My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 77KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V53"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #if ADD_PORT_ARG
  45. #define PORTARG_SOLO const int8_t port
  46. #define PORTARG_AFTER ,const int8_t port
  47. #define PORTVAR_SOLO port
  48. #else
  49. #define PORTARG_SOLO
  50. #define PORTARG_AFTER
  51. #define PORTVAR_SOLO
  52. #endif
  53. #include "endstops.h"
  54. #include "planner.h"
  55. #include "stepper.h"
  56. #include "temperature.h"
  57. #include "../lcd/ultralcd.h"
  58. #include "../core/language.h"
  59. #include "../libs/vector_3.h"
  60. #include "../gcode/gcode.h"
  61. #include "../Marlin.h"
  62. #if HAS_LEVELING
  63. #include "../feature/bedlevel/bedlevel.h"
  64. #endif
  65. #if HAS_BED_PROBE
  66. #include "../module/probe.h"
  67. #endif
  68. #if HAS_TRINAMIC
  69. #include "stepper_indirection.h"
  70. #include "../feature/tmc_util.h"
  71. #define TMC_GET_PWMTHRS(P,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.axis_steps_per_mm[P##_AXIS])
  72. #endif
  73. #if ENABLED(FWRETRACT)
  74. #include "../feature/fwretract.h"
  75. #endif
  76. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  77. #include "../feature/pause.h"
  78. #endif
  79. #pragma pack(push, 1) // No padding between variables
  80. typedef struct PID { float Kp, Ki, Kd; } PID;
  81. typedef struct PIDC { float Kp, Ki, Kd, Kc; } PIDC;
  82. /**
  83. * Current EEPROM Layout
  84. *
  85. * Keep this data structure up to date so
  86. * EEPROM size is known at compile time!
  87. */
  88. typedef struct SettingsDataStruct {
  89. char version[4]; // Vnn\0
  90. uint16_t crc; // Data Checksum
  91. //
  92. // DISTINCT_E_FACTORS
  93. //
  94. uint8_t esteppers; // XYZE_N - XYZ
  95. float planner_axis_steps_per_mm[XYZE_N], // M92 XYZE planner.axis_steps_per_mm[XYZE_N]
  96. planner_max_feedrate_mm_s[XYZE_N]; // M203 XYZE planner.max_feedrate_mm_s[XYZE_N]
  97. uint32_t planner_max_acceleration_mm_per_s2[XYZE_N]; // M201 XYZE planner.max_acceleration_mm_per_s2[XYZE_N]
  98. float planner_acceleration, // M204 P planner.acceleration
  99. planner_retract_acceleration, // M204 R planner.retract_acceleration
  100. planner_travel_acceleration, // M204 T planner.travel_acceleration
  101. planner_min_feedrate_mm_s, // M205 S planner.min_feedrate_mm_s
  102. planner_min_travel_feedrate_mm_s; // M205 T planner.min_travel_feedrate_mm_s
  103. uint32_t planner_min_segment_time_us; // M205 B planner.min_segment_time_us
  104. float planner_max_jerk[XYZE]; // M205 XYZE planner.max_jerk[XYZE]
  105. float home_offset[XYZ]; // M206 XYZ
  106. #if HOTENDS > 1
  107. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  108. #endif
  109. //
  110. // ENABLE_LEVELING_FADE_HEIGHT
  111. //
  112. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  113. //
  114. // MESH_BED_LEVELING
  115. //
  116. float mbl_z_offset; // mbl.z_offset
  117. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  118. #if ENABLED(MESH_BED_LEVELING)
  119. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  120. #else
  121. float mbl_z_values[3][3];
  122. #endif
  123. //
  124. // HAS_BED_PROBE
  125. //
  126. float zprobe_zoffset; // M851 Z
  127. //
  128. // ABL_PLANAR
  129. //
  130. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  131. //
  132. // AUTO_BED_LEVELING_BILINEAR
  133. //
  134. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  135. int bilinear_grid_spacing[2],
  136. bilinear_start[2]; // G29 L F
  137. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  138. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  139. #else
  140. float z_values[3][3];
  141. #endif
  142. //
  143. // AUTO_BED_LEVELING_UBL
  144. //
  145. bool planner_leveling_active; // M420 S planner.leveling_active
  146. int8_t ubl_storage_slot; // ubl.storage_slot
  147. //
  148. // DELTA / [XYZ]_DUAL_ENDSTOPS
  149. //
  150. #if ENABLED(DELTA)
  151. float delta_height, // M666 H
  152. delta_endstop_adj[ABC], // M666 XYZ
  153. delta_radius, // M665 R
  154. delta_diagonal_rod, // M665 L
  155. delta_segments_per_second, // M665 S
  156. delta_calibration_radius, // M665 B
  157. delta_tower_angle_trim[ABC]; // M665 XYZ
  158. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  159. float x_endstop_adj, // M666 X
  160. y_endstop_adj, // M666 Y
  161. z_endstop_adj; // M666 Z
  162. #endif
  163. //
  164. // ULTIPANEL
  165. //
  166. int16_t lcd_preheat_hotend_temp[2], // M145 S0 H
  167. lcd_preheat_bed_temp[2], // M145 S0 B
  168. lcd_preheat_fan_speed[2]; // M145 S0 F
  169. //
  170. // PIDTEMP
  171. //
  172. PIDC hotendPID[MAX_EXTRUDERS]; // M301 En PIDC / M303 En U
  173. int lpq_len; // M301 L
  174. //
  175. // PIDTEMPBED
  176. //
  177. PID bedPID; // M304 PID / M303 E-1 U
  178. //
  179. // HAS_LCD_CONTRAST
  180. //
  181. int16_t lcd_contrast; // M250 C
  182. //
  183. // FWRETRACT
  184. //
  185. bool autoretract_enabled; // M209 S
  186. float retract_length, // M207 S
  187. retract_feedrate_mm_s, // M207 F
  188. retract_zlift, // M207 Z
  189. retract_recover_length, // M208 S
  190. retract_recover_feedrate_mm_s, // M208 F
  191. swap_retract_length, // M207 W
  192. swap_retract_recover_length, // M208 W
  193. swap_retract_recover_feedrate_mm_s; // M208 R
  194. //
  195. // !NO_VOLUMETRIC
  196. //
  197. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  198. float planner_filament_size[MAX_EXTRUDERS]; // M200 T D planner.filament_size[]
  199. //
  200. // HAS_TRINAMIC
  201. //
  202. #define TMC_AXES (MAX_EXTRUDERS + 6)
  203. uint16_t tmc_stepper_current[TMC_AXES]; // M906 X Y Z X2 Y2 Z2 E0 E1 E2 E3 E4
  204. uint32_t tmc_hybrid_threshold[TMC_AXES]; // M913 X Y Z X2 Y2 Z2 E0 E1 E2 E3 E4
  205. int16_t tmc_sgt[XYZ]; // M914 X Y Z
  206. //
  207. // LIN_ADVANCE
  208. //
  209. float planner_extruder_advance_K; // M900 K planner.extruder_advance_K
  210. //
  211. // HAS_MOTOR_CURRENT_PWM
  212. //
  213. uint32_t motor_current_setting[XYZ]; // M907 X Z E
  214. //
  215. // CNC_COORDINATE_SYSTEMS
  216. //
  217. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  218. //
  219. // SKEW_CORRECTION
  220. //
  221. float planner_xy_skew_factor, // M852 I planner.xy_skew_factor
  222. planner_xz_skew_factor, // M852 J planner.xz_skew_factor
  223. planner_yz_skew_factor; // M852 K planner.yz_skew_factor
  224. //
  225. // ADVANCED_PAUSE_FEATURE
  226. //
  227. float filament_change_unload_length[MAX_EXTRUDERS], // M603 T U
  228. filament_change_load_length[MAX_EXTRUDERS]; // M603 T L
  229. } SettingsData;
  230. #pragma pack(pop)
  231. MarlinSettings settings;
  232. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  233. /**
  234. * Post-process after Retrieve or Reset
  235. */
  236. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  237. float new_z_fade_height;
  238. #endif
  239. void MarlinSettings::postprocess() {
  240. const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  241. // steps per s2 needs to be updated to agree with units per s2
  242. planner.reset_acceleration_rates();
  243. // Make sure delta kinematics are updated before refreshing the
  244. // planner position so the stepper counts will be set correctly.
  245. #if ENABLED(DELTA)
  246. recalc_delta_settings();
  247. #endif
  248. #if ENABLED(PIDTEMP)
  249. thermalManager.updatePID();
  250. #endif
  251. #if DISABLED(NO_VOLUMETRICS)
  252. planner.calculate_volumetric_multipliers();
  253. #else
  254. for (uint8_t i = COUNT(planner.e_factor); i--;)
  255. planner.refresh_e_factor(i);
  256. #endif
  257. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  258. // Software endstops depend on home_offset
  259. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  260. #endif
  261. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  262. set_z_fade_height(new_z_fade_height, false); // false = no report
  263. #endif
  264. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  265. refresh_bed_level();
  266. #endif
  267. #if HAS_MOTOR_CURRENT_PWM
  268. stepper.refresh_motor_power();
  269. #endif
  270. #if ENABLED(FWRETRACT)
  271. fwretract.refresh_autoretract();
  272. #endif
  273. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  274. // and init stepper.count[], planner.position[] with current_position
  275. planner.refresh_positioning();
  276. // Various factors can change the current position
  277. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  278. report_current_position();
  279. }
  280. #if ENABLED(EEPROM_SETTINGS)
  281. #include "../HAL/persistent_store_api.h"
  282. #define DUMMY_PID_VALUE 3000.0f
  283. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; HAL::PersistentStore::access_start()
  284. #define EEPROM_FINISH() HAL::PersistentStore::access_finish()
  285. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  286. #define EEPROM_WRITE(VAR) HAL::PersistentStore::write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  287. #define EEPROM_READ(VAR) HAL::PersistentStore::read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
  288. #define EEPROM_READ_ALWAYS(VAR) HAL::PersistentStore::read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  289. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, ERR); eeprom_error = true; }while(0)
  290. #if ENABLED(DEBUG_EEPROM_READWRITE)
  291. #define _FIELD_TEST(FIELD) \
  292. EEPROM_ASSERT( \
  293. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  294. "Field " STRINGIFY(FIELD) " mismatch." \
  295. )
  296. #else
  297. #define _FIELD_TEST(FIELD) NOOP
  298. #endif
  299. const char version[4] = EEPROM_VERSION;
  300. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  301. bool MarlinSettings::size_error(const uint16_t size PORTARG_AFTER) {
  302. if (size != datasize()) {
  303. #if ENABLED(EEPROM_CHITCHAT)
  304. SERIAL_ERROR_START_P(port);
  305. SERIAL_ERRORLNPGM_P(port, "EEPROM datasize error.");
  306. #endif
  307. return true;
  308. }
  309. return false;
  310. }
  311. /**
  312. * M500 - Store Configuration
  313. */
  314. bool MarlinSettings::save(PORTARG_SOLO) {
  315. float dummy = 0.0f;
  316. char ver[4] = "ERR";
  317. uint16_t working_crc = 0;
  318. EEPROM_START();
  319. eeprom_error = false;
  320. #if ENABLED(FLASH_EEPROM_EMULATION)
  321. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  322. #else
  323. EEPROM_WRITE(ver); // invalidate data first
  324. #endif
  325. EEPROM_SKIP(working_crc); // Skip the checksum slot
  326. working_crc = 0; // clear before first "real data"
  327. _FIELD_TEST(esteppers);
  328. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  329. EEPROM_WRITE(esteppers);
  330. EEPROM_WRITE(planner.axis_steps_per_mm);
  331. EEPROM_WRITE(planner.max_feedrate_mm_s);
  332. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  333. EEPROM_WRITE(planner.acceleration);
  334. EEPROM_WRITE(planner.retract_acceleration);
  335. EEPROM_WRITE(planner.travel_acceleration);
  336. EEPROM_WRITE(planner.min_feedrate_mm_s);
  337. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  338. EEPROM_WRITE(planner.min_segment_time_us);
  339. EEPROM_WRITE(planner.max_jerk);
  340. _FIELD_TEST(home_offset);
  341. #if !HAS_HOME_OFFSET
  342. const float home_offset[XYZ] = { 0 };
  343. #endif
  344. EEPROM_WRITE(home_offset);
  345. #if HOTENDS > 1
  346. // Skip hotend 0 which must be 0
  347. for (uint8_t e = 1; e < HOTENDS; e++)
  348. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  349. #endif
  350. //
  351. // Global Leveling
  352. //
  353. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  354. const float zfh = planner.z_fade_height;
  355. #else
  356. const float zfh = 10.0;
  357. #endif
  358. EEPROM_WRITE(zfh);
  359. //
  360. // Mesh Bed Leveling
  361. //
  362. #if ENABLED(MESH_BED_LEVELING)
  363. // Compile time test that sizeof(mbl.z_values) is as expected
  364. static_assert(
  365. sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
  366. "MBL Z array is the wrong size."
