 0 || active_extruder_parked)
  2407. current_position[X_AXIS] = inactive_extruder_x_pos;
  2408. else
  2409. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2410. inactive_extruder_x_pos = destination[X_AXIS];
  2411. extruder_duplication_enabled = false;
  2412. }
  2413. else
  2414. {
  2415. // record raised toolhead position for use by unpark
  2416. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2417. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2418. active_extruder_parked = true;
  2419. delayed_move_time = 0;
  2420. }
  2421. #else
  2422. // Offset extruder (only by XY)
  2423. int i;
  2424. for(i = 0; i < 2; i++) {
  2425. current_position[i] = current_position[i] -
  2426. extruder_offset[i][active_extruder] +
  2427. extruder_offset[i][tmp_extruder];
  2428. }
  2429. // Set the new active extruder and position
  2430. active_extruder = tmp_extruder;
  2431. #endif //else DUAL_X_CARRIAGE
  2432. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2433. // Move to the old position if 'F' was in the parameters
  2434. if(make_move && Stopped == false) {
  2435. prepare_move();
  2436. }
  2437. }
  2438. #endif
  2439. SERIAL_ECHO_START;
  2440. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2441. SERIAL_PROTOCOLLN((int)active_extruder);
  2442. }
  2443. }
  2444. else
  2445. {
  2446. SERIAL_ECHO_START;
  2447. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2448. SERIAL_ECHO(cmdbuffer[bufindr]);
  2449. SERIAL_ECHOLNPGM("\"");
  2450. }
  2451. ClearToSend();
  2452. }
  2453. void FlushSerialRequestResend()
  2454. {
  2455. //char cmdbuffer[bufindr][100]="Resend:";
  2456. MYSERIAL.flush();
  2457. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2458. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2459. ClearToSend();
  2460. }
  2461. void ClearToSend()
  2462. {
  2463. previous_millis_cmd = millis();
  2464. #ifdef SDSUPPORT
  2465. if(fromsd[bufindr])
  2466. return;
  2467. #endif //SDSUPPORT
  2468. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2469. }
  2470. void get_coordinates()
  2471. {
  2472. bool seen[4]={false,false,false,false};
  2473. for(int8_t i=0; i < NUM_AXIS; i++) {
  2474. if(code_seen(axis_codes[i]))
  2475. {
  2476. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2477. seen[i]=true;
  2478. }
  2479. else destination[i] = current_position[i]; //Are these else lines really needed?
  2480. }
  2481. if(code_seen('F')) {
  2482. next_feedrate = code_value();
  2483. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2484. }
  2485. #ifdef FWRETRACT
  2486. if(autoretract_enabled)
  2487. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2488. {
  2489. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2490. if(echange<-MIN_RETRACT) //retract
  2491. {
  2492. if(!retracted)
  2493. {
  2494. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2495. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2496. float correctede=-echange-retract_length;
  2497. //to generate the additional steps, not the destination is changed, but inversely the current position
  2498. current_position[E_AXIS]+=-correctede;
  2499. feedrate=retract_feedrate;
  2500. retracted=true;
  2501. }
  2502. }
  2503. else
  2504. if(echange>MIN_RETRACT) //retract_recover
  2505. {
  2506. if(retracted)
  2507. {
  2508. //current_position[Z_AXIS]+=-retract_zlift;
  2509. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2510. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2511. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2512. feedrate=retract_recover_feedrate;
  2513. retracted=false;
  2514. }
  2515. }
  2516. }
  2517. #endif //FWRETRACT
  2518. }
  2519. void get_arc_coordinates()
  2520. {
  2521. #ifdef SF_ARC_FIX
  2522. bool relative_mode_backup = relative_mode;
  2523. relative_mode = true;
  2524. #endif
  2525. get_coordinates();
  2526. #ifdef SF_ARC_FIX
  2527. relative_mode=relative_mode_backup;
  2528. #endif
  2529. if(code_seen('I')) {
  2530. offset[0] = code_value();
  2531. }
  2532. else {
  2533. offset[0] = 0.0;
  2534. }
  2535. if(code_seen('J')) {
  2536. offset[1] = code_value();
  2537. }
  2538. else {
  2539. offset[1] = 0.0;
  2540. }
  2541. }
  2542. void clamp_to_software_endstops(float target[3])
  2543. {
  2544. if (min_software_endstops) {
  2545. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2546. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2547. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2548. }
  2549. if (max_software_endstops) {
  2550. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2551. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2552. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2553. }
  2554. }
  2555. #ifdef DELTA
  2556. void calculate_delta(float cartesian[3])
  2557. {
  2558. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2559. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2560. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2561. ) + cartesian[Z_AXIS];
  2562. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2563. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2564. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2565. ) + cartesian[Z_AXIS];
  2566. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2567. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2568. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2569. ) + cartesian[Z_AXIS];
  2570. /*
  2571. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2572. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2573. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2574. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2575. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2576. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2577. */
  2578. }
  2579. #endif
  2580. void prepare_move()
  2581. {
  2582. clamp_to_software_endstops(destination);
  2583. previous_millis_cmd = millis();
  2584. #ifdef DELTA
  2585. float difference[NUM_AXIS];
  2586. for (int8_t i=0; i < NUM_AXIS; i++) {
  2587. difference[i] = destination[i] - current_position[i];
  2588. }
  2589. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2590. sq(difference[Y_AXIS]) +
  2591. sq(difference[Z_AXIS]));
  2592. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2593. if (cartesian_mm < 0.000001) { return; }
  2594. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2595. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2596. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2597. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2598. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2599. for (int s = 1; s <= steps; s++) {
  2600. float fraction = float(s) / float(steps);
  2601. for(int8_t i=0; i < NUM_AXIS; i++) {
  2602. destination[i] = current_position[i] + difference[i] * fraction;
  2603. }
  2604. calculate_delta(destination);
  2605. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2606. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2607. active_extruder);
  2608. }
  2609. #else
  2610. #ifdef DUAL_X_CARRIAGE
  2611. if (active_extruder_parked)
  2612. {
  2613. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2614. {
  2615. // move duplicate extruder into correct duplication position.
