My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 263KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  151. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  152. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  153. * M110 - Set the current line number
  154. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  155. * M112 - Emergency stop
  156. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  157. * M114 - Output current position to serial port
  158. * M115 - Capabilities string
  159. * M117 - Display a message on the controller screen
  160. * M119 - Output Endstop status to serial port
  161. * M120 - Enable endstop detection
  162. * M121 - Disable endstop detection
  163. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  164. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  165. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M140 - Set bed target temp
  168. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  169. * M149 - Set temperature units
  170. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  171. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  172. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  173. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  174. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  175. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  176. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  177. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  178. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  179. * M206 - Set additional homing offset
  180. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  181. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  182. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  183. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  184. * M220 - Set speed factor override percentage: S<factor in percent>
  185. * M221 - Set extrude factor override percentage: S<factor in percent>
  186. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  187. * M240 - Trigger a camera to take a photograph
  188. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  189. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  190. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  191. * M301 - Set PID parameters P I and D
  192. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  193. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  194. * M304 - Set bed PID parameters P I and D
  195. * M380 - Activate solenoid on active extruder
  196. * M381 - Disable all solenoids
  197. * M400 - Finish all moves
  198. * M401 - Lower Z probe if present
  199. * M402 - Raise Z probe if present
  200. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  201. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  202. * M406 - Turn off Filament Sensor extrusion control
  203. * M407 - Display measured filament diameter
  204. * M410 - Quickstop. Abort all the planned moves
  205. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  206. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  207. * M428 - Set the home_offset logically based on the current_position
  208. * M500 - Store parameters in EEPROM
  209. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  210. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  211. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  212. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  213. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  214. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  215. * M666 - Set delta endstop adjustment
  216. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  217. * M907 - Set digital trimpot motor current using axis codes.
  218. * M908 - Control digital trimpot directly.
  219. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  220. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  221. * M350 - Set microstepping mode.
  222. * M351 - Toggle MS1 MS2 pins directly.
  223. *
  224. * ************ SCARA Specific - This can change to suit future G-code regulations
  225. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  226. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  227. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  228. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  229. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  230. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  231. * ************* SCARA End ***************
  232. *
  233. * ************ Custom codes - This can change to suit future G-code regulations
  234. * M100 - Watch Free Memory (For Debugging Only)
  235. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  236. * M928 - Start SD logging (M928 filename.g) - ended by M29
  237. * M999 - Restart after being stopped by error
  238. *
  239. * "T" Codes
  240. *
  241. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  242. *
  243. */
  244. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  245. void gcode_M100();
  246. #endif
  247. #if ENABLED(SDSUPPORT)
  248. CardReader card;
  249. #endif
  250. #if ENABLED(EXPERIMENTAL_I2CBUS)
  251. TWIBus i2c;
  252. #endif
  253. bool Running = true;
  254. uint8_t marlin_debug_flags = DEBUG_NONE;
  255. static float feedrate = 1500.0, saved_feedrate;
  256. float current_position[NUM_AXIS] = { 0.0 };
  257. static float destination[NUM_AXIS] = { 0.0 };
  258. bool axis_known_position[3] = { false };
  259. bool axis_homed[3] = { false };
  260. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  261. static char* current_command, *current_command_args;
  262. static int cmd_queue_index_r = 0;
  263. static int cmd_queue_index_w = 0;
  264. static int commands_in_queue = 0;
  265. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  266. #if ENABLED(INCH_MODE_SUPPORT)
  267. float linear_unit_factor = 1.0;
  268. float volumetric_unit_factor = 1.0;
  269. #endif
  270. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  271. TempUnit input_temp_units = TEMPUNIT_C;
  272. #endif
  273. const float homing_feedrate[] = HOMING_FEEDRATE;
  274. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  275. int feedrate_multiplier = 100; //100->1 200->2
  276. int saved_feedrate_multiplier;
  277. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  278. bool volumetric_enabled = false;
  279. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  280. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  281. // The distance that XYZ has been offset by G92. Reset by G28.
  282. float position_shift[3] = { 0 };
  283. // This offset is added to the configured home position.
  284. // Set by M206, M428, or menu item. Saved to EEPROM.
  285. float home_offset[3] = { 0 };
  286. // Software Endstops. Default to configured limits.
  287. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. #if FAN_COUNT > 0
  290. int fanSpeeds[FAN_COUNT] = { 0 };
  291. #endif
  292. // The active extruder (tool). Set with T<extruder> command.
  293. uint8_t active_extruder = 0;
  294. // Relative Mode. Enable with G91, disable with G90.
  295. static bool relative_mode = false;
  296. bool cancel_heatup = false;
  297. const char errormagic[] PROGMEM = "Error:";
  298. const char echomagic[] PROGMEM = "echo:";
  299. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  300. static int serial_count = 0;
  301. // GCode parameter pointer used by code_seen(), code_value(), etc.
  302. static char* seen_pointer;
  303. // Next Immediate GCode Command pointer. NULL if none.
  304. const char* queued_commands_P = NULL;
  305. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  306. // Inactivity shutdown
  307. millis_t previous_cmd_ms = 0;
  308. static millis_t max_inactive_time = 0;
  309. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  310. // Print Job Timer
  311. #if ENABLED(PRINTCOUNTER)
  312. PrintCounter print_job_timer = PrintCounter();
  313. #else
  314. Stopwatch print_job_timer = Stopwatch();
  315. #endif
  316. // Buzzer
  317. #if HAS_BUZZER
  318. #if ENABLED(SPEAKER)
  319. Speaker buzzer;
  320. #else
  321. Buzzer buzzer;
  322. #endif
  323. #endif
  324. static uint8_t target_extruder;
  325. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  326. int xy_travel_speed = XY_TRAVEL_SPEED;
  327. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  328. bool bed_leveling_in_progress = false;
  329. #endif
  330. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  331. float z_endstop_adj = 0;
  332. #endif
  333. // Extruder offsets
  334. #if HOTENDS > 1
  335. #ifndef HOTEND_OFFSET_X
  336. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  337. #endif
  338. #ifndef HOTEND_OFFSET_Y
  339. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  340. #endif
  341. float hotend_offset[][HOTENDS] = {
  342. HOTEND_OFFSET_X,
  343. HOTEND_OFFSET_Y
  344. #if ENABLED(DUAL_X_CARRIAGE)
  345. , { 0 } // Z offsets for each extruder
  346. #endif
  347. };
  348. #endif
  349. #if ENABLED(HAS_SERVO_ENDSTOPS)
  350. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  351. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  352. #endif
  353. #if ENABLED(BARICUDA)
  354. int baricuda_valve_pressure = 0;
  355. int baricuda_e_to_p_pressure = 0;
  356. #endif
  357. #if ENABLED(FWRETRACT)
  358. bool autoretract_enabled = false;
  359. bool retracted[EXTRUDERS] = { false };
  360. bool retracted_swap[EXTRUDERS] = { false };
  361. float retract_length = RETRACT_LENGTH;
  362. float retract_length_swap = RETRACT_LENGTH_SWAP;
  363. float retract_feedrate = RETRACT_FEEDRATE;
  364. float retract_zlift = RETRACT_ZLIFT;
  365. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  366. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  367. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  368. #endif // FWRETRACT
  369. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  370. bool powersupply =
  371. #if ENABLED(PS_DEFAULT_OFF)
  372. false
  373. #else
  374. true
  375. #endif
  376. ;
  377. #endif
  378. #if ENABLED(DELTA)
  379. #define TOWER_1 X_AXIS
  380. #define TOWER_2 Y_AXIS
  381. #define TOWER_3 Z_AXIS
  382. float delta[3] = { 0 };
  383. #define SIN_60 0.8660254037844386
  384. #define COS_60 0.5
  385. float endstop_adj[3] = { 0 };
  386. // these are the default values, can be overriden with M665
  387. float delta_radius = DELTA_RADIUS;
  388. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  389. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  390. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  391. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  392. float delta_tower3_x = 0; // back middle tower
  393. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  394. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  395. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  396. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  397. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  398. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  399. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  400. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  401. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  402. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  403. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  404. int delta_grid_spacing[2] = { 0, 0 };
  405. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  406. #endif
  407. #else
  408. static bool home_all_axis = true;
  409. #endif
  410. #if ENABLED(SCARA)
  411. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  412. static float delta[3] = { 0 };
  413. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  414. #endif
  415. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  416. //Variables for Filament Sensor input
  417. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  418. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  419. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  420. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  421. int filwidth_delay_index1 = 0; //index into ring buffer
  422. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  423. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  424. #endif
  425. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  426. static bool filament_ran_out = false;
  427. #endif
  428. static bool send_ok[BUFSIZE];
  429. #if HAS_SERVOS
  430. Servo servo[NUM_SERVOS];
  431. #endif
  432. #ifdef CHDK
  433. millis_t chdkHigh = 0;
  434. boolean chdkActive = false;
  435. #endif
  436. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  437. int lpq_len = 20;
  438. #endif
  439. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  440. // States for managing Marlin and host communication
  441. // Marlin sends messages if blocked or busy
  442. enum MarlinBusyState {
  443. NOT_BUSY, // Not in a handler
  444. IN_HANDLER, // Processing a GCode
  445. IN_PROCESS, // Known to be blocking command input (as in G29)
  446. PAUSED_FOR_USER, // Blocking pending any input
  447. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  448. };
  449. static MarlinBusyState busy_state = NOT_BUSY;
  450. static millis_t next_busy_signal_ms = 0;
  451. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  452. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  453. #else
  454. #define host_keepalive() ;
  455. #define KEEPALIVE_STATE(n) ;
  456. #endif // HOST_KEEPALIVE_FEATURE
  457. /**
  458. * ***************************************************************************
  459. * ******************************** FUNCTIONS ********************************
  460. * ***************************************************************************
  461. */
  462. void stop();
  463. void get_available_commands();
  464. void process_next_command();
  465. void prepare_move_to_destination();
  466. #if ENABLED(ARC_SUPPORT)
  467. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  468. #endif
  469. #if ENABLED(BEZIER_CURVE_SUPPORT)
  470. void plan_cubic_move(const float offset[4]);
  471. #endif
  472. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  473. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  474. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  475. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  476. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  477. static void report_current_position();
  478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  479. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  480. SERIAL_ECHO(prefix);
  481. SERIAL_ECHOPAIR(": (", x);
  482. SERIAL_ECHOPAIR(", ", y);
  483. SERIAL_ECHOPAIR(", ", z);
  484. SERIAL_ECHOLNPGM(")");
  485. }
  486. void print_xyz(const char* prefix, const float xyz[]) {
  487. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  488. }
  489. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  490. void print_xyz(const char* prefix, const vector_3 &xyz) {
  491. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  492. }
  493. #endif
  494. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  495. #endif
  496. #if ENABLED(DELTA) || ENABLED(SCARA)
  497. inline void sync_plan_position_delta() {
  498. #if ENABLED(DEBUG_LEVELING_FEATURE)
  499. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  500. #endif
  501. calculate_delta(current_position);
  502. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  503. }
  504. #endif
  505. #if ENABLED(SDSUPPORT)
  506. #include "SdFatUtil.h"
  507. int freeMemory() { return SdFatUtil::FreeRam(); }
  508. #else
  509. extern "C" {
  510. extern unsigned int __bss_end;
  511. extern unsigned int __heap_start;
  512. extern void* __brkval;
  513. int freeMemory() {
  514. int free_memory;
  515. if ((int)__brkval == 0)
  516. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  517. else
  518. free_memory = ((int)&free_memory) - ((int)__brkval);
  519. return free_memory;
  520. }
  521. }
  522. #endif //!SDSUPPORT
  523. #if ENABLED(DIGIPOT_I2C)
  524. extern void digipot_i2c_set_current(int channel, float current);
  525. extern void digipot_i2c_init();
  526. #endif
  527. /**
  528. * Inject the next "immediate" command, when possible.
  529. * Return true if any immediate commands remain to inject.
  530. */
  531. static bool drain_queued_commands_P() {
  532. if (queued_commands_P != NULL) {
  533. size_t i = 0;
  534. char c, cmd[30];
  535. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  536. cmd[sizeof(cmd) - 1] = '\0';
  537. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  538. cmd[i] = '\0';
  539. if (enqueue_and_echo_command(cmd)) { // success?
  540. if (c) // newline char?
  541. queued_commands_P += i + 1; // advance to the next command
  542. else
  543. queued_commands_P = NULL; // nul char? no more commands
  544. }
  545. }
  546. return (queued_commands_P != NULL); // return whether any more remain
  547. }
  548. /**
  549. * Record one or many commands to run from program memory.
  550. * Aborts the current queue, if any.
  551. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  552. */
  553. void enqueue_and_echo_commands_P(const char* pgcode) {
  554. queued_commands_P = pgcode;
  555. drain_queued_commands_P(); // first command executed asap (when possible)
  556. }
  557. void clear_command_queue() {
  558. cmd_queue_index_r = cmd_queue_index_w;
  559. commands_in_queue = 0;
  560. }
  561. /**
  562. * Once a new command is in the ring buffer, call this to commit it
  563. */
  564. inline void _commit_command(bool say_ok) {
  565. send_ok[cmd_queue_index_w] = say_ok;
  566. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  567. commands_in_queue++;
  568. }
  569. /**
  570. * Copy a command directly into the main command buffer, from RAM.
  571. * Returns true if successfully adds the command
  572. */
  573. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  574. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  575. strcpy(command_queue[cmd_queue_index_w], cmd);
  576. _commit_command(say_ok);
  577. return true;
  578. }
  579. void enqueue_and_echo_command_now(const char* cmd) {
  580. while (!enqueue_and_echo_command(cmd)) idle();
  581. }
  582. /**
  583. * Enqueue with Serial Echo
  584. */
  585. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  586. if (_enqueuecommand(cmd, say_ok)) {
  587. SERIAL_ECHO_START;
  588. SERIAL_ECHOPGM(MSG_Enqueueing);
  589. SERIAL_ECHO(cmd);
  590. SERIAL_ECHOLNPGM("\"");
  591. return true;
  592. }
  593. return false;
  594. }
  595. void setup_killpin() {
  596. #if HAS_KILL
  597. SET_INPUT(KILL_PIN);
  598. WRITE(KILL_PIN, HIGH);
  599. #endif
  600. }
  601. void setup_filrunoutpin() {
  602. #if HAS_FILRUNOUT
  603. pinMode(FILRUNOUT_PIN, INPUT);
  604. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  605. WRITE(FILRUNOUT_PIN, HIGH);
  606. #endif
  607. #endif
  608. }
  609. // Set home pin
  610. void setup_homepin(void) {
  611. #if HAS_HOME
  612. SET_INPUT(HOME_PIN);
  613. WRITE(HOME_PIN, HIGH);
  614. #endif
  615. }
  616. void setup_photpin() {
  617. #if HAS_PHOTOGRAPH
  618. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  619. #endif
  620. }
  621. void setup_powerhold() {
  622. #if HAS_SUICIDE
  623. OUT_WRITE(SUICIDE_PIN, HIGH);
  624. #endif
  625. #if HAS_POWER_SWITCH
  626. #if ENABLED(PS_DEFAULT_OFF)
  627. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  628. #else
  629. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  630. #endif
  631. #endif
  632. }
  633. void suicide() {
  634. #if HAS_SUICIDE
  635. OUT_WRITE(SUICIDE_PIN, LOW);
  636. #endif
  637. }
  638. void servo_init() {
  639. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  640. servo[0].attach(SERVO0_PIN);
  641. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  642. #endif
  643. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  644. servo[1].attach(SERVO1_PIN);
  645. servo[1].detach();
  646. #endif
  647. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  648. servo[2].attach(SERVO2_PIN);
  649. servo[2].detach();
  650. #endif
  651. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  652. servo[3].attach(SERVO3_PIN);
  653. servo[3].detach();
  654. #endif
  655. #if ENABLED(HAS_SERVO_ENDSTOPS)
  656. endstops.enable_z_probe(false);
  657. /**
  658. * Set position of all defined Servo Endstops
  659. *
  660. * ** UNSAFE! - NEEDS UPDATE! **
  661. *
  662. * The servo might be deployed and positioned too low to stow
  663. * when starting up the machine or rebooting the board.
  664. * There's no way to know where the nozzle is positioned until
  665. * homing has been done - no homing with z-probe without init!
  666. *
  667. */
  668. for (int i = 0; i < 3; i++)
  669. if (servo_endstop_id[i] >= 0)
  670. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  671. #endif // HAS_SERVO_ENDSTOPS
  672. }
  673. /**
  674. * Stepper Reset (RigidBoard, et.al.)
  675. */
  676. #if HAS_STEPPER_RESET
  677. void disableStepperDrivers() {
  678. pinMode(STEPPER_RESET_PIN, OUTPUT);
  679. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  680. }
  681. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  682. #endif
  683. /**
  684. * Marlin entry-point: Set up before the program loop
  685. * - Set up the kill pin, filament runout, power hold
  686. * - Start the serial port
  687. * - Print startup messages and diagnostics
  688. * - Get EEPROM or default settings
  689. * - Initialize managers for:
  690. * • temperature
  691. * • planner
  692. * • watchdog
  693. * • stepper
  694. * • photo pin
  695. * • servos
  696. * • LCD controller
  697. * • Digipot I2C
  698. * • Z probe sled
  699. * • status LEDs
  700. */
  701. void setup() {
  702. #ifdef DISABLE_JTAG
  703. // Disable JTAG on AT90USB chips to free up pins for IO
  704. MCUCR = 0x80;
  705. MCUCR = 0x80;
  706. #endif
  707. setup_killpin();
  708. setup_filrunoutpin();
  709. setup_powerhold();
  710. #if HAS_STEPPER_RESET
  711. disableStepperDrivers();
  712. #endif
  713. MYSERIAL.begin(BAUDRATE);
  714. SERIAL_PROTOCOLLNPGM("start");
  715. SERIAL_ECHO_START;
  716. // Check startup - does nothing if bootloader sets MCUSR to 0
  717. byte mcu = MCUSR;
  718. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  719. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  720. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  721. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  722. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  723. MCUSR = 0;
  724. SERIAL_ECHOPGM(MSG_MARLIN);
  725. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  726. #ifdef STRING_DISTRIBUTION_DATE
  727. #ifdef STRING_CONFIG_H_AUTHOR
  728. SERIAL_ECHO_START;
  729. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  730. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  731. SERIAL_ECHOPGM(MSG_AUTHOR);
  732. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  733. SERIAL_ECHOPGM("Compiled: ");
  734. SERIAL_ECHOLNPGM(__DATE__);
  735. #endif // STRING_CONFIG_H_AUTHOR
  736. #endif // STRING_DISTRIBUTION_DATE
  737. SERIAL_ECHO_START;
  738. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  739. SERIAL_ECHO(freeMemory());
  740. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  741. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  742. // Send "ok" after commands by default
  743. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  744. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  745. Config_RetrieveSettings();
  746. lcd_init();
  747. thermalManager.init(); // Initialize temperature loop
  748. #if ENABLED(DELTA) || ENABLED(SCARA)
  749. // Vital to init kinematic equivalent for X0 Y0 Z0
  750. sync_plan_position_delta();
  751. #endif
  752. #if ENABLED(USE_WATCHDOG)
  753. watchdog_init();
  754. #endif
  755. stepper.init(); // Initialize stepper, this enables interrupts!
  756. setup_photpin();
  757. servo_init();
  758. #if HAS_CONTROLLERFAN
  759. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  760. #endif
  761. #if HAS_STEPPER_RESET
  762. enableStepperDrivers();
  763. #endif
  764. #if ENABLED(DIGIPOT_I2C)
  765. digipot_i2c_init();
  766. #endif
  767. #if ENABLED(DAC_STEPPER_CURRENT)
  768. dac_init();
  769. #endif
  770. #if ENABLED(Z_PROBE_SLED)
  771. pinMode(SLED_PIN, OUTPUT);
  772. digitalWrite(SLED_PIN, LOW); // turn it off
  773. #endif // Z_PROBE_SLED
  774. setup_homepin();
  775. #ifdef STAT_LED_RED
  776. pinMode(STAT_LED_RED, OUTPUT);
  777. digitalWrite(STAT_LED_RED, LOW); // turn it off
  778. #endif
  779. #ifdef STAT_LED_BLUE
  780. pinMode(STAT_LED_BLUE, OUTPUT);
  781. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  782. #endif
  783. }
  784. /**
  785. * The main Marlin program loop
  786. *
  787. * - Save or log commands to SD
  788. * - Process available commands (if not saving)
  789. * - Call heater manager
  790. * - Call inactivity manager
  791. * - Call endstop manager
  792. * - Call LCD update
  793. */
  794. void loop() {
  795. if (commands_in_queue < BUFSIZE) get_available_commands();
  796. #if ENABLED(SDSUPPORT)
  797. card.checkautostart(false);
  798. #endif
  799. if (commands_in_queue) {
  800. #if ENABLED(SDSUPPORT)
  801. if (card.saving) {
  802. char* command = command_queue[cmd_queue_index_r];
  803. if (strstr_P(command, PSTR("M29"))) {
  804. // M29 closes the file
  805. card.closefile();
  806. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  807. ok_to_send();
  808. }
  809. else {
  810. // Write the string from the read buffer to SD
  811. card.write_command(command);
  812. if (card.logging)
  813. process_next_command(); // The card is saving because it's logging
  814. else
  815. ok_to_send();
  816. }
  817. }
  818. else
  819. process_next_command();
  820. #else
  821. process_next_command();
  822. #endif // SDSUPPORT
  823. commands_in_queue--;
  824. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  825. }
  826. endstops.report_state();
  827. idle();
  828. }
  829. void gcode_line_error(const char* err, bool doFlush = true) {
  830. SERIAL_ERROR_START;
  831. serialprintPGM(err);
  832. SERIAL_ERRORLN(gcode_LastN);
  833. //Serial.println(gcode_N);
  834. if (doFlush) FlushSerialRequestResend();
  835. serial_count = 0;
  836. }
  837. inline void get_serial_commands() {
  838. static char serial_line_buffer[MAX_CMD_SIZE];
  839. static boolean serial_comment_mode = false;
  840. // If the command buffer is empty for too long,
  841. // send "wait" to indicate Marlin is still waiting.
  842. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  843. static millis_t last_command_time = 0;
  844. millis_t ms = millis();
  845. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  846. SERIAL_ECHOLNPGM(MSG_WAIT);
  847. last_command_time = ms;
  848. }
  849. #endif
  850. /**
  851. * Loop while serial characters are incoming and the queue is not full
  852. */
  853. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  854. char serial_char = MYSERIAL.read();
  855. /**
  856. * If the character ends the line
  857. */
  858. if (serial_char == '\n' || serial_char == '\r') {
  859. serial_comment_mode = false; // end of line == end of comment
  860. if (!serial_count) continue; // skip empty lines
  861. serial_line_buffer[serial_count] = 0; // terminate string
  862. serial_count = 0; //reset buffer
  863. char* command = serial_line_buffer;
  864. while (*command == ' ') command++; // skip any leading spaces
  865. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  866. char* apos = strchr(command, '*');
  867. if (npos) {
  868. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  869. if (M110) {
  870. char* n2pos = strchr(command + 4, 'N');
  871. if (n2pos) npos = n2pos;
  872. }
  873. gcode_N = strtol(npos + 1, NULL, 10);
  874. if (gcode_N != gcode_LastN + 1 && !M110) {
  875. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  876. return;
  877. }
  878. if (apos) {
  879. byte checksum = 0, count = 0;
  880. while (command[count] != '*') checksum ^= command[count++];
  881. if (strtol(apos + 1, NULL, 10) != checksum) {
  882. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  883. return;
  884. }
  885. // if no errors, continue parsing
  886. }
  887. else {
  888. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  889. return;
  890. }
  891. gcode_LastN = gcode_N;
  892. // if no errors, continue parsing
  893. }
  894. else if (apos) { // No '*' without 'N'
  895. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  896. return;
  897. }
  898. // Movement commands alert when stopped
  899. if (IsStopped()) {
  900. char* gpos = strchr(command, 'G');
  901. if (gpos) {
  902. int codenum = strtol(gpos + 1, NULL, 10);
  903. switch (codenum) {
  904. case 0:
  905. case 1:
  906. case 2:
  907. case 3:
  908. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  909. LCD_MESSAGEPGM(MSG_STOPPED);
  910. break;
  911. }
  912. }
  913. }
  914. // If command was e-stop process now
  915. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  916. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  917. last_command_time = ms;
  918. #endif
  919. // Add the command to the queue
  920. _enqueuecommand(serial_line_buffer, true);
  921. }
  922. else if (serial_count >= MAX_CMD_SIZE - 1) {
  923. // Keep fetching, but ignore normal characters beyond the max length
  924. // The command will be injected when EOL is reached
  925. }
  926. else if (serial_char == '\\') { // Handle escapes
  927. if (MYSERIAL.available() > 0) {
  928. // if we have one more character, copy it over
  929. serial_char = MYSERIAL.read();
  930. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  931. }
  932. // otherwise do nothing
  933. }
  934. else { // it's not a newline, carriage return or escape char
  935. if (serial_char == ';') serial_comment_mode = true;
  936. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  937. }
  938. } // queue has space, serial has data
  939. }
  940. #if ENABLED(SDSUPPORT)
  941. inline void get_sdcard_commands() {
  942. static bool stop_buffering = false,
  943. sd_comment_mode = false;
  944. if (!card.sdprinting) return;
  945. /**
  946. * '#' stops reading from SD to the buffer prematurely, so procedural
  947. * macro calls are possible. If it occurs, stop_buffering is triggered
  948. * and the buffer is run dry; this character _can_ occur in serial com
  949. * due to checksums, however, no checksums are used in SD printing.
