My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Marlin_main.cpp 289KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  38. #include "qr_solve.h"
  39. #elif ENABLED(MESH_BED_LEVELING)
  40. #include "mesh_bed_leveling.h"
  41. #endif
  42. #if ENABLED(BEZIER_CURVE_SUPPORT)
  43. #include "planner_bezier.h"
  44. #endif
  45. #include "ultralcd.h"
  46. #include "planner.h"
  47. #include "stepper.h"
  48. #include "endstops.h"
  49. #include "temperature.h"
  50. #include "cardreader.h"
  51. #include "configuration_store.h"
  52. #include "language.h"
  53. #include "pins_arduino.h"
  54. #include "math.h"
  55. #include "nozzle.h"
  56. #include "duration_t.h"
  57. #include "types.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * ************* SCARA End ***************
  244. *
  245. * ************ Custom codes - This can change to suit future G-code regulations
  246. * M100 - Watch Free Memory (For Debugging Only)
  247. * M928 - Start SD logging (M928 filename.g) - ended by M29
  248. * M999 - Restart after being stopped by error
  249. *
  250. * "T" Codes
  251. *
  252. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  253. *
  254. */
  255. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  256. void gcode_M100();
  257. #endif
  258. #if ENABLED(SDSUPPORT)
  259. CardReader card;
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. TWIBus i2c;
  263. #endif
  264. bool Running = true;
  265. uint8_t marlin_debug_flags = DEBUG_NONE;
  266. float current_position[NUM_AXIS] = { 0.0 };
  267. static float destination[NUM_AXIS] = { 0.0 };
  268. bool axis_known_position[XYZ] = { false };
  269. bool axis_homed[XYZ] = { false };
  270. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  271. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  272. static char* current_command, *current_command_args;
  273. static uint8_t cmd_queue_index_r = 0,
  274. cmd_queue_index_w = 0,
  275. commands_in_queue = 0;
  276. #if ENABLED(INCH_MODE_SUPPORT)
  277. float linear_unit_factor = 1.0;
  278. float volumetric_unit_factor = 1.0;
  279. #endif
  280. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  281. TempUnit input_temp_units = TEMPUNIT_C;
  282. #endif
  283. /**
  284. * Feed rates are often configured with mm/m
  285. * but the planner and stepper like mm/s units.
  286. */
  287. float constexpr homing_feedrate_mm_s[] = {
  288. #if ENABLED(DELTA)
  289. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  290. #else
  291. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  292. #endif
  293. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  294. };
  295. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  296. int feedrate_percentage = 100, saved_feedrate_percentage;
  297. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  298. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  299. bool volumetric_enabled = false;
  300. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  301. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  302. // The distance that XYZ has been offset by G92. Reset by G28.
  303. float position_shift[XYZ] = { 0 };
  304. // This offset is added to the configured home position.
  305. // Set by M206, M428, or menu item. Saved to EEPROM.
  306. float home_offset[XYZ] = { 0 };
  307. // Software Endstops are based on the configured limits.
  308. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  309. bool soft_endstops_enabled = true;
  310. #endif
  311. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  312. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  313. #if FAN_COUNT > 0
  314. int fanSpeeds[FAN_COUNT] = { 0 };
  315. #endif
  316. // The active extruder (tool). Set with T<extruder> command.
  317. uint8_t active_extruder = 0;
  318. // Relative Mode. Enable with G91, disable with G90.
  319. static bool relative_mode = false;
  320. volatile bool wait_for_heatup = true;
  321. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  322. volatile bool wait_for_user = false;
  323. #endif
  324. const char errormagic[] PROGMEM = "Error:";
  325. const char echomagic[] PROGMEM = "echo:";
  326. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  327. static int serial_count = 0;
  328. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  329. static char* seen_pointer;
  330. // Next Immediate GCode Command pointer. NULL if none.
  331. const char* queued_commands_P = NULL;
  332. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  333. // Inactivity shutdown
  334. millis_t previous_cmd_ms = 0;
  335. static millis_t max_inactive_time = 0;
  336. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  337. // Print Job Timer
  338. #if ENABLED(PRINTCOUNTER)
  339. PrintCounter print_job_timer = PrintCounter();
  340. #else
  341. Stopwatch print_job_timer = Stopwatch();
  342. #endif
  343. // Buzzer - I2C on the LCD or a BEEPER_PIN
  344. #if ENABLED(LCD_USE_I2C_BUZZER)
  345. #define BUZZ(d,f) lcd_buzz(d, f)
  346. #elif HAS_BUZZER
  347. Buzzer buzzer;
  348. #define BUZZ(d,f) buzzer.tone(d, f)
  349. #else
  350. #define BUZZ(d,f) NOOP
  351. #endif
  352. static uint8_t target_extruder;
  353. #if HAS_BED_PROBE
  354. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  355. #endif
  356. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  357. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  358. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  359. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  360. #elif defined(XY_PROBE_SPEED)
  361. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  362. #else
  363. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  364. #endif
  365. #if ENABLED(Z_DUAL_ENDSTOPS)
  366. float z_endstop_adj = 0;
  367. #endif
  368. // Extruder offsets
  369. #if HOTENDS > 1
  370. float hotend_offset[][HOTENDS] = {
  371. HOTEND_OFFSET_X,
  372. HOTEND_OFFSET_Y
  373. #ifdef HOTEND_OFFSET_Z
  374. , HOTEND_OFFSET_Z
  375. #endif
  376. };
  377. #endif
  378. #if HAS_Z_SERVO_ENDSTOP
  379. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  380. #endif
  381. #if ENABLED(BARICUDA)
  382. int baricuda_valve_pressure = 0;
  383. int baricuda_e_to_p_pressure = 0;
  384. #endif
  385. #if ENABLED(FWRETRACT)
  386. bool autoretract_enabled = false;
  387. bool retracted[EXTRUDERS] = { false };
  388. bool retracted_swap[EXTRUDERS] = { false };
  389. float retract_length = RETRACT_LENGTH;
  390. float retract_length_swap = RETRACT_LENGTH_SWAP;
  391. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  392. float retract_zlift = RETRACT_ZLIFT;
  393. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  394. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  395. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  396. #endif // FWRETRACT
  397. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  398. bool powersupply =
  399. #if ENABLED(PS_DEFAULT_OFF)
  400. false
  401. #else
  402. true
  403. #endif
  404. ;
  405. #endif
  406. #if ENABLED(DELTA)
  407. #define SIN_60 0.8660254037844386
  408. #define COS_60 0.5
  409. float delta[ABC],
  410. endstop_adj[ABC] = { 0 };
  411. // these are the default values, can be overriden with M665
  412. float delta_radius = DELTA_RADIUS,
  413. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  414. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  415. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  416. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  417. delta_tower3_x = 0, // back middle tower
  418. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  419. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  420. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  421. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  422. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  423. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  424. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  425. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  426. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  427. delta_clip_start_height = Z_MAX_POS;
  428. float delta_safe_distance_from_top();
  429. #else
  430. static bool home_all_axis = true;
  431. #endif
  432. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  433. int nonlinear_grid_spacing[2] = { 0 };
  434. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  435. #endif
  436. #if IS_SCARA
  437. // Float constants for SCARA calculations
  438. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  439. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  440. L2_2 = sq(float(L2));
  441. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  442. delta[ABC];
  443. #endif
  444. float cartes[XYZ] = { 0 };
  445. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  446. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  447. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  448. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  449. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  450. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  451. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  452. #endif
  453. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  454. static bool filament_ran_out = false;
  455. #endif
  456. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  457. FilamentChangeMenuResponse filament_change_menu_response;
  458. #endif
  459. #if ENABLED(MIXING_EXTRUDER)
  460. float mixing_factor[MIXING_STEPPERS];
  461. #if MIXING_VIRTUAL_TOOLS > 1
  462. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  463. #endif
  464. #endif
  465. static bool send_ok[BUFSIZE];
  466. #if HAS_SERVOS
  467. Servo servo[NUM_SERVOS];
  468. #define MOVE_SERVO(I, P) servo[I].move(P)
  469. #if HAS_Z_SERVO_ENDSTOP
  470. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  471. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  472. #endif
  473. #endif
  474. #ifdef CHDK
  475. millis_t chdkHigh = 0;
  476. boolean chdkActive = false;
  477. #endif
  478. #if ENABLED(PID_EXTRUSION_SCALING)
  479. int lpq_len = 20;
  480. #endif
  481. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  482. static MarlinBusyState busy_state = NOT_BUSY;
  483. static millis_t next_busy_signal_ms = 0;
  484. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  485. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  486. #else
  487. #define host_keepalive() ;
  488. #define KEEPALIVE_STATE(n) ;
  489. #endif // HOST_KEEPALIVE_FEATURE
  490. #define DEFINE_PGM_READ_ANY(type, reader) \
  491. static inline type pgm_read_any(const type *p) \
  492. { return pgm_read_##reader##_near(p); }
  493. DEFINE_PGM_READ_ANY(float, float);
  494. DEFINE_PGM_READ_ANY(signed char, byte);
  495. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  496. static const PROGMEM type array##_P[XYZ] = \
  497. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  498. static inline type array(int axis) \
  499. { return pgm_read_any(&array##_P[axis]); }
  500. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  501. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  502. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  503. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  504. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  505. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  506. /**
  507. * ***************************************************************************
  508. * ******************************** FUNCTIONS ********************************
  509. * ***************************************************************************
  510. */
  511. void stop();
  512. void get_available_commands();
  513. void process_next_command();
  514. void prepare_move_to_destination();
  515. void get_cartesian_from_steppers();
  516. void set_current_from_steppers_for_axis(const AxisEnum axis);
  517. #if ENABLED(ARC_SUPPORT)
  518. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  519. #endif
  520. #if ENABLED(BEZIER_CURVE_SUPPORT)
  521. void plan_cubic_move(const float offset[4]);
  522. #endif
  523. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  524. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  525. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  530. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  531. static void report_current_position();
  532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  533. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  534. serialprintPGM(prefix);
  535. SERIAL_ECHOPAIR("(", x);
  536. SERIAL_ECHOPAIR(", ", y);
  537. SERIAL_ECHOPAIR(", ", z);
  538. SERIAL_ECHOPGM(")");
  539. if (suffix) serialprintPGM(suffix);
  540. else SERIAL_EOL;
  541. }
  542. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  543. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  544. }
  545. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  546. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  547. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  548. }
  549. #endif
  550. #define DEBUG_POS(SUFFIX,VAR) do { \
  551. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  552. #endif
  553. /**
  554. * sync_plan_position
  555. *
  556. * Set the planner/stepper positions directly from current_position with
  557. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  558. */
  559. inline void sync_plan_position() {
  560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  561. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  562. #endif
  563. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  564. }
  565. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  566. #if IS_KINEMATIC
  567. inline void sync_plan_position_kinematic() {
  568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  569. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  570. #endif
  571. inverse_kinematics(current_position);
  572. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  573. }
  574. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  575. #else
  576. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  577. #endif
  578. #if ENABLED(SDSUPPORT)
  579. #include "SdFatUtil.h"
  580. int freeMemory() { return SdFatUtil::FreeRam(); }
  581. #else
  582. extern "C" {
  583. extern unsigned int __bss_end;
  584. extern unsigned int __heap_start;
  585. extern void* __brkval;
  586. int freeMemory() {
  587. int free_memory;
  588. if ((int)__brkval == 0)
  589. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  590. else
  591. free_memory = ((int)&free_memory) - ((int)__brkval);
  592. return free_memory;
  593. }
  594. }
  595. #endif //!SDSUPPORT
  596. #if ENABLED(DIGIPOT_I2C)
  597. extern void digipot_i2c_set_current(int channel, float current);
  598. extern void digipot_i2c_init();
  599. #endif
  600. /**
  601. * Inject the next "immediate" command, when possible.
  602. * Return true if any immediate commands remain to inject.
  603. */
  604. static bool drain_queued_commands_P() {
  605. if (queued_commands_P != NULL) {
  606. size_t i = 0;
  607. char c, cmd[30];
  608. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  609. cmd[sizeof(cmd) - 1] = '\0';
  610. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  611. cmd[i] = '\0';
  612. if (enqueue_and_echo_command(cmd)) { // success?
  613. if (c) // newline char?
  614. queued_commands_P += i + 1; // advance to the next command
  615. else
  616. queued_commands_P = NULL; // nul char? no more commands
  617. }
  618. }
  619. return (queued_commands_P != NULL); // return whether any more remain
  620. }
  621. /**
  622. * Record one or many commands to run from program memory.
  623. * Aborts the current queue, if any.
  624. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  625. */
  626. void enqueue_and_echo_commands_P(const char* pgcode) {
  627. queued_commands_P = pgcode;
  628. drain_queued_commands_P(); // first command executed asap (when possible)
  629. }
  630. void clear_command_queue() {
  631. cmd_queue_index_r = cmd_queue_index_w;
  632. commands_in_queue = 0;
  633. }
  634. /**
  635. * Once a new command is in the ring buffer, call this to commit it
  636. */
  637. inline void _commit_command(bool say_ok) {
  638. send_ok[cmd_queue_index_w] = say_ok;
  639. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  640. commands_in_queue++;
  641. }
  642. /**
  643. * Copy a command directly into the main command buffer, from RAM.