  2616. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2617. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2618. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2619. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2620. st_synchronize();
  2621. extruder_duplication_enabled = true;
  2622. active_extruder_parked = false;
  2623. }
  2624. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2625. {
  2626. if (current_position[E_AXIS] == destination[E_AXIS])
  2627. {
  2628. // this is a travel move - skit it but keep track of current position (so that it can later
  2629. // be used as start of first non-travel move)
  2630. if (delayed_move_time != 0xFFFFFFFFUL)
  2631. {
  2632. memcpy(current_position, destination, sizeof(current_position));
  2633. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2634. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2635. delayed_move_time = millis();
  2636. return;
  2637. }
  2638. }
  2639. delayed_move_time = 0;
  2640. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2641. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2643. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2645. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2646. active_extruder_parked = false;
  2647. }
  2648. }
  2649. #endif //DUAL_X_CARRIAGE
  2650. // Do not use feedmultiply for E or Z only moves
  2651. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2652. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2653. }
  2654. else {
  2655. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2656. }
  2657. #endif //else DELTA
  2658. for(int8_t i=0; i < NUM_AXIS; i++) {
  2659. current_position[i] = destination[i];
  2660. }
  2661. }
  2662. void prepare_arc_move(char isclockwise) {
  2663. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2664. // Trace the arc
  2665. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2666. // As far as the parser is concerned, the position is now == target. In reality the
  2667. // motion control system might still be processing the action and the real tool position
  2668. // in any intermediate location.
  2669. for(int8_t i=0; i < NUM_AXIS; i++) {
  2670. current_position[i] = destination[i];
  2671. }
  2672. previous_millis_cmd = millis();
  2673. }
  2674. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2675. #if defined(FAN_PIN)
  2676. #if CONTROLLERFAN_PIN == FAN_PIN
  2677. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2678. #endif
  2679. #endif
  2680. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2681. unsigned long lastMotorCheck = 0;
  2682. void controllerFan()
  2683. {
  2684. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2685. {
  2686. lastMotorCheck = millis();
  2687. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  2688. #if EXTRUDERS > 2
  2689. || !READ(E2_ENABLE_PIN)
  2690. #endif
  2691. #if EXTRUDER > 1
  2692. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2693. || !READ(X2_ENABLE_PIN)
  2694. #endif
  2695. || !READ(E1_ENABLE_PIN)
  2696. #endif
  2697. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2698. {
  2699. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2700. }
  2701. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2702. {
  2703. digitalWrite(CONTROLLERFAN_PIN, 0);
  2704. analogWrite(CONTROLLERFAN_PIN, 0);
  2705. }
  2706. else
  2707. {
  2708. // allows digital or PWM fan output to be used (see M42 handling)
  2709. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2710. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2711. }
  2712. }
  2713. }
  2714. #endif
  2715. #ifdef TEMP_STAT_LEDS
  2716. static bool blue_led = false;
  2717. static bool red_led = false;
  2718. static uint32_t stat_update = 0;
  2719. void handle_status_leds(void) {
  2720. float max_temp = 0.0;
  2721. if(millis() > stat_update) {
  2722. stat_update += 500; // Update every 0.5s
  2723. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2724. max_temp = max(max_temp, degHotend(cur_extruder));
  2725. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2726. }
  2727. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2728. max_temp = max(max_temp, degTargetBed());
  2729. max_temp = max(max_temp, degBed());
  2730. #endif
  2731. if((max_temp > 55.0) && (red_led == false)) {
  2732. digitalWrite(STAT_LED_RED, 1);
  2733. digitalWrite(STAT_LED_BLUE, 0);
  2734. red_led = true;
  2735. blue_led = false;
  2736. }
  2737. if((max_temp < 54.0) && (blue_led == false)) {
  2738. digitalWrite(STAT_LED_RED, 0);
  2739. digitalWrite(STAT_LED_BLUE, 1);
  2740. red_led = false;
  2741. blue_led = true;
  2742. }
  2743. }
  2744. }
  2745. #endif
  2746. void manage_inactivity()
  2747. {
  2748. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2749. if(max_inactive_time)
  2750. kill();
  2751. if(stepper_inactive_time) {