  950. */
  951. if (commands_in_queue == 0) stop_buffering = false;
  952. uint16_t sd_count = 0;
  953. bool card_eof = card.eof();
  954. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  955. int16_t n = card.get();
  956. char sd_char = (char)n;
  957. card_eof = card.eof();
  958. if (card_eof || n == -1
  959. || sd_char == '\n' || sd_char == '\r'
  960. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  961. ) {
  962. if (card_eof) {
  963. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  964. print_job_timer.stop();
  965. char time[30];
  966. millis_t t = print_job_timer.duration();
  967. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  968. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  969. SERIAL_ECHO_START;
  970. SERIAL_ECHOLN(time);
  971. lcd_setstatus(time, true);
  972. card.printingHasFinished();
  973. card.checkautostart(true);
  974. }
  975. if (sd_char == '#') stop_buffering = true;
  976. sd_comment_mode = false; //for new command
  977. if (!sd_count) continue; //skip empty lines
  978. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  979. sd_count = 0; //clear buffer
  980. _commit_command(false);
  981. }
  982. else if (sd_count >= MAX_CMD_SIZE - 1) {
  983. /**
  984. * Keep fetching, but ignore normal characters beyond the max length
  985. * The command will be injected when EOL is reached
  986. */
  987. }
  988. else {
  989. if (sd_char == ';') sd_comment_mode = true;
  990. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  991. }
  992. }
  993. }
  994. #endif // SDSUPPORT
  995. /**
  996. * Add to the circular command queue the next command from:
  997. * - The command-injection queue (queued_commands_P)
  998. * - The active serial input (usually USB)
  999. * - The SD card file being actively printed
  1000. */
  1001. void get_available_commands() {
  1002. // if any immediate commands remain, don't get other commands yet
  1003. if (drain_queued_commands_P()) return;
  1004. get_serial_commands();
  1005. #if ENABLED(SDSUPPORT)
  1006. get_sdcard_commands();
  1007. #endif
  1008. }
  1009. inline bool code_has_value() {
  1010. int i = 1;
  1011. char c = seen_pointer[i];
  1012. while (c == ' ') c = seen_pointer[++i];
  1013. if (c == '-' || c == '+') c = seen_pointer[++i];
  1014. if (c == '.') c = seen_pointer[++i];
  1015. return NUMERIC(c);
  1016. }
  1017. inline float code_value_float() {
  1018. float ret;
  1019. char* e = strchr(seen_pointer, 'E');
  1020. if (e) {
  1021. *e = 0;
  1022. ret = strtod(seen_pointer + 1, NULL);
  1023. *e = 'E';
  1024. }
  1025. else
  1026. ret = strtod(seen_pointer + 1, NULL);
  1027. return ret;
  1028. }
  1029. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1030. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1031. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1032. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1033. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1034. inline bool code_value_bool() { return code_value_byte() > 0; }
  1035. #if ENABLED(INCH_MODE_SUPPORT)
  1036. inline void set_input_linear_units(LinearUnit units) {
  1037. switch (units) {
  1038. case LINEARUNIT_INCH:
  1039. linear_unit_factor = 25.4;
  1040. break;
  1041. case LINEARUNIT_MM:
  1042. default:
  1043. linear_unit_factor = 1.0;
  1044. break;
  1045. }
  1046. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1047. }
  1048. inline float axis_unit_factor(int axis) {
  1049. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1050. }
  1051. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1052. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1053. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1054. #else
  1055. inline float code_value_linear_units() { return code_value_float(); }
  1056. inline float code_value_per_axis_unit(int axis) { return code_value_float(); }
  1057. inline float code_value_axis_units(int axis) { return code_value_float(); }
  1058. #endif
  1059. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1060. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1061. float code_value_temp_abs() {
  1062. switch (input_temp_units) {
  1063. case TEMPUNIT_C:
  1064. return code_value_float();
  1065. case TEMPUNIT_F:
  1066. return (code_value_float() - 32) / 1.8;
  1067. case TEMPUNIT_K:
  1068. return code_value_float() - 272.15;
  1069. default:
  1070. return code_value_float();
  1071. }
  1072. }
  1073. float code_value_temp_diff() {
  1074. switch (input_temp_units) {
  1075. case TEMPUNIT_C:
  1076. case TEMPUNIT_K:
  1077. return code_value_float();
  1078. case TEMPUNIT_F:
  1079. return code_value_float() / 1.8;
  1080. default:
  1081. return code_value_float();
  1082. }
  1083. }
  1084. #else
  1085. float code_value_temp_abs() { return code_value_float(); }
  1086. float code_value_temp_diff() { return code_value_float(); }
  1087. #endif
  1088. inline millis_t code_value_millis() { return code_value_ulong(); }
  1089. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1090. bool code_seen(char code) {
  1091. seen_pointer = strchr(current_command_args, code);
  1092. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1093. }
  1094. /**
  1095. * Set target_extruder from the T parameter or the active_extruder
  1096. *
  1097. * Returns TRUE if the target is invalid
  1098. */
  1099. bool get_target_extruder_from_command(int code) {
  1100. if (code_seen('T')) {
  1101. uint8_t t = code_value_byte();
  1102. if (t >= EXTRUDERS) {
  1103. SERIAL_ECHO_START;
  1104. SERIAL_CHAR('M');
  1105. SERIAL_ECHO(code);
  1106. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1107. SERIAL_EOL;
  1108. return true;
  1109. }
  1110. target_extruder = t;
  1111. }
  1112. else
  1113. target_extruder = active_extruder;
  1114. return false;
  1115. }
  1116. #define DEFINE_PGM_READ_ANY(type, reader) \
  1117. static inline type pgm_read_any(const type *p) \
  1118. { return pgm_read_##reader##_near(p); }
  1119. DEFINE_PGM_READ_ANY(float, float);
  1120. DEFINE_PGM_READ_ANY(signed char, byte);
  1121. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1122. static const PROGMEM type array##_P[3] = \
  1123. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1124. static inline type array(int axis) \
  1125. { return pgm_read_any(&array##_P[axis]); }
  1126. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1127. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1128. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1129. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1130. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1131. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1132. #if ENABLED(DUAL_X_CARRIAGE)
  1133. #define DXC_FULL_CONTROL_MODE 0
  1134. #define DXC_AUTO_PARK_MODE 1
  1135. #define DXC_DUPLICATION_MODE 2
  1136. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1137. static float x_home_pos(int extruder) {
  1138. if (extruder == 0)
  1139. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1140. else
  1141. /**
  1142. * In dual carriage mode the extruder offset provides an override of the
  1143. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1144. * This allow soft recalibration of the second extruder offset position
  1145. * without firmware reflash (through the M218 command).
  1146. */
  1147. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1148. }
  1149. static int x_home_dir(int extruder) {
  1150. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1151. }
  1152. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1153. static bool active_extruder_parked = false; // used in mode 1 & 2
  1154. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1155. static millis_t delayed_move_time = 0; // used in mode 1
  1156. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1157. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1158. bool extruder_duplication_enabled = false; // used in mode 2
  1159. #endif //DUAL_X_CARRIAGE
  1160. /**
  1161. * Software endstops can be used to monitor the open end of
  1162. * an axis that has a hardware endstop on the other end. Or
  1163. * they can prevent axes from moving past endstops and grinding.
  1164. *
  1165. * To keep doing their job as the coordinate system changes,
  1166. * the software endstop positions must be refreshed to remain
  1167. * at the same positions relative to the machine.
  1168. */
  1169. static void update_software_endstops(AxisEnum axis) {
  1170. float offs = home_offset[axis] + position_shift[axis];
  1171. #if ENABLED(DUAL_X_CARRIAGE)
  1172. if (axis == X_AXIS) {
  1173. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1174. if (active_extruder != 0) {
  1175. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1176. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1177. return;
  1178. }
  1179. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1180. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1181. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1182. return;
  1183. }
  1184. }
  1185. else
  1186. #endif
  1187. {
  1188. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1189. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1190. }
  1191. }
  1192. /**
  1193. * Change the home offset for an axis, update the current
  1194. * position and the software endstops to retain the same
  1195. * relative distance to the new home.
  1196. *
  1197. * Since this changes the current_position, code should
  1198. * call sync_plan_position soon after this.
  1199. */
  1200. static void set_home_offset(AxisEnum axis, float v) {
  1201. current_position[axis] += v - home_offset[axis];
  1202. home_offset[axis] = v;
  1203. update_software_endstops(axis);
  1204. }
  1205. static void set_axis_is_at_home(AxisEnum axis) {
  1206. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1207. if (DEBUGGING(LEVELING)) {
  1208. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1209. SERIAL_ECHOLNPGM(") >>>");
  1210. }
  1211. #endif
  1212. position_shift[axis] = 0;
  1213. #if ENABLED(DUAL_X_CARRIAGE)
  1214. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1215. if (active_extruder != 0)
  1216. current_position[X_AXIS] = x_home_pos(active_extruder);
  1217. else
  1218. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1219. update_software_endstops(X_AXIS);
  1220. return;
  1221. }
  1222. #endif
  1223. #if ENABLED(SCARA)
  1224. if (axis == X_AXIS || axis == Y_AXIS) {
  1225. float homeposition[3];
  1226. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1227. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1228. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1229. /**
  1230. * Works out real Homeposition angles using inverse kinematics,
  1231. * and calculates homing offset using forward kinematics
  1232. */
  1233. calculate_delta(homeposition);
  1234. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1235. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1236. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1237. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1238. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1239. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1240. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1241. calculate_SCARA_forward_Transform(delta);
  1242. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1243. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1244. current_position[axis] = delta[axis];
  1245. /**
  1246. * SCARA home positions are based on configuration since the actual
  1247. * limits are determined by the inverse kinematic transform.
  1248. */
  1249. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1250. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1251. }
  1252. else
  1253. #endif
  1254. {
  1255. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1256. update_software_endstops(axis);
  1257. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1258. if (axis == Z_AXIS) {
  1259. current_position[Z_AXIS] -= zprobe_zoffset;
  1260. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1261. if (DEBUGGING(LEVELING)) {
  1262. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1263. SERIAL_EOL;
  1264. }
  1265. #endif
  1266. }
  1267. #endif
  1268. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1269. if (DEBUGGING(LEVELING)) {
  1270. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1271. DEBUG_POS("", current_position);
  1272. }
  1273. #endif
  1274. }
  1275. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1276. if (DEBUGGING(LEVELING)) {
  1277. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1278. SERIAL_ECHOLNPGM(")");
  1279. }
  1280. #endif
  1281. }
  1282. /**
  1283. * Some planner shorthand inline functions
  1284. */
  1285. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1286. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1287. int hbd = homing_bump_divisor[axis];
  1288. if (hbd < 1) {
  1289. hbd = 10;
  1290. SERIAL_ECHO_START;
  1291. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1292. }
  1293. feedrate = homing_feedrate[axis] / hbd;
  1294. }
  1295. //
  1296. // line_to_current_position
  1297. // Move the planner to the current position from wherever it last moved
  1298. // (or from wherever it has been told it is located).
  1299. //
  1300. inline void line_to_current_position() {
  1301. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1302. }
  1303. inline void line_to_z(float zPosition) {
  1304. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1305. }
  1306. //
  1307. // line_to_destination
  1308. // Move the planner, not necessarily synced with current_position
  1309. //
  1310. inline void line_to_destination(float mm_m) {
  1311. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1312. }
  1313. inline void line_to_destination() {
  1314. line_to_destination(feedrate);
  1315. }
  1316. /**
  1317. * sync_plan_position
  1318. * Set planner / stepper positions to the cartesian current_position.
  1319. * The stepper code translates these coordinates into step units.
  1320. * Allows translation between steps and units (mm) for cartesian & core robots
  1321. */
  1322. inline void sync_plan_position() {
  1323. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1324. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1325. #endif
  1326. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1327. }
  1328. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1329. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1330. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1331. static void setup_for_endstop_move() {
  1332. saved_feedrate = feedrate;
  1333. saved_feedrate_multiplier = feedrate_multiplier;
  1334. feedrate_multiplier = 100;
  1335. refresh_cmd_timeout();
  1336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1337. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
  1338. #endif
  1339. endstops.enable();
  1340. }
  1341. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1342. #if ENABLED(DELTA)
  1343. /**
  1344. * Calculate delta, start a line, and set current_position to destination
  1345. */
  1346. void prepare_move_to_destination_raw() {
  1347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1348. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1349. #endif
  1350. refresh_cmd_timeout();
  1351. calculate_delta(destination);
  1352. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1353. set_current_to_destination();
  1354. }
  1355. #endif
  1356. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1357. #if DISABLED(DELTA)
  1358. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1359. //planner.bed_level_matrix.debug("bed level before");
  1360. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1361. planner.bed_level_matrix.set_to_identity();
  1362. if (DEBUGGING(LEVELING)) {
  1363. vector_3 uncorrected_position = planner.adjusted_position();
  1364. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1365. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1366. }
  1367. #endif
  1368. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1369. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1370. vector_3 corrected_position = planner.adjusted_position();
  1371. current_position[X_AXIS] = corrected_position.x;
  1372. current_position[Y_AXIS] = corrected_position.y;
  1373. current_position[Z_AXIS] = corrected_position.z;
  1374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1375. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1376. #endif
  1377. sync_plan_position();
  1378. }
  1379. #endif // !DELTA
  1380. #else // !AUTO_BED_LEVELING_GRID
  1381. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1382. planner.bed_level_matrix.set_to_identity();
  1383. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1384. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1385. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1386. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1387. if (planeNormal.z < 0) {
  1388. planeNormal.x = -planeNormal.x;
  1389. planeNormal.y = -planeNormal.y;
  1390. planeNormal.z = -planeNormal.z;
  1391. }
  1392. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1393. vector_3 corrected_position = planner.adjusted_position();
  1394. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1395. if (DEBUGGING(LEVELING)) {
  1396. vector_3 uncorrected_position = corrected_position;
  1397. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1398. }
  1399. #endif
  1400. current_position[X_AXIS] = corrected_position.x;
  1401. current_position[Y_AXIS] = corrected_position.y;
  1402. current_position[Z_AXIS] = corrected_position.z;
  1403. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1404. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1405. #endif
  1406. sync_plan_position();
  1407. }
  1408. #endif // !AUTO_BED_LEVELING_GRID
  1409. static void run_z_probe() {
  1410. /**
  1411. * To prevent stepper_inactive_time from running out and
  1412. * EXTRUDER_RUNOUT_PREVENT from extruding
  1413. */
  1414. refresh_cmd_timeout();
  1415. #if ENABLED(DELTA)
  1416. float start_z = current_position[Z_AXIS];
  1417. long start_steps = stepper.position(Z_AXIS);
  1418. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1419. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1420. #endif
  1421. // move down slowly until you find the bed
  1422. feedrate = homing_feedrate[Z_AXIS] / 4;
  1423. destination[Z_AXIS] = -10;
  1424. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1425. stepper.synchronize();
  1426. endstops.hit_on_purpose(); // clear endstop hit flags
  1427. /**
  1428. * We have to let the planner know where we are right now as it
  1429. * is not where we said to go.
  1430. */
  1431. long stop_steps = stepper.position(Z_AXIS);
  1432. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1433. current_position[Z_AXIS] = mm;
  1434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1435. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1436. #endif
  1437. sync_plan_position_delta();
  1438. #else // !DELTA
  1439. planner.bed_level_matrix.set_to_identity();
  1440. feedrate = homing_feedrate[Z_AXIS];
  1441. // Move down until the Z probe (or endstop?) is triggered
  1442. float zPosition = -(Z_MAX_LENGTH + 10);
  1443. line_to_z(zPosition);
  1444. stepper.synchronize();
  1445. // Tell the planner where we ended up - Get this from the stepper handler
  1446. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1447. planner.set_position_mm(
  1448. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1449. current_position[E_AXIS]
  1450. );
  1451. // move up the retract distance
  1452. zPosition += home_bump_mm(Z_AXIS);
  1453. line_to_z(zPosition);
  1454. stepper.synchronize();
  1455. endstops.hit_on_purpose(); // clear endstop hit flags
  1456. // move back down slowly to find bed
  1457. set_homing_bump_feedrate(Z_AXIS);
  1458. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1459. line_to_z(zPosition);
  1460. stepper.synchronize();
  1461. endstops.hit_on_purpose(); // clear endstop hit flags
  1462. // Get the current stepper position after bumping an endstop
  1463. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1464. sync_plan_position();
  1465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1466. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1467. #endif
  1468. #endif // !DELTA
  1469. }
  1470. /**
  1471. * Plan a move to (X, Y, Z) and set the current_position
  1472. * The final current_position may not be the one that was requested
  1473. */
  1474. static void do_blocking_move_to(float x, float y, float z) {
  1475. float oldFeedRate = feedrate;
  1476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1477. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1478. #endif
  1479. #if ENABLED(DELTA)
  1480. feedrate = XY_TRAVEL_SPEED;
  1481. destination[X_AXIS] = x;
  1482. destination[Y_AXIS] = y;
  1483. destination[Z_AXIS] = z;
  1484. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1485. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1486. else
  1487. prepare_move_to_destination(); // this will also set_current_to_destination
  1488. stepper.synchronize();
  1489. #else
  1490. feedrate = homing_feedrate[Z_AXIS];
  1491. current_position[Z_AXIS] = z;
  1492. line_to_current_position();
  1493. stepper.synchronize();
  1494. feedrate = xy_travel_speed;
  1495. current_position[X_AXIS] = x;
  1496. current_position[Y_AXIS] = y;
  1497. line_to_current_position();
  1498. stepper.synchronize();
  1499. #endif
  1500. feedrate = oldFeedRate;
  1501. }
  1502. inline void do_blocking_move_to_xy(float x, float y) {
  1503. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1504. }
  1505. inline void do_blocking_move_to_x(float x) {
  1506. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1507. }
  1508. inline void do_blocking_move_to_z(float z) {
  1509. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1510. }
  1511. inline void raise_z_after_probing() {
  1512. #if Z_RAISE_AFTER_PROBING > 0
  1513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1514. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("raise_z_after_probing()");
  1515. #endif
  1516. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1517. #endif
  1518. }
  1519. static void clean_up_after_endstop_move() {
  1520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1521. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
  1522. #endif
  1523. endstops.not_homing();
  1524. feedrate = saved_feedrate;
  1525. feedrate_multiplier = saved_feedrate_multiplier;
  1526. refresh_cmd_timeout();
  1527. }
  1528. #if HAS_BED_PROBE
  1529. static void deploy_z_probe() {
  1530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1531. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1532. #endif
  1533. if (endstops.z_probe_enabled) return;
  1534. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1535. // Engage Z Servo endstop if enabled
  1536. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1537. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1538. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1539. // If endstop is already false, the Z probe is deployed
  1540. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1541. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1542. if (z_probe_endstop)
  1543. #else
  1544. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1545. if (z_min_endstop)
  1546. #endif
  1547. {
  1548. // Move to the start position to initiate deployment
  1549. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1550. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1551. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1552. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1553. // Move to engage deployment
  1554. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1555. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1556. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1557. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1558. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1559. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1560. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1561. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1562. prepare_move_to_destination_raw();
  1563. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1564. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1565. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1566. // Move to trigger deployment
  1567. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1568. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1569. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1570. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1571. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1572. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1573. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1574. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1575. prepare_move_to_destination_raw();
  1576. #endif
  1577. }
  1578. // Partially Home X,Y for safety
  1579. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1580. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1581. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1582. stepper.synchronize();
  1583. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1584. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1585. if (z_probe_endstop)
  1586. #else
  1587. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1588. if (z_min_endstop)
  1589. #endif
  1590. {
  1591. if (IsRunning()) {
  1592. SERIAL_ERROR_START;
  1593. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1594. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1595. }
  1596. stop();
  1597. }
  1598. #endif // Z_PROBE_ALLEN_KEY
  1599. #if ENABLED(FIX_MOUNTED_PROBE)
  1600. // Noting to be done. Just set endstops.z_probe_enabled
  1601. #endif
  1602. endstops.enable_z_probe();
  1603. }
  1604. static void stow_z_probe(bool doRaise = true) {
  1605. #if !(ENABLED(HAS_SERVO_ENDSTOPS) && (Z_RAISE_AFTER_PROBING > 0))
  1606. UNUSED(doRaise);
  1607. #endif
  1608. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1609. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1610. #endif
  1611. if (!endstops.z_probe_enabled) return;
  1612. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1613. // Retract Z Servo endstop if enabled
  1614. if (servo_endstop_id[Z_AXIS] >= 0) {
  1615. #if Z_RAISE_AFTER_PROBING > 0
  1616. if (doRaise) {
  1617. raise_z_after_probing(); // this also updates current_position
  1618. stepper.synchronize();
  1619. }
  1620. #endif
  1621. // Change the Z servo angle
  1622. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1623. }
  1624. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1625. // Move up for safety
  1626. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1627. #if Z_RAISE_AFTER_PROBING > 0
  1628. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1629. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1630. #endif
  1631. // Move to the start position to initiate retraction
  1632. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1633. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1634. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1635. prepare_move_to_destination_raw();
  1636. // Move the nozzle down to push the Z probe into retracted position
  1637. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1638. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1639. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1640. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1641. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1642. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1643. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1644. prepare_move_to_destination_raw();
  1645. // Move up for safety
  1646. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1647. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1648. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1649. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1650. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1651. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1652. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1653. prepare_move_to_destination_raw();
  1654. // Home XY for safety
  1655. feedrate = homing_feedrate[X_AXIS] / 2;
  1656. destination[X_AXIS] = 0;
  1657. destination[Y_AXIS] = 0;
  1658. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1659. stepper.synchronize();
  1660. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1661. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1662. if (!z_probe_endstop)
  1663. #else
  1664. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1665. if (!z_min_endstop)
  1666. #endif
  1667. {
  1668. if (IsRunning()) {
  1669. SERIAL_ERROR_START;
  1670. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1671. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1672. }
  1673. stop();
  1674. }
  1675. #endif // Z_PROBE_ALLEN_KEY
  1676. #if ENABLED(FIX_MOUNTED_PROBE)
  1677. // Nothing to do here. Just clear endstops.z_probe_enabled
  1678. #endif
  1679. endstops.enable_z_probe(false);
  1680. }
  1681. #endif // HAS_BED_PROBE
  1682. enum ProbeAction {
  1683. ProbeStay = 0,
  1684. ProbeDeploy = _BV(0),
  1685. ProbeStow = _BV(1),
  1686. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1687. };
  1688. // Probe bed height at position (x,y), returns the measured z value
  1689. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1691. if (DEBUGGING(LEVELING)) {
  1692. SERIAL_ECHOLNPGM("probe_pt >>>");
  1693. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1694. SERIAL_EOL;
  1695. DEBUG_POS("", current_position);
  1696. }
  1697. #endif
  1698. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1699. if (DEBUGGING(LEVELING)) {
  1700. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1701. SERIAL_EOL;
  1702. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1703. SERIAL_EOL;
  1704. }
  1705. #endif
  1706. // Move Z up to the z_before height, then move the Z probe to the given XY
  1707. do_blocking_move_to_z(z_before); // this also updates current_position
  1708. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1709. if (DEBUGGING(LEVELING)) {
  1710. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1711. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1712. SERIAL_EOL;
  1713. }
  1714. #endif
  1715. // this also updates current_position
  1716. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1717. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1718. if (probe_action & ProbeDeploy) {
  1719. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1720. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1721. #endif
  1722. deploy_z_probe();
  1723. }
  1724. #endif
  1725. run_z_probe();
  1726. float measured_z = current_position[Z_AXIS];
  1727. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1728. if (probe_action & ProbeStow) {
  1729. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1730. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1731. #endif
  1732. stow_z_probe();
  1733. }
  1734. #endif
  1735. if (verbose_level > 2) {
  1736. SERIAL_PROTOCOLPGM("Bed X: ");
  1737. SERIAL_PROTOCOL_F(x, 3);
  1738. SERIAL_PROTOCOLPGM(" Y: ");
  1739. SERIAL_PROTOCOL_F(y, 3);
  1740. SERIAL_PROTOCOLPGM(" Z: ");
  1741. SERIAL_PROTOCOL_F(measured_z, 3);
  1742. SERIAL_EOL;
  1743. }
  1744. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1745. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1746. #endif
  1747. return measured_z;
  1748. }
  1749. #if ENABLED(DELTA)
  1750. /**
  1751. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1752. */
  1753. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1754. if (bed_level[x][y] != 0.0) {
  1755. return; // Don't overwrite good values.
  1756. }
  1757. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1758. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1759. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1760. float median = c; // Median is robust (ignores outliers).
  1761. if (a < b) {
  1762. if (b < c) median = b;
  1763. if (c < a) median = a;
  1764. }
  1765. else { // b <= a
  1766. if (c < b) median = b;
  1767. if (a < c) median = a;
  1768. }
  1769. bed_level[x][y] = median;
  1770. }
  1771. /**
  1772. * Fill in the unprobed points (corners of circular print surface)
  1773. * using linear extrapolation, away from the center.
  1774. */
  1775. static void extrapolate_unprobed_bed_level() {
  1776. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1777. for (int y = 0; y <= half; y++) {
  1778. for (int x = 0; x <= half; x++) {
  1779. if (x + y < 3) continue;
  1780. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1781. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1782. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1783. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1784. }
  1785. }
  1786. }
  1787. /**
  1788. * Print calibration results for plotting or manual frame adjustment.
  1789. */
  1790. static void print_bed_level() {
  1791. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1792. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1793. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1794. SERIAL_PROTOCOLCHAR(' ');
  1795. }
  1796. SERIAL_EOL;
  1797. }
  1798. }
  1799. /**
  1800. * Reset calibration results to zero.
  1801. */
  1802. void reset_bed_level() {
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1805. #endif
  1806. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1807. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1808. bed_level[x][y] = 0.0;
  1809. }
  1810. }
  1811. }
  1812. #endif // DELTA
  1813. #if ENABLED(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_SLED)
  1814. void raise_z_for_servo() {
  1815. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1816. /**
  1817. * The zprobe_zoffset is negative any switch below the nozzle, so
  1818. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1819. */
  1820. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1821. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1822. }
  1823. #endif
  1824. #endif // AUTO_BED_LEVELING_FEATURE
  1825. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1826. static void axis_unhomed_error(bool xyz=false) {
  1827. if (xyz) {
  1828. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1829. SERIAL_ECHO_START;
  1830. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1831. }
  1832. else {
  1833. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1834. SERIAL_ECHO_START;
  1835. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1836. }
  1837. }
  1838. #endif
  1839. #if ENABLED(Z_PROBE_SLED)
  1840. #ifndef SLED_DOCKING_OFFSET
  1841. #define SLED_DOCKING_OFFSET 0
  1842. #endif
  1843. /**
  1844. * Method to dock/undock a sled designed by Charles Bell.
  1845. *
  1846. * dock[in] If true, move to MAX_X and engage the electromagnet
  1847. * offset[in] The additional distance to move to adjust docking location
  1848. */
  1849. static void dock_sled(bool dock, int offset = 0) {
  1850. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1851. if (DEBUGGING(LEVELING)) {
  1852. SERIAL_ECHOPAIR("dock_sled(", dock);
  1853. SERIAL_ECHOLNPGM(")");
  1854. }
  1855. #endif
  1856. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1857. axis_unhomed_error(true);
  1858. return;
  1859. }
  1860. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1861. float oldXpos = current_position[X_AXIS]; // save x position
  1862. if (dock) {
  1863. raise_z_after_probing(); // raise Z
  1864. // Dock sled a bit closer to ensure proper capturing
  1865. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1866. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1867. }
  1868. else {
  1869. float z_loc = current_position[Z_AXIS];
  1870. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1871. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1872. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1873. }
  1874. do_blocking_move_to_x(oldXpos); // return to position before docking
  1875. endstops.enable_z_probe(!dock); // logically disable docked probe
  1876. }
  1877. #endif // Z_PROBE_SLED
  1878. /**
  1879. * Home an individual axis
  1880. */
  1881. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1882. static void homeaxis(AxisEnum axis) {
  1883. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1884. if (DEBUGGING(LEVELING)) {
  1885. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1886. SERIAL_ECHOLNPGM(")");
  1887. }
  1888. #endif
  1889. #define HOMEAXIS_DO(LETTER) \
  1890. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1891. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1892. int axis_home_dir =
  1893. #if ENABLED(DUAL_X_CARRIAGE)
  1894. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1895. #endif
  1896. home_dir(axis);
  1897. // Set the axis position as setup for the move
  1898. current_position[axis] = 0;
  1899. sync_plan_position();
  1900. #if ENABLED(Z_PROBE_SLED)
  1901. #define _Z_SERVO_TEST (axis != Z_AXIS) // already deployed Z
  1902. #define _Z_SERVO_SUBTEST false // Z will never be invoked
  1903. #define _Z_DEPLOY (dock_sled(false))
  1904. #define _Z_STOW (dock_sled(true))
  1905. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1906. #define _Z_SERVO_TEST (axis != Z_AXIS) // already deployed Z
  1907. #define _Z_SERVO_SUBTEST false // Z will never be invoked
  1908. #define _Z_DEPLOY (deploy_z_probe())
  1909. #define _Z_STOW (stow_z_probe())
  1910. #elif ENABLED(HAS_SERVO_ENDSTOPS)
  1911. #define _Z_SERVO_TEST true // Z not deployed yet
  1912. #define _Z_SERVO_SUBTEST (axis == Z_AXIS) // Z is a probe
  1913. #endif
  1914. // If there's a Z probe that needs deployment...