  644. * Returns true if successfully adds the command
  645. */
  646. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  647. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  648. strcpy(command_queue[cmd_queue_index_w], cmd);
  649. _commit_command(say_ok);
  650. return true;
  651. }
  652. void enqueue_and_echo_command_now(const char* cmd) {
  653. while (!enqueue_and_echo_command(cmd)) idle();
  654. }
  655. /**
  656. * Enqueue with Serial Echo
  657. */
  658. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  659. if (_enqueuecommand(cmd, say_ok)) {
  660. SERIAL_ECHO_START;
  661. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  662. SERIAL_ECHOLNPGM("\"");
  663. return true;
  664. }
  665. return false;
  666. }
  667. void setup_killpin() {
  668. #if HAS_KILL
  669. SET_INPUT(KILL_PIN);
  670. WRITE(KILL_PIN, HIGH);
  671. #endif
  672. }
  673. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  674. void setup_filrunoutpin() {
  675. SET_INPUT(FIL_RUNOUT_PIN);
  676. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  677. WRITE(FIL_RUNOUT_PIN, HIGH);
  678. #endif
  679. }
  680. #endif
  681. // Set home pin
  682. void setup_homepin(void) {
  683. #if HAS_HOME
  684. SET_INPUT(HOME_PIN);
  685. WRITE(HOME_PIN, HIGH);
  686. #endif
  687. }
  688. void setup_photpin() {
  689. #if HAS_PHOTOGRAPH
  690. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  691. #endif
  692. }
  693. void setup_powerhold() {
  694. #if HAS_SUICIDE
  695. OUT_WRITE(SUICIDE_PIN, HIGH);
  696. #endif
  697. #if HAS_POWER_SWITCH
  698. #if ENABLED(PS_DEFAULT_OFF)
  699. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  700. #else
  701. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  702. #endif
  703. #endif
  704. }
  705. void suicide() {
  706. #if HAS_SUICIDE
  707. OUT_WRITE(SUICIDE_PIN, LOW);
  708. #endif
  709. }
  710. void servo_init() {
  711. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  712. servo[0].attach(SERVO0_PIN);
  713. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  714. #endif
  715. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  716. servo[1].attach(SERVO1_PIN);
  717. servo[1].detach();
  718. #endif
  719. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  720. servo[2].attach(SERVO2_PIN);
  721. servo[2].detach();
  722. #endif
  723. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  724. servo[3].attach(SERVO3_PIN);
  725. servo[3].detach();
  726. #endif
  727. #if HAS_Z_SERVO_ENDSTOP
  728. /**
  729. * Set position of Z Servo Endstop
  730. *
  731. * The servo might be deployed and positioned too low to stow
  732. * when starting up the machine or rebooting the board.
  733. * There's no way to know where the nozzle is positioned until
  734. * homing has been done - no homing with z-probe without init!
  735. *
  736. */
  737. STOW_Z_SERVO();
  738. #endif
  739. }
  740. /**
  741. * Stepper Reset (RigidBoard, et.al.)
  742. */
  743. #if HAS_STEPPER_RESET
  744. void disableStepperDrivers() {
  745. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  746. }
  747. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  748. #endif
  749. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  750. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  751. i2c.receive(bytes);
  752. }
  753. void i2c_on_request() { // just send dummy data for now
  754. i2c.reply("Hello World!\n");
  755. }
  756. #endif
  757. void gcode_line_error(const char* err, bool doFlush = true) {
  758. SERIAL_ERROR_START;
  759. serialprintPGM(err);
  760. SERIAL_ERRORLN(gcode_LastN);
  761. //Serial.println(gcode_N);
  762. if (doFlush) FlushSerialRequestResend();
  763. serial_count = 0;
  764. }
  765. inline void get_serial_commands() {
  766. static char serial_line_buffer[MAX_CMD_SIZE];
  767. static boolean serial_comment_mode = false;
  768. // If the command buffer is empty for too long,
  769. // send "wait" to indicate Marlin is still waiting.
  770. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  771. static millis_t last_command_time = 0;
  772. millis_t ms = millis();
  773. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  774. SERIAL_ECHOLNPGM(MSG_WAIT);
  775. last_command_time = ms;
  776. }
  777. #endif
  778. /**
  779. * Loop while serial characters are incoming and the queue is not full
  780. */
  781. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  782. char serial_char = MYSERIAL.read();
  783. /**
  784. * If the character ends the line
  785. */
  786. if (serial_char == '\n' || serial_char == '\r') {
  787. serial_comment_mode = false; // end of line == end of comment
  788. if (!serial_count) continue; // skip empty lines
  789. serial_line_buffer[serial_count] = 0; // terminate string
  790. serial_count = 0; //reset buffer
  791. char* command = serial_line_buffer;
  792. while (*command == ' ') command++; // skip any leading spaces
  793. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  794. char* apos = strchr(command, '*');
  795. if (npos) {
  796. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  797. if (M110) {
  798. char* n2pos = strchr(command + 4, 'N');
  799. if (n2pos) npos = n2pos;
  800. }
  801. gcode_N = strtol(npos + 1, NULL, 10);
  802. if (gcode_N != gcode_LastN + 1 && !M110) {
  803. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  804. return;
  805. }
  806. if (apos) {
  807. byte checksum = 0, count = 0;
  808. while (command[count] != '*') checksum ^= command[count++];
  809. if (strtol(apos + 1, NULL, 10) != checksum) {
  810. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  811. return;
  812. }
  813. // if no errors, continue parsing
  814. }
  815. else {
  816. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  817. return;
  818. }
  819. gcode_LastN = gcode_N;
  820. // if no errors, continue parsing
  821. }
  822. else if (apos) { // No '*' without 'N'
  823. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  824. return;
  825. }
  826. // Movement commands alert when stopped
  827. if (IsStopped()) {
  828. char* gpos = strchr(command, 'G');
  829. if (gpos) {
  830. int codenum = strtol(gpos + 1, NULL, 10);
  831. switch (codenum) {
  832. case 0:
  833. case 1:
  834. case 2:
  835. case 3:
  836. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  837. LCD_MESSAGEPGM(MSG_STOPPED);
  838. break;
  839. }
  840. }
  841. }
  842. #if DISABLED(EMERGENCY_PARSER)
  843. // If command was e-stop process now
  844. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  845. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  846. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  847. #endif
  848. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  849. last_command_time = ms;
  850. #endif
  851. // Add the command to the queue
  852. _enqueuecommand(serial_line_buffer, true);
  853. }
  854. else if (serial_count >= MAX_CMD_SIZE - 1) {
  855. // Keep fetching, but ignore normal characters beyond the max length
  856. // The command will be injected when EOL is reached
  857. }
  858. else if (serial_char == '\\') { // Handle escapes
  859. if (MYSERIAL.available() > 0) {
  860. // if we have one more character, copy it over
  861. serial_char = MYSERIAL.read();
  862. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  863. }
  864. // otherwise do nothing
  865. }
  866. else { // it's not a newline, carriage return or escape char
  867. if (serial_char == ';') serial_comment_mode = true;
  868. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  869. }
  870. } // queue has space, serial has data
  871. }
  872. #if ENABLED(SDSUPPORT)
  873. inline void get_sdcard_commands() {
  874. static bool stop_buffering = false,
  875. sd_comment_mode = false;
  876. if (!card.sdprinting) return;
  877. /**
  878. * '#' stops reading from SD to the buffer prematurely, so procedural
  879. * macro calls are possible. If it occurs, stop_buffering is triggered
  880. * and the buffer is run dry; this character _can_ occur in serial com
  881. * due to checksums, however, no checksums are used in SD printing.
  882. */
  883. if (commands_in_queue == 0) stop_buffering = false;
  884. uint16_t sd_count = 0;
  885. bool card_eof = card.eof();
  886. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  887. int16_t n = card.get();
  888. char sd_char = (char)n;
  889. card_eof = card.eof();
  890. if (card_eof || n == -1
  891. || sd_char == '\n' || sd_char == '\r'
  892. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  893. ) {
  894. if (card_eof) {
  895. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  896. card.printingHasFinished();
  897. card.checkautostart(true);
  898. }
  899. else if (n == -1) {
  900. SERIAL_ERROR_START;
  901. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  902. }
  903. if (sd_char == '#') stop_buffering = true;
  904. sd_comment_mode = false; //for new command
  905. if (!sd_count) continue; //skip empty lines
  906. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  907. sd_count = 0; //clear buffer
  908. _commit_command(false);
  909. }
  910. else if (sd_count >= MAX_CMD_SIZE - 1) {
  911. /**
  912. * Keep fetching, but ignore normal characters beyond the max length
  913. * The command will be injected when EOL is reached
  914. */
  915. }
  916. else {
  917. if (sd_char == ';') sd_comment_mode = true;
  918. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  919. }
  920. }
  921. }
  922. #endif // SDSUPPORT
  923. /**
  924. * Add to the circular command queue the next command from:
  925. * - The command-injection queue (queued_commands_P)
  926. * - The active serial input (usually USB)
  927. * - The SD card file being actively printed
  928. */
  929. void get_available_commands() {
  930. // if any immediate commands remain, don't get other commands yet
  931. if (drain_queued_commands_P()) return;
  932. get_serial_commands();
  933. #if ENABLED(SDSUPPORT)
  934. get_sdcard_commands();
  935. #endif
  936. }
  937. inline bool code_has_value() {
  938. int i = 1;
  939. char c = seen_pointer[i];
  940. while (c == ' ') c = seen_pointer[++i];
  941. if (c == '-' || c == '+') c = seen_pointer[++i];
  942. if (c == '.') c = seen_pointer[++i];
  943. return NUMERIC(c);
  944. }
  945. inline float code_value_float() {
  946. float ret;
  947. char* e = strchr(seen_pointer, 'E');
  948. if (e) {
  949. *e = 0;
  950. ret = strtod(seen_pointer + 1, NULL);
  951. *e = 'E';
  952. }
  953. else
  954. ret = strtod(seen_pointer + 1, NULL);
  955. return ret;
  956. }
  957. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  958. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  959. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  960. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  961. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  962. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  963. #if ENABLED(INCH_MODE_SUPPORT)
  964. inline void set_input_linear_units(LinearUnit units) {
  965. switch (units) {
  966. case LINEARUNIT_INCH:
  967. linear_unit_factor = 25.4;
  968. break;
  969. case LINEARUNIT_MM:
  970. default:
  971. linear_unit_factor = 1.0;
  972. break;
  973. }
  974. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  975. }
  976. inline float axis_unit_factor(int axis) {
  977. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  978. }
  979. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  980. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  981. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  982. #else
  983. inline float code_value_linear_units() { return code_value_float(); }
  984. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  985. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  986. #endif
  987. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  988. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  989. float code_value_temp_abs() {
  990. switch (input_temp_units) {
  991. case TEMPUNIT_C:
  992. return code_value_float();
  993. case TEMPUNIT_F:
  994. return (code_value_float() - 32) * 0.5555555556;
  995. case TEMPUNIT_K:
  996. return code_value_float() - 272.15;
  997. default:
  998. return code_value_float();
  999. }
  1000. }
  1001. float code_value_temp_diff() {
  1002. switch (input_temp_units) {
  1003. case TEMPUNIT_C:
  1004. case TEMPUNIT_K:
  1005. return code_value_float();
  1006. case TEMPUNIT_F:
  1007. return code_value_float() * 0.5555555556;
  1008. default:
  1009. return code_value_float();
  1010. }
  1011. }
  1012. #else
  1013. float code_value_temp_abs() { return code_value_float(); }
  1014. float code_value_temp_diff() { return code_value_float(); }
  1015. #endif
  1016. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1017. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1018. bool code_seen(char code) {
  1019. seen_pointer = strchr(current_command_args, code);
  1020. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1021. }
  1022. /**
  1023. * Set target_extruder from the T parameter or the active_extruder
  1024. *
  1025. * Returns TRUE if the target is invalid
  1026. */
  1027. bool get_target_extruder_from_command(int code) {
  1028. if (code_seen('T')) {
  1029. if (code_value_byte() >= EXTRUDERS) {
  1030. SERIAL_ECHO_START;
  1031. SERIAL_CHAR('M');
  1032. SERIAL_ECHO(code);
  1033. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1034. return true;
  1035. }
  1036. target_extruder = code_value_byte();
  1037. }
  1038. else
  1039. target_extruder = active_extruder;
  1040. return false;
  1041. }
  1042. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1043. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1044. #endif
  1045. #if ENABLED(DUAL_X_CARRIAGE)
  1046. #define DXC_FULL_CONTROL_MODE 0
  1047. #define DXC_AUTO_PARK_MODE 1
  1048. #define DXC_DUPLICATION_MODE 2
  1049. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1050. static float x_home_pos(int extruder) {
  1051. if (extruder == 0)
  1052. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1053. else
  1054. /**
  1055. * In dual carriage mode the extruder offset provides an override of the
  1056. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1057. * This allow soft recalibration of the second extruder offset position
  1058. * without firmware reflash (through the M218 command).