  367. );
  368. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  369. EEPROM_WRITE(mbl.z_offset);
  370. EEPROM_WRITE(mesh_num_x);
  371. EEPROM_WRITE(mesh_num_y);
  372. EEPROM_WRITE(mbl.z_values);
  373. #else // For disabled MBL write a default mesh
  374. dummy = 0.0f;
  375. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  376. EEPROM_WRITE(dummy); // z_offset
  377. EEPROM_WRITE(mesh_num_x);
  378. EEPROM_WRITE(mesh_num_y);
  379. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  380. #endif // MESH_BED_LEVELING
  381. _FIELD_TEST(zprobe_zoffset);
  382. #if !HAS_BED_PROBE
  383. const float zprobe_zoffset = 0;
  384. #endif
  385. EEPROM_WRITE(zprobe_zoffset);
  386. //
  387. // Planar Bed Leveling matrix
  388. //
  389. #if ABL_PLANAR
  390. EEPROM_WRITE(planner.bed_level_matrix);
  391. #else
  392. dummy = 0.0;
  393. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  394. #endif
  395. //
  396. // Bilinear Auto Bed Leveling
  397. //
  398. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  399. // Compile time test that sizeof(z_values) is as expected
  400. static_assert(
  401. sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
  402. "Bilinear Z array is the wrong size."
  403. );
  404. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  405. EEPROM_WRITE(grid_max_x); // 1 byte
  406. EEPROM_WRITE(grid_max_y); // 1 byte
  407. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  408. EEPROM_WRITE(bilinear_start); // 2 ints
  409. EEPROM_WRITE(z_values); // 9-256 floats
  410. #else
  411. // For disabled Bilinear Grid write an empty 3x3 grid
  412. const uint8_t grid_max_x = 3, grid_max_y = 3;
  413. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  414. dummy = 0.0f;
  415. EEPROM_WRITE(grid_max_x);
  416. EEPROM_WRITE(grid_max_y);
  417. EEPROM_WRITE(bilinear_grid_spacing);
  418. EEPROM_WRITE(bilinear_start);
  419. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  420. #endif // AUTO_BED_LEVELING_BILINEAR
  421. _FIELD_TEST(planner_leveling_active);
  422. #if ENABLED(AUTO_BED_LEVELING_UBL)
  423. EEPROM_WRITE(planner.leveling_active);
  424. EEPROM_WRITE(ubl.storage_slot);
  425. #else
  426. const bool ubl_active = false;
  427. const int8_t storage_slot = -1;
  428. EEPROM_WRITE(ubl_active);
  429. EEPROM_WRITE(storage_slot);
  430. #endif // AUTO_BED_LEVELING_UBL
  431. // 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
  432. #if ENABLED(DELTA)
  433. _FIELD_TEST(delta_height);
  434. EEPROM_WRITE(delta_height); // 1 float
  435. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  436. EEPROM_WRITE(delta_radius); // 1 float
  437. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  438. EEPROM_WRITE(delta_segments_per_second); // 1 float
  439. EEPROM_WRITE(delta_calibration_radius); // 1 float
  440. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  441. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  442. _FIELD_TEST(x_endstop_adj);
  443. // Write dual endstops in X, Y, Z order. Unused = 0.0
  444. dummy = 0.0f;
  445. #if ENABLED(X_DUAL_ENDSTOPS)
  446. EEPROM_WRITE(endstops.x_endstop_adj); // 1 float
  447. #else
  448. EEPROM_WRITE(dummy);
  449. #endif
  450. #if ENABLED(Y_DUAL_ENDSTOPS)
  451. EEPROM_WRITE(endstops.y_endstop_adj); // 1 float
  452. #else
  453. EEPROM_WRITE(dummy);
  454. #endif
  455. #if ENABLED(Z_DUAL_ENDSTOPS)
  456. EEPROM_WRITE(endstops.z_endstop_adj); // 1 float
  457. #else
  458. EEPROM_WRITE(dummy);
  459. #endif
  460. #endif
  461. _FIELD_TEST(lcd_preheat_hotend_temp);
  462. #if DISABLED(ULTIPANEL)
  463. constexpr int16_t lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  464. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  465. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  466. #endif
  467. EEPROM_WRITE(lcd_preheat_hotend_temp);
  468. EEPROM_WRITE(lcd_preheat_bed_temp);
  469. EEPROM_WRITE(lcd_preheat_fan_speed);
  470. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  471. #if ENABLED(PIDTEMP)
  472. if (e < HOTENDS) {
  473. EEPROM_WRITE(PID_PARAM(Kp, e));
  474. EEPROM_WRITE(PID_PARAM(Ki, e));
  475. EEPROM_WRITE(PID_PARAM(Kd, e));
  476. #if ENABLED(PID_EXTRUSION_SCALING)
  477. EEPROM_WRITE(PID_PARAM(Kc, e));
  478. #else
  479. dummy = 1.0f; // 1.0 = default kc
  480. EEPROM_WRITE(dummy);
  481. #endif
  482. }
  483. else
  484. #endif // !PIDTEMP
  485. {
  486. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  487. EEPROM_WRITE(dummy); // Kp
  488. dummy = 0.0f;
  489. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  490. }
  491. } // Hotends Loop
  492. _FIELD_TEST(lpq_len);
  493. #if DISABLED(PID_EXTRUSION_SCALING)
  494. int lpq_len = 20;
  495. #endif
  496. EEPROM_WRITE(lpq_len);
  497. #if DISABLED(PIDTEMPBED)
  498. dummy = DUMMY_PID_VALUE;
  499. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  500. #else
  501. EEPROM_WRITE(thermalManager.bedKp);
  502. EEPROM_WRITE(thermalManager.bedKi);
  503. EEPROM_WRITE(thermalManager.bedKd);
  504. #endif
  505. _FIELD_TEST(lcd_contrast);
  506. #if !HAS_LCD_CONTRAST
  507. const int16_t lcd_contrast = 32;
  508. #endif
  509. EEPROM_WRITE(lcd_contrast);
  510. #if DISABLED(FWRETRACT)
  511. const bool autoretract_enabled = false;
  512. const float autoretract_defaults[] = { 3, 45, 0, 0, 0, 13, 0, 8 };
  513. EEPROM_WRITE(autoretract_enabled);
  514. EEPROM_WRITE(autoretract_defaults);
  515. #else
  516. EEPROM_WRITE(fwretract.autoretract_enabled);
  517. EEPROM_WRITE(fwretract.retract_length);
  518. EEPROM_WRITE(fwretract.retract_feedrate_mm_s);
  519. EEPROM_WRITE(fwretract.retract_zlift);
  520. EEPROM_WRITE(fwretract.retract_recover_length);
  521. EEPROM_WRITE(fwretract.retract_recover_feedrate_mm_s);
  522. EEPROM_WRITE(fwretract.swap_retract_length);
  523. EEPROM_WRITE(fwretract.swap_retract_recover_length);
  524. EEPROM_WRITE(fwretract.swap_retract_recover_feedrate_mm_s);
  525. #endif
  526. //
  527. // Volumetric & Filament Size
  528. //
  529. _FIELD_TEST(parser_volumetric_enabled);
  530. #if DISABLED(NO_VOLUMETRICS)
  531. EEPROM_WRITE(parser.volumetric_enabled);
  532. // Save filament sizes
  533. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  534. if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
  535. EEPROM_WRITE(dummy);
  536. }
  537. #else
  538. const bool volumetric_enabled = false;
  539. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  540. EEPROM_WRITE(volumetric_enabled);
  541. for (uint8_t q = MAX_EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  542. #endif
  543. //
  544. // Save TMC2130 or TMC2208 Configuration, and placeholder values
  545. //
  546. _FIELD_TEST(tmc_stepper_current);
  547. uint16_t tmc_stepper_current[TMC_AXES] = {
  548. #if HAS_TRINAMIC
  549. #if X_IS_TRINAMIC
  550. stepperX.getCurrent(),
  551. #else
  552. 0,
  553. #endif
  554. #if Y_IS_TRINAMIC
  555. stepperY.getCurrent(),
  556. #else
  557. 0,
  558. #endif
  559. #if Z_IS_TRINAMIC
  560. stepperZ.getCurrent(),
  561. #else
  562. 0,
  563. #endif
  564. #if X2_IS_TRINAMIC
  565. stepperX2.getCurrent(),
  566. #else
  567. 0,
  568. #endif
  569. #if Y2_IS_TRINAMIC
  570. stepperY2.getCurrent(),
  571. #else
  572. 0,
  573. #endif
  574. #if Z2_IS_TRINAMIC
  575. stepperZ2.getCurrent(),
  576. #else
  577. 0,
  578. #endif
  579. #if E0_IS_TRINAMIC
  580. stepperE0.getCurrent(),
  581. #else
  582. 0,
  583. #endif
  584. #if E1_IS_TRINAMIC
  585. stepperE1.getCurrent(),
  586. #else
  587. 0,
  588. #endif
  589. #if E2_IS_TRINAMIC
  590. stepperE2.getCurrent(),
  591. #else
  592. 0,
  593. #endif
  594. #if E3_IS_TRINAMIC
  595. stepperE3.getCurrent(),
  596. #else
  597. 0,
  598. #endif
  599. #if E4_IS_TRINAMIC
  600. stepperE4.getCurrent()
  601. #else
  602. 0
  603. #endif
  604. #else
  605. 0
  606. #endif
  607. };
  608. EEPROM_WRITE(tmc_stepper_current);
  609. //
  610. // Save TMC2130 or TMC2208 Hybrid Threshold, and placeholder values
  611. //
  612. _FIELD_TEST(tmc_hybrid_threshold);
  613. uint32_t tmc_hybrid_threshold[TMC_AXES] = {
  614. #if HAS_TRINAMIC
  615. #if X_IS_TRINAMIC
  616. TMC_GET_PWMTHRS(X, X),
  617. #else
  618. X_HYBRID_THRESHOLD,
  619. #endif
  620. #if Y_IS_TRINAMIC
  621. TMC_GET_PWMTHRS(Y, Y),
  622. #else
  623. Y_HYBRID_THRESHOLD,
  624. #endif
  625. #if Z_IS_TRINAMIC
