My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 257KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  151. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  152. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  153. * M110 - Set the current line number
  154. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  155. * M112 - Emergency stop
  156. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  157. * M114 - Output current position to serial port
  158. * M115 - Capabilities string
  159. * M117 - Display a message on the controller screen
  160. * M119 - Output Endstop status to serial port
  161. * M120 - Enable endstop detection
  162. * M121 - Disable endstop detection
  163. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  164. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  165. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M140 - Set bed target temp
  168. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  169. * M149 - Set temperature units
  170. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  171. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  172. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  173. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  174. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  175. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  176. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  177. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  178. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  179. * M206 - Set additional homing offset
  180. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  181. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  182. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  183. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  184. * M220 - Set speed factor override percentage: S<factor in percent>
  185. * M221 - Set extrude factor override percentage: S<factor in percent>
  186. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  187. * M240 - Trigger a camera to take a photograph
  188. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  189. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  190. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  191. * M301 - Set PID parameters P I and D
  192. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  193. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  194. * M304 - Set bed PID parameters P I and D
  195. * M380 - Activate solenoid on active extruder
  196. * M381 - Disable all solenoids
  197. * M400 - Finish all moves
  198. * M401 - Lower Z probe if present
  199. * M402 - Raise Z probe if present
  200. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  201. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  202. * M406 - Turn off Filament Sensor extrusion control
  203. * M407 - Display measured filament diameter
  204. * M410 - Quickstop. Abort all the planned moves
  205. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  206. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  207. * M428 - Set the home_offset logically based on the current_position
  208. * M500 - Store parameters in EEPROM
  209. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  210. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  211. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  212. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  213. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  214. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  215. * M666 - Set delta endstop adjustment
  216. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  217. * M851 - Set Z probe's Z offset (mm). Set to a negative value for probes that trigger below the nozzle.
  218. * M907 - Set digital trimpot motor current using axis codes.
  219. * M908 - Control digital trimpot directly.
  220. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  221. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  222. * M350 - Set microstepping mode.
  223. * M351 - Toggle MS1 MS2 pins directly.
  224. *
  225. * ************ SCARA Specific - This can change to suit future G-code regulations
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  232. * ************* SCARA End ***************
  233. *
  234. * ************ Custom codes - This can change to suit future G-code regulations
  235. * M100 - Watch Free Memory (For Debugging Only)
  236. * M928 - Start SD logging (M928 filename.g) - ended by M29
  237. * M999 - Restart after being stopped by error
  238. *
  239. * "T" Codes
  240. *
  241. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  242. *
  243. */
  244. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  245. void gcode_M100();
  246. #endif
  247. #if ENABLED(SDSUPPORT)
  248. CardReader card;
  249. #endif
  250. #if ENABLED(EXPERIMENTAL_I2CBUS)
  251. TWIBus i2c;
  252. #endif
  253. bool Running = true;
  254. uint8_t marlin_debug_flags = DEBUG_NONE;
  255. static float feedrate = 1500.0, saved_feedrate;
  256. float current_position[NUM_AXIS] = { 0.0 };
  257. static float destination[NUM_AXIS] = { 0.0 };
  258. bool axis_known_position[3] = { false };
  259. bool axis_homed[3] = { false };
  260. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  261. static char* current_command, *current_command_args;
  262. static int cmd_queue_index_r = 0;
  263. static int cmd_queue_index_w = 0;
  264. static int commands_in_queue = 0;
  265. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  266. #if ENABLED(INCH_MODE_SUPPORT)
  267. float linear_unit_factor = 1.0;
  268. float volumetric_unit_factor = 1.0;
  269. #endif
  270. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  271. TempUnit input_temp_units = TEMPUNIT_C;
  272. #endif
  273. const float homing_feedrate[] = HOMING_FEEDRATE;
  274. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  275. int feedrate_multiplier = 100; //100->1 200->2
  276. int saved_feedrate_multiplier;
  277. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  278. bool volumetric_enabled = false;
  279. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  280. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  281. // The distance that XYZ has been offset by G92. Reset by G28.
  282. float position_shift[3] = { 0 };
  283. // This offset is added to the configured home position.
  284. // Set by M206, M428, or menu item. Saved to EEPROM.
  285. float home_offset[3] = { 0 };
  286. // Software Endstops. Default to configured limits.
  287. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. #if FAN_COUNT > 0
  290. int fanSpeeds[FAN_COUNT] = { 0 };
  291. #endif
  292. // The active extruder (tool). Set with T<extruder> command.
  293. uint8_t active_extruder = 0;
  294. // Relative Mode. Enable with G91, disable with G90.
  295. static bool relative_mode = false;
  296. bool cancel_heatup = false;
  297. const char errormagic[] PROGMEM = "Error:";
  298. const char echomagic[] PROGMEM = "echo:";
  299. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  300. static int serial_count = 0;
  301. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  302. static char* seen_pointer;
  303. // Next Immediate GCode Command pointer. NULL if none.
  304. const char* queued_commands_P = NULL;
  305. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  306. // Inactivity shutdown
  307. millis_t previous_cmd_ms = 0;
  308. static millis_t max_inactive_time = 0;
  309. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  310. // Print Job Timer
  311. #if ENABLED(PRINTCOUNTER)
  312. PrintCounter print_job_timer = PrintCounter();
  313. #else
  314. Stopwatch print_job_timer = Stopwatch();
  315. #endif
  316. // Buzzer
  317. #if HAS_BUZZER
  318. #if ENABLED(SPEAKER)
  319. Speaker buzzer;
  320. #else
  321. Buzzer buzzer;
  322. #endif
  323. #endif
  324. static uint8_t target_extruder;
  325. #if HAS_BED_PROBE
  326. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  327. #endif
  328. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  329. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  330. int xy_probe_speed = XY_PROBE_SPEED;
  331. bool bed_leveling_in_progress = false;
  332. #define XY_PROBE_FEEDRATE xy_probe_speed
  333. #elif defined(XY_PROBE_SPEED)
  334. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  335. #else
  336. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  337. #endif
  338. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  339. float z_endstop_adj = 0;
  340. #endif
  341. // Extruder offsets
  342. #if HOTENDS > 1
  343. #ifndef HOTEND_OFFSET_X
  344. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  345. #endif
  346. #ifndef HOTEND_OFFSET_Y
  347. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  348. #endif
  349. float hotend_offset[][HOTENDS] = {
  350. HOTEND_OFFSET_X,
  351. HOTEND_OFFSET_Y
  352. #if ENABLED(DUAL_X_CARRIAGE)
  353. , { 0 } // Z offsets for each extruder
  354. #endif
  355. };
  356. #endif
  357. #if HAS_Z_SERVO_ENDSTOP
  358. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  359. #endif
  360. #if ENABLED(BARICUDA)
  361. int baricuda_valve_pressure = 0;
  362. int baricuda_e_to_p_pressure = 0;
  363. #endif
  364. #if ENABLED(FWRETRACT)
  365. bool autoretract_enabled = false;
  366. bool retracted[EXTRUDERS] = { false };
  367. bool retracted_swap[EXTRUDERS] = { false };
  368. float retract_length = RETRACT_LENGTH;
  369. float retract_length_swap = RETRACT_LENGTH_SWAP;
  370. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  371. float retract_zlift = RETRACT_ZLIFT;
  372. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  373. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  374. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  375. #endif // FWRETRACT
  376. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  377. bool powersupply =
  378. #if ENABLED(PS_DEFAULT_OFF)
  379. false
  380. #else
  381. true
  382. #endif
  383. ;
  384. #endif
  385. #if ENABLED(DELTA)
  386. #define TOWER_1 X_AXIS
  387. #define TOWER_2 Y_AXIS
  388. #define TOWER_3 Z_AXIS
  389. float delta[3] = { 0 };
  390. #define SIN_60 0.8660254037844386
  391. #define COS_60 0.5
  392. float endstop_adj[3] = { 0 };
  393. // these are the default values, can be overriden with M665
  394. float delta_radius = DELTA_RADIUS;
  395. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  396. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  397. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  398. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  399. float delta_tower3_x = 0; // back middle tower
  400. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  401. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  402. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  403. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  404. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  405. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  406. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  407. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  408. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  409. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  410. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  411. int delta_grid_spacing[2] = { 0, 0 };
  412. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  413. #endif
  414. #else
  415. static bool home_all_axis = true;
  416. #endif
  417. #if ENABLED(SCARA)
  418. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  419. static float delta[3] = { 0 };
  420. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  421. #endif
  422. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  423. //Variables for Filament Sensor input
  424. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  425. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  426. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  427. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  428. int filwidth_delay_index1 = 0; //index into ring buffer
  429. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  430. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  431. #endif
  432. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  433. static bool filament_ran_out = false;
  434. #endif
  435. static bool send_ok[BUFSIZE];
  436. #if HAS_SERVOS
  437. Servo servo[NUM_SERVOS];
  438. #define MOVE_SERVO(I, P) servo[I].move(P)
  439. #if HAS_Z_SERVO_ENDSTOP
  440. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  441. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  442. #endif
  443. #endif
  444. #ifdef CHDK
  445. millis_t chdkHigh = 0;
  446. boolean chdkActive = false;
  447. #endif
  448. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  449. int lpq_len = 20;
  450. #endif
  451. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  452. // States for managing Marlin and host communication
  453. // Marlin sends messages if blocked or busy
  454. enum MarlinBusyState {
  455. NOT_BUSY, // Not in a handler
  456. IN_HANDLER, // Processing a GCode
  457. IN_PROCESS, // Known to be blocking command input (as in G29)
  458. PAUSED_FOR_USER, // Blocking pending any input
  459. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  460. };
  461. static MarlinBusyState busy_state = NOT_BUSY;
  462. static millis_t next_busy_signal_ms = 0;
  463. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  464. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  465. #else
  466. #define host_keepalive() ;
  467. #define KEEPALIVE_STATE(n) ;
  468. #endif // HOST_KEEPALIVE_FEATURE
  469. /**
  470. * ***************************************************************************
  471. * ******************************** FUNCTIONS ********************************
  472. * ***************************************************************************
  473. */
  474. void stop();
  475. void get_available_commands();
  476. void process_next_command();
  477. void prepare_move_to_destination();
  478. #if ENABLED(ARC_SUPPORT)
  479. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  480. #endif
  481. #if ENABLED(BEZIER_CURVE_SUPPORT)
  482. void plan_cubic_move(const float offset[4]);
  483. #endif
  484. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  485. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  486. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  487. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  488. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  489. static void report_current_position();
  490. #if ENABLED(DEBUG_LEVELING_FEATURE)
  491. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  492. SERIAL_ECHO(prefix);
  493. SERIAL_ECHOPAIR(": (", x);
  494. SERIAL_ECHOPAIR(", ", y);
  495. SERIAL_ECHOPAIR(", ", z);
  496. SERIAL_ECHOLNPGM(")");
  497. }
  498. void print_xyz(const char* prefix, const float xyz[]) {
  499. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  500. }
  501. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  502. void print_xyz(const char* prefix, const vector_3 &xyz) {
  503. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  504. }
  505. #endif
  506. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  507. #endif
  508. #if ENABLED(DELTA) || ENABLED(SCARA)
  509. inline void sync_plan_position_delta() {
  510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  511. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  512. #endif
  513. calculate_delta(current_position);
  514. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  515. }
  516. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  517. #else
  518. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  519. #endif
  520. #if ENABLED(SDSUPPORT)
  521. #include "SdFatUtil.h"
  522. int freeMemory() { return SdFatUtil::FreeRam(); }
  523. #else
  524. extern "C" {
  525. extern unsigned int __bss_end;
  526. extern unsigned int __heap_start;
  527. extern void* __brkval;
  528. int freeMemory() {
  529. int free_memory;
  530. if ((int)__brkval == 0)
  531. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  532. else
  533. free_memory = ((int)&free_memory) - ((int)__brkval);
  534. return free_memory;
  535. }
  536. }
  537. #endif //!SDSUPPORT
  538. #if ENABLED(DIGIPOT_I2C)
  539. extern void digipot_i2c_set_current(int channel, float current);
  540. extern void digipot_i2c_init();
  541. #endif
  542. /**
  543. * Inject the next "immediate" command, when possible.
  544. * Return true if any immediate commands remain to inject.
  545. */
  546. static bool drain_queued_commands_P() {
  547. if (queued_commands_P != NULL) {
  548. size_t i = 0;
  549. char c, cmd[30];
  550. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  551. cmd[sizeof(cmd) - 1] = '\0';
  552. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  553. cmd[i] = '\0';
  554. if (enqueue_and_echo_command(cmd)) { // success?
  555. if (c) // newline char?
  556. queued_commands_P += i + 1; // advance to the next command
  557. else
  558. queued_commands_P = NULL; // nul char? no more commands
  559. }
  560. }
  561. return (queued_commands_P != NULL); // return whether any more remain
  562. }
  563. /**
  564. * Record one or many commands to run from program memory.
  565. * Aborts the current queue, if any.
  566. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  567. */
  568. void enqueue_and_echo_commands_P(const char* pgcode) {
  569. queued_commands_P = pgcode;
  570. drain_queued_commands_P(); // first command executed asap (when possible)
  571. }
  572. void clear_command_queue() {
  573. cmd_queue_index_r = cmd_queue_index_w;
  574. commands_in_queue = 0;
  575. }
  576. /**
  577. * Once a new command is in the ring buffer, call this to commit it
  578. */
  579. inline void _commit_command(bool say_ok) {
  580. send_ok[cmd_queue_index_w] = say_ok;
  581. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  582. commands_in_queue++;
  583. }
  584. /**
  585. * Copy a command directly into the main command buffer, from RAM.
  586. * Returns true if successfully adds the command
  587. */
  588. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  589. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  590. strcpy(command_queue[cmd_queue_index_w], cmd);
  591. _commit_command(say_ok);
  592. return true;
  593. }
  594. void enqueue_and_echo_command_now(const char* cmd) {
  595. while (!enqueue_and_echo_command(cmd)) idle();
  596. }
  597. /**
  598. * Enqueue with Serial Echo
  599. */
  600. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  601. if (_enqueuecommand(cmd, say_ok)) {
  602. SERIAL_ECHO_START;
  603. SERIAL_ECHOPGM(MSG_Enqueueing);
  604. SERIAL_ECHO(cmd);
  605. SERIAL_ECHOLNPGM("\"");
  606. return true;
  607. }
  608. return false;
  609. }
  610. void setup_killpin() {
  611. #if HAS_KILL
  612. SET_INPUT(KILL_PIN);
  613. WRITE(KILL_PIN, HIGH);
  614. #endif
  615. }
  616. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  617. void setup_filrunoutpin() {
  618. pinMode(FIL_RUNOUT_PIN, INPUT);
  619. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  620. WRITE(FIL_RUNOUT_PIN, HIGH);
  621. #endif
  622. }
  623. #endif
  624. // Set home pin
  625. void setup_homepin(void) {
  626. #if HAS_HOME
  627. SET_INPUT(HOME_PIN);
  628. WRITE(HOME_PIN, HIGH);
  629. #endif
  630. }
  631. void setup_photpin() {
  632. #if HAS_PHOTOGRAPH
  633. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  634. #endif
  635. }
  636. void setup_powerhold() {
  637. #if HAS_SUICIDE
  638. OUT_WRITE(SUICIDE_PIN, HIGH);
  639. #endif
  640. #if HAS_POWER_SWITCH
  641. #if ENABLED(PS_DEFAULT_OFF)
  642. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  643. #else
  644. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  645. #endif
  646. #endif
  647. }
  648. void suicide() {
  649. #if HAS_SUICIDE
  650. OUT_WRITE(SUICIDE_PIN, LOW);
  651. #endif
  652. }
  653. void servo_init() {
  654. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  655. servo[0].attach(SERVO0_PIN);
  656. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  657. #endif
  658. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  659. servo[1].attach(SERVO1_PIN);
  660. servo[1].detach();
  661. #endif
  662. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  663. servo[2].attach(SERVO2_PIN);
  664. servo[2].detach();
  665. #endif
  666. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  667. servo[3].attach(SERVO3_PIN);
  668. servo[3].detach();
  669. #endif
  670. #if HAS_Z_SERVO_ENDSTOP
  671. /**
  672. * Set position of Z Servo Endstop
  673. *
  674. * The servo might be deployed and positioned too low to stow
  675. * when starting up the machine or rebooting the board.
  676. * There's no way to know where the nozzle is positioned until
  677. * homing has been done - no homing with z-probe without init!
  678. *
  679. */
  680. STOW_Z_SERVO();
  681. #endif
  682. #if HAS_BED_PROBE
  683. endstops.enable_z_probe(false);
  684. #endif
  685. }
  686. /**
  687. * Stepper Reset (RigidBoard, et.al.)
  688. */
  689. #if HAS_STEPPER_RESET
  690. void disableStepperDrivers() {
  691. pinMode(STEPPER_RESET_PIN, OUTPUT);
  692. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  693. }
  694. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  695. #endif
  696. /**
  697. * Marlin entry-point: Set up before the program loop
  698. * - Set up the kill pin, filament runout, power hold
  699. * - Start the serial port
  700. * - Print startup messages and diagnostics
  701. * - Get EEPROM or default settings
  702. * - Initialize managers for:
  703. * • temperature
  704. * • planner
  705. * • watchdog
  706. * • stepper
  707. * • photo pin
  708. * • servos
  709. * • LCD controller
  710. * • Digipot I2C
  711. * • Z probe sled
  712. * • status LEDs
  713. */
  714. void setup() {
  715. #ifdef DISABLE_JTAG
  716. // Disable JTAG on AT90USB chips to free up pins for IO
  717. MCUCR = 0x80;
  718. MCUCR = 0x80;
  719. #endif
  720. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  721. setup_filrunoutpin();
  722. #endif
  723. setup_killpin();
  724. setup_powerhold();
  725. #if HAS_STEPPER_RESET
  726. disableStepperDrivers();
  727. #endif
  728. MYSERIAL.begin(BAUDRATE);
  729. SERIAL_PROTOCOLLNPGM("start");
  730. SERIAL_ECHO_START;
  731. // Check startup - does nothing if bootloader sets MCUSR to 0
  732. byte mcu = MCUSR;
  733. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  734. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  735. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  736. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  737. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  738. MCUSR = 0;
  739. SERIAL_ECHOPGM(MSG_MARLIN);
  740. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  741. #ifdef STRING_DISTRIBUTION_DATE
  742. #ifdef STRING_CONFIG_H_AUTHOR
  743. SERIAL_ECHO_START;
  744. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  745. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  746. SERIAL_ECHOPGM(MSG_AUTHOR);
  747. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  748. SERIAL_ECHOPGM("Compiled: ");
  749. SERIAL_ECHOLNPGM(__DATE__);
  750. #endif // STRING_CONFIG_H_AUTHOR
  751. #endif // STRING_DISTRIBUTION_DATE
  752. SERIAL_ECHO_START;
  753. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  754. SERIAL_ECHO(freeMemory());
  755. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  756. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  757. // Send "ok" after commands by default
  758. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  759. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  760. Config_RetrieveSettings();
  761. // Initialize current position based on home_offset
  762. memcpy(current_position, home_offset, sizeof(home_offset));
  763. #if ENABLED(DELTA) || ENABLED(SCARA)
  764. // Vital to init kinematic equivalent for X0 Y0 Z0
  765. SYNC_PLAN_POSITION_KINEMATIC();
  766. #endif
  767. thermalManager.init(); // Initialize temperature loop
  768. #if ENABLED(USE_WATCHDOG)
  769. watchdog_init();
  770. #endif
  771. stepper.init(); // Initialize stepper, this enables interrupts!
  772. setup_photpin();
  773. servo_init();
  774. #if HAS_CONTROLLERFAN
  775. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  776. #endif
  777. #if HAS_STEPPER_RESET
  778. enableStepperDrivers();
  779. #endif
  780. #if ENABLED(DIGIPOT_I2C)
  781. digipot_i2c_init();
  782. #endif
  783. #if ENABLED(DAC_STEPPER_CURRENT)
  784. dac_init();
  785. #endif
  786. #if ENABLED(Z_PROBE_SLED)
  787. pinMode(SLED_PIN, OUTPUT);
  788. digitalWrite(SLED_PIN, LOW); // turn it off
  789. #endif // Z_PROBE_SLED
  790. setup_homepin();
  791. #ifdef STAT_LED_RED
  792. pinMode(STAT_LED_RED, OUTPUT);
  793. digitalWrite(STAT_LED_RED, LOW); // turn it off
  794. #endif
  795. #ifdef STAT_LED_BLUE
  796. pinMode(STAT_LED_BLUE, OUTPUT);
  797. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  798. #endif
  799. lcd_init();
  800. #if ENABLED(SHOW_BOOTSCREEN)
  801. #if ENABLED(DOGLCD)
  802. delay(1000);
  803. #elif ENABLED(ULTRA_LCD)
  804. bootscreen();
  805. lcd_init();
  806. #endif
  807. #endif
  808. }
  809. /**
  810. * The main Marlin program loop
  811. *
  812. * - Save or log commands to SD
  813. * - Process available commands (if not saving)
  814. * - Call heater manager
  815. * - Call inactivity manager
  816. * - Call endstop manager
  817. * - Call LCD update
  818. */
  819. void loop() {
  820. if (commands_in_queue < BUFSIZE) get_available_commands();
  821. #if ENABLED(SDSUPPORT)
  822. card.checkautostart(false);
  823. #endif
  824. if (commands_in_queue) {
  825. #if ENABLED(SDSUPPORT)
  826. if (card.saving) {
  827. char* command = command_queue[cmd_queue_index_r];
  828. if (strstr_P(command, PSTR("M29"))) {
  829. // M29 closes the file
  830. card.closefile();
  831. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  832. ok_to_send();
  833. }
  834. else {
  835. // Write the string from the read buffer to SD
  836. card.write_command(command);
  837. if (card.logging)
  838. process_next_command(); // The card is saving because it's logging
  839. else
  840. ok_to_send();
  841. }
  842. }
  843. else
  844. process_next_command();
  845. #else
  846. process_next_command();
  847. #endif // SDSUPPORT
  848. commands_in_queue--;
  849. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  850. }
  851. endstops.report_state();
  852. idle();
  853. }
  854. void gcode_line_error(const char* err, bool doFlush = true) {
  855. SERIAL_ERROR_START;
  856. serialprintPGM(err);
  857. SERIAL_ERRORLN(gcode_LastN);
  858. //Serial.println(gcode_N);
  859. if (doFlush) FlushSerialRequestResend();
  860. serial_count = 0;
  861. }
  862. inline void get_serial_commands() {
  863. static char serial_line_buffer[MAX_CMD_SIZE];
  864. static boolean serial_comment_mode = false;
  865. // If the command buffer is empty for too long,
  866. // send "wait" to indicate Marlin is still waiting.
  867. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  868. static millis_t last_command_time = 0;
  869. millis_t ms = millis();
  870. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  871. SERIAL_ECHOLNPGM(MSG_WAIT);
  872. last_command_time = ms;
  873. }
  874. #endif
  875. /**
  876. * Loop while serial characters are incoming and the queue is not full
  877. */
  878. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  879. char serial_char = MYSERIAL.read();
  880. /**
  881. * If the character ends the line
  882. */
  883. if (serial_char == '\n' || serial_char == '\r') {
  884. serial_comment_mode = false; // end of line == end of comment
  885. if (!serial_count) continue; // skip empty lines
  886. serial_line_buffer[serial_count] = 0; // terminate string
  887. serial_count = 0; //reset buffer
  888. char* command = serial_line_buffer;
  889. while (*command == ' ') command++; // skip any leading spaces
  890. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  891. char* apos = strchr(command, '*');
  892. if (npos) {
  893. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  894. if (M110) {
  895. char* n2pos = strchr(command + 4, 'N');
  896. if (n2pos) npos = n2pos;
  897. }
  898. gcode_N = strtol(npos + 1, NULL, 10);
  899. if (gcode_N != gcode_LastN + 1 && !M110) {
  900. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  901. return;
  902. }
  903. if (apos) {
  904. byte checksum = 0, count = 0;
  905. while (command[count] != '*') checksum ^= command[count++];
  906. if (strtol(apos + 1, NULL, 10) != checksum) {
  907. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  908. return;
  909. }
  910. // if no errors, continue parsing
  911. }
  912. else {
  913. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  914. return;
  915. }
  916. gcode_LastN = gcode_N;
  917. // if no errors, continue parsing
  918. }
  919. else if (apos) { // No '*' without 'N'
  920. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  921. return;
  922. }
  923. // Movement commands alert when stopped
  924. if (IsStopped()) {
  925. char* gpos = strchr(command, 'G');
  926. if (gpos) {
  927. int codenum = strtol(gpos + 1, NULL, 10);
  928. switch (codenum) {
  929. case 0:
  930. case 1:
  931. case 2:
  932. case 3:
  933. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  934. LCD_MESSAGEPGM(MSG_STOPPED);
  935. break;
  936. }
  937. }
  938. }
  939. // If command was e-stop process now
  940. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  941. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  942. last_command_time = ms;
  943. #endif
  944. // Add the command to the queue
  945. _enqueuecommand(serial_line_buffer, true);
  946. }
  947. else if (serial_count >= MAX_CMD_SIZE - 1) {
  948. // Keep fetching, but ignore normal characters beyond the max length
  949. // The command will be injected when EOL is reached
  950. }
  951. else if (serial_char == '\\') { // Handle escapes
  952. if (MYSERIAL.available() > 0) {
  953. // if we have one more character, copy it over
  954. serial_char = MYSERIAL.read();
  955. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  956. }
  957. // otherwise do nothing
  958. }
  959. else { // it's not a newline, carriage return or escape char
  960. if (serial_char == ';') serial_comment_mode = true;
  961. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  962. }
  963. } // queue has space, serial has data
  964. }
  965. #if ENABLED(SDSUPPORT)
  966. inline void get_sdcard_commands() {
  967. static bool stop_buffering = false,
  968. sd_comment_mode = false;
  969. if (!card.sdprinting) return;
  970. /**
  971. * '#' stops reading from SD to the buffer prematurely, so procedural
  972. * macro calls are possible. If it occurs, stop_buffering is triggered
  973. * and the buffer is run dry; this character _can_ occur in serial com
  974. * due to checksums, however, no checksums are used in SD printing.