  1059. */
  1060. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1061. }
  1062. static int x_home_dir(int extruder) {
  1063. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1064. }
  1065. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1066. static bool active_extruder_parked = false; // used in mode 1 & 2
  1067. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1068. static millis_t delayed_move_time = 0; // used in mode 1
  1069. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1070. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1071. #endif //DUAL_X_CARRIAGE
  1072. /**
  1073. * Software endstops can be used to monitor the open end of
  1074. * an axis that has a hardware endstop on the other end. Or
  1075. * they can prevent axes from moving past endstops and grinding.
  1076. *
  1077. * To keep doing their job as the coordinate system changes,
  1078. * the software endstop positions must be refreshed to remain
  1079. * at the same positions relative to the machine.
  1080. */
  1081. void update_software_endstops(AxisEnum axis) {
  1082. float offs = LOGICAL_POSITION(0, axis);
  1083. #if ENABLED(DUAL_X_CARRIAGE)
  1084. if (axis == X_AXIS) {
  1085. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1086. if (active_extruder != 0) {
  1087. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1088. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1089. return;
  1090. }
  1091. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1092. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1093. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1094. return;
  1095. }
  1096. }
  1097. else
  1098. #endif
  1099. {
  1100. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1101. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1102. }
  1103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1104. if (DEBUGGING(LEVELING)) {
  1105. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1106. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1107. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1108. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1109. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1110. }
  1111. #endif
  1112. #if ENABLED(DELTA)
  1113. if (axis == Z_AXIS)
  1114. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1115. #endif
  1116. }
  1117. /**
  1118. * Change the home offset for an axis, update the current
  1119. * position and the software endstops to retain the same
  1120. * relative distance to the new home.
  1121. *
  1122. * Since this changes the current_position, code should
  1123. * call sync_plan_position soon after this.
  1124. */
  1125. static void set_home_offset(AxisEnum axis, float v) {
  1126. current_position[axis] += v - home_offset[axis];
  1127. home_offset[axis] = v;
  1128. update_software_endstops(axis);
  1129. }
  1130. /**
  1131. * Set an axis' current position to its home position (after homing).
  1132. *
  1133. * For Core and Cartesian robots this applies one-to-one when an
  1134. * individual axis has been homed.
  1135. *
  1136. * DELTA should wait until all homing is done before setting the XYZ
  1137. * current_position to home, because homing is a single operation.
  1138. * In the case where the axis positions are already known and previously
  1139. * homed, DELTA could home to X or Y individually by moving either one
  1140. * to the center. However, homing Z always homes XY and Z.
  1141. *
  1142. * SCARA should wait until all XY homing is done before setting the XY
  1143. * current_position to home, because neither X nor Y is at home until
  1144. * both are at home. Z can however be homed individually.
  1145. *
  1146. */
  1147. static void set_axis_is_at_home(AxisEnum axis) {
  1148. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1149. if (DEBUGGING(LEVELING)) {
  1150. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1151. SERIAL_ECHOLNPGM(")");
  1152. }
  1153. #endif
  1154. axis_known_position[axis] = axis_homed[axis] = true;
  1155. position_shift[axis] = 0;
  1156. update_software_endstops(axis);
  1157. #if ENABLED(DUAL_X_CARRIAGE)
  1158. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1159. if (active_extruder != 0)
  1160. current_position[X_AXIS] = x_home_pos(active_extruder);
  1161. else
  1162. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1163. update_software_endstops(X_AXIS);
  1164. return;
  1165. }
  1166. #endif
  1167. #if ENABLED(MORGAN_SCARA)
  1168. /**
  1169. * Morgan SCARA homes XY at the same time
  1170. */
  1171. if (axis == X_AXIS || axis == Y_AXIS) {
  1172. float homeposition[XYZ];
  1173. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1174. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1175. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1176. /**
  1177. * Get Home position SCARA arm angles using inverse kinematics,
  1178. * and calculate homing offset using forward kinematics
  1179. */
  1180. inverse_kinematics(homeposition);
  1181. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1182. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1183. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1184. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1185. /**
  1186. * SCARA home positions are based on configuration since the actual
  1187. * limits are determined by the inverse kinematic transform.
  1188. */
  1189. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1190. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1191. }
  1192. else
  1193. #endif
  1194. {
  1195. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1196. }
  1197. /**
  1198. * Z Probe Z Homing? Account for the probe's Z offset.
  1199. */
  1200. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1201. if (axis == Z_AXIS) {
  1202. #if HOMING_Z_WITH_PROBE
  1203. current_position[Z_AXIS] -= zprobe_zoffset;
  1204. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1205. if (DEBUGGING(LEVELING)) {
  1206. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1207. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1208. }
  1209. #endif
  1210. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1211. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1212. #endif
  1213. }
  1214. #endif
  1215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1216. if (DEBUGGING(LEVELING)) {
  1217. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1218. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1219. DEBUG_POS("", current_position);
  1220. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1221. SERIAL_ECHOLNPGM(")");
  1222. }
  1223. #endif
  1224. }
  1225. /**
  1226. * Some planner shorthand inline functions
  1227. */
  1228. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1229. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1230. int hbd = homing_bump_divisor[axis];
  1231. if (hbd < 1) {
  1232. hbd = 10;
  1233. SERIAL_ECHO_START;
  1234. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1235. }
  1236. return homing_feedrate_mm_s[axis] / hbd;
  1237. }
  1238. //
  1239. // line_to_current_position
  1240. // Move the planner to the current position from wherever it last moved
  1241. // (or from wherever it has been told it is located).
  1242. //
  1243. inline void line_to_current_position() {
  1244. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1245. }
  1246. //
  1247. // line_to_destination
  1248. // Move the planner, not necessarily synced with current_position
  1249. //
  1250. inline void line_to_destination(float fr_mm_s) {
  1251. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1252. }
  1253. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1254. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1255. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1256. #if IS_KINEMATIC
  1257. /**
  1258. * Calculate delta, start a line, and set current_position to destination
  1259. */
  1260. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1261. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1262. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1263. #endif
  1264. if ( current_position[X_AXIS] == destination[X_AXIS]
  1265. && current_position[Y_AXIS] == destination[Y_AXIS]
  1266. && current_position[Z_AXIS] == destination[Z_AXIS]
  1267. && current_position[E_AXIS] == destination[E_AXIS]
  1268. ) return;
  1269. refresh_cmd_timeout();
  1270. inverse_kinematics(destination);
  1271. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1272. set_current_to_destination();
  1273. }
  1274. #endif // IS_KINEMATIC
  1275. /**
  1276. * Plan a move to (X, Y, Z) and set the current_position
  1277. * The final current_position may not be the one that was requested
  1278. */
  1279. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1280. float old_feedrate_mm_s = feedrate_mm_s;
  1281. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1282. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1283. #endif
  1284. #if ENABLED(DELTA)
  1285. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1286. set_destination_to_current(); // sync destination at the start
  1287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1288. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1289. #endif
  1290. // when in the danger zone
  1291. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1292. if (z > delta_clip_start_height) { // staying in the danger zone
  1293. destination[X_AXIS] = x; // move directly (uninterpolated)
  1294. destination[Y_AXIS] = y;
  1295. destination[Z_AXIS] = z;
  1296. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1298. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1299. #endif
  1300. return;
  1301. }
  1302. else {
  1303. destination[Z_AXIS] = delta_clip_start_height;
  1304. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1305. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1306. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1307. #endif
  1308. }
  1309. }
  1310. if (z > current_position[Z_AXIS]) { // raising?
  1311. destination[Z_AXIS] = z;
  1312. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1314. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1315. #endif
  1316. }
  1317. destination[X_AXIS] = x;
  1318. destination[Y_AXIS] = y;
  1319. prepare_move_to_destination(); // set_current_to_destination
  1320. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1321. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1322. #endif
  1323. if (z < current_position[Z_AXIS]) { // lowering?
  1324. destination[Z_AXIS] = z;
  1325. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1327. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1328. #endif
  1329. }
  1330. #elif IS_SCARA
  1331. set_destination_to_current();
  1332. // If Z needs to raise, do it before moving XY
  1333. if (destination[Z_AXIS] < z) {
  1334. destination[Z_AXIS] = z;
  1335. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1336. }
  1337. destination[X_AXIS] = x;
  1338. destination[Y_AXIS] = y;
  1339. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1340. // If Z needs to lower, do it after moving XY
  1341. if (destination[Z_AXIS] > z) {
  1342. destination[Z_AXIS] = z;
  1343. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1344. }
  1345. #else
  1346. // If Z needs to raise, do it before moving XY
  1347. if (current_position[Z_AXIS] < z) {
  1348. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1349. current_position[Z_AXIS] = z;
  1350. line_to_current_position();
  1351. }
  1352. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1353. current_position[X_AXIS] = x;
  1354. current_position[Y_AXIS] = y;
  1355. line_to_current_position();
  1356. // If Z needs to lower, do it after moving XY
  1357. if (current_position[Z_AXIS] > z) {
  1358. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1359. current_position[Z_AXIS] = z;
  1360. line_to_current_position();
  1361. }
  1362. #endif
  1363. stepper.synchronize();
  1364. feedrate_mm_s = old_feedrate_mm_s;
  1365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1366. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1367. #endif
  1368. }
  1369. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1370. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1371. }
  1372. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1373. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1374. }
  1375. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1376. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1377. }
  1378. //
  1379. // Prepare to do endstop or probe moves
  1380. // with custom feedrates.
  1381. //
  1382. // - Save current feedrates
  1383. // - Reset the rate multiplier
  1384. // - Reset the command timeout
  1385. // - Enable the endstops (for endstop moves)
  1386. //
  1387. static void setup_for_endstop_or_probe_move() {
  1388. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1389. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1390. #endif
  1391. saved_feedrate_mm_s = feedrate_mm_s;
  1392. saved_feedrate_percentage = feedrate_percentage;
  1393. feedrate_percentage = 100;
  1394. refresh_cmd_timeout();
  1395. }
  1396. static void clean_up_after_endstop_or_probe_move() {
  1397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1398. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1399. #endif
  1400. feedrate_mm_s = saved_feedrate_mm_s;
  1401. feedrate_percentage = saved_feedrate_percentage;
  1402. refresh_cmd_timeout();
  1403. }
  1404. #if HAS_BED_PROBE
  1405. /**
  1406. * Raise Z to a minimum height to make room for a probe to move
  1407. */
  1408. inline void do_probe_raise(float z_raise) {
  1409. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1410. if (DEBUGGING(LEVELING)) {
  1411. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1412. SERIAL_ECHOLNPGM(")");
  1413. }
  1414. #endif
  1415. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1416. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1417. if (z_dest > current_position[Z_AXIS])
  1418. do_blocking_move_to_z(z_dest);
  1419. }
  1420. #endif //HAS_BED_PROBE
  1421. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1422. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1423. const bool xx = x && !axis_homed[X_AXIS],
  1424. yy = y && !axis_homed[Y_AXIS],
  1425. zz = z && !axis_homed[Z_AXIS];
  1426. if (xx || yy || zz) {
  1427. SERIAL_ECHO_START;
  1428. SERIAL_ECHOPGM(MSG_HOME " ");
  1429. if (xx) SERIAL_ECHOPGM(MSG_X);
  1430. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1431. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1432. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1433. #if ENABLED(ULTRA_LCD)
  1434. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1435. strcat_P(message, PSTR(MSG_HOME " "));
  1436. if (xx) strcat_P(message, PSTR(MSG_X));
  1437. if (yy) strcat_P(message, PSTR(MSG_Y));
  1438. if (zz) strcat_P(message, PSTR(MSG_Z));
  1439. strcat_P(message, PSTR(" " MSG_FIRST));
  1440. lcd_setstatus(message);
  1441. #endif
  1442. return true;
  1443. }
  1444. return false;
  1445. }
  1446. #endif
  1447. #if ENABLED(Z_PROBE_SLED)
  1448. #ifndef SLED_DOCKING_OFFSET
  1449. #define SLED_DOCKING_OFFSET 0
  1450. #endif
  1451. /**
  1452. * Method to dock/undock a sled designed by Charles Bell.