  1915. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1916. // ...and homing Z towards the bed? Deploy it.
  1917. if (axis == Z_AXIS && axis_home_dir < 0) {
  1918. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1919. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_DEPLOY));
  1920. #endif
  1921. _Z_DEPLOY;
  1922. }
  1923. #endif
  1924. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1925. // Engage an X, Y (or Z) Servo endstop if enabled
  1926. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1927. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1928. if (_Z_SERVO_SUBTEST) endstops.z_probe_enabled = true;
  1929. }
  1930. #endif
  1931. // Set a flag for Z motor locking
  1932. #if ENABLED(Z_DUAL_ENDSTOPS)
  1933. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1934. #endif
  1935. // Move towards the endstop until an endstop is triggered
  1936. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1937. feedrate = homing_feedrate[axis];
  1938. line_to_destination();
  1939. stepper.synchronize();
  1940. // Set the axis position as setup for the move
  1941. current_position[axis] = 0;
  1942. sync_plan_position();
  1943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1944. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1945. #endif
  1946. endstops.enable(false); // Disable endstops while moving away
  1947. // Move away from the endstop by the axis HOME_BUMP_MM
  1948. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1949. line_to_destination();
  1950. stepper.synchronize();
  1951. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1952. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1953. #endif
  1954. endstops.enable(true); // Enable endstops for next homing move
  1955. // Slow down the feedrate for the next move
  1956. set_homing_bump_feedrate(axis);
  1957. // Move slowly towards the endstop until triggered
  1958. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1959. line_to_destination();
  1960. stepper.synchronize();
  1961. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1962. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1963. #endif
  1964. #if ENABLED(Z_DUAL_ENDSTOPS)
  1965. if (axis == Z_AXIS) {
  1966. float adj = fabs(z_endstop_adj);
  1967. bool lockZ1;
  1968. if (axis_home_dir > 0) {
  1969. adj = -adj;
  1970. lockZ1 = (z_endstop_adj > 0);
  1971. }
  1972. else
  1973. lockZ1 = (z_endstop_adj < 0);
  1974. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1975. sync_plan_position();
  1976. // Move to the adjusted endstop height
  1977. feedrate = homing_feedrate[axis];
  1978. destination[Z_AXIS] = adj;
  1979. line_to_destination();
  1980. stepper.synchronize();
  1981. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1982. stepper.set_homing_flag(false);
  1983. } // Z_AXIS
  1984. #endif
  1985. #if ENABLED(DELTA)
  1986. // retrace by the amount specified in endstop_adj
  1987. if (endstop_adj[axis] * axis_home_dir < 0) {
  1988. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1989. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1990. #endif
  1991. endstops.enable(false); // Disable endstops while moving away
  1992. sync_plan_position();
  1993. destination[axis] = endstop_adj[axis];
  1994. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1995. if (DEBUGGING(LEVELING)) {
  1996. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1997. DEBUG_POS("", destination);
  1998. }
  1999. #endif
  2000. line_to_destination();
  2001. stepper.synchronize();
  2002. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2003. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2004. #endif
  2005. endstops.enable(true); // Enable endstops for next homing move
  2006. }
  2007. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2008. else {
  2009. if (DEBUGGING(LEVELING)) {
  2010. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2011. SERIAL_EOL;
  2012. }
  2013. }
  2014. #endif
  2015. #endif
  2016. // Set the axis position to its home position (plus home offsets)
  2017. set_axis_is_at_home(axis);
  2018. sync_plan_position();
  2019. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2020. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2021. #endif
  2022. destination[axis] = current_position[axis];
  2023. feedrate = 0.0;
  2024. endstops.hit_on_purpose(); // clear endstop hit flags
  2025. axis_known_position[axis] = true;
  2026. axis_homed[axis] = true;
  2027. // Put away the Z probe with a function
  2028. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  2029. if (axis == Z_AXIS && axis_home_dir < 0) {
  2030. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2031. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  2032. #endif
  2033. _Z_STOW;
  2034. }
  2035. #endif
  2036. // Retract X, Y (or Z) Servo endstop if enabled
  2037. #if ENABLED(HAS_SERVO_ENDSTOPS)
  2038. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  2039. // Raise the servo probe before stow outside ABL context.
  2040. // This is a workaround to allow use of a Servo Probe without
  2041. // ABL until more global probe handling is implemented.
  2042. #if Z_RAISE_AFTER_PROBING > 0
  2043. if (axis == Z_AXIS) {
  2044. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2045. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  2046. #endif
  2047. current_position[Z_AXIS] = Z_RAISE_AFTER_PROBING;
  2048. feedrate = homing_feedrate[Z_AXIS];
  2049. line_to_current_position();
  2050. stepper.synchronize();
  2051. }
  2052. #endif
  2053. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2054. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  2055. #endif
  2056. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  2057. if (_Z_SERVO_SUBTEST) endstops.enable_z_probe(false);
  2058. }
  2059. #endif // HAS_SERVO_ENDSTOPS
  2060. }
  2061. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2062. if (DEBUGGING(LEVELING)) {
  2063. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2064. SERIAL_ECHOLNPGM(")");
  2065. }
  2066. #endif
  2067. }
  2068. #if ENABLED(FWRETRACT)
  2069. void retract(bool retracting, bool swapping = false) {
  2070. if (retracting == retracted[active_extruder]) return;
  2071. float oldFeedrate = feedrate;
  2072. set_destination_to_current();
  2073. if (retracting) {
  2074. feedrate = retract_feedrate * 60;
  2075. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2076. sync_plan_position_e();
  2077. prepare_move_to_destination();
  2078. if (retract_zlift > 0.01) {
  2079. current_position[Z_AXIS] -= retract_zlift;
  2080. #if ENABLED(DELTA)
  2081. sync_plan_position_delta();
  2082. #else
  2083. sync_plan_position();
  2084. #endif
  2085. prepare_move_to_destination();
  2086. }
  2087. }
  2088. else {
  2089. if (retract_zlift > 0.01) {
  2090. current_position[Z_AXIS] += retract_zlift;
  2091. #if ENABLED(DELTA)
  2092. sync_plan_position_delta();
  2093. #else
  2094. sync_plan_position();
  2095. #endif
  2096. }
  2097. feedrate = retract_recover_feedrate * 60;
  2098. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2099. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2100. sync_plan_position_e();
  2101. prepare_move_to_destination();
  2102. }
  2103. feedrate = oldFeedrate;
  2104. retracted[active_extruder] = retracting;
  2105. } // retract()
  2106. #endif // FWRETRACT
  2107. /**
  2108. * ***************************************************************************
  2109. * ***************************** G-CODE HANDLING *****************************
  2110. * ***************************************************************************
  2111. */
  2112. /**
  2113. * Set XYZE destination and feedrate from the current GCode command
  2114. *
  2115. * - Set destination from included axis codes
  2116. * - Set to current for missing axis codes
  2117. * - Set the feedrate, if included
  2118. */
  2119. void gcode_get_destination() {
  2120. for (int i = 0; i < NUM_AXIS; i++) {
  2121. if (code_seen(axis_codes[i]))
  2122. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2123. else
  2124. destination[i] = current_position[i];
  2125. }
  2126. if (code_seen('F')) {
  2127. float next_feedrate = code_value_linear_units();
  2128. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2129. }
  2130. }
  2131. void unknown_command_error() {
  2132. SERIAL_ECHO_START;
  2133. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2134. SERIAL_ECHO(current_command);
  2135. SERIAL_ECHOPGM("\"\n");
  2136. }
  2137. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2138. /**
  2139. * Output a "busy" message at regular intervals
  2140. * while the machine is not accepting commands.
  2141. */
  2142. void host_keepalive() {
  2143. millis_t ms = millis();
  2144. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2145. if (PENDING(ms, next_busy_signal_ms)) return;
  2146. switch (busy_state) {
  2147. case IN_HANDLER:
  2148. case IN_PROCESS:
  2149. SERIAL_ECHO_START;
  2150. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2151. break;
  2152. case PAUSED_FOR_USER:
  2153. SERIAL_ECHO_START;
  2154. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2155. break;
  2156. case PAUSED_FOR_INPUT:
  2157. SERIAL_ECHO_START;
  2158. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2159. break;
  2160. default:
  2161. break;
  2162. }
  2163. }
  2164. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2165. }
  2166. #endif //HOST_KEEPALIVE_FEATURE
  2167. /**
  2168. * G0, G1: Coordinated movement of X Y Z E axes
  2169. */
  2170. inline void gcode_G0_G1() {
  2171. if (IsRunning()) {
  2172. gcode_get_destination(); // For X Y Z E F
  2173. #if ENABLED(FWRETRACT)
  2174. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2175. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2176. // Is this move an attempt to retract or recover?
  2177. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2178. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2179. sync_plan_position_e(); // AND from the planner
  2180. retract(!retracted[active_extruder]);
  2181. return;
  2182. }
  2183. }
  2184. #endif //FWRETRACT
  2185. prepare_move_to_destination();
  2186. }
  2187. }
  2188. /**
  2189. * G2: Clockwise Arc
  2190. * G3: Counterclockwise Arc
  2191. */
  2192. #if ENABLED(ARC_SUPPORT)
  2193. inline void gcode_G2_G3(bool clockwise) {
  2194. if (IsRunning()) {
  2195. #if ENABLED(SF_ARC_FIX)
  2196. bool relative_mode_backup = relative_mode;
  2197. relative_mode = true;
  2198. #endif
  2199. gcode_get_destination();
  2200. #if ENABLED(SF_ARC_FIX)
  2201. relative_mode = relative_mode_backup;
  2202. #endif
  2203. // Center of arc as offset from current_position
  2204. float arc_offset[2] = {
  2205. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2206. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2207. };
  2208. // Send an arc to the planner
  2209. plan_arc(destination, arc_offset, clockwise);
  2210. refresh_cmd_timeout();
  2211. }
  2212. }
  2213. #endif
  2214. /**
  2215. * G4: Dwell S<seconds> or P<milliseconds>
  2216. */
  2217. inline void gcode_G4() {
  2218. millis_t codenum = 0;
  2219. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2220. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2221. stepper.synchronize();
  2222. refresh_cmd_timeout();
  2223. codenum += previous_cmd_ms; // keep track of when we started waiting
  2224. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2225. while (PENDING(millis(), codenum)) idle();
  2226. }
  2227. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2228. /**
  2229. * Parameters interpreted according to:
  2230. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2231. * However I, J omission is not supported at this point; all
  2232. * parameters can be omitted and default to zero.
  2233. */
  2234. /**
  2235. * G5: Cubic B-spline
  2236. */
  2237. inline void gcode_G5() {
  2238. if (IsRunning()) {
  2239. gcode_get_destination();
  2240. float offset[] = {
  2241. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2242. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2243. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2244. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2245. };
  2246. plan_cubic_move(offset);
  2247. }
  2248. }
  2249. #endif // BEZIER_CURVE_SUPPORT
  2250. #if ENABLED(FWRETRACT)
  2251. /**
  2252. * G10 - Retract filament according to settings of M207
  2253. * G11 - Recover filament according to settings of M208
  2254. */
  2255. inline void gcode_G10_G11(bool doRetract=false) {
  2256. #if EXTRUDERS > 1
  2257. if (doRetract) {
  2258. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2259. }
  2260. #endif
  2261. retract(doRetract
  2262. #if EXTRUDERS > 1
  2263. , retracted_swap[active_extruder]
  2264. #endif
  2265. );
  2266. }
  2267. #endif //FWRETRACT
  2268. #if ENABLED(INCH_MODE_SUPPORT)
  2269. /**
  2270. * G20: Set input mode to inches
  2271. */
  2272. inline void gcode_G20() {
  2273. set_input_linear_units(LINEARUNIT_INCH);
  2274. }
  2275. /**
  2276. * G21: Set input mode to millimeters
  2277. */
  2278. inline void gcode_G21() {
  2279. set_input_linear_units(LINEARUNIT_MM);
  2280. }
  2281. #endif
  2282. /**
  2283. * G28: Home all axes according to settings
  2284. *
  2285. * Parameters
  2286. *
  2287. * None Home to all axes with no parameters.
  2288. * With QUICK_HOME enabled XY will home together, then Z.
  2289. *
  2290. * Cartesian parameters
  2291. *
  2292. * X Home to the X endstop
  2293. * Y Home to the Y endstop
  2294. * Z Home to the Z endstop
  2295. *
  2296. */
  2297. inline void gcode_G28() {
  2298. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2299. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2300. #endif
  2301. // Wait for planner moves to finish!
  2302. stepper.synchronize();
  2303. // For auto bed leveling, clear the level matrix
  2304. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2305. planner.bed_level_matrix.set_to_identity();
  2306. #if ENABLED(DELTA)
  2307. reset_bed_level();
  2308. #endif
  2309. #endif
  2310. /**
  2311. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2312. * on again when homing all axis
  2313. */
  2314. #if ENABLED(MESH_BED_LEVELING)
  2315. float pre_home_z = MESH_HOME_SEARCH_Z;
  2316. if (mbl.active()) {
  2317. // Save known Z position if already homed
  2318. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2319. pre_home_z = current_position[Z_AXIS];
  2320. pre_home_z += mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2321. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2322. }
  2323. mbl.set_active(false);
  2324. }
  2325. #endif
  2326. setup_for_endstop_move();
  2327. /**
  2328. * Directly after a reset this is all 0. Later we get a hint if we have
  2329. * to raise z or not.
  2330. */
  2331. set_destination_to_current();
  2332. feedrate = 0.0;
  2333. #if ENABLED(DELTA)
  2334. /**
  2335. * A delta can only safely home all axis at the same time
  2336. * all axis have to home at the same time
  2337. */
  2338. // Pretend the current position is 0,0,0
  2339. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2340. sync_plan_position();
  2341. // Move all carriages up together until the first endstop is hit.
  2342. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2343. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2344. line_to_destination();
  2345. stepper.synchronize();
  2346. endstops.hit_on_purpose(); // clear endstop hit flags
  2347. // Destination reached
  2348. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2349. // take care of back off and rehome now we are all at the top
  2350. HOMEAXIS(X);
  2351. HOMEAXIS(Y);
  2352. HOMEAXIS(Z);
  2353. sync_plan_position_delta();
  2354. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2355. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2356. #endif
  2357. #else // NOT DELTA
  2358. bool homeX = code_seen(axis_codes[X_AXIS]),
  2359. homeY = code_seen(axis_codes[Y_AXIS]),
  2360. homeZ = code_seen(axis_codes[Z_AXIS]);
  2361. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2362. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2363. if (home_all_axis || homeZ) {
  2364. HOMEAXIS(Z);
  2365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2366. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2367. #endif
  2368. }
  2369. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2370. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2371. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2372. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2373. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2375. if (DEBUGGING(LEVELING)) {
  2376. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2377. SERIAL_EOL;
  2378. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2379. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2380. }
  2381. #endif
  2382. line_to_destination();
  2383. stepper.synchronize();
  2384. /**
  2385. * Update the current Z position even if it currently not real from
  2386. * Z-home otherwise each call to line_to_destination() will want to
  2387. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2388. */
  2389. current_position[Z_AXIS] = destination[Z_AXIS];
  2390. }
  2391. #endif
  2392. #if ENABLED(QUICK_HOME)
  2393. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2394. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2395. #if ENABLED(DUAL_X_CARRIAGE)
  2396. int x_axis_home_dir = x_home_dir(active_extruder);
  2397. extruder_duplication_enabled = false;
  2398. #else
  2399. int x_axis_home_dir = home_dir(X_AXIS);
  2400. #endif
  2401. sync_plan_position();
  2402. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2403. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2404. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2405. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2406. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2407. line_to_destination();
  2408. stepper.synchronize();
  2409. set_axis_is_at_home(X_AXIS);
  2410. set_axis_is_at_home(Y_AXIS);
  2411. sync_plan_position();
  2412. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2413. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2414. #endif
  2415. destination[X_AXIS] = current_position[X_AXIS];
  2416. destination[Y_AXIS] = current_position[Y_AXIS];
  2417. line_to_destination();
  2418. feedrate = 0.0;
  2419. stepper.synchronize();
  2420. endstops.hit_on_purpose(); // clear endstop hit flags
  2421. current_position[X_AXIS] = destination[X_AXIS];
  2422. current_position[Y_AXIS] = destination[Y_AXIS];
  2423. #if DISABLED(SCARA)
  2424. current_position[Z_AXIS] = destination[Z_AXIS];
  2425. #endif
  2426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2427. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2428. #endif
  2429. }
  2430. #endif // QUICK_HOME
  2431. #if ENABLED(HOME_Y_BEFORE_X)
  2432. // Home Y
  2433. if (home_all_axis || homeY) HOMEAXIS(Y);
  2434. #endif
  2435. // Home X
  2436. if (home_all_axis || homeX) {
  2437. #if ENABLED(DUAL_X_CARRIAGE)
  2438. int tmp_extruder = active_extruder;
  2439. extruder_duplication_enabled = false;
  2440. active_extruder = !active_extruder;
  2441. HOMEAXIS(X);
  2442. inactive_extruder_x_pos = current_position[X_AXIS];
  2443. active_extruder = tmp_extruder;
  2444. HOMEAXIS(X);
  2445. // reset state used by the different modes
  2446. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2447. delayed_move_time = 0;
  2448. active_extruder_parked = true;
  2449. #else
  2450. HOMEAXIS(X);
  2451. #endif
  2452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2453. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2454. #endif
  2455. }
  2456. #if DISABLED(HOME_Y_BEFORE_X)
  2457. // Home Y
  2458. if (home_all_axis || homeY) {
  2459. HOMEAXIS(Y);
  2460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2461. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2462. #endif
  2463. }
  2464. #endif
  2465. // Home Z last if homing towards the bed
  2466. #if Z_HOME_DIR < 0
  2467. if (home_all_axis || homeZ) {
  2468. #if ENABLED(Z_SAFE_HOMING)
  2469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2470. if (DEBUGGING(LEVELING)) {
  2471. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2472. }
  2473. #endif
  2474. if (home_all_axis) {
  2475. /**
  2476. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2477. * No need to move Z any more as this height should already be safe
  2478. * enough to reach Z_SAFE_HOMING XY positions.
  2479. * Just make sure the planner is in sync.
  2480. */
  2481. sync_plan_position();
  2482. /**
  2483. * Set the Z probe (or just the nozzle) destination to the safe
  2484. * homing point
  2485. */
  2486. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2487. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2488. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2489. feedrate = XY_TRAVEL_SPEED;
  2490. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2491. if (DEBUGGING(LEVELING)) {
  2492. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2493. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2494. }
  2495. #endif
  2496. // Move in the XY plane
  2497. line_to_destination();
  2498. stepper.synchronize();
  2499. /**
  2500. * Update the current positions for XY, Z is still at least at
  2501. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2502. */
  2503. current_position[X_AXIS] = destination[X_AXIS];
  2504. current_position[Y_AXIS] = destination[Y_AXIS];
  2505. // Home the Z axis
  2506. HOMEAXIS(Z);
  2507. }
  2508. else if (homeZ) { // Don't need to Home Z twice
  2509. // Let's see if X and Y are homed
  2510. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2511. /**
  2512. * Make sure the Z probe is within the physical limits
  2513. * NOTE: This doesn't necessarily ensure the Z probe is also
  2514. * within the bed!
  2515. */
  2516. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2517. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2518. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2519. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2520. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2521. // Home the Z axis
  2522. HOMEAXIS(Z);
  2523. }
  2524. else {
  2525. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2526. SERIAL_ECHO_START;
  2527. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2528. }
  2529. }
  2530. else {
  2531. axis_unhomed_error();
  2532. }
  2533. } // !home_all_axes && homeZ
  2534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2535. if (DEBUGGING(LEVELING)) {
  2536. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2537. }
  2538. #endif
  2539. #else // !Z_SAFE_HOMING
  2540. HOMEAXIS(Z);
  2541. #endif // !Z_SAFE_HOMING
  2542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2543. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2544. #endif
  2545. } // home_all_axis || homeZ
  2546. #endif // Z_HOME_DIR < 0
  2547. sync_plan_position();
  2548. #endif // else DELTA
  2549. #if ENABLED(SCARA)
  2550. sync_plan_position_delta();
  2551. #endif
  2552. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2553. endstops.enable(false);
  2554. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2555. if (DEBUGGING(LEVELING)) {
  2556. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
  2557. }
  2558. #endif
  2559. #endif
  2560. // Enable mesh leveling again
  2561. #if ENABLED(MESH_BED_LEVELING)
  2562. if (mbl.has_mesh()) {
  2563. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2564. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2565. sync_plan_position();
  2566. mbl.set_active(true);
  2567. #if ENABLED(MESH_G28_REST_ORIGIN)
  2568. current_position[Z_AXIS] = 0.0;
  2569. set_destination_to_current();
  2570. feedrate = homing_feedrate[Z_AXIS];
  2571. line_to_destination();
  2572. stepper.synchronize();
  2573. #else
  2574. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2575. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2576. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2577. #endif
  2578. }
  2579. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2580. current_position[Z_AXIS] = pre_home_z;
  2581. sync_plan_position();
  2582. mbl.set_active(true);
  2583. current_position[Z_AXIS] = pre_home_z -
  2584. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2585. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2586. }
  2587. }
  2588. #endif
  2589. feedrate = saved_feedrate;
  2590. feedrate_multiplier = saved_feedrate_multiplier;
  2591. refresh_cmd_timeout();
  2592. endstops.hit_on_purpose(); // clear endstop hit flags
  2593. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2594. if (DEBUGGING(LEVELING)) {
  2595. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2596. }
  2597. #endif
  2598. report_current_position();
  2599. }
  2600. #if ENABLED(MESH_BED_LEVELING)
  2601. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2602. inline void _mbl_goto_xy(float x, float y) {
  2603. saved_feedrate = feedrate;
  2604. feedrate = homing_feedrate[X_AXIS];
  2605. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2606. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2607. + MIN_Z_HEIGHT_FOR_HOMING
  2608. #endif
  2609. ;
  2610. line_to_current_position();
  2611. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2612. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2613. line_to_current_position();
  2614. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2615. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2616. line_to_current_position();
  2617. #endif
  2618. feedrate = saved_feedrate;
  2619. stepper.synchronize();
  2620. }
  2621. /**
  2622. * G29: Mesh-based Z probe, probes a grid and produces a
  2623. * mesh to compensate for variable bed height
  2624. *
  2625. * Parameters With MESH_BED_LEVELING:
  2626. *
  2627. * S0 Produce a mesh report
  2628. * S1 Start probing mesh points
  2629. * S2 Probe the next mesh point
  2630. * S3 Xn Yn Zn.nn Manually modify a single point
  2631. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2632. * S5 Reset and disable mesh
  2633. *
  2634. * The S0 report the points as below
  2635. *
  2636. * +----> X-axis 1-n
  2637. * |
  2638. * |
  2639. * v Y-axis 1-n
  2640. *
  2641. */
  2642. inline void gcode_G29() {
  2643. static int probe_point = -1;
  2644. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2645. if (state < 0 || state > 5) {
  2646. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2647. return;
  2648. }
  2649. int8_t px, py;
  2650. float z;
  2651. switch (state) {
  2652. case MeshReport:
  2653. if (mbl.has_mesh()) {
  2654. SERIAL_PROTOCOLPGM("State: ");
  2655. if (mbl.active())
  2656. SERIAL_PROTOCOLPGM("On");
  2657. else
  2658. SERIAL_PROTOCOLPGM("Off");
  2659. SERIAL_PROTOCOLPGM("\nNum X,Y: ");
  2660. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2661. SERIAL_PROTOCOLCHAR(',');
  2662. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2663. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2664. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2665. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2666. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2667. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2668. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2669. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2670. SERIAL_PROTOCOLPGM(" ");
  2671. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2672. }
  2673. SERIAL_EOL;
  2674. }
  2675. }
  2676. else
  2677. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2678. break;
  2679. case MeshStart:
  2680. mbl.reset();
  2681. probe_point = 0;
  2682. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2683. break;
  2684. case MeshNext:
  2685. if (probe_point < 0) {
  2686. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2687. return;
  2688. }
  2689. // For each G29 S2...
  2690. if (probe_point == 0) {
  2691. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2692. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2693. sync_plan_position();
  2694. }
  2695. else {
  2696. // For G29 S2 after adjusting Z.
  2697. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2698. }
  2699. // If there's another point to sample, move there with optional lift.
  2700. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2701. mbl.zigzag(probe_point, px, py);
  2702. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2703. probe_point++;
  2704. }
  2705. else {
  2706. // One last "return to the bed" (as originally coded) at completion
  2707. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2708. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2709. + MIN_Z_HEIGHT_FOR_HOMING
  2710. #endif
  2711. ;
  2712. line_to_current_position();
  2713. stepper.synchronize();
  2714. // After recording the last point, activate the mbl and home
  2715. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2716. probe_point = -1;
  2717. mbl.set_has_mesh(true);
  2718. enqueue_and_echo_commands_P(PSTR("G28"));
  2719. }
  2720. break;
  2721. case MeshSet:
  2722. if (code_seen('X')) {
  2723. px = code_value_int() - 1;
  2724. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2725. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2726. return;
  2727. }
  2728. }
  2729. else {
  2730. SERIAL_PROTOCOLPGM("X not entered.\n");
  2731. return;
  2732. }
  2733. if (code_seen('Y')) {
  2734. py = code_value_int() - 1;
  2735. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2736. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2737. return;
  2738. }
  2739. }
  2740. else {
  2741. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2742. return;
  2743. }
  2744. if (code_seen('Z')) {
  2745. z = code_value_axis_units(Z_AXIS);
  2746. }
  2747. else {
  2748. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2749. return;
  2750. }
  2751. mbl.z_values[py][px] = z;
  2752. break;
  2753. case MeshSetZOffset:
  2754. if (code_seen('Z')) {
  2755. z = code_value_axis_units(Z_AXIS);
  2756. }
  2757. else {
  2758. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2759. return;
  2760. }
  2761. mbl.z_offset = z;
  2762. break;
  2763. case MeshReset:
  2764. if (mbl.active()) {
  2765. current_position[Z_AXIS] +=
  2766. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2767. current_position[Y_AXIS] - home_offset[Y_AXIS]) - MESH_HOME_SEARCH_Z;
  2768. mbl.reset();
  2769. sync_plan_position();
  2770. }
  2771. else
  2772. mbl.reset();
  2773. } // switch(state)
  2774. report_current_position();
  2775. }
  2776. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2777. void out_of_range_error(const char* p_edge) {
  2778. SERIAL_PROTOCOLPGM("?Probe ");
  2779. serialprintPGM(p_edge);
  2780. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2781. }
  2782. /**
  2783. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2784. * Will fail if the printer has not been homed with G28.