  2752. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2753. {
  2754. if(blocks_queued() == false) {
  2755. disable_x();
  2756. disable_y();
  2757. disable_z();
  2758. disable_e0();
  2759. disable_e1();
  2760. disable_e2();
  2761. }
  2762. }
  2763. }
  2764. #if defined(KILL_PIN) && KILL_PIN > -1
  2765. if( 0 == READ(KILL_PIN) )
  2766. kill();
  2767. #endif
  2768. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2769. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2770. #endif
  2771. #ifdef EXTRUDER_RUNOUT_PREVENT
  2772. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2773. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2774. {
  2775. bool oldstatus=READ(E0_ENABLE_PIN);
  2776. enable_e0();
  2777. float oldepos=current_position[E_AXIS];
  2778. float oldedes=destination[E_AXIS];
  2779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2780. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2781. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2782. current_position[E_AXIS]=oldepos;
  2783. destination[E_AXIS]=oldedes;
  2784. plan_set_e_position(oldepos);
  2785. previous_millis_cmd=millis();
  2786. st_synchronize();
  2787. WRITE(E0_ENABLE_PIN,oldstatus);
  2788. }
  2789. #endif
  2790. #if defined(DUAL_X_CARRIAGE)
  2791. // handle delayed move timeout
  2792. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2793. {
  2794. // travel moves have been received so enact them
  2795. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2796. memcpy(destination,current_position,sizeof(destination));
  2797. prepare_move();
  2798. }
  2799. #endif
  2800. #ifdef TEMP_STAT_LEDS
  2801. handle_status_leds();
  2802. #endif
  2803. check_axes_activity();
  2804. }
  2805. void kill()
  2806. {
  2807. cli(); // Stop interrupts
  2808. disable_heater();
  2809. disable_x();
  2810. disable_y();
  2811. disable_z();
  2812. disable_e0();
  2813. disable_e1();
  2814. disable_e2();
  2815. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2816. pinMode(PS_ON_PIN,INPUT);
  2817. #endif
  2818. SERIAL_ERROR_START;
  2819. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2820. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2821. suicide();
  2822. while(1) { /* Intentionally left empty */ } // Wait for reset
  2823. }
  2824. void Stop()
  2825. {
  2826. disable_heater();
  2827. if(Stopped == false) {
  2828. Stopped = true;
  2829. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2830. SERIAL_ERROR_START;
  2831. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2832. LCD_MESSAGEPGM(MSG_STOPPED);
  2833. }
  2834. }
  2835. bool IsStopped() { return Stopped; };
  2836. #ifdef FAST_PWM_FAN
  2837. void setPwmFrequency(uint8_t pin, int val)
  2838. {
  2839. val &= 0x07;
  2840. switch(digitalPinToTimer(pin))
  2841. {
  2842. #if defined(TCCR0A)
  2843. case TIMER0A:
  2844. case TIMER0B:
  2845. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2846. // TCCR0B |= val;
  2847. break;
  2848. #endif
  2849. #if defined(TCCR1A)
  2850. case TIMER1A:
  2851. case TIMER1B:
  2852. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2853. // TCCR1B |= val;
  2854. break;
  2855. #endif
  2856. #if defined(TCCR2)
  2857. case TIMER2:
  2858. case TIMER2:
  2859. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2860. TCCR2 |= val;
  2861. break;
  2862. #endif
  2863. #if defined(TCCR2A)
  2864. case TIMER2A:
  2865. case TIMER2B:
  2866. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2867. TCCR2B |= val;
  2868. break;
  2869. #endif
  2870. #if defined(TCCR3A)
  2871. case TIMER3A:
  2872. case TIMER3B:
  2873. case TIMER3C:
  2874. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2875. TCCR3B |= val;
  2876. break;
  2877. #endif
  2878. #if defined(TCCR4A)
  2879. case TIMER4A:
  2880. case TIMER4B:
  2881. case TIMER4C:
  2882. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2883. TCCR4B |= val;
  2884. break;
  2885. #endif
  2886. #if defined(TCCR5A)
  2887. case TIMER5A:
  2888. case TIMER5B:
  2889. case TIMER5C:
  2890. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2891. TCCR5B |= val;
  2892. break;
  2893. #endif
  2894. }
  2895. }
  2896. #endif //FAST_PWM_FAN
  2897. bool setTargetedHotend(int code){
  2898. tmp_extruder = active_extruder;
  2899. if(code_seen('T')) {
  2900. tmp_extruder = code_value();
  2901. if(tmp_extruder >= EXTRUDERS) {
  2902. SERIAL_ECHO_START;
  2903. switch(code){
  2904. case 104:
  2905. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  2906. break;
  2907. case 105:
  2908. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  2909. break;
  2910. case 109:
  2911. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  2912. break;
  2913. case 218:
  2914. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  2915. break;
  2916. }
  2917. SERIAL_ECHOLN(tmp_extruder);
  2918. return true;
  2919. }
  2920. }
  2921. return false;
  2922. }