  1453. *
  1454. * stow[in] If false, move to MAX_X and engage the solenoid
  1455. * If true, move to MAX_X and release the solenoid
  1456. */
  1457. static void dock_sled(bool stow) {
  1458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1459. if (DEBUGGING(LEVELING)) {
  1460. SERIAL_ECHOPAIR("dock_sled(", stow);
  1461. SERIAL_ECHOLNPGM(")");
  1462. }
  1463. #endif
  1464. // Dock sled a bit closer to ensure proper capturing
  1465. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1466. #if PIN_EXISTS(SLED)
  1467. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1468. #endif
  1469. }
  1470. #endif // Z_PROBE_SLED
  1471. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1472. void run_deploy_moves_script() {
  1473. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1474. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1475. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1476. #endif
  1477. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1478. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1479. #endif
  1480. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1481. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1482. #endif
  1483. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1484. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1485. #endif
  1486. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1487. #endif
  1488. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1489. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1490. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1491. #endif
  1492. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1493. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1494. #endif
  1495. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1496. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1497. #endif
  1498. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1499. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1500. #endif
  1501. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1502. #endif
  1503. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1504. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1505. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1506. #endif
  1507. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1508. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1509. #endif
  1510. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1511. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1512. #endif
  1513. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1514. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1515. #endif
  1516. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1517. #endif
  1518. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1519. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1520. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1521. #endif
  1522. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1523. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1524. #endif
  1525. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1526. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1527. #endif
  1528. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1529. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1530. #endif
  1531. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1532. #endif
  1533. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1534. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1535. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1536. #endif
  1537. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1538. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1539. #endif
  1540. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1541. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1542. #endif
  1543. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1544. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1545. #endif
  1546. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1547. #endif
  1548. }
  1549. void run_stow_moves_script() {
  1550. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1551. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1552. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1553. #endif
  1554. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1555. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1556. #endif
  1557. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1558. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1559. #endif
  1560. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1561. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1562. #endif
  1563. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1564. #endif
  1565. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1566. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1567. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1568. #endif
  1569. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1570. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1571. #endif
  1572. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1573. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1574. #endif
  1575. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1576. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1577. #endif
  1578. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1579. #endif
  1580. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1581. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1582. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1583. #endif
  1584. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1585. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1588. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1589. #endif
  1590. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1591. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1592. #endif
  1593. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1594. #endif
  1595. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1596. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1597. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1598. #endif
  1599. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1600. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1603. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1606. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1607. #endif
  1608. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1609. #endif
  1610. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1611. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1612. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1613. #endif
  1614. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1615. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1616. #endif
  1617. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1618. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1621. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1622. #endif
  1623. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1624. #endif
  1625. }
  1626. #endif
  1627. #if HAS_BED_PROBE
  1628. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1629. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1630. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1631. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1632. #else
  1633. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1634. #endif
  1635. #endif
  1636. #define DEPLOY_PROBE() set_probe_deployed(true)
  1637. #define STOW_PROBE() set_probe_deployed(false)
  1638. #if ENABLED(BLTOUCH)
  1639. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1640. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1641. }
  1642. #endif
  1643. // returns false for ok and true for failure
  1644. static bool set_probe_deployed(bool deploy) {
  1645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1646. if (DEBUGGING(LEVELING)) {
  1647. DEBUG_POS("set_probe_deployed", current_position);
  1648. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1649. }
  1650. #endif
  1651. if (endstops.z_probe_enabled == deploy) return false;
  1652. // Make room for probe
  1653. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1654. // When deploying make sure BLTOUCH is not already triggered
  1655. #if ENABLED(BLTOUCH)
  1656. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1657. #endif
  1658. #if ENABLED(Z_PROBE_SLED)
  1659. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1660. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1661. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1662. #endif
  1663. float oldXpos = current_position[X_AXIS],
  1664. oldYpos = current_position[Y_AXIS];
  1665. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1666. // If endstop is already false, the Z probe is deployed
  1667. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1668. // Would a goto be less ugly?
  1669. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1670. // for a triggered when stowed manual probe.
  1671. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1672. // otherwise an Allen-Key probe can't be stowed.
  1673. #endif
  1674. #if ENABLED(Z_PROBE_SLED)
  1675. dock_sled(!deploy);
  1676. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1677. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1678. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1679. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1680. #endif
  1681. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1682. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1683. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1684. if (IsRunning()) {
  1685. SERIAL_ERROR_START;
  1686. SERIAL_ERRORLNPGM("Z-Probe failed");
  1687. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1688. }
  1689. stop();
  1690. return true;
  1691. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1692. #endif
  1693. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1694. endstops.enable_z_probe(deploy);
  1695. return false;
  1696. }
  1697. static void do_probe_move(float z, float fr_mm_m) {
  1698. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1699. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1700. #endif
  1701. // Deploy BLTouch at the start of any probe
  1702. #if ENABLED(BLTOUCH)
  1703. set_bltouch_deployed(true);
  1704. #endif
  1705. // Move down until probe triggered
  1706. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1707. // Retract BLTouch immediately after a probe
  1708. #if ENABLED(BLTOUCH)
  1709. set_bltouch_deployed(false);
  1710. #endif
  1711. // Clear endstop flags
  1712. endstops.hit_on_purpose();
  1713. // Tell the planner where we actually are
  1714. planner.sync_from_steppers();
  1715. // Get Z where the steppers were interrupted
  1716. set_current_from_steppers_for_axis(Z_AXIS);
  1717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1718. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1719. #endif
  1720. }
  1721. // Do a single Z probe and return with current_position[Z_AXIS]
  1722. // at the height where the probe triggered.
  1723. static float run_z_probe() {
  1724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1725. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1726. #endif
  1727. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1728. refresh_cmd_timeout();
  1729. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1730. // Do a first probe at the fast speed
  1731. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1732. // move up by the bump distance
  1733. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1734. #else
  1735. // If the nozzle is above the travel height then
  1736. // move down quickly before doing the slow probe
  1737. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1738. if (z < current_position[Z_AXIS])
  1739. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1740. #endif
  1741. // move down slowly to find bed
  1742. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1743. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1744. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1745. #endif
  1746. return current_position[Z_AXIS];
  1747. }
  1748. //
  1749. // - Move to the given XY
  1750. // - Deploy the probe, if not already deployed
  1751. // - Probe the bed, get the Z position
  1752. // - Depending on the 'stow' flag
  1753. // - Stow the probe, or
  1754. // - Raise to the BETWEEN height
  1755. // - Return the probed Z position
  1756. //
  1757. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1758. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1759. if (DEBUGGING(LEVELING)) {
  1760. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1761. SERIAL_ECHOPAIR(", ", y);
  1762. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1763. SERIAL_ECHOLNPGM(")");
  1764. DEBUG_POS("", current_position);
  1765. }
  1766. #endif
  1767. float old_feedrate_mm_s = feedrate_mm_s;
  1768. // Ensure a minimum height before moving the probe
  1769. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1770. // Move to the XY where we shall probe
  1771. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1772. if (DEBUGGING(LEVELING)) {
  1773. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1774. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1775. SERIAL_ECHOLNPGM(")");
  1776. }
  1777. #endif
  1778. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1779. // Move the probe to the given XY
  1780. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1781. if (DEPLOY_PROBE()) return NAN;
  1782. float measured_z = run_z_probe();
  1783. if (!stow)
  1784. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1785. else
  1786. if (STOW_PROBE()) return NAN;
  1787. if (verbose_level > 2) {
  1788. SERIAL_PROTOCOLPGM("Bed X: ");
  1789. SERIAL_PROTOCOL_F(x, 3);
  1790. SERIAL_PROTOCOLPGM(" Y: ");
  1791. SERIAL_PROTOCOL_F(y, 3);
  1792. SERIAL_PROTOCOLPGM(" Z: ");
  1793. SERIAL_PROTOCOL_F(measured_z, 3);
  1794. SERIAL_EOL;
  1795. }
  1796. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1797. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1798. #endif
  1799. feedrate_mm_s = old_feedrate_mm_s;
  1800. return measured_z;
  1801. }
  1802. #endif // HAS_BED_PROBE
  1803. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1804. /**
  1805. * Reset calibration results to zero.
  1806. *
  1807. * TODO: Proper functions to disable / enable
  1808. * bed leveling via a flag, correcting the
  1809. * current position in each case.
  1810. */
  1811. void reset_bed_level() {
  1812. planner.abl_enabled = false;
  1813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1814. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1815. #endif
  1816. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1817. planner.bed_level_matrix.set_to_identity();
  1818. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1819. memset(bed_level_grid, 0, sizeof(bed_level_grid));
  1820. #endif
  1821. }
  1822. #endif // AUTO_BED_LEVELING_FEATURE
  1823. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1824. /**
  1825. * Extrapolate a single point from its neighbors
  1826. */
  1827. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1828. if (bed_level_grid[x][y]) return; // Don't overwrite good values.
  1829. float a = 2 * bed_level_grid[x + xdir][y] - bed_level_grid[x + xdir * 2][y], // Left to right.
  1830. b = 2 * bed_level_grid[x][y + ydir] - bed_level_grid[x][y + ydir * 2], // Front to back.
  1831. c = 2 * bed_level_grid[x + xdir][y + ydir] - bed_level_grid[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1832. // Median is robust (ignores outliers).
  1833. bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1834. : ((c < b) ? b : (a < c) ? a : c);
  1835. }
  1836. /**
  1837. * Fill in the unprobed points (corners of circular print surface)
  1838. * using linear extrapolation, away from the center.
  1839. */
  1840. static void extrapolate_unprobed_bed_level() {
  1841. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  1842. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  1843. for (uint8_t y = 0; y <= half_y; y++) {
  1844. for (uint8_t x = 0; x <= half_x; x++) {
  1845. if (x + y < 3) continue;
  1846. extrapolate_one_point(half_x - x, half_y - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1847. extrapolate_one_point(half_x + x, half_y - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1848. extrapolate_one_point(half_x - x, half_y + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1849. extrapolate_one_point(half_x + x, half_y + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1850. }
  1851. }
  1852. }
  1853. /**
  1854. * Print calibration results for plotting or manual frame adjustment.
  1855. */
  1856. static void print_bed_level() {
  1857. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1858. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1859. SERIAL_PROTOCOL_F(bed_level_grid[x][y], 2);
  1860. SERIAL_PROTOCOLCHAR(' ');
  1861. }
  1862. SERIAL_EOL;
  1863. }
  1864. }
  1865. #endif // AUTO_BED_LEVELING_NONLINEAR
  1866. /**
  1867. * Home an individual linear axis
  1868. */
  1869. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  1870. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1871. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  1872. if (deploy_bltouch) set_bltouch_deployed(true);
  1873. #endif
  1874. // Tell the planner we're at Z=0
  1875. current_position[axis] = 0;
  1876. #if IS_SCARA
  1877. SYNC_PLAN_POSITION_KINEMATIC();
  1878. current_position[axis] = distance;
  1879. inverse_kinematics(current_position);
  1880. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1881. #else
  1882. sync_plan_position();
  1883. current_position[axis] = distance;
  1884. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1885. #endif
  1886. stepper.synchronize();
  1887. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1888. if (deploy_bltouch) set_bltouch_deployed(false);
  1889. #endif
  1890. endstops.hit_on_purpose();
  1891. }
  1892. /**
  1893. * Home an individual "raw axis" to its endstop.
  1894. * This applies to XYZ on Cartesian and Core robots, and
  1895. * to the individual ABC steppers on DELTA and SCARA.
  1896. *
  1897. * At the end of the procedure the axis is marked as
  1898. * homed and the current position of that axis is updated.
  1899. * Kinematic robots should wait till all axes are homed
  1900. * before updating the current position.
  1901. */
  1902. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1903. static void homeaxis(AxisEnum axis) {
  1904. #if IS_SCARA
  1905. // Only Z homing (with probe) is permitted
  1906. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  1907. #else
  1908. #define CAN_HOME(A) \
  1909. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1910. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1911. #endif
  1912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1913. if (DEBUGGING(LEVELING)) {
  1914. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1915. SERIAL_ECHOLNPGM(")");
  1916. }
  1917. #endif
  1918. int axis_home_dir =
  1919. #if ENABLED(DUAL_X_CARRIAGE)
  1920. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1921. #endif
  1922. home_dir(axis);
  1923. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1924. #if HOMING_Z_WITH_PROBE
  1925. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1926. #endif
  1927. // Set a flag for Z motor locking
  1928. #if ENABLED(Z_DUAL_ENDSTOPS)
  1929. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1930. #endif
  1931. // Fast move towards endstop until triggered
  1932. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1933. // When homing Z with probe respect probe clearance
  1934. const float bump = axis_home_dir * (
  1935. #if HOMING_Z_WITH_PROBE
  1936. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  1937. #endif
  1938. home_bump_mm(axis)
  1939. );
  1940. // If a second homing move is configured...
  1941. if (bump) {
  1942. // Move away from the endstop by the axis HOME_BUMP_MM
  1943. do_homing_move(axis, -bump);
  1944. // Slow move towards endstop until triggered
  1945. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  1946. }
  1947. #if ENABLED(Z_DUAL_ENDSTOPS)
  1948. if (axis == Z_AXIS) {
  1949. float adj = fabs(z_endstop_adj);
  1950. bool lockZ1;
  1951. if (axis_home_dir > 0) {
  1952. adj = -adj;
  1953. lockZ1 = (z_endstop_adj > 0);
  1954. }
  1955. else
  1956. lockZ1 = (z_endstop_adj < 0);
  1957. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1958. // Move to the adjusted endstop height
  1959. do_homing_move(axis, adj);
  1960. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1961. stepper.set_homing_flag(false);
  1962. } // Z_AXIS
  1963. #endif
  1964. #if IS_SCARA
  1965. set_axis_is_at_home(axis);
  1966. SYNC_PLAN_POSITION_KINEMATIC();
  1967. #elif ENABLED(DELTA)
  1968. // Delta has already moved all three towers up in G28
  1969. // so here it re-homes each tower in turn.
  1970. // Delta homing treats the axes as normal linear axes.