  975. */
  976. if (commands_in_queue == 0) stop_buffering = false;
  977. uint16_t sd_count = 0;
  978. bool card_eof = card.eof();
  979. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  980. int16_t n = card.get();
  981. char sd_char = (char)n;
  982. card_eof = card.eof();
  983. if (card_eof || n == -1
  984. || sd_char == '\n' || sd_char == '\r'
  985. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  986. ) {
  987. if (card_eof) {
  988. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  989. print_job_timer.stop();
  990. char time[30];
  991. millis_t t = print_job_timer.duration();
  992. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  993. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  994. SERIAL_ECHO_START;
  995. SERIAL_ECHOLN(time);
  996. lcd_setstatus(time, true);
  997. card.printingHasFinished();
  998. card.checkautostart(true);
  999. }
  1000. else if (n == -1) {
  1001. SERIAL_ERROR_START;
  1002. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1003. }
  1004. if (sd_char == '#') stop_buffering = true;
  1005. sd_comment_mode = false; //for new command
  1006. if (!sd_count) continue; //skip empty lines
  1007. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1008. sd_count = 0; //clear buffer
  1009. _commit_command(false);
  1010. }
  1011. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1012. /**
  1013. * Keep fetching, but ignore normal characters beyond the max length
  1014. * The command will be injected when EOL is reached
  1015. */
  1016. }
  1017. else {
  1018. if (sd_char == ';') sd_comment_mode = true;
  1019. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1020. }
  1021. }
  1022. }
  1023. #endif // SDSUPPORT
  1024. /**
  1025. * Add to the circular command queue the next command from:
  1026. * - The command-injection queue (queued_commands_P)
  1027. * - The active serial input (usually USB)
  1028. * - The SD card file being actively printed
  1029. */
  1030. void get_available_commands() {
  1031. // if any immediate commands remain, don't get other commands yet
  1032. if (drain_queued_commands_P()) return;
  1033. get_serial_commands();
  1034. #if ENABLED(SDSUPPORT)
  1035. get_sdcard_commands();
  1036. #endif
  1037. }
  1038. inline bool code_has_value() {
  1039. int i = 1;
  1040. char c = seen_pointer[i];
  1041. while (c == ' ') c = seen_pointer[++i];
  1042. if (c == '-' || c == '+') c = seen_pointer[++i];
  1043. if (c == '.') c = seen_pointer[++i];
  1044. return NUMERIC(c);
  1045. }
  1046. inline float code_value_float() {
  1047. float ret;
  1048. char* e = strchr(seen_pointer, 'E');
  1049. if (e) {
  1050. *e = 0;
  1051. ret = strtod(seen_pointer + 1, NULL);
  1052. *e = 'E';
  1053. }
  1054. else
  1055. ret = strtod(seen_pointer + 1, NULL);
  1056. return ret;
  1057. }
  1058. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1059. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1060. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1061. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1062. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1063. inline bool code_value_bool() { return code_value_byte() > 0; }
  1064. #if ENABLED(INCH_MODE_SUPPORT)
  1065. inline void set_input_linear_units(LinearUnit units) {
  1066. switch (units) {
  1067. case LINEARUNIT_INCH:
  1068. linear_unit_factor = 25.4;
  1069. break;
  1070. case LINEARUNIT_MM:
  1071. default:
  1072. linear_unit_factor = 1.0;
  1073. break;
  1074. }
  1075. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1076. }
  1077. inline float axis_unit_factor(int axis) {
  1078. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1079. }
  1080. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1081. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1082. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1083. #else
  1084. inline float code_value_linear_units() { return code_value_float(); }
  1085. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1086. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1087. #endif
  1088. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1089. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1090. float code_value_temp_abs() {
  1091. switch (input_temp_units) {
  1092. case TEMPUNIT_C:
  1093. return code_value_float();
  1094. case TEMPUNIT_F:
  1095. return (code_value_float() - 32) / 1.8;
  1096. case TEMPUNIT_K:
  1097. return code_value_float() - 272.15;
  1098. default:
  1099. return code_value_float();
  1100. }
  1101. }
  1102. float code_value_temp_diff() {
  1103. switch (input_temp_units) {
  1104. case TEMPUNIT_C:
  1105. case TEMPUNIT_K:
  1106. return code_value_float();
  1107. case TEMPUNIT_F:
  1108. return code_value_float() / 1.8;
  1109. default:
  1110. return code_value_float();
  1111. }
  1112. }
  1113. #else
  1114. float code_value_temp_abs() { return code_value_float(); }
  1115. float code_value_temp_diff() { return code_value_float(); }
  1116. #endif
  1117. inline millis_t code_value_millis() { return code_value_ulong(); }
  1118. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1119. bool code_seen(char code) {
  1120. seen_pointer = strchr(current_command_args, code);
  1121. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1122. }
  1123. /**
  1124. * Set target_extruder from the T parameter or the active_extruder
  1125. *
  1126. * Returns TRUE if the target is invalid
  1127. */
  1128. bool get_target_extruder_from_command(int code) {
  1129. if (code_seen('T')) {
  1130. uint8_t t = code_value_byte();
  1131. if (t >= EXTRUDERS) {
  1132. SERIAL_ECHO_START;
  1133. SERIAL_CHAR('M');
  1134. SERIAL_ECHO(code);
  1135. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1136. SERIAL_EOL;
  1137. return true;
  1138. }
  1139. target_extruder = t;
  1140. }
  1141. else
  1142. target_extruder = active_extruder;
  1143. return false;
  1144. }
  1145. #define DEFINE_PGM_READ_ANY(type, reader) \
  1146. static inline type pgm_read_any(const type *p) \
  1147. { return pgm_read_##reader##_near(p); }
  1148. DEFINE_PGM_READ_ANY(float, float);
  1149. DEFINE_PGM_READ_ANY(signed char, byte);
  1150. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1151. static const PROGMEM type array##_P[3] = \
  1152. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1153. static inline type array(int axis) \
  1154. { return pgm_read_any(&array##_P[axis]); }
  1155. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1156. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1157. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1158. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1159. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1160. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1161. #if ENABLED(DUAL_X_CARRIAGE)
  1162. #define DXC_FULL_CONTROL_MODE 0
  1163. #define DXC_AUTO_PARK_MODE 1
  1164. #define DXC_DUPLICATION_MODE 2
  1165. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1166. static float x_home_pos(int extruder) {
  1167. if (extruder == 0)
  1168. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1169. else
  1170. /**
  1171. * In dual carriage mode the extruder offset provides an override of the
  1172. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1173. * This allow soft recalibration of the second extruder offset position
  1174. * without firmware reflash (through the M218 command).
  1175. */
  1176. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1177. }
  1178. static int x_home_dir(int extruder) {
  1179. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1180. }
  1181. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1182. static bool active_extruder_parked = false; // used in mode 1 & 2
  1183. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1184. static millis_t delayed_move_time = 0; // used in mode 1
  1185. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1186. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1187. bool extruder_duplication_enabled = false; // used in mode 2
  1188. #endif //DUAL_X_CARRIAGE
  1189. /**
  1190. * Software endstops can be used to monitor the open end of
  1191. * an axis that has a hardware endstop on the other end. Or
  1192. * they can prevent axes from moving past endstops and grinding.
  1193. *
  1194. * To keep doing their job as the coordinate system changes,
  1195. * the software endstop positions must be refreshed to remain
  1196. * at the same positions relative to the machine.
  1197. */
  1198. static void update_software_endstops(AxisEnum axis) {
  1199. float offs = home_offset[axis] + position_shift[axis];
  1200. #if ENABLED(DUAL_X_CARRIAGE)
  1201. if (axis == X_AXIS) {
  1202. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1203. if (active_extruder != 0) {
  1204. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1205. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1206. return;
  1207. }
  1208. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1209. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1210. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1211. return;
  1212. }
  1213. }
  1214. else
  1215. #endif
  1216. {
  1217. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1218. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1219. }
  1220. }
  1221. /**
  1222. * Change the home offset for an axis, update the current
  1223. * position and the software endstops to retain the same
  1224. * relative distance to the new home.
  1225. *
  1226. * Since this changes the current_position, code should
  1227. * call sync_plan_position soon after this.
  1228. */
  1229. static void set_home_offset(AxisEnum axis, float v) {
  1230. current_position[axis] += v - home_offset[axis];
  1231. home_offset[axis] = v;
  1232. update_software_endstops(axis);
  1233. }
  1234. static void set_axis_is_at_home(AxisEnum axis) {
  1235. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1236. if (DEBUGGING(LEVELING)) {
  1237. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1238. SERIAL_ECHOLNPGM(") >>>");
  1239. }
  1240. #endif
  1241. position_shift[axis] = 0;
  1242. #if ENABLED(DUAL_X_CARRIAGE)
  1243. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1244. if (active_extruder != 0)
  1245. current_position[X_AXIS] = x_home_pos(active_extruder);
  1246. else
  1247. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1248. update_software_endstops(X_AXIS);
  1249. return;
  1250. }
  1251. #endif
  1252. #if ENABLED(SCARA)
  1253. if (axis == X_AXIS || axis == Y_AXIS) {
  1254. float homeposition[3];
  1255. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1256. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1257. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1258. /**
  1259. * Works out real Homeposition angles using inverse kinematics,
  1260. * and calculates homing offset using forward kinematics
  1261. */
  1262. calculate_delta(homeposition);
  1263. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1264. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1265. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1266. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1267. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1268. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1269. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1270. calculate_SCARA_forward_Transform(delta);
  1271. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1272. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1273. current_position[axis] = delta[axis];
  1274. /**
  1275. * SCARA home positions are based on configuration since the actual
  1276. * limits are determined by the inverse kinematic transform.
  1277. */
  1278. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1279. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1280. }
  1281. else
  1282. #endif
  1283. {
  1284. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1285. update_software_endstops(axis);
  1286. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1287. if (axis == Z_AXIS) {
  1288. current_position[Z_AXIS] -= zprobe_zoffset;
  1289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1290. if (DEBUGGING(LEVELING)) {
  1291. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1292. SERIAL_EOL;
  1293. }
  1294. #endif
  1295. }
  1296. #endif
  1297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1298. if (DEBUGGING(LEVELING)) {
  1299. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1300. DEBUG_POS("", current_position);
  1301. }
  1302. #endif
  1303. }
  1304. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1305. if (DEBUGGING(LEVELING)) {
  1306. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1307. SERIAL_ECHOLNPGM(")");
  1308. }
  1309. #endif
  1310. }
  1311. /**
  1312. * Some planner shorthand inline functions
  1313. */
  1314. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1315. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1316. int hbd = homing_bump_divisor[axis];
  1317. if (hbd < 1) {
  1318. hbd = 10;
  1319. SERIAL_ECHO_START;
  1320. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1321. }
  1322. feedrate = homing_feedrate[axis] / hbd;
  1323. }
  1324. //
  1325. // line_to_current_position
  1326. // Move the planner to the current position from wherever it last moved
  1327. // (or from wherever it has been told it is located).
  1328. //
  1329. inline void line_to_current_position() {
  1330. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1331. }
  1332. inline void line_to_z(float zPosition) {
  1333. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1334. }
  1335. //
  1336. // line_to_destination
  1337. // Move the planner, not necessarily synced with current_position
  1338. //
  1339. inline void line_to_destination(float mm_m) {
  1340. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1341. }
  1342. inline void line_to_destination() {
  1343. line_to_destination(feedrate);
  1344. }
  1345. /**
  1346. * sync_plan_position
  1347. * Set planner / stepper positions to the cartesian current_position.
  1348. * The stepper code translates these coordinates into step units.
  1349. * Allows translation between steps and units (mm) for cartesian & core robots
  1350. */
  1351. inline void sync_plan_position() {
  1352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1353. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1354. #endif
  1355. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1356. }
  1357. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1358. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1359. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1360. //
  1361. // Prepare to do endstop or probe moves
  1362. // with custom feedrates.
  1363. //
  1364. // - Save current feedrates
  1365. // - Reset the rate multiplier
  1366. // - Reset the command timeout
  1367. // - Enable the endstops (for endstop moves)
  1368. //
  1369. static void setup_for_endstop_or_probe_move() {
  1370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1371. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1372. #endif
  1373. saved_feedrate = feedrate;
  1374. saved_feedrate_multiplier = feedrate_multiplier;
  1375. feedrate_multiplier = 100;
  1376. refresh_cmd_timeout();
  1377. }
  1378. static void setup_for_endstop_move() {
  1379. setup_for_endstop_or_probe_move();
  1380. endstops.enable();
  1381. }
  1382. static void clean_up_after_endstop_or_probe_move() {
  1383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1384. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1385. #endif
  1386. feedrate = saved_feedrate;
  1387. feedrate_multiplier = saved_feedrate_multiplier;
  1388. refresh_cmd_timeout();
  1389. }
  1390. #if HAS_BED_PROBE
  1391. #if ENABLED(DELTA)
  1392. /**
  1393. * Calculate delta, start a line, and set current_position to destination
  1394. */
  1395. void prepare_move_to_destination_raw() {
  1396. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1397. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1398. #endif
  1399. refresh_cmd_timeout();
  1400. calculate_delta(destination);
  1401. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1402. set_current_to_destination();
  1403. }
  1404. #endif
  1405. /**
  1406. * Plan a move to (X, Y, Z) and set the current_position
  1407. * The final current_position may not be the one that was requested
  1408. */
  1409. static void do_blocking_move_to(float x, float y, float z) {
  1410. float old_feedrate = feedrate;
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1413. #endif
  1414. #if ENABLED(DELTA)
  1415. feedrate = XY_PROBE_FEEDRATE;
  1416. destination[X_AXIS] = x;
  1417. destination[Y_AXIS] = y;
  1418. destination[Z_AXIS] = z;
  1419. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1420. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1421. else
  1422. prepare_move_to_destination(); // this will also set_current_to_destination
  1423. #else
  1424. // If Z needs to raise, do it before moving XY
  1425. if (current_position[Z_AXIS] < z) {
  1426. feedrate = homing_feedrate[Z_AXIS];
  1427. current_position[Z_AXIS] = z;
  1428. line_to_current_position();
  1429. }
  1430. feedrate = XY_PROBE_FEEDRATE;
  1431. current_position[X_AXIS] = x;
  1432. current_position[Y_AXIS] = y;
  1433. line_to_current_position();
  1434. // If Z needs to lower, do it after moving XY
  1435. if (current_position[Z_AXIS] > z) {
  1436. feedrate = homing_feedrate[Z_AXIS];
  1437. current_position[Z_AXIS] = z;
  1438. line_to_current_position();
  1439. }
  1440. #endif
  1441. stepper.synchronize();
  1442. feedrate = old_feedrate;
  1443. }
  1444. inline void do_blocking_move_to_x(float x) {
  1445. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1446. }
  1447. inline void do_blocking_move_to_z(float z) {
  1448. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1449. }
  1450. /**
  1451. * Raise Z to a minimum height to make room for a probe to move
  1452. *
  1453. * zprobe_zoffset: Negative of the Z height where the probe engages
  1454. * z_raise: The probing raise distance
  1455. *
  1456. * The zprobe_zoffset is negative for a switch below the nozzle, so
  1457. * multiply by Z_HOME_DIR (-1) to move enough away from the bed.
  1458. */
  1459. inline void do_probe_raise(float z_raise) {
  1460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1461. if (DEBUGGING(LEVELING)) {
  1462. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1463. SERIAL_ECHOLNPGM(")");
  1464. }
  1465. #endif
  1466. float z_dest = home_offset[Z_AXIS] + z_raise;
  1467. if ((Z_HOME_DIR) < 0 && zprobe_zoffset < 0)
  1468. z_dest -= zprobe_zoffset;
  1469. if (z_dest > current_position[Z_AXIS]) {
  1470. float old_feedrate = feedrate;
  1471. feedrate = homing_feedrate[Z_AXIS];
  1472. do_blocking_move_to_z(z_dest);
  1473. feedrate = old_feedrate;
  1474. }
  1475. }
  1476. #endif //HAS_BED_PROBE
  1477. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE
  1478. static void axis_unhomed_error(bool xyz=false) {
  1479. if (xyz) {
  1480. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1481. SERIAL_ECHO_START;
  1482. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1483. }
  1484. else {
  1485. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1486. SERIAL_ECHO_START;
  1487. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1488. }
  1489. }
  1490. #endif
  1491. #if ENABLED(Z_PROBE_SLED)
  1492. #ifndef SLED_DOCKING_OFFSET
  1493. #define SLED_DOCKING_OFFSET 0
  1494. #endif
  1495. /**
  1496. * Method to dock/undock a sled designed by Charles Bell.
  1497. *
  1498. * dock[in] If true, move to MAX_X and engage the electromagnet
  1499. * offset[in] The additional distance to move to adjust docking location
  1500. */
  1501. static void dock_sled(bool dock, int offset = 0) {
  1502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1503. if (DEBUGGING(LEVELING)) {
  1504. SERIAL_ECHOPAIR("dock_sled(", dock);
  1505. SERIAL_ECHOLNPGM(")");
  1506. }
  1507. #endif
  1508. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1509. axis_unhomed_error(true);
  1510. return;
  1511. }
  1512. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1513. float oldXpos = current_position[X_AXIS]; // save x position
  1514. float old_feedrate = feedrate;
  1515. if (dock) {
  1516. #if Z_RAISE_AFTER_PROBING > 0
  1517. do_probe_raise(Z_RAISE_AFTER_PROBING);
  1518. #endif
  1519. // Dock sled a bit closer to ensure proper capturing
  1520. feedrate = XY_PROBE_FEEDRATE;
  1521. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1522. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1523. }
  1524. else {
  1525. feedrate = XY_PROBE_FEEDRATE;
  1526. float z_loc = current_position[Z_AXIS];
  1527. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1528. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1529. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1530. }
  1531. do_blocking_move_to_x(oldXpos); // return to position before docking
  1532. feedrate = old_feedrate;
  1533. }
  1534. #endif // Z_PROBE_SLED
  1535. #if HAS_BED_PROBE
  1536. static void deploy_z_probe() {
  1537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1538. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1539. #endif
  1540. if (endstops.z_probe_enabled) return;
  1541. // Make room for probe
  1542. #if Z_RAISE_BEFORE_PROBING > 0
  1543. do_probe_raise(Z_RAISE_BEFORE_PROBING);
  1544. #endif
  1545. #if ENABLED(Z_PROBE_SLED)
  1546. dock_sled(false);
  1547. #elif HAS_Z_SERVO_ENDSTOP
  1548. // Engage Z Servo endstop if enabled
  1549. DEPLOY_Z_SERVO();
  1550. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1551. float old_feedrate = feedrate;
  1552. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1553. // If endstop is already false, the Z probe is deployed
  1554. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1555. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1556. if (z_probe_endstop)
  1557. #else
  1558. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1559. if (z_min_endstop)
  1560. #endif
  1561. {
  1562. // Move to the start position to initiate deployment
  1563. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1564. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1565. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1566. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1567. // Move to engage deployment
  1568. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1569. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1570. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1571. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1572. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1573. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1574. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1575. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1576. prepare_move_to_destination_raw();
  1577. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1578. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1579. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1580. // Move to trigger deployment
  1581. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1582. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1583. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1584. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1585. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1586. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1587. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1588. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1589. prepare_move_to_destination_raw();
  1590. #endif
  1591. }
  1592. // Partially Home X,Y for safety
  1593. destination[X_AXIS] *= 0.75;
  1594. destination[Y_AXIS] *= 0.75;
  1595. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1596. feedrate = old_feedrate;
  1597. stepper.synchronize();
  1598. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1599. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1600. if (z_probe_endstop)
  1601. #else
  1602. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1603. if (z_min_endstop)
  1604. #endif
  1605. {
  1606. if (IsRunning()) {
  1607. SERIAL_ERROR_START;
  1608. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1609. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1610. }
  1611. stop();
  1612. }
  1613. #else
  1614. // Nothing to be done. Just enable_z_probe below...
  1615. #endif
  1616. endstops.enable_z_probe();
  1617. }
  1618. static void stow_z_probe() {
  1619. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1620. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1621. #endif
  1622. if (!endstops.z_probe_enabled) return;
  1623. // Make more room for the servo
  1624. #if Z_RAISE_AFTER_PROBING > 0
  1625. do_probe_raise(Z_RAISE_AFTER_PROBING);
  1626. #endif
  1627. #if ENABLED(Z_PROBE_SLED)
  1628. dock_sled(true);
  1629. #elif HAS_Z_SERVO_ENDSTOP
  1630. // Change the Z servo angle
  1631. STOW_Z_SERVO();
  1632. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1633. float old_feedrate = feedrate;
  1634. // Move up for safety
  1635. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1636. #if Z_RAISE_AFTER_PROBING > 0
  1637. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1638. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1639. #endif
  1640. // Move to the start position to initiate retraction
  1641. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1642. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1643. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1644. prepare_move_to_destination_raw();
  1645. // Move the nozzle down to push the Z probe into retracted position
  1646. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1647. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1648. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1649. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1650. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1651. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1652. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1653. prepare_move_to_destination_raw();
  1654. // Move up for safety
  1655. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1656. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1657. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1658. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1659. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1660. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1661. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1662. prepare_move_to_destination_raw();
  1663. // Home XY for safety
  1664. feedrate = homing_feedrate[X_AXIS] / 2;
  1665. destination[X_AXIS] = 0;
  1666. destination[Y_AXIS] = 0;
  1667. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1668. feedrate = old_feedrate;
  1669. stepper.synchronize();
  1670. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1671. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1672. if (!z_probe_endstop)
  1673. #else
  1674. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1675. if (!z_min_endstop)
  1676. #endif
  1677. {
  1678. if (IsRunning()) {
  1679. SERIAL_ERROR_START;
  1680. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1681. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1682. }
  1683. stop();
  1684. }
  1685. #else
  1686. // Nothing to do here. Just clear endstops.z_probe_enabled
  1687. #endif
  1688. endstops.enable_z_probe(false);
  1689. }
  1690. // Do a single Z probe and return with current_position[Z_AXIS]
  1691. // at the height where the probe triggered.
  1692. static float run_z_probe() {
  1693. float old_feedrate = feedrate;
  1694. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1695. refresh_cmd_timeout();
  1696. #if ENABLED(DELTA)
  1697. float start_z = current_position[Z_AXIS];
  1698. long start_steps = stepper.position(Z_AXIS);
  1699. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1700. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1701. #endif
  1702. // move down slowly until you find the bed
  1703. feedrate = homing_feedrate[Z_AXIS] / 4;
  1704. destination[Z_AXIS] = -10;
  1705. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1706. stepper.synchronize();
  1707. endstops.hit_on_purpose(); // clear endstop hit flags
  1708. /**
  1709. * We have to let the planner know where we are right now as it
  1710. * is not where we said to go.
  1711. */
  1712. long stop_steps = stepper.position(Z_AXIS);
  1713. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1714. current_position[Z_AXIS] = mm;
  1715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1716. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1717. #endif
  1718. SYNC_PLAN_POSITION_KINEMATIC();
  1719. #else // !DELTA
  1720. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1721. planner.bed_level_matrix.set_to_identity();
  1722. #endif
  1723. feedrate = homing_feedrate[Z_AXIS];
  1724. // Move down until the Z probe (or endstop?) is triggered
  1725. float zPosition = -(Z_MAX_LENGTH + 10);
  1726. line_to_z(zPosition);
  1727. stepper.synchronize();
  1728. // Tell the planner where we ended up - Get this from the stepper handler
  1729. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1730. planner.set_position_mm(
  1731. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1732. current_position[E_AXIS]
  1733. );
  1734. // move up the retract distance
  1735. zPosition += home_bump_mm(Z_AXIS);
  1736. line_to_z(zPosition);
  1737. stepper.synchronize();
  1738. endstops.hit_on_purpose(); // clear endstop hit flags
  1739. // move back down slowly to find bed
  1740. set_homing_bump_feedrate(Z_AXIS);
  1741. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1742. line_to_z(zPosition);
  1743. stepper.synchronize();
  1744. endstops.hit_on_purpose(); // clear endstop hit flags
  1745. // Get the current stepper position after bumping an endstop
  1746. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1747. SYNC_PLAN_POSITION_KINEMATIC();
  1748. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1749. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1750. #endif
  1751. #endif // !DELTA
  1752. feedrate = old_feedrate;
  1753. return current_position[Z_AXIS];
  1754. }
  1755. inline void do_blocking_move_to_xy(float x, float y) {
  1756. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1757. }
  1758. //
  1759. // - Move to the given XY
  1760. // - Deploy the probe, if not already deployed
  1761. // - Probe the bed, get the Z position
  1762. // - Depending on the 'stow' flag
  1763. // - Stow the probe, or
  1764. // - Raise to the BETWEEN height
  1765. // - Return the probed Z position
  1766. //
  1767. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1768. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1769. if (DEBUGGING(LEVELING)) {
  1770. SERIAL_ECHOLNPGM("probe_pt >>>");
  1771. SERIAL_ECHOPAIR("> stow:", stow);
  1772. SERIAL_EOL;
  1773. DEBUG_POS("", current_position);
  1774. }
  1775. #endif
  1776. float old_feedrate = feedrate;
  1777. // Raise by z_raise, then move the Z probe to the given XY
  1778. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1779. if (DEBUGGING(LEVELING)) {
  1780. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1781. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1782. SERIAL_ECHOLNPGM(")");
  1783. }
  1784. #endif
  1785. feedrate = XY_PROBE_FEEDRATE;
  1786. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1787. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1788. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> deploy_z_probe");
  1789. #endif
  1790. deploy_z_probe();
  1791. float measured_z = run_z_probe();
  1792. if (stow) {
  1793. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1794. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> stow_z_probe");
  1795. #endif
  1796. stow_z_probe();
  1797. }
  1798. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1799. else {
  1800. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1801. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1802. #endif
  1803. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1804. }
  1805. #endif
  1806. if (verbose_level > 2) {
  1807. SERIAL_PROTOCOLPGM("Bed X: ");
  1808. SERIAL_PROTOCOL_F(x, 3);
  1809. SERIAL_PROTOCOLPGM(" Y: ");
  1810. SERIAL_PROTOCOL_F(y, 3);
  1811. SERIAL_PROTOCOLPGM(" Z: ");
  1812. SERIAL_PROTOCOL_F(measured_z, 3);
  1813. SERIAL_EOL;
  1814. }
  1815. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1816. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1817. #endif
  1818. feedrate = old_feedrate;
  1819. return measured_z;
  1820. }
  1821. #endif // HAS_BED_PROBE
  1822. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1823. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1824. #if DISABLED(DELTA)
  1825. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1826. //planner.bed_level_matrix.debug("bed level before");
  1827. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1828. planner.bed_level_matrix.set_to_identity();
  1829. if (DEBUGGING(LEVELING)) {
  1830. vector_3 uncorrected_position = planner.adjusted_position();
  1831. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1832. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1833. }
  1834. #endif
  1835. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1836. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1837. vector_3 corrected_position = planner.adjusted_position();
  1838. current_position[X_AXIS] = corrected_position.x;
  1839. current_position[Y_AXIS] = corrected_position.y;
  1840. current_position[Z_AXIS] = corrected_position.z;
  1841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1842. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1843. #endif
  1844. SYNC_PLAN_POSITION_KINEMATIC();
  1845. }
  1846. #endif // !DELTA
  1847. #else // !AUTO_BED_LEVELING_GRID
  1848. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1849. planner.bed_level_matrix.set_to_identity();
  1850. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1851. if (DEBUGGING(LEVELING)) {
  1852. vector_3 uncorrected_position = planner.adjusted_position();
  1853. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1854. }
  1855. #endif
  1856. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1857. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1858. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1859. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1860. if (planeNormal.z < 0) {
  1861. planeNormal.x = -planeNormal.x;
  1862. planeNormal.y = -planeNormal.y;
  1863. planeNormal.z = -planeNormal.z;
  1864. }
  1865. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1866. vector_3 corrected_position = planner.adjusted_position();
  1867. current_position[X_AXIS] = corrected_position.x;
  1868. current_position[Y_AXIS] = corrected_position.y;
  1869. current_position[Z_AXIS] = corrected_position.z;
  1870. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1871. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1872. #endif
  1873. SYNC_PLAN_POSITION_KINEMATIC();
  1874. }
  1875. #endif // !AUTO_BED_LEVELING_GRID
  1876. #if ENABLED(DELTA)
  1877. /**
  1878. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1879. */
  1880. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1881. if (bed_level[x][y] != 0.0) {
  1882. return; // Don't overwrite good values.