  2785. *
  2786. * Enhanced G29 Auto Bed Leveling Probe Routine
  2787. *
  2788. * Parameters With AUTO_BED_LEVELING_GRID:
  2789. *
  2790. * P Set the size of the grid that will be probed (P x P points).
  2791. * Not supported by non-linear delta printer bed leveling.
  2792. * Example: "G29 P4"
  2793. *
  2794. * S Set the XY travel speed between probe points (in mm/min)
  2795. *
  2796. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2797. * or clean the rotation Matrix. Useful to check the topology
  2798. * after a first run of G29.
  2799. *
  2800. * V Set the verbose level (0-4). Example: "G29 V3"
  2801. *
  2802. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2803. * This is useful for manual bed leveling and finding flaws in the bed (to
  2804. * assist with part placement).
  2805. * Not supported by non-linear delta printer bed leveling.
  2806. *
  2807. * F Set the Front limit of the probing grid
  2808. * B Set the Back limit of the probing grid
  2809. * L Set the Left limit of the probing grid
  2810. * R Set the Right limit of the probing grid
  2811. *
  2812. * Global Parameters:
  2813. *
  2814. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2815. * Include "E" to engage/disengage the Z probe for each sample.
  2816. * There's no extra effect if you have a fixed Z probe.
  2817. * Usage: "G29 E" or "G29 e"
  2818. *
  2819. */
  2820. inline void gcode_G29() {
  2821. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2822. if (DEBUGGING(LEVELING)) {
  2823. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2824. DEBUG_POS("", current_position);
  2825. }
  2826. #endif
  2827. // Don't allow auto-leveling without homing first
  2828. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2829. axis_unhomed_error(true);
  2830. return;
  2831. }
  2832. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2833. if (verbose_level < 0 || verbose_level > 4) {
  2834. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2835. return;
  2836. }
  2837. bool dryrun = code_seen('D'),
  2838. deploy_probe_for_each_reading = code_seen('E');
  2839. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2840. #if DISABLED(DELTA)
  2841. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2842. #endif
  2843. if (verbose_level > 0) {
  2844. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2845. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2846. }
  2847. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2848. #if DISABLED(DELTA)
  2849. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2850. if (auto_bed_leveling_grid_points < 2) {
  2851. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2852. return;
  2853. }
  2854. #endif
  2855. xy_travel_speed = code_seen('S') ? (int)code_value_linear_units() : XY_TRAVEL_SPEED;
  2856. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2857. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2858. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2859. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2860. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2861. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2862. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2863. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2864. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2865. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2866. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2867. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2868. if (left_out || right_out || front_out || back_out) {
  2869. if (left_out) {
  2870. out_of_range_error(PSTR("(L)eft"));
  2871. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2872. }
  2873. if (right_out) {
  2874. out_of_range_error(PSTR("(R)ight"));
  2875. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2876. }
  2877. if (front_out) {
  2878. out_of_range_error(PSTR("(F)ront"));
  2879. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2880. }
  2881. if (back_out) {
  2882. out_of_range_error(PSTR("(B)ack"));
  2883. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2884. }
  2885. return;
  2886. }
  2887. #endif // AUTO_BED_LEVELING_GRID
  2888. if (!dryrun) {
  2889. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2890. if (DEBUGGING(LEVELING)) {
  2891. vector_3 corrected_position = planner.adjusted_position();
  2892. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2893. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2894. }
  2895. #endif
  2896. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2897. planner.bed_level_matrix.set_to_identity();
  2898. #if ENABLED(DELTA)
  2899. reset_bed_level();
  2900. #else //!DELTA
  2901. //vector_3 corrected_position = planner.adjusted_position();
  2902. //corrected_position.debug("position before G29");
  2903. vector_3 uncorrected_position = planner.adjusted_position();
  2904. //uncorrected_position.debug("position during G29");
  2905. current_position[X_AXIS] = uncorrected_position.x;
  2906. current_position[Y_AXIS] = uncorrected_position.y;
  2907. current_position[Z_AXIS] = uncorrected_position.z;
  2908. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2909. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2910. #endif
  2911. sync_plan_position();
  2912. #endif // !DELTA
  2913. }
  2914. #if ENABLED(Z_PROBE_SLED)
  2915. dock_sled(false); // engage (un-dock) the Z probe
  2916. #elif ENABLED(FIX_MOUNTED_PROBE) || ENABLED(MECHANICAL_PROBE) || ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2917. deploy_z_probe();
  2918. #endif
  2919. stepper.synchronize();
  2920. setup_for_endstop_move();
  2921. feedrate = homing_feedrate[Z_AXIS];
  2922. bed_leveling_in_progress = true;
  2923. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2924. // probe at the points of a lattice grid
  2925. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2926. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2927. #if ENABLED(DELTA)
  2928. delta_grid_spacing[0] = xGridSpacing;
  2929. delta_grid_spacing[1] = yGridSpacing;
  2930. float zoffset = zprobe_zoffset;
  2931. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value_axis_units(Z_AXIS);
  2932. #else // !DELTA
  2933. /**
  2934. * solve the plane equation ax + by + d = z
  2935. * A is the matrix with rows [x y 1] for all the probed points
  2936. * B is the vector of the Z positions
  2937. * the normal vector to the plane is formed by the coefficients of the
  2938. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2939. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2940. */
  2941. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2942. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2943. eqnBVector[abl2], // "B" vector of Z points
  2944. mean = 0.0;
  2945. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2946. #endif // !DELTA
  2947. int probePointCounter = 0;
  2948. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2949. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2950. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2951. int xStart, xStop, xInc;
  2952. if (zig) {
  2953. xStart = 0;
  2954. xStop = auto_bed_leveling_grid_points;
  2955. xInc = 1;
  2956. }
  2957. else {
  2958. xStart = auto_bed_leveling_grid_points - 1;
  2959. xStop = -1;
  2960. xInc = -1;
  2961. }
  2962. zig = !zig;
  2963. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2964. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2965. // raise extruder
  2966. float measured_z,
  2967. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2968. if (probePointCounter) {
  2969. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2970. if (DEBUGGING(LEVELING)) {
  2971. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2972. SERIAL_EOL;
  2973. }
  2974. #endif
  2975. }
  2976. else {
  2977. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2978. if (DEBUGGING(LEVELING)) {
  2979. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2980. SERIAL_EOL;
  2981. }
  2982. #endif
  2983. }
  2984. #if ENABLED(DELTA)
  2985. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2986. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2987. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2988. #endif //DELTA
  2989. ProbeAction act;
  2990. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2991. act = ProbeDeployAndStow;
  2992. else if (yCount == 0 && xCount == xStart)
  2993. act = ProbeDeploy;
  2994. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2995. act = ProbeStow;
  2996. else
  2997. act = ProbeStay;
  2998. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2999. #if DISABLED(DELTA)
  3000. mean += measured_z;
  3001. eqnBVector[probePointCounter] = measured_z;
  3002. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3003. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3004. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3005. indexIntoAB[xCount][yCount] = probePointCounter;
  3006. #else
  3007. bed_level[xCount][yCount] = measured_z + zoffset;
  3008. #endif
  3009. probePointCounter++;
  3010. idle();
  3011. } //xProbe
  3012. } //yProbe
  3013. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3014. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3015. #endif
  3016. clean_up_after_endstop_move();
  3017. #if ENABLED(DELTA)
  3018. if (!dryrun) extrapolate_unprobed_bed_level();
  3019. print_bed_level();
  3020. #else // !DELTA
  3021. // solve lsq problem
  3022. double plane_equation_coefficients[3];
  3023. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3024. mean /= abl2;
  3025. if (verbose_level) {
  3026. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3027. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3028. SERIAL_PROTOCOLPGM(" b: ");
  3029. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3030. SERIAL_PROTOCOLPGM(" d: ");
  3031. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3032. SERIAL_EOL;
  3033. if (verbose_level > 2) {
  3034. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3035. SERIAL_PROTOCOL_F(mean, 8);
  3036. SERIAL_EOL;
  3037. }
  3038. }
  3039. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3040. // Show the Topography map if enabled
  3041. if (do_topography_map) {
  3042. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  3043. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  3044. SERIAL_PROTOCOLPGM(" | |\n");
  3045. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  3046. SERIAL_PROTOCOLPGM(" E | | I\n");
  3047. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  3048. SERIAL_PROTOCOLPGM(" T | | H\n");
  3049. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  3050. SERIAL_PROTOCOLPGM(" | |\n");
  3051. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  3052. SERIAL_PROTOCOLPGM(" (0,0)\n");
  3053. float min_diff = 999;
  3054. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3055. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3056. int ind = indexIntoAB[xx][yy];
  3057. float diff = eqnBVector[ind] - mean;
  3058. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3059. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3060. z_tmp = 0;
  3061. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3062. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3063. if (diff >= 0.0)
  3064. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3065. else
  3066. SERIAL_PROTOCOLCHAR(' ');
  3067. SERIAL_PROTOCOL_F(diff, 5);
  3068. } // xx
  3069. SERIAL_EOL;
  3070. } // yy
  3071. SERIAL_EOL;
  3072. if (verbose_level > 3) {
  3073. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  3074. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3075. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3076. int ind = indexIntoAB[xx][yy];
  3077. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3078. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3079. z_tmp = 0;
  3080. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3081. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3082. if (diff >= 0.0)
  3083. SERIAL_PROTOCOLPGM(" +");
  3084. // Include + for column alignment
  3085. else
  3086. SERIAL_PROTOCOLCHAR(' ');
  3087. SERIAL_PROTOCOL_F(diff, 5);
  3088. } // xx
  3089. SERIAL_EOL;
  3090. } // yy
  3091. SERIAL_EOL;
  3092. }
  3093. } //do_topography_map
  3094. #endif //!DELTA
  3095. #else // !AUTO_BED_LEVELING_GRID
  3096. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3097. if (DEBUGGING(LEVELING)) {
  3098. SERIAL_ECHOLNPGM("> 3-point Leveling");
  3099. }
  3100. #endif
  3101. // Actions for each probe
  3102. ProbeAction p1, p2, p3;
  3103. if (deploy_probe_for_each_reading)
  3104. p1 = p2 = p3 = ProbeDeployAndStow;
  3105. else
  3106. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  3107. // Probe at 3 arbitrary points
  3108. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3109. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3110. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  3111. p1, verbose_level),
  3112. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3113. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3114. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3115. p2, verbose_level),
  3116. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3117. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3118. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3119. p3, verbose_level);
  3120. clean_up_after_endstop_move();
  3121. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3122. #endif // !AUTO_BED_LEVELING_GRID
  3123. #if ENABLED(DELTA)
  3124. // Allen Key Probe for Delta
  3125. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  3126. stow_z_probe();
  3127. #else
  3128. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  3129. #endif
  3130. #else // !DELTA
  3131. if (verbose_level > 0)
  3132. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  3133. if (!dryrun) {
  3134. /**
  3135. * Correct the Z height difference from Z probe position and nozzle tip position.
  3136. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3137. * from the nozzle. When the bed is uneven, this height must be corrected.
  3138. */
  3139. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3140. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3141. z_tmp = current_position[Z_AXIS],
  3142. real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3143. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3144. if (DEBUGGING(LEVELING)) {
  3145. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  3146. SERIAL_EOL;
  3147. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  3148. SERIAL_EOL;
  3149. }
  3150. #endif
  3151. // Apply the correction sending the Z probe offset
  3152. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3153. /*
  3154. * Get the current Z position and send it to the planner.
  3155. *
  3156. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  3157. * (most recent planner.set_position_mm/sync_plan_position)
  3158. *
  3159. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  3160. * (set by default, M851, EEPROM, or Menu)
  3161. *
  3162. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  3163. * after the last probe
  3164. *
  3165. * >> Should home_offset[Z_AXIS] be included?
  3166. *
  3167. *
  3168. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  3169. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  3170. * not actually "homing" Z... then perhaps it should not be included
  3171. * here. The purpose of home_offset[] is to adjust for inaccurate
  3172. * endstops, not for reasonably accurate probes. If it were added
  3173. * here, it could be seen as a compensating factor for the Z probe.
  3174. */
  3175. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3176. if (DEBUGGING(LEVELING)) {
  3177. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3178. SERIAL_EOL;
  3179. }
  3180. #endif
  3181. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  3182. #if ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  3183. + Z_RAISE_AFTER_PROBING
  3184. #endif
  3185. ;
  3186. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  3187. sync_plan_position();
  3188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3189. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3190. #endif
  3191. }
  3192. // Sled assembly for Cartesian bots
  3193. #if ENABLED(Z_PROBE_SLED)
  3194. dock_sled(true); // dock the sled
  3195. #else
  3196. // Raise Z axis for non-delta and non servo based probes
  3197. #if DISABLED(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  3198. raise_z_after_probing();
  3199. #endif
  3200. #endif
  3201. #endif // !DELTA
  3202. #if ENABLED(MECHANICAL_PROBE)
  3203. stow_z_probe();
  3204. #endif
  3205. #ifdef Z_PROBE_END_SCRIPT
  3206. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3207. if (DEBUGGING(LEVELING)) {
  3208. SERIAL_ECHO("Z Probe End Script: ");
  3209. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3210. }
  3211. #endif
  3212. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3213. #if HAS_BED_PROBE
  3214. endstops.enable_z_probe(false);
  3215. #endif
  3216. stepper.synchronize();
  3217. #endif
  3218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3219. if (DEBUGGING(LEVELING)) {
  3220. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3221. }
  3222. #endif
  3223. bed_leveling_in_progress = false;
  3224. report_current_position();
  3225. KEEPALIVE_STATE(IN_HANDLER);
  3226. }
  3227. #if DISABLED(Z_PROBE_SLED) // could be avoided
  3228. /**
  3229. * G30: Do a single Z probe at the current XY
  3230. */
  3231. inline void gcode_G30() {
  3232. #if ENABLED(HAS_SERVO_ENDSTOPS)
  3233. raise_z_for_servo();
  3234. #endif
  3235. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3236. stepper.synchronize();
  3237. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3238. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3239. feedrate = homing_feedrate[Z_AXIS];
  3240. run_z_probe();
  3241. SERIAL_PROTOCOLPGM("Bed X: ");
  3242. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3243. SERIAL_PROTOCOLPGM(" Y: ");
  3244. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3245. SERIAL_PROTOCOLPGM(" Z: ");
  3246. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3247. SERIAL_EOL;
  3248. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3249. #if ENABLED(HAS_SERVO_ENDSTOPS)
  3250. raise_z_for_servo();
  3251. #endif
  3252. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3253. report_current_position();
  3254. }
  3255. #endif //!Z_PROBE_SLED
  3256. #endif //AUTO_BED_LEVELING_FEATURE
  3257. /**
  3258. * G92: Set current position to given X Y Z E
  3259. */
  3260. inline void gcode_G92() {
  3261. bool didE = code_seen(axis_codes[E_AXIS]);
  3262. if (!didE) stepper.synchronize();
  3263. bool didXYZ = false;
  3264. for (int i = 0; i < NUM_AXIS; i++) {
  3265. if (code_seen(axis_codes[i])) {
  3266. float p = current_position[i],
  3267. v = code_value_axis_units(i);
  3268. current_position[i] = v;
  3269. if (i != E_AXIS) {
  3270. position_shift[i] += v - p; // Offset the coordinate space
  3271. update_software_endstops((AxisEnum)i);
  3272. didXYZ = true;
  3273. }
  3274. }
  3275. }
  3276. if (didXYZ) {
  3277. #if ENABLED(DELTA) || ENABLED(SCARA)
  3278. sync_plan_position_delta();
  3279. #else
  3280. sync_plan_position();
  3281. #endif
  3282. }
  3283. else if (didE) {
  3284. sync_plan_position_e();
  3285. }
  3286. }
  3287. #if ENABLED(ULTIPANEL)
  3288. /**
  3289. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3290. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3291. */
  3292. inline void gcode_M0_M1() {
  3293. char* args = current_command_args;
  3294. uint8_t test_value = 12;
  3295. SERIAL_ECHOPAIR("TEST", test_value);
  3296. millis_t codenum = 0;
  3297. bool hasP = false, hasS = false;
  3298. if (code_seen('P')) {
  3299. codenum = code_value_millis(); // milliseconds to wait
  3300. hasP = codenum > 0;
  3301. }
  3302. if (code_seen('S')) {
  3303. codenum = code_value_millis_from_seconds(); // seconds to wait
  3304. hasS = codenum > 0;
  3305. }
  3306. if (!hasP && !hasS && *args != '\0')
  3307. lcd_setstatus(args, true);
  3308. else {
  3309. LCD_MESSAGEPGM(MSG_USERWAIT);
  3310. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3311. dontExpireStatus();
  3312. #endif
  3313. }
  3314. lcd_ignore_click();
  3315. stepper.synchronize();
  3316. refresh_cmd_timeout();
  3317. if (codenum > 0) {
  3318. codenum += previous_cmd_ms; // wait until this time for a click
  3319. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3320. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3321. KEEPALIVE_STATE(IN_HANDLER);
  3322. lcd_ignore_click(false);
  3323. }
  3324. else {
  3325. if (!lcd_detected()) return;
  3326. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3327. while (!lcd_clicked()) idle();
  3328. KEEPALIVE_STATE(IN_HANDLER);
  3329. }
  3330. if (IS_SD_PRINTING)
  3331. LCD_MESSAGEPGM(MSG_RESUMING);
  3332. else
  3333. LCD_MESSAGEPGM(WELCOME_MSG);
  3334. }
  3335. #endif // ULTIPANEL
  3336. /**
  3337. * M17: Enable power on all stepper motors
  3338. */
  3339. inline void gcode_M17() {
  3340. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3341. enable_all_steppers();
  3342. }
  3343. #if ENABLED(SDSUPPORT)
  3344. /**
  3345. * M20: List SD card to serial output
  3346. */
  3347. inline void gcode_M20() {
  3348. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3349. card.ls();
  3350. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3351. }
  3352. /**
  3353. * M21: Init SD Card
  3354. */
  3355. inline void gcode_M21() {
  3356. card.initsd();
  3357. }
  3358. /**
  3359. * M22: Release SD Card
  3360. */
  3361. inline void gcode_M22() {
  3362. card.release();
  3363. }
  3364. /**
  3365. * M23: Open a file
  3366. */
  3367. inline void gcode_M23() {
  3368. card.openFile(current_command_args, true);
  3369. }
  3370. /**
  3371. * M24: Start SD Print
  3372. */
  3373. inline void gcode_M24() {
  3374. card.startFileprint();
  3375. print_job_timer.start();
  3376. }
  3377. /**
  3378. * M25: Pause SD Print
  3379. */
  3380. inline void gcode_M25() {
  3381. card.pauseSDPrint();
  3382. }
  3383. /**
  3384. * M26: Set SD Card file index
  3385. */
  3386. inline void gcode_M26() {
  3387. if (card.cardOK && code_seen('S'))
  3388. card.setIndex(code_value_long());
  3389. }
  3390. /**
  3391. * M27: Get SD Card status
  3392. */
  3393. inline void gcode_M27() {
  3394. card.getStatus();
  3395. }
  3396. /**
  3397. * M28: Start SD Write
  3398. */
  3399. inline void gcode_M28() {
  3400. card.openFile(current_command_args, false);
  3401. }
  3402. /**
  3403. * M29: Stop SD Write
  3404. * Processed in write to file routine above
  3405. */
  3406. inline void gcode_M29() {
  3407. // card.saving = false;
  3408. }
  3409. /**
  3410. * M30 <filename>: Delete SD Card file
  3411. */
  3412. inline void gcode_M30() {
  3413. if (card.cardOK) {
  3414. card.closefile();
  3415. card.removeFile(current_command_args);
  3416. }
  3417. }
  3418. #endif //SDSUPPORT
  3419. /**
  3420. * M31: Get the time since the start of SD Print (or last M109)
  3421. */
  3422. inline void gcode_M31() {
  3423. millis_t t = print_job_timer.duration();
  3424. int min = t / 60, sec = t % 60;
  3425. char time[30];
  3426. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3427. SERIAL_ECHO_START;
  3428. SERIAL_ECHOLN(time);
  3429. lcd_setstatus(time);
  3430. thermalManager.autotempShutdown();
  3431. }
  3432. #if ENABLED(SDSUPPORT)
  3433. /**
  3434. * M32: Select file and start SD Print
  3435. */
  3436. inline void gcode_M32() {
  3437. if (card.sdprinting)
  3438. stepper.synchronize();
  3439. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3440. if (!namestartpos)
  3441. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3442. else
  3443. namestartpos++; //to skip the '!'
  3444. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3445. if (card.cardOK) {
  3446. card.openFile(namestartpos, true, call_procedure);
  3447. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3448. card.setIndex(code_value_long());
  3449. card.startFileprint();
  3450. // Procedure calls count as normal print time.
  3451. if (!call_procedure) print_job_timer.start();
  3452. }
  3453. }
  3454. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3455. /**
  3456. * M33: Get the long full path of a file or folder
  3457. *
  3458. * Parameters:
  3459. * <dospath> Case-insensitive DOS-style path to a file or folder
  3460. *
  3461. * Example:
  3462. * M33 miscel~1/armchair/armcha~1.gco
  3463. *
  3464. * Output:
  3465. * /Miscellaneous/Armchair/Armchair.gcode
  3466. */
  3467. inline void gcode_M33() {
  3468. card.printLongPath(current_command_args);
  3469. }
  3470. #endif
  3471. /**
  3472. * M928: Start SD Write
  3473. */
  3474. inline void gcode_M928() {
  3475. card.openLogFile(current_command_args);
  3476. }
  3477. #endif // SDSUPPORT
  3478. /**
  3479. * M42: Change pin status via GCode
  3480. *
  3481. * P<pin> Pin number (LED if omitted)
  3482. * S<byte> Pin status from 0 - 255
  3483. */
  3484. inline void gcode_M42() {
  3485. if (code_seen('S')) {
  3486. int pin_status = code_value_int();
  3487. if (pin_status < 0 || pin_status > 255) return;
  3488. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3489. if (pin_number < 0) return;
  3490. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3491. if (pin_number == sensitive_pins[i]) return;
  3492. pinMode(pin_number, OUTPUT);
  3493. digitalWrite(pin_number, pin_status);
  3494. analogWrite(pin_number, pin_status);
  3495. #if FAN_COUNT > 0
  3496. switch (pin_number) {
  3497. #if HAS_FAN0
  3498. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3499. #endif
  3500. #if HAS_FAN1
  3501. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3502. #endif
  3503. #if HAS_FAN2
  3504. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3505. #endif
  3506. }
  3507. #endif
  3508. } // code_seen('S')
  3509. }
  3510. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3511. /**
  3512. * This is redundant since the SanityCheck.h already checks for a valid
  3513. * Z_MIN_PROBE_PIN, but here for clarity.
  3514. */
  3515. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3516. #if !HAS_Z_MIN_PROBE_PIN
  3517. #error "You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation."
  3518. #endif
  3519. #elif !HAS_Z_MIN
  3520. #error "You must define Z_MIN_PIN to enable Z probe repeatability calculation."
  3521. #endif
  3522. /**
  3523. * M48: Z probe repeatability measurement function.
  3524. *
  3525. * Usage:
  3526. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3527. * P = Number of sampled points (4-50, default 10)
  3528. * X = Sample X position
  3529. * Y = Sample Y position
  3530. * V = Verbose level (0-4, default=1)
  3531. * E = Engage Z probe for each reading
  3532. * L = Number of legs of movement before probe
  3533. * S = Schizoid (Or Star if you prefer)
  3534. *
  3535. * This function assumes the bed has been homed. Specifically, that a G28 command
  3536. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3537. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3538. * regenerated.
  3539. */
  3540. inline void gcode_M48() {
  3541. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3542. axis_unhomed_error(true);
  3543. return;
  3544. }
  3545. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3546. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3547. if (code_seen('V')) {
  3548. verbose_level = code_value_byte();
  3549. if (verbose_level < 0 || verbose_level > 4) {
  3550. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3551. return;
  3552. }
  3553. }
  3554. if (verbose_level > 0)
  3555. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3556. if (code_seen('P')) {
  3557. n_samples = code_value_byte();
  3558. if (n_samples < 4 || n_samples > 50) {
  3559. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3560. return;
  3561. }
  3562. }
  3563. float X_current = current_position[X_AXIS],
  3564. Y_current = current_position[Y_AXIS],
  3565. Z_current = current_position[Z_AXIS],
  3566. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3567. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3568. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3569. bool deploy_probe_for_each_reading = code_seen('E');
  3570. if (code_seen('X')) {
  3571. X_probe_location = code_value_axis_units(X_AXIS);
  3572. #if DISABLED(DELTA)
  3573. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3574. out_of_range_error(PSTR("X"));
  3575. return;
  3576. }
  3577. #endif
  3578. }
  3579. if (code_seen('Y')) {
  3580. Y_probe_location = code_value_axis_units(Y_AXIS);
  3581. #if DISABLED(DELTA)
  3582. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3583. out_of_range_error(PSTR("Y"));
  3584. return;
  3585. }
  3586. #endif
  3587. }
  3588. #if ENABLED(DELTA)
  3589. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3590. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3591. return;
  3592. }
  3593. #endif
  3594. bool seen_L = code_seen('L');
  3595. if (seen_L) {
  3596. n_legs = code_value_byte();
  3597. if (n_legs < 0 || n_legs > 15) {
  3598. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3599. return;
  3600. }
  3601. if (n_legs == 1) n_legs = 2;
  3602. }
  3603. if (code_seen('S')) {
  3604. schizoid_flag++;
  3605. if (!seen_L) n_legs = 7;
  3606. }
  3607. /**
  3608. * Now get everything to the specified probe point So we can safely do a
  3609. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3610. * we don't want to use that as a starting point for each probe.
  3611. */
  3612. if (verbose_level > 2)
  3613. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3614. #if ENABLED(DELTA)
  3615. // we don't do bed level correction in M48 because we want the raw data when we probe
  3616. reset_bed_level();
  3617. #else
  3618. // we don't do bed level correction in M48 because we want the raw data when we probe
  3619. planner.bed_level_matrix.set_to_identity();
  3620. #endif
  3621. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3622. do_blocking_move_to_z(Z_start_location);
  3623. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3624. /**
  3625. * OK, do the initial probe to get us close to the bed.