  1971. // retrace by the amount specified in endstop_adj
  1972. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1974. if (DEBUGGING(LEVELING)) {
  1975. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1976. DEBUG_POS("", current_position);
  1977. }
  1978. #endif
  1979. do_homing_move(axis, endstop_adj[axis]);
  1980. }
  1981. #else
  1982. // For cartesian/core machines,
  1983. // set the axis to its home position
  1984. set_axis_is_at_home(axis);
  1985. sync_plan_position();
  1986. destination[axis] = current_position[axis];
  1987. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1988. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1989. #endif
  1990. #endif
  1991. // Put away the Z probe
  1992. #if HOMING_Z_WITH_PROBE
  1993. if (axis == Z_AXIS && STOW_PROBE()) return;
  1994. #endif
  1995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1996. if (DEBUGGING(LEVELING)) {
  1997. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  1998. SERIAL_ECHOLNPGM(")");
  1999. }
  2000. #endif
  2001. } // homeaxis()
  2002. #if ENABLED(FWRETRACT)
  2003. void retract(bool retracting, bool swapping = false) {
  2004. if (retracting == retracted[active_extruder]) return;
  2005. float old_feedrate_mm_s = feedrate_mm_s;
  2006. set_destination_to_current();
  2007. if (retracting) {
  2008. feedrate_mm_s = retract_feedrate_mm_s;
  2009. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2010. sync_plan_position_e();
  2011. prepare_move_to_destination();
  2012. if (retract_zlift > 0.01) {
  2013. current_position[Z_AXIS] -= retract_zlift;
  2014. SYNC_PLAN_POSITION_KINEMATIC();
  2015. prepare_move_to_destination();
  2016. }
  2017. }
  2018. else {
  2019. if (retract_zlift > 0.01) {
  2020. current_position[Z_AXIS] += retract_zlift;
  2021. SYNC_PLAN_POSITION_KINEMATIC();
  2022. }
  2023. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2024. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2025. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2026. sync_plan_position_e();
  2027. prepare_move_to_destination();
  2028. }
  2029. feedrate_mm_s = old_feedrate_mm_s;
  2030. retracted[active_extruder] = retracting;
  2031. } // retract()
  2032. #endif // FWRETRACT
  2033. #if ENABLED(MIXING_EXTRUDER)
  2034. void normalize_mix() {
  2035. float mix_total = 0.0;
  2036. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2037. float v = mixing_factor[i];
  2038. if (v < 0) v = mixing_factor[i] = 0;
  2039. mix_total += v;
  2040. }
  2041. // Scale all values if they don't add up to ~1.0
  2042. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2043. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2044. float mix_scale = 1.0 / mix_total;
  2045. for (int i = 0; i < MIXING_STEPPERS; i++)
  2046. mixing_factor[i] *= mix_scale;
  2047. }
  2048. }
  2049. #if ENABLED(DIRECT_MIXING_IN_G1)
  2050. // Get mixing parameters from the GCode
  2051. // Factors that are left out are set to 0
  2052. // The total "must" be 1.0 (but it will be normalized)
  2053. void gcode_get_mix() {
  2054. const char* mixing_codes = "ABCDHI";
  2055. for (int i = 0; i < MIXING_STEPPERS; i++)
  2056. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2057. normalize_mix();
  2058. }
  2059. #endif
  2060. #endif
  2061. /**
  2062. * ***************************************************************************
  2063. * ***************************** G-CODE HANDLING *****************************
  2064. * ***************************************************************************
  2065. */
  2066. /**
  2067. * Set XYZE destination and feedrate from the current GCode command
  2068. *
  2069. * - Set destination from included axis codes
  2070. * - Set to current for missing axis codes
  2071. * - Set the feedrate, if included
  2072. */
  2073. void gcode_get_destination() {
  2074. LOOP_XYZE(i) {
  2075. if (code_seen(axis_codes[i]))
  2076. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2077. else
  2078. destination[i] = current_position[i];
  2079. }
  2080. if (code_seen('F') && code_value_linear_units() > 0.0)
  2081. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2082. #if ENABLED(PRINTCOUNTER)
  2083. if (!DEBUGGING(DRYRUN))
  2084. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2085. #endif
  2086. // Get ABCDHI mixing factors
  2087. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2088. gcode_get_mix();
  2089. #endif
  2090. }
  2091. void unknown_command_error() {
  2092. SERIAL_ECHO_START;
  2093. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2094. SERIAL_ECHOLNPGM("\"");
  2095. }
  2096. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2097. /**
  2098. * Output a "busy" message at regular intervals
  2099. * while the machine is not accepting commands.
  2100. */
  2101. void host_keepalive() {
  2102. millis_t ms = millis();
  2103. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2104. if (PENDING(ms, next_busy_signal_ms)) return;
  2105. switch (busy_state) {
  2106. case IN_HANDLER:
  2107. case IN_PROCESS:
  2108. SERIAL_ECHO_START;
  2109. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2110. break;
  2111. case PAUSED_FOR_USER:
  2112. SERIAL_ECHO_START;
  2113. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2114. break;
  2115. case PAUSED_FOR_INPUT:
  2116. SERIAL_ECHO_START;
  2117. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2118. break;
  2119. default:
  2120. break;
  2121. }
  2122. }
  2123. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2124. }
  2125. #endif //HOST_KEEPALIVE_FEATURE
  2126. bool position_is_reachable(float target[XYZ]
  2127. #if HAS_BED_PROBE
  2128. , bool by_probe=false
  2129. #endif
  2130. ) {
  2131. float dx = RAW_X_POSITION(target[X_AXIS]),
  2132. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2133. #if HAS_BED_PROBE
  2134. if (by_probe) {
  2135. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2136. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2137. }
  2138. #endif
  2139. #if IS_SCARA
  2140. #if MIDDLE_DEAD_ZONE_R > 0
  2141. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2142. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2143. #else
  2144. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2145. #endif
  2146. #elif ENABLED(DELTA)
  2147. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2148. #else
  2149. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2150. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2151. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2152. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2153. #endif
  2154. }
  2155. /**************************************************
  2156. ***************** GCode Handlers *****************
  2157. **************************************************/
  2158. /**
  2159. * G0, G1: Coordinated movement of X Y Z E axes
  2160. */
  2161. inline void gcode_G0_G1(
  2162. #if IS_SCARA
  2163. bool fast_move=false
  2164. #endif
  2165. ) {
  2166. if (IsRunning()) {
  2167. gcode_get_destination(); // For X Y Z E F
  2168. #if ENABLED(FWRETRACT)
  2169. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2170. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2171. // Is this move an attempt to retract or recover?
  2172. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2173. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2174. sync_plan_position_e(); // AND from the planner
  2175. retract(!retracted[active_extruder]);
  2176. return;
  2177. }
  2178. }
  2179. #endif //FWRETRACT
  2180. #if IS_SCARA
  2181. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2182. #else
  2183. prepare_move_to_destination();
  2184. #endif
  2185. }
  2186. }
  2187. /**
  2188. * G2: Clockwise Arc
  2189. * G3: Counterclockwise Arc
  2190. *
  2191. * This command has two forms: IJ-form and R-form.
  2192. *
  2193. * - I specifies an X offset. J specifies a Y offset.
  2194. * At least one of the IJ parameters is required.
  2195. * X and Y can be omitted to do a complete circle.
  2196. * The given XY is not error-checked. The arc ends
  2197. * based on the angle of the destination.
  2198. * Mixing I or J with R will throw an error.
  2199. *
  2200. * - R specifies the radius. X or Y is required.
  2201. * Omitting both X and Y will throw an error.
  2202. * X or Y must differ from the current XY.
  2203. * Mixing R with I or J will throw an error.
  2204. *
  2205. * Examples:
  2206. *
  2207. * G2 I10 ; CW circle centered at X+10
  2208. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2209. */
  2210. #if ENABLED(ARC_SUPPORT)
  2211. inline void gcode_G2_G3(bool clockwise) {
  2212. if (IsRunning()) {
  2213. #if ENABLED(SF_ARC_FIX)
  2214. bool relative_mode_backup = relative_mode;
  2215. relative_mode = true;
  2216. #endif
  2217. gcode_get_destination();
  2218. #if ENABLED(SF_ARC_FIX)
  2219. relative_mode = relative_mode_backup;
  2220. #endif
  2221. float arc_offset[2] = { 0.0, 0.0 };
  2222. if (code_seen('R')) {
  2223. const float r = code_value_axis_units(X_AXIS),
  2224. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2225. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2226. if (r && (x2 != x1 || y2 != y1)) {
  2227. const float e = clockwise ? -1 : 1, // clockwise -1, counterclockwise 1
  2228. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2229. d = HYPOT(dx, dy), // Linear distance between the points
  2230. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2231. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2232. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2233. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2234. arc_offset[X_AXIS] = cx - x1;
  2235. arc_offset[Y_AXIS] = cy - y1;
  2236. }
  2237. }
  2238. else {
  2239. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2240. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2241. }
  2242. if (arc_offset[0] || arc_offset[1]) {
  2243. // Send an arc to the planner
  2244. plan_arc(destination, arc_offset, clockwise);
  2245. refresh_cmd_timeout();
  2246. }
  2247. else {
  2248. // Bad arguments
  2249. SERIAL_ERROR_START;
  2250. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2251. }
  2252. }
  2253. }
  2254. #endif
  2255. /**
  2256. * G4: Dwell S<seconds> or P<milliseconds>
  2257. */
  2258. inline void gcode_G4() {
  2259. millis_t dwell_ms = 0;
  2260. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2261. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2262. stepper.synchronize();
  2263. refresh_cmd_timeout();
  2264. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2265. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2266. while (PENDING(millis(), dwell_ms)) idle();
  2267. }
  2268. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2269. /**
  2270. * Parameters interpreted according to:
  2271. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2272. * However I, J omission is not supported at this point; all
  2273. * parameters can be omitted and default to zero.
  2274. */
  2275. /**
  2276. * G5: Cubic B-spline
  2277. */
  2278. inline void gcode_G5() {
  2279. if (IsRunning()) {
  2280. gcode_get_destination();
  2281. float offset[] = {
  2282. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2283. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2284. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2285. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2286. };
  2287. plan_cubic_move(offset);
  2288. }
  2289. }
  2290. #endif // BEZIER_CURVE_SUPPORT
  2291. #if ENABLED(FWRETRACT)
  2292. /**
  2293. * G10 - Retract filament according to settings of M207
  2294. * G11 - Recover filament according to settings of M208
  2295. */
  2296. inline void gcode_G10_G11(bool doRetract=false) {
  2297. #if EXTRUDERS > 1
  2298. if (doRetract) {
  2299. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2300. }
  2301. #endif
  2302. retract(doRetract
  2303. #if EXTRUDERS > 1
  2304. , retracted_swap[active_extruder]
  2305. #endif
  2306. );
  2307. }
  2308. #endif //FWRETRACT
  2309. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2310. /**
  2311. * G12: Clean the nozzle
  2312. */
  2313. inline void gcode_G12() {
  2314. // Don't allow nozzle cleaning without homing first
  2315. if (axis_unhomed_error(true, true, true)) { return; }
  2316. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2317. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2318. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2319. Nozzle::clean(pattern, strokes, objects);
  2320. }
  2321. #endif
  2322. #if ENABLED(INCH_MODE_SUPPORT)
  2323. /**
  2324. * G20: Set input mode to inches
  2325. */
  2326. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2327. /**
  2328. * G21: Set input mode to millimeters
  2329. */
  2330. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2331. #endif
  2332. #if ENABLED(NOZZLE_PARK_FEATURE)
  2333. /**
  2334. * G27: Park the nozzle
  2335. */
  2336. inline void gcode_G27() {
  2337. // Don't allow nozzle parking without homing first
  2338. if (axis_unhomed_error(true, true, true)) { return; }
  2339. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2340. Nozzle::park(z_action);
  2341. }
  2342. #endif // NOZZLE_PARK_FEATURE
  2343. #if ENABLED(QUICK_HOME)
  2344. static void quick_home_xy() {
  2345. // Pretend the current position is 0,0
  2346. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2347. sync_plan_position();
  2348. int x_axis_home_dir =
  2349. #if ENABLED(DUAL_X_CARRIAGE)
  2350. x_home_dir(active_extruder)
  2351. #else
  2352. home_dir(X_AXIS)
  2353. #endif
  2354. ;
  2355. float mlx = max_length(X_AXIS),
  2356. mly = max_length(Y_AXIS),
  2357. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2358. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2359. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2360. endstops.hit_on_purpose(); // clear endstop hit flags
  2361. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2362. }
  2363. #endif // QUICK_HOME
  2364. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2365. void log_machine_info() {
  2366. SERIAL_ECHOPGM("Machine Type: ");
  2367. #if ENABLED(DELTA)
  2368. SERIAL_ECHOLNPGM("Delta");
  2369. #elif IS_SCARA
  2370. SERIAL_ECHOLNPGM("SCARA");
  2371. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2372. SERIAL_ECHOLNPGM("Core");
  2373. #else
  2374. SERIAL_ECHOLNPGM("Cartesian");
  2375. #endif
  2376. SERIAL_ECHOPGM("Probe: ");
  2377. #if ENABLED(FIX_MOUNTED_PROBE)
  2378. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2379. #elif HAS_Z_SERVO_ENDSTOP
  2380. SERIAL_ECHOLNPGM("SERVO PROBE");
  2381. #elif ENABLED(BLTOUCH)
  2382. SERIAL_ECHOLNPGM("BLTOUCH");
  2383. #elif ENABLED(Z_PROBE_SLED)
  2384. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2385. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2386. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2387. #else
  2388. SERIAL_ECHOLNPGM("NONE");
  2389. #endif
  2390. #if HAS_BED_PROBE
  2391. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2392. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2393. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2394. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2395. SERIAL_ECHOPGM(" (Right");
  2396. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2397. SERIAL_ECHOPGM(" (Left");
  2398. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2399. SERIAL_ECHOPGM(" (Middle");
  2400. #else
  2401. SERIAL_ECHOPGM(" (Aligned With");
  2402. #endif
  2403. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2404. SERIAL_ECHOPGM("-Back");
  2405. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2406. SERIAL_ECHOPGM("-Front");
  2407. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2408. SERIAL_ECHOPGM("-Center");
  2409. #endif
  2410. if (zprobe_zoffset < 0)
  2411. SERIAL_ECHOPGM(" & Below");
  2412. else if (zprobe_zoffset > 0)
  2413. SERIAL_ECHOPGM(" & Above");
  2414. else
  2415. SERIAL_ECHOPGM(" & Same Z as");
  2416. SERIAL_ECHOLNPGM(" Nozzle)");
  2417. #endif
  2418. }
  2419. #endif // DEBUG_LEVELING_FEATURE
  2420. #if ENABLED(DELTA)
  2421. /**
  2422. * A delta can only safely home all axes at the same time
  2423. * This is like quick_home_xy() but for 3 towers.