  626. TMC_GET_PWMTHRS(Z, Z),
  627. #else
  628. Z_HYBRID_THRESHOLD,
  629. #endif
  630. #if X2_IS_TRINAMIC
  631. TMC_GET_PWMTHRS(X, X2),
  632. #else
  633. X2_HYBRID_THRESHOLD,
  634. #endif
  635. #if Y2_IS_TRINAMIC
  636. TMC_GET_PWMTHRS(Y, Y2),
  637. #else
  638. Y2_HYBRID_THRESHOLD,
  639. #endif
  640. #if Z2_IS_TRINAMIC
  641. TMC_GET_PWMTHRS(Z, Z2),
  642. #else
  643. Z2_HYBRID_THRESHOLD,
  644. #endif
  645. #if E0_IS_TRINAMIC
  646. TMC_GET_PWMTHRS(E, E0),
  647. #else
  648. E0_HYBRID_THRESHOLD,
  649. #endif
  650. #if E1_IS_TRINAMIC
  651. TMC_GET_PWMTHRS(E, E1),
  652. #else
  653. E1_HYBRID_THRESHOLD,
  654. #endif
  655. #if E2_IS_TRINAMIC
  656. TMC_GET_PWMTHRS(E, E2),
  657. #else
  658. E2_HYBRID_THRESHOLD,
  659. #endif
  660. #if E3_IS_TRINAMIC
  661. TMC_GET_PWMTHRS(E, E3),
  662. #else
  663. E3_HYBRID_THRESHOLD,
  664. #endif
  665. #if E4_IS_TRINAMIC
  666. TMC_GET_PWMTHRS(E, E4)
  667. #else
  668. E4_HYBRID_THRESHOLD
  669. #endif
  670. #else
  671. 100, 100, 3, // X, Y, Z
  672. 100, 100, 3, // X2, Y2, Z2
  673. 30, 30, 30, 30, 30 // E0, E1, E2, E3, E4
  674. #endif
  675. };
  676. EEPROM_WRITE(tmc_hybrid_threshold);
  677. //
  678. // TMC2130 Sensorless homing threshold
  679. //
  680. int16_t tmc_sgt[XYZ] = {
  681. #if ENABLED(SENSORLESS_HOMING)
  682. #if defined(X_HOMING_SENSITIVITY) && (ENABLED(X_IS_TMC2130) || ENABLED(IS_TRAMS))
  683. stepperX.sgt(),
  684. #else
  685. 0,
  686. #endif
  687. #if defined(Y_HOMING_SENSITIVITY) && (ENABLED(Y_IS_TMC2130) || ENABLED(IS_TRAMS))
  688. stepperY.sgt(),
  689. #else
  690. 0
  691. #endif
  692. #if defined(Z_HOMING_SENSITIVITY) && (ENABLED(Z_IS_TMC2130) || ENABLED(IS_TRAMS))
  693. stepperZ.sgt()
  694. #else
  695. 0
  696. #endif
  697. #else
  698. 0
  699. #endif
  700. };
  701. EEPROM_WRITE(tmc_sgt);
  702. //
  703. // Linear Advance
  704. //
  705. _FIELD_TEST(planner_extruder_advance_K);
  706. #if ENABLED(LIN_ADVANCE)
  707. EEPROM_WRITE(planner.extruder_advance_K);
  708. #else
  709. dummy = 0.0f;
  710. EEPROM_WRITE(dummy);
  711. #endif
  712. _FIELD_TEST(motor_current_setting);
  713. #if HAS_MOTOR_CURRENT_PWM
  714. for (uint8_t q = XYZ; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
  715. #else
  716. const uint32_t dummyui32[XYZ] = { 0 };
  717. EEPROM_WRITE(dummyui32);
  718. #endif
  719. //
  720. // CNC Coordinate Systems
  721. //
  722. _FIELD_TEST(coordinate_system);
  723. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  724. EEPROM_WRITE(coordinate_system); // 27 floats
  725. #else
  726. dummy = 0.0f;
  727. for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_WRITE(dummy);
  728. #endif
  729. //
  730. // Skew correction factors
  731. //
  732. _FIELD_TEST(planner_xy_skew_factor);
  733. #if ENABLED(SKEW_CORRECTION)
  734. EEPROM_WRITE(planner.xy_skew_factor);
  735. EEPROM_WRITE(planner.xz_skew_factor);
  736. EEPROM_WRITE(planner.yz_skew_factor);
  737. #else
  738. dummy = 0.0f;
  739. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  740. #endif
  741. //
  742. // Advanced Pause filament load & unload lengths
  743. //
  744. _FIELD_TEST(filament_change_unload_length);
  745. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  746. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  747. if (q < COUNT(filament_change_unload_length)) dummy = filament_change_unload_length[q];
  748. EEPROM_WRITE(dummy);
  749. }
  750. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  751. if (q < COUNT(filament_change_load_length)) dummy = filament_change_load_length[q];
  752. EEPROM_WRITE(dummy);
  753. }
  754. #else
  755. dummy = 0.0f;
  756. for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_WRITE(dummy);
  757. #endif
  758. //
  759. // Validate CRC and Data Size
  760. //
  761. if (!eeprom_error) {
  762. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  763. final_crc = working_crc;
  764. // Write the EEPROM header
  765. eeprom_index = EEPROM_OFFSET;
  766. EEPROM_WRITE(version);
  767. EEPROM_WRITE(final_crc);
  768. // Report storage size
  769. #if ENABLED(EEPROM_CHITCHAT)
  770. SERIAL_ECHO_START_P(port);
  771. SERIAL_ECHOPAIR_P(port, "Settings Stored (", eeprom_size);
  772. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)final_crc);
  773. SERIAL_ECHOLNPGM_P(port, ")");
  774. #endif
  775. eeprom_error |= size_error(eeprom_size);
  776. }
  777. EEPROM_FINISH();
  778. //
  779. // UBL Mesh
  780. //
  781. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  782. if (ubl.storage_slot >= 0)
  783. store_mesh(ubl.storage_slot);
  784. #endif
  785. return !eeprom_error;
  786. }
  787. /**
  788. * M501 - Retrieve Configuration
  789. */
  790. bool MarlinSettings::_load(PORTARG_SOLO) {
  791. uint16_t working_crc = 0;
  792. EEPROM_START();
  793. char stored_ver[4];
  794. EEPROM_READ_ALWAYS(stored_ver);
  795. uint16_t stored_crc;
  796. EEPROM_READ_ALWAYS(stored_crc);
  797. // Version has to match or defaults are used
  798. if (strncmp(version, stored_ver, 3) != 0) {
  799. if (stored_ver[3] != '\0') {
  800. stored_ver[0] = '?';
  801. stored_ver[1] = '\0';
  802. }
  803. #if ENABLED(EEPROM_CHITCHAT)
  804. SERIAL_ECHO_START_P(port);
  805. SERIAL_ECHOPGM_P(port, "EEPROM version mismatch ");
  806. SERIAL_ECHOPAIR_P(port, "(EEPROM=", stored_ver);
  807. SERIAL_ECHOLNPGM_P(port, " Marlin=" EEPROM_VERSION ")");
  808. #endif
  809. if (!validating) reset();
  810. eeprom_error = true;
  811. }
  812. else {
  813. float dummy = 0;
  814. #if DISABLED(AUTO_BED_LEVELING_UBL) || DISABLED(FWRETRACT) || ENABLED(NO_VOLUMETRICS)
  815. bool dummyb;
  816. #endif
  817. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  818. _FIELD_TEST(esteppers);
  819. // Number of esteppers may change
  820. uint8_t esteppers;
  821. EEPROM_READ_ALWAYS(esteppers);
  822. //
  823. // Planner Motion
  824. //
  825. // Get only the number of E stepper parameters previously stored
  826. // Any steppers added later are set to their defaults
  827. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  828. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  829. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  830. uint32_t tmp3[XYZ + esteppers];
  831. EEPROM_READ(tmp1);
  832. EEPROM_READ(tmp2);
  833. EEPROM_READ(tmp3);
  834. if (!validating) LOOP_XYZE_N(i) {
  835. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  836. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  837. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  838. }
  839. EEPROM_READ(planner.acceleration);
  840. EEPROM_READ(planner.retract_acceleration);
  841. EEPROM_READ(planner.travel_acceleration);
  842. EEPROM_READ(planner.min_feedrate_mm_s);
  843. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  844. EEPROM_READ(planner.min_segment_time_us);
  845. EEPROM_READ(planner.max_jerk);
  846. //
  847. // Home Offset (M206)
  848. //
  849. _FIELD_TEST(home_offset);
  850. #if !HAS_HOME_OFFSET
  851. float home_offset[XYZ];
  852. #endif
  853. EEPROM_READ(home_offset);
  854. //
  855. // Hotend Offsets, if any
  856. //
  857. #if HOTENDS > 1
  858. // Skip hotend 0 which must be 0
  859. for (uint8_t e = 1; e < HOTENDS; e++)
  860. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  861. #endif
  862. //
  863. // Global Leveling
  864. //
  865. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  866. EEPROM_READ(new_z_fade_height);
  867. #else
  868. EEPROM_READ(dummy);
  869. #endif
  870. //
  871. // Mesh (Manual) Bed Leveling
  872. //
  873. uint8_t mesh_num_x, mesh_num_y;
  874. EEPROM_READ(dummy);
  875. EEPROM_READ_ALWAYS(mesh_num_x);
  876. EEPROM_READ_ALWAYS(mesh_num_y);
  877. #if ENABLED(MESH_BED_LEVELING)
  878. if (!validating) mbl.z_offset = dummy;
  879. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  880. // EEPROM data fits the current mesh
  881. EEPROM_READ(mbl.z_values);
  882. }
  883. else {
  884. // EEPROM data is stale
  885. if (!validating) mbl.reset();
  886. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  887. }
  888. #else
  889. // MBL is disabled - skip the stored data
  890. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  891. #endif // MESH_BED_LEVELING
  892. _FIELD_TEST(zprobe_zoffset);
  893. #if !HAS_BED_PROBE
  894. float zprobe_zoffset;
  895. #endif