  1883. }
  1884. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1885. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1886. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1887. float median = c; // Median is robust (ignores outliers).
  1888. if (a < b) {
  1889. if (b < c) median = b;
  1890. if (c < a) median = a;
  1891. }
  1892. else { // b <= a
  1893. if (c < b) median = b;
  1894. if (a < c) median = a;
  1895. }
  1896. bed_level[x][y] = median;
  1897. }
  1898. /**
  1899. * Fill in the unprobed points (corners of circular print surface)
  1900. * using linear extrapolation, away from the center.
  1901. */
  1902. static void extrapolate_unprobed_bed_level() {
  1903. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1904. for (int y = 0; y <= half; y++) {
  1905. for (int x = 0; x <= half; x++) {
  1906. if (x + y < 3) continue;
  1907. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1908. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1909. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1910. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1911. }
  1912. }
  1913. }
  1914. /**
  1915. * Print calibration results for plotting or manual frame adjustment.
  1916. */
  1917. static void print_bed_level() {
  1918. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1919. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1920. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1921. SERIAL_PROTOCOLCHAR(' ');
  1922. }
  1923. SERIAL_EOL;
  1924. }
  1925. }
  1926. /**
  1927. * Reset calibration results to zero.
  1928. */
  1929. void reset_bed_level() {
  1930. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1931. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1932. #endif
  1933. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1934. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1935. bed_level[x][y] = 0.0;
  1936. }
  1937. }
  1938. }
  1939. #endif // DELTA
  1940. #endif // AUTO_BED_LEVELING_FEATURE
  1941. /**
  1942. * Home an individual axis
  1943. */
  1944. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1945. static void homeaxis(AxisEnum axis) {
  1946. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1947. if (DEBUGGING(LEVELING)) {
  1948. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1949. SERIAL_ECHOLNPGM(")");
  1950. }
  1951. #endif
  1952. #define HOMEAXIS_DO(LETTER) \
  1953. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1954. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1955. int axis_home_dir =
  1956. #if ENABLED(DUAL_X_CARRIAGE)
  1957. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1958. #endif
  1959. home_dir(axis);
  1960. // Set the axis position as setup for the move
  1961. current_position[axis] = 0;
  1962. sync_plan_position();
  1963. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1964. #if HAS_BED_PROBE
  1965. if (axis == Z_AXIS && axis_home_dir < 0) {
  1966. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1967. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > deploy_z_probe()");
  1968. #endif
  1969. deploy_z_probe();
  1970. }
  1971. #endif
  1972. // Set a flag for Z motor locking
  1973. #if ENABLED(Z_DUAL_ENDSTOPS)
  1974. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1975. #endif
  1976. // Move towards the endstop until an endstop is triggered
  1977. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1978. feedrate = homing_feedrate[axis];
  1979. line_to_destination();
  1980. stepper.synchronize();
  1981. // Set the axis position as setup for the move
  1982. current_position[axis] = 0;
  1983. sync_plan_position();
  1984. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1985. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1986. #endif
  1987. endstops.enable(false); // Disable endstops while moving away
  1988. // Move away from the endstop by the axis HOME_BUMP_MM
  1989. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1990. line_to_destination();
  1991. stepper.synchronize();
  1992. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1993. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1994. #endif
  1995. endstops.enable(true); // Enable endstops for next homing move
  1996. // Slow down the feedrate for the next move
  1997. set_homing_bump_feedrate(axis);
  1998. // Move slowly towards the endstop until triggered
  1999. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2000. line_to_destination();
  2001. stepper.synchronize();
  2002. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2003. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2004. #endif
  2005. #if ENABLED(Z_DUAL_ENDSTOPS)
  2006. if (axis == Z_AXIS) {
  2007. float adj = fabs(z_endstop_adj);
  2008. bool lockZ1;
  2009. if (axis_home_dir > 0) {
  2010. adj = -adj;
  2011. lockZ1 = (z_endstop_adj > 0);
  2012. }
  2013. else
  2014. lockZ1 = (z_endstop_adj < 0);
  2015. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2016. sync_plan_position();
  2017. // Move to the adjusted endstop height
  2018. feedrate = homing_feedrate[axis];
  2019. destination[Z_AXIS] = adj;
  2020. line_to_destination();
  2021. stepper.synchronize();
  2022. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2023. stepper.set_homing_flag(false);
  2024. } // Z_AXIS
  2025. #endif
  2026. #if ENABLED(DELTA)
  2027. // retrace by the amount specified in endstop_adj
  2028. if (endstop_adj[axis] * axis_home_dir < 0) {
  2029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2030. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2031. #endif
  2032. endstops.enable(false); // Disable endstops while moving away
  2033. sync_plan_position();
  2034. destination[axis] = endstop_adj[axis];
  2035. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2036. if (DEBUGGING(LEVELING)) {
  2037. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2038. DEBUG_POS("", destination);
  2039. }
  2040. #endif
  2041. line_to_destination();
  2042. stepper.synchronize();
  2043. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2044. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2045. #endif
  2046. endstops.enable(true); // Enable endstops for next homing move
  2047. }
  2048. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2049. else {
  2050. if (DEBUGGING(LEVELING)) {
  2051. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2052. SERIAL_EOL;
  2053. }
  2054. }
  2055. #endif
  2056. #endif
  2057. // Set the axis position to its home position (plus home offsets)
  2058. set_axis_is_at_home(axis);
  2059. SYNC_PLAN_POSITION_KINEMATIC();
  2060. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2061. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2062. #endif
  2063. destination[axis] = current_position[axis];
  2064. feedrate = 0.0;
  2065. endstops.hit_on_purpose(); // clear endstop hit flags
  2066. axis_known_position[axis] = true;
  2067. axis_homed[axis] = true;
  2068. // Put away the Z probe
  2069. #if HAS_BED_PROBE
  2070. if (axis == Z_AXIS && axis_home_dir < 0) {
  2071. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2072. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > stow_z_probe()");
  2073. #endif
  2074. stow_z_probe();
  2075. }
  2076. #endif
  2077. }
  2078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2079. if (DEBUGGING(LEVELING)) {
  2080. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2081. SERIAL_ECHOLNPGM(")");
  2082. }
  2083. #endif
  2084. }
  2085. #if ENABLED(FWRETRACT)
  2086. void retract(bool retracting, bool swapping = false) {
  2087. if (retracting == retracted[active_extruder]) return;
  2088. float old_feedrate = feedrate;
  2089. set_destination_to_current();
  2090. if (retracting) {
  2091. feedrate = retract_feedrate_mm_s * 60;
  2092. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2093. sync_plan_position_e();
  2094. prepare_move_to_destination();
  2095. if (retract_zlift > 0.01) {
  2096. current_position[Z_AXIS] -= retract_zlift;
  2097. SYNC_PLAN_POSITION_KINEMATIC();
  2098. prepare_move_to_destination();
  2099. }
  2100. }
  2101. else {
  2102. if (retract_zlift > 0.01) {
  2103. current_position[Z_AXIS] += retract_zlift;
  2104. SYNC_PLAN_POSITION_KINEMATIC();
  2105. }
  2106. feedrate = retract_recover_feedrate * 60;
  2107. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2108. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2109. sync_plan_position_e();
  2110. prepare_move_to_destination();
  2111. }
  2112. feedrate = old_feedrate;
  2113. retracted[active_extruder] = retracting;
  2114. } // retract()
  2115. #endif // FWRETRACT
  2116. /**
  2117. * ***************************************************************************
  2118. * ***************************** G-CODE HANDLING *****************************
  2119. * ***************************************************************************
  2120. */
  2121. /**
  2122. * Set XYZE destination and feedrate from the current GCode command
  2123. *
  2124. * - Set destination from included axis codes
  2125. * - Set to current for missing axis codes
  2126. * - Set the feedrate, if included
  2127. */
  2128. void gcode_get_destination() {
  2129. for (int i = 0; i < NUM_AXIS; i++) {
  2130. if (code_seen(axis_codes[i]))
  2131. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2132. else
  2133. destination[i] = current_position[i];
  2134. }
  2135. if (code_seen('F')) {
  2136. float next_feedrate = code_value_linear_units();
  2137. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2138. }
  2139. }
  2140. void unknown_command_error() {
  2141. SERIAL_ECHO_START;
  2142. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2143. SERIAL_ECHO(current_command);
  2144. SERIAL_ECHOPGM("\"\n");
  2145. }
  2146. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2147. /**
  2148. * Output a "busy" message at regular intervals
  2149. * while the machine is not accepting commands.
  2150. */
  2151. void host_keepalive() {
  2152. millis_t ms = millis();
  2153. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2154. if (PENDING(ms, next_busy_signal_ms)) return;
  2155. switch (busy_state) {
  2156. case IN_HANDLER:
  2157. case IN_PROCESS:
  2158. SERIAL_ECHO_START;
  2159. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2160. break;
  2161. case PAUSED_FOR_USER:
  2162. SERIAL_ECHO_START;
  2163. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2164. break;
  2165. case PAUSED_FOR_INPUT:
  2166. SERIAL_ECHO_START;
  2167. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2168. break;
  2169. default:
  2170. break;
  2171. }
  2172. }
  2173. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2174. }
  2175. #endif //HOST_KEEPALIVE_FEATURE
  2176. /**
  2177. * G0, G1: Coordinated movement of X Y Z E axes
  2178. */
  2179. inline void gcode_G0_G1() {
  2180. if (IsRunning()) {
  2181. gcode_get_destination(); // For X Y Z E F
  2182. #if ENABLED(FWRETRACT)
  2183. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2184. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2185. // Is this move an attempt to retract or recover?
  2186. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2187. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2188. sync_plan_position_e(); // AND from the planner
  2189. retract(!retracted[active_extruder]);
  2190. return;
  2191. }
  2192. }
  2193. #endif //FWRETRACT
  2194. prepare_move_to_destination();
  2195. }
  2196. }
  2197. /**
  2198. * G2: Clockwise Arc
  2199. * G3: Counterclockwise Arc
  2200. */
  2201. #if ENABLED(ARC_SUPPORT)
  2202. inline void gcode_G2_G3(bool clockwise) {
  2203. if (IsRunning()) {
  2204. #if ENABLED(SF_ARC_FIX)
  2205. bool relative_mode_backup = relative_mode;
  2206. relative_mode = true;
  2207. #endif
  2208. gcode_get_destination();
  2209. #if ENABLED(SF_ARC_FIX)
  2210. relative_mode = relative_mode_backup;
  2211. #endif
  2212. // Center of arc as offset from current_position
  2213. float arc_offset[2] = {
  2214. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2215. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2216. };
  2217. // Send an arc to the planner
  2218. plan_arc(destination, arc_offset, clockwise);
  2219. refresh_cmd_timeout();
  2220. }
  2221. }
  2222. #endif
  2223. /**
  2224. * G4: Dwell S<seconds> or P<milliseconds>
  2225. */
  2226. inline void gcode_G4() {
  2227. millis_t codenum = 0;
  2228. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2229. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2230. stepper.synchronize();
  2231. refresh_cmd_timeout();
  2232. codenum += previous_cmd_ms; // keep track of when we started waiting
  2233. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2234. while (PENDING(millis(), codenum)) idle();
  2235. }
  2236. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2237. /**
  2238. * Parameters interpreted according to:
  2239. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2240. * However I, J omission is not supported at this point; all
  2241. * parameters can be omitted and default to zero.
  2242. */
  2243. /**
  2244. * G5: Cubic B-spline
  2245. */
  2246. inline void gcode_G5() {
  2247. if (IsRunning()) {
  2248. gcode_get_destination();
  2249. float offset[] = {
  2250. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2251. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2252. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2253. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2254. };
  2255. plan_cubic_move(offset);
  2256. }
  2257. }
  2258. #endif // BEZIER_CURVE_SUPPORT
  2259. #if ENABLED(FWRETRACT)
  2260. /**
  2261. * G10 - Retract filament according to settings of M207
  2262. * G11 - Recover filament according to settings of M208
  2263. */
  2264. inline void gcode_G10_G11(bool doRetract=false) {
  2265. #if EXTRUDERS > 1
  2266. if (doRetract) {
  2267. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2268. }
  2269. #endif
  2270. retract(doRetract
  2271. #if EXTRUDERS > 1
  2272. , retracted_swap[active_extruder]
  2273. #endif
  2274. );
  2275. }
  2276. #endif //FWRETRACT
  2277. #if ENABLED(INCH_MODE_SUPPORT)
  2278. /**
  2279. * G20: Set input mode to inches
  2280. */
  2281. inline void gcode_G20() {
  2282. set_input_linear_units(LINEARUNIT_INCH);
  2283. }
  2284. /**
  2285. * G21: Set input mode to millimeters
  2286. */
  2287. inline void gcode_G21() {
  2288. set_input_linear_units(LINEARUNIT_MM);
  2289. }
  2290. #endif
  2291. /**
  2292. * G28: Home all axes according to settings
  2293. *
  2294. * Parameters
  2295. *
  2296. * None Home to all axes with no parameters.
  2297. * With QUICK_HOME enabled XY will home together, then Z.
  2298. *
  2299. * Cartesian parameters
  2300. *
  2301. * X Home to the X endstop
  2302. * Y Home to the Y endstop
  2303. * Z Home to the Z endstop
  2304. *
  2305. */
  2306. inline void gcode_G28() {
  2307. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2308. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2309. #endif
  2310. // Wait for planner moves to finish!
  2311. stepper.synchronize();
  2312. // For auto bed leveling, clear the level matrix
  2313. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2314. planner.bed_level_matrix.set_to_identity();
  2315. #if ENABLED(DELTA)
  2316. reset_bed_level();
  2317. #endif
  2318. #endif
  2319. /**
  2320. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2321. * on again when homing all axis
  2322. */
  2323. #if ENABLED(MESH_BED_LEVELING)
  2324. float pre_home_z = MESH_HOME_SEARCH_Z;
  2325. if (mbl.active()) {
  2326. // Save known Z position if already homed
  2327. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2328. pre_home_z = current_position[Z_AXIS];
  2329. pre_home_z += mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2330. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2331. }
  2332. mbl.set_active(false);
  2333. }
  2334. #endif
  2335. setup_for_endstop_move();
  2336. /**
  2337. * Directly after a reset this is all 0. Later we get a hint if we have
  2338. * to raise z or not.
  2339. */
  2340. set_destination_to_current();
  2341. feedrate = 0.0;
  2342. #if ENABLED(DELTA)
  2343. /**
  2344. * A delta can only safely home all axis at the same time
  2345. * all axis have to home at the same time
  2346. */
  2347. // Pretend the current position is 0,0,0
  2348. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2349. sync_plan_position();
  2350. // Move all carriages up together until the first endstop is hit.
  2351. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2352. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2353. line_to_destination();
  2354. stepper.synchronize();
  2355. endstops.hit_on_purpose(); // clear endstop hit flags
  2356. // Destination reached
  2357. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2358. // take care of back off and rehome now we are all at the top
  2359. HOMEAXIS(X);
  2360. HOMEAXIS(Y);
  2361. HOMEAXIS(Z);
  2362. SYNC_PLAN_POSITION_KINEMATIC();
  2363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2364. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2365. #endif
  2366. #else // NOT DELTA
  2367. bool homeX = code_seen(axis_codes[X_AXIS]),
  2368. homeY = code_seen(axis_codes[Y_AXIS]),
  2369. homeZ = code_seen(axis_codes[Z_AXIS]);
  2370. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2371. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2372. if (home_all_axis || homeZ) {
  2373. HOMEAXIS(Z);
  2374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2375. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2376. #endif
  2377. }
  2378. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2379. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2380. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2381. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2382. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2384. if (DEBUGGING(LEVELING)) {
  2385. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2386. SERIAL_EOL;
  2387. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2388. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2389. }
  2390. #endif
  2391. line_to_destination();
  2392. stepper.synchronize();
  2393. /**
  2394. * Update the current Z position even if it currently not real from
  2395. * Z-home otherwise each call to line_to_destination() will want to
  2396. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2397. */
  2398. current_position[Z_AXIS] = destination[Z_AXIS];
  2399. }
  2400. #endif
  2401. #if ENABLED(QUICK_HOME)
  2402. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2403. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2404. #if ENABLED(DUAL_X_CARRIAGE)
  2405. int x_axis_home_dir = x_home_dir(active_extruder);
  2406. extruder_duplication_enabled = false;
  2407. #else
  2408. int x_axis_home_dir = home_dir(X_AXIS);
  2409. #endif
  2410. SYNC_PLAN_POSITION_KINEMATIC();
  2411. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2412. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2413. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2414. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2415. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2416. line_to_destination();
  2417. stepper.synchronize();
  2418. set_axis_is_at_home(X_AXIS);
  2419. set_axis_is_at_home(Y_AXIS);
  2420. SYNC_PLAN_POSITION_KINEMATIC();
  2421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2422. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2423. #endif
  2424. destination[X_AXIS] = current_position[X_AXIS];
  2425. destination[Y_AXIS] = current_position[Y_AXIS];
  2426. line_to_destination();
  2427. feedrate = 0.0;
  2428. stepper.synchronize();
  2429. endstops.hit_on_purpose(); // clear endstop hit flags
  2430. current_position[X_AXIS] = destination[X_AXIS];
  2431. current_position[Y_AXIS] = destination[Y_AXIS];
  2432. #if DISABLED(SCARA)
  2433. current_position[Z_AXIS] = destination[Z_AXIS];
  2434. #endif
  2435. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2436. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2437. #endif
  2438. }
  2439. #endif // QUICK_HOME
  2440. #if ENABLED(HOME_Y_BEFORE_X)
  2441. // Home Y
  2442. if (home_all_axis || homeY) HOMEAXIS(Y);
  2443. #endif
  2444. // Home X
  2445. if (home_all_axis || homeX) {
  2446. #if ENABLED(DUAL_X_CARRIAGE)
  2447. int tmp_extruder = active_extruder;
  2448. extruder_duplication_enabled = false;
  2449. active_extruder = !active_extruder;
  2450. HOMEAXIS(X);
  2451. inactive_extruder_x_pos = current_position[X_AXIS];
  2452. active_extruder = tmp_extruder;
  2453. HOMEAXIS(X);
  2454. // reset state used by the different modes
  2455. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2456. delayed_move_time = 0;
  2457. active_extruder_parked = true;
  2458. #else
  2459. HOMEAXIS(X);
  2460. #endif
  2461. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2462. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2463. #endif
  2464. }
  2465. #if DISABLED(HOME_Y_BEFORE_X)
  2466. // Home Y
  2467. if (home_all_axis || homeY) {
  2468. HOMEAXIS(Y);
  2469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2470. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2471. #endif
  2472. }
  2473. #endif
  2474. // Home Z last if homing towards the bed
  2475. #if Z_HOME_DIR < 0
  2476. if (home_all_axis || homeZ) {
  2477. #if ENABLED(Z_SAFE_HOMING)
  2478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2479. if (DEBUGGING(LEVELING)) {
  2480. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2481. }
  2482. #endif
  2483. if (home_all_axis) {
  2484. /**
  2485. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2486. * No need to move Z any more as this height should already be safe
  2487. * enough to reach Z_SAFE_HOMING XY positions.
  2488. * Just make sure the planner is in sync.
  2489. */
  2490. SYNC_PLAN_POSITION_KINEMATIC();
  2491. /**
  2492. * Set the Z probe (or just the nozzle) destination to the safe
  2493. * homing point
  2494. */
  2495. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2496. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2497. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2498. feedrate = XY_PROBE_FEEDRATE;
  2499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2500. if (DEBUGGING(LEVELING)) {
  2501. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2502. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2503. }
  2504. #endif
  2505. // Move in the XY plane
  2506. line_to_destination();
  2507. stepper.synchronize();
  2508. /**
  2509. * Update the current positions for XY, Z is still at least at
  2510. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2511. */
  2512. current_position[X_AXIS] = destination[X_AXIS];
  2513. current_position[Y_AXIS] = destination[Y_AXIS];
  2514. // Home the Z axis
  2515. HOMEAXIS(Z);
  2516. }
  2517. else if (homeZ) { // Don't need to Home Z twice
  2518. // Let's see if X and Y are homed
  2519. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2520. /**
  2521. * Make sure the Z probe is within the physical limits
  2522. * NOTE: This doesn't necessarily ensure the Z probe is also
  2523. * within the bed!
  2524. */
  2525. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2526. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2527. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2528. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2529. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2530. // Home the Z axis
  2531. HOMEAXIS(Z);
  2532. }
  2533. else {
  2534. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2535. SERIAL_ECHO_START;
  2536. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2537. }
  2538. }
  2539. else {
  2540. axis_unhomed_error();
  2541. }
  2542. } // !home_all_axes && homeZ
  2543. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2544. if (DEBUGGING(LEVELING)) {
  2545. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2546. }
  2547. #endif
  2548. #else // !Z_SAFE_HOMING
  2549. HOMEAXIS(Z);
  2550. #endif // !Z_SAFE_HOMING
  2551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2552. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2553. #endif
  2554. } // home_all_axis || homeZ
  2555. #endif // Z_HOME_DIR < 0
  2556. SYNC_PLAN_POSITION_KINEMATIC();
  2557. #endif // !DELTA (gcode_G28)
  2558. endstops.not_homing();
  2559. // Enable mesh leveling again
  2560. #if ENABLED(MESH_BED_LEVELING)
  2561. if (mbl.has_mesh()) {
  2562. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2563. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2564. #if Z_HOME_DIR > 0
  2565. + Z_MAX_POS
  2566. #endif
  2567. ;
  2568. SYNC_PLAN_POSITION_KINEMATIC();
  2569. mbl.set_active(true);
  2570. #if ENABLED(MESH_G28_REST_ORIGIN)
  2571. current_position[Z_AXIS] = 0.0;
  2572. set_destination_to_current();
  2573. feedrate = homing_feedrate[Z_AXIS];
  2574. line_to_destination();
  2575. stepper.synchronize();
  2576. #else
  2577. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2578. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2579. current_position[Y_AXIS] - home_offset[Y_AXIS])
  2580. #if Z_HOME_DIR > 0
  2581. + Z_MAX_POS
  2582. #endif
  2583. ;
  2584. #endif
  2585. }
  2586. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2587. current_position[Z_AXIS] = pre_home_z;
  2588. SYNC_PLAN_POSITION_KINEMATIC();
  2589. mbl.set_active(true);
  2590. current_position[Z_AXIS] = pre_home_z -
  2591. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2592. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2593. }
  2594. }
  2595. #endif
  2596. clean_up_after_endstop_or_probe_move();
  2597. endstops.hit_on_purpose(); // clear endstop hit flags
  2598. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2599. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2600. #endif
  2601. report_current_position();
  2602. }
  2603. #if HAS_PROBING_PROCEDURE
  2604. void out_of_range_error(const char* p_edge) {
  2605. SERIAL_PROTOCOLPGM("?Probe ");
  2606. serialprintPGM(p_edge);
  2607. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2608. }
  2609. #endif
  2610. #if ENABLED(MESH_BED_LEVELING)
  2611. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2612. inline void _mbl_goto_xy(float x, float y) {
  2613. saved_feedrate = feedrate;
  2614. feedrate = homing_feedrate[X_AXIS];
  2615. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2616. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2617. + MIN_Z_HEIGHT_FOR_HOMING
  2618. #endif
  2619. ;
  2620. line_to_current_position();
  2621. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2622. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2623. line_to_current_position();
  2624. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2625. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2626. line_to_current_position();
  2627. #endif
  2628. feedrate = saved_feedrate;
  2629. stepper.synchronize();
  2630. }
  2631. /**
  2632. * G29: Mesh-based Z probe, probes a grid and produces a
  2633. * mesh to compensate for variable bed height
  2634. *
  2635. * Parameters With MESH_BED_LEVELING:
  2636. *
  2637. * S0 Produce a mesh report
  2638. * S1 Start probing mesh points
  2639. * S2 Probe the next mesh point
  2640. * S3 Xn Yn Zn.nn Manually modify a single point
  2641. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2642. * S5 Reset and disable mesh
  2643. *
  2644. * The S0 report the points as below
  2645. *
  2646. * +----> X-axis 1-n
  2647. * |
  2648. * |
  2649. * v Y-axis 1-n
  2650. *
  2651. */
  2652. inline void gcode_G29() {
  2653. static int probe_point = -1;
  2654. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2655. if (state < 0 || state > 5) {
  2656. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2657. return;
  2658. }
  2659. int8_t px, py;
  2660. float z;
  2661. switch (state) {
  2662. case MeshReport:
  2663. if (mbl.has_mesh()) {
  2664. SERIAL_PROTOCOLPGM("State: ");
  2665. if (mbl.active())
  2666. SERIAL_PROTOCOLPGM("On");
  2667. else
  2668. SERIAL_PROTOCOLPGM("Off");
  2669. SERIAL_PROTOCOLPGM("\nNum X,Y: ");
  2670. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2671. SERIAL_PROTOCOLCHAR(',');
  2672. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2673. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2674. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2675. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2676. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2677. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2678. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2679. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2680. SERIAL_PROTOCOLPGM(" ");
  2681. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2682. }
  2683. SERIAL_EOL;
  2684. }
  2685. }
  2686. else
  2687. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2688. break;
  2689. case MeshStart:
  2690. mbl.reset();
  2691. probe_point = 0;
  2692. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2693. break;
  2694. case MeshNext:
  2695. if (probe_point < 0) {
  2696. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2697. return;
  2698. }
  2699. // For each G29 S2...
  2700. if (probe_point == 0) {
  2701. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2702. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2703. #if Z_HOME_DIR > 0
  2704. + Z_MAX_POS
  2705. #endif
  2706. ;
  2707. SYNC_PLAN_POSITION_KINEMATIC();
  2708. }
  2709. else {
  2710. // For G29 S2 after adjusting Z.