  2424. */
  2425. inline void home_delta() {
  2426. // Init the current position of all carriages to 0,0,0
  2427. memset(current_position, 0, sizeof(current_position));
  2428. sync_plan_position();
  2429. // Move all carriages together linearly until an endstop is hit.
  2430. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2431. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2432. line_to_current_position();
  2433. stepper.synchronize();
  2434. endstops.hit_on_purpose(); // clear endstop hit flags
  2435. // Probably not needed. Double-check this line:
  2436. memset(current_position, 0, sizeof(current_position));
  2437. // At least one carriage has reached the top.
  2438. // Now back off and re-home each carriage separately.
  2439. HOMEAXIS(A);
  2440. HOMEAXIS(B);
  2441. HOMEAXIS(C);
  2442. // Set all carriages to their home positions
  2443. // Do this here all at once for Delta, because
  2444. // XYZ isn't ABC. Applying this per-tower would
  2445. // give the impression that they are the same.
  2446. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2447. SYNC_PLAN_POSITION_KINEMATIC();
  2448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2449. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2450. #endif
  2451. }
  2452. #endif // DELTA
  2453. #if ENABLED(Z_SAFE_HOMING)
  2454. inline void home_z_safely() {
  2455. // Disallow Z homing if X or Y are unknown
  2456. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2457. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2458. SERIAL_ECHO_START;
  2459. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2460. return;
  2461. }
  2462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2463. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2464. #endif
  2465. SYNC_PLAN_POSITION_KINEMATIC();
  2466. /**
  2467. * Move the Z probe (or just the nozzle) to the safe homing point
  2468. */
  2469. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2470. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2471. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2472. if (position_is_reachable(
  2473. destination
  2474. #if HOMING_Z_WITH_PROBE
  2475. , true
  2476. #endif
  2477. )
  2478. ) {
  2479. #if HOMING_Z_WITH_PROBE
  2480. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2481. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2482. #endif
  2483. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2484. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2485. #endif
  2486. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2487. HOMEAXIS(Z);
  2488. }
  2489. else {
  2490. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2491. SERIAL_ECHO_START;
  2492. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2493. }
  2494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2495. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2496. #endif
  2497. }
  2498. #endif // Z_SAFE_HOMING
  2499. /**
  2500. * G28: Home all axes according to settings
  2501. *
  2502. * Parameters
  2503. *
  2504. * None Home to all axes with no parameters.
  2505. * With QUICK_HOME enabled XY will home together, then Z.
  2506. *
  2507. * Cartesian parameters
  2508. *
  2509. * X Home to the X endstop
  2510. * Y Home to the Y endstop
  2511. * Z Home to the Z endstop
  2512. *
  2513. */
  2514. inline void gcode_G28() {
  2515. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2516. if (DEBUGGING(LEVELING)) {
  2517. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2518. log_machine_info();
  2519. }
  2520. #endif
  2521. // Wait for planner moves to finish!
  2522. stepper.synchronize();
  2523. // For auto bed leveling, clear the level matrix
  2524. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2525. reset_bed_level();
  2526. #endif
  2527. // Always home with tool 0 active
  2528. #if HOTENDS > 1
  2529. uint8_t old_tool_index = active_extruder;
  2530. tool_change(0, 0, true);
  2531. #endif
  2532. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2533. extruder_duplication_enabled = false;
  2534. #endif
  2535. /**
  2536. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2537. * on again when homing all axis
  2538. */
  2539. #if ENABLED(MESH_BED_LEVELING)
  2540. float pre_home_z = MESH_HOME_SEARCH_Z;
  2541. if (mbl.active()) {
  2542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2543. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2544. #endif
  2545. // Save known Z position if already homed
  2546. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2547. pre_home_z = current_position[Z_AXIS];
  2548. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2549. }
  2550. mbl.set_active(false);
  2551. current_position[Z_AXIS] = pre_home_z;
  2552. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2553. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2554. #endif
  2555. }
  2556. #endif
  2557. setup_for_endstop_or_probe_move();
  2558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2559. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2560. #endif
  2561. endstops.enable(true); // Enable endstops for next homing move
  2562. #if ENABLED(DELTA)
  2563. home_delta();
  2564. #else // NOT DELTA
  2565. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2566. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2567. set_destination_to_current();
  2568. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2569. if (home_all_axis || homeZ) {
  2570. HOMEAXIS(Z);
  2571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2572. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2573. #endif
  2574. }
  2575. #else
  2576. if (home_all_axis || homeX || homeY) {
  2577. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2578. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2579. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2580. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2581. if (DEBUGGING(LEVELING))
  2582. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2583. #endif
  2584. do_blocking_move_to_z(destination[Z_AXIS]);
  2585. }
  2586. }
  2587. #endif
  2588. #if ENABLED(QUICK_HOME)
  2589. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2590. #endif
  2591. #if ENABLED(HOME_Y_BEFORE_X)
  2592. // Home Y
  2593. if (home_all_axis || homeY) {
  2594. HOMEAXIS(Y);
  2595. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2596. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2597. #endif
  2598. }
  2599. #endif
  2600. // Home X
  2601. if (home_all_axis || homeX) {
  2602. #if ENABLED(DUAL_X_CARRIAGE)
  2603. int tmp_extruder = active_extruder;
  2604. active_extruder = !active_extruder;
  2605. HOMEAXIS(X);
  2606. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2607. active_extruder = tmp_extruder;
  2608. HOMEAXIS(X);
  2609. // reset state used by the different modes
  2610. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2611. delayed_move_time = 0;
  2612. active_extruder_parked = true;
  2613. #else
  2614. HOMEAXIS(X);
  2615. #endif
  2616. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2617. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2618. #endif
  2619. }
  2620. #if DISABLED(HOME_Y_BEFORE_X)
  2621. // Home Y
  2622. if (home_all_axis || homeY) {
  2623. HOMEAXIS(Y);
  2624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2625. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2626. #endif
  2627. }
  2628. #endif
  2629. // Home Z last if homing towards the bed
  2630. #if Z_HOME_DIR < 0
  2631. if (home_all_axis || homeZ) {
  2632. #if ENABLED(Z_SAFE_HOMING)
  2633. home_z_safely();
  2634. #else
  2635. HOMEAXIS(Z);
  2636. #endif
  2637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2638. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2639. #endif
  2640. } // home_all_axis || homeZ
  2641. #endif // Z_HOME_DIR < 0
  2642. SYNC_PLAN_POSITION_KINEMATIC();
  2643. #endif // !DELTA (gcode_G28)
  2644. endstops.not_homing();
  2645. // Enable mesh leveling again
  2646. #if ENABLED(MESH_BED_LEVELING)
  2647. if (mbl.has_mesh()) {
  2648. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2649. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2650. #endif
  2651. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2653. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2654. #endif
  2655. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2656. #if Z_HOME_DIR > 0
  2657. + Z_MAX_POS
  2658. #endif
  2659. ;
  2660. SYNC_PLAN_POSITION_KINEMATIC();
  2661. mbl.set_active(true);
  2662. #if ENABLED(MESH_G28_REST_ORIGIN)
  2663. current_position[Z_AXIS] = 0.0;
  2664. set_destination_to_current();
  2665. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2666. stepper.synchronize();
  2667. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2668. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2669. #endif
  2670. #else
  2671. planner.unapply_leveling(current_position);
  2672. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2673. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2674. #endif
  2675. #endif
  2676. }
  2677. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2678. current_position[Z_AXIS] = pre_home_z;
  2679. SYNC_PLAN_POSITION_KINEMATIC();
  2680. mbl.set_active(true);
  2681. planner.unapply_leveling(current_position);
  2682. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2683. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2684. #endif
  2685. }
  2686. }
  2687. #endif
  2688. #if ENABLED(DELTA)
  2689. // move to a height where we can use the full xy-area
  2690. do_blocking_move_to_z(delta_clip_start_height);
  2691. #endif
  2692. clean_up_after_endstop_or_probe_move();
  2693. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2694. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2695. #endif
  2696. // Restore the active tool after homing
  2697. #if HOTENDS > 1
  2698. tool_change(old_tool_index, 0, true);
  2699. #endif
  2700. report_current_position();
  2701. }
  2702. #if HAS_PROBING_PROCEDURE
  2703. void out_of_range_error(const char* p_edge) {
  2704. SERIAL_PROTOCOLPGM("?Probe ");
  2705. serialprintPGM(p_edge);
  2706. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2707. }
  2708. #endif
  2709. #if ENABLED(MESH_BED_LEVELING)
  2710. inline void _mbl_goto_xy(float x, float y) {
  2711. float old_feedrate_mm_s = feedrate_mm_s;
  2712. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2713. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2714. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2715. + Z_CLEARANCE_BETWEEN_PROBES
  2716. #elif Z_HOMING_HEIGHT > 0
  2717. + Z_HOMING_HEIGHT
  2718. #endif
  2719. ;
  2720. line_to_current_position();
  2721. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2722. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2723. line_to_current_position();
  2724. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2725. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2726. line_to_current_position();
  2727. #endif
  2728. feedrate_mm_s = old_feedrate_mm_s;
  2729. stepper.synchronize();
  2730. }
  2731. /**
  2732. * G29: Mesh-based Z probe, probes a grid and produces a
  2733. * mesh to compensate for variable bed height
  2734. *
  2735. * Parameters With MESH_BED_LEVELING:
  2736. *
  2737. * S0 Produce a mesh report
  2738. * S1 Start probing mesh points
  2739. * S2 Probe the next mesh point
  2740. * S3 Xn Yn Zn.nn Manually modify a single point
  2741. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2742. * S5 Reset and disable mesh
  2743. *
  2744. * The S0 report the points as below
  2745. *
  2746. * +----> X-axis 1-n
  2747. * |
  2748. * |
  2749. * v Y-axis 1-n
  2750. *
  2751. */
  2752. inline void gcode_G29() {
  2753. static int probe_point = -1;
  2754. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2755. if (state < 0 || state > 5) {
  2756. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2757. return;
  2758. }
  2759. int8_t px, py;
  2760. switch (state) {
  2761. case MeshReport:
  2762. if (mbl.has_mesh()) {
  2763. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2764. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2765. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2766. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2767. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2768. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2769. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2770. SERIAL_PROTOCOLPGM(" ");
  2771. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2772. }
  2773. SERIAL_EOL;
  2774. }
  2775. }
  2776. else
  2777. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2778. break;
  2779. case MeshStart:
  2780. mbl.reset();
  2781. probe_point = 0;
  2782. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2783. break;
  2784. case MeshNext:
  2785. if (probe_point < 0) {
  2786. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2787. return;
  2788. }
  2789. // For each G29 S2...
  2790. if (probe_point == 0) {
  2791. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2792. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2793. #if Z_HOME_DIR > 0
  2794. + Z_MAX_POS
  2795. #endif
  2796. ;
  2797. SYNC_PLAN_POSITION_KINEMATIC();
  2798. }
  2799. else {
  2800. // For G29 S2 after adjusting Z.
  2801. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2802. }
  2803. // If there's another point to sample, move there with optional lift.
  2804. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2805. mbl.zigzag(probe_point, px, py);
  2806. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2807. probe_point++;
  2808. }
  2809. else {
  2810. // One last "return to the bed" (as originally coded) at completion
  2811. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2812. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2813. + Z_CLEARANCE_BETWEEN_PROBES
  2814. #elif Z_HOMING_HEIGHT > 0
  2815. + Z_HOMING_HEIGHT
  2816. #endif
  2817. ;
  2818. line_to_current_position();
  2819. stepper.synchronize();
  2820. // After recording the last point, activate the mbl and home
  2821. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2822. probe_point = -1;
  2823. mbl.set_has_mesh(true);
  2824. enqueue_and_echo_commands_P(PSTR("G28"));
  2825. }
  2826. break;
  2827. case MeshSet:
  2828. if (code_seen('X')) {
  2829. px = code_value_int() - 1;
  2830. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2831. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2832. return;
  2833. }
  2834. }
  2835. else {
  2836. SERIAL_PROTOCOLLNPGM("X not entered.");
  2837. return;
  2838. }
  2839. if (code_seen('Y')) {
  2840. py = code_value_int() - 1;
  2841. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2842. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2843. return;
  2844. }
  2845. }
  2846. else {
  2847. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2848. return;
  2849. }
  2850. if (code_seen('Z')) {
  2851. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2852. }
  2853. else {
  2854. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2855. return;
  2856. }
  2857. break;
  2858. case MeshSetZOffset:
  2859. if (code_seen('Z')) {
  2860. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2861. }
  2862. else {
  2863. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2864. return;
  2865. }
  2866. break;
  2867. case MeshReset:
  2868. if (mbl.active()) {
  2869. current_position[Z_AXIS] +=
  2870. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2871. mbl.reset();
  2872. SYNC_PLAN_POSITION_KINEMATIC();
  2873. }
  2874. else
  2875. mbl.reset();
  2876. } // switch(state)
  2877. report_current_position();
  2878. }
  2879. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2880. /**
  2881. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2882. * Will fail if the printer has not been homed with G28.