  896. EEPROM_READ(zprobe_zoffset);
  897. //
  898. // Planar Bed Leveling matrix
  899. //
  900. #if ABL_PLANAR
  901. EEPROM_READ(planner.bed_level_matrix);
  902. #else
  903. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  904. #endif
  905. //
  906. // Bilinear Auto Bed Leveling
  907. //
  908. uint8_t grid_max_x, grid_max_y;
  909. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  910. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  911. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  912. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  913. if (!validating) set_bed_leveling_enabled(false);
  914. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  915. EEPROM_READ(bilinear_start); // 2 ints
  916. EEPROM_READ(z_values); // 9 to 256 floats
  917. }
  918. else // EEPROM data is stale
  919. #endif // AUTO_BED_LEVELING_BILINEAR
  920. {
  921. // Skip past disabled (or stale) Bilinear Grid data
  922. int bgs[2], bs[2];
  923. EEPROM_READ(bgs);
  924. EEPROM_READ(bs);
  925. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  926. }
  927. //
  928. // Unified Bed Leveling active state
  929. //
  930. _FIELD_TEST(planner_leveling_active);
  931. #if ENABLED(AUTO_BED_LEVELING_UBL)
  932. EEPROM_READ(planner.leveling_active);
  933. EEPROM_READ(ubl.storage_slot);
  934. #else
  935. uint8_t dummyui8;
  936. EEPROM_READ(dummyb);
  937. EEPROM_READ(dummyui8);
  938. #endif // AUTO_BED_LEVELING_UBL
  939. //
  940. // DELTA Geometry or Dual Endstops offsets
  941. //
  942. #if ENABLED(DELTA)
  943. _FIELD_TEST(delta_height);
  944. EEPROM_READ(delta_height); // 1 float
  945. EEPROM_READ(delta_endstop_adj); // 3 floats
  946. EEPROM_READ(delta_radius); // 1 float
  947. EEPROM_READ(delta_diagonal_rod); // 1 float
  948. EEPROM_READ(delta_segments_per_second); // 1 float
  949. EEPROM_READ(delta_calibration_radius); // 1 float
  950. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  951. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  952. _FIELD_TEST(x_endstop_adj);
  953. #if ENABLED(X_DUAL_ENDSTOPS)
  954. EEPROM_READ(endstops.x_endstop_adj); // 1 float
  955. #else
  956. EEPROM_READ(dummy);
  957. #endif
  958. #if ENABLED(Y_DUAL_ENDSTOPS)
  959. EEPROM_READ(endstops.y_endstop_adj); // 1 float
  960. #else
  961. EEPROM_READ(dummy);
  962. #endif
  963. #if ENABLED(Z_DUAL_ENDSTOPS)
  964. EEPROM_READ(endstops.z_endstop_adj); // 1 float
  965. #else
  966. EEPROM_READ(dummy);
  967. #endif
  968. #endif
  969. //
  970. // LCD Preheat settings
  971. //
  972. _FIELD_TEST(lcd_preheat_hotend_temp);
  973. #if DISABLED(ULTIPANEL)
  974. int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  975. #endif
  976. EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
  977. EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
  978. EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
  979. //EEPROM_ASSERT(
  980. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  981. // "lcd_preheat_fan_speed out of range"
  982. //);
  983. //
  984. // Hotend PID
  985. //
  986. #if ENABLED(PIDTEMP)
  987. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  988. EEPROM_READ(dummy); // Kp
  989. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  990. // do not need to scale PID values as the values in EEPROM are already scaled
  991. if (!validating) PID_PARAM(Kp, e) = dummy;
  992. EEPROM_READ(PID_PARAM(Ki, e));
  993. EEPROM_READ(PID_PARAM(Kd, e));
  994. #if ENABLED(PID_EXTRUSION_SCALING)
  995. EEPROM_READ(PID_PARAM(Kc, e));
  996. #else
  997. EEPROM_READ(dummy);
  998. #endif
  999. }
  1000. else {
  1001. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  1002. }
  1003. }
  1004. #else // !PIDTEMP
  1005. // 4 x 4 = 16 slots for PID parameters
  1006. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  1007. #endif // !PIDTEMP
  1008. //
  1009. // PID Extrusion Scaling
  1010. //
  1011. _FIELD_TEST(lpq_len);
  1012. #if DISABLED(PID_EXTRUSION_SCALING)
  1013. int lpq_len;
  1014. #endif
  1015. EEPROM_READ(lpq_len);
  1016. //
  1017. // Heated Bed PID
  1018. //
  1019. #if ENABLED(PIDTEMPBED)
  1020. EEPROM_READ(dummy); // bedKp
  1021. if (dummy != DUMMY_PID_VALUE) {
  1022. if (!validating) thermalManager.bedKp = dummy;
  1023. EEPROM_READ(thermalManager.bedKi);
  1024. EEPROM_READ(thermalManager.bedKd);
  1025. }
  1026. #else
  1027. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  1028. #endif
  1029. //
  1030. // LCD Contrast
  1031. //
  1032. _FIELD_TEST(lcd_contrast);
  1033. #if !HAS_LCD_CONTRAST
  1034. int16_t lcd_contrast;
  1035. #endif
  1036. EEPROM_READ(lcd_contrast);
  1037. //
  1038. // Firmware Retraction
  1039. //
  1040. #if ENABLED(FWRETRACT)
  1041. EEPROM_READ(fwretract.autoretract_enabled);
  1042. EEPROM_READ(fwretract.retract_length);
  1043. EEPROM_READ(fwretract.retract_feedrate_mm_s);
  1044. EEPROM_READ(fwretract.retract_zlift);
  1045. EEPROM_READ(fwretract.retract_recover_length);
  1046. EEPROM_READ(fwretract.retract_recover_feedrate_mm_s);
  1047. EEPROM_READ(fwretract.swap_retract_length);
  1048. EEPROM_READ(fwretract.swap_retract_recover_length);
  1049. EEPROM_READ(fwretract.swap_retract_recover_feedrate_mm_s);
  1050. #else
  1051. EEPROM_READ(dummyb);
  1052. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  1053. #endif
  1054. //
  1055. // Volumetric & Filament Size
  1056. //
  1057. _FIELD_TEST(parser_volumetric_enabled);
  1058. #if DISABLED(NO_VOLUMETRICS)
  1059. EEPROM_READ(parser.volumetric_enabled);
  1060. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  1061. EEPROM_READ(dummy);
  1062. if (!validating && q < COUNT(planner.filament_size))
  1063. planner.filament_size[q] = dummy;
  1064. }
  1065. #else
  1066. EEPROM_READ(dummyb);
  1067. for (uint8_t q=MAX_EXTRUDERS; q--;) EEPROM_READ(dummy);
  1068. #endif
  1069. if (!validating) reset_stepper_drivers();
  1070. //
  1071. // TMC2130 Stepper Settings
  1072. //
  1073. _FIELD_TEST(tmc_stepper_current);
  1074. #if HAS_TRINAMIC
  1075. #define SET_CURR(Q) stepper##Q.setCurrent(currents[TMC_##Q] ? currents[TMC_##Q] : Q##_CURRENT, R_SENSE, HOLD_MULTIPLIER)
  1076. uint16_t currents[TMC_AXES];
  1077. EEPROM_READ(currents);
  1078. if (!validating) {
  1079. #if X_IS_TRINAMIC
  1080. SET_CURR(X);
  1081. #endif
  1082. #if Y_IS_TRINAMIC
  1083. SET_CURR(Y);
  1084. #endif
  1085. #if Z_IS_TRINAMIC
  1086. SET_CURR(Z);
  1087. #endif
  1088. #if X2_IS_TRINAMIC
  1089. SET_CURR(X2);
  1090. #endif
  1091. #if Y2_IS_TRINAMIC
  1092. SET_CURR(Y2);
  1093. #endif
  1094. #if Z2_IS_TRINAMIC
  1095. SET_CURR(Z2);
  1096. #endif
  1097. #if E0_IS_TRINAMIC
  1098. SET_CURR(E0);
  1099. #endif
  1100. #if E1_IS_TRINAMIC
  1101. SET_CURR(E1);
  1102. #endif
  1103. #if E2_IS_TRINAMIC
  1104. SET_CURR(E2);
  1105. #endif
  1106. #if E3_IS_TRINAMIC
  1107. SET_CURR(E3);
  1108. #endif
  1109. #if E4_IS_TRINAMIC
  1110. SET_CURR(E4);
  1111. #endif
  1112. }
  1113. #else
  1114. uint16_t val;
  1115. for (uint8_t q=TMC_AXES; q--;) EEPROM_READ(val);
  1116. #endif
  1117. #if HAS_TRINAMIC
  1118. #define TMC_SET_PWMTHRS(P,Q) tmc_set_pwmthrs(stepper##Q, TMC_##Q, tmc_hybrid_threshold[TMC_##Q], planner.axis_steps_per_mm[P##_AXIS])
  1119. uint16_t tmc_hybrid_threshold[TMC_AXES];
  1120. EEPROM_READ(tmc_hybrid_threshold);
  1121. if (!validating) {
  1122. #if X_IS_TRINAMIC
  1123. TMC_SET_PWMTHRS(X, X);
  1124. #endif
  1125. #if Y_IS_TRINAMIC
  1126. TMC_SET_PWMTHRS(Y, Y);
  1127. #endif
  1128. #if Z_IS_TRINAMIC
  1129. TMC_SET_PWMTHRS(Z, Z);
  1130. #endif
  1131. #if X2_IS_TRINAMIC
  1132. TMC_SET_PWMTHRS(X, X2);
  1133. #endif
  1134. #if Y2_IS_TRINAMIC
  1135. TMC_SET_PWMTHRS(Y, Y2);
  1136. #endif
  1137. #if Z2_IS_TRINAMIC
  1138. TMC_SET_PWMTHRS(Z, Z2);
  1139. #endif
  1140. #if E0_IS_TRINAMIC
  1141. TMC_SET_PWMTHRS(E, E0);
  1142. #endif
  1143. #if E1_IS_TRINAMIC
  1144. TMC_SET_PWMTHRS(E, E1);
  1145. #endif
  1146. #if E2_IS_TRINAMIC
  1147. TMC_SET_PWMTHRS(E, E2);
  1148. #endif
  1149. #if E3_IS_TRINAMIC
  1150. TMC_SET_PWMTHRS(E, E3);
  1151. #endif
  1152. #if E4_IS_TRINAMIC
  1153. TMC_SET_PWMTHRS(E, E4);
  1154. #endif
  1155. }
  1156. #else
  1157. uint16_t thrs_val;
  1158. for (uint8_t q=TMC_AXES; q--;) EEPROM_READ(thrs_val);
  1159. #endif
  1160. /*
  1161. * TMC2130 Sensorless homing threshold.