  2711. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2712. }
  2713. // If there's another point to sample, move there with optional lift.
  2714. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2715. mbl.zigzag(probe_point, px, py);
  2716. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2717. probe_point++;
  2718. }
  2719. else {
  2720. // One last "return to the bed" (as originally coded) at completion
  2721. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2722. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2723. + MIN_Z_HEIGHT_FOR_HOMING
  2724. #endif
  2725. ;
  2726. line_to_current_position();
  2727. stepper.synchronize();
  2728. // After recording the last point, activate the mbl and home
  2729. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2730. probe_point = -1;
  2731. mbl.set_has_mesh(true);
  2732. enqueue_and_echo_commands_P(PSTR("G28"));
  2733. }
  2734. break;
  2735. case MeshSet:
  2736. if (code_seen('X')) {
  2737. px = code_value_int() - 1;
  2738. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2739. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2740. return;
  2741. }
  2742. }
  2743. else {
  2744. SERIAL_PROTOCOLPGM("X not entered.\n");
  2745. return;
  2746. }
  2747. if (code_seen('Y')) {
  2748. py = code_value_int() - 1;
  2749. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2750. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2751. return;
  2752. }
  2753. }
  2754. else {
  2755. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2756. return;
  2757. }
  2758. if (code_seen('Z')) {
  2759. z = code_value_axis_units(Z_AXIS);
  2760. }
  2761. else {
  2762. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2763. return;
  2764. }
  2765. mbl.z_values[py][px] = z;
  2766. break;
  2767. case MeshSetZOffset:
  2768. if (code_seen('Z')) {
  2769. z = code_value_axis_units(Z_AXIS);
  2770. }
  2771. else {
  2772. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2773. return;
  2774. }
  2775. mbl.z_offset = z;
  2776. break;
  2777. case MeshReset:
  2778. if (mbl.active()) {
  2779. current_position[Z_AXIS] +=
  2780. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2781. current_position[Y_AXIS] - home_offset[Y_AXIS]) - MESH_HOME_SEARCH_Z;
  2782. mbl.reset();
  2783. SYNC_PLAN_POSITION_KINEMATIC();
  2784. }
  2785. else
  2786. mbl.reset();
  2787. } // switch(state)
  2788. report_current_position();
  2789. }
  2790. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2791. /**
  2792. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2793. * Will fail if the printer has not been homed with G28.
  2794. *
  2795. * Enhanced G29 Auto Bed Leveling Probe Routine
  2796. *
  2797. * Parameters With AUTO_BED_LEVELING_GRID:
  2798. *
  2799. * P Set the size of the grid that will be probed (P x P points).
  2800. * Not supported by non-linear delta printer bed leveling.
  2801. * Example: "G29 P4"
  2802. *
  2803. * S Set the XY travel speed between probe points (in mm/min)
  2804. *
  2805. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2806. * or clean the rotation Matrix. Useful to check the topology
  2807. * after a first run of G29.
  2808. *
  2809. * V Set the verbose level (0-4). Example: "G29 V3"
  2810. *
  2811. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2812. * This is useful for manual bed leveling and finding flaws in the bed (to
  2813. * assist with part placement).
  2814. * Not supported by non-linear delta printer bed leveling.
  2815. *
  2816. * F Set the Front limit of the probing grid
  2817. * B Set the Back limit of the probing grid
  2818. * L Set the Left limit of the probing grid
  2819. * R Set the Right limit of the probing grid
  2820. *
  2821. * Global Parameters:
  2822. *
  2823. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2824. * Include "E" to engage/disengage the Z probe for each sample.
  2825. * There's no extra effect if you have a fixed Z probe.
  2826. * Usage: "G29 E" or "G29 e"
  2827. *
  2828. */
  2829. inline void gcode_G29() {
  2830. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2831. if (DEBUGGING(LEVELING)) {
  2832. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2833. DEBUG_POS("", current_position);
  2834. }
  2835. #endif
  2836. // Don't allow auto-leveling without homing first
  2837. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2838. axis_unhomed_error(true);
  2839. return;
  2840. }
  2841. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2842. if (verbose_level < 0 || verbose_level > 4) {
  2843. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2844. return;
  2845. }
  2846. bool dryrun = code_seen('D');
  2847. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  2848. const bool stow_probe_after_each = false;
  2849. #else
  2850. bool stow_probe_after_each = code_seen('E');
  2851. #endif
  2852. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2853. #if DISABLED(DELTA)
  2854. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2855. #endif
  2856. if (verbose_level > 0) {
  2857. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2858. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2859. }
  2860. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2861. #if DISABLED(DELTA)
  2862. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2863. if (auto_bed_leveling_grid_points < 2) {
  2864. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2865. return;
  2866. }
  2867. #endif
  2868. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2869. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2870. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2871. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2872. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2873. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2874. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2875. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2876. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2877. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2878. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2879. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2880. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2881. if (left_out || right_out || front_out || back_out) {
  2882. if (left_out) {
  2883. out_of_range_error(PSTR("(L)eft"));
  2884. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2885. }
  2886. if (right_out) {
  2887. out_of_range_error(PSTR("(R)ight"));
  2888. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2889. }
  2890. if (front_out) {
  2891. out_of_range_error(PSTR("(F)ront"));
  2892. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2893. }
  2894. if (back_out) {
  2895. out_of_range_error(PSTR("(B)ack"));
  2896. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2897. }
  2898. return;
  2899. }
  2900. #endif // AUTO_BED_LEVELING_GRID
  2901. if (!dryrun) {
  2902. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2903. if (DEBUGGING(LEVELING)) {
  2904. vector_3 corrected_position = planner.adjusted_position();
  2905. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2906. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2907. }
  2908. #endif
  2909. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2910. planner.bed_level_matrix.set_to_identity();
  2911. #if ENABLED(DELTA)
  2912. reset_bed_level();
  2913. #else //!DELTA
  2914. //vector_3 corrected_position = planner.adjusted_position();
  2915. //corrected_position.debug("position before G29");
  2916. vector_3 uncorrected_position = planner.adjusted_position();
  2917. //uncorrected_position.debug("position during G29");
  2918. current_position[X_AXIS] = uncorrected_position.x;
  2919. current_position[Y_AXIS] = uncorrected_position.y;
  2920. current_position[Z_AXIS] = uncorrected_position.z;
  2921. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2922. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2923. #endif
  2924. SYNC_PLAN_POSITION_KINEMATIC();
  2925. #endif // !DELTA
  2926. }
  2927. stepper.synchronize();
  2928. setup_for_endstop_or_probe_move();
  2929. // Deploy the probe. Servo will raise if needed.
  2930. deploy_z_probe();
  2931. bed_leveling_in_progress = true;
  2932. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2933. // probe at the points of a lattice grid
  2934. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2935. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2936. #if ENABLED(DELTA)
  2937. delta_grid_spacing[0] = xGridSpacing;
  2938. delta_grid_spacing[1] = yGridSpacing;
  2939. float zoffset = zprobe_zoffset;
  2940. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value_axis_units(Z_AXIS);
  2941. #else // !DELTA
  2942. /**
  2943. * solve the plane equation ax + by + d = z
  2944. * A is the matrix with rows [x y 1] for all the probed points
  2945. * B is the vector of the Z positions
  2946. * the normal vector to the plane is formed by the coefficients of the
  2947. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2948. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2949. */
  2950. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2951. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2952. eqnBVector[abl2], // "B" vector of Z points
  2953. mean = 0.0;
  2954. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2955. #endif // !DELTA
  2956. int probePointCounter = 0;
  2957. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2958. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2959. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2960. int xStart, xStop, xInc;
  2961. if (zig) {
  2962. xStart = 0;
  2963. xStop = auto_bed_leveling_grid_points;
  2964. xInc = 1;
  2965. }
  2966. else {
  2967. xStart = auto_bed_leveling_grid_points - 1;
  2968. xStop = -1;
  2969. xInc = -1;
  2970. }
  2971. zig = !zig;
  2972. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2973. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2974. #if ENABLED(DELTA)
  2975. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2976. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2977. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2978. #endif //DELTA
  2979. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2980. #if DISABLED(DELTA)
  2981. mean += measured_z;
  2982. eqnBVector[probePointCounter] = measured_z;
  2983. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2984. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2985. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2986. indexIntoAB[xCount][yCount] = probePointCounter;
  2987. #else
  2988. bed_level[xCount][yCount] = measured_z + zoffset;
  2989. #endif
  2990. probePointCounter++;
  2991. idle();
  2992. } //xProbe
  2993. } //yProbe
  2994. #else // !AUTO_BED_LEVELING_GRID
  2995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2996. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2997. #endif
  2998. // Probe at 3 arbitrary points
  2999. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3000. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3001. stow_probe_after_each, verbose_level),
  3002. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3003. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3004. stow_probe_after_each, verbose_level),
  3005. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3006. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3007. stow_probe_after_each, verbose_level);
  3008. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3009. #endif // !AUTO_BED_LEVELING_GRID
  3010. // Raise to Z_RAISE_AFTER_PROBING. Stow the probe.
  3011. stow_z_probe();
  3012. // Restore state after probing
  3013. clean_up_after_endstop_or_probe_move();
  3014. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3015. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3016. #endif
  3017. // Calculate leveling, print reports, correct the position
  3018. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3019. #if ENABLED(DELTA)
  3020. if (!dryrun) extrapolate_unprobed_bed_level();
  3021. print_bed_level();
  3022. #else // !DELTA
  3023. // solve lsq problem
  3024. double plane_equation_coefficients[3];
  3025. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3026. mean /= abl2;
  3027. if (verbose_level) {
  3028. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3029. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3030. SERIAL_PROTOCOLPGM(" b: ");
  3031. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3032. SERIAL_PROTOCOLPGM(" d: ");
  3033. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3034. SERIAL_EOL;
  3035. if (verbose_level > 2) {
  3036. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3037. SERIAL_PROTOCOL_F(mean, 8);
  3038. SERIAL_EOL;
  3039. }
  3040. }
  3041. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3042. // Show the Topography map if enabled
  3043. if (do_topography_map) {
  3044. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  3045. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  3046. SERIAL_PROTOCOLPGM(" | |\n");
  3047. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  3048. SERIAL_PROTOCOLPGM(" E | | I\n");
  3049. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  3050. SERIAL_PROTOCOLPGM(" T | | H\n");
  3051. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  3052. SERIAL_PROTOCOLPGM(" | |\n");
  3053. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  3054. SERIAL_PROTOCOLPGM(" (0,0)\n");
  3055. float min_diff = 999;
  3056. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3057. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3058. int ind = indexIntoAB[xx][yy];
  3059. float diff = eqnBVector[ind] - mean;
  3060. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3061. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3062. z_tmp = 0;
  3063. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3064. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3065. if (diff >= 0.0)
  3066. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3067. else
  3068. SERIAL_PROTOCOLCHAR(' ');
  3069. SERIAL_PROTOCOL_F(diff, 5);
  3070. } // xx
  3071. SERIAL_EOL;
  3072. } // yy
  3073. SERIAL_EOL;
  3074. if (verbose_level > 3) {
  3075. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  3076. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3077. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3078. int ind = indexIntoAB[xx][yy];
  3079. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3080. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3081. z_tmp = 0;
  3082. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3083. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3084. if (diff >= 0.0)
  3085. SERIAL_PROTOCOLPGM(" +");
  3086. // Include + for column alignment
  3087. else
  3088. SERIAL_PROTOCOLCHAR(' ');
  3089. SERIAL_PROTOCOL_F(diff, 5);
  3090. } // xx
  3091. SERIAL_EOL;
  3092. } // yy
  3093. SERIAL_EOL;
  3094. }
  3095. } //do_topography_map
  3096. #endif //!DELTA
  3097. #endif // AUTO_BED_LEVELING_GRID
  3098. #if DISABLED(DELTA)
  3099. if (verbose_level > 0)
  3100. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  3101. if (!dryrun) {
  3102. /**
  3103. * Correct the Z height difference from Z probe position and nozzle tip position.
  3104. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3105. * from the nozzle. When the bed is uneven, this height must be corrected.
  3106. */
  3107. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3108. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3109. z_tmp = current_position[Z_AXIS],
  3110. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3111. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3112. if (DEBUGGING(LEVELING)) {
  3113. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3114. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3115. SERIAL_EOL;
  3116. }
  3117. #endif
  3118. // Apply the correction sending the Z probe offset
  3119. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3121. if (DEBUGGING(LEVELING)) {
  3122. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3123. SERIAL_EOL;
  3124. }
  3125. #endif
  3126. // Adjust the current Z and send it to the planner.
  3127. current_position[Z_AXIS] += z_tmp - stepper_z;
  3128. SYNC_PLAN_POSITION_KINEMATIC();
  3129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3130. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3131. #endif
  3132. }
  3133. #endif // !DELTA
  3134. #ifdef Z_PROBE_END_SCRIPT
  3135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3136. if (DEBUGGING(LEVELING)) {
  3137. SERIAL_ECHO("Z Probe End Script: ");
  3138. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3139. }
  3140. #endif
  3141. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3142. stepper.synchronize();
  3143. #endif
  3144. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3145. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3146. #endif
  3147. bed_leveling_in_progress = false;
  3148. report_current_position();
  3149. KEEPALIVE_STATE(IN_HANDLER);
  3150. }
  3151. #endif //AUTO_BED_LEVELING_FEATURE
  3152. #if HAS_BED_PROBE
  3153. /**
  3154. * G30: Do a single Z probe at the current XY
  3155. */
  3156. inline void gcode_G30() {
  3157. setup_for_endstop_or_probe_move();
  3158. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3159. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3160. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3161. true, 1);
  3162. SERIAL_PROTOCOLPGM("Bed X: ");
  3163. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3164. SERIAL_PROTOCOLPGM(" Y: ");
  3165. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3166. SERIAL_PROTOCOLPGM(" Z: ");
  3167. SERIAL_PROTOCOL(measured_z + 0.0001);
  3168. SERIAL_EOL;
  3169. clean_up_after_endstop_or_probe_move();
  3170. report_current_position();
  3171. }
  3172. #if ENABLED(Z_PROBE_SLED)
  3173. /**
  3174. * G31: Deploy the Z probe
  3175. */
  3176. inline void gcode_G31() { deploy_z_probe(); }
  3177. /**
  3178. * G32: Stow the Z probe
  3179. */
  3180. inline void gcode_G32() { stow_z_probe(); }
  3181. #endif // Z_PROBE_SLED
  3182. #endif // HAS_BED_PROBE
  3183. /**
  3184. * G92: Set current position to given X Y Z E
  3185. */
  3186. inline void gcode_G92() {
  3187. bool didE = code_seen(axis_codes[E_AXIS]);
  3188. if (!didE) stepper.synchronize();
  3189. bool didXYZ = false;
  3190. for (int i = 0; i < NUM_AXIS; i++) {
  3191. if (code_seen(axis_codes[i])) {
  3192. float p = current_position[i],
  3193. v = code_value_axis_units(i);
  3194. current_position[i] = v;
  3195. if (i != E_AXIS) {
  3196. position_shift[i] += v - p; // Offset the coordinate space
  3197. update_software_endstops((AxisEnum)i);
  3198. didXYZ = true;
  3199. }
  3200. }
  3201. }
  3202. if (didXYZ)
  3203. SYNC_PLAN_POSITION_KINEMATIC();
  3204. else if (didE)
  3205. sync_plan_position_e();
  3206. }
  3207. #if ENABLED(ULTIPANEL)
  3208. /**
  3209. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3210. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3211. */
  3212. inline void gcode_M0_M1() {
  3213. char* args = current_command_args;
  3214. uint8_t test_value = 12;
  3215. SERIAL_ECHOPAIR("TEST", test_value);
  3216. millis_t codenum = 0;
  3217. bool hasP = false, hasS = false;
  3218. if (code_seen('P')) {
  3219. codenum = code_value_millis(); // milliseconds to wait
  3220. hasP = codenum > 0;
  3221. }
  3222. if (code_seen('S')) {
  3223. codenum = code_value_millis_from_seconds(); // seconds to wait
  3224. hasS = codenum > 0;
  3225. }
  3226. if (!hasP && !hasS && *args != '\0')
  3227. lcd_setstatus(args, true);
  3228. else {
  3229. LCD_MESSAGEPGM(MSG_USERWAIT);
  3230. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3231. dontExpireStatus();
  3232. #endif
  3233. }
  3234. lcd_ignore_click();
  3235. stepper.synchronize();
  3236. refresh_cmd_timeout();
  3237. if (codenum > 0) {
  3238. codenum += previous_cmd_ms; // wait until this time for a click
  3239. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3240. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3241. KEEPALIVE_STATE(IN_HANDLER);
  3242. lcd_ignore_click(false);
  3243. }
  3244. else {
  3245. if (!lcd_detected()) return;
  3246. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3247. while (!lcd_clicked()) idle();
  3248. KEEPALIVE_STATE(IN_HANDLER);
  3249. }
  3250. if (IS_SD_PRINTING)
  3251. LCD_MESSAGEPGM(MSG_RESUMING);
  3252. else
  3253. LCD_MESSAGEPGM(WELCOME_MSG);
  3254. }
  3255. #endif // ULTIPANEL
  3256. /**
  3257. * M17: Enable power on all stepper motors
  3258. */
  3259. inline void gcode_M17() {
  3260. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3261. enable_all_steppers();
  3262. }
  3263. #if ENABLED(SDSUPPORT)
  3264. /**
  3265. * M20: List SD card to serial output
  3266. */
  3267. inline void gcode_M20() {
  3268. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3269. card.ls();
  3270. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3271. }
  3272. /**
  3273. * M21: Init SD Card
  3274. */
  3275. inline void gcode_M21() {
  3276. card.initsd();
  3277. }
  3278. /**
  3279. * M22: Release SD Card
  3280. */
  3281. inline void gcode_M22() {
  3282. card.release();
  3283. }
  3284. /**
  3285. * M23: Open a file
  3286. */
  3287. inline void gcode_M23() {
  3288. card.openFile(current_command_args, true);
  3289. }
  3290. /**
  3291. * M24: Start SD Print
  3292. */
  3293. inline void gcode_M24() {
  3294. card.startFileprint();
  3295. print_job_timer.start();
  3296. }
  3297. /**
  3298. * M25: Pause SD Print
  3299. */
  3300. inline void gcode_M25() {
  3301. card.pauseSDPrint();
  3302. }
  3303. /**
  3304. * M26: Set SD Card file index
  3305. */
  3306. inline void gcode_M26() {
  3307. if (card.cardOK && code_seen('S'))
  3308. card.setIndex(code_value_long());
  3309. }
  3310. /**
  3311. * M27: Get SD Card status
  3312. */
  3313. inline void gcode_M27() {
  3314. card.getStatus();
  3315. }
  3316. /**
  3317. * M28: Start SD Write
  3318. */
  3319. inline void gcode_M28() {
  3320. card.openFile(current_command_args, false);
  3321. }
  3322. /**
  3323. * M29: Stop SD Write
  3324. * Processed in write to file routine above
  3325. */
  3326. inline void gcode_M29() {
  3327. // card.saving = false;
  3328. }
  3329. /**
  3330. * M30 <filename>: Delete SD Card file
  3331. */
  3332. inline void gcode_M30() {
  3333. if (card.cardOK) {
  3334. card.closefile();
  3335. card.removeFile(current_command_args);
  3336. }
  3337. }
  3338. #endif //SDSUPPORT
  3339. /**
  3340. * M31: Get the time since the start of SD Print (or last M109)
  3341. */
  3342. inline void gcode_M31() {
  3343. millis_t t = print_job_timer.duration();
  3344. int min = t / 60, sec = t % 60;
  3345. char time[30];
  3346. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3347. SERIAL_ECHO_START;
  3348. SERIAL_ECHOLN(time);
  3349. lcd_setstatus(time);
  3350. thermalManager.autotempShutdown();
  3351. }
  3352. #if ENABLED(SDSUPPORT)
  3353. /**
  3354. * M32: Select file and start SD Print
  3355. */
  3356. inline void gcode_M32() {
  3357. if (card.sdprinting)
  3358. stepper.synchronize();
  3359. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3360. if (!namestartpos)
  3361. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3362. else
  3363. namestartpos++; //to skip the '!'
  3364. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3365. if (card.cardOK) {
  3366. card.openFile(namestartpos, true, call_procedure);
  3367. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3368. card.setIndex(code_value_long());
  3369. card.startFileprint();
  3370. // Procedure calls count as normal print time.
  3371. if (!call_procedure) print_job_timer.start();
  3372. }
  3373. }
  3374. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3375. /**
  3376. * M33: Get the long full path of a file or folder
  3377. *
  3378. * Parameters:
  3379. * <dospath> Case-insensitive DOS-style path to a file or folder
  3380. *
  3381. * Example:
  3382. * M33 miscel~1/armchair/armcha~1.gco
  3383. *
  3384. * Output:
  3385. * /Miscellaneous/Armchair/Armchair.gcode
  3386. */
  3387. inline void gcode_M33() {
  3388. card.printLongPath(current_command_args);
  3389. }
  3390. #endif
  3391. /**
  3392. * M928: Start SD Write
  3393. */
  3394. inline void gcode_M928() {
  3395. card.openLogFile(current_command_args);
  3396. }
  3397. #endif // SDSUPPORT
  3398. /**
  3399. * M42: Change pin status via GCode
  3400. *
  3401. * P<pin> Pin number (LED if omitted)
  3402. * S<byte> Pin status from 0 - 255
  3403. */
  3404. inline void gcode_M42() {
  3405. if (code_seen('S')) {
  3406. int pin_status = code_value_int();
  3407. if (pin_status < 0 || pin_status > 255) return;
  3408. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3409. if (pin_number < 0) return;
  3410. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3411. if (pin_number == sensitive_pins[i]) return;
  3412. pinMode(pin_number, OUTPUT);
  3413. digitalWrite(pin_number, pin_status);
  3414. analogWrite(pin_number, pin_status);
  3415. #if FAN_COUNT > 0
  3416. switch (pin_number) {
  3417. #if HAS_FAN0
  3418. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3419. #endif
  3420. #if HAS_FAN1
  3421. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3422. #endif
  3423. #if HAS_FAN2
  3424. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3425. #endif
  3426. }
  3427. #endif
  3428. } // code_seen('S')
  3429. }
  3430. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3431. /**
  3432. * M48: Z probe repeatability measurement function.
  3433. *
  3434. * Usage:
  3435. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3436. * P = Number of sampled points (4-50, default 10)
  3437. * X = Sample X position
  3438. * Y = Sample Y position
  3439. * V = Verbose level (0-4, default=1)
  3440. * E = Engage Z probe for each reading
  3441. * L = Number of legs of movement before probe
  3442. * S = Schizoid (Or Star if you prefer)
  3443. *
  3444. * This function assumes the bed has been homed. Specifically, that a G28 command
  3445. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3446. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3447. * regenerated.
  3448. */
  3449. inline void gcode_M48() {
  3450. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3451. axis_unhomed_error(true);
  3452. return;
  3453. }
  3454. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3455. if (verbose_level < 0 || verbose_level > 4) {
  3456. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3457. return;
  3458. }
  3459. if (verbose_level > 0)
  3460. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3461. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3462. if (n_samples < 4 || n_samples > 50) {
  3463. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3464. return;
  3465. }
  3466. float X_current = current_position[X_AXIS],
  3467. Y_current = current_position[Y_AXIS];
  3468. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  3469. const bool stow_probe_after_each = false;
  3470. #else
  3471. bool stow_probe_after_each = code_seen('E');
  3472. #endif
  3473. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3474. #if DISABLED(DELTA)
  3475. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3476. out_of_range_error(PSTR("X"));
  3477. return;
  3478. }
  3479. #endif
  3480. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3481. #if DISABLED(DELTA)
  3482. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3483. out_of_range_error(PSTR("Y"));
  3484. return;
  3485. }
  3486. #else
  3487. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3488. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3489. return;
  3490. }
  3491. #endif
  3492. bool seen_L = code_seen('L');
  3493. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3494. if (n_legs > 15) {
  3495. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3496. return;
  3497. }
  3498. if (n_legs == 1) n_legs = 2;
  3499. bool schizoid_flag = code_seen('S');
  3500. if (schizoid_flag && !seen_L) n_legs = 7;
  3501. /**
  3502. * Now get everything to the specified probe point So we can safely do a
  3503. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3504. * we don't want to use that as a starting point for each probe.
  3505. */
  3506. if (verbose_level > 2)
  3507. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3508. #if ENABLED(DELTA)
  3509. // we don't do bed level correction in M48 because we want the raw data when we probe
  3510. reset_bed_level();
  3511. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3512. // we don't do bed level correction in M48 because we want the raw data when we probe
  3513. planner.bed_level_matrix.set_to_identity();
  3514. #endif
  3515. setup_for_endstop_or_probe_move();
  3516. // Move to the first point, deploy, and probe
  3517. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3518. randomSeed(millis());
  3519. double mean = 0, sigma = 0, sample_set[n_samples];
  3520. for (uint8_t n = 0; n < n_samples; n++) {
  3521. if (n_legs) {
  3522. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3523. float angle = random(0.0, 360.0),
  3524. radius = random(
  3525. #if ENABLED(DELTA)
  3526. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3527. #else
  3528. 5, X_MAX_LENGTH / 8
  3529. #endif
  3530. );
  3531. if (verbose_level > 3) {
  3532. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3533. SERIAL_ECHOPAIR(" angle: ", angle);
  3534. SERIAL_ECHO(" Direction: ");
  3535. if (dir > 0) SERIAL_ECHO("Counter ");
  3536. SERIAL_ECHOLN("Clockwise");
  3537. }
  3538. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3539. double delta_angle;
  3540. if (schizoid_flag)
  3541. // The points of a 5 point star are 72 degrees apart. We need to
  3542. // skip a point and go to the next one on the star.
  3543. delta_angle = dir * 2.0 * 72.0;
  3544. else
  3545. // If we do this line, we are just trying to move further
  3546. // around the circle.
  3547. delta_angle = dir * (float) random(25, 45);
  3548. angle += delta_angle;
  3549. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3550. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3551. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3552. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3553. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3554. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3555. #if DISABLED(DELTA)
  3556. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3557. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3558. #else
  3559. // If we have gone out too far, we can do a simple fix and scale the numbers
  3560. // back in closer to the origin.