  2883. *
  2884. * Enhanced G29 Auto Bed Leveling Probe Routine
  2885. *
  2886. * Parameters With AUTO_BED_LEVELING_GRID:
  2887. *
  2888. * P Set the size of the grid that will be probed (P x P points).
  2889. * Not supported by non-linear delta printer bed leveling.
  2890. * Example: "G29 P4"
  2891. *
  2892. * S Set the XY travel speed between probe points (in units/min)
  2893. *
  2894. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2895. * or clean the rotation Matrix. Useful to check the topology
  2896. * after a first run of G29.
  2897. *
  2898. * V Set the verbose level (0-4). Example: "G29 V3"
  2899. *
  2900. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2901. * This is useful for manual bed leveling and finding flaws in the bed (to
  2902. * assist with part placement).
  2903. * Not supported by non-linear delta printer bed leveling.
  2904. *
  2905. * F Set the Front limit of the probing grid
  2906. * B Set the Back limit of the probing grid
  2907. * L Set the Left limit of the probing grid
  2908. * R Set the Right limit of the probing grid
  2909. *
  2910. * Global Parameters:
  2911. *
  2912. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2913. * Include "E" to engage/disengage the Z probe for each sample.
  2914. * There's no extra effect if you have a fixed Z probe.
  2915. * Usage: "G29 E" or "G29 e"
  2916. *
  2917. */
  2918. inline void gcode_G29() {
  2919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2920. if (DEBUGGING(LEVELING)) {
  2921. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2922. DEBUG_POS("", current_position);
  2923. log_machine_info();
  2924. }
  2925. #endif
  2926. // Don't allow auto-leveling without homing first
  2927. if (axis_unhomed_error(true, true, true)) return;
  2928. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2929. if (verbose_level < 0 || verbose_level > 4) {
  2930. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2931. return;
  2932. }
  2933. bool dryrun = code_seen('D'),
  2934. stow_probe_after_each = code_seen('E');
  2935. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2936. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2937. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2938. #endif
  2939. if (verbose_level > 0) {
  2940. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2941. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2942. }
  2943. int abl_grid_points_x = ABL_GRID_POINTS_X,
  2944. abl_grid_points_y = ABL_GRID_POINTS_Y;
  2945. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2946. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  2947. if (abl_grid_points_x < 2) {
  2948. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2949. return;
  2950. }
  2951. #endif
  2952. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2953. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2954. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2955. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2956. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2957. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2958. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2959. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2960. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2961. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2962. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2963. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2964. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2965. if (left_out || right_out || front_out || back_out) {
  2966. if (left_out) {
  2967. out_of_range_error(PSTR("(L)eft"));
  2968. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2969. }
  2970. if (right_out) {
  2971. out_of_range_error(PSTR("(R)ight"));
  2972. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2973. }
  2974. if (front_out) {
  2975. out_of_range_error(PSTR("(F)ront"));
  2976. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2977. }
  2978. if (back_out) {
  2979. out_of_range_error(PSTR("(B)ack"));
  2980. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2981. }
  2982. return;
  2983. }
  2984. #endif // AUTO_BED_LEVELING_GRID
  2985. stepper.synchronize();
  2986. // Disable auto bed leveling during G29
  2987. bool abl_should_reenable = planner.abl_enabled;
  2988. planner.abl_enabled = false;
  2989. if (!dryrun) {
  2990. // Re-orient the current position without leveling
  2991. // based on where the steppers are positioned.
  2992. get_cartesian_from_steppers();
  2993. memcpy(current_position, cartes, sizeof(cartes));
  2994. // Inform the planner about the new coordinates
  2995. SYNC_PLAN_POSITION_KINEMATIC();
  2996. }
  2997. setup_for_endstop_or_probe_move();
  2998. // Deploy the probe. Probe will raise if needed.
  2999. if (DEPLOY_PROBE()) {
  3000. planner.abl_enabled = abl_should_reenable;
  3001. return;
  3002. }
  3003. float xProbe = 0, yProbe = 0, measured_z = 0;
  3004. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3005. // probe at the points of a lattice grid
  3006. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3007. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3008. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3009. float zoffset = zprobe_zoffset;
  3010. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3011. if (xGridSpacing != nonlinear_grid_spacing[X_AXIS] || yGridSpacing != nonlinear_grid_spacing[Y_AXIS]) {
  3012. nonlinear_grid_spacing[X_AXIS] = xGridSpacing;
  3013. nonlinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3014. // Can't re-enable (on error) until the new grid is written
  3015. abl_should_reenable = false;
  3016. }
  3017. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3018. /**
  3019. * solve the plane equation ax + by + d = z
  3020. * A is the matrix with rows [x y 1] for all the probed points
  3021. * B is the vector of the Z positions
  3022. * the normal vector to the plane is formed by the coefficients of the
  3023. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3024. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3025. */
  3026. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3027. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3028. probePointCounter = -1;
  3029. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3030. eqnBVector[abl2], // "B" vector of Z points
  3031. mean = 0.0;
  3032. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  3033. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3034. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  3035. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  3036. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3037. int8_t xStart, xStop, xInc;
  3038. if (zig) {
  3039. xStart = 0;
  3040. xStop = abl_grid_points_x;
  3041. xInc = 1;
  3042. }
  3043. else {
  3044. xStart = abl_grid_points_x - 1;
  3045. xStop = -1;
  3046. xInc = -1;
  3047. }
  3048. zig = !zig;
  3049. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  3050. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  3051. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3052. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3053. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3054. #endif
  3055. #if IS_KINEMATIC
  3056. // Avoid probing outside the round or hexagonal area
  3057. float pos[XYZ] = { xProbe, yProbe, 0 };
  3058. if (!position_is_reachable(pos, true)) continue;
  3059. #endif
  3060. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3061. if (measured_z == NAN) {
  3062. planner.abl_enabled = abl_should_reenable;
  3063. return;
  3064. }
  3065. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3066. mean += measured_z;
  3067. eqnBVector[probePointCounter] = measured_z;
  3068. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3069. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3070. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3071. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3072. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3073. #endif
  3074. idle();
  3075. } //xProbe
  3076. } //yProbe
  3077. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3079. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3080. #endif
  3081. // Probe at 3 arbitrary points
  3082. vector_3 points[3] = {
  3083. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3084. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3085. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3086. };
  3087. for (uint8_t i = 0; i < 3; ++i) {
  3088. // Retain the last probe position
  3089. xProbe = LOGICAL_X_POSITION(points[i].x);
  3090. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3091. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3092. }
  3093. if (measured_z == NAN) {
  3094. planner.abl_enabled = abl_should_reenable;
  3095. return;
  3096. }
  3097. if (!dryrun) {
  3098. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3099. if (planeNormal.z < 0) {
  3100. planeNormal.x *= -1;
  3101. planeNormal.y *= -1;
  3102. planeNormal.z *= -1;
  3103. }
  3104. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3105. // Can't re-enable (on error) until the new grid is written
  3106. abl_should_reenable = false;
  3107. }
  3108. #endif // AUTO_BED_LEVELING_3POINT
  3109. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3110. if (STOW_PROBE()) {
  3111. planner.abl_enabled = abl_should_reenable;
  3112. return;
  3113. }
  3114. //
  3115. // Unless this is a dry run, auto bed leveling will
  3116. // definitely be enabled after this point
  3117. //
  3118. // Restore state after probing
  3119. clean_up_after_endstop_or_probe_move();
  3120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3121. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3122. #endif
  3123. // Calculate leveling, print reports, correct the position
  3124. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3125. if (!dryrun) extrapolate_unprobed_bed_level();
  3126. print_bed_level();
  3127. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3128. // For LINEAR leveling calculate matrix, print reports, correct the position
  3129. // solve lsq problem
  3130. float plane_equation_coefficients[3];
  3131. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3132. mean /= abl2;
  3133. if (verbose_level) {
  3134. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3135. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3136. SERIAL_PROTOCOLPGM(" b: ");
  3137. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3138. SERIAL_PROTOCOLPGM(" d: ");
  3139. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3140. SERIAL_EOL;
  3141. if (verbose_level > 2) {
  3142. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3143. SERIAL_PROTOCOL_F(mean, 8);
  3144. SERIAL_EOL;
  3145. }
  3146. }
  3147. // Create the matrix but don't correct the position yet
  3148. if (!dryrun) {
  3149. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3150. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3151. );
  3152. }
  3153. // Show the Topography map if enabled
  3154. if (do_topography_map) {
  3155. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3156. " +--- BACK --+\n"
  3157. " | |\n"
  3158. " L | (+) | R\n"
  3159. " E | | I\n"
  3160. " F | (-) N (+) | G\n"
  3161. " T | | H\n"
  3162. " | (-) | T\n"
  3163. " | |\n"
  3164. " O-- FRONT --+\n"
  3165. " (0,0)");
  3166. float min_diff = 999;
  3167. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3168. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3169. int ind = indexIntoAB[xx][yy];
  3170. float diff = eqnBVector[ind] - mean,
  3171. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3172. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3173. z_tmp = 0;
  3174. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3175. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3176. if (diff >= 0.0)
  3177. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3178. else
  3179. SERIAL_PROTOCOLCHAR(' ');
  3180. SERIAL_PROTOCOL_F(diff, 5);
  3181. } // xx
  3182. SERIAL_EOL;
  3183. } // yy
  3184. SERIAL_EOL;
  3185. if (verbose_level > 3) {
  3186. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3187. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3188. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3189. int ind = indexIntoAB[xx][yy];
  3190. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3191. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3192. z_tmp = 0;
  3193. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3194. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3195. if (diff >= 0.0)
  3196. SERIAL_PROTOCOLPGM(" +");
  3197. // Include + for column alignment
  3198. else
  3199. SERIAL_PROTOCOLCHAR(' ');
  3200. SERIAL_PROTOCOL_F(diff, 5);
  3201. } // xx
  3202. SERIAL_EOL;
  3203. } // yy
  3204. SERIAL_EOL;
  3205. }
  3206. } //do_topography_map
  3207. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  3208. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3209. // For LINEAR and 3POINT leveling correct the current position
  3210. if (verbose_level > 0)
  3211. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3212. if (!dryrun) {
  3213. //
  3214. // Correct the current XYZ position based on the tilted plane.
  3215. //
  3216. // 1. Get the distance from the current position to the reference point.
  3217. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3218. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3219. z_real = RAW_CURRENT_POSITION(Z_AXIS),
  3220. z_zero = 0;
  3221. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3222. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3223. #endif
  3224. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3225. // 2. Apply the inverse matrix to the distance
  3226. // from the reference point to X, Y, and zero.
  3227. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3228. // 3. Get the matrix-based corrected Z.
  3229. // (Even if not used, get it for comparison.)
  3230. float new_z = z_real + z_zero;
  3231. // 4. Use the last measured distance to the bed, if possible
  3232. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3233. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3234. ) {
  3235. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3236. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3237. if (DEBUGGING(LEVELING)) {
  3238. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3239. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3240. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3241. }
  3242. #endif
  3243. new_z = simple_z;
  3244. }
  3245. // 5. The rotated XY and corrected Z are now current_position
  3246. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3247. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3248. current_position[Z_AXIS] = LOGICAL_Z_POSITION(new_z);
  3249. SYNC_PLAN_POSITION_KINEMATIC();
  3250. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3251. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3252. #endif
  3253. }
  3254. #endif // AUTO_BED_LEVELING_LINEAR
  3255. #ifdef Z_PROBE_END_SCRIPT
  3256. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3257. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3258. #endif
  3259. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3260. stepper.synchronize();
  3261. #endif
  3262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3263. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3264. #endif
  3265. report_current_position();
  3266. KEEPALIVE_STATE(IN_HANDLER);
  3267. // Auto Bed Leveling is complete! Enable if possible.