  1162. * X and X2 use the same value
  1163. * Y and Y2 use the same value
  1164. * Z and Z2 use the same value
  1165. */
  1166. int16_t tmc_sgt[XYZ];
  1167. EEPROM_READ(tmc_sgt);
  1168. #if ENABLED(SENSORLESS_HOMING)
  1169. if (!validating) {
  1170. #ifdef X_HOMING_SENSITIVITY
  1171. #if ENABLED(X_IS_TMC2130) || ENABLED(IS_TRAMS)
  1172. stepperX.sgt(tmc_sgt[0]);
  1173. #endif
  1174. #if ENABLED(X2_IS_TMC2130)
  1175. stepperX2.sgt(tmc_sgt[0]);
  1176. #endif
  1177. #endif
  1178. #ifdef Y_HOMING_SENSITIVITY
  1179. #if ENABLED(Y_IS_TMC2130) || ENABLED(IS_TRAMS)
  1180. stepperY.sgt(tmc_sgt[1]);
  1181. #endif
  1182. #if ENABLED(Y2_IS_TMC2130)
  1183. stepperY2.sgt(tmc_sgt[1]);
  1184. #endif
  1185. #endif
  1186. #ifdef Z_HOMING_SENSITIVITY
  1187. #if ENABLED(Z_IS_TMC2130) || ENABLED(IS_TRAMS)
  1188. stepperZ.sgt(tmc_sgt[2]);
  1189. #endif
  1190. #if ENABLED(Z2_IS_TMC2130)
  1191. stepperZ2.sgt(tmc_sgt[2]);
  1192. #endif
  1193. #endif
  1194. }
  1195. #endif
  1196. //
  1197. // Linear Advance
  1198. //
  1199. _FIELD_TEST(planner_extruder_advance_K);
  1200. #if ENABLED(LIN_ADVANCE)
  1201. EEPROM_READ(planner.extruder_advance_K);
  1202. #else
  1203. EEPROM_READ(dummy);
  1204. #endif
  1205. //
  1206. // Motor Current PWM
  1207. //
  1208. _FIELD_TEST(motor_current_setting);
  1209. #if HAS_MOTOR_CURRENT_PWM
  1210. for (uint8_t q = XYZ; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
  1211. #else
  1212. uint32_t dummyui32[XYZ];
  1213. EEPROM_READ(dummyui32);
  1214. #endif
  1215. //
  1216. // CNC Coordinate System
  1217. //
  1218. _FIELD_TEST(coordinate_system);
  1219. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1220. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1221. EEPROM_READ(gcode.coordinate_system); // 27 floats
  1222. #else
  1223. for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_READ(dummy);
  1224. #endif
  1225. //
  1226. // Skew correction factors
  1227. //
  1228. _FIELD_TEST(planner_xy_skew_factor);
  1229. #if ENABLED(SKEW_CORRECTION_GCODE)
  1230. EEPROM_READ(planner.xy_skew_factor);
  1231. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1232. EEPROM_READ(planner.xz_skew_factor);
  1233. EEPROM_READ(planner.yz_skew_factor);
  1234. #else
  1235. EEPROM_READ(dummy);
  1236. EEPROM_READ(dummy);
  1237. #endif
  1238. #else
  1239. for (uint8_t q = 3; q--;) EEPROM_READ(dummy);
  1240. #endif
  1241. //
  1242. // Advanced Pause filament load & unload lengths
  1243. //
  1244. _FIELD_TEST(filament_change_unload_length);
  1245. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1246. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  1247. EEPROM_READ(dummy);
  1248. if (!validating && q < COUNT(filament_change_unload_length)) filament_change_unload_length[q] = dummy;
  1249. }
  1250. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  1251. EEPROM_READ(dummy);
  1252. if (!validating && q < COUNT(filament_change_load_length)) filament_change_load_length[q] = dummy;
  1253. }
  1254. #else
  1255. for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_READ(dummy);
  1256. #endif
  1257. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1258. if (eeprom_error) {
  1259. SERIAL_ECHO_START_P(port);
  1260. SERIAL_ECHOPAIR_P(port, "Index: ", int(eeprom_index - (EEPROM_OFFSET)));
  1261. SERIAL_ECHOLNPAIR_P(port, " Size: ", datasize());
  1262. }
  1263. else if (working_crc != stored_crc) {
  1264. eeprom_error = true;
  1265. #if ENABLED(EEPROM_CHITCHAT)
  1266. SERIAL_ERROR_START_P(port);
  1267. SERIAL_ERRORPGM_P(port, "EEPROM CRC mismatch - (stored) ");
  1268. SERIAL_ERROR_P(port, stored_crc);
  1269. SERIAL_ERRORPGM_P(port, " != ");
  1270. SERIAL_ERROR_P(port, working_crc);
  1271. SERIAL_ERRORLNPGM_P(port, " (calculated)!");
  1272. #endif
  1273. }
  1274. else if (!validating) {
  1275. #if ENABLED(EEPROM_CHITCHAT)
  1276. SERIAL_ECHO_START_P(port);
  1277. SERIAL_ECHO_P(port, version);
  1278. SERIAL_ECHOPAIR_P(port, " stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  1279. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)working_crc);
  1280. SERIAL_ECHOLNPGM_P(port, ")");
  1281. #endif
  1282. }
  1283. if (!validating) {
  1284. if (eeprom_error) reset(); else postprocess();
  1285. }
  1286. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1287. ubl.report_state();
  1288. if (!validating) {
  1289. if (!ubl.sanity_check()) {
  1290. SERIAL_EOL_P(port);
  1291. #if ENABLED(EEPROM_CHITCHAT)
  1292. ubl.echo_name();
  1293. SERIAL_ECHOLNPGM_P(port, " initialized.\n");
  1294. #endif
  1295. }
  1296. else {
  1297. eeprom_error = true;
  1298. #if ENABLED(EEPROM_CHITCHAT)
  1299. SERIAL_PROTOCOLPGM_P(port, "?Can't enable ");
  1300. ubl.echo_name();
  1301. SERIAL_PROTOCOLLNPGM_P(port, ".");
  1302. #endif
  1303. ubl.reset();
  1304. }
  1305. if (ubl.storage_slot >= 0) {
  1306. load_mesh(ubl.storage_slot);
  1307. #if ENABLED(EEPROM_CHITCHAT)
  1308. SERIAL_ECHOPAIR_P(port, "Mesh ", ubl.storage_slot);
  1309. SERIAL_ECHOLNPGM_P(port, " loaded from storage.");
  1310. #endif
  1311. }
  1312. else {
  1313. ubl.reset();
  1314. #if ENABLED(EEPROM_CHITCHAT)
  1315. SERIAL_ECHOLNPGM_P(port, "UBL System reset()");
  1316. #endif
  1317. }
  1318. }
  1319. #endif
  1320. }
  1321. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1322. if (!validating) report(PORTVAR_SOLO);
  1323. #endif
  1324. EEPROM_FINISH();
  1325. return !eeprom_error;
  1326. }
  1327. bool MarlinSettings::validate(PORTARG_SOLO) {
  1328. validating = true;
  1329. const bool success = _load(PORTVAR_SOLO);
  1330. validating = false;
  1331. return success;
  1332. }
  1333. bool MarlinSettings::load(PORTARG_SOLO) {
  1334. if (validate(PORTVAR_SOLO)) return _load(PORTVAR_SOLO);
  1335. reset();
  1336. return true;
  1337. }
  1338. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1339. #if ENABLED(EEPROM_CHITCHAT)
  1340. void ubl_invalid_slot(const int s) {
  1341. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  1342. SERIAL_PROTOCOL(s);
  1343. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  1344. }
  1345. #endif
  1346. int16_t MarlinSettings::meshes_start_index() {
  1347. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1348. // or down a little bit without disrupting the mesh data
  1349. }
  1350. uint16_t MarlinSettings::calc_num_meshes() {
  1351. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1352. }
  1353. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1354. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1355. }
  1356. void MarlinSettings::store_mesh(const int8_t slot) {
  1357. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1358. const int16_t a = calc_num_meshes();
  1359. if (!WITHIN(slot, 0, a - 1)) {
  1360. #if ENABLED(EEPROM_CHITCHAT)
  1361. ubl_invalid_slot(a);
  1362. SERIAL_PROTOCOLPAIR("E2END=", E2END);
  1363. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  1364. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  1365. SERIAL_EOL();
  1366. #endif
  1367. return;
  1368. }
  1369. int pos = mesh_slot_offset(slot);
  1370. uint16_t crc = 0;
  1371. HAL::PersistentStore::access_start();
  1372. const bool status = HAL::PersistentStore::write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1373. HAL::PersistentStore::access_finish();
  1374. if (status)
  1375. SERIAL_PROTOCOLPGM("?Unable to save mesh data.\n");
  1376. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1377. #if ENABLED(EEPROM_CHITCHAT)
  1378. if (!status)
  1379. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  1380. #endif
  1381. #else
  1382. // Other mesh types
  1383. #endif
  1384. }
  1385. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
  1386. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1387. const int16_t a = settings.calc_num_meshes();
  1388. if (!WITHIN(slot, 0, a - 1)) {
  1389. #if ENABLED(EEPROM_CHITCHAT)
  1390. ubl_invalid_slot(a);
  1391. #endif
  1392. return;
  1393. }
  1394. int pos = mesh_slot_offset(slot);
  1395. uint16_t crc = 0;
  1396. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1397. HAL::PersistentStore::access_start();
  1398. const uint16_t status = HAL::PersistentStore::read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1399. HAL::PersistentStore::access_finish();
  1400. if (status)
  1401. SERIAL_PROTOCOLPGM("?Unable to load mesh data.\n");
  1402. #if ENABLED(EEPROM_CHITCHAT)
  1403. else
  1404. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1405. #endif
  1406. EEPROM_FINISH();
  1407. #else
  1408. // Other mesh types
  1409. #endif
  1410. }
  1411. //void MarlinSettings::delete_mesh() { return; }
  1412. //void MarlinSettings::defrag_meshes() { return; }
  1413. #endif // AUTO_BED_LEVELING_UBL
  1414. #else // !EEPROM_SETTINGS
  1415. bool MarlinSettings::save(PORTARG_SOLO) {
  1416. #if ENABLED(EEPROM_CHITCHAT)
  1417. SERIAL_ERROR_START_P(port);
  1418. SERIAL_ERRORLNPGM_P(port, "EEPROM disabled");
  1419. #endif
  1420. return false;
  1421. }
  1422. #endif // !EEPROM_SETTINGS
  1423. /**
  1424. * M502 - Reset Configuration
  1425. */
  1426. void MarlinSettings::reset(PORTARG_SOLO) {
  1427. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1428. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1429. LOOP_XYZE_N(i) {
  1430. planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
  1431. planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
  1432. planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
  1433. }
  1434. planner.acceleration = DEFAULT_ACCELERATION;
  1435. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1436. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1437. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1438. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1439. planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1440. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1441. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1442. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1443. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1444. #if HAS_HOME_OFFSET
  1445. ZERO(home_offset);
  1446. #endif
  1447. #if HOTENDS > 1
  1448. constexpr float tmp4[XYZ][HOTENDS] = {
  1449. HOTEND_OFFSET_X,
  1450. HOTEND_OFFSET_Y
  1451. #ifdef HOTEND_OFFSET_Z
  1452. , HOTEND_OFFSET_Z
  1453. #else
  1454. , { 0 }
  1455. #endif
  1456. };
  1457. static_assert(
  1458. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1459. "Offsets for the first hotend must be 0.0."