  3561. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3562. X_current /= 1.25;
  3563. Y_current /= 1.25;
  3564. if (verbose_level > 3) {
  3565. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3566. SERIAL_ECHOPAIR(", ", Y_current);
  3567. SERIAL_EOL;
  3568. }
  3569. }
  3570. #endif
  3571. if (verbose_level > 3) {
  3572. SERIAL_PROTOCOL("Going to:");
  3573. SERIAL_ECHOPAIR("x: ", X_current);
  3574. SERIAL_ECHOPAIR("y: ", Y_current);
  3575. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3576. SERIAL_EOL;
  3577. }
  3578. do_blocking_move_to_xy(X_current, Y_current);
  3579. } // n_legs loop
  3580. } // n_legs
  3581. // Probe a single point
  3582. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3583. /**
  3584. * Get the current mean for the data points we have so far
  3585. */
  3586. double sum = 0.0;
  3587. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3588. mean = sum / (n + 1);
  3589. /**
  3590. * Now, use that mean to calculate the standard deviation for the
  3591. * data points we have so far
  3592. */
  3593. sum = 0.0;
  3594. for (uint8_t j = 0; j <= n; j++) {
  3595. float ss = sample_set[j] - mean;
  3596. sum += ss * ss;
  3597. }
  3598. sigma = sqrt(sum / (n + 1));
  3599. if (verbose_level > 0) {
  3600. if (verbose_level > 1) {
  3601. SERIAL_PROTOCOL(n + 1);
  3602. SERIAL_PROTOCOLPGM(" of ");
  3603. SERIAL_PROTOCOL((int)n_samples);
  3604. SERIAL_PROTOCOLPGM(" z: ");
  3605. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3606. if (verbose_level > 2) {
  3607. SERIAL_PROTOCOLPGM(" mean: ");
  3608. SERIAL_PROTOCOL_F(mean, 6);
  3609. SERIAL_PROTOCOLPGM(" sigma: ");
  3610. SERIAL_PROTOCOL_F(sigma, 6);
  3611. }
  3612. }
  3613. SERIAL_EOL;
  3614. }
  3615. } // End of probe loop
  3616. stow_z_probe();
  3617. if (verbose_level > 0) {
  3618. SERIAL_PROTOCOLPGM("Mean: ");
  3619. SERIAL_PROTOCOL_F(mean, 6);
  3620. SERIAL_EOL;
  3621. }
  3622. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3623. SERIAL_PROTOCOL_F(sigma, 6);
  3624. SERIAL_EOL; SERIAL_EOL;
  3625. clean_up_after_endstop_or_probe_move();
  3626. report_current_position();
  3627. }
  3628. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3629. /**
  3630. * M75: Start print timer
  3631. */
  3632. inline void gcode_M75() { print_job_timer.start(); }
  3633. /**
  3634. * M76: Pause print timer
  3635. */
  3636. inline void gcode_M76() { print_job_timer.pause(); }
  3637. /**
  3638. * M77: Stop print timer
  3639. */
  3640. inline void gcode_M77() { print_job_timer.stop(); }
  3641. #if ENABLED(PRINTCOUNTER)
  3642. /*+
  3643. * M78: Show print statistics
  3644. */
  3645. inline void gcode_M78() {
  3646. // "M78 S78" will reset the statistics
  3647. if (code_seen('S') && code_value_int() == 78)
  3648. print_job_timer.initStats();
  3649. else print_job_timer.showStats();
  3650. }
  3651. #endif
  3652. /**
  3653. * M104: Set hot end temperature
  3654. */
  3655. inline void gcode_M104() {
  3656. if (get_target_extruder_from_command(104)) return;
  3657. if (DEBUGGING(DRYRUN)) return;
  3658. #if ENABLED(SINGLENOZZLE)
  3659. if (target_extruder != active_extruder) return;
  3660. #endif
  3661. if (code_seen('S')) {
  3662. float temp = code_value_temp_abs();
  3663. thermalManager.setTargetHotend(temp, target_extruder);
  3664. #if ENABLED(DUAL_X_CARRIAGE)
  3665. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3666. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3667. #endif
  3668. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3669. /**
  3670. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3671. * stand by mode, for instance in a dual extruder setup, without affecting
  3672. * the running print timer.
  3673. */
  3674. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3675. print_job_timer.stop();
  3676. LCD_MESSAGEPGM(WELCOME_MSG);
  3677. }
  3678. /**
  3679. * We do not check if the timer is already running because this check will
  3680. * be done for us inside the Stopwatch::start() method thus a running timer
  3681. * will not restart.
  3682. */
  3683. else print_job_timer.start();
  3684. #endif
  3685. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3686. }
  3687. }
  3688. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3689. void print_heaterstates() {
  3690. #if HAS_TEMP_HOTEND
  3691. SERIAL_PROTOCOLPGM(" T:");
  3692. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3693. SERIAL_PROTOCOLPGM(" /");
  3694. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3695. #endif
  3696. #if HAS_TEMP_BED
  3697. SERIAL_PROTOCOLPGM(" B:");
  3698. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3699. SERIAL_PROTOCOLPGM(" /");
  3700. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3701. #endif
  3702. #if HOTENDS > 1
  3703. for (int8_t e = 0; e < HOTENDS; ++e) {
  3704. SERIAL_PROTOCOLPGM(" T");
  3705. SERIAL_PROTOCOL(e);
  3706. SERIAL_PROTOCOLCHAR(':');
  3707. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3708. SERIAL_PROTOCOLPGM(" /");
  3709. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3710. }
  3711. #endif
  3712. #if HAS_TEMP_BED
  3713. SERIAL_PROTOCOLPGM(" B@:");
  3714. #ifdef BED_WATTS
  3715. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3716. SERIAL_PROTOCOLCHAR('W');
  3717. #else
  3718. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3719. #endif
  3720. #endif
  3721. SERIAL_PROTOCOLPGM(" @:");
  3722. #ifdef EXTRUDER_WATTS
  3723. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3724. SERIAL_PROTOCOLCHAR('W');
  3725. #else
  3726. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3727. #endif
  3728. #if HOTENDS > 1
  3729. for (int8_t e = 0; e < HOTENDS; ++e) {
  3730. SERIAL_PROTOCOLPGM(" @");
  3731. SERIAL_PROTOCOL(e);
  3732. SERIAL_PROTOCOLCHAR(':');
  3733. #ifdef EXTRUDER_WATTS
  3734. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3735. SERIAL_PROTOCOLCHAR('W');
  3736. #else
  3737. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3738. #endif
  3739. }
  3740. #endif
  3741. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3742. #if HAS_TEMP_BED
  3743. SERIAL_PROTOCOLPGM(" ADC B:");
  3744. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3745. SERIAL_PROTOCOLPGM("C->");
  3746. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3747. #endif
  3748. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3749. SERIAL_PROTOCOLPGM(" T");
  3750. SERIAL_PROTOCOL(cur_hotend);
  3751. SERIAL_PROTOCOLCHAR(':');
  3752. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3753. SERIAL_PROTOCOLPGM("C->");
  3754. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3755. }
  3756. #endif
  3757. }
  3758. #endif
  3759. /**
  3760. * M105: Read hot end and bed temperature
  3761. */
  3762. inline void gcode_M105() {
  3763. if (get_target_extruder_from_command(105)) return;
  3764. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3765. SERIAL_PROTOCOLPGM(MSG_OK);
  3766. print_heaterstates();
  3767. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3768. SERIAL_ERROR_START;
  3769. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3770. #endif
  3771. SERIAL_EOL;
  3772. }
  3773. #if FAN_COUNT > 0
  3774. /**
  3775. * M106: Set Fan Speed
  3776. *
  3777. * S<int> Speed between 0-255
  3778. * P<index> Fan index, if more than one fan
  3779. */
  3780. inline void gcode_M106() {
  3781. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3782. p = code_seen('P') ? code_value_ushort() : 0;
  3783. NOMORE(s, 255);
  3784. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3785. }
  3786. /**
  3787. * M107: Fan Off
  3788. */
  3789. inline void gcode_M107() {
  3790. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3791. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3792. }
  3793. #endif // FAN_COUNT > 0
  3794. /**
  3795. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3796. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3797. */
  3798. inline void gcode_M109() {
  3799. if (get_target_extruder_from_command(109)) return;
  3800. if (DEBUGGING(DRYRUN)) return;
  3801. #if ENABLED(SINGLENOZZLE)
  3802. if (target_extruder != active_extruder) return;
  3803. #endif
  3804. bool no_wait_for_cooling = code_seen('S');
  3805. if (no_wait_for_cooling || code_seen('R')) {
  3806. float temp = code_value_temp_abs();
  3807. thermalManager.setTargetHotend(temp, target_extruder);
  3808. #if ENABLED(DUAL_X_CARRIAGE)
  3809. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3810. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3811. #endif
  3812. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3813. /**
  3814. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3815. * stand by mode, for instance in a dual extruder setup, without affecting
  3816. * the running print timer.
  3817. */
  3818. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3819. print_job_timer.stop();
  3820. LCD_MESSAGEPGM(WELCOME_MSG);
  3821. }
  3822. /**
  3823. * We do not check if the timer is already running because this check will
  3824. * be done for us inside the Stopwatch::start() method thus a running timer
  3825. * will not restart.
  3826. */
  3827. else print_job_timer.start();
  3828. #endif
  3829. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3830. }
  3831. #if ENABLED(AUTOTEMP)
  3832. planner.autotemp_M109();
  3833. #endif
  3834. #if TEMP_RESIDENCY_TIME > 0
  3835. millis_t residency_start_ms = 0;
  3836. // Loop until the temperature has stabilized
  3837. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3838. #else
  3839. // Loop until the temperature is very close target
  3840. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3841. #endif //TEMP_RESIDENCY_TIME > 0
  3842. float theTarget = -1;
  3843. bool wants_to_cool;
  3844. cancel_heatup = false;
  3845. millis_t now, next_temp_ms = 0;
  3846. KEEPALIVE_STATE(NOT_BUSY);
  3847. do {
  3848. // Target temperature might be changed during the loop
  3849. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3850. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3851. theTarget = thermalManager.degTargetHotend(target_extruder);
  3852. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3853. if (no_wait_for_cooling && wants_to_cool) break;
  3854. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3855. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3856. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3857. }
  3858. now = millis();
  3859. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3860. next_temp_ms = now + 1000UL;
  3861. print_heaterstates();
  3862. #if TEMP_RESIDENCY_TIME > 0
  3863. SERIAL_PROTOCOLPGM(" W:");
  3864. if (residency_start_ms) {
  3865. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3866. SERIAL_PROTOCOLLN(rem);
  3867. }
  3868. else {
  3869. SERIAL_PROTOCOLLNPGM("?");
  3870. }
  3871. #else
  3872. SERIAL_EOL;
  3873. #endif
  3874. }
  3875. idle();
  3876. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3877. #if TEMP_RESIDENCY_TIME > 0
  3878. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  3879. if (!residency_start_ms) {
  3880. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3881. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3882. }
  3883. else if (temp_diff > TEMP_HYSTERESIS) {
  3884. // Restart the timer whenever the temperature falls outside the hysteresis.
  3885. residency_start_ms = now;
  3886. }
  3887. #endif //TEMP_RESIDENCY_TIME > 0
  3888. } while (!cancel_heatup && TEMP_CONDITIONS);
  3889. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3890. KEEPALIVE_STATE(IN_HANDLER);
  3891. }
  3892. #if HAS_TEMP_BED
  3893. /**
  3894. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3895. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3896. */
  3897. inline void gcode_M190() {
  3898. if (DEBUGGING(DRYRUN)) return;
  3899. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3900. bool no_wait_for_cooling = code_seen('S');
  3901. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  3902. #if TEMP_BED_RESIDENCY_TIME > 0
  3903. millis_t residency_start_ms = 0;
  3904. // Loop until the temperature has stabilized
  3905. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3906. #else
  3907. // Loop until the temperature is very close target
  3908. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3909. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3910. float theTarget = -1;
  3911. bool wants_to_cool;
  3912. cancel_heatup = false;
  3913. millis_t now, next_temp_ms = 0;
  3914. KEEPALIVE_STATE(NOT_BUSY);
  3915. do {
  3916. // Target temperature might be changed during the loop
  3917. if (theTarget != thermalManager.degTargetBed()) {
  3918. wants_to_cool = thermalManager.isCoolingBed();
  3919. theTarget = thermalManager.degTargetBed();
  3920. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3921. if (no_wait_for_cooling && wants_to_cool) break;
  3922. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3923. // Simply don't wait to cool a bed under 30C
  3924. if (wants_to_cool && theTarget < 30) break;
  3925. }
  3926. now = millis();
  3927. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3928. next_temp_ms = now + 1000UL;
  3929. print_heaterstates();
  3930. #if TEMP_BED_RESIDENCY_TIME > 0
  3931. SERIAL_PROTOCOLPGM(" W:");
  3932. if (residency_start_ms) {
  3933. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3934. SERIAL_PROTOCOLLN(rem);
  3935. }
  3936. else {
  3937. SERIAL_PROTOCOLLNPGM("?");
  3938. }
  3939. #else
  3940. SERIAL_EOL;
  3941. #endif
  3942. }
  3943. idle();
  3944. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3945. #if TEMP_BED_RESIDENCY_TIME > 0
  3946. float temp_diff = fabs(theTarget - thermalManager.degBed());
  3947. if (!residency_start_ms) {
  3948. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3949. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3950. }
  3951. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3952. // Restart the timer whenever the temperature falls outside the hysteresis.
  3953. residency_start_ms = now;
  3954. }
  3955. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3956. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3957. LCD_MESSAGEPGM(MSG_BED_DONE);
  3958. KEEPALIVE_STATE(IN_HANDLER);
  3959. }
  3960. #endif // HAS_TEMP_BED
  3961. /**
  3962. * M110: Set Current Line Number
  3963. */
  3964. inline void gcode_M110() {
  3965. if (code_seen('N')) gcode_N = code_value_long();
  3966. }
  3967. /**
  3968. * M111: Set the debug level
  3969. */
  3970. inline void gcode_M111() {
  3971. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  3972. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3973. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3974. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3975. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3976. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3977. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3978. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3979. #endif
  3980. const static char* const debug_strings[] PROGMEM = {
  3981. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3982. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3983. str_debug_32
  3984. #endif
  3985. };
  3986. SERIAL_ECHO_START;
  3987. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3988. if (marlin_debug_flags) {
  3989. uint8_t comma = 0;
  3990. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3991. if (TEST(marlin_debug_flags, i)) {
  3992. if (comma++) SERIAL_CHAR(',');
  3993. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3994. }
  3995. }
  3996. }
  3997. else {
  3998. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3999. }
  4000. SERIAL_EOL;
  4001. }
  4002. /**
  4003. * M112: Emergency Stop
  4004. */
  4005. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4006. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4007. /**
  4008. * M113: Get or set Host Keepalive interval (0 to disable)
  4009. *
  4010. * S<seconds> Optional. Set the keepalive interval.
  4011. */
  4012. inline void gcode_M113() {
  4013. if (code_seen('S')) {
  4014. host_keepalive_interval = code_value_byte();
  4015. NOMORE(host_keepalive_interval, 60);
  4016. }
  4017. else {
  4018. SERIAL_ECHO_START;
  4019. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4020. SERIAL_EOL;
  4021. }
  4022. }
  4023. #endif
  4024. #if ENABLED(BARICUDA)
  4025. #if HAS_HEATER_1
  4026. /**
  4027. * M126: Heater 1 valve open
  4028. */
  4029. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4030. /**
  4031. * M127: Heater 1 valve close
  4032. */
  4033. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4034. #endif
  4035. #if HAS_HEATER_2
  4036. /**
  4037. * M128: Heater 2 valve open
  4038. */
  4039. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4040. /**
  4041. * M129: Heater 2 valve close
  4042. */
  4043. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4044. #endif
  4045. #endif //BARICUDA
  4046. /**
  4047. * M140: Set bed temperature
  4048. */
  4049. inline void gcode_M140() {
  4050. if (DEBUGGING(DRYRUN)) return;
  4051. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4052. }
  4053. #if ENABLED(ULTIPANEL)
  4054. /**
  4055. * M145: Set the heatup state for a material in the LCD menu
  4056. * S<material> (0=PLA, 1=ABS)
  4057. * H<hotend temp>
  4058. * B<bed temp>
  4059. * F<fan speed>
  4060. */
  4061. inline void gcode_M145() {
  4062. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4063. if (material < 0 || material > 1) {
  4064. SERIAL_ERROR_START;
  4065. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4066. }
  4067. else {
  4068. int v;
  4069. switch (material) {
  4070. case 0:
  4071. if (code_seen('H')) {
  4072. v = code_value_int();
  4073. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4074. }
  4075. if (code_seen('F')) {
  4076. v = code_value_int();
  4077. plaPreheatFanSpeed = constrain(v, 0, 255);
  4078. }
  4079. #if TEMP_SENSOR_BED != 0
  4080. if (code_seen('B')) {
  4081. v = code_value_int();
  4082. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4083. }
  4084. #endif
  4085. break;
  4086. case 1:
  4087. if (code_seen('H')) {
  4088. v = code_value_int();
  4089. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4090. }
  4091. if (code_seen('F')) {
  4092. v = code_value_int();
  4093. absPreheatFanSpeed = constrain(v, 0, 255);
  4094. }
  4095. #if TEMP_SENSOR_BED != 0
  4096. if (code_seen('B')) {
  4097. v = code_value_int();
  4098. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4099. }
  4100. #endif
  4101. break;
  4102. }
  4103. }
  4104. }
  4105. #endif
  4106. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4107. /**
  4108. * M149: Set temperature units
  4109. */
  4110. inline void gcode_M149() {
  4111. if (code_seen('C')) {
  4112. set_input_temp_units(TEMPUNIT_C);
  4113. } else if (code_seen('K')) {
  4114. set_input_temp_units(TEMPUNIT_K);
  4115. } else if (code_seen('F')) {
  4116. set_input_temp_units(TEMPUNIT_F);
  4117. }
  4118. }
  4119. #endif
  4120. #if HAS_POWER_SWITCH
  4121. /**
  4122. * M80: Turn on Power Supply
  4123. */
  4124. inline void gcode_M80() {
  4125. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4126. /**
  4127. * If you have a switch on suicide pin, this is useful
  4128. * if you want to start another print with suicide feature after
  4129. * a print without suicide...
  4130. */
  4131. #if HAS_SUICIDE
  4132. OUT_WRITE(SUICIDE_PIN, HIGH);
  4133. #endif
  4134. #if ENABLED(ULTIPANEL)
  4135. powersupply = true;
  4136. LCD_MESSAGEPGM(WELCOME_MSG);
  4137. lcd_update();
  4138. #endif
  4139. }
  4140. #endif // HAS_POWER_SWITCH
  4141. /**
  4142. * M81: Turn off Power, including Power Supply, if there is one.
  4143. *
  4144. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4145. */
  4146. inline void gcode_M81() {
  4147. thermalManager.disable_all_heaters();
  4148. stepper.finish_and_disable();
  4149. #if FAN_COUNT > 0
  4150. #if FAN_COUNT > 1
  4151. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4152. #else
  4153. fanSpeeds[0] = 0;
  4154. #endif
  4155. #endif
  4156. delay(1000); // Wait 1 second before switching off
  4157. #if HAS_SUICIDE
  4158. stepper.synchronize();
  4159. suicide();
  4160. #elif HAS_POWER_SWITCH
  4161. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4162. #endif
  4163. #if ENABLED(ULTIPANEL)
  4164. #if HAS_POWER_SWITCH
  4165. powersupply = false;
  4166. #endif
  4167. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4168. lcd_update();
  4169. #endif
  4170. }
  4171. /**
  4172. * M82: Set E codes absolute (default)
  4173. */
  4174. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4175. /**
  4176. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4177. */
  4178. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4179. /**
  4180. * M18, M84: Disable all stepper motors
  4181. */
  4182. inline void gcode_M18_M84() {
  4183. if (code_seen('S')) {
  4184. stepper_inactive_time = code_value_millis_from_seconds();
  4185. }
  4186. else {
  4187. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4188. if (all_axis) {
  4189. stepper.finish_and_disable();
  4190. }
  4191. else {
  4192. stepper.synchronize();
  4193. if (code_seen('X')) disable_x();
  4194. if (code_seen('Y')) disable_y();
  4195. if (code_seen('Z')) disable_z();
  4196. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4197. if (code_seen('E')) {
  4198. disable_e0();
  4199. disable_e1();
  4200. disable_e2();
  4201. disable_e3();
  4202. }
  4203. #endif
  4204. }
  4205. }
  4206. }
  4207. /**
  4208. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4209. */
  4210. inline void gcode_M85() {
  4211. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4212. }
  4213. /**
  4214. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4215. * (Follows the same syntax as G92)
  4216. */
  4217. inline void gcode_M92() {
  4218. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4219. if (code_seen(axis_codes[i])) {
  4220. if (i == E_AXIS) {
  4221. float value = code_value_per_axis_unit(i);
  4222. if (value < 20.0) {
  4223. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4224. planner.max_e_jerk *= factor;
  4225. planner.max_feedrate[i] *= factor;
  4226. planner.max_acceleration_steps_per_s2[i] *= factor;
  4227. }
  4228. planner.axis_steps_per_mm[i] = value;
  4229. }
  4230. else {
  4231. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4232. }
  4233. }
  4234. }
  4235. }
  4236. /**
  4237. * Output the current position to serial
  4238. */
  4239. static void report_current_position() {
  4240. SERIAL_PROTOCOLPGM("X:");
  4241. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4242. SERIAL_PROTOCOLPGM(" Y:");
  4243. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4244. SERIAL_PROTOCOLPGM(" Z:");
  4245. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4246. SERIAL_PROTOCOLPGM(" E:");
  4247. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4248. stepper.report_positions();
  4249. #if ENABLED(SCARA)
  4250. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4251. SERIAL_PROTOCOL(delta[X_AXIS]);
  4252. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4253. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4254. SERIAL_EOL;
  4255. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4256. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4257. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4258. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4259. SERIAL_EOL;
  4260. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4261. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4262. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4263. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4264. SERIAL_EOL; SERIAL_EOL;
  4265. #endif
  4266. }
  4267. /**
  4268. * M114: Output current position to serial port
  4269. */
  4270. inline void gcode_M114() { report_current_position(); }
  4271. /**
  4272. * M115: Capabilities string
  4273. */
  4274. inline void gcode_M115() {
  4275. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4276. }
  4277. /**
  4278. * M117: Set LCD Status Message
  4279. */
  4280. inline void gcode_M117() {
  4281. lcd_setstatus(current_command_args);
  4282. }
  4283. /**
  4284. * M119: Output endstop states to serial output
  4285. */
  4286. inline void gcode_M119() { endstops.M119(); }
  4287. /**
  4288. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4289. */
  4290. inline void gcode_M120() { endstops.enable_globally(true); }
  4291. /**
  4292. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4293. */
  4294. inline void gcode_M121() { endstops.enable_globally(false); }
  4295. #if ENABLED(BLINKM)
  4296. /**
  4297. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4298. */
  4299. inline void gcode_M150() {
  4300. SendColors(
  4301. code_seen('R') ? code_value_byte() : 0,
  4302. code_seen('U') ? code_value_byte() : 0,
  4303. code_seen('B') ? code_value_byte() : 0
  4304. );
  4305. }
  4306. #endif // BLINKM
  4307. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4308. /**
  4309. * M155: Send data to a I2C slave device
  4310. *
  4311. * This is a PoC, the formating and arguments for the GCODE will
  4312. * change to be more compatible, the current proposal is:
  4313. *
  4314. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4315. *
  4316. * M155 B<byte-1 value in base 10>
  4317. * M155 B<byte-2 value in base 10>
  4318. * M155 B<byte-3 value in base 10>
  4319. *
  4320. * M155 S1 ; Send the buffered data and reset the buffer
  4321. * M155 R1 ; Reset the buffer without sending data
  4322. *
  4323. */
  4324. inline void gcode_M155() {
  4325. // Set the target address
  4326. if (code_seen('A'))
  4327. i2c.address(code_value_byte());
  4328. // Add a new byte to the buffer
  4329. else if (code_seen('B'))
  4330. i2c.addbyte(code_value_int());
  4331. // Flush the buffer to the bus
  4332. else if (code_seen('S')) i2c.send();
  4333. // Reset and rewind the buffer
  4334. else if (code_seen('R')) i2c.reset();
  4335. }
  4336. /**
  4337. * M156: Request X bytes from I2C slave device
  4338. *
  4339. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4340. */
  4341. inline void gcode_M156() {
  4342. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4343. int bytes = code_seen('B') ? code_value_int() : 1;
  4344. if (addr && bytes > 0 && bytes <= 32) {
  4345. i2c.address(addr);
  4346. i2c.reqbytes(bytes);
  4347. }
  4348. else {
  4349. SERIAL_ERROR_START;
  4350. SERIAL_ERRORLN("Bad i2c request");
  4351. }
  4352. }
  4353. #endif //EXPERIMENTAL_I2CBUS
  4354. /**
  4355. * M200: Set filament diameter and set E axis units to cubic units
  4356. *
  4357. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4358. * D<mm> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4359. */
  4360. inline void gcode_M200() {
  4361. if (get_target_extruder_from_command(200)) return;
  4362. if (code_seen('D')) {
  4363. float diameter = code_value_linear_units();
  4364. // setting any extruder filament size disables volumetric on the assumption that
  4365. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4366. // for all extruders
  4367. volumetric_enabled = (diameter != 0.0);
  4368. if (volumetric_enabled) {
  4369. filament_size[target_extruder] = diameter;
  4370. // make sure all extruders have some sane value for the filament size
  4371. for (int i = 0; i < EXTRUDERS; i++)
  4372. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4373. }
  4374. }
  4375. else {
  4376. //reserved for setting filament diameter via UFID or filament measuring device
  4377. return;
  4378. }
  4379. calculate_volumetric_multipliers();
  4380. }
  4381. /**
  4382. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4383. */
  4384. inline void gcode_M201() {
  4385. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4386. if (code_seen(axis_codes[i])) {
  4387. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4388. }
  4389. }
  4390. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4391. planner.reset_acceleration_rates();
  4392. }
  4393. #if 0 // Not used for Sprinter/grbl gen6
  4394. inline void gcode_M202() {
  4395. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4396. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4397. }
  4398. }
  4399. #endif
  4400. /**
  4401. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4402. */
  4403. inline void gcode_M203() {
  4404. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4405. if (code_seen(axis_codes[i])) {
  4406. planner.max_feedrate[i] = code_value_axis_units(i);
  4407. }
  4408. }
  4409. }
  4410. /**
  4411. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4412. *
  4413. * P = Printing moves
  4414. * R = Retract only (no X, Y, Z) moves
  4415. * T = Travel (non printing) moves
  4416. *
  4417. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4418. */
  4419. inline void gcode_M204() {
  4420. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4421. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4422. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4423. SERIAL_EOL;
  4424. }
  4425. if (code_seen('P')) {
  4426. planner.acceleration = code_value_linear_units();
  4427. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4428. SERIAL_EOL;
  4429. }
  4430. if (code_seen('R')) {
  4431. planner.retract_acceleration = code_value_linear_units();
  4432. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4433. SERIAL_EOL;
  4434. }
  4435. if (code_seen('T')) {
  4436. planner.travel_acceleration = code_value_linear_units();
  4437. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4438. SERIAL_EOL;
  4439. }
  4440. }
  4441. /**
  4442. * M205: Set Advanced Settings
  4443. *
  4444. * S = Min Feed Rate (mm/s)
  4445. * T = Min Travel Feed Rate (mm/s)
  4446. * B = Min Segment Time (µs)
  4447. * X = Max XY Jerk (mm/s/s)
  4448. * Z = Max Z Jerk (mm/s/s)
  4449. * E = Max E Jerk (mm/s/s)
  4450. */
  4451. inline void gcode_M205() {
  4452. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4453. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4454. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4455. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4456. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4457. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4458. }
  4459. /**
  4460. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4461. */
  4462. inline void gcode_M206() {
  4463. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4464. if (code_seen(axis_codes[i]))
  4465. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4466. #if ENABLED(SCARA)
  4467. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4468. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4469. #endif
  4470. SYNC_PLAN_POSITION_KINEMATIC();
  4471. report_current_position();
  4472. }
  4473. #if ENABLED(DELTA)
  4474. /**
  4475. * M665: Set delta configurations
  4476. *
  4477. * L = diagonal rod
  4478. * R = delta radius
  4479. * S = segments per second
  4480. * A = Alpha (Tower 1) diagonal rod trim
  4481. * B = Beta (Tower 2) diagonal rod trim
  4482. * C = Gamma (Tower 3) diagonal rod trim
  4483. */
  4484. inline void gcode_M665() {
  4485. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4486. if (code_seen('R')) delta_radius = code_value_linear_units();
  4487. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4488. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4489. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4490. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4491. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4492. }
  4493. /**
  4494. * M666: Set delta endstop adjustment
  4495. */
  4496. inline void gcode_M666() {
  4497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4498. if (DEBUGGING(LEVELING)) {
  4499. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4500. }
  4501. #endif
  4502. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4503. if (code_seen(axis_codes[i])) {
  4504. endstop_adj[i] = code_value_axis_units(i);
  4505. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4506. if (DEBUGGING(LEVELING)) {
  4507. SERIAL_ECHOPGM("endstop_adj[");
  4508. SERIAL_ECHO(axis_codes[i]);
  4509. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4510. SERIAL_EOL;
  4511. }
  4512. #endif
  4513. }
  4514. }
  4515. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4516. if (DEBUGGING(LEVELING)) {
  4517. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4518. }
  4519. #endif
  4520. }
  4521. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4522. /**
  4523. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4524. */
  4525. inline void gcode_M666() {
  4526. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4527. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4528. SERIAL_EOL;
  4529. }
  4530. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4531. #if ENABLED(FWRETRACT)
  4532. /**
  4533. * M207: Set firmware retraction values
  4534. *
  4535. * S[+mm] retract_length
  4536. * W[+mm] retract_length_swap (multi-extruder)
  4537. * F[mm/min] retract_feedrate_mm_s
  4538. * Z[mm] retract_zlift
  4539. */
  4540. inline void gcode_M207() {
  4541. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4542. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4543. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4544. #if EXTRUDERS > 1
  4545. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4546. #endif
  4547. }
  4548. /**
  4549. * M208: Set firmware un-retraction values
  4550. *
  4551. * S[+mm] retract_recover_length (in addition to M207 S*)
  4552. * W[+mm] retract_recover_length_swap (multi-extruder)
  4553. * F[mm/min] retract_recover_feedrate
  4554. */
  4555. inline void gcode_M208() {
  4556. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4557. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4558. #if EXTRUDERS > 1
  4559. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4560. #endif
  4561. }
  4562. /**
  4563. * M209: Enable automatic retract (M209 S1)
  4564. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4565. */
  4566. inline void gcode_M209() {
  4567. if (code_seen('S')) {
  4568. int t = code_value_int();
  4569. switch (t) {
  4570. case 0:
  4571. autoretract_enabled = false;
  4572. break;
  4573. case 1:
  4574. autoretract_enabled = true;
  4575. break;
  4576. default:
  4577. unknown_command_error();
  4578. return;
  4579. }
  4580. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4581. }
  4582. }
  4583. #endif // FWRETRACT
  4584. #if HOTENDS > 1
  4585. /**
  4586. * M218 - set hotend offset (in mm)
  4587. *
  4588. * T<tool>
  4589. * X<xoffset>
  4590. * Y<yoffset>
  4591. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4592. */
  4593. inline void gcode_M218() {
  4594. if (get_target_extruder_from_command(218)) return;
  4595. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4596. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4597. #if ENABLED(DUAL_X_CARRIAGE)
  4598. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4599. #endif
  4600. SERIAL_ECHO_START;
  4601. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4602. for (int e = 0; e < HOTENDS; e++) {
  4603. SERIAL_CHAR(' ');
  4604. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4605. SERIAL_CHAR(',');
  4606. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4607. #if ENABLED(DUAL_X_CARRIAGE)
  4608. SERIAL_CHAR(',');
  4609. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4610. #endif
  4611. }
  4612. SERIAL_EOL;
  4613. }
  4614. #endif // HOTENDS > 1
  4615. /**
  4616. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4617. */
  4618. inline void gcode_M220() {
  4619. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4620. }
  4621. /**
  4622. * M221: Set extrusion percentage (M221 T0 S95)
  4623. */
  4624. inline void gcode_M221() {
  4625. if (code_seen('S')) {
  4626. int sval = code_value_int();
  4627. if (get_target_extruder_from_command(221)) return;
  4628. extruder_multiplier[target_extruder] = sval;
  4629. }
  4630. }
  4631. /**
  4632. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4633. */
  4634. inline void gcode_M226() {
  4635. if (code_seen('P')) {
  4636. int pin_number = code_value_int();
  4637. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4638. if (pin_state >= -1 && pin_state <= 1) {
  4639. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4640. if (sensitive_pins[i] == pin_number) {
  4641. pin_number = -1;
  4642. break;
  4643. }
  4644. }
  4645. if (pin_number > -1) {
  4646. int target = LOW;
  4647. stepper.synchronize();
  4648. pinMode(pin_number, INPUT);
  4649. switch (pin_state) {
  4650. case 1:
  4651. target = HIGH;
  4652. break;
  4653. case 0:
  4654. target = LOW;
  4655. break;
  4656. case -1:
  4657. target = !digitalRead(pin_number);
  4658. break;
  4659. }
  4660. while (digitalRead(pin_number) != target) idle();
  4661. } // pin_number > -1
  4662. } // pin_state -1 0 1
  4663. } // code_seen('P')
  4664. }
  4665. #if HAS_SERVOS
  4666. /**
  4667. * M280: Get or set servo position. P<index> S<angle>
  4668. */
  4669. inline void gcode_M280() {
  4670. int servo_index = code_seen('P') ? code_value_int() : -1;
  4671. int servo_position = 0;
  4672. if (code_seen('S')) {
  4673. servo_position = code_value_int();
  4674. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4675. MOVE_SERVO(servo_index, servo_position);
  4676. else {
  4677. SERIAL_ERROR_START;
  4678. SERIAL_ERROR("Servo ");
  4679. SERIAL_ERROR(servo_index);
  4680. SERIAL_ERRORLN(" out of range");
  4681. }
  4682. }
  4683. else if (servo_index >= 0) {
  4684. SERIAL_ECHO_START;
  4685. SERIAL_ECHO(" Servo ");
  4686. SERIAL_ECHO(servo_index);
  4687. SERIAL_ECHO(": ");
  4688. SERIAL_ECHOLN(servo[servo_index].read());
  4689. }
  4690. }
  4691. #endif // HAS_SERVOS
  4692. #if HAS_BUZZER
  4693. /**
  4694. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4695. */
  4696. inline void gcode_M300() {
  4697. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4698. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4699. // Limits the tone duration to 0-5 seconds.