  3626. * Then retrace the right amount and use that in subsequent probes
  3627. */
  3628. setup_for_endstop_move();
  3629. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3630. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3631. verbose_level);
  3632. raise_z_after_probing();
  3633. for (uint8_t n = 0; n < n_samples; n++) {
  3634. randomSeed(millis());
  3635. delay(500);
  3636. if (n_legs) {
  3637. float radius, angle = random(0.0, 360.0);
  3638. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3639. radius = random(
  3640. #if ENABLED(DELTA)
  3641. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3642. #else
  3643. 5, X_MAX_LENGTH / 8
  3644. #endif
  3645. );
  3646. if (verbose_level > 3) {
  3647. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3648. SERIAL_ECHOPAIR(" angle: ", angle);
  3649. delay(100);
  3650. if (dir > 0)
  3651. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3652. else
  3653. SERIAL_ECHO(" Direction: Clockwise \n");
  3654. delay(100);
  3655. }
  3656. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3657. double delta_angle;
  3658. if (schizoid_flag)
  3659. // The points of a 5 point star are 72 degrees apart. We need to
  3660. // skip a point and go to the next one on the star.
  3661. delta_angle = dir * 2.0 * 72.0;
  3662. else
  3663. // If we do this line, we are just trying to move further
  3664. // around the circle.
  3665. delta_angle = dir * (float) random(25, 45);
  3666. angle += delta_angle;
  3667. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3668. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3669. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3670. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3671. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3672. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3673. #if DISABLED(DELTA)
  3674. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3675. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3676. #else
  3677. // If we have gone out too far, we can do a simple fix and scale the numbers
  3678. // back in closer to the origin.
  3679. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3680. X_current /= 1.25;
  3681. Y_current /= 1.25;
  3682. if (verbose_level > 3) {
  3683. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3684. SERIAL_ECHOPAIR(", ", Y_current);
  3685. SERIAL_EOL;
  3686. delay(50);
  3687. }
  3688. }
  3689. #endif
  3690. if (verbose_level > 3) {
  3691. SERIAL_PROTOCOL("Going to:");
  3692. SERIAL_ECHOPAIR("x: ", X_current);
  3693. SERIAL_ECHOPAIR("y: ", Y_current);
  3694. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3695. SERIAL_EOL;
  3696. delay(55);
  3697. }
  3698. do_blocking_move_to_xy(X_current, Y_current);
  3699. } // n_legs loop
  3700. } // n_legs
  3701. /**
  3702. * We don't really have to do this move, but if we don't we can see a
  3703. * funny shift in the Z Height because the user might not have the
  3704. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3705. * height. This gets us back to the probe location at the same height that
  3706. * we have been running around the circle at.
  3707. */
  3708. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3709. if (deploy_probe_for_each_reading)
  3710. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3711. else {
  3712. if (n == n_samples - 1)
  3713. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3714. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3715. }
  3716. /**
  3717. * Get the current mean for the data points we have so far
  3718. */
  3719. sum = 0.0;
  3720. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3721. mean = sum / (n + 1);
  3722. /**
  3723. * Now, use that mean to calculate the standard deviation for the
  3724. * data points we have so far
  3725. */
  3726. sum = 0.0;
  3727. for (uint8_t j = 0; j <= n; j++) {
  3728. float ss = sample_set[j] - mean;
  3729. sum += ss * ss;
  3730. }
  3731. sigma = sqrt(sum / (n + 1));
  3732. if (verbose_level > 1) {
  3733. SERIAL_PROTOCOL(n + 1);
  3734. SERIAL_PROTOCOLPGM(" of ");
  3735. SERIAL_PROTOCOL((int)n_samples);
  3736. SERIAL_PROTOCOLPGM(" z: ");
  3737. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3738. delay(50);
  3739. if (verbose_level > 2) {
  3740. SERIAL_PROTOCOLPGM(" mean: ");
  3741. SERIAL_PROTOCOL_F(mean, 6);
  3742. SERIAL_PROTOCOLPGM(" sigma: ");
  3743. SERIAL_PROTOCOL_F(sigma, 6);
  3744. }
  3745. }
  3746. if (verbose_level > 0) SERIAL_EOL;
  3747. delay(50);
  3748. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3749. } // End of probe loop code
  3750. // raise_z_after_probing();
  3751. if (verbose_level > 0) {
  3752. SERIAL_PROTOCOLPGM("Mean: ");
  3753. SERIAL_PROTOCOL_F(mean, 6);
  3754. SERIAL_EOL;
  3755. delay(25);
  3756. }
  3757. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3758. SERIAL_PROTOCOL_F(sigma, 6);
  3759. SERIAL_EOL; SERIAL_EOL;
  3760. delay(25);
  3761. clean_up_after_endstop_move();
  3762. report_current_position();
  3763. }
  3764. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3765. /**
  3766. * M75: Start print timer
  3767. */
  3768. inline void gcode_M75() { print_job_timer.start(); }
  3769. /**
  3770. * M76: Pause print timer
  3771. */
  3772. inline void gcode_M76() { print_job_timer.pause(); }
  3773. /**
  3774. * M77: Stop print timer
  3775. */
  3776. inline void gcode_M77() { print_job_timer.stop(); }
  3777. #if ENABLED(PRINTCOUNTER)
  3778. /*+
  3779. * M78: Show print statistics
  3780. */
  3781. inline void gcode_M78() {
  3782. // "M78 S78" will reset the statistics
  3783. if (code_seen('S') && code_value_int() == 78)
  3784. print_job_timer.initStats();
  3785. else print_job_timer.showStats();
  3786. }
  3787. #endif
  3788. /**
  3789. * M104: Set hot end temperature
  3790. */
  3791. inline void gcode_M104() {
  3792. if (get_target_extruder_from_command(104)) return;
  3793. if (DEBUGGING(DRYRUN)) return;
  3794. #if ENABLED(SINGLENOZZLE)
  3795. if (target_extruder != active_extruder) return;
  3796. #endif
  3797. if (code_seen('S')) {
  3798. float temp = code_value_temp_abs();
  3799. thermalManager.setTargetHotend(temp, target_extruder);
  3800. #if ENABLED(DUAL_X_CARRIAGE)
  3801. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3802. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3803. #endif
  3804. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3805. /**
  3806. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3807. * stand by mode, for instance in a dual extruder setup, without affecting
  3808. * the running print timer.
  3809. */
  3810. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3811. print_job_timer.stop();
  3812. LCD_MESSAGEPGM(WELCOME_MSG);
  3813. }
  3814. /**
  3815. * We do not check if the timer is already running because this check will
  3816. * be done for us inside the Stopwatch::start() method thus a running timer
  3817. * will not restart.
  3818. */
  3819. else print_job_timer.start();
  3820. #endif
  3821. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3822. }
  3823. }
  3824. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3825. void print_heaterstates() {
  3826. #if HAS_TEMP_HOTEND
  3827. SERIAL_PROTOCOLPGM(" T:");
  3828. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3829. SERIAL_PROTOCOLPGM(" /");
  3830. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3831. #endif
  3832. #if HAS_TEMP_BED
  3833. SERIAL_PROTOCOLPGM(" B:");
  3834. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3835. SERIAL_PROTOCOLPGM(" /");
  3836. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3837. #endif
  3838. #if HOTENDS > 1
  3839. for (int8_t e = 0; e < HOTENDS; ++e) {
  3840. SERIAL_PROTOCOLPGM(" T");
  3841. SERIAL_PROTOCOL(e);
  3842. SERIAL_PROTOCOLCHAR(':');
  3843. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3844. SERIAL_PROTOCOLPGM(" /");
  3845. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3846. }
  3847. #endif
  3848. #if HAS_TEMP_BED
  3849. SERIAL_PROTOCOLPGM(" B@:");
  3850. #ifdef BED_WATTS
  3851. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3852. SERIAL_PROTOCOLCHAR('W');
  3853. #else
  3854. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3855. #endif
  3856. #endif
  3857. SERIAL_PROTOCOLPGM(" @:");
  3858. #ifdef EXTRUDER_WATTS
  3859. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3860. SERIAL_PROTOCOLCHAR('W');
  3861. #else
  3862. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3863. #endif
  3864. #if HOTENDS > 1
  3865. for (int8_t e = 0; e < HOTENDS; ++e) {
  3866. SERIAL_PROTOCOLPGM(" @");
  3867. SERIAL_PROTOCOL(e);
  3868. SERIAL_PROTOCOLCHAR(':');
  3869. #ifdef EXTRUDER_WATTS
  3870. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3871. SERIAL_PROTOCOLCHAR('W');
  3872. #else
  3873. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3874. #endif
  3875. }
  3876. #endif
  3877. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3878. #if HAS_TEMP_BED
  3879. SERIAL_PROTOCOLPGM(" ADC B:");
  3880. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3881. SERIAL_PROTOCOLPGM("C->");
  3882. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3883. #endif
  3884. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3885. SERIAL_PROTOCOLPGM(" T");
  3886. SERIAL_PROTOCOL(cur_hotend);
  3887. SERIAL_PROTOCOLCHAR(':');
  3888. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3889. SERIAL_PROTOCOLPGM("C->");
  3890. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3891. }
  3892. #endif
  3893. }
  3894. #endif
  3895. /**
  3896. * M105: Read hot end and bed temperature
  3897. */
  3898. inline void gcode_M105() {
  3899. if (get_target_extruder_from_command(105)) return;
  3900. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3901. SERIAL_PROTOCOLPGM(MSG_OK);
  3902. print_heaterstates();
  3903. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3904. SERIAL_ERROR_START;
  3905. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3906. #endif
  3907. SERIAL_EOL;
  3908. }
  3909. #if FAN_COUNT > 0
  3910. /**
  3911. * M106: Set Fan Speed
  3912. *
  3913. * S<int> Speed between 0-255
  3914. * P<index> Fan index, if more than one fan
  3915. */
  3916. inline void gcode_M106() {
  3917. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3918. p = code_seen('P') ? code_value_ushort() : 0;
  3919. NOMORE(s, 255);
  3920. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3921. }
  3922. /**
  3923. * M107: Fan Off
  3924. */
  3925. inline void gcode_M107() {
  3926. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3927. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3928. }
  3929. #endif // FAN_COUNT > 0
  3930. /**
  3931. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3932. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3933. */
  3934. inline void gcode_M109() {
  3935. if (get_target_extruder_from_command(109)) return;
  3936. if (DEBUGGING(DRYRUN)) return;
  3937. #if ENABLED(SINGLENOZZLE)
  3938. if (target_extruder != active_extruder) return;
  3939. #endif
  3940. bool no_wait_for_cooling = code_seen('S');
  3941. if (no_wait_for_cooling || code_seen('R')) {
  3942. float temp = code_value_temp_abs();
  3943. thermalManager.setTargetHotend(temp, target_extruder);
  3944. #if ENABLED(DUAL_X_CARRIAGE)
  3945. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3946. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3947. #endif
  3948. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3949. /**
  3950. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3951. * stand by mode, for instance in a dual extruder setup, without affecting
  3952. * the running print timer.
  3953. */
  3954. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3955. print_job_timer.stop();
  3956. LCD_MESSAGEPGM(WELCOME_MSG);
  3957. }
  3958. /**
  3959. * We do not check if the timer is already running because this check will
  3960. * be done for us inside the Stopwatch::start() method thus a running timer
  3961. * will not restart.
  3962. */
  3963. else print_job_timer.start();
  3964. #endif
  3965. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3966. }
  3967. #if ENABLED(AUTOTEMP)
  3968. planner.autotemp_M109();
  3969. #endif
  3970. #if TEMP_RESIDENCY_TIME > 0
  3971. millis_t residency_start_ms = 0;
  3972. // Loop until the temperature has stabilized
  3973. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3974. #else
  3975. // Loop until the temperature is very close target
  3976. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3977. #endif //TEMP_RESIDENCY_TIME > 0
  3978. float theTarget = -1;
  3979. bool wants_to_cool;
  3980. cancel_heatup = false;
  3981. millis_t now, next_temp_ms = 0;
  3982. KEEPALIVE_STATE(NOT_BUSY);
  3983. do {
  3984. now = millis();
  3985. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3986. next_temp_ms = now + 1000UL;
  3987. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3988. print_heaterstates();
  3989. #endif
  3990. #if TEMP_RESIDENCY_TIME > 0
  3991. SERIAL_PROTOCOLPGM(" W:");
  3992. if (residency_start_ms) {
  3993. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3994. SERIAL_PROTOCOLLN(rem);
  3995. }
  3996. else {
  3997. SERIAL_PROTOCOLLNPGM("?");
  3998. }
  3999. #else
  4000. SERIAL_EOL;
  4001. #endif
  4002. }
  4003. // Target temperature might be changed during the loop
  4004. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4005. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4006. theTarget = thermalManager.degTargetHotend(target_extruder);
  4007. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4008. if (no_wait_for_cooling && wants_to_cool) break;
  4009. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4010. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  4011. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  4012. }
  4013. idle();
  4014. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4015. #if TEMP_RESIDENCY_TIME > 0
  4016. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  4017. if (!residency_start_ms) {
  4018. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4019. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  4020. }
  4021. else if (temp_diff > TEMP_HYSTERESIS) {
  4022. // Restart the timer whenever the temperature falls outside the hysteresis.
  4023. residency_start_ms = millis();
  4024. }
  4025. #endif //TEMP_RESIDENCY_TIME > 0
  4026. } while (!cancel_heatup && TEMP_CONDITIONS);
  4027. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4028. KEEPALIVE_STATE(IN_HANDLER);
  4029. }
  4030. #if HAS_TEMP_BED
  4031. /**
  4032. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4033. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4034. */
  4035. inline void gcode_M190() {
  4036. if (DEBUGGING(DRYRUN)) return;
  4037. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4038. bool no_wait_for_cooling = code_seen('S');
  4039. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  4040. #if TEMP_BED_RESIDENCY_TIME > 0
  4041. millis_t residency_start_ms = 0;
  4042. // Loop until the temperature has stabilized
  4043. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4044. #else
  4045. // Loop until the temperature is very close target
  4046. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4047. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4048. float theTarget = -1;
  4049. bool wants_to_cool;
  4050. cancel_heatup = false;
  4051. millis_t now, next_temp_ms = 0;
  4052. KEEPALIVE_STATE(NOT_BUSY);
  4053. do {
  4054. now = millis();
  4055. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4056. next_temp_ms = now + 1000UL;
  4057. print_heaterstates();
  4058. #if TEMP_BED_RESIDENCY_TIME > 0
  4059. SERIAL_PROTOCOLPGM(" W:");
  4060. if (residency_start_ms) {
  4061. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4062. SERIAL_PROTOCOLLN(rem);
  4063. }
  4064. else {
  4065. SERIAL_PROTOCOLLNPGM("?");
  4066. }
  4067. #else
  4068. SERIAL_EOL;
  4069. #endif
  4070. }
  4071. // Target temperature might be changed during the loop
  4072. if (theTarget != thermalManager.degTargetBed()) {
  4073. wants_to_cool = thermalManager.isCoolingBed();
  4074. theTarget = thermalManager.degTargetBed();
  4075. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4076. if (no_wait_for_cooling && wants_to_cool) break;
  4077. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4078. // Simply don't wait to cool a bed under 30C
  4079. if (wants_to_cool && theTarget < 30) break;
  4080. }
  4081. idle();
  4082. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4083. #if TEMP_BED_RESIDENCY_TIME > 0
  4084. float temp_diff = fabs(theTarget - thermalManager.degBed());
  4085. if (!residency_start_ms) {
  4086. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4087. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  4088. }
  4089. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4090. // Restart the timer whenever the temperature falls outside the hysteresis.
  4091. residency_start_ms = millis();
  4092. }
  4093. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4094. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  4095. LCD_MESSAGEPGM(MSG_BED_DONE);
  4096. KEEPALIVE_STATE(IN_HANDLER);
  4097. }
  4098. #endif // HAS_TEMP_BED
  4099. /**
  4100. * M110: Set Current Line Number
  4101. */
  4102. inline void gcode_M110() {
  4103. if (code_seen('N')) gcode_N = code_value_long();
  4104. }
  4105. /**
  4106. * M111: Set the debug level
  4107. */
  4108. inline void gcode_M111() {
  4109. marlin_debug_flags = code_seen('S') ? code_value_byte() : DEBUG_NONE;
  4110. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4111. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4112. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4113. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4114. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4115. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4116. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4117. #endif
  4118. const static char* const debug_strings[] PROGMEM = {
  4119. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4121. str_debug_32
  4122. #endif
  4123. };
  4124. SERIAL_ECHO_START;
  4125. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4126. if (marlin_debug_flags) {
  4127. uint8_t comma = 0;
  4128. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4129. if (TEST(marlin_debug_flags, i)) {
  4130. if (comma++) SERIAL_CHAR(',');
  4131. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4132. }
  4133. }
  4134. }
  4135. else {
  4136. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4137. }
  4138. SERIAL_EOL;
  4139. }
  4140. /**
  4141. * M112: Emergency Stop
  4142. */
  4143. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4144. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4145. /**
  4146. * M113: Get or set Host Keepalive interval (0 to disable)
  4147. *
  4148. * S<seconds> Optional. Set the keepalive interval.
  4149. */
  4150. inline void gcode_M113() {
  4151. if (code_seen('S')) {
  4152. host_keepalive_interval = code_value_byte();
  4153. NOMORE(host_keepalive_interval, 60);
  4154. }
  4155. else {
  4156. SERIAL_ECHO_START;
  4157. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4158. SERIAL_EOL;
  4159. }
  4160. }
  4161. #endif
  4162. #if ENABLED(BARICUDA)
  4163. #if HAS_HEATER_1
  4164. /**
  4165. * M126: Heater 1 valve open
  4166. */
  4167. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4168. /**
  4169. * M127: Heater 1 valve close
  4170. */
  4171. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4172. #endif
  4173. #if HAS_HEATER_2
  4174. /**
  4175. * M128: Heater 2 valve open
  4176. */
  4177. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4178. /**
  4179. * M129: Heater 2 valve close
  4180. */
  4181. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4182. #endif
  4183. #endif //BARICUDA
  4184. /**
  4185. * M140: Set bed temperature
  4186. */
  4187. inline void gcode_M140() {
  4188. if (DEBUGGING(DRYRUN)) return;
  4189. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4190. }
  4191. #if ENABLED(ULTIPANEL)
  4192. /**
  4193. * M145: Set the heatup state for a material in the LCD menu
  4194. * S<material> (0=PLA, 1=ABS)
  4195. * H<hotend temp>
  4196. * B<bed temp>
  4197. * F<fan speed>
  4198. */
  4199. inline void gcode_M145() {
  4200. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4201. if (material < 0 || material > 1) {
  4202. SERIAL_ERROR_START;
  4203. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4204. }
  4205. else {
  4206. int v;
  4207. switch (material) {
  4208. case 0:
  4209. if (code_seen('H')) {
  4210. v = code_value_int();
  4211. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4212. }
  4213. if (code_seen('F')) {
  4214. v = code_value_int();
  4215. plaPreheatFanSpeed = constrain(v, 0, 255);
  4216. }
  4217. #if TEMP_SENSOR_BED != 0
  4218. if (code_seen('B')) {
  4219. v = code_value_int();
  4220. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4221. }
  4222. #endif
  4223. break;
  4224. case 1:
  4225. if (code_seen('H')) {
  4226. v = code_value_int();
  4227. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4228. }
  4229. if (code_seen('F')) {
  4230. v = code_value_int();
  4231. absPreheatFanSpeed = constrain(v, 0, 255);
  4232. }
  4233. #if TEMP_SENSOR_BED != 0
  4234. if (code_seen('B')) {
  4235. v = code_value_int();
  4236. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4237. }
  4238. #endif
  4239. break;
  4240. }
  4241. }
  4242. }
  4243. #endif
  4244. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4245. /**
  4246. * M149: Set temperature units
  4247. */
  4248. inline void gcode_M149() {
  4249. if (code_seen('C')) {
  4250. set_input_temp_units(TEMPUNIT_C);
  4251. } else if (code_seen('K')) {
  4252. set_input_temp_units(TEMPUNIT_K);
  4253. } else if (code_seen('F')) {
  4254. set_input_temp_units(TEMPUNIT_F);
  4255. }
  4256. }
  4257. #endif
  4258. #if HAS_POWER_SWITCH
  4259. /**
  4260. * M80: Turn on Power Supply
  4261. */
  4262. inline void gcode_M80() {
  4263. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4264. /**
  4265. * If you have a switch on suicide pin, this is useful
  4266. * if you want to start another print with suicide feature after
  4267. * a print without suicide...
  4268. */
  4269. #if HAS_SUICIDE
  4270. OUT_WRITE(SUICIDE_PIN, HIGH);
  4271. #endif
  4272. #if ENABLED(ULTIPANEL)
  4273. powersupply = true;
  4274. LCD_MESSAGEPGM(WELCOME_MSG);
  4275. lcd_update();
  4276. #endif
  4277. }
  4278. #endif // HAS_POWER_SWITCH
  4279. /**
  4280. * M81: Turn off Power, including Power Supply, if there is one.