  1460. );
  1461. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1462. #endif
  1463. //
  1464. // Global Leveling
  1465. //
  1466. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1467. new_z_fade_height = 0.0;
  1468. #endif
  1469. #if HAS_LEVELING
  1470. reset_bed_level();
  1471. #endif
  1472. #if HAS_BED_PROBE
  1473. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1474. #endif
  1475. #if ENABLED(DELTA)
  1476. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  1477. dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1478. delta_height = DELTA_HEIGHT;
  1479. COPY(delta_endstop_adj, adj);
  1480. delta_radius = DELTA_RADIUS;
  1481. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1482. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1483. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1484. COPY(delta_tower_angle_trim, dta);
  1485. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1486. #if ENABLED(X_DUAL_ENDSTOPS)
  1487. endstops.x_endstop_adj = (
  1488. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1489. X_DUAL_ENDSTOPS_ADJUSTMENT
  1490. #else
  1491. 0
  1492. #endif
  1493. );
  1494. #endif
  1495. #if ENABLED(Y_DUAL_ENDSTOPS)
  1496. endstops.y_endstop_adj = (
  1497. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1498. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1499. #else
  1500. 0
  1501. #endif
  1502. );
  1503. #endif
  1504. #if ENABLED(Z_DUAL_ENDSTOPS)
  1505. endstops.z_endstop_adj = (
  1506. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1507. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1508. #else
  1509. 0
  1510. #endif
  1511. );
  1512. #endif
  1513. #endif
  1514. #if ENABLED(ULTIPANEL)
  1515. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1516. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1517. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1518. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1519. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1520. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1521. #endif
  1522. #if ENABLED(PIDTEMP)
  1523. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  1524. HOTEND_LOOP()
  1525. #endif
  1526. {
  1527. PID_PARAM(Kp, e) = DEFAULT_Kp;
  1528. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1529. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1530. #if ENABLED(PID_EXTRUSION_SCALING)
  1531. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1532. #endif
  1533. }
  1534. #if ENABLED(PID_EXTRUSION_SCALING)
  1535. lpq_len = 20; // default last-position-queue size
  1536. #endif
  1537. #endif // PIDTEMP
  1538. #if ENABLED(PIDTEMPBED)
  1539. thermalManager.bedKp = DEFAULT_bedKp;
  1540. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  1541. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  1542. #endif
  1543. #if HAS_LCD_CONTRAST
  1544. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1545. #endif
  1546. #if ENABLED(FWRETRACT)
  1547. fwretract.reset();
  1548. #endif
  1549. #if DISABLED(NO_VOLUMETRICS)
  1550. parser.volumetric_enabled =
  1551. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1552. true
  1553. #else
  1554. false
  1555. #endif
  1556. ;
  1557. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1558. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1559. #endif
  1560. endstops.enable_globally(
  1561. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1562. true
  1563. #else
  1564. false
  1565. #endif
  1566. );
  1567. reset_stepper_drivers();
  1568. #if ENABLED(LIN_ADVANCE)
  1569. planner.extruder_advance_K = LIN_ADVANCE_K;
  1570. #endif
  1571. #if HAS_MOTOR_CURRENT_PWM
  1572. uint32_t tmp_motor_current_setting[XYZ] = PWM_MOTOR_CURRENT;
  1573. for (uint8_t q = XYZ; q--;)
  1574. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1575. #endif
  1576. #if ENABLED(SKEW_CORRECTION_GCODE)
  1577. planner.xy_skew_factor = XY_SKEW_FACTOR;
  1578. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1579. planner.xz_skew_factor = XZ_SKEW_FACTOR;
  1580. planner.yz_skew_factor = YZ_SKEW_FACTOR;
  1581. #endif
  1582. #endif
  1583. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1584. for (uint8_t e = 0; e < E_STEPPERS; e++) {
  1585. filament_change_unload_length[e] = FILAMENT_CHANGE_UNLOAD_LENGTH;
  1586. filament_change_load_length[e] = FILAMENT_CHANGE_LOAD_LENGTH;
  1587. }
  1588. #endif
  1589. postprocess();
  1590. #if ENABLED(EEPROM_CHITCHAT)
  1591. SERIAL_ECHO_START_P(port);
  1592. SERIAL_ECHOLNPGM_P(port, "Hardcoded Default Settings Loaded");
  1593. #endif
  1594. }
  1595. #if DISABLED(DISABLE_M503)
  1596. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START_P(port); }while(0)
  1597. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1598. void say_M603() { SERIAL_ECHOPGM_P(port, " M603 "); }
  1599. #endif
  1600. /**
  1601. * M503 - Report current settings in RAM
  1602. *
  1603. * Unless specifically disabled, M503 is available even without EEPROM
  1604. */
  1605. void MarlinSettings::report(const bool forReplay
  1606. #if NUM_SERIAL > 1
  1607. , const int8_t port/*=-1*/
  1608. #endif
  1609. ) {
  1610. /**
  1611. * Announce current units, in case inches are being displayed
  1612. */
  1613. CONFIG_ECHO_START;
  1614. #if ENABLED(INCH_MODE_SUPPORT)
  1615. #define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor)
  1616. #define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
  1617. SERIAL_ECHOPGM_P(port, " G2");
  1618. SERIAL_CHAR_P(port, parser.linear_unit_factor == 1.0 ? '1' : '0');
  1619. SERIAL_ECHOPGM_P(port, " ; Units in ");
  1620. serialprintPGM_P(port, parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
  1621. #else
  1622. #define LINEAR_UNIT(N) (N)
  1623. #define VOLUMETRIC_UNIT(N) (N)
  1624. SERIAL_ECHOLNPGM_P(port, " G21 ; Units in mm");
  1625. #endif
  1626. #if ENABLED(ULTIPANEL)
  1627. // Temperature units - for Ultipanel temperature options
  1628. CONFIG_ECHO_START;
  1629. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1630. #define TEMP_UNIT(N) parser.to_temp_units(N)
  1631. SERIAL_ECHOPGM_P(port, " M149 ");
  1632. SERIAL_CHAR_P(port, parser.temp_units_code());
  1633. SERIAL_ECHOPGM_P(port, " ; Units in ");
  1634. serialprintPGM_P(port, parser.temp_units_name());
  1635. #else
  1636. #define TEMP_UNIT(N) (N)
  1637. SERIAL_ECHOLNPGM_P(port, " M149 C ; Units in Celsius");
  1638. #endif
  1639. #endif
  1640. SERIAL_EOL_P(port);
  1641. #if DISABLED(NO_VOLUMETRICS)
  1642. /**
  1643. * Volumetric extrusion M200
  1644. */
  1645. if (!forReplay) {
  1646. CONFIG_ECHO_START;
  1647. SERIAL_ECHOPGM_P(port, "Filament settings:");
  1648. if (parser.volumetric_enabled)
  1649. SERIAL_EOL_P(port);
  1650. else
  1651. SERIAL_ECHOLNPGM_P(port, " Disabled");
  1652. }
  1653. CONFIG_ECHO_START;
  1654. SERIAL_ECHOPAIR_P(port, " M200 D", LINEAR_UNIT(planner.filament_size[0]));
  1655. SERIAL_EOL_P(port);
  1656. #if EXTRUDERS > 1
  1657. CONFIG_ECHO_START;
  1658. SERIAL_ECHOPAIR_P(port, " M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  1659. SERIAL_EOL_P(port);
  1660. #if EXTRUDERS > 2
  1661. CONFIG_ECHO_START;
  1662. SERIAL_ECHOPAIR_P(port, " M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  1663. SERIAL_EOL_P(port);
  1664. #if EXTRUDERS > 3
  1665. CONFIG_ECHO_START;
  1666. SERIAL_ECHOPAIR_P(port, " M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  1667. SERIAL_EOL_P(port);
  1668. #if EXTRUDERS > 4
  1669. CONFIG_ECHO_START;
  1670. SERIAL_ECHOPAIR_P(port, " M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  1671. SERIAL_EOL_P(port);
  1672. #endif // EXTRUDERS > 4
  1673. #endif // EXTRUDERS > 3
  1674. #endif // EXTRUDERS > 2
  1675. #endif // EXTRUDERS > 1
  1676. if (!parser.volumetric_enabled) {
  1677. CONFIG_ECHO_START;
  1678. SERIAL_ECHOLNPGM_P(port, " M200 D0");
  1679. }
  1680. #endif // !NO_VOLUMETRICS
  1681. if (!forReplay) {
  1682. CONFIG_ECHO_START;
  1683. SERIAL_ECHOLNPGM_P(port, "Steps per unit:");
  1684. }
  1685. CONFIG_ECHO_START;
  1686. SERIAL_ECHOPAIR_P(port, " M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1687. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1688. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1689. #if DISABLED(DISTINCT_E_FACTORS)
  1690. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1691. #endif
  1692. SERIAL_EOL_P(port);
  1693. #if ENABLED(DISTINCT_E_FACTORS)
  1694. CONFIG_ECHO_START;
  1695. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1696. SERIAL_ECHOPAIR_P(port, " M92 T", (int)i);
  1697. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1698. }
  1699. #endif
  1700. if (!forReplay) {
  1701. CONFIG_ECHO_START;
  1702. SERIAL_ECHOLNPGM_P(port, "Maximum feedrates (units/s):");
  1703. }
  1704. CONFIG_ECHO_START;
  1705. SERIAL_ECHOPAIR_P(port, " M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1706. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1707. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1708. #if DISABLED(DISTINCT_E_FACTORS)
  1709. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1710. #endif
  1711. SERIAL_EOL_P(port);
  1712. #if ENABLED(DISTINCT_E_FACTORS)
  1713. CONFIG_ECHO_START;
  1714. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1715. SERIAL_ECHOPAIR_P(port, " M203 T", (int)i);