  3268. planner.abl_enabled = dryrun ? abl_should_reenable : true;
  3269. }
  3270. #endif // AUTO_BED_LEVELING_FEATURE
  3271. #if HAS_BED_PROBE
  3272. /**
  3273. * G30: Do a single Z probe at the current XY
  3274. */
  3275. inline void gcode_G30() {
  3276. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3277. reset_bed_level();
  3278. #endif
  3279. setup_for_endstop_or_probe_move();
  3280. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3281. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3282. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3283. true, 1);
  3284. SERIAL_PROTOCOLPGM("Bed X: ");
  3285. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3286. SERIAL_PROTOCOLPGM(" Y: ");
  3287. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3288. SERIAL_PROTOCOLPGM(" Z: ");
  3289. SERIAL_PROTOCOL(measured_z + 0.0001);
  3290. SERIAL_EOL;
  3291. clean_up_after_endstop_or_probe_move();
  3292. report_current_position();
  3293. }
  3294. #if ENABLED(Z_PROBE_SLED)
  3295. /**
  3296. * G31: Deploy the Z probe
  3297. */
  3298. inline void gcode_G31() { DEPLOY_PROBE(); }
  3299. /**
  3300. * G32: Stow the Z probe
  3301. */
  3302. inline void gcode_G32() { STOW_PROBE(); }
  3303. #endif // Z_PROBE_SLED
  3304. #endif // HAS_BED_PROBE
  3305. /**
  3306. * G92: Set current position to given X Y Z E
  3307. */
  3308. inline void gcode_G92() {
  3309. bool didXYZ = false,
  3310. didE = code_seen('E');
  3311. if (!didE) stepper.synchronize();
  3312. LOOP_XYZE(i) {
  3313. if (code_seen(axis_codes[i])) {
  3314. #if IS_SCARA
  3315. current_position[i] = code_value_axis_units(i);
  3316. if (i != E_AXIS) didXYZ = true;
  3317. #else
  3318. float p = current_position[i],
  3319. v = code_value_axis_units(i);
  3320. current_position[i] = v;
  3321. if (i != E_AXIS) {
  3322. didXYZ = true;
  3323. position_shift[i] += v - p; // Offset the coordinate space
  3324. update_software_endstops((AxisEnum)i);
  3325. }
  3326. #endif
  3327. }
  3328. }
  3329. if (didXYZ)
  3330. SYNC_PLAN_POSITION_KINEMATIC();
  3331. else if (didE)
  3332. sync_plan_position_e();
  3333. report_current_position();
  3334. }
  3335. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3336. /**
  3337. * M0: Unconditional stop - Wait for user button press on LCD
  3338. * M1: Conditional stop - Wait for user button press on LCD
  3339. */
  3340. inline void gcode_M0_M1() {
  3341. char* args = current_command_args;
  3342. millis_t codenum = 0;
  3343. bool hasP = false, hasS = false;
  3344. if (code_seen('P')) {
  3345. codenum = code_value_millis(); // milliseconds to wait
  3346. hasP = codenum > 0;
  3347. }
  3348. if (code_seen('S')) {
  3349. codenum = code_value_millis_from_seconds(); // seconds to wait
  3350. hasS = codenum > 0;
  3351. }
  3352. #if ENABLED(ULTIPANEL)
  3353. if (!hasP && !hasS && *args != '\0')
  3354. lcd_setstatus(args, true);
  3355. else {
  3356. LCD_MESSAGEPGM(MSG_USERWAIT);
  3357. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3358. dontExpireStatus();
  3359. #endif
  3360. }
  3361. lcd_ignore_click();
  3362. #else
  3363. if (!hasP && !hasS && *args != '\0') {
  3364. SERIAL_ECHO_START;
  3365. SERIAL_ECHOLN(args);
  3366. }
  3367. #endif
  3368. stepper.synchronize();
  3369. refresh_cmd_timeout();
  3370. #if ENABLED(ULTIPANEL)
  3371. if (codenum > 0) {
  3372. codenum += previous_cmd_ms; // wait until this time for a click
  3373. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3374. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3375. lcd_ignore_click(false);
  3376. }
  3377. else if (lcd_detected()) {
  3378. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3379. while (!lcd_clicked()) idle();
  3380. }
  3381. else return;
  3382. if (IS_SD_PRINTING)
  3383. LCD_MESSAGEPGM(MSG_RESUMING);
  3384. else
  3385. LCD_MESSAGEPGM(WELCOME_MSG);
  3386. #else
  3387. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3388. wait_for_user = true;
  3389. if (codenum > 0) {
  3390. codenum += previous_cmd_ms; // wait until this time for an M108
  3391. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3392. }
  3393. else while (wait_for_user) idle();
  3394. wait_for_user = false;
  3395. #endif
  3396. KEEPALIVE_STATE(IN_HANDLER);
  3397. }
  3398. #endif // ULTIPANEL || EMERGENCY_PARSER
  3399. /**
  3400. * M17: Enable power on all stepper motors
  3401. */
  3402. inline void gcode_M17() {
  3403. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3404. enable_all_steppers();
  3405. }
  3406. #if ENABLED(SDSUPPORT)
  3407. /**
  3408. * M20: List SD card to serial output
  3409. */
  3410. inline void gcode_M20() {
  3411. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3412. card.ls();
  3413. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3414. }
  3415. /**
  3416. * M21: Init SD Card
  3417. */
  3418. inline void gcode_M21() { card.initsd(); }
  3419. /**
  3420. * M22: Release SD Card
  3421. */
  3422. inline void gcode_M22() { card.release(); }
  3423. /**
  3424. * M23: Open a file
  3425. */
  3426. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3427. /**
  3428. * M24: Start SD Print
  3429. */
  3430. inline void gcode_M24() {
  3431. card.startFileprint();
  3432. print_job_timer.start();
  3433. }
  3434. /**
  3435. * M25: Pause SD Print
  3436. */
  3437. inline void gcode_M25() { card.pauseSDPrint(); }
  3438. /**
  3439. * M26: Set SD Card file index
  3440. */
  3441. inline void gcode_M26() {
  3442. if (card.cardOK && code_seen('S'))
  3443. card.setIndex(code_value_long());
  3444. }
  3445. /**
  3446. * M27: Get SD Card status
  3447. */
  3448. inline void gcode_M27() { card.getStatus(); }
  3449. /**
  3450. * M28: Start SD Write
  3451. */
  3452. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3453. /**
  3454. * M29: Stop SD Write
  3455. * Processed in write to file routine above
  3456. */
  3457. inline void gcode_M29() {
  3458. // card.saving = false;
  3459. }
  3460. /**
  3461. * M30 <filename>: Delete SD Card file
  3462. */
  3463. inline void gcode_M30() {
  3464. if (card.cardOK) {
  3465. card.closefile();
  3466. card.removeFile(current_command_args);
  3467. }
  3468. }
  3469. #endif // SDSUPPORT
  3470. /**
  3471. * M31: Get the time since the start of SD Print (or last M109)
  3472. */
  3473. inline void gcode_M31() {
  3474. char buffer[21];
  3475. duration_t elapsed = print_job_timer.duration();
  3476. elapsed.toString(buffer);
  3477. lcd_setstatus(buffer);
  3478. SERIAL_ECHO_START;
  3479. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3480. thermalManager.autotempShutdown();
  3481. }
  3482. #if ENABLED(SDSUPPORT)
  3483. /**
  3484. * M32: Select file and start SD Print
  3485. */
  3486. inline void gcode_M32() {
  3487. if (card.sdprinting)
  3488. stepper.synchronize();
  3489. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3490. if (!namestartpos)
  3491. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3492. else
  3493. namestartpos++; //to skip the '!'
  3494. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3495. if (card.cardOK) {
  3496. card.openFile(namestartpos, true, call_procedure);
  3497. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3498. card.setIndex(code_value_long());
  3499. card.startFileprint();
  3500. // Procedure calls count as normal print time.
  3501. if (!call_procedure) print_job_timer.start();
  3502. }
  3503. }
  3504. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3505. /**
  3506. * M33: Get the long full path of a file or folder
  3507. *
  3508. * Parameters:
  3509. * <dospath> Case-insensitive DOS-style path to a file or folder
  3510. *
  3511. * Example:
  3512. * M33 miscel~1/armchair/armcha~1.gco
  3513. *
  3514. * Output:
  3515. * /Miscellaneous/Armchair/Armchair.gcode
  3516. */
  3517. inline void gcode_M33() {
  3518. card.printLongPath(current_command_args);
  3519. }
  3520. #endif
  3521. /**
  3522. * M928: Start SD Write
  3523. */
  3524. inline void gcode_M928() {
  3525. card.openLogFile(current_command_args);
  3526. }
  3527. #endif // SDSUPPORT
  3528. /**
  3529. * M42: Change pin status via GCode
  3530. *
  3531. * P<pin> Pin number (LED if omitted)
  3532. * S<byte> Pin status from 0 - 255
  3533. */
  3534. inline void gcode_M42() {
  3535. if (!code_seen('S')) return;
  3536. int pin_status = code_value_int();
  3537. if (pin_status < 0 || pin_status > 255) return;
  3538. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3539. if (pin_number < 0) return;
  3540. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3541. if (pin_number == sensitive_pins[i]) {
  3542. SERIAL_ERROR_START;
  3543. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3544. return;
  3545. }
  3546. pinMode(pin_number, OUTPUT);
  3547. digitalWrite(pin_number, pin_status);
  3548. analogWrite(pin_number, pin_status);
  3549. #if FAN_COUNT > 0
  3550. switch (pin_number) {
  3551. #if HAS_FAN0
  3552. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3553. #endif
  3554. #if HAS_FAN1
  3555. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3556. #endif
  3557. #if HAS_FAN2
  3558. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3559. #endif
  3560. }
  3561. #endif
  3562. }
  3563. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3564. /**
  3565. * M48: Z probe repeatability measurement function.
  3566. *
  3567. * Usage:
  3568. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3569. * P = Number of sampled points (4-50, default 10)
  3570. * X = Sample X position
  3571. * Y = Sample Y position
  3572. * V = Verbose level (0-4, default=1)
  3573. * E = Engage Z probe for each reading
  3574. * L = Number of legs of movement before probe
  3575. * S = Schizoid (Or Star if you prefer)
  3576. *
  3577. * This function assumes the bed has been homed. Specifically, that a G28 command
  3578. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3579. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3580. * regenerated.
  3581. */
  3582. inline void gcode_M48() {
  3583. if (axis_unhomed_error(true, true, true)) return;
  3584. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3585. if (verbose_level < 0 || verbose_level > 4) {
  3586. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3587. return;
  3588. }
  3589. if (verbose_level > 0)
  3590. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3591. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3592. if (n_samples < 4 || n_samples > 50) {
  3593. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3594. return;
  3595. }
  3596. float X_current = current_position[X_AXIS],
  3597. Y_current = current_position[Y_AXIS];
  3598. bool stow_probe_after_each = code_seen('E');
  3599. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3600. #if DISABLED(DELTA)
  3601. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3602. out_of_range_error(PSTR("X"));
  3603. return;
  3604. }
  3605. #endif
  3606. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3607. #if DISABLED(DELTA)
  3608. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3609. out_of_range_error(PSTR("Y"));
  3610. return;
  3611. }
  3612. #else
  3613. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  3614. if (!position_is_reachable(pos, true)) {
  3615. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3616. return;
  3617. }
  3618. #endif
  3619. bool seen_L = code_seen('L');
  3620. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3621. if (n_legs > 15) {
  3622. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3623. return;
  3624. }
  3625. if (n_legs == 1) n_legs = 2;
  3626. bool schizoid_flag = code_seen('S');
  3627. if (schizoid_flag && !seen_L) n_legs = 7;
  3628. /**
  3629. * Now get everything to the specified probe point So we can safely do a
  3630. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3631. * we don't want to use that as a starting point for each probe.
  3632. */
  3633. if (verbose_level > 2)
  3634. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3635. // Disable bed level correction in M48 because we want the raw data when we probe
  3636. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3637. reset_bed_level();
  3638. #endif
  3639. setup_for_endstop_or_probe_move();
  3640. // Move to the first point, deploy, and probe
  3641. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3642. randomSeed(millis());
  3643. double mean = 0, sigma = 0, sample_set[n_samples];
  3644. for (uint8_t n = 0; n < n_samples; n++) {
  3645. if (n_legs) {
  3646. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3647. float angle = random(0.0, 360.0),
  3648. radius = random(
  3649. #if ENABLED(DELTA)
  3650. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3651. #else
  3652. 5, X_MAX_LENGTH / 8
  3653. #endif
  3654. );
  3655. if (verbose_level > 3) {
  3656. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3657. SERIAL_ECHOPAIR(" angle: ", angle);
  3658. SERIAL_ECHOPGM(" Direction: ");
  3659. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3660. SERIAL_ECHOLNPGM("Clockwise");
  3661. }
  3662. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3663. double delta_angle;
  3664. if (schizoid_flag)
  3665. // The points of a 5 point star are 72 degrees apart. We need to
  3666. // skip a point and go to the next one on the star.
  3667. delta_angle = dir * 2.0 * 72.0;
  3668. else
  3669. // If we do this line, we are just trying to move further
  3670. // around the circle.
  3671. delta_angle = dir * (float) random(25, 45);
  3672. angle += delta_angle;
  3673. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3674. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3675. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3676. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3677. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3678. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3679. #if DISABLED(DELTA)
  3680. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3681. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3682. #else
  3683. // If we have gone out too far, we can do a simple fix and scale the numbers
  3684. // back in closer to the origin.
  3685. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3686. X_current /= 1.25;
  3687. Y_current /= 1.25;
  3688. if (verbose_level > 3) {
  3689. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3690. SERIAL_ECHOLNPAIR(", ", Y_current