  4700. NOMORE(duration, 5000);
  4701. buzzer.tone(duration, frequency);
  4702. }
  4703. #endif // HAS_BUZZER
  4704. #if ENABLED(PIDTEMP)
  4705. /**
  4706. * M301: Set PID parameters P I D (and optionally C, L)
  4707. *
  4708. * P[float] Kp term
  4709. * I[float] Ki term (unscaled)
  4710. * D[float] Kd term (unscaled)
  4711. *
  4712. * With PID_ADD_EXTRUSION_RATE:
  4713. *
  4714. * C[float] Kc term
  4715. * L[float] LPQ length
  4716. */
  4717. inline void gcode_M301() {
  4718. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4719. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4720. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4721. if (e < HOTENDS) { // catch bad input value
  4722. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4723. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4724. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4725. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4726. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4727. if (code_seen('L')) lpq_len = code_value_float();
  4728. NOMORE(lpq_len, LPQ_MAX_LEN);
  4729. #endif
  4730. thermalManager.updatePID();
  4731. SERIAL_ECHO_START;
  4732. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4733. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4734. SERIAL_ECHO(e);
  4735. #endif // PID_PARAMS_PER_HOTEND
  4736. SERIAL_ECHO(" p:");
  4737. SERIAL_ECHO(PID_PARAM(Kp, e));
  4738. SERIAL_ECHO(" i:");
  4739. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4740. SERIAL_ECHO(" d:");
  4741. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4742. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4743. SERIAL_ECHO(" c:");
  4744. //Kc does not have scaling applied above, or in resetting defaults
  4745. SERIAL_ECHO(PID_PARAM(Kc, e));
  4746. #endif
  4747. SERIAL_EOL;
  4748. }
  4749. else {
  4750. SERIAL_ERROR_START;
  4751. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4752. }
  4753. }
  4754. #endif // PIDTEMP
  4755. #if ENABLED(PIDTEMPBED)
  4756. inline void gcode_M304() {
  4757. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4758. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4759. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4760. thermalManager.updatePID();
  4761. SERIAL_ECHO_START;
  4762. SERIAL_ECHO(" p:");
  4763. SERIAL_ECHO(thermalManager.bedKp);
  4764. SERIAL_ECHO(" i:");
  4765. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4766. SERIAL_ECHO(" d:");
  4767. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4768. }
  4769. #endif // PIDTEMPBED
  4770. #if defined(CHDK) || HAS_PHOTOGRAPH
  4771. /**
  4772. * M240: Trigger a camera by emulating a Canon RC-1
  4773. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4774. */
  4775. inline void gcode_M240() {
  4776. #ifdef CHDK
  4777. OUT_WRITE(CHDK, HIGH);
  4778. chdkHigh = millis();
  4779. chdkActive = true;
  4780. #elif HAS_PHOTOGRAPH
  4781. const uint8_t NUM_PULSES = 16;
  4782. const float PULSE_LENGTH = 0.01524;
  4783. for (int i = 0; i < NUM_PULSES; i++) {
  4784. WRITE(PHOTOGRAPH_PIN, HIGH);
  4785. _delay_ms(PULSE_LENGTH);
  4786. WRITE(PHOTOGRAPH_PIN, LOW);
  4787. _delay_ms(PULSE_LENGTH);
  4788. }
  4789. delay(7.33);
  4790. for (int i = 0; i < NUM_PULSES; i++) {
  4791. WRITE(PHOTOGRAPH_PIN, HIGH);
  4792. _delay_ms(PULSE_LENGTH);
  4793. WRITE(PHOTOGRAPH_PIN, LOW);
  4794. _delay_ms(PULSE_LENGTH);
  4795. }
  4796. #endif // !CHDK && HAS_PHOTOGRAPH
  4797. }
  4798. #endif // CHDK || PHOTOGRAPH_PIN
  4799. #if HAS_LCD_CONTRAST
  4800. /**
  4801. * M250: Read and optionally set the LCD contrast
  4802. */
  4803. inline void gcode_M250() {
  4804. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4805. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4806. SERIAL_PROTOCOL(lcd_contrast);
  4807. SERIAL_EOL;
  4808. }
  4809. #endif // HAS_LCD_CONTRAST
  4810. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4811. /**
  4812. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4813. */
  4814. inline void gcode_M302() {
  4815. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4816. }
  4817. #endif // PREVENT_DANGEROUS_EXTRUDE
  4818. /**
  4819. * M303: PID relay autotune
  4820. *
  4821. * S<temperature> sets the target temperature. (default 150C)
  4822. * E<extruder> (-1 for the bed) (default 0)
  4823. * C<cycles>
  4824. * U<bool> with a non-zero value will apply the result to current settings
  4825. */
  4826. inline void gcode_M303() {
  4827. #if HAS_PID_HEATING
  4828. int e = code_seen('E') ? code_value_int() : 0;
  4829. int c = code_seen('C') ? code_value_int() : 5;
  4830. bool u = code_seen('U') && code_value_bool();
  4831. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4832. if (e >= 0 && e < HOTENDS)
  4833. target_extruder = e;
  4834. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4835. thermalManager.PID_autotune(temp, e, c, u);
  4836. KEEPALIVE_STATE(IN_HANDLER);
  4837. #else
  4838. SERIAL_ERROR_START;
  4839. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4840. #endif
  4841. }
  4842. #if ENABLED(SCARA)
  4843. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4844. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4845. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4846. if (IsRunning()) {
  4847. //gcode_get_destination(); // For X Y Z E F
  4848. delta[X_AXIS] = delta_x;
  4849. delta[Y_AXIS] = delta_y;
  4850. calculate_SCARA_forward_Transform(delta);
  4851. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4852. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4853. prepare_move_to_destination();
  4854. //ok_to_send();
  4855. return true;
  4856. }
  4857. return false;
  4858. }
  4859. /**
  4860. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4861. */
  4862. inline bool gcode_M360() {
  4863. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4864. return SCARA_move_to_cal(0, 120);
  4865. }
  4866. /**
  4867. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4868. */
  4869. inline bool gcode_M361() {
  4870. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4871. return SCARA_move_to_cal(90, 130);
  4872. }
  4873. /**
  4874. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4875. */
  4876. inline bool gcode_M362() {
  4877. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4878. return SCARA_move_to_cal(60, 180);
  4879. }
  4880. /**
  4881. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4882. */
  4883. inline bool gcode_M363() {
  4884. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4885. return SCARA_move_to_cal(50, 90);
  4886. }
  4887. /**
  4888. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4889. */
  4890. inline bool gcode_M364() {
  4891. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4892. return SCARA_move_to_cal(45, 135);
  4893. }
  4894. /**
  4895. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4896. */
  4897. inline void gcode_M365() {
  4898. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4899. if (code_seen(axis_codes[i])) {
  4900. axis_scaling[i] = code_value_float();
  4901. }
  4902. }
  4903. }
  4904. #endif // SCARA
  4905. #if ENABLED(EXT_SOLENOID)
  4906. void enable_solenoid(uint8_t num) {
  4907. switch (num) {
  4908. case 0:
  4909. OUT_WRITE(SOL0_PIN, HIGH);
  4910. break;
  4911. #if HAS_SOLENOID_1
  4912. case 1:
  4913. OUT_WRITE(SOL1_PIN, HIGH);
  4914. break;
  4915. #endif
  4916. #if HAS_SOLENOID_2
  4917. case 2:
  4918. OUT_WRITE(SOL2_PIN, HIGH);
  4919. break;
  4920. #endif
  4921. #if HAS_SOLENOID_3
  4922. case 3:
  4923. OUT_WRITE(SOL3_PIN, HIGH);
  4924. break;
  4925. #endif
  4926. default:
  4927. SERIAL_ECHO_START;
  4928. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4929. break;
  4930. }
  4931. }
  4932. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4933. void disable_all_solenoids() {
  4934. OUT_WRITE(SOL0_PIN, LOW);
  4935. OUT_WRITE(SOL1_PIN, LOW);
  4936. OUT_WRITE(SOL2_PIN, LOW);
  4937. OUT_WRITE(SOL3_PIN, LOW);
  4938. }
  4939. /**
  4940. * M380: Enable solenoid on the active extruder
  4941. */
  4942. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4943. /**
  4944. * M381: Disable all solenoids
  4945. */
  4946. inline void gcode_M381() { disable_all_solenoids(); }
  4947. #endif // EXT_SOLENOID
  4948. /**
  4949. * M400: Finish all moves
  4950. */
  4951. inline void gcode_M400() { stepper.synchronize(); }
  4952. #if HAS_BED_PROBE
  4953. /**
  4954. * M401: Engage Z Servo endstop if available
  4955. */
  4956. inline void gcode_M401() { deploy_z_probe(); }
  4957. /**
  4958. * M402: Retract Z Servo endstop if enabled
  4959. */
  4960. inline void gcode_M402() { stow_z_probe(); }
  4961. #endif // HAS_BED_PROBE
  4962. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4963. /**
  4964. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4965. */
  4966. inline void gcode_M404() {
  4967. if (code_seen('W')) {
  4968. filament_width_nominal = code_value_linear_units();
  4969. }
  4970. else {
  4971. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4972. SERIAL_PROTOCOLLN(filament_width_nominal);
  4973. }
  4974. }
  4975. /**
  4976. * M405: Turn on filament sensor for control
  4977. */
  4978. inline void gcode_M405() {
  4979. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  4980. // everything else, it uses code_value_int() instead of code_value_linear_units().
  4981. if (code_seen('D')) meas_delay_cm = code_value_int();
  4982. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4983. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4984. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  4985. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4986. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4987. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4988. }
  4989. filament_sensor = true;
  4990. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4991. //SERIAL_PROTOCOL(filament_width_meas);
  4992. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4993. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4994. }
  4995. /**
  4996. * M406: Turn off filament sensor for control
  4997. */
  4998. inline void gcode_M406() { filament_sensor = false; }
  4999. /**
  5000. * M407: Get measured filament diameter on serial output
  5001. */
  5002. inline void gcode_M407() {
  5003. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5004. SERIAL_PROTOCOLLN(filament_width_meas);
  5005. }
  5006. #endif // FILAMENT_WIDTH_SENSOR
  5007. #if DISABLED(DELTA) && DISABLED(SCARA)
  5008. void set_current_position_from_planner() {
  5009. stepper.synchronize();
  5010. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5011. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5012. current_position[X_AXIS] = pos.x;
  5013. current_position[Y_AXIS] = pos.y;
  5014. current_position[Z_AXIS] = pos.z;
  5015. #else
  5016. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5017. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5018. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5019. #endif
  5020. sync_plan_position(); // ...re-apply to planner position
  5021. }
  5022. #endif
  5023. /**
  5024. * M410: Quickstop - Abort all planned moves
  5025. *
  5026. * This will stop the carriages mid-move, so most likely they
  5027. * will be out of sync with the stepper position after this.
  5028. */
  5029. inline void gcode_M410() {
  5030. stepper.quick_stop();
  5031. #if DISABLED(DELTA) && DISABLED(SCARA)
  5032. set_current_position_from_planner();
  5033. #endif
  5034. }
  5035. #if ENABLED(MESH_BED_LEVELING)
  5036. /**
  5037. * M420: Enable/Disable Mesh Bed Leveling
  5038. */
  5039. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5040. /**
  5041. * M421: Set a single Mesh Bed Leveling Z coordinate
  5042. * Use either 'M421 X<mm> Y<mm> Z<mm>' or 'M421 I<xindex> J<yindex> Z<mm>'
  5043. */
  5044. inline void gcode_M421() {
  5045. int8_t px, py;
  5046. float z = 0;
  5047. bool hasX, hasY, hasZ, hasI, hasJ;
  5048. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5049. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5050. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5051. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5052. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5053. if (hasX && hasY && hasZ) {
  5054. if (px >= 0 && py >= 0)
  5055. mbl.set_z(px, py, z);
  5056. else {
  5057. SERIAL_ERROR_START;
  5058. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5059. }
  5060. }
  5061. else if (hasI && hasJ && hasZ) {
  5062. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5063. mbl.set_z(px, py, z);
  5064. else {
  5065. SERIAL_ERROR_START;
  5066. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5067. }
  5068. }
  5069. else {
  5070. SERIAL_ERROR_START;
  5071. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5072. }
  5073. }
  5074. #endif
  5075. /**
  5076. * M428: Set home_offset based on the distance between the
  5077. * current_position and the nearest "reference point."
  5078. * If an axis is past center its endstop position
  5079. * is the reference-point. Otherwise it uses 0. This allows
  5080. * the Z offset to be set near the bed when using a max endstop.
  5081. *
  5082. * M428 can't be used more than 2cm away from 0 or an endstop.
  5083. *
  5084. * Use M206 to set these values directly.
  5085. */
  5086. inline void gcode_M428() {
  5087. bool err = false;
  5088. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5089. if (axis_homed[i]) {
  5090. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5091. diff = current_position[i] - base;
  5092. if (diff > -20 && diff < 20) {
  5093. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5094. }
  5095. else {
  5096. SERIAL_ERROR_START;
  5097. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5098. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5099. #if HAS_BUZZER
  5100. buzzer.tone(200, 40);
  5101. #endif
  5102. err = true;
  5103. break;
  5104. }
  5105. }
  5106. }
  5107. if (!err) {
  5108. SYNC_PLAN_POSITION_KINEMATIC();
  5109. report_current_position();
  5110. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5111. #if HAS_BUZZER
  5112. buzzer.tone(200, 659);
  5113. buzzer.tone(200, 698);
  5114. #endif
  5115. }
  5116. }
  5117. /**
  5118. * M500: Store settings in EEPROM
  5119. */
  5120. inline void gcode_M500() {
  5121. Config_StoreSettings();
  5122. }
  5123. /**
  5124. * M501: Read settings from EEPROM
  5125. */
  5126. inline void gcode_M501() {
  5127. Config_RetrieveSettings();
  5128. }
  5129. /**
  5130. * M502: Revert to default settings
  5131. */
  5132. inline void gcode_M502() {
  5133. Config_ResetDefault();
  5134. }
  5135. /**
  5136. * M503: print settings currently in memory
  5137. */
  5138. inline void gcode_M503() {
  5139. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5140. }
  5141. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5142. /**
  5143. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5144. */
  5145. inline void gcode_M540() {
  5146. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5147. }
  5148. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5149. #if HAS_BED_PROBE
  5150. inline void gcode_M851() {
  5151. SERIAL_ECHO_START;
  5152. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5153. SERIAL_CHAR(' ');
  5154. if (code_seen('Z')) {
  5155. float value = code_value_axis_units(Z_AXIS);
  5156. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5157. zprobe_zoffset = value;
  5158. SERIAL_ECHO(zprobe_zoffset);
  5159. }
  5160. else {
  5161. SERIAL_ECHOPGM(MSG_Z_MIN);
  5162. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5163. SERIAL_ECHOPGM(MSG_Z_MAX);
  5164. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5165. }
  5166. }
  5167. else {
  5168. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5169. }
  5170. SERIAL_EOL;
  5171. }
  5172. #endif // HAS_BED_PROBE
  5173. #if ENABLED(FILAMENTCHANGEENABLE)
  5174. /**
  5175. * M600: Pause for filament change
  5176. *
  5177. * E[distance] - Retract the filament this far (negative value)
  5178. * Z[distance] - Move the Z axis by this distance
  5179. * X[position] - Move to this X position, with Y
  5180. * Y[position] - Move to this Y position, with X
  5181. * L[distance] - Retract distance for removal (manual reload)
  5182. *
  5183. * Default values are used for omitted arguments.
  5184. *
  5185. */
  5186. inline void gcode_M600() {
  5187. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5188. SERIAL_ERROR_START;
  5189. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5190. return;
  5191. }
  5192. float lastpos[NUM_AXIS];
  5193. #if ENABLED(DELTA)
  5194. float fr60 = feedrate / 60;
  5195. #endif
  5196. for (int i = 0; i < NUM_AXIS; i++)
  5197. lastpos[i] = destination[i] = current_position[i];
  5198. #if ENABLED(DELTA)
  5199. #define RUNPLAN calculate_delta(destination); \
  5200. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5201. #else
  5202. #define RUNPLAN line_to_destination();
  5203. #endif
  5204. //retract by E
  5205. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5206. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5207. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5208. #endif
  5209. RUNPLAN;
  5210. //lift Z
  5211. if (code_seen('Z')) destination[Z_AXIS] += code_value_axis_units(Z_AXIS);
  5212. #ifdef FILAMENTCHANGE_ZADD
  5213. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5214. #endif
  5215. RUNPLAN;
  5216. //move xy
  5217. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5218. #ifdef FILAMENTCHANGE_XPOS
  5219. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5220. #endif
  5221. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5222. #ifdef FILAMENTCHANGE_YPOS
  5223. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5224. #endif
  5225. RUNPLAN;
  5226. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5227. #ifdef FILAMENTCHANGE_FINALRETRACT
  5228. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5229. #endif
  5230. RUNPLAN;
  5231. //finish moves
  5232. stepper.synchronize();
  5233. //disable extruder steppers so filament can be removed
  5234. disable_e0();
  5235. disable_e1();
  5236. disable_e2();
  5237. disable_e3();
  5238. delay(100);
  5239. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5240. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5241. millis_t next_tick = 0;
  5242. #endif
  5243. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5244. while (!lcd_clicked()) {
  5245. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5246. millis_t ms = millis();
  5247. if (ELAPSED(ms, next_tick)) {
  5248. lcd_quick_feedback();
  5249. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5250. }
  5251. idle(true);
  5252. #else
  5253. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5254. destination[E_AXIS] = current_position[E_AXIS];
  5255. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5256. stepper.synchronize();
  5257. #endif
  5258. } // while(!lcd_clicked)
  5259. KEEPALIVE_STATE(IN_HANDLER);
  5260. lcd_quick_feedback(); // click sound feedback
  5261. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5262. current_position[E_AXIS] = 0;
  5263. stepper.synchronize();
  5264. #endif
  5265. //return to normal
  5266. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5267. #ifdef FILAMENTCHANGE_FINALRETRACT
  5268. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5269. #endif
  5270. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5271. sync_plan_position_e();
  5272. RUNPLAN; //should do nothing
  5273. lcd_reset_alert_level();
  5274. #if ENABLED(DELTA)
  5275. // Move XYZ to starting position, then E
  5276. calculate_delta(lastpos);
  5277. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5278. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5279. #else
  5280. // Move XY to starting position, then Z, then E
  5281. destination[X_AXIS] = lastpos[X_AXIS];
  5282. destination[Y_AXIS] = lastpos[Y_AXIS];
  5283. line_to_destination();
  5284. destination[Z_AXIS] = lastpos[Z_AXIS];
  5285. line_to_destination();
  5286. destination[E_AXIS] = lastpos[E_AXIS];
  5287. line_to_destination();
  5288. #endif
  5289. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5290. filament_ran_out = false;
  5291. #endif
  5292. }
  5293. #endif // FILAMENTCHANGEENABLE
  5294. #if ENABLED(DUAL_X_CARRIAGE)
  5295. /**
  5296. * M605: Set dual x-carriage movement mode
  5297. *
  5298. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5299. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5300. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5301. * millimeters x-offset and an optional differential hotend temperature of
  5302. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5303. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5304. *
  5305. * Note: the X axis should be homed after changing dual x-carriage mode.