  1716. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1717. }
  1718. #endif
  1719. if (!forReplay) {
  1720. CONFIG_ECHO_START;
  1721. SERIAL_ECHOLNPGM_P(port, "Maximum Acceleration (units/s2):");
  1722. }
  1723. CONFIG_ECHO_START;
  1724. SERIAL_ECHOPAIR_P(port, " M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1725. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1726. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1727. #if DISABLED(DISTINCT_E_FACTORS)
  1728. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1729. #endif
  1730. SERIAL_EOL_P(port);
  1731. #if ENABLED(DISTINCT_E_FACTORS)
  1732. CONFIG_ECHO_START;
  1733. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1734. SERIAL_ECHOPAIR_P(port, " M201 T", (int)i);
  1735. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1736. }
  1737. #endif
  1738. if (!forReplay) {
  1739. CONFIG_ECHO_START;
  1740. SERIAL_ECHOLNPGM_P(port, "Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1741. }
  1742. CONFIG_ECHO_START;
  1743. SERIAL_ECHOPAIR_P(port, " M204 P", LINEAR_UNIT(planner.acceleration));
  1744. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(planner.retract_acceleration));
  1745. SERIAL_ECHOLNPAIR_P(port, " T", LINEAR_UNIT(planner.travel_acceleration));
  1746. if (!forReplay) {
  1747. CONFIG_ECHO_START;
  1748. SERIAL_ECHOLNPGM_P(port, "Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_us> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
  1749. }
  1750. CONFIG_ECHO_START;
  1751. SERIAL_ECHOPAIR_P(port, " M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1752. SERIAL_ECHOPAIR_P(port, " T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1753. SERIAL_ECHOPAIR_P(port, " B", planner.min_segment_time_us);
  1754. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1755. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1756. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1757. SERIAL_ECHOLNPAIR_P(port, " E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1758. #if HAS_M206_COMMAND
  1759. if (!forReplay) {
  1760. CONFIG_ECHO_START;
  1761. SERIAL_ECHOLNPGM_P(port, "Home offset:");
  1762. }
  1763. CONFIG_ECHO_START;
  1764. SERIAL_ECHOPAIR_P(port, " M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1765. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1766. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1767. #endif
  1768. #if HOTENDS > 1
  1769. if (!forReplay) {
  1770. CONFIG_ECHO_START;
  1771. SERIAL_ECHOLNPGM_P(port, "Hotend offsets:");
  1772. }
  1773. CONFIG_ECHO_START;
  1774. for (uint8_t e = 1; e < HOTENDS; e++) {
  1775. SERIAL_ECHOPAIR_P(port, " M218 T", (int)e);
  1776. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1777. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1778. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER)
  1779. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
  1780. #endif
  1781. SERIAL_EOL_P(port);
  1782. }
  1783. #endif
  1784. /**
  1785. * Bed Leveling
  1786. */
  1787. #if HAS_LEVELING
  1788. #if ENABLED(MESH_BED_LEVELING)
  1789. if (!forReplay) {
  1790. CONFIG_ECHO_START;
  1791. SERIAL_ECHOLNPGM_P(port, "Mesh Bed Leveling:");
  1792. }
  1793. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1794. if (!forReplay) {
  1795. CONFIG_ECHO_START;
  1796. ubl.echo_name();
  1797. SERIAL_ECHOLNPGM_P(port, ":");
  1798. }
  1799. #elif HAS_ABL
  1800. if (!forReplay) {
  1801. CONFIG_ECHO_START;
  1802. SERIAL_ECHOLNPGM_P(port, "Auto Bed Leveling:");
  1803. }
  1804. #endif
  1805. CONFIG_ECHO_START;
  1806. SERIAL_ECHOPAIR_P(port, " M420 S", planner.leveling_active ? 1 : 0);
  1807. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1808. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.z_fade_height));
  1809. #endif
  1810. SERIAL_EOL_P(port);
  1811. #if ENABLED(MESH_BED_LEVELING)
  1812. if (leveling_is_valid()) {
  1813. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1814. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1815. CONFIG_ECHO_START;
  1816. SERIAL_ECHOPAIR_P(port, " G29 S3 X", (int)px + 1);
  1817. SERIAL_ECHOPAIR_P(port, " Y", (int)py + 1);
  1818. SERIAL_ECHOPGM_P(port, " Z");
  1819. SERIAL_ECHO_F_P(port, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  1820. SERIAL_EOL_P(port);
  1821. }
  1822. }
  1823. }
  1824. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1825. if (!forReplay) {
  1826. SERIAL_EOL_P(port);
  1827. ubl.report_state();
  1828. SERIAL_ECHOLNPAIR_P(port, "\nActive Mesh Slot: ", ubl.storage_slot);
  1829. SERIAL_ECHOPAIR_P(port, "EEPROM can hold ", calc_num_meshes());
  1830. SERIAL_ECHOLNPGM_P(port, " meshes.\n");
  1831. }
  1832. ubl.report_current_mesh(PORTVAR_SOLO);
  1833. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1834. if (leveling_is_valid()) {
  1835. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1836. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1837. CONFIG_ECHO_START;
  1838. SERIAL_ECHOPAIR_P(port, " G29 W I", (int)px + 1);
  1839. SERIAL_ECHOPAIR_P(port, " J", (int)py + 1);
  1840. SERIAL_ECHOPGM_P(port, " Z");
  1841. SERIAL_ECHO_F_P(port, LINEAR_UNIT(z_values[px][py]), 5);
  1842. SERIAL_EOL_P(port);
  1843. }
  1844. }
  1845. }
  1846. #endif
  1847. #endif // HAS_LEVELING
  1848. #if ENABLED(DELTA)
  1849. if (!forReplay) {
  1850. CONFIG_ECHO_START;
  1851. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  1852. }
  1853. CONFIG_ECHO_START;
  1854. SERIAL_ECHOPAIR_P(port, " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  1855. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  1856. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  1857. if (!forReplay) {
  1858. CONFIG_ECHO_START;
  1859. SERIAL_ECHOLNPGM_P(port, "Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  1860. }
  1861. CONFIG_ECHO_START;
  1862. SERIAL_ECHOPAIR_P(port, " M665 L", LINEAR_UNIT(delta_diagonal_rod));
  1863. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(delta_radius));
  1864. SERIAL_ECHOPAIR_P(port, " H", LINEAR_UNIT(delta_height));
  1865. SERIAL_ECHOPAIR_P(port, " S", delta_segments_per_second);
  1866. SERIAL_ECHOPAIR_P(port, " B", LINEAR_UNIT(delta_calibration_radius));
  1867. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  1868. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  1869. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  1870. SERIAL_EOL_P(port);
  1871. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1872. if (!forReplay) {
  1873. CONFIG_ECHO_START;
  1874. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  1875. }
  1876. CONFIG_ECHO_START;
  1877. SERIAL_ECHOPGM_P(port, " M666");
  1878. #if ENABLED(X_DUAL_ENDSTOPS)
  1879. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(endstops.x_endstop_adj));
  1880. #endif
  1881. #if ENABLED(Y_DUAL_ENDSTOPS)
  1882. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(endstops.y_endstop_adj));
  1883. #endif
  1884. #if ENABLED(Z_DUAL_ENDSTOPS)
  1885. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(endstops.z_endstop_adj));
  1886. #endif
  1887. SERIAL_EOL_P(port);
  1888. #endif // [XYZ]_DUAL_ENDSTOPS
  1889. #if ENABLED(ULTIPANEL)
  1890. if (!forReplay) {
  1891. CONFIG_ECHO_START;
  1892. SERIAL_ECHOLNPGM_P(port, "Material heatup parameters:");
  1893. }
  1894. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1895. CONFIG_ECHO_START;
  1896. SERIAL_ECHOPAIR_P(port, " M145 S", (int)i);
  1897. SERIAL_ECHOPAIR_P(port, " H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  1898. SERIAL_ECHOPAIR_P(port, " B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  1899. SERIAL_ECHOLNPAIR_P(port, " F", lcd_preheat_fan_speed[i]);
  1900. }
  1901. #endif // ULTIPANEL
  1902. #if HAS_PID_HEATING
  1903. if (!forReplay) {
  1904. CONFIG_ECHO_START;
  1905. SERIAL_ECHOLNPGM_P(port, "PID settings:");
  1906. }
  1907. #if ENABLED(PIDTEMP)
  1908. #if HOTENDS > 1
  1909. if (forReplay) {
  1910. HOTEND_LOOP() {
  1911. CONFIG_ECHO_START;
  1912. SERIAL_ECHOPAIR_P(port, " M301 E", e);
  1913. SERIAL_ECHOPAIR_P(port, " P", PID_PARAM(Kp, e));
  1914. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, e)));
  1915. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, e)));
  1916. #if ENABLED(PID_EXTRUSION_SCALING)
  1917. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, e));
  1918. if (e == 0) SERIAL_ECHOPAIR_P(port, " L", lpq_len);
  1919. #endif
  1920. SERIAL_EOL_P(port);
  1921. }
  1922. }
  1923. else
  1924. #endif // HOTENDS > 1
  1925. // !forReplay || HOTENDS == 1
  1926. {
  1927. CONFIG_ECHO_START;
  1928. SERIAL_ECHOPAIR_P(port, " M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1929. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, 0)));
  1930. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, 0)));
  1931. #if ENABLED(PID_EXTRUSION_SCALING)
  1932. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, 0));
  1933. SERIAL_ECHOPAIR_P(port, " L", lpq_len);
  1934. #endif
  1935. SERIAL_EOL_P(port);
  1936. }
  1937. #endif // PIDTEMP
  1938. #if ENABLED(PIDTEMPBED)
  1939. CONFIG_ECHO_START;
  1940. SERIAL_ECHOPAIR_P(port, " M304 P", thermalManager.bedKp);
  1941. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(thermalManager.bedKi));
  1942. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(thermalManager.bedKd));