  4281. *
  4282. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4283. */
  4284. inline void gcode_M81() {
  4285. thermalManager.disable_all_heaters();
  4286. stepper.finish_and_disable();
  4287. #if FAN_COUNT > 0
  4288. #if FAN_COUNT > 1
  4289. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4290. #else
  4291. fanSpeeds[0] = 0;
  4292. #endif
  4293. #endif
  4294. delay(1000); // Wait 1 second before switching off
  4295. #if HAS_SUICIDE
  4296. stepper.synchronize();
  4297. suicide();
  4298. #elif HAS_POWER_SWITCH
  4299. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4300. #endif
  4301. #if ENABLED(ULTIPANEL)
  4302. #if HAS_POWER_SWITCH
  4303. powersupply = false;
  4304. #endif
  4305. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4306. lcd_update();
  4307. #endif
  4308. }
  4309. /**
  4310. * M82: Set E codes absolute (default)
  4311. */
  4312. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4313. /**
  4314. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4315. */
  4316. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4317. /**
  4318. * M18, M84: Disable all stepper motors
  4319. */
  4320. inline void gcode_M18_M84() {
  4321. if (code_seen('S')) {
  4322. stepper_inactive_time = code_value_millis_from_seconds();
  4323. }
  4324. else {
  4325. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4326. if (all_axis) {
  4327. stepper.finish_and_disable();
  4328. }
  4329. else {
  4330. stepper.synchronize();
  4331. if (code_seen('X')) disable_x();
  4332. if (code_seen('Y')) disable_y();
  4333. if (code_seen('Z')) disable_z();
  4334. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4335. if (code_seen('E')) {
  4336. disable_e0();
  4337. disable_e1();
  4338. disable_e2();
  4339. disable_e3();
  4340. }
  4341. #endif
  4342. }
  4343. }
  4344. }
  4345. /**
  4346. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4347. */
  4348. inline void gcode_M85() {
  4349. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4350. }
  4351. /**
  4352. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4353. * (Follows the same syntax as G92)
  4354. */
  4355. inline void gcode_M92() {
  4356. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4357. if (code_seen(axis_codes[i])) {
  4358. if (i == E_AXIS) {
  4359. float value = code_value_per_axis_unit(i);
  4360. if (value < 20.0) {
  4361. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4362. planner.max_e_jerk *= factor;
  4363. planner.max_feedrate[i] *= factor;
  4364. planner.max_acceleration_steps_per_s2[i] *= factor;
  4365. }
  4366. planner.axis_steps_per_mm[i] = value;
  4367. }
  4368. else {
  4369. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4370. }
  4371. }
  4372. }
  4373. }
  4374. /**
  4375. * Output the current position to serial
  4376. */
  4377. static void report_current_position() {
  4378. SERIAL_PROTOCOLPGM("X:");
  4379. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4380. SERIAL_PROTOCOLPGM(" Y:");
  4381. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4382. SERIAL_PROTOCOLPGM(" Z:");
  4383. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4384. SERIAL_PROTOCOLPGM(" E:");
  4385. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4386. stepper.report_positions();
  4387. #if ENABLED(SCARA)
  4388. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4389. SERIAL_PROTOCOL(delta[X_AXIS]);
  4390. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4391. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4392. SERIAL_EOL;
  4393. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4394. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4395. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4396. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4397. SERIAL_EOL;
  4398. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4399. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4400. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4401. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4402. SERIAL_EOL; SERIAL_EOL;
  4403. #endif
  4404. }
  4405. /**
  4406. * M114: Output current position to serial port
  4407. */
  4408. inline void gcode_M114() { report_current_position(); }
  4409. /**
  4410. * M115: Capabilities string
  4411. */
  4412. inline void gcode_M115() {
  4413. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4414. }
  4415. /**
  4416. * M117: Set LCD Status Message
  4417. */
  4418. inline void gcode_M117() {
  4419. lcd_setstatus(current_command_args);
  4420. }
  4421. /**
  4422. * M119: Output endstop states to serial output
  4423. */
  4424. inline void gcode_M119() { endstops.M119(); }
  4425. /**
  4426. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4427. */
  4428. inline void gcode_M120() { endstops.enable_globally(true); }
  4429. /**
  4430. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4431. */
  4432. inline void gcode_M121() { endstops.enable_globally(false); }
  4433. #if ENABLED(BLINKM)
  4434. /**
  4435. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4436. */
  4437. inline void gcode_M150() {
  4438. SendColors(
  4439. code_seen('R') ? code_value_byte() : 0,
  4440. code_seen('U') ? code_value_byte() : 0,
  4441. code_seen('B') ? code_value_byte() : 0
  4442. );
  4443. }
  4444. #endif // BLINKM
  4445. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4446. /**
  4447. * M155: Send data to a I2C slave device
  4448. *
  4449. * This is a PoC, the formating and arguments for the GCODE will
  4450. * change to be more compatible, the current proposal is:
  4451. *
  4452. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4453. *
  4454. * M155 B<byte-1 value in base 10>
  4455. * M155 B<byte-2 value in base 10>
  4456. * M155 B<byte-3 value in base 10>
  4457. *
  4458. * M155 S1 ; Send the buffered data and reset the buffer
  4459. * M155 R1 ; Reset the buffer without sending data
  4460. *
  4461. */
  4462. inline void gcode_M155() {
  4463. // Set the target address
  4464. if (code_seen('A'))
  4465. i2c.address(code_value_byte());
  4466. // Add a new byte to the buffer
  4467. else if (code_seen('B'))
  4468. i2c.addbyte(code_value_int());
  4469. // Flush the buffer to the bus
  4470. else if (code_seen('S')) i2c.send();
  4471. // Reset and rewind the buffer
  4472. else if (code_seen('R')) i2c.reset();
  4473. }
  4474. /**
  4475. * M156: Request X bytes from I2C slave device
  4476. *
  4477. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4478. */
  4479. inline void gcode_M156() {
  4480. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4481. int bytes = code_seen('B') ? code_value_int() : 1;
  4482. if (addr && bytes > 0 && bytes <= 32) {
  4483. i2c.address(addr);
  4484. i2c.reqbytes(bytes);
  4485. }
  4486. else {
  4487. SERIAL_ERROR_START;
  4488. SERIAL_ERRORLN("Bad i2c request");
  4489. }
  4490. }
  4491. #endif //EXPERIMENTAL_I2CBUS
  4492. /**
  4493. * M200: Set filament diameter and set E axis units to cubic units
  4494. *
  4495. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4496. * D<mm> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4497. */
  4498. inline void gcode_M200() {
  4499. if (get_target_extruder_from_command(200)) return;
  4500. if (code_seen('D')) {
  4501. float diameter = code_value_linear_units();
  4502. // setting any extruder filament size disables volumetric on the assumption that
  4503. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4504. // for all extruders
  4505. volumetric_enabled = (diameter != 0.0);
  4506. if (volumetric_enabled) {
  4507. filament_size[target_extruder] = diameter;
  4508. // make sure all extruders have some sane value for the filament size
  4509. for (int i = 0; i < EXTRUDERS; i++)
  4510. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4511. }
  4512. }
  4513. else {
  4514. //reserved for setting filament diameter via UFID or filament measuring device
  4515. return;
  4516. }
  4517. calculate_volumetric_multipliers();
  4518. }
  4519. /**
  4520. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4521. */
  4522. inline void gcode_M201() {
  4523. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4524. if (code_seen(axis_codes[i])) {
  4525. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4526. }
  4527. }
  4528. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4529. planner.reset_acceleration_rates();
  4530. }
  4531. #if 0 // Not used for Sprinter/grbl gen6
  4532. inline void gcode_M202() {
  4533. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4534. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4535. }
  4536. }
  4537. #endif
  4538. /**
  4539. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4540. */
  4541. inline void gcode_M203() {
  4542. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4543. if (code_seen(axis_codes[i])) {
  4544. planner.max_feedrate[i] = code_value_axis_units(i);
  4545. }
  4546. }
  4547. }
  4548. /**
  4549. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4550. *
  4551. * P = Printing moves
  4552. * R = Retract only (no X, Y, Z) moves
  4553. * T = Travel (non printing) moves
  4554. *
  4555. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4556. */
  4557. inline void gcode_M204() {
  4558. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4559. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4560. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4561. SERIAL_EOL;
  4562. }
  4563. if (code_seen('P')) {
  4564. planner.acceleration = code_value_linear_units();
  4565. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4566. SERIAL_EOL;
  4567. }
  4568. if (code_seen('R')) {
  4569. planner.retract_acceleration = code_value_linear_units();
  4570. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4571. SERIAL_EOL;
  4572. }
  4573. if (code_seen('T')) {
  4574. planner.travel_acceleration = code_value_linear_units();
  4575. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4576. SERIAL_EOL;
  4577. }
  4578. }
  4579. /**
  4580. * M205: Set Advanced Settings
  4581. *
  4582. * S = Min Feed Rate (mm/s)
  4583. * T = Min Travel Feed Rate (mm/s)
  4584. * B = Min Segment Time (µs)
  4585. * X = Max XY Jerk (mm/s/s)
  4586. * Z = Max Z Jerk (mm/s/s)
  4587. * E = Max E Jerk (mm/s/s)
  4588. */
  4589. inline void gcode_M205() {
  4590. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4591. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4592. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4593. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4594. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4595. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4596. }
  4597. /**
  4598. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4599. */
  4600. inline void gcode_M206() {
  4601. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4602. if (code_seen(axis_codes[i]))
  4603. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4604. #if ENABLED(SCARA)
  4605. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4606. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4607. #endif
  4608. sync_plan_position();
  4609. report_current_position();
  4610. }
  4611. #if ENABLED(DELTA)
  4612. /**
  4613. * M665: Set delta configurations
  4614. *
  4615. * L = diagonal rod
  4616. * R = delta radius
  4617. * S = segments per second
  4618. * A = Alpha (Tower 1) diagonal rod trim
  4619. * B = Beta (Tower 2) diagonal rod trim
  4620. * C = Gamma (Tower 3) diagonal rod trim
  4621. */
  4622. inline void gcode_M665() {
  4623. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4624. if (code_seen('R')) delta_radius = code_value_linear_units();
  4625. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4626. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4627. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4628. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4629. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4630. }
  4631. /**
  4632. * M666: Set delta endstop adjustment
  4633. */
  4634. inline void gcode_M666() {
  4635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4636. if (DEBUGGING(LEVELING)) {
  4637. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4638. }
  4639. #endif
  4640. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4641. if (code_seen(axis_codes[i])) {
  4642. endstop_adj[i] = code_value_axis_units(i);
  4643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4644. if (DEBUGGING(LEVELING)) {
  4645. SERIAL_ECHOPGM("endstop_adj[");
  4646. SERIAL_ECHO(axis_codes[i]);
  4647. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4648. SERIAL_EOL;
  4649. }
  4650. #endif
  4651. }
  4652. }
  4653. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4654. if (DEBUGGING(LEVELING)) {
  4655. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4656. }
  4657. #endif
  4658. }
  4659. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4660. /**
  4661. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4662. */
  4663. inline void gcode_M666() {
  4664. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4665. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4666. SERIAL_EOL;
  4667. }
  4668. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4669. #if ENABLED(FWRETRACT)
  4670. /**
  4671. * M207: Set firmware retraction values
  4672. *
  4673. * S[+mm] retract_length
  4674. * W[+mm] retract_length_swap (multi-extruder)
  4675. * F[mm/min] retract_feedrate
  4676. * Z[mm] retract_zlift
  4677. */
  4678. inline void gcode_M207() {
  4679. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4680. if (code_seen('F')) retract_feedrate = code_value_axis_units(E_AXIS) / 60;
  4681. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4682. #if EXTRUDERS > 1
  4683. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4684. #endif
  4685. }
  4686. /**
  4687. * M208: Set firmware un-retraction values
  4688. *
  4689. * S[+mm] retract_recover_length (in addition to M207 S*)
  4690. * W[+mm] retract_recover_length_swap (multi-extruder)
  4691. * F[mm/min] retract_recover_feedrate
  4692. */
  4693. inline void gcode_M208() {
  4694. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4695. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4696. #if EXTRUDERS > 1
  4697. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4698. #endif
  4699. }
  4700. /**
  4701. * M209: Enable automatic retract (M209 S1)
  4702. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4703. */
  4704. inline void gcode_M209() {
  4705. if (code_seen('S')) {
  4706. int t = code_value_int();
  4707. switch (t) {
  4708. case 0:
  4709. autoretract_enabled = false;
  4710. break;
  4711. case 1:
  4712. autoretract_enabled = true;
  4713. break;
  4714. default:
  4715. unknown_command_error();
  4716. return;
  4717. }
  4718. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4719. }
  4720. }
  4721. #endif // FWRETRACT
  4722. #if HOTENDS > 1
  4723. /**
  4724. * M218 - set hotend offset (in mm)
  4725. *
  4726. * T<tool>
  4727. * X<xoffset>
  4728. * Y<yoffset>
  4729. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4730. */
  4731. inline void gcode_M218() {
  4732. if (get_target_extruder_from_command(218)) return;
  4733. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4734. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4735. #if ENABLED(DUAL_X_CARRIAGE)
  4736. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4737. #endif
  4738. SERIAL_ECHO_START;
  4739. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4740. for (int e = 0; e < HOTENDS; e++) {
  4741. SERIAL_CHAR(' ');
  4742. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4743. SERIAL_CHAR(',');
  4744. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4745. #if ENABLED(DUAL_X_CARRIAGE)
  4746. SERIAL_CHAR(',');
  4747. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4748. #endif
  4749. }
  4750. SERIAL_EOL;
  4751. }
  4752. #endif // HOTENDS > 1
  4753. /**
  4754. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4755. */
  4756. inline void gcode_M220() {
  4757. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4758. }
  4759. /**
  4760. * M221: Set extrusion percentage (M221 T0 S95)
  4761. */
  4762. inline void gcode_M221() {
  4763. if (code_seen('S')) {
  4764. int sval = code_value_int();
  4765. if (get_target_extruder_from_command(221)) return;
  4766. extruder_multiplier[target_extruder] = sval;
  4767. }
  4768. }
  4769. /**
  4770. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4771. */
  4772. inline void gcode_M226() {
  4773. if (code_seen('P')) {
  4774. int pin_number = code_value_int();
  4775. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4776. if (pin_state >= -1 && pin_state <= 1) {
  4777. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4778. if (sensitive_pins[i] == pin_number) {
  4779. pin_number = -1;
  4780. break;
  4781. }
  4782. }
  4783. if (pin_number > -1) {
  4784. int target = LOW;
  4785. stepper.synchronize();
  4786. pinMode(pin_number, INPUT);
  4787. switch (pin_state) {
  4788. case 1:
  4789. target = HIGH;
  4790. break;
  4791. case 0:
  4792. target = LOW;
  4793. break;
  4794. case -1:
  4795. target = !digitalRead(pin_number);
  4796. break;
  4797. }
  4798. while (digitalRead(pin_number) != target) idle();
  4799. } // pin_number > -1
  4800. } // pin_state -1 0 1
  4801. } // code_seen('P')
  4802. }
  4803. #if HAS_SERVOS
  4804. /**
  4805. * M280: Get or set servo position. P<index> S<angle>
  4806. */
  4807. inline void gcode_M280() {
  4808. int servo_index = code_seen('P') ? code_value_int() : -1;
  4809. int servo_position = 0;
  4810. if (code_seen('S')) {
  4811. servo_position = code_value_int();
  4812. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4813. servo[servo_index].move(servo_position);
  4814. else {
  4815. SERIAL_ERROR_START;
  4816. SERIAL_ERROR("Servo ");
  4817. SERIAL_ERROR(servo_index);
  4818. SERIAL_ERRORLN(" out of range");
  4819. }
  4820. }
  4821. else if (servo_index >= 0) {
  4822. SERIAL_ECHO_START;
  4823. SERIAL_ECHO(" Servo ");
  4824. SERIAL_ECHO(servo_index);
  4825. SERIAL_ECHO(": ");
  4826. SERIAL_ECHOLN(servo[servo_index].read());
  4827. }
  4828. }
  4829. #endif // HAS_SERVOS
  4830. #if HAS_BUZZER
  4831. /**
  4832. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4833. */
  4834. inline void gcode_M300() {
  4835. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4836. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4837. // Limits the tone duration to 0-5 seconds.
  4838. NOMORE(duration, 5000);
  4839. buzzer.tone(duration, frequency);
  4840. }
  4841. #endif // HAS_BUZZER
  4842. #if ENABLED(PIDTEMP)
  4843. /**
  4844. * M301: Set PID parameters P I D (and optionally C, L)
  4845. *
  4846. * P[float] Kp term
  4847. * I[float] Ki term (unscaled)
  4848. * D[float] Kd term (unscaled)
  4849. *
  4850. * With PID_ADD_EXTRUSION_RATE:
  4851. *
  4852. * C[float] Kc term
  4853. * L[float] LPQ length
  4854. */
  4855. inline void gcode_M301() {
  4856. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4857. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4858. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4859. if (e < HOTENDS) { // catch bad input value
  4860. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4861. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4862. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4863. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4864. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4865. if (code_seen('L')) lpq_len = code_value_float();
  4866. NOMORE(lpq_len, LPQ_MAX_LEN);
  4867. #endif
  4868. thermalManager.updatePID();
  4869. SERIAL_ECHO_START;
  4870. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4871. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4872. SERIAL_ECHO(e);
  4873. #endif // PID_PARAMS_PER_HOTEND
  4874. SERIAL_ECHO(" p:");
  4875. SERIAL_ECHO(PID_PARAM(Kp, e));
  4876. SERIAL_ECHO(" i:");
  4877. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4878. SERIAL_ECHO(" d:");
  4879. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4880. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4881. SERIAL_ECHO(" c:");
  4882. //Kc does not have scaling applied above, or in resetting defaults
  4883. SERIAL_ECHO(PID_PARAM(Kc, e));
  4884. #endif
  4885. SERIAL_EOL;
  4886. }
  4887. else {
  4888. SERIAL_ERROR_START;
  4889. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4890. }
  4891. }
  4892. #endif // PIDTEMP
  4893. #if ENABLED(PIDTEMPBED)
  4894. inline void gcode_M304() {
  4895. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4896. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4897. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4898. thermalManager.updatePID();
  4899. SERIAL_ECHO_START;
  4900. SERIAL_ECHO(" p:");
  4901. SERIAL_ECHO(thermalManager.bedKp);
  4902. SERIAL_ECHO(" i:");
  4903. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4904. SERIAL_ECHO(" d:");
  4905. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4906. }
  4907. #endif // PIDTEMPBED
  4908. #if defined(CHDK) || HAS_PHOTOGRAPH
  4909. /**
  4910. * M240: Trigger a camera by emulating a Canon RC-1
  4911. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4912. */
  4913. inline void gcode_M240() {
  4914. #ifdef CHDK
  4915. OUT_WRITE(CHDK, HIGH);
  4916. chdkHigh = millis();
  4917. chdkActive = true;
  4918. #elif HAS_PHOTOGRAPH
  4919. const uint8_t NUM_PULSES = 16;
  4920. const float PULSE_LENGTH = 0.01524;
  4921. for (int i = 0; i < NUM_PULSES; i++) {
  4922. WRITE(PHOTOGRAPH_PIN, HIGH);
  4923. _delay_ms(PULSE_LENGTH);
  4924. WRITE(PHOTOGRAPH_PIN, LOW);
  4925. _delay_ms(PULSE_LENGTH);
  4926. }
  4927. delay(7.33);
  4928. for (int i = 0; i < NUM_PULSES; i++) {
  4929. WRITE(PHOTOGRAPH_PIN, HIGH);
  4930. _delay_ms(PULSE_LENGTH);
  4931. WRITE(PHOTOGRAPH_PIN, LOW);
  4932. _delay_ms(PULSE_LENGTH);
  4933. }
  4934. #endif // !CHDK && HAS_PHOTOGRAPH
  4935. }
  4936. #endif // CHDK || PHOTOGRAPH_PIN
  4937. #if HAS_LCD_CONTRAST
  4938. /**
  4939. * M250: Read and optionally set the LCD contrast
  4940. */
  4941. inline void gcode_M250() {
  4942. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4943. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4944. SERIAL_PROTOCOL(lcd_contrast);
  4945. SERIAL_EOL;
  4946. }
  4947. #endif // HAS_LCD_CONTRAST
  4948. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4949. /**
  4950. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4951. */
  4952. inline void gcode_M302() {
  4953. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4954. }
  4955. #endif // PREVENT_DANGEROUS_EXTRUDE
  4956. /**
  4957. * M303: PID relay autotune
  4958. *
  4959. * S<temperature> sets the target temperature. (default 150C)
  4960. * E<extruder> (-1 for the bed) (default 0)
  4961. * C<cycles>
  4962. * U<bool> with a non-zero value will apply the result to current settings
  4963. */
  4964. inline void gcode_M303() {
  4965. #if HAS_PID_HEATING
  4966. int e = code_seen('E') ? code_value_int() : 0;
  4967. int c = code_seen('C') ? code_value_int() : 5;
  4968. bool u = code_seen('U') && code_value_bool();
  4969. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4970. if (e >= 0 && e < HOTENDS)
  4971. target_extruder = e;
  4972. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4973. thermalManager.PID_autotune(temp, e, c, u);
  4974. KEEPALIVE_STATE(IN_HANDLER);
  4975. #else
  4976. SERIAL_ERROR_START;
  4977. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4978. #endif
  4979. }
  4980. #if ENABLED(SCARA)
  4981. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4982. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4983. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4984. if (IsRunning()) {
  4985. //gcode_get_destination(); // For X Y Z E F
  4986. delta[X_AXIS] = delta_x;
  4987. delta[Y_AXIS] = delta_y;
  4988. calculate_SCARA_forward_Transform(delta);
  4989. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4990. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4991. prepare_move_to_destination();
  4992. //ok_to_send();
  4993. return true;
  4994. }
  4995. return false;
  4996. }
  4997. /**
  4998. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4999. */
  5000. inline bool gcode_M360() {
  5001. SERIAL_ECHOLN(" Cal: Theta 0 ");
  5002. return SCARA_move_to_cal(0, 120);
  5003. }
  5004. /**
  5005. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5006. */
  5007. inline bool gcode_M361() {
  5008. SERIAL_ECHOLN(" Cal: Theta 90 ");
  5009. return SCARA_move_to_cal(90, 130);
  5010. }
  5011. /**
  5012. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5013. */
  5014. inline bool gcode_M362() {
  5015. SERIAL_ECHOLN(" Cal: Psi 0 ");
  5016. return SCARA_move_to_cal(60, 180);
  5017. }
  5018. /**
  5019. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5020. */
  5021. inline bool gcode_M363() {
  5022. SERIAL_ECHOLN(" Cal: Psi 90 ");
  5023. return SCARA_move_to_cal(50, 90);
  5024. }
  5025. /**
  5026. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5027. */
  5028. inline bool gcode_M364() {
  5029. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  5030. return SCARA_move_to_cal(45, 135);
  5031. }
  5032. /**
  5033. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5034. */
  5035. inline void gcode_M365() {
  5036. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5037. if (code_seen(axis_codes[i])) {
  5038. axis_scaling[i] = code_value_float();
  5039. }
  5040. }
  5041. }
  5042. #endif // SCARA
  5043. #if ENABLED(EXT_SOLENOID)
  5044. void enable_solenoid(uint8_t num) {
  5045. switch (num) {
  5046. case 0:
  5047. OUT_WRITE(SOL0_PIN, HIGH);
  5048. break;
  5049. #if HAS_SOLENOID_1
  5050. case 1:
  5051. OUT_WRITE(SOL1_PIN, HIGH);
  5052. break;
  5053. #endif
  5054. #if HAS_SOLENOID_2
  5055. case 2:
  5056. OUT_WRITE(SOL2_PIN, HIGH);
  5057. break;
  5058. #endif
  5059. #if HAS_SOLENOID_3
  5060. case 3:
  5061. OUT_WRITE(SOL3_PIN, HIGH);
  5062. break;
  5063. #endif
  5064. default:
  5065. SERIAL_ECHO_START;
  5066. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5067. break;
  5068. }
  5069. }
  5070. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5071. void disable_all_solenoids() {
  5072. OUT_WRITE(SOL0_PIN, LOW);
  5073. OUT_WRITE(SOL1_PIN, LOW);
  5074. OUT_WRITE(SOL2_PIN, LOW);
  5075. OUT_WRITE(SOL3_PIN, LOW);
  5076. }
  5077. /**
  5078. * M380: Enable solenoid on the active extruder
  5079. */
  5080. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5081. /**
  5082. * M381: Disable all solenoids
  5083. */
  5084. inline void gcode_M381() { disable_all_solenoids(); }
  5085. #endif // EXT_SOLENOID
  5086. /**
  5087. * M400: Finish all moves
  5088. */
  5089. inline void gcode_M400() { stepper.synchronize(); }
  5090. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY))
  5091. /**
  5092. * M401: Engage Z Servo endstop if available
  5093. */
  5094. inline void gcode_M401() {
  5095. #if ENABLED(HAS_SERVO_ENDSTOPS)
  5096. raise_z_for_servo();
  5097. #endif
  5098. deploy_z_probe();
  5099. }
  5100. /**
  5101. * M402: Retract Z Servo endstop if enabled
  5102. */
  5103. inline void gcode_M402() {
  5104. #if ENABLED(HAS_SERVO_ENDSTOPS)
  5105. raise_z_for_servo();
  5106. #endif
  5107. stow_z_probe(false);
  5108. }
  5109. #endif // AUTO_BED_LEVELING_FEATURE && (ENABLED(HAS_SERVO_ENDSTOPS) || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5110. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5111. /**
  5112. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  5113. */
  5114. inline void gcode_M404() {
  5115. if (code_seen('W')) {
  5116. filament_width_nominal = code_value_linear_units();
  5117. }
  5118. else {
  5119. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5120. SERIAL_PROTOCOLLN(filament_width_nominal);
  5121. }
  5122. }
  5123. /**
  5124. * M405: Turn on filament sensor for control
  5125. */
  5126. inline void gcode_M405() {
  5127. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5128. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5129. if (code_seen('D')) meas_delay_cm = code_value_int();
  5130. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5131. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5132. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5133. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5134. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5135. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5136. }
  5137. filament_sensor = true;
  5138. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5139. //SERIAL_PROTOCOL(filament_width_meas);
  5140. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5141. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5142. }
  5143. /**
  5144. * M406: Turn off filament sensor for control
  5145. */
  5146. inline void gcode_M406() { filament_sensor = false; }
  5147. /**
  5148. * M407: Get measured filament diameter on serial output
  5149. */
  5150. inline void gcode_M407() {
  5151. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5152. SERIAL_PROTOCOLLN(filament_width_meas);
  5153. }
  5154. #endif // FILAMENT_WIDTH_SENSOR
  5155. #if DISABLED(DELTA) && DISABLED(SCARA)
  5156. void set_current_position_from_planner() {
  5157. stepper.synchronize();
  5158. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5159. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5160. current_position[X_AXIS] = pos.x;
  5161. current_position[Y_AXIS] = pos.y;
  5162. current_position[Z_AXIS] = pos.z;
  5163. #else
  5164. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5165. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5166. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5167. #endif
  5168. sync_plan_position(); // ...re-apply to planner position
  5169. }
  5170. #endif
  5171. /**
  5172. * M410: Quickstop - Abort all planned moves
  5173. *
  5174. * This will stop the carriages mid-move, so most likely they
  5175. * will be out of sync with the stepper position after this.
  5176. */
  5177. inline void gcode_M410() {
  5178. stepper.quick_stop();
  5179. #if DISABLED(DELTA) && DISABLED(SCARA)
  5180. set_current_position_from_planner();
  5181. #endif
  5182. }
  5183. #if ENABLED(MESH_BED_LEVELING)
  5184. /**
  5185. * M420: Enable/Disable Mesh Bed Leveling
  5186. */
  5187. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5188. /**
  5189. * M421: Set a single Mesh Bed Leveling Z coordinate
  5190. * Use either 'M421 X<mm> Y<mm> Z<mm>' or 'M421 I<xindex> J<yindex> Z<mm>'
  5191. */
  5192. inline void gcode_M421() {
  5193. int8_t px, py;
  5194. float z = 0;
  5195. bool hasX, hasY, hasZ, hasI, hasJ;
  5196. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5197. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5198. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5199. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5200. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5201. if (hasX && hasY && hasZ) {
  5202. if (px >= 0 && py >= 0)
  5203. mbl.set_z(px, py, z);
  5204. else {
  5205. SERIAL_ERROR_START;
  5206. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5207. }
  5208. }
  5209. else if (hasI && hasJ && hasZ) {
  5210. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5211. mbl.set_z(px, py, z);
  5212. else {
  5213. SERIAL_ERROR_START;
  5214. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5215. }
  5216. }
  5217. else {
  5218. SERIAL_ERROR_START;
  5219. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5220. }
  5221. }
  5222. #endif
  5223. /**
  5224. * M428: Set home_offset based on the distance between the
  5225. * current_position and the nearest "reference point."
  5226. * If an axis is past center its endstop position
  5227. * is the reference-point. Otherwise it uses 0. This allows
  5228. * the Z offset to be set near the bed when using a max endstop.
  5229. *
  5230. * M428 can't be used more than 2cm away from 0 or an endstop.
  5231. *
  5232. * Use M206 to set these values directly.
  5233. */
  5234. inline void gcode_M428() {
  5235. bool err = false;
  5236. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5237. if (axis_homed[i]) {
  5238. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5239. diff = current_position[i] - base;
  5240. if (diff > -20 && diff < 20) {
  5241. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5242. }
  5243. else {
  5244. SERIAL_ERROR_START;
  5245. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5246. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5247. #if HAS_BUZZER
  5248. buzzer.tone(200, 40);
  5249. #endif
  5250. err = true;
  5251. break;
  5252. }
  5253. }
  5254. }
  5255. if (!err) {
  5256. #if ENABLED(DELTA) || ENABLED(SCARA)
  5257. sync_plan_position_delta();
  5258. #else
  5259. sync_plan_position();
  5260. #endif
  5261. report_current_position();
  5262. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5263. #if HAS_BUZZER
  5264. buzzer.tone(200, 659);
  5265. buzzer.tone(200, 698);
  5266. #endif
  5267. }
  5268. }
  5269. /**
  5270. * M500: Store settings in EEPROM
  5271. */
  5272. inline void gcode_M500() {
  5273. Config_StoreSettings();
  5274. }
  5275. /**
  5276. * M501: Read settings from EEPROM
  5277. */
  5278. inline void gcode_M501() {
  5279. Config_RetrieveSettings();
  5280. }
  5281. /**
  5282. * M502: Revert to default settings
  5283. */
  5284. inline void gcode_M502() {
  5285. Config_ResetDefault();
  5286. }
  5287. /**
  5288. * M503: print settings currently in memory
  5289. */
  5290. inline void gcode_M503() {
  5291. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5292. }
  5293. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5294. /**
  5295. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5296. */
  5297. inline void gcode_M540() {
  5298. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5299. }
  5300. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5301. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5302. inline void gcode_SET_Z_PROBE_OFFSET() {
  5303. SERIAL_ECHO_START;
  5304. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5305. SERIAL_CHAR(' ');
  5306. if (code_seen('Z')) {
  5307. float value = code_value_axis_units(Z_AXIS);
  5308. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5309. zprobe_zoffset = value;
  5310. SERIAL_ECHO(zprobe_zoffset);
  5311. }
  5312. else {
  5313. SERIAL_ECHOPGM(MSG_Z_MIN);
  5314. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5315. SERIAL_ECHOPGM(MSG_Z_MAX);
  5316. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5317. }
  5318. }
  5319. else {
  5320. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5321. }
  5322. SERIAL_EOL;
  5323. }
  5324. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5325. #if ENABLED(FILAMENTCHANGEENABLE)
  5326. /**
  5327. * M600: Pause for filament change
  5328. *
  5329. * E[distance] - Retract the filament this far (negative value)
  5330. * Z[distance] - Move the Z axis by this distance
  5331. * X[position] - Move to this X position, with Y
  5332. * Y[position] - Move to this Y position, with X
  5333. * L[distance] - Retract distance for removal (manual reload)
  5334. *
  5335. * Default values are used for omitted arguments.