  5306. */
  5307. inline void gcode_M605() {
  5308. stepper.synchronize();
  5309. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5310. switch (dual_x_carriage_mode) {
  5311. case DXC_DUPLICATION_MODE:
  5312. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5313. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5314. SERIAL_ECHO_START;
  5315. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5316. SERIAL_CHAR(' ');
  5317. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5318. SERIAL_CHAR(',');
  5319. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5320. SERIAL_CHAR(' ');
  5321. SERIAL_ECHO(duplicate_extruder_x_offset);
  5322. SERIAL_CHAR(',');
  5323. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5324. break;
  5325. case DXC_FULL_CONTROL_MODE:
  5326. case DXC_AUTO_PARK_MODE:
  5327. break;
  5328. default:
  5329. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5330. break;
  5331. }
  5332. active_extruder_parked = false;
  5333. extruder_duplication_enabled = false;
  5334. delayed_move_time = 0;
  5335. }
  5336. #endif // DUAL_X_CARRIAGE
  5337. #if ENABLED(LIN_ADVANCE)
  5338. /**
  5339. * M905: Set advance factor
  5340. */
  5341. inline void gcode_M905() {
  5342. stepper.synchronize();
  5343. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5344. }
  5345. #endif
  5346. /**
  5347. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5348. */
  5349. inline void gcode_M907() {
  5350. #if HAS_DIGIPOTSS
  5351. for (int i = 0; i < NUM_AXIS; i++)
  5352. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5353. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5354. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5355. #endif
  5356. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5357. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5358. #endif
  5359. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5360. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5361. #endif
  5362. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5363. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5364. #endif
  5365. #if ENABLED(DIGIPOT_I2C)
  5366. // this one uses actual amps in floating point
  5367. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5368. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5369. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5370. #endif
  5371. #if ENABLED(DAC_STEPPER_CURRENT)
  5372. if (code_seen('S')) {
  5373. float dac_percent = code_value_float();
  5374. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5375. }
  5376. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5377. #endif
  5378. }
  5379. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5380. /**
  5381. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5382. */
  5383. inline void gcode_M908() {
  5384. #if HAS_DIGIPOTSS
  5385. stepper.digitalPotWrite(
  5386. code_seen('P') ? code_value_int() : 0,
  5387. code_seen('S') ? code_value_int() : 0
  5388. );
  5389. #endif
  5390. #ifdef DAC_STEPPER_CURRENT
  5391. dac_current_raw(
  5392. code_seen('P') ? code_value_byte() : -1,
  5393. code_seen('S') ? code_value_ushort() : 0
  5394. );
  5395. #endif
  5396. }
  5397. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5398. inline void gcode_M909() { dac_print_values(); }
  5399. inline void gcode_M910() { dac_commit_eeprom(); }
  5400. #endif
  5401. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5402. #if HAS_MICROSTEPS
  5403. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5404. inline void gcode_M350() {
  5405. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5406. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5407. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5408. stepper.microstep_readings();
  5409. }
  5410. /**
  5411. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5412. * S# determines MS1 or MS2, X# sets the pin high/low.
  5413. */
  5414. inline void gcode_M351() {
  5415. if (code_seen('S')) switch (code_value_byte()) {
  5416. case 1:
  5417. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5418. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5419. break;
  5420. case 2:
  5421. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5422. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5423. break;
  5424. }
  5425. stepper.microstep_readings();
  5426. }
  5427. #endif // HAS_MICROSTEPS
  5428. /**
  5429. * M999: Restart after being stopped
  5430. *
  5431. * Default behaviour is to flush the serial buffer and request
  5432. * a resend to the host starting on the last N line received.
  5433. *
  5434. * Sending "M999 S1" will resume printing without flushing the
  5435. * existing command buffer.
  5436. *
  5437. */
  5438. inline void gcode_M999() {
  5439. Running = true;
  5440. lcd_reset_alert_level();
  5441. if (code_seen('S') && code_value_bool()) return;
  5442. // gcode_LastN = Stopped_gcode_LastN;
  5443. FlushSerialRequestResend();
  5444. }
  5445. /**
  5446. * T0-T3: Switch tool, usually switching extruders
  5447. *
  5448. * F[mm/min] Set the movement feedrate
  5449. * S1 Don't move the tool in XY after change
  5450. */
  5451. inline void gcode_T(uint8_t tmp_extruder) {
  5452. if (tmp_extruder >= EXTRUDERS) {
  5453. SERIAL_ECHO_START;
  5454. SERIAL_CHAR('T');
  5455. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5456. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5457. return;
  5458. }
  5459. #if HOTENDS > 1
  5460. float stored_feedrate = feedrate;
  5461. if (code_seen('F')) {
  5462. float next_feedrate = code_value_axis_units(X_AXIS);
  5463. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5464. }
  5465. else
  5466. feedrate = XY_PROBE_FEEDRATE;
  5467. if (tmp_extruder != active_extruder) {
  5468. bool no_move = code_seen('S') && code_value_bool();
  5469. // Save current position to return to after applying extruder offset
  5470. if (!no_move) set_destination_to_current();
  5471. #if ENABLED(DUAL_X_CARRIAGE)
  5472. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5473. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5474. // Park old head: 1) raise 2) move to park position 3) lower
  5475. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5476. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5477. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5478. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5479. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5480. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5481. stepper.synchronize();
  5482. }
  5483. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5484. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5485. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5486. active_extruder = tmp_extruder;
  5487. // This function resets the max/min values - the current position may be overwritten below.
  5488. set_axis_is_at_home(X_AXIS);
  5489. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5490. current_position[X_AXIS] = inactive_extruder_x_pos;
  5491. inactive_extruder_x_pos = destination[X_AXIS];
  5492. }
  5493. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5494. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5495. if (active_extruder_parked)
  5496. current_position[X_AXIS] = inactive_extruder_x_pos;
  5497. else
  5498. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5499. inactive_extruder_x_pos = destination[X_AXIS];
  5500. extruder_duplication_enabled = false;
  5501. }
  5502. else {
  5503. // record raised toolhead position for use by unpark
  5504. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5505. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5506. active_extruder_parked = true;
  5507. delayed_move_time = 0;
  5508. }
  5509. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5510. #else // !DUAL_X_CARRIAGE
  5511. //
  5512. // Set current_position to the position of the new nozzle.
  5513. // Offsets are based on linear distance, so we need to get
  5514. // the resulting position in coordinate space.
  5515. //
  5516. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5517. // - With mesh leveling, update Z for the new position
  5518. // - Otherwise, just use the raw linear distance
  5519. //
  5520. // Software endstops are altered here too. Consider a case where:
  5521. // E0 at X=0 ... E1 at X=10
  5522. // When we switch to E1 now X=10, but E1 can't move left.
  5523. // To express this we apply the change in XY to the software endstops.
  5524. // E1 can move farther right than E0, so the right limit is extended.
  5525. //
  5526. // Note that we don't adjust the Z software endstops. Why not?
  5527. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5528. // because the bed is 1mm lower at the new position. As long as
  5529. // the first nozzle is out of the way, the carriage should be
  5530. // allowed to move 1mm lower. This technically "breaks" the
  5531. // Z software endstop. But this is technically correct (and
  5532. // there is no viable alternative).
  5533. //
  5534. float xydiff[2] = {
  5535. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5536. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5537. };
  5538. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5539. // Offset extruder, make sure to apply the bed level rotation matrix
  5540. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5541. hotend_offset[Y_AXIS][tmp_extruder],
  5542. 0),
  5543. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5544. hotend_offset[Y_AXIS][active_extruder],
  5545. 0),
  5546. offset_vec = tmp_offset_vec - act_offset_vec;
  5547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5548. if (DEBUGGING(LEVELING)) {
  5549. SERIAL_ECHOLNPGM(">>> gcode_T");
  5550. tmp_offset_vec.debug("tmp_offset_vec");
  5551. act_offset_vec.debug("act_offset_vec");
  5552. offset_vec.debug("offset_vec (BEFORE)");
  5553. DEBUG_POS("BEFORE rotation", current_position);
  5554. }
  5555. #endif
  5556. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5557. // Adjust the current position
  5558. current_position[X_AXIS] += offset_vec.x;
  5559. current_position[Y_AXIS] += offset_vec.y;
  5560. current_position[Z_AXIS] += offset_vec.z;
  5561. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5562. if (DEBUGGING(LEVELING)) {
  5563. offset_vec.debug("offset_vec (AFTER)");
  5564. DEBUG_POS("AFTER rotation", current_position);
  5565. SERIAL_ECHOLNPGM("<<< gcode_T");
  5566. }
  5567. #endif
  5568. #elif ENABLED(MESH_BED_LEVELING)
  5569. if (mbl.active()) {
  5570. float xpos = current_position[X_AXIS] - home_offset[X_AXIS],
  5571. ypos = current_position[Y_AXIS] - home_offset[Y_AXIS];
  5572. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5573. }
  5574. #else // no bed leveling
  5575. // The newly-selected extruder XY is actually at...
  5576. current_position[X_AXIS] += xydiff[X_AXIS];
  5577. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5578. #endif // no bed leveling
  5579. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5580. position_shift[i] += xydiff[i];
  5581. update_software_endstops((AxisEnum)i);
  5582. }
  5583. // Set the new active extruder
  5584. active_extruder = tmp_extruder;
  5585. #endif // !DUAL_X_CARRIAGE
  5586. // Tell the planner the new "current position"
  5587. SYNC_PLAN_POSITION_KINEMATIC();
  5588. // Move to the "old position" (move the extruder into place)
  5589. if (!no_move && IsRunning()) prepare_move_to_destination();
  5590. } // (tmp_extruder != active_extruder)
  5591. #if ENABLED(EXT_SOLENOID)
  5592. stepper.synchronize();
  5593. disable_all_solenoids();
  5594. enable_solenoid_on_active_extruder();
  5595. #endif // EXT_SOLENOID
  5596. feedrate = stored_feedrate;
  5597. #else // !HOTENDS > 1
  5598. // Set the new active extruder
  5599. active_extruder = tmp_extruder;
  5600. #endif
  5601. SERIAL_ECHO_START;
  5602. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5603. SERIAL_PROTOCOLLN((int)active_extruder);
  5604. }
  5605. /**
  5606. * Process a single command and dispatch it to its handler
  5607. * This is called from the main loop()
  5608. */
  5609. void process_next_command() {
  5610. current_command = command_queue[cmd_queue_index_r];
  5611. if (DEBUGGING(ECHO)) {
  5612. SERIAL_ECHO_START;
  5613. SERIAL_ECHOLN(current_command);
  5614. }
  5615. // Sanitize the current command:
  5616. // - Skip leading spaces
  5617. // - Bypass N[-0-9][0-9]*[ ]*
  5618. // - Overwrite * with nul to mark the end
  5619. while (*current_command == ' ') ++current_command;
  5620. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5621. current_command += 2; // skip N[-0-9]
  5622. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5623. while (*current_command == ' ') ++current_command; // skip [ ]*
  5624. }
  5625. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5626. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5627. char *cmd_ptr = current_command;
  5628. // Get the command code, which must be G, M, or T
  5629. char command_code = *cmd_ptr++;
  5630. // Skip spaces to get the numeric part
  5631. while (*cmd_ptr == ' ') cmd_ptr++;
  5632. uint16_t codenum = 0; // define ahead of goto
  5633. // Bail early if there's no code
  5634. bool code_is_good = NUMERIC(*cmd_ptr);
  5635. if (!code_is_good) goto ExitUnknownCommand;
  5636. // Get and skip the code number
  5637. do {
  5638. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5639. cmd_ptr++;
  5640. } while (NUMERIC(*cmd_ptr));
  5641. // Skip all spaces to get to the first argument, or nul
  5642. while (*cmd_ptr == ' ') cmd_ptr++;
  5643. // The command's arguments (if any) start here, for sure!
  5644. current_command_args = cmd_ptr;
  5645. KEEPALIVE_STATE(IN_HANDLER);
  5646. // Handle a known G, M, or T
  5647. switch (command_code) {
  5648. case 'G': switch (codenum) {
  5649. // G0, G1
  5650. case 0:
  5651. case 1:
  5652. gcode_G0_G1();
  5653. break;
  5654. // G2, G3
  5655. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5656. case 2: // G2 - CW ARC
  5657. case 3: // G3 - CCW ARC
  5658. gcode_G2_G3(codenum == 2);
  5659. break;
  5660. #endif
  5661. // G4 Dwell
  5662. case 4:
  5663. gcode_G4();
  5664. break;
  5665. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5666. // G5
  5667. case 5: // G5 - Cubic B_spline
  5668. gcode_G5();
  5669. break;
  5670. #endif // BEZIER_CURVE_SUPPORT
  5671. #if ENABLED(FWRETRACT)
  5672. case 10: // G10: retract
  5673. case 11: // G11: retract_recover
  5674. gcode_G10_G11(codenum == 10);
  5675. break;
  5676. #endif // FWRETRACT
  5677. #if ENABLED(INCH_MODE_SUPPORT)
  5678. case 20: //G20: Inch Mode
  5679. gcode_G20();
  5680. break;
  5681. case 21: //G21: MM Mode
  5682. gcode_G21();
  5683. break;
  5684. #endif
  5685. case 28: // G28: Home all axes, one at a time
  5686. gcode_G28();
  5687. break;
  5688. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5689. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5690. gcode_G29();
  5691. break;
  5692. #endif
  5693. #if HAS_BED_PROBE
  5694. case 30: // G30 Single Z probe
  5695. gcode_G30();
  5696. break;
  5697. #if ENABLED(Z_PROBE_SLED)
  5698. case 31: // G31: dock the sled
  5699. gcode_G31();
  5700. break;
  5701. case 32: // G32: undock the sled
  5702. gcode_G32();
  5703. break;
  5704. #endif // Z_PROBE_SLED
  5705. #endif // HAS_BED_PROBE
  5706. case 90: // G90
  5707. relative_mode = false;
  5708. break;
  5709. case 91: // G91
  5710. relative_mode = true;
  5711. break;
  5712. case 92: // G92
  5713. gcode_G92();
  5714. break;
  5715. }
  5716. break;
  5717. case 'M': switch (codenum) {
  5718. #if ENABLED(ULTIPANEL)
  5719. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5720. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5721. gcode_M0_M1();
  5722. break;
  5723. #endif // ULTIPANEL
  5724. case 17:
  5725. gcode_M17();
  5726. break;
  5727. #if ENABLED(SDSUPPORT)
  5728. case 20: // M20 - list SD card
  5729. gcode_M20(); break;
  5730. case 21: // M21 - init SD card
  5731. gcode_M21(); break;
  5732. case 22: //M22 - release SD card
  5733. gcode_M22(); break;
  5734. case 23: //M23 - Select file
  5735. gcode_M23(); break;
  5736. case 24: //M24 - Start SD print
  5737. gcode_M24(); break;
  5738. case 25: //M25 - Pause SD print
  5739. gcode_M25(); break;
  5740. case 26: //M26 - Set SD index
  5741. gcode_M26(); break;
  5742. case 27: //M27 - Get SD status
  5743. gcode_M27(); break;
  5744. case 28: //M28 - Start SD write
  5745. gcode_M28(); break;
  5746. case 29: //M29 - Stop SD write
  5747. gcode_M29(); break;
  5748. case 30: //M30 <filename> Delete File
  5749. gcode_M30(); break;
  5750. case 32: //M32 - Select file and start SD print
  5751. gcode_M32(); break;
  5752. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5753. case 33: //M33 - Get the long full path to a file or folder
  5754. gcode_M33(); break;
  5755. #endif // LONG_FILENAME_HOST_SUPPORT
  5756. case 928: //M928 - Start SD write
  5757. gcode_M928(); break;
  5758. #endif //SDSUPPORT
  5759. case 31: //M31 take time since the start of the SD print or an M109 command
  5760. gcode_M31();
  5761. break;
  5762. case 42: //M42 -Change pin status via gcode
  5763. gcode_M42();
  5764. break;
  5765. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5766. case 48: // M48 Z probe repeatability
  5767. gcode_M48();
  5768. break;
  5769. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5770. case 75: // Start print timer
  5771. gcode_M75();
  5772. break;
  5773. case 76: // Pause print timer
  5774. gcode_M76();
  5775. break;
  5776. case 77: // Stop print timer
  5777. gcode_M77();
  5778. break;
  5779. #if ENABLED(PRINTCOUNTER)
  5780. case 78: // Show print statistics
  5781. gcode_M78();
  5782. break;
  5783. #endif
  5784. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5785. case 100:
  5786. gcode_M100();
  5787. break;
  5788. #endif
  5789. case 104: // M104
  5790. gcode_M104();
  5791. break;
  5792. case 110: // M110: Set Current Line Number
  5793. gcode_M110();
  5794. break;
  5795. case 111: // M111: Set debug level
  5796. gcode_M111();
  5797. break;
  5798. case 112: // M112: Emergency Stop
  5799. gcode_M112();
  5800. break;
  5801. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5802. case 113: // M113: Set Host Keepalive interval
  5803. gcode_M113();
  5804. break;
  5805. #endif
  5806. case 140: // M140: Set bed temp
  5807. gcode_M140();
  5808. break;
  5809. case 105: // M105: Read current temperature
  5810. gcode_M105();
  5811. KEEPALIVE_STATE(NOT_BUSY);
  5812. return; // "ok" already printed
  5813. case 109: // M109: Wait for temperature
  5814. gcode_M109();
  5815. break;
  5816. #if HAS_TEMP_BED
  5817. case 190: // M190: Wait for bed heater to reach target
  5818. gcode_M190();
  5819. break;
  5820. #endif // HAS_TEMP_BED
  5821. #if FAN_COUNT > 0
  5822. case 106: // M106: Fan On
  5823. gcode_M106();
  5824. break;
  5825. case 107: // M107: Fan Off
  5826. gcode_M107();
  5827. break;
  5828. #endif // FAN_COUNT > 0
  5829. #if ENABLED(BARICUDA)
  5830. // PWM for HEATER_1_PIN
  5831. #if HAS_HEATER_1
  5832. case 126: // M126: valve open
  5833. gcode_M126();
  5834. break;
  5835. case 127: // M127: valve closed
  5836. gcode_M127();
  5837. break;
  5838. #endif // HAS_HEATER_1
  5839. // PWM for HEATER_2_PIN
  5840. #if HAS_HEATER_2
  5841. case 128: // M128: valve open
  5842. gcode_M128();
  5843. break;
  5844. case 129: // M129: valve closed
  5845. gcode_M129();
  5846. break;
  5847. #endif // HAS_HEATER_2
  5848. #endif // BARICUDA
  5849. #if HAS_POWER_SWITCH
  5850. case 80: // M80: Turn on Power Supply
  5851. gcode_M80();
  5852. break;
  5853. #endif // HAS_POWER_SWITCH
  5854. case 81: // M81: Turn off Power, including Power Supply, if possible
  5855. gcode_M81();
  5856. break;
  5857. case 82:
  5858. gcode_M82();
  5859. break;
  5860. case 83:
  5861. gcode_M83();
  5862. break;
  5863. case 18: // (for compatibility)
  5864. case 84: // M84
  5865. gcode_M18_M84();
  5866. break;
  5867. case 85: // M85
  5868. gcode_M85();
  5869. break;
  5870. case 92: // M92: Set the steps-per-unit for one or more axes
  5871. gcode_M92();
  5872. break;
  5873. case 115: // M115: Report capabilities
  5874. gcode_M115();
  5875. break;
  5876. case 117: // M117: Set LCD message text, if possible
  5877. gcode_M117();
  5878. break;
  5879. case 114: // M114: Report current position
  5880. gcode_M114();
  5881. break;
  5882. case 120: // M120: Enable endstops
  5883. gcode_M120();
  5884. break;
  5885. case 121: // M121: Disable endstops
  5886. gcode_M121();
  5887. break;
  5888. case 119: // M119: Report endstop states
  5889. gcode_M119();
  5890. break;
  5891. #if ENABLED(ULTIPANEL)
  5892. case 145: // M145: Set material heatup parameters
  5893. gcode_M145();
  5894. break;
  5895. #endif
  5896. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5897. case 149:
  5898. gcode_M149();
  5899. break;
  5900. #endif
  5901. #if ENABLED(BLINKM)
  5902. case 150: // M150
  5903. gcode_M150();
  5904. break;
  5905. #endif //BLINKM
  5906. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5907. case 155:
  5908. gcode_M155();
  5909. break;
  5910. case 156:
  5911. gcode_M156();
  5912. break;
  5913. #endif //EXPERIMENTAL_I2CBUS
  5914. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5915. gcode_M200();
  5916. break;
  5917. case 201: // M201
  5918. gcode_M201();
  5919. break;
  5920. #if 0 // Not used for Sprinter/grbl gen6
  5921. case 202: // M202
  5922. gcode_M202();
  5923. break;
  5924. #endif
  5925. case 203: // M203 max feedrate mm/sec
  5926. gcode_M203();
  5927. break;
  5928. case 204: // M204 acclereration S normal moves T filmanent only moves
  5929. gcode_M204();
  5930. break;
  5931. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5932. gcode_M205();
  5933. break;
  5934. case 206: // M206 additional homing offset
  5935. gcode_M206();
  5936. break;
  5937. #if ENABLED(DELTA)
  5938. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5939. gcode_M665();
  5940. break;
  5941. #endif
  5942. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5943. case 666: // M666 set delta / dual endstop adjustment
  5944. gcode_M666();
  5945. break;
  5946. #endif
  5947. #if ENABLED(FWRETRACT)
  5948. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5949. gcode_M207();
  5950. break;
  5951. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5952. gcode_M208();
  5953. break;
  5954. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5955. gcode_M209();
  5956. break;
  5957. #endif // FWRETRACT
  5958. #if HOTENDS > 1
  5959. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5960. gcode_M218();
  5961. break;
  5962. #endif
  5963. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5964. gcode_M220();
  5965. break;
  5966. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5967. gcode_M221();
  5968. break;
  5969. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5970. gcode_M226();
  5971. break;
  5972. #if HAS_SERVOS
  5973. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5974. gcode_M280();
  5975. break;
  5976. #endif // HAS_SERVOS
  5977. #if HAS_BUZZER
  5978. case 300: // M300 - Play beep tone
  5979. gcode_M300();
  5980. break;
  5981. #endif // HAS_BUZZER
  5982. #if ENABLED(PIDTEMP)
  5983. case 301: // M301
  5984. gcode_M301();
  5985. break;
  5986. #endif // PIDTEMP
  5987. #if ENABLED(PIDTEMPBED)
  5988. case 304: // M304
  5989. gcode_M304();
  5990. break;
  5991. #endif // PIDTEMPBED
  5992. #if defined(CHDK) || HAS_PHOTOGRAPH
  5993. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5994. gcode_M240();
  5995. break;
  5996. #endif // CHDK || PHOTOGRAPH_PIN
  5997. #if HAS_LCD_CONTRAST
  5998. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5999. gcode_M250();
  6000. break;
  6001. #endif // HAS_LCD_CONTRAST
  6002. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6003. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6004. gcode_M302();
  6005. break;
  6006. #endif // PREVENT_DANGEROUS_EXTRUDE
  6007. case 303: // M303 PID autotune
  6008. gcode_M303();
  6009. break;
  6010. #if ENABLED(SCARA)
  6011. case 360: // M360 SCARA Theta pos1
  6012. if (gcode_M360()) return;
  6013. break;
  6014. case 361: // M361 SCARA Theta pos2
  6015. if (gcode_M361()) return;
  6016. break;
  6017. case 362: // M362 SCARA Psi pos1
  6018. if (gcode_M362()) return;
  6019. break;
  6020. case 363: // M363 SCARA Psi pos2
  6021. if (gcode_M363()) return;
  6022. break;
  6023. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6024. if (gcode_M364()) return;
  6025. break;
  6026. case 365: // M365 Set SCARA scaling for X Y Z
  6027. gcode_M365();
  6028. break;
  6029. #endif // SCARA
  6030. case 400: // M400 finish all moves
  6031. gcode_M400();
  6032. break;
  6033. #if HAS_BED_PROBE
  6034. case 401:
  6035. gcode_M401();
  6036. break;
  6037. case 402:
  6038. gcode_M402();
  6039. break;
  6040. #endif // HAS_BED_PROBE
  6041. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6042. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6043. gcode_M404();
  6044. break;
  6045. case 405: //M405 Turn on filament sensor for control
  6046. gcode_M405();
  6047. break;
  6048. case 406: //M406 Turn off filament sensor for control
  6049. gcode_M406();
  6050. break;
  6051. case 407: //M407 Display measured filament diameter
  6052. gcode_M407();
  6053. break;
  6054. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6055. case 410: // M410 quickstop - Abort all the planned moves.
  6056. gcode_M410();
  6057. break;
  6058. #if ENABLED(MESH_BED_LEVELING)
  6059. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6060. gcode_M420();
  6061. break;
  6062. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6063. gcode_M421();
  6064. break;
  6065. #endif
  6066. case 428: // M428 Apply current_position to home_offset
  6067. gcode_M428();
  6068. break;
  6069. case 500: // M500 Store settings in EEPROM
  6070. gcode_M500();
  6071. break;
  6072. case 501: // M501 Read settings from EEPROM
  6073. gcode_M501();
  6074. break;
  6075. case 502: // M502 Revert to default settings
  6076. gcode_M502();
  6077. break;
  6078. case 503: // M503 print settings currently in memory
  6079. gcode_M503();
  6080. break;
  6081. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6082. case 540:
  6083. gcode_M540();
  6084. break;
  6085. #endif
  6086. #if HAS_BED_PROBE
  6087. case 851:
  6088. gcode_M851();
  6089. break;
  6090. #endif // HAS_BED_PROBE
  6091. #if ENABLED(FILAMENTCHANGEENABLE)
  6092. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6093. gcode_M600();
  6094. break;
  6095. #endif // FILAMENTCHANGEENABLE
  6096. #if ENABLED(DUAL_X_CARRIAGE)
  6097. case 605:
  6098. gcode_M605();
  6099. break;
  6100. #endif // DUAL_X_CARRIAGE
  6101. #if ENABLED(LIN_ADVANCE)
  6102. case 905: // M905 Set advance factor.
  6103. gcode_M905();
  6104. break;
  6105. #endif
  6106. case 907: // M907 Set digital trimpot motor current using axis codes.
  6107. gcode_M907();
  6108. break;
  6109. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6110. case 908: // M908 Control digital trimpot directly.