  1943. SERIAL_EOL_P(port);
  1944. #endif
  1945. #endif // PIDTEMP || PIDTEMPBED
  1946. #if HAS_LCD_CONTRAST
  1947. if (!forReplay) {
  1948. CONFIG_ECHO_START;
  1949. SERIAL_ECHOLNPGM_P(port, "LCD Contrast:");
  1950. }
  1951. CONFIG_ECHO_START;
  1952. SERIAL_ECHOLNPAIR_P(port, " M250 C", lcd_contrast);
  1953. #endif
  1954. #if ENABLED(FWRETRACT)
  1955. if (!forReplay) {
  1956. CONFIG_ECHO_START;
  1957. SERIAL_ECHOLNPGM_P(port, "Retract: S<length> F<units/m> Z<lift>");
  1958. }
  1959. CONFIG_ECHO_START;
  1960. SERIAL_ECHOPAIR_P(port, " M207 S", LINEAR_UNIT(fwretract.retract_length));
  1961. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.swap_retract_length));
  1962. SERIAL_ECHOPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_feedrate_mm_s)));
  1963. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(fwretract.retract_zlift));
  1964. if (!forReplay) {
  1965. CONFIG_ECHO_START;
  1966. SERIAL_ECHOLNPGM_P(port, "Recover: S<length> F<units/m>");
  1967. }
  1968. CONFIG_ECHO_START;
  1969. SERIAL_ECHOPAIR_P(port, " M208 S", LINEAR_UNIT(fwretract.retract_recover_length));
  1970. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.swap_retract_recover_length));
  1971. SERIAL_ECHOLNPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_recover_feedrate_mm_s)));
  1972. if (!forReplay) {
  1973. CONFIG_ECHO_START;
  1974. SERIAL_ECHOLNPGM_P(port, "Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  1975. }
  1976. CONFIG_ECHO_START;
  1977. SERIAL_ECHOLNPAIR_P(port, " M209 S", fwretract.autoretract_enabled ? 1 : 0);
  1978. #endif // FWRETRACT
  1979. /**
  1980. * Probe Offset
  1981. */
  1982. #if HAS_BED_PROBE
  1983. if (!forReplay) {
  1984. CONFIG_ECHO_START;
  1985. SERIAL_ECHOLNPGM_P(port, "Z-Probe Offset (mm):");
  1986. }
  1987. CONFIG_ECHO_START;
  1988. SERIAL_ECHOLNPAIR_P(port, " M851 Z", LINEAR_UNIT(zprobe_zoffset));
  1989. #endif
  1990. /**
  1991. * Bed Skew Correction
  1992. */
  1993. #if ENABLED(SKEW_CORRECTION_GCODE)
  1994. if (!forReplay) {
  1995. CONFIG_ECHO_START;
  1996. SERIAL_ECHOLNPGM_P(port, "Skew Factor: ");
  1997. }
  1998. CONFIG_ECHO_START;
  1999. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2000. SERIAL_ECHOPGM_P(port, " M852 I");
  2001. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xy_skew_factor), 6);
  2002. SERIAL_ECHOPGM_P(port, " J");
  2003. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xz_skew_factor), 6);
  2004. SERIAL_ECHOPGM_P(port, " K");
  2005. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.yz_skew_factor), 6);
  2006. SERIAL_EOL_P(port);
  2007. #else
  2008. SERIAL_ECHOPGM_P(port, " M852 S");
  2009. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xy_skew_factor), 6);
  2010. SERIAL_EOL_P(port);
  2011. #endif
  2012. #endif
  2013. #if HAS_TRINAMIC
  2014. /**
  2015. * TMC2130 / TMC2208 / TRAMS stepper driver current
  2016. */
  2017. if (!forReplay) {
  2018. CONFIG_ECHO_START;
  2019. SERIAL_ECHOLNPGM_P(port, "Stepper driver current:");
  2020. }
  2021. CONFIG_ECHO_START;
  2022. SERIAL_ECHOPGM_P(port, " M906");
  2023. #if X_IS_TRINAMIC
  2024. SERIAL_ECHOPAIR_P(port, " X", stepperX.getCurrent());
  2025. #elif X2_IS_TRINAMIC
  2026. SERIAL_ECHOPAIR_P(port, " X", stepperX2.getCurrent());
  2027. #endif
  2028. #if Y_IS_TRINAMIC
  2029. SERIAL_ECHOPAIR_P(port, " Y", stepperY.getCurrent());
  2030. #elif Y2_IS_TRINAMIC
  2031. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.getCurrent());
  2032. #endif
  2033. #if Z_IS_TRINAMIC
  2034. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.getCurrent());
  2035. #elif Z2_IS_TRINAMIC
  2036. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.getCurrent());
  2037. #endif
  2038. #if E0_IS_TRINAMIC
  2039. SERIAL_ECHOPAIR_P(port, " E", stepperE0.getCurrent());
  2040. #elif E1_IS_TRINAMIC
  2041. SERIAL_ECHOPAIR_P(port, " E", stepperE1.getCurrent());
  2042. #elif E2_IS_TRINAMIC
  2043. SERIAL_ECHOPAIR_P(port, " E", stepperE2.getCurrent());
  2044. #elif E3_IS_TRINAMIC
  2045. SERIAL_ECHOPAIR_P(port, " E", stepperE3.getCurrent());
  2046. #elif E4_IS_TRINAMIC
  2047. SERIAL_ECHOPAIR_P(port, " E", stepperE4.getCurrent());
  2048. #endif
  2049. SERIAL_EOL();
  2050. /**
  2051. * TMC2130 / TMC2208 / TRAMS Hybrid Threshold
  2052. */
  2053. if (!forReplay) {
  2054. CONFIG_ECHO_START;
  2055. SERIAL_ECHOLNPGM_P(port, "Hybrid Threshold:");
  2056. }
  2057. CONFIG_ECHO_START;
  2058. SERIAL_ECHOPGM_P(port, " M913");
  2059. #if X_IS_TRINAMIC
  2060. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X));
  2061. #elif X2_IS_TRINAMIC
  2062. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X2));
  2063. #endif
  2064. #if Y_IS_TRINAMIC
  2065. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y));
  2066. #elif Y2_IS_TRINAMIC
  2067. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y2));
  2068. #endif
  2069. #if Z_IS_TRINAMIC
  2070. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z));
  2071. #elif Z2_IS_TRINAMIC
  2072. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z2));
  2073. #endif
  2074. #if E0_IS_TRINAMIC
  2075. SERIAL_ECHOPAIR_P(port, " E", TMC_GET_PWMTHRS(E, E0));
  2076. #elif E1_IS_TRINAMIC
  2077. SERIAL_ECHOPAIR_P(port, " E", TMC_GET_PWMTHRS(E, E1));
  2078. #elif E2_IS_TRINAMIC
  2079. SERIAL_ECHOPAIR_P(port, " E", TMC_GET_PWMTHRS(E, E2));
  2080. #elif E3_IS_TRINAMIC
  2081. SERIAL_ECHOPAIR_P(port, " E", TMC_GET_PWMTHRS(E, E3));
  2082. #elif E4_IS_TRINAMIC
  2083. SERIAL_ECHOPAIR_P(port, " E", TMC_GET_PWMTHRS(E, E4));
  2084. #endif
  2085. SERIAL_EOL();
  2086. /**
  2087. * TMC2130 Sensorless homing thresholds
  2088. */
  2089. #if ENABLED(SENSORLESS_HOMING)
  2090. if (!forReplay) {
  2091. CONFIG_ECHO_START;
  2092. SERIAL_ECHOLNPGM_P(port, "Sensorless homing threshold:");
  2093. }
  2094. CONFIG_ECHO_START;
  2095. SERIAL_ECHOPGM_P(port, " M914");
  2096. #ifdef X_HOMING_SENSITIVITY
  2097. #if ENABLED(X_IS_TMC2130) || ENABLED(IS_TRAMS)
  2098. SERIAL_ECHOPAIR_P(port, " X", stepperX.sgt());
  2099. #elif ENABLED(X2_IS_TMC2130)
  2100. SERIAL_ECHOPAIR_P(port, " X", stepperX2.sgt());
  2101. #endif
  2102. #endif
  2103. #ifdef Y_HOMING_SENSITIVITY
  2104. #if ENABLED(Y_IS_TMC2130) || ENABLED(IS_TRAMS)
  2105. SERIAL_ECHOPAIR_P(port, " Y", stepperY.sgt());
  2106. #elif ENABLED(Y2_IS_TMC2130)
  2107. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.sgt());
  2108. #endif
  2109. #endif
  2110. #ifdef Z_HOMING_SENSITIVITY
  2111. #if ENABLED(Z_IS_TMC2130) || ENABLED(IS_TRAMS)
  2112. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.sgt());
  2113. #elif ENABLED(Z2_IS_TMC2130)
  2114. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.sgt());
  2115. #endif
  2116. #endif
  2117. SERIAL_EOL();
  2118. #endif
  2119. #endif // HAS_TRINAMIC
  2120. /**
  2121. * Linear Advance
  2122. */
  2123. #if ENABLED(LIN_ADVANCE)
  2124. if (!forReplay) {
  2125. CONFIG_ECHO_START;
  2126. SERIAL_ECHOLNPGM_P(port, "Linear Advance:");
  2127. }
  2128. CONFIG_ECHO_START;
  2129. SERIAL_ECHOLNPAIR_P(port, " M900 K", planner.extruder_advance_K);
  2130. #endif
  2131. #if HAS_MOTOR_CURRENT_PWM
  2132. CONFIG_ECHO_START;
  2133. if (!forReplay) {
  2134. SERIAL_ECHOLNPGM_P(port, "Stepper motor currents:");
  2135. CONFIG_ECHO_START;
  2136. }
  2137. SERIAL_ECHOPAIR_P(port, " M907 X", stepper.motor_current_setting[0]);
  2138. SERIAL_ECHOPAIR_P(port, " Z", stepper.motor_current_setting[1]);
  2139. SERIAL_ECHOPAIR_P(port, " E", stepper.motor_current_setting[2]);
  2140. SERIAL_EOL_P(port);
  2141. #endif
  2142. /**
  2143. * Advanced Pause filament load & unload lengths
  2144. */
  2145. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2146. if (!forReplay) {
  2147. CONFIG_ECHO_START;
  2148. SERIAL_ECHOLNPGM_P(port, "Filament load/unload lengths:");
  2149. }
  2150. CONFIG_ECHO_START;
  2151. #if EXTRUDERS == 1
  2152. say_M603();
  2153. SERIAL_ECHOPAIR_P(port, "L", LINEAR_UNIT(filament_change_load_length[0]));
  2154. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[0]));
  2155. #else
  2156. say_M603();
  2157. SERIAL_ECHOPAIR_P(port, "T0 L", LINEAR_UNIT(filament_change_load_length[0]));
  2158. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[0]));
  2159. CONFIG_ECHO_START;
  2160. say_M603();
  2161. SERIAL_ECHOPAIR_P(port, "T1 L", LINEAR_UNIT(filament_change_load_length[1]));
  2162. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[1]));
  2163. #if EXTRUDERS > 2
  2164. CONFIG_ECHO_START;
  2165. say_M603();
  2166. SERIAL_ECHOPAIR_P(port, "T2 L", LINEAR_UNIT(filament_change_load_length[2]));
  2167. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[2]));
  2168. #if EXTRUDERS > 3
  2169. CONFIG_ECHO_START;
  2170. say_M603();
  2171. SERIAL_ECHOPAIR_P(port, "T3 L", LINEAR_UNIT(filament_change_load_length[3]));
  2172. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[3]));
  2173. #if EXTRUDERS > 4
  2174. CONFIG_ECHO_START;
  2175. say_M603();
  2176. SERIAL_ECHOPAIR_P(port, "T4 L", LINEAR_UNIT(filament_change_load_length[4]));
  2177. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[4]));
  2178. #endif // EXTRUDERS > 4
  2179. #endif // EXTRUDERS > 3
  2180. #endif // EXTRUDERS > 2
  2181. #endif // EXTRUDERS == 1
  2182. #endif // ADVANCED_PAUSE_FEATURE
  2183. }
  2184. #endif // !DISABLE_M503