  5336. *
  5337. */
  5338. inline void gcode_M600() {
  5339. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5340. SERIAL_ERROR_START;
  5341. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5342. return;
  5343. }
  5344. float lastpos[NUM_AXIS];
  5345. #if ENABLED(DELTA)
  5346. float fr60 = feedrate / 60;
  5347. #endif
  5348. for (int i = 0; i < NUM_AXIS; i++)
  5349. lastpos[i] = destination[i] = current_position[i];
  5350. #if ENABLED(DELTA)
  5351. #define RUNPLAN calculate_delta(destination); \
  5352. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5353. #else
  5354. #define RUNPLAN line_to_destination();
  5355. #endif
  5356. //retract by E
  5357. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5358. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5359. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5360. #endif
  5361. RUNPLAN;
  5362. //lift Z
  5363. if (code_seen('Z')) destination[Z_AXIS] += code_value_axis_units(Z_AXIS);
  5364. #ifdef FILAMENTCHANGE_ZADD
  5365. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5366. #endif
  5367. RUNPLAN;
  5368. //move xy
  5369. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5370. #ifdef FILAMENTCHANGE_XPOS
  5371. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5372. #endif
  5373. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5374. #ifdef FILAMENTCHANGE_YPOS
  5375. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5376. #endif
  5377. RUNPLAN;
  5378. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5379. #ifdef FILAMENTCHANGE_FINALRETRACT
  5380. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5381. #endif
  5382. RUNPLAN;
  5383. //finish moves
  5384. stepper.synchronize();
  5385. //disable extruder steppers so filament can be removed
  5386. disable_e0();
  5387. disable_e1();
  5388. disable_e2();
  5389. disable_e3();
  5390. delay(100);
  5391. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5392. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5393. millis_t next_tick = 0;
  5394. #endif
  5395. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5396. while (!lcd_clicked()) {
  5397. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5398. millis_t ms = millis();
  5399. if (ELAPSED(ms, next_tick)) {
  5400. lcd_quick_feedback();
  5401. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5402. }
  5403. idle(true);
  5404. #else
  5405. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5406. destination[E_AXIS] = current_position[E_AXIS];
  5407. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5408. stepper.synchronize();
  5409. #endif
  5410. } // while(!lcd_clicked)
  5411. KEEPALIVE_STATE(IN_HANDLER);
  5412. lcd_quick_feedback(); // click sound feedback
  5413. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5414. current_position[E_AXIS] = 0;
  5415. stepper.synchronize();
  5416. #endif
  5417. //return to normal
  5418. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5419. #ifdef FILAMENTCHANGE_FINALRETRACT
  5420. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5421. #endif
  5422. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5423. sync_plan_position_e();
  5424. RUNPLAN; //should do nothing
  5425. lcd_reset_alert_level();
  5426. #if ENABLED(DELTA)
  5427. // Move XYZ to starting position, then E
  5428. calculate_delta(lastpos);
  5429. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5430. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5431. #else
  5432. // Move XY to starting position, then Z, then E
  5433. destination[X_AXIS] = lastpos[X_AXIS];
  5434. destination[Y_AXIS] = lastpos[Y_AXIS];
  5435. line_to_destination();
  5436. destination[Z_AXIS] = lastpos[Z_AXIS];
  5437. line_to_destination();
  5438. destination[E_AXIS] = lastpos[E_AXIS];
  5439. line_to_destination();
  5440. #endif
  5441. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5442. filament_ran_out = false;
  5443. #endif
  5444. }
  5445. #endif // FILAMENTCHANGEENABLE
  5446. #if ENABLED(DUAL_X_CARRIAGE)
  5447. /**
  5448. * M605: Set dual x-carriage movement mode
  5449. *
  5450. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5451. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5452. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5453. * millimeters x-offset and an optional differential hotend temperature of
  5454. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5455. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5456. *
  5457. * Note: the X axis should be homed after changing dual x-carriage mode.
  5458. */
  5459. inline void gcode_M605() {
  5460. stepper.synchronize();
  5461. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5462. switch (dual_x_carriage_mode) {
  5463. case DXC_DUPLICATION_MODE:
  5464. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5465. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5466. SERIAL_ECHO_START;
  5467. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5468. SERIAL_CHAR(' ');
  5469. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5470. SERIAL_CHAR(',');
  5471. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5472. SERIAL_CHAR(' ');
  5473. SERIAL_ECHO(duplicate_extruder_x_offset);
  5474. SERIAL_CHAR(',');
  5475. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5476. break;
  5477. case DXC_FULL_CONTROL_MODE:
  5478. case DXC_AUTO_PARK_MODE:
  5479. break;
  5480. default:
  5481. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5482. break;
  5483. }
  5484. active_extruder_parked = false;
  5485. extruder_duplication_enabled = false;
  5486. delayed_move_time = 0;
  5487. }
  5488. #endif // DUAL_X_CARRIAGE
  5489. /**
  5490. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5491. */
  5492. inline void gcode_M907() {
  5493. #if HAS_DIGIPOTSS
  5494. for (int i = 0; i < NUM_AXIS; i++)
  5495. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5496. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5497. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5498. #endif
  5499. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5500. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5501. #endif
  5502. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5503. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5504. #endif
  5505. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5506. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5507. #endif
  5508. #if ENABLED(DIGIPOT_I2C)
  5509. // this one uses actual amps in floating point
  5510. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5511. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5512. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5513. #endif
  5514. #if ENABLED(DAC_STEPPER_CURRENT)
  5515. if (code_seen('S')) {
  5516. float dac_percent = code_value_float();
  5517. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5518. }
  5519. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5520. #endif
  5521. }
  5522. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5523. /**
  5524. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5525. */
  5526. inline void gcode_M908() {
  5527. #if HAS_DIGIPOTSS
  5528. stepper.digitalPotWrite(
  5529. code_seen('P') ? code_value_int() : 0,
  5530. code_seen('S') ? code_value_int() : 0
  5531. );
  5532. #endif
  5533. #ifdef DAC_STEPPER_CURRENT
  5534. dac_current_raw(
  5535. code_seen('P') ? code_value_byte() : -1,
  5536. code_seen('S') ? code_value_ushort() : 0
  5537. );
  5538. #endif
  5539. }
  5540. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5541. inline void gcode_M909() { dac_print_values(); }
  5542. inline void gcode_M910() { dac_commit_eeprom(); }
  5543. #endif
  5544. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5545. #if HAS_MICROSTEPS
  5546. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5547. inline void gcode_M350() {
  5548. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5549. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5550. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5551. stepper.microstep_readings();
  5552. }
  5553. /**
  5554. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5555. * S# determines MS1 or MS2, X# sets the pin high/low.
  5556. */
  5557. inline void gcode_M351() {
  5558. if (code_seen('S')) switch (code_value_byte()) {
  5559. case 1:
  5560. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5561. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5562. break;
  5563. case 2:
  5564. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5565. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5566. break;
  5567. }
  5568. stepper.microstep_readings();
  5569. }
  5570. #endif // HAS_MICROSTEPS
  5571. /**
  5572. * M999: Restart after being stopped
  5573. *
  5574. * Default behaviour is to flush the serial buffer and request
  5575. * a resend to the host starting on the last N line received.
  5576. *
  5577. * Sending "M999 S1" will resume printing without flushing the
  5578. * existing command buffer.
  5579. *
  5580. */
  5581. inline void gcode_M999() {
  5582. Running = true;
  5583. lcd_reset_alert_level();
  5584. if (code_seen('S') && code_value_bool()) return;
  5585. // gcode_LastN = Stopped_gcode_LastN;
  5586. FlushSerialRequestResend();
  5587. }
  5588. /**
  5589. * T0-T3: Switch tool, usually switching extruders
  5590. *
  5591. * F[mm/min] Set the movement feedrate
  5592. */
  5593. inline void gcode_T(uint8_t tmp_extruder) {
  5594. if (tmp_extruder >= EXTRUDERS) {
  5595. SERIAL_ECHO_START;
  5596. SERIAL_CHAR('T');
  5597. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5598. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5599. return;
  5600. }
  5601. float stored_feedrate = feedrate;
  5602. if (code_seen('F')) {
  5603. float next_feedrate = code_value_axis_units(E_AXIS);
  5604. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5605. }
  5606. else {
  5607. #ifdef XY_TRAVEL_SPEED
  5608. feedrate = XY_TRAVEL_SPEED;
  5609. #else
  5610. feedrate = min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]);
  5611. #endif
  5612. }
  5613. #if HOTENDS > 1
  5614. if (tmp_extruder != active_extruder) {
  5615. // Save current position to return to after applying extruder offset
  5616. set_destination_to_current();
  5617. #if ENABLED(DUAL_X_CARRIAGE)
  5618. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5619. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5620. // Park old head: 1) raise 2) move to park position 3) lower
  5621. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5622. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5623. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5624. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5625. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5626. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5627. stepper.synchronize();
  5628. }
  5629. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5630. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5631. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5632. active_extruder = tmp_extruder;
  5633. // This function resets the max/min values - the current position may be overwritten below.
  5634. set_axis_is_at_home(X_AXIS);
  5635. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5636. current_position[X_AXIS] = inactive_extruder_x_pos;
  5637. inactive_extruder_x_pos = destination[X_AXIS];
  5638. }
  5639. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5640. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5641. if (active_extruder_parked)
  5642. current_position[X_AXIS] = inactive_extruder_x_pos;
  5643. else
  5644. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5645. inactive_extruder_x_pos = destination[X_AXIS];
  5646. extruder_duplication_enabled = false;
  5647. }
  5648. else {
  5649. // record raised toolhead position for use by unpark
  5650. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5651. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5652. active_extruder_parked = true;
  5653. delayed_move_time = 0;
  5654. }
  5655. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5656. #else // !DUAL_X_CARRIAGE
  5657. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5658. // Offset extruder, make sure to apply the bed level rotation matrix
  5659. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5660. hotend_offset[Y_AXIS][tmp_extruder],
  5661. 0),
  5662. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5663. hotend_offset[Y_AXIS][active_extruder],
  5664. 0),
  5665. offset_vec = tmp_offset_vec - act_offset_vec;
  5666. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5667. if (DEBUGGING(LEVELING)) {
  5668. SERIAL_ECHOLNPGM(">>> gcode_T");
  5669. tmp_offset_vec.debug("tmp_offset_vec");
  5670. act_offset_vec.debug("act_offset_vec");
  5671. offset_vec.debug("offset_vec (BEFORE)");
  5672. DEBUG_POS("BEFORE rotation", current_position);
  5673. }
  5674. #endif
  5675. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5676. current_position[X_AXIS] += offset_vec.x;
  5677. current_position[Y_AXIS] += offset_vec.y;
  5678. current_position[Z_AXIS] += offset_vec.z;
  5679. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5680. if (DEBUGGING(LEVELING)) {
  5681. offset_vec.debug("offset_vec (AFTER)");
  5682. DEBUG_POS("AFTER rotation", current_position);
  5683. SERIAL_ECHOLNPGM("<<< gcode_T");
  5684. }
  5685. #endif
  5686. #else // !AUTO_BED_LEVELING_FEATURE
  5687. // The newly-selected extruder is actually at...
  5688. for (int i=X_AXIS; i<=Y_AXIS; i++) {
  5689. float diff = hotend_offset[i][tmp_extruder] - hotend_offset[i][active_extruder];
  5690. current_position[i] += diff;
  5691. position_shift[i] += diff; // Offset the coordinate space
  5692. update_software_endstops((AxisEnum)i);
  5693. }
  5694. #endif // !AUTO_BED_LEVELING_FEATURE
  5695. // Set the new active extruder
  5696. active_extruder = tmp_extruder;
  5697. #endif // !DUAL_X_CARRIAGE
  5698. // Tell the planner the new "current position"
  5699. #if ENABLED(DELTA)
  5700. sync_plan_position_delta();
  5701. #else
  5702. sync_plan_position();
  5703. #endif
  5704. // Move to the "old position" (move the extruder into place)
  5705. if (IsRunning()) prepare_move_to_destination();
  5706. } // (tmp_extruder != active_extruder)
  5707. #if ENABLED(EXT_SOLENOID)
  5708. stepper.synchronize();
  5709. disable_all_solenoids();
  5710. enable_solenoid_on_active_extruder();
  5711. #endif // EXT_SOLENOID
  5712. #endif // HOTENDS > 1
  5713. feedrate = stored_feedrate;
  5714. SERIAL_ECHO_START;
  5715. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5716. SERIAL_PROTOCOLLN((int)active_extruder);
  5717. }
  5718. /**
  5719. * Process a single command and dispatch it to its handler
  5720. * This is called from the main loop()
  5721. */
  5722. void process_next_command() {
  5723. current_command = command_queue[cmd_queue_index_r];
  5724. if (DEBUGGING(ECHO)) {
  5725. SERIAL_ECHO_START;
  5726. SERIAL_ECHOLN(current_command);
  5727. }
  5728. // Sanitize the current command:
  5729. // - Skip leading spaces
  5730. // - Bypass N[-0-9][0-9]*[ ]*
  5731. // - Overwrite * with nul to mark the end
  5732. while (*current_command == ' ') ++current_command;
  5733. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5734. current_command += 2; // skip N[-0-9]
  5735. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5736. while (*current_command == ' ') ++current_command; // skip [ ]*
  5737. }
  5738. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5739. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5740. char *cmd_ptr = current_command;
  5741. // Get the command code, which must be G, M, or T
  5742. char command_code = *cmd_ptr++;
  5743. // Skip spaces to get the numeric part
  5744. while (*cmd_ptr == ' ') cmd_ptr++;
  5745. uint16_t codenum = 0; // define ahead of goto
  5746. // Bail early if there's no code
  5747. bool code_is_good = NUMERIC(*cmd_ptr);
  5748. if (!code_is_good) goto ExitUnknownCommand;
  5749. // Get and skip the code number
  5750. do {
  5751. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5752. cmd_ptr++;
  5753. } while (NUMERIC(*cmd_ptr));
  5754. // Skip all spaces to get to the first argument, or nul
  5755. while (*cmd_ptr == ' ') cmd_ptr++;
  5756. // The command's arguments (if any) start here, for sure!
  5757. current_command_args = cmd_ptr;
  5758. KEEPALIVE_STATE(IN_HANDLER);
  5759. // Handle a known G, M, or T
  5760. switch (command_code) {
  5761. case 'G': switch (codenum) {
  5762. // G0, G1
  5763. case 0:
  5764. case 1:
  5765. gcode_G0_G1();
  5766. break;
  5767. // G2, G3
  5768. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5769. case 2: // G2 - CW ARC
  5770. case 3: // G3 - CCW ARC
  5771. gcode_G2_G3(codenum == 2);
  5772. break;
  5773. #endif
  5774. // G4 Dwell
  5775. case 4:
  5776. gcode_G4();
  5777. break;
  5778. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5779. // G5
  5780. case 5: // G5 - Cubic B_spline
  5781. gcode_G5();
  5782. break;
  5783. #endif // BEZIER_CURVE_SUPPORT
  5784. #if ENABLED(FWRETRACT)
  5785. case 10: // G10: retract
  5786. case 11: // G11: retract_recover
  5787. gcode_G10_G11(codenum == 10);
  5788. break;
  5789. #endif // FWRETRACT
  5790. #if ENABLED(INCH_MODE_SUPPORT)
  5791. case 20: //G20: Inch Mode
  5792. gcode_G20();
  5793. break;
  5794. case 21: //G21: MM Mode
  5795. gcode_G21();
  5796. break;
  5797. #endif
  5798. case 28: // G28: Home all axes, one at a time
  5799. gcode_G28();
  5800. break;
  5801. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5802. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5803. gcode_G29();
  5804. break;
  5805. #endif
  5806. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5807. #if DISABLED(Z_PROBE_SLED)
  5808. case 30: // G30 Single Z probe
  5809. gcode_G30();
  5810. break;
  5811. #else // Z_PROBE_SLED
  5812. case 31: // G31: dock the sled
  5813. case 32: // G32: undock the sled
  5814. dock_sled(codenum == 31);
  5815. break;
  5816. #endif // Z_PROBE_SLED
  5817. #endif // AUTO_BED_LEVELING_FEATURE
  5818. case 90: // G90
  5819. relative_mode = false;
  5820. break;
  5821. case 91: // G91
  5822. relative_mode = true;
  5823. break;
  5824. case 92: // G92
  5825. gcode_G92();
  5826. break;
  5827. }
  5828. break;
  5829. case 'M': switch (codenum) {
  5830. #if ENABLED(ULTIPANEL)
  5831. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5832. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5833. gcode_M0_M1();
  5834. break;
  5835. #endif // ULTIPANEL
  5836. case 17:
  5837. gcode_M17();
  5838. break;
  5839. #if ENABLED(SDSUPPORT)
  5840. case 20: // M20 - list SD card
  5841. gcode_M20(); break;
  5842. case 21: // M21 - init SD card
  5843. gcode_M21(); break;
  5844. case 22: //M22 - release SD card
  5845. gcode_M22(); break;
  5846. case 23: //M23 - Select file
  5847. gcode_M23(); break;
  5848. case 24: //M24 - Start SD print
  5849. gcode_M24(); break;
  5850. case 25: //M25 - Pause SD print
  5851. gcode_M25(); break;
  5852. case 26: //M26 - Set SD index
  5853. gcode_M26(); break;
  5854. case 27: //M27 - Get SD status
  5855. gcode_M27(); break;
  5856. case 28: //M28 - Start SD write
  5857. gcode_M28(); break;
  5858. case 29: //M29 - Stop SD write
  5859. gcode_M29(); break;
  5860. case 30: //M30 <filename> Delete File
  5861. gcode_M30(); break;
  5862. case 32: //M32 - Select file and start SD print
  5863. gcode_M32(); break;
  5864. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5865. case 33: //M33 - Get the long full path to a file or folder
  5866. gcode_M33(); break;
  5867. #endif // LONG_FILENAME_HOST_SUPPORT
  5868. case 928: //M928 - Start SD write
  5869. gcode_M928(); break;
  5870. #endif //SDSUPPORT
  5871. case 31: //M31 take time since the start of the SD print or an M109 command
  5872. gcode_M31();
  5873. break;
  5874. case 42: //M42 -Change pin status via gcode
  5875. gcode_M42();
  5876. break;
  5877. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5878. case 48: // M48 Z probe repeatability
  5879. gcode_M48();
  5880. break;
  5881. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5882. case 75: // Start print timer
  5883. gcode_M75();
  5884. break;
  5885. case 76: // Pause print timer
  5886. gcode_M76();
  5887. break;
  5888. case 77: // Stop print timer
  5889. gcode_M77();
  5890. break;
  5891. #if ENABLED(PRINTCOUNTER)
  5892. case 78: // Show print statistics
  5893. gcode_M78();
  5894. break;
  5895. #endif
  5896. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5897. case 100:
  5898. gcode_M100();
  5899. break;
  5900. #endif
  5901. case 104: // M104
  5902. gcode_M104();
  5903. break;
  5904. case 110: // M110: Set Current Line Number
  5905. gcode_M110();
  5906. break;
  5907. case 111: // M111: Set debug level
  5908. gcode_M111();
  5909. break;
  5910. case 112: // M112: Emergency Stop
  5911. gcode_M112();
  5912. break;
  5913. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5914. case 113: // M113: Set Host Keepalive interval
  5915. gcode_M113();
  5916. break;
  5917. #endif
  5918. case 140: // M140: Set bed temp
  5919. gcode_M140();
  5920. break;
  5921. case 105: // M105: Read current temperature
  5922. gcode_M105();
  5923. KEEPALIVE_STATE(NOT_BUSY);
  5924. return; // "ok" already printed
  5925. case 109: // M109: Wait for temperature
  5926. gcode_M109();
  5927. break;
  5928. #if HAS_TEMP_BED
  5929. case 190: // M190: Wait for bed heater to reach target
  5930. gcode_M190();
  5931. break;
  5932. #endif // HAS_TEMP_BED
  5933. #if FAN_COUNT > 0
  5934. case 106: // M106: Fan On
  5935. gcode_M106();
  5936. break;
  5937. case 107: // M107: Fan Off
  5938. gcode_M107();
  5939. break;
  5940. #endif // FAN_COUNT > 0
  5941. #if ENABLED(BARICUDA)
  5942. // PWM for HEATER_1_PIN
  5943. #if HAS_HEATER_1
  5944. case 126: // M126: valve open
  5945. gcode_M126();
  5946. break;
  5947. case 127: // M127: valve closed
  5948. gcode_M127();
  5949. break;
  5950. #endif // HAS_HEATER_1
  5951. // PWM for HEATER_2_PIN
  5952. #if HAS_HEATER_2
  5953. case 128: // M128: valve open
  5954. gcode_M128();
  5955. break;
  5956. case 129: // M129: valve closed
  5957. gcode_M129();
  5958. break;
  5959. #endif // HAS_HEATER_2
  5960. #endif // BARICUDA
  5961. #if HAS_POWER_SWITCH
  5962. case 80: // M80: Turn on Power Supply
  5963. gcode_M80();
  5964. break;
  5965. #endif // HAS_POWER_SWITCH
  5966. case 81: // M81: Turn off Power, including Power Supply, if possible
  5967. gcode_M81();
  5968. break;
  5969. case 82:
  5970. gcode_M82();
  5971. break;
  5972. case 83:
  5973. gcode_M83();
  5974. break;
  5975. case 18: // (for compatibility)
  5976. case 84: // M84
  5977. gcode_M18_M84();
  5978. break;
  5979. case 85: // M85
  5980. gcode_M85();
  5981. break;
  5982. case 92: // M92: Set the steps-per-unit for one or more axes
  5983. gcode_M92();
  5984. break;
  5985. case 115: // M115: Report capabilities
  5986. gcode_M115();
  5987. break;
  5988. case 117: // M117: Set LCD message text, if possible
  5989. gcode_M117();
  5990. break;
  5991. case 114: // M114: Report current position
  5992. gcode_M114();
  5993. break;
  5994. case 120: // M120: Enable endstops
  5995. gcode_M120();
  5996. break;
  5997. case 121: // M121: Disable endstops
  5998. gcode_M121();
  5999. break;
  6000. case 119: // M119: Report endstop states
  6001. gcode_M119();
  6002. break;
  6003. #if ENABLED(ULTIPANEL)
  6004. case 145: // M145: Set material heatup parameters
  6005. gcode_M145();
  6006. break;
  6007. #endif
  6008. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6009. case 149:
  6010. gcode_M149();
  6011. break;
  6012. #endif
  6013. #if ENABLED(BLINKM)
  6014. case 150: // M150
  6015. gcode_M150();
  6016. break;
  6017. #endif //BLINKM
  6018. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6019. case 155:
  6020. gcode_M155();
  6021. break;
  6022. case 156:
  6023. gcode_M156();
  6024. break;
  6025. #endif //EXPERIMENTAL_I2CBUS
  6026. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6027. gcode_M200();
  6028. break;
  6029. case 201: // M201
  6030. gcode_M201();
  6031. break;
  6032. #if 0 // Not used for Sprinter/grbl gen6
  6033. case 202: // M202
  6034. gcode_M202();
  6035. break;
  6036. #endif
  6037. case 203: // M203 max feedrate mm/sec
  6038. gcode_M203();
  6039. break;
  6040. case 204: // M204 acclereration S normal moves T filmanent only moves
  6041. gcode_M204();
  6042. break;
  6043. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6044. gcode_M205();
  6045. break;
  6046. case 206: // M206 additional homing offset
  6047. gcode_M206();
  6048. break;
  6049. #if ENABLED(DELTA)
  6050. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6051. gcode_M665();
  6052. break;
  6053. #endif
  6054. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6055. case 666: // M666 set delta / dual endstop adjustment
  6056. gcode_M666();
  6057. break;
  6058. #endif
  6059. #if ENABLED(FWRETRACT)
  6060. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6061. gcode_M207();
  6062. break;
  6063. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6064. gcode_M208();
  6065. break;
  6066. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6067. gcode_M209();
  6068. break;
  6069. #endif // FWRETRACT
  6070. #if HOTENDS > 1
  6071. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6072. gcode_M218();
  6073. break;
  6074. #endif
  6075. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6076. gcode_M220();
  6077. break;
  6078. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6079. gcode_M221();
  6080. break;
  6081. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6082. gcode_M226();
  6083. break;
  6084. #if HAS_SERVOS
  6085. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6086. gcode_M280();
  6087. break;
  6088. #endif // HAS_SERVOS
  6089. #if HAS_BUZZER
  6090. case 300: // M300 - Play beep tone
  6091. gcode_M300();
  6092. break;
  6093. #endif // HAS_BUZZER
  6094. #if ENABLED(PIDTEMP)
  6095. case 301: // M301
  6096. gcode_M301();
  6097. break;
  6098. #endif // PIDTEMP
  6099. #if ENABLED(PIDTEMPBED)
  6100. case 304: // M304
  6101. gcode_M304();
  6102. break;
  6103. #endif // PIDTEMPBED
  6104. #if defined(CHDK) || HAS_PHOTOGRAPH
  6105. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6106. gcode_M240();
  6107. break;
  6108. #endif // CHDK || PHOTOGRAPH_PIN
  6109. #if HAS_LCD_CONTRAST
  6110. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6111. gcode_M250();
  6112. break;
  6113. #endif // HAS_LCD_CONTRAST
  6114. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6115. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6116. gcode_M302();
  6117. break;
  6118. #endif // PREVENT_DANGEROUS_EXTRUDE
  6119. case 303: // M303 PID autotune
  6120. gcode_M303();
  6121. break;
  6122. #if ENABLED(SCARA)
  6123. case 360: // M360 SCARA Theta pos1
  6124. if (gcode_M360()) return;
  6125. break;
  6126. case 361: // M361 SCARA Theta pos2
  6127. if (gcode_M361()) return;
  6128. break;
  6129. case 362: // M362 SCARA Psi pos1
  6130. if (gcode_M362()) return;
  6131. break;
  6132. case 363: // M363 SCARA Psi pos2
  6133. if (gcode_M363()) return;
  6134. break;
  6135. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6136. if (gcode_M364()) return;
  6137. break;
  6138. case 365: // M365 Set SCARA scaling for X Y Z
  6139. gcode_M365();
  6140. break;
  6141. #endif // SCARA
  6142. case 400: // M400 finish all moves
  6143. gcode_M400();
  6144. break;
  6145. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  6146. case 401:
  6147. gcode_M401();
  6148. break;
  6149. case 402:
  6150. gcode_M402();
  6151. break;
  6152. #endif // AUTO_BED_LEVELING_FEATURE && (ENABLED(HAS_SERVO_ENDSTOPS) || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  6153. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6154. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6155. gcode_M404();
  6156. break;
  6157. case 405: //M405 Turn on filament sensor for control
  6158. gcode_M405();
  6159. break;
  6160. case 406: //M406 Turn off filament sensor for control
  6161. gcode_M406();
  6162. break;
  6163. case 407: //M407 Display measured filament diameter
  6164. gcode_M407();
  6165. break;
  6166. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6167. case 410: // M410 quickstop - Abort all the planned moves.
  6168. gcode_M410();
  6169. break;
  6170. #if ENABLED(MESH_BED_LEVELING)
  6171. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6172. gcode_M420();
  6173. break;
  6174. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6175. gcode_M421();
  6176. break;
  6177. #endif
  6178. case 428: // M428 Apply current_position to home_offset
  6179. gcode_M428();
  6180. break;
  6181. case 500: // M500 Store settings in EEPROM
  6182. gcode_M500();
  6183. break;
  6184. case 501: // M501 Read settings from EEPROM
  6185. gcode_M501();
  6186. break;
  6187. case 502: // M502 Revert to default settings
  6188. gcode_M502();
  6189. break;
  6190. case 503: // M503 print settings currently in memory
  6191. gcode_M503();
  6192. break;
  6193. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6194. case 540:
  6195. gcode_M540();
  6196. break;
  6197. #endif
  6198. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6199. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6200. gcode_SET_Z_PROBE_OFFSET();
  6201. break;
  6202. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6203. #if ENABLED(FILAMENTCHANGEENABLE)
  6204. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6205. gcode_M600();
  6206. break;
  6207. #endif // FILAMENTCHANGEENABLE
  6208. #if ENABLED(DUAL_X_CARRIAGE)
  6209. case 605:
  6210. gcode_M605();
  6211. break;
  6212. #endif // DUAL_X_CARRIAGE
  6213. case 907: // M907 Set digital trimpot motor current using axis codes.