  6111. gcode_M908();
  6112. break;
  6113. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6114. case 909: // M909 Print digipot/DAC current value
  6115. gcode_M909();
  6116. break;
  6117. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6118. gcode_M910();
  6119. break;
  6120. #endif
  6121. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6122. #if HAS_MICROSTEPS
  6123. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6124. gcode_M350();
  6125. break;
  6126. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6127. gcode_M351();
  6128. break;
  6129. #endif // HAS_MICROSTEPS
  6130. case 999: // M999: Restart after being Stopped
  6131. gcode_M999();
  6132. break;
  6133. }
  6134. break;
  6135. case 'T':
  6136. gcode_T(codenum);
  6137. break;
  6138. default: code_is_good = false;
  6139. }
  6140. KEEPALIVE_STATE(NOT_BUSY);
  6141. ExitUnknownCommand:
  6142. // Still unknown command? Throw an error
  6143. if (!code_is_good) unknown_command_error();
  6144. ok_to_send();
  6145. }
  6146. void FlushSerialRequestResend() {
  6147. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6148. MYSERIAL.flush();
  6149. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6150. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6151. ok_to_send();
  6152. }
  6153. void ok_to_send() {
  6154. refresh_cmd_timeout();
  6155. if (!send_ok[cmd_queue_index_r]) return;
  6156. SERIAL_PROTOCOLPGM(MSG_OK);
  6157. #if ENABLED(ADVANCED_OK)
  6158. char* p = command_queue[cmd_queue_index_r];
  6159. if (*p == 'N') {
  6160. SERIAL_PROTOCOL(' ');
  6161. SERIAL_ECHO(*p++);
  6162. while (NUMERIC_SIGNED(*p))
  6163. SERIAL_ECHO(*p++);
  6164. }
  6165. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6166. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6167. #endif
  6168. SERIAL_EOL;
  6169. }
  6170. void clamp_to_software_endstops(float target[3]) {
  6171. if (min_software_endstops) {
  6172. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6173. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6174. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6175. }
  6176. if (max_software_endstops) {
  6177. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6178. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6179. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6180. }
  6181. }
  6182. #if ENABLED(DELTA)
  6183. void recalc_delta_settings(float radius, float diagonal_rod) {
  6184. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6185. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6186. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6187. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6188. delta_tower3_x = 0.0; // back middle tower
  6189. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6190. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6191. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6192. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6193. }
  6194. void calculate_delta(float cartesian[3]) {
  6195. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6196. - sq(delta_tower1_x - cartesian[X_AXIS])
  6197. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6198. ) + cartesian[Z_AXIS];
  6199. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6200. - sq(delta_tower2_x - cartesian[X_AXIS])
  6201. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6202. ) + cartesian[Z_AXIS];
  6203. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6204. - sq(delta_tower3_x - cartesian[X_AXIS])
  6205. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6206. ) + cartesian[Z_AXIS];
  6207. /**
  6208. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6209. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6210. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6211. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6212. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6213. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6214. */
  6215. }
  6216. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6217. // Adjust print surface height by linear interpolation over the bed_level array.
  6218. void adjust_delta(float cartesian[3]) {
  6219. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6220. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6221. float h1 = 0.001 - half, h2 = half - 0.001,
  6222. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6223. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6224. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6225. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6226. z1 = bed_level[floor_x + half][floor_y + half],
  6227. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6228. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6229. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6230. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6231. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6232. offset = (1 - ratio_x) * left + ratio_x * right;
  6233. delta[X_AXIS] += offset;
  6234. delta[Y_AXIS] += offset;
  6235. delta[Z_AXIS] += offset;
  6236. /**
  6237. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6238. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6239. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6240. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6241. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6242. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6243. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6244. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6245. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6246. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6247. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6248. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6249. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6250. */
  6251. }
  6252. #endif // AUTO_BED_LEVELING_FEATURE
  6253. #endif // DELTA
  6254. #if ENABLED(MESH_BED_LEVELING)
  6255. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6256. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6257. if (!mbl.active()) {
  6258. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6259. set_current_to_destination();
  6260. return;
  6261. }
  6262. int pcx = mbl.cell_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
  6263. int pcy = mbl.cell_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6264. int cx = mbl.cell_index_x(x - home_offset[X_AXIS]);
  6265. int cy = mbl.cell_index_y(y - home_offset[Y_AXIS]);
  6266. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6267. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6268. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6269. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6270. if (pcx == cx && pcy == cy) {
  6271. // Start and end on same mesh square
  6272. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6273. set_current_to_destination();
  6274. return;
  6275. }
  6276. float nx, ny, nz, ne, normalized_dist;
  6277. if (cx > pcx && TEST(x_splits, cx)) {
  6278. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6279. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6280. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6281. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6282. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6283. CBI(x_splits, cx);
  6284. }
  6285. else if (cx < pcx && TEST(x_splits, pcx)) {
  6286. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6287. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6288. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6289. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6290. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6291. CBI(x_splits, pcx);
  6292. }
  6293. else if (cy > pcy && TEST(y_splits, cy)) {
  6294. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6295. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6296. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6297. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6298. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6299. CBI(y_splits, cy);
  6300. }
  6301. else if (cy < pcy && TEST(y_splits, pcy)) {
  6302. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6303. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6304. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6305. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6306. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6307. CBI(y_splits, pcy);
  6308. }
  6309. else {
  6310. // Already split on a border
  6311. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6312. set_current_to_destination();
  6313. return;
  6314. }
  6315. // Do the split and look for more borders
  6316. destination[X_AXIS] = nx;
  6317. destination[Y_AXIS] = ny;
  6318. destination[Z_AXIS] = nz;
  6319. destination[E_AXIS] = ne;
  6320. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6321. destination[X_AXIS] = x;
  6322. destination[Y_AXIS] = y;
  6323. destination[Z_AXIS] = z;
  6324. destination[E_AXIS] = e;
  6325. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6326. }
  6327. #endif // MESH_BED_LEVELING
  6328. #if ENABLED(DELTA) || ENABLED(SCARA)
  6329. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6330. float difference[NUM_AXIS];
  6331. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6332. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6333. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6334. if (cartesian_mm < 0.000001) return false;
  6335. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6336. float seconds = cartesian_mm / _feedrate;
  6337. int steps = max(1, int(delta_segments_per_second * seconds));
  6338. float inv_steps = 1.0/steps;
  6339. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6340. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6341. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6342. for (int s = 1; s <= steps; s++) {
  6343. float fraction = float(s) * inv_steps;
  6344. for (int8_t i = 0; i < NUM_AXIS; i++)
  6345. target[i] = current_position[i] + difference[i] * fraction;
  6346. calculate_delta(target);
  6347. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6348. if (!bed_leveling_in_progress) adjust_delta(target);
  6349. #endif
  6350. //DEBUG_POS("prepare_delta_move_to", target);
  6351. //DEBUG_POS("prepare_delta_move_to", delta);
  6352. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6353. }
  6354. return true;
  6355. }
  6356. #endif // DELTA || SCARA
  6357. #if ENABLED(SCARA)
  6358. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6359. #endif
  6360. #if ENABLED(DUAL_X_CARRIAGE)
  6361. inline bool prepare_move_dual_x_carriage() {
  6362. if (active_extruder_parked) {
  6363. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6364. // move duplicate extruder into correct duplication position.
  6365. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6366. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6367. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6368. SYNC_PLAN_POSITION_KINEMATIC();
  6369. stepper.synchronize();
  6370. extruder_duplication_enabled = true;
  6371. active_extruder_parked = false;
  6372. }
  6373. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6374. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6375. // This is a travel move (with no extrusion)
  6376. // Skip it, but keep track of the current position
  6377. // (so it can be used as the start of the next non-travel move)
  6378. if (delayed_move_time != 0xFFFFFFFFUL) {
  6379. set_current_to_destination();
  6380. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6381. delayed_move_time = millis();
  6382. return false;
  6383. }
  6384. }
  6385. delayed_move_time = 0;
  6386. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6387. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6388. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6389. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6390. active_extruder_parked = false;
  6391. }
  6392. }
  6393. return true;
  6394. }
  6395. #endif // DUAL_X_CARRIAGE
  6396. #if DISABLED(DELTA) && DISABLED(SCARA)
  6397. inline bool prepare_cartesian_move_to_destination() {
  6398. // Do not use feedrate_multiplier for E or Z only moves
  6399. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6400. line_to_destination();
  6401. }
  6402. else {
  6403. #if ENABLED(MESH_BED_LEVELING)
  6404. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6405. return false;
  6406. #else
  6407. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6408. #endif
  6409. }
  6410. return true;
  6411. }
  6412. #endif // !DELTA && !SCARA
  6413. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6414. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6415. if (DEBUGGING(DRYRUN)) return;
  6416. float de = dest_e - curr_e;
  6417. if (de) {
  6418. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6419. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6420. SERIAL_ECHO_START;
  6421. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6422. }
  6423. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6424. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6425. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6426. SERIAL_ECHO_START;
  6427. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6428. }
  6429. #endif
  6430. }
  6431. }
  6432. #endif // PREVENT_DANGEROUS_EXTRUDE
  6433. /**
  6434. * Prepare a single move and get ready for the next one
  6435. *
  6436. * (This may call planner.buffer_line several times to put
  6437. * smaller moves into the planner for DELTA or SCARA.)
  6438. */
  6439. void prepare_move_to_destination() {
  6440. clamp_to_software_endstops(destination);
  6441. refresh_cmd_timeout();
  6442. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6443. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6444. #endif
  6445. #if ENABLED(SCARA)
  6446. if (!prepare_scara_move_to(destination)) return;
  6447. #elif ENABLED(DELTA)
  6448. if (!prepare_delta_move_to(destination)) return;
  6449. #else
  6450. #if ENABLED(DUAL_X_CARRIAGE)
  6451. if (!prepare_move_dual_x_carriage()) return;
  6452. #endif
  6453. if (!prepare_cartesian_move_to_destination()) return;
  6454. #endif
  6455. set_current_to_destination();
  6456. }
  6457. #if ENABLED(ARC_SUPPORT)
  6458. /**
  6459. * Plan an arc in 2 dimensions
  6460. *
  6461. * The arc is approximated by generating many small linear segments.
  6462. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6463. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6464. * larger segments will tend to be more efficient. Your slicer should have
  6465. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6466. */
  6467. void plan_arc(
  6468. float target[NUM_AXIS], // Destination position
  6469. float* offset, // Center of rotation relative to current_position
  6470. uint8_t clockwise // Clockwise?
  6471. ) {
  6472. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6473. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6474. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6475. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6476. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6477. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6478. r_Y = -offset[Y_AXIS],
  6479. rt_X = target[X_AXIS] - center_X,
  6480. rt_Y = target[Y_AXIS] - center_Y;
  6481. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6482. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6483. if (angular_travel < 0) angular_travel += RADIANS(360);
  6484. if (clockwise) angular_travel -= RADIANS(360);
  6485. // Make a circle if the angular rotation is 0
  6486. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6487. angular_travel += RADIANS(360);
  6488. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6489. if (mm_of_travel < 0.001) return;
  6490. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6491. if (segments == 0) segments = 1;
  6492. float theta_per_segment = angular_travel / segments;
  6493. float linear_per_segment = linear_travel / segments;
  6494. float extruder_per_segment = extruder_travel / segments;
  6495. /**
  6496. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6497. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6498. * r_T = [cos(phi) -sin(phi);
  6499. * sin(phi) cos(phi] * r ;
  6500. *
  6501. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6502. * defined from the circle center to the initial position. Each line segment is formed by successive
  6503. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6504. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6505. * all double numbers are single precision on the Arduino. (True double precision will not have
  6506. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6507. * tool precision in some cases. Therefore, arc path correction is implemented.
  6508. *
  6509. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6510. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6511. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6512. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6513. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6514. * issue for CNC machines with the single precision Arduino calculations.
  6515. *
  6516. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6517. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6518. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6519. * This is important when there are successive arc motions.
  6520. */
  6521. // Vector rotation matrix values
  6522. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6523. float sin_T = theta_per_segment;
  6524. float arc_target[NUM_AXIS];
  6525. float sin_Ti, cos_Ti, r_new_Y;
  6526. uint16_t i;
  6527. int8_t count = 0;
  6528. // Initialize the linear axis
  6529. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6530. // Initialize the extruder axis
  6531. arc_target[E_AXIS] = current_position[E_AXIS];
  6532. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6533. millis_t next_idle_ms = millis() + 200UL;
  6534. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6535. thermalManager.manage_heater();
  6536. millis_t now = millis();
  6537. if (ELAPSED(now, next_idle_ms)) {
  6538. next_idle_ms = now + 200UL;
  6539. idle();
  6540. }
  6541. if (++count < N_ARC_CORRECTION) {
  6542. // Apply vector rotation matrix to previous r_X / 1
  6543. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6544. r_X = r_X * cos_T - r_Y * sin_T;
  6545. r_Y = r_new_Y;
  6546. }
  6547. else {
  6548. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6549. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6550. // To reduce stuttering, the sin and cos could be computed at different times.
  6551. // For now, compute both at the same time.
  6552. cos_Ti = cos(i * theta_per_segment);
  6553. sin_Ti = sin(i * theta_per_segment);
  6554. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6555. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6556. count = 0;
  6557. }
  6558. // Update arc_target location
  6559. arc_target[X_AXIS] = center_X + r_X;
  6560. arc_target[Y_AXIS] = center_Y + r_Y;
  6561. arc_target[Z_AXIS] += linear_per_segment;
  6562. arc_target[E_AXIS] += extruder_per_segment;
  6563. clamp_to_software_endstops(arc_target);
  6564. #if ENABLED(DELTA) || ENABLED(SCARA)
  6565. calculate_delta(arc_target);
  6566. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6567. adjust_delta(arc_target);
  6568. #endif
  6569. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6570. #else
  6571. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6572. #endif
  6573. }
  6574. // Ensure last segment arrives at target location.
  6575. #if ENABLED(DELTA) || ENABLED(SCARA)
  6576. calculate_delta(target);
  6577. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6578. adjust_delta(target);
  6579. #endif
  6580. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6581. #else
  6582. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6583. #endif
  6584. // As far as the parser is concerned, the position is now == target. In reality the
  6585. // motion control system might still be processing the action and the real tool position
  6586. // in any intermediate location.
  6587. set_current_to_destination();
  6588. }
  6589. #endif
  6590. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6591. void plan_cubic_move(const float offset[4]) {
  6592. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6593. // As far as the parser is concerned, the position is now == target. In reality the
  6594. // motion control system might still be processing the action and the real tool position
  6595. // in any intermediate location.
  6596. set_current_to_destination();
  6597. }
  6598. #endif // BEZIER_CURVE_SUPPORT
  6599. #if HAS_CONTROLLERFAN
  6600. void controllerFan() {
  6601. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6602. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6603. millis_t ms = millis();
  6604. if (ELAPSED(ms, nextMotorCheck)) {
  6605. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6606. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6607. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6608. #if EXTRUDERS > 1
  6609. || E1_ENABLE_READ == E_ENABLE_ON
  6610. #if HAS_X2_ENABLE
  6611. || X2_ENABLE_READ == X_ENABLE_ON
  6612. #endif
  6613. #if EXTRUDERS > 2
  6614. || E2_ENABLE_READ == E_ENABLE_ON
  6615. #if EXTRUDERS > 3
  6616. || E3_ENABLE_READ == E_ENABLE_ON
  6617. #endif
  6618. #endif
  6619. #endif
  6620. ) {
  6621. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6622. }
  6623. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6624. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6625. // allows digital or PWM fan output to be used (see M42 handling)
  6626. digitalWrite(CONTROLLERFAN_PIN, speed);
  6627. analogWrite(CONTROLLERFAN_PIN, speed);
  6628. }
  6629. }
  6630. #endif // HAS_CONTROLLERFAN
  6631. #if ENABLED(SCARA)
  6632. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6633. // Perform forward kinematics, and place results in delta[3]
  6634. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6635. float x_sin, x_cos, y_sin, y_cos;
  6636. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6637. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6638. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6639. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6640. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6641. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6642. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6643. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6644. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6645. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6646. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6647. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6648. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6649. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6650. }
  6651. void calculate_delta(float cartesian[3]) {
  6652. //reverse kinematics.
  6653. // Perform reversed kinematics, and place results in delta[3]
  6654. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6655. float SCARA_pos[2];
  6656. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6657. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6658. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6659. #if (Linkage_1 == Linkage_2)
  6660. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6661. #else
  6662. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6663. #endif
  6664. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6665. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6666. SCARA_K2 = Linkage_2 * SCARA_S2;
  6667. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6668. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6669. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6670. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6671. delta[Z_AXIS] = cartesian[Z_AXIS];
  6672. /**
  6673. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6674. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6675. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6676. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6677. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6678. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6679. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6680. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6681. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6682. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6683. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6684. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6685. SERIAL_EOL;
  6686. */
  6687. }
  6688. #endif // SCARA
  6689. #if ENABLED(TEMP_STAT_LEDS)
  6690. static bool red_led = false;
  6691. static millis_t next_status_led_update_ms = 0;
  6692. void handle_status_leds(void) {
  6693. float max_temp = 0.0;
  6694. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6695. next_status_led_update_ms += 500; // Update every 0.5s
  6696. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6697. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6698. #if HAS_TEMP_BED
  6699. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6700. #endif
  6701. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6702. if (new_led != red_led) {
  6703. red_led = new_led;
  6704. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6705. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6706. }
  6707. }
  6708. }
  6709. #endif
  6710. void enable_all_steppers() {
  6711. enable_x();
  6712. enable_y();
  6713. enable_z();
  6714. enable_e0();
  6715. enable_e1();
  6716. enable_e2();
  6717. enable_e3();
  6718. }
  6719. void disable_all_steppers() {
  6720. disable_x();
  6721. disable_y();
  6722. disable_z();
  6723. disable_e0();
  6724. disable_e1();
  6725. disable_e2();
  6726. disable_e3();
  6727. }
  6728. /**
  6729. * Standard idle routine keeps the machine alive
  6730. */
  6731. void idle(
  6732. #if ENABLED(FILAMENTCHANGEENABLE)
  6733. bool no_stepper_sleep/*=false*/
  6734. #endif
  6735. ) {
  6736. lcd_update();
  6737. host_keepalive();
  6738. manage_inactivity(
  6739. #if ENABLED(FILAMENTCHANGEENABLE)
  6740. no_stepper_sleep
  6741. #endif
  6742. );
  6743. thermalManager.manage_heater();
  6744. #if ENABLED(PRINTCOUNTER)
  6745. print_job_timer.tick();
  6746. #endif
  6747. #if HAS_BUZZER
  6748. buzzer.tick();
  6749. #endif
  6750. }
  6751. /**
  6752. * Manage several activities:
  6753. * - Check for Filament Runout
  6754. * - Keep the command buffer full
  6755. * - Check for maximum inactive time between commands
  6756. * - Check for maximum inactive time between stepper commands
  6757. * - Check if pin CHDK needs to go LOW
  6758. * - Check for KILL button held down
  6759. * - Check for HOME button held down
  6760. * - Check if cooling fan needs to be switched on
  6761. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6762. */
  6763. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6764. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6765. if (IS_SD_PRINTING && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6766. handle_filament_runout();
  6767. #endif
  6768. if (commands_in_queue < BUFSIZE) get_available_commands();
  6769. millis_t ms = millis();
  6770. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6771. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6772. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6773. #if ENABLED(DISABLE_INACTIVE_X)
  6774. disable_x();
  6775. #endif
  6776. #if ENABLED(DISABLE_INACTIVE_Y)
  6777. disable_y();
  6778. #endif
  6779. #if ENABLED(DISABLE_INACTIVE_Z)
  6780. disable_z();
  6781. #endif
  6782. #if ENABLED(DISABLE_INACTIVE_E)
  6783. disable_e0();
  6784. disable_e1();
  6785. disable_e2();
  6786. disable_e3();
  6787. #endif
  6788. }
  6789. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6790. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6791. chdkActive = false;
  6792. WRITE(CHDK, LOW);
  6793. }
  6794. #endif
  6795. #if HAS_KILL
  6796. // Check if the kill button was pressed and wait just in case it was an accidental
  6797. // key kill key press
  6798. // -------------------------------------------------------------------------------
  6799. static int killCount = 0; // make the inactivity button a bit less responsive
  6800. const int KILL_DELAY = 750;
  6801. if (!READ(KILL_PIN))
  6802. killCount++;
  6803. else if (killCount > 0)
  6804. killCount--;
  6805. // Exceeded threshold and we can confirm that it was not accidental
  6806. // KILL the machine
  6807. // ----------------------------------------------------------------
  6808. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6809. #endif
  6810. #if HAS_HOME
  6811. // Check to see if we have to home, use poor man's debouncer
  6812. // ---------------------------------------------------------
  6813. static int homeDebounceCount = 0; // poor man's debouncing count
  6814. const int HOME_DEBOUNCE_DELAY = 2500;
  6815. if (!READ(HOME_PIN)) {
  6816. if (!homeDebounceCount) {
  6817. enqueue_and_echo_commands_P(PSTR("G28"));
  6818. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6819. }
  6820. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6821. homeDebounceCount++;
  6822. else
  6823. homeDebounceCount = 0;
  6824. }
  6825. #endif
  6826. #if HAS_CONTROLLERFAN
  6827. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6828. #endif
  6829. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6830. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6831. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6832. bool oldstatus;
  6833. switch (active_extruder) {
  6834. case 0:
  6835. oldstatus = E0_ENABLE_READ;
  6836. enable_e0();
  6837. break;
  6838. #if EXTRUDERS > 1
  6839. case 1:
  6840. oldstatus = E1_ENABLE_READ;
  6841. enable_e1();
  6842. break;
  6843. #if EXTRUDERS > 2
  6844. case 2:
  6845. oldstatus = E2_ENABLE_READ;
  6846. enable_e2();
  6847. break;
  6848. #if EXTRUDERS > 3
  6849. case 3:
  6850. oldstatus = E3_ENABLE_READ;
  6851. enable_e3();
  6852. break;
  6853. #endif
  6854. #endif
  6855. #endif
  6856. }
  6857. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6858. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6859. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6860. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6861. current_position[E_AXIS] = oldepos;
  6862. destination[E_AXIS] = oldedes;
  6863. planner.set_e_position_mm(oldepos);
  6864. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6865. stepper.synchronize();
  6866. switch (active_extruder) {
  6867. case 0:
  6868. E0_ENABLE_WRITE(oldstatus);
  6869. break;
  6870. #if EXTRUDERS > 1
  6871. case 1:
  6872. E1_ENABLE_WRITE(oldstatus);
  6873. break;
  6874. #if EXTRUDERS > 2
  6875. case 2:
  6876. E2_ENABLE_WRITE(oldstatus);
  6877. break;
  6878. #if EXTRUDERS > 3
  6879. case 3:
  6880. E3_ENABLE_WRITE(oldstatus);
  6881. break;
  6882. #endif
  6883. #endif
  6884. #endif
  6885. }
  6886. }
  6887. #endif
  6888. #if ENABLED(DUAL_X_CARRIAGE)
  6889. // handle delayed move timeout
  6890. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6891. // travel moves have been received so enact them
  6892. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6893. set_destination_to_current();
  6894. prepare_move_to_destination();
  6895. }
  6896. #endif
  6897. #if ENABLED(TEMP_STAT_LEDS)
  6898. handle_status_leds();
  6899. #endif
  6900. planner.check_axes_activity();
  6901. }
  6902. void kill(const char* lcd_msg) {
  6903. #if ENABLED(ULTRA_LCD)
  6904. lcd_init();
  6905. lcd_setalertstatuspgm(lcd_msg);
  6906. #else
  6907. UNUSED(lcd_msg);
  6908. #endif
  6909. cli(); // Stop interrupts
  6910. thermalManager.disable_all_heaters();
  6911. disable_all_steppers();
  6912. #if HAS_POWER_SWITCH
  6913. pinMode(PS_ON_PIN, INPUT);
  6914. #endif
  6915. SERIAL_ERROR_START;
  6916. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6917. // FMC small patch to update the LCD before ending
  6918. sei(); // enable interrupts
  6919. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6920. cli(); // disable interrupts
  6921. suicide();
  6922. while (1) {
  6923. #if ENABLED(USE_WATCHDOG)
  6924. watchdog_reset();
  6925. #endif
  6926. } // Wait for reset
  6927. }
  6928. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6929. void handle_filament_runout() {
  6930. if (!filament_ran_out) {
  6931. filament_ran_out = true;
  6932. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6933. stepper.synchronize();
  6934. }
  6935. }
  6936. #endif // FILAMENT_RUNOUT_SENSOR
  6937. #if ENABLED(FAST_PWM_FAN)
  6938. void setPwmFrequency(uint8_t pin, int val) {
  6939. val &= 0x07;
  6940. switch (digitalPinToTimer(pin)) {
  6941. #if defined(TCCR0A)
  6942. case TIMER0A:
  6943. case TIMER0B:
  6944. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6945. // TCCR0B |= val;
  6946. break;
  6947. #endif
  6948. #if defined(TCCR1A)
  6949. case TIMER1A:
  6950. case TIMER1B:
  6951. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6952. // TCCR1B |= val;
  6953. break;
  6954. #endif
  6955. #if defined(TCCR2)
  6956. case TIMER2:
  6957. case TIMER2:
  6958. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6959. TCCR2 |= val;
  6960. break;
  6961. #endif
  6962. #if defined(TCCR2A)
  6963. case TIMER2A:
  6964. case TIMER2B:
  6965. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6966. TCCR2B |= val;
  6967. break;
  6968. #endif
  6969. #if defined(TCCR3A)
  6970. case TIMER3A:
  6971. case TIMER3B:
  6972. case TIMER3C:
  6973. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6974. TCCR3B |= val;
  6975. break;
  6976. #endif
  6977. #if defined(TCCR4A)
  6978. case TIMER4A:
  6979. case TIMER4B:
  6980. case TIMER4C:
  6981. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6982. TCCR4B |= val;
  6983. break;
  6984. #endif
  6985. #if defined(TCCR5A)
  6986. case TIMER5A:
  6987. case TIMER5B:
  6988. case TIMER5C:
  6989. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6990. TCCR5B |= val;
  6991. break;
  6992. #endif
  6993. }
  6994. }
  6995. #endif // FAST_PWM_FAN
  6996. void stop() {
  6997. thermalManager.disable_all_heaters();
  6998. if (IsRunning()) {
  6999. Running = false;
  7000. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7001. SERIAL_ERROR_START;
  7002. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7003. LCD_MESSAGEPGM(MSG_STOPPED);
  7004. }
  7005. }
  7006. float calculate_volumetric_multiplier(float diameter) {
  7007. if (!volumetric_enabled || diameter == 0) return 1.0;
  7008. float d2 = diameter * 0.5;
  7009. return 1.0 / (M_PI * d2 * d2);
  7010. }
  7011. void calculate_volumetric_multipliers() {
  7012. for (int i = 0; i < EXTRUDERS; i++)
  7013. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7014. }