  6214. gcode_M907();
  6215. break;
  6216. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6217. case 908: // M908 Control digital trimpot directly.
  6218. gcode_M908();
  6219. break;
  6220. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6221. case 909: // M909 Print digipot/DAC current value
  6222. gcode_M909();
  6223. break;
  6224. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6225. gcode_M910();
  6226. break;
  6227. #endif
  6228. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6229. #if HAS_MICROSTEPS
  6230. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6231. gcode_M350();
  6232. break;
  6233. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6234. gcode_M351();
  6235. break;
  6236. #endif // HAS_MICROSTEPS
  6237. case 999: // M999: Restart after being Stopped
  6238. gcode_M999();
  6239. break;
  6240. }
  6241. break;
  6242. case 'T':
  6243. gcode_T(codenum);
  6244. break;
  6245. default: code_is_good = false;
  6246. }
  6247. KEEPALIVE_STATE(NOT_BUSY);
  6248. ExitUnknownCommand:
  6249. // Still unknown command? Throw an error
  6250. if (!code_is_good) unknown_command_error();
  6251. ok_to_send();
  6252. }
  6253. void FlushSerialRequestResend() {
  6254. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6255. MYSERIAL.flush();
  6256. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6257. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6258. ok_to_send();
  6259. }
  6260. void ok_to_send() {
  6261. refresh_cmd_timeout();
  6262. if (!send_ok[cmd_queue_index_r]) return;
  6263. SERIAL_PROTOCOLPGM(MSG_OK);
  6264. #if ENABLED(ADVANCED_OK)
  6265. char* p = command_queue[cmd_queue_index_r];
  6266. if (*p == 'N') {
  6267. SERIAL_PROTOCOL(' ');
  6268. SERIAL_ECHO(*p++);
  6269. while (NUMERIC_SIGNED(*p))
  6270. SERIAL_ECHO(*p++);
  6271. }
  6272. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6273. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6274. #endif
  6275. SERIAL_EOL;
  6276. }
  6277. void clamp_to_software_endstops(float target[3]) {
  6278. if (min_software_endstops) {
  6279. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6280. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6281. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6282. }
  6283. if (max_software_endstops) {
  6284. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6285. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6286. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6287. }
  6288. }
  6289. #if ENABLED(DELTA)
  6290. void recalc_delta_settings(float radius, float diagonal_rod) {
  6291. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6292. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6293. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6294. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6295. delta_tower3_x = 0.0; // back middle tower
  6296. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6297. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6298. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6299. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6300. }
  6301. void calculate_delta(float cartesian[3]) {
  6302. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6303. - sq(delta_tower1_x - cartesian[X_AXIS])
  6304. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6305. ) + cartesian[Z_AXIS];
  6306. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6307. - sq(delta_tower2_x - cartesian[X_AXIS])
  6308. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6309. ) + cartesian[Z_AXIS];
  6310. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6311. - sq(delta_tower3_x - cartesian[X_AXIS])
  6312. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6313. ) + cartesian[Z_AXIS];
  6314. /**
  6315. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6316. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6317. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6318. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6319. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6320. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6321. */
  6322. }
  6323. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6324. // Adjust print surface height by linear interpolation over the bed_level array.
  6325. void adjust_delta(float cartesian[3]) {
  6326. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6327. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6328. float h1 = 0.001 - half, h2 = half - 0.001,
  6329. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6330. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6331. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6332. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6333. z1 = bed_level[floor_x + half][floor_y + half],
  6334. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6335. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6336. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6337. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6338. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6339. offset = (1 - ratio_x) * left + ratio_x * right;
  6340. delta[X_AXIS] += offset;
  6341. delta[Y_AXIS] += offset;
  6342. delta[Z_AXIS] += offset;
  6343. /**
  6344. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6345. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6346. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6347. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6348. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6349. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6350. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6351. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6352. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6353. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6354. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6355. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6356. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6357. */
  6358. }
  6359. #endif // AUTO_BED_LEVELING_FEATURE
  6360. #endif // DELTA
  6361. #if ENABLED(MESH_BED_LEVELING)
  6362. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6363. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6364. if (!mbl.active()) {
  6365. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6366. set_current_to_destination();
  6367. return;
  6368. }
  6369. int pcx = mbl.cell_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
  6370. int pcy = mbl.cell_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6371. int cx = mbl.cell_index_x(x - home_offset[X_AXIS]);
  6372. int cy = mbl.cell_index_y(y - home_offset[Y_AXIS]);
  6373. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6374. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6375. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6376. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6377. if (pcx == cx && pcy == cy) {
  6378. // Start and end on same mesh square
  6379. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6380. set_current_to_destination();
  6381. return;
  6382. }
  6383. float nx, ny, nz, ne, normalized_dist;
  6384. if (cx > pcx && TEST(x_splits, cx)) {
  6385. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6386. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6387. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6388. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6389. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6390. CBI(x_splits, cx);
  6391. }
  6392. else if (cx < pcx && TEST(x_splits, pcx)) {
  6393. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6394. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6395. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6396. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6397. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6398. CBI(x_splits, pcx);
  6399. }
  6400. else if (cy > pcy && TEST(y_splits, cy)) {
  6401. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6402. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6403. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6404. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6405. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6406. CBI(y_splits, cy);
  6407. }
  6408. else if (cy < pcy && TEST(y_splits, pcy)) {
  6409. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6410. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6411. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6412. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6413. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6414. CBI(y_splits, pcy);
  6415. }
  6416. else {
  6417. // Already split on a border
  6418. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6419. set_current_to_destination();
  6420. return;
  6421. }
  6422. // Do the split and look for more borders
  6423. destination[X_AXIS] = nx;
  6424. destination[Y_AXIS] = ny;
  6425. destination[Z_AXIS] = nz;
  6426. destination[E_AXIS] = ne;
  6427. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6428. destination[X_AXIS] = x;
  6429. destination[Y_AXIS] = y;
  6430. destination[Z_AXIS] = z;
  6431. destination[E_AXIS] = e;
  6432. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6433. }
  6434. #endif // MESH_BED_LEVELING
  6435. #if ENABLED(DELTA) || ENABLED(SCARA)
  6436. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6437. float difference[NUM_AXIS];
  6438. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6439. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6440. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6441. if (cartesian_mm < 0.000001) return false;
  6442. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6443. float seconds = cartesian_mm / _feedrate;
  6444. int steps = max(1, int(delta_segments_per_second * seconds));
  6445. float inv_steps = 1.0/steps;
  6446. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6447. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6448. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6449. for (int s = 1; s <= steps; s++) {
  6450. float fraction = float(s) * inv_steps;
  6451. for (int8_t i = 0; i < NUM_AXIS; i++)
  6452. target[i] = current_position[i] + difference[i] * fraction;
  6453. calculate_delta(target);
  6454. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6455. if (!bed_leveling_in_progress) adjust_delta(target);
  6456. #endif
  6457. //DEBUG_POS("prepare_delta_move_to", target);
  6458. //DEBUG_POS("prepare_delta_move_to", delta);
  6459. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6460. }
  6461. return true;
  6462. }
  6463. #endif // DELTA || SCARA
  6464. #if ENABLED(SCARA)
  6465. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6466. #endif
  6467. #if ENABLED(DUAL_X_CARRIAGE)
  6468. inline bool prepare_move_dual_x_carriage() {
  6469. if (active_extruder_parked) {
  6470. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6471. // move duplicate extruder into correct duplication position.
  6472. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6473. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6474. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6475. sync_plan_position();
  6476. stepper.synchronize();
  6477. extruder_duplication_enabled = true;
  6478. active_extruder_parked = false;
  6479. }
  6480. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6481. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6482. // This is a travel move (with no extrusion)
  6483. // Skip it, but keep track of the current position
  6484. // (so it can be used as the start of the next non-travel move)
  6485. if (delayed_move_time != 0xFFFFFFFFUL) {
  6486. set_current_to_destination();
  6487. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6488. delayed_move_time = millis();
  6489. return false;
  6490. }
  6491. }
  6492. delayed_move_time = 0;
  6493. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6494. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6495. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
  6496. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6497. active_extruder_parked = false;
  6498. }
  6499. }
  6500. return true;
  6501. }
  6502. #endif // DUAL_X_CARRIAGE
  6503. #if DISABLED(DELTA) && DISABLED(SCARA)
  6504. inline bool prepare_cartesian_move_to_destination() {
  6505. // Do not use feedrate_multiplier for E or Z only moves
  6506. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6507. line_to_destination();
  6508. }
  6509. else {
  6510. #if ENABLED(MESH_BED_LEVELING)
  6511. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6512. return false;
  6513. #else
  6514. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6515. #endif
  6516. }
  6517. return true;
  6518. }
  6519. #endif // !DELTA && !SCARA
  6520. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6521. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6522. if (DEBUGGING(DRYRUN)) return;
  6523. float de = dest_e - curr_e;
  6524. if (de) {
  6525. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6526. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6527. SERIAL_ECHO_START;
  6528. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6529. }
  6530. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6531. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6532. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6533. SERIAL_ECHO_START;
  6534. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6535. }
  6536. #endif
  6537. }
  6538. }
  6539. #endif // PREVENT_DANGEROUS_EXTRUDE
  6540. /**
  6541. * Prepare a single move and get ready for the next one
  6542. *
  6543. * (This may call planner.buffer_line several times to put
  6544. * smaller moves into the planner for DELTA or SCARA.)
  6545. */
  6546. void prepare_move_to_destination() {
  6547. clamp_to_software_endstops(destination);
  6548. refresh_cmd_timeout();
  6549. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6550. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6551. #endif
  6552. #if ENABLED(SCARA)
  6553. if (!prepare_scara_move_to(destination)) return;
  6554. #elif ENABLED(DELTA)
  6555. if (!prepare_delta_move_to(destination)) return;
  6556. #else
  6557. #if ENABLED(DUAL_X_CARRIAGE)
  6558. if (!prepare_move_dual_x_carriage()) return;
  6559. #endif
  6560. if (!prepare_cartesian_move_to_destination()) return;
  6561. #endif
  6562. set_current_to_destination();
  6563. }
  6564. #if ENABLED(ARC_SUPPORT)
  6565. /**
  6566. * Plan an arc in 2 dimensions
  6567. *
  6568. * The arc is approximated by generating many small linear segments.
  6569. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6570. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6571. * larger segments will tend to be more efficient. Your slicer should have
  6572. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6573. */
  6574. void plan_arc(
  6575. float target[NUM_AXIS], // Destination position
  6576. float* offset, // Center of rotation relative to current_position
  6577. uint8_t clockwise // Clockwise?
  6578. ) {
  6579. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6580. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6581. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6582. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6583. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6584. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6585. r_Y = -offset[Y_AXIS],
  6586. rt_X = target[X_AXIS] - center_X,
  6587. rt_Y = target[Y_AXIS] - center_Y;
  6588. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6589. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6590. if (angular_travel < 0) angular_travel += RADIANS(360);
  6591. if (clockwise) angular_travel -= RADIANS(360);
  6592. // Make a circle if the angular rotation is 0
  6593. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6594. angular_travel += RADIANS(360);
  6595. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6596. if (mm_of_travel < 0.001) return;
  6597. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6598. if (segments == 0) segments = 1;
  6599. float theta_per_segment = angular_travel / segments;
  6600. float linear_per_segment = linear_travel / segments;
  6601. float extruder_per_segment = extruder_travel / segments;
  6602. /**
  6603. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6604. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6605. * r_T = [cos(phi) -sin(phi);
  6606. * sin(phi) cos(phi] * r ;
  6607. *
  6608. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6609. * defined from the circle center to the initial position. Each line segment is formed by successive
  6610. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6611. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6612. * all double numbers are single precision on the Arduino. (True double precision will not have
  6613. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6614. * tool precision in some cases. Therefore, arc path correction is implemented.
  6615. *
  6616. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6617. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6618. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6619. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6620. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6621. * issue for CNC machines with the single precision Arduino calculations.
  6622. *
  6623. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6624. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6625. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6626. * This is important when there are successive arc motions.
  6627. */
  6628. // Vector rotation matrix values
  6629. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6630. float sin_T = theta_per_segment;
  6631. float arc_target[NUM_AXIS];
  6632. float sin_Ti, cos_Ti, r_new_Y;
  6633. uint16_t i;
  6634. int8_t count = 0;
  6635. // Initialize the linear axis
  6636. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6637. // Initialize the extruder axis
  6638. arc_target[E_AXIS] = current_position[E_AXIS];
  6639. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6640. millis_t next_idle_ms = millis() + 200UL;
  6641. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6642. thermalManager.manage_heater();
  6643. millis_t now = millis();
  6644. if (ELAPSED(now, next_idle_ms)) {
  6645. next_idle_ms = now + 200UL;
  6646. idle();
  6647. }
  6648. if (++count < N_ARC_CORRECTION) {
  6649. // Apply vector rotation matrix to previous r_X / 1
  6650. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6651. r_X = r_X * cos_T - r_Y * sin_T;
  6652. r_Y = r_new_Y;
  6653. }
  6654. else {
  6655. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6656. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6657. // To reduce stuttering, the sin and cos could be computed at different times.
  6658. // For now, compute both at the same time.
  6659. cos_Ti = cos(i * theta_per_segment);
  6660. sin_Ti = sin(i * theta_per_segment);
  6661. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6662. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6663. count = 0;
  6664. }
  6665. // Update arc_target location
  6666. arc_target[X_AXIS] = center_X + r_X;
  6667. arc_target[Y_AXIS] = center_Y + r_Y;
  6668. arc_target[Z_AXIS] += linear_per_segment;
  6669. arc_target[E_AXIS] += extruder_per_segment;
  6670. clamp_to_software_endstops(arc_target);
  6671. #if ENABLED(DELTA) || ENABLED(SCARA)
  6672. calculate_delta(arc_target);
  6673. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6674. adjust_delta(arc_target);
  6675. #endif
  6676. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6677. #else
  6678. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6679. #endif
  6680. }
  6681. // Ensure last segment arrives at target location.
  6682. #if ENABLED(DELTA) || ENABLED(SCARA)
  6683. calculate_delta(target);
  6684. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6685. adjust_delta(target);
  6686. #endif
  6687. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6688. #else
  6689. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6690. #endif
  6691. // As far as the parser is concerned, the position is now == target. In reality the
  6692. // motion control system might still be processing the action and the real tool position
  6693. // in any intermediate location.
  6694. set_current_to_destination();
  6695. }
  6696. #endif
  6697. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6698. void plan_cubic_move(const float offset[4]) {
  6699. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6700. // As far as the parser is concerned, the position is now == target. In reality the
  6701. // motion control system might still be processing the action and the real tool position
  6702. // in any intermediate location.
  6703. set_current_to_destination();
  6704. }
  6705. #endif // BEZIER_CURVE_SUPPORT
  6706. #if HAS_CONTROLLERFAN
  6707. void controllerFan() {
  6708. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6709. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6710. millis_t ms = millis();
  6711. if (ELAPSED(ms, nextMotorCheck)) {
  6712. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6713. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6714. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6715. #if EXTRUDERS > 1
  6716. || E1_ENABLE_READ == E_ENABLE_ON
  6717. #if HAS_X2_ENABLE
  6718. || X2_ENABLE_READ == X_ENABLE_ON
  6719. #endif
  6720. #if EXTRUDERS > 2
  6721. || E2_ENABLE_READ == E_ENABLE_ON
  6722. #if EXTRUDERS > 3
  6723. || E3_ENABLE_READ == E_ENABLE_ON
  6724. #endif
  6725. #endif
  6726. #endif
  6727. ) {
  6728. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6729. }
  6730. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6731. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6732. // allows digital or PWM fan output to be used (see M42 handling)
  6733. digitalWrite(CONTROLLERFAN_PIN, speed);
  6734. analogWrite(CONTROLLERFAN_PIN, speed);
  6735. }
  6736. }
  6737. #endif // HAS_CONTROLLERFAN
  6738. #if ENABLED(SCARA)
  6739. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6740. // Perform forward kinematics, and place results in delta[3]
  6741. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6742. float x_sin, x_cos, y_sin, y_cos;
  6743. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6744. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6745. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6746. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6747. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6748. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6749. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6750. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6751. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6752. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6753. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6754. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6755. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6756. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6757. }
  6758. void calculate_delta(float cartesian[3]) {
  6759. //reverse kinematics.
  6760. // Perform reversed kinematics, and place results in delta[3]
  6761. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6762. float SCARA_pos[2];
  6763. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6764. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6765. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6766. #if (Linkage_1 == Linkage_2)
  6767. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6768. #else
  6769. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6770. #endif
  6771. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6772. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6773. SCARA_K2 = Linkage_2 * SCARA_S2;
  6774. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6775. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6776. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6777. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6778. delta[Z_AXIS] = cartesian[Z_AXIS];
  6779. /**
  6780. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6781. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6782. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6783. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6784. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6785. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6786. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6787. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6788. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6789. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6790. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6791. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6792. SERIAL_EOL;
  6793. */
  6794. }
  6795. #endif // SCARA
  6796. #if ENABLED(TEMP_STAT_LEDS)
  6797. static bool red_led = false;
  6798. static millis_t next_status_led_update_ms = 0;
  6799. void handle_status_leds(void) {
  6800. float max_temp = 0.0;
  6801. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6802. next_status_led_update_ms += 500; // Update every 0.5s
  6803. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6804. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6805. #if HAS_TEMP_BED
  6806. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6807. #endif
  6808. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6809. if (new_led != red_led) {
  6810. red_led = new_led;
  6811. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6812. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6813. }
  6814. }
  6815. }
  6816. #endif
  6817. void enable_all_steppers() {
  6818. enable_x();
  6819. enable_y();
  6820. enable_z();
  6821. enable_e0();
  6822. enable_e1();
  6823. enable_e2();
  6824. enable_e3();
  6825. }
  6826. void disable_all_steppers() {
  6827. disable_x();
  6828. disable_y();
  6829. disable_z();
  6830. disable_e0();
  6831. disable_e1();
  6832. disable_e2();
  6833. disable_e3();
  6834. }
  6835. /**
  6836. * Standard idle routine keeps the machine alive
  6837. */
  6838. void idle(
  6839. #if ENABLED(FILAMENTCHANGEENABLE)
  6840. bool no_stepper_sleep/*=false*/
  6841. #endif
  6842. ) {
  6843. lcd_update();
  6844. host_keepalive();
  6845. manage_inactivity(
  6846. #if ENABLED(FILAMENTCHANGEENABLE)
  6847. no_stepper_sleep
  6848. #endif
  6849. );
  6850. thermalManager.manage_heater();
  6851. #if ENABLED(PRINTCOUNTER)
  6852. print_job_timer.tick();
  6853. #endif
  6854. #if HAS_BUZZER
  6855. buzzer.tick();
  6856. #endif
  6857. }
  6858. /**
  6859. * Manage several activities:
  6860. * - Check for Filament Runout
  6861. * - Keep the command buffer full
  6862. * - Check for maximum inactive time between commands
  6863. * - Check for maximum inactive time between stepper commands
  6864. * - Check if pin CHDK needs to go LOW
  6865. * - Check for KILL button held down
  6866. * - Check for HOME button held down
  6867. * - Check if cooling fan needs to be switched on
  6868. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6869. */
  6870. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6871. #if HAS_FILRUNOUT
  6872. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6873. handle_filament_runout();
  6874. #endif
  6875. if (commands_in_queue < BUFSIZE) get_available_commands();
  6876. millis_t ms = millis();
  6877. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6878. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6879. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6880. #if ENABLED(DISABLE_INACTIVE_X)
  6881. disable_x();
  6882. #endif
  6883. #if ENABLED(DISABLE_INACTIVE_Y)
  6884. disable_y();
  6885. #endif
  6886. #if ENABLED(DISABLE_INACTIVE_Z)
  6887. disable_z();
  6888. #endif
  6889. #if ENABLED(DISABLE_INACTIVE_E)
  6890. disable_e0();
  6891. disable_e1();
  6892. disable_e2();
  6893. disable_e3();
  6894. #endif
  6895. }
  6896. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6897. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6898. chdkActive = false;
  6899. WRITE(CHDK, LOW);
  6900. }
  6901. #endif
  6902. #if HAS_KILL
  6903. // Check if the kill button was pressed and wait just in case it was an accidental
  6904. // key kill key press
  6905. // -------------------------------------------------------------------------------
  6906. static int killCount = 0; // make the inactivity button a bit less responsive
  6907. const int KILL_DELAY = 750;
  6908. if (!READ(KILL_PIN))
  6909. killCount++;
  6910. else if (killCount > 0)
  6911. killCount--;
  6912. // Exceeded threshold and we can confirm that it was not accidental
  6913. // KILL the machine
  6914. // ----------------------------------------------------------------
  6915. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6916. #endif
  6917. #if HAS_HOME
  6918. // Check to see if we have to home, use poor man's debouncer
  6919. // ---------------------------------------------------------
  6920. static int homeDebounceCount = 0; // poor man's debouncing count
  6921. const int HOME_DEBOUNCE_DELAY = 2500;
  6922. if (!READ(HOME_PIN)) {
  6923. if (!homeDebounceCount) {
  6924. enqueue_and_echo_commands_P(PSTR("G28"));
  6925. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6926. }
  6927. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6928. homeDebounceCount++;
  6929. else
  6930. homeDebounceCount = 0;
  6931. }
  6932. #endif
  6933. #if HAS_CONTROLLERFAN
  6934. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6935. #endif
  6936. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6937. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6938. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6939. bool oldstatus;
  6940. switch (active_extruder) {
  6941. case 0:
  6942. oldstatus = E0_ENABLE_READ;
  6943. enable_e0();
  6944. break;
  6945. #if EXTRUDERS > 1
  6946. case 1:
  6947. oldstatus = E1_ENABLE_READ;
  6948. enable_e1();
  6949. break;
  6950. #if EXTRUDERS > 2
  6951. case 2:
  6952. oldstatus = E2_ENABLE_READ;
  6953. enable_e2();
  6954. break;
  6955. #if EXTRUDERS > 3
  6956. case 3:
  6957. oldstatus = E3_ENABLE_READ;
  6958. enable_e3();
  6959. break;
  6960. #endif
  6961. #endif
  6962. #endif
  6963. }
  6964. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6965. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6966. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6967. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6968. current_position[E_AXIS] = oldepos;
  6969. destination[E_AXIS] = oldedes;
  6970. planner.set_e_position_mm(oldepos);
  6971. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6972. stepper.synchronize();
  6973. switch (active_extruder) {
  6974. case 0:
  6975. E0_ENABLE_WRITE(oldstatus);
  6976. break;
  6977. #if EXTRUDERS > 1
  6978. case 1:
  6979. E1_ENABLE_WRITE(oldstatus);
  6980. break;
  6981. #if EXTRUDERS > 2
  6982. case 2:
  6983. E2_ENABLE_WRITE(oldstatus);
  6984. break;
  6985. #if EXTRUDERS > 3
  6986. case 3:
  6987. E3_ENABLE_WRITE(oldstatus);
  6988. break;
  6989. #endif
  6990. #endif
  6991. #endif
  6992. }
  6993. }
  6994. #endif
  6995. #if ENABLED(DUAL_X_CARRIAGE)
  6996. // handle delayed move timeout
  6997. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6998. // travel moves have been received so enact them
  6999. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7000. set_destination_to_current();
  7001. prepare_move_to_destination();
  7002. }
  7003. #endif
  7004. #if ENABLED(TEMP_STAT_LEDS)
  7005. handle_status_leds();
  7006. #endif
  7007. planner.check_axes_activity();
  7008. }
  7009. void kill(const char* lcd_msg) {
  7010. #if ENABLED(ULTRA_LCD)
  7011. lcd_setalertstatuspgm(lcd_msg);
  7012. #else
  7013. UNUSED(lcd_msg);
  7014. #endif
  7015. cli(); // Stop interrupts
  7016. thermalManager.disable_all_heaters();
  7017. disable_all_steppers();
  7018. #if HAS_POWER_SWITCH
  7019. pinMode(PS_ON_PIN, INPUT);
  7020. #endif
  7021. SERIAL_ERROR_START;
  7022. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7023. // FMC small patch to update the LCD before ending
  7024. sei(); // enable interrupts
  7025. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  7026. cli(); // disable interrupts
  7027. suicide();
  7028. while (1) {
  7029. #if ENABLED(USE_WATCHDOG)
  7030. watchdog_reset();
  7031. #endif
  7032. } // Wait for reset
  7033. }
  7034. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7035. void handle_filament_runout() {
  7036. if (!filament_ran_out) {
  7037. filament_ran_out = true;
  7038. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7039. stepper.synchronize();
  7040. }
  7041. }
  7042. #endif // FILAMENT_RUNOUT_SENSOR
  7043. #if ENABLED(FAST_PWM_FAN)
  7044. void setPwmFrequency(uint8_t pin, int val) {
  7045. val &= 0x07;
  7046. switch (digitalPinToTimer(pin)) {
  7047. #if defined(TCCR0A)
  7048. case TIMER0A:
  7049. case TIMER0B:
  7050. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7051. // TCCR0B |= val;
  7052. break;
  7053. #endif
  7054. #if defined(TCCR1A)
  7055. case TIMER1A:
  7056. case TIMER1B:
  7057. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7058. // TCCR1B |= val;
  7059. break;
  7060. #endif
  7061. #if defined(TCCR2)
  7062. case TIMER2:
  7063. case TIMER2:
  7064. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7065. TCCR2 |= val;
  7066. break;
  7067. #endif
  7068. #if defined(TCCR2A)
  7069. case TIMER2A:
  7070. case TIMER2B:
  7071. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7072. TCCR2B |= val;
  7073. break;
  7074. #endif
  7075. #if defined(TCCR3A)
  7076. case TIMER3A:
  7077. case TIMER3B:
  7078. case TIMER3C:
  7079. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7080. TCCR3B |= val;
  7081. break;
  7082. #endif
  7083. #if defined(TCCR4A)
  7084. case TIMER4A:
  7085. case TIMER4B:
  7086. case TIMER4C:
  7087. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7088. TCCR4B |= val;
  7089. break;
  7090. #endif
  7091. #if defined(TCCR5A)
  7092. case TIMER5A:
  7093. case TIMER5B:
  7094. case TIMER5C:
  7095. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7096. TCCR5B |= val;
  7097. break;
  7098. #endif
  7099. }
  7100. }
  7101. #endif // FAST_PWM_FAN
  7102. void stop() {
  7103. thermalManager.disable_all_heaters();
  7104. if (IsRunning()) {
  7105. Running = false;
  7106. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7107. SERIAL_ERROR_START;
  7108. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7109. LCD_MESSAGEPGM(MSG_STOPPED);
  7110. }
  7111. }
  7112. float calculate_volumetric_multiplier(float diameter) {
  7113. if (!volumetric_enabled || diameter == 0) return 1.0;
  7114. float d2 = diameter * 0.5;
  7115. return 1.0 / (M_PI * d2 * d2);
  7116. }
  7117. void calculate_volumetric_multipliers() {
  7118. for (int i = 0; i < EXTRUDERS; i++)
  7119. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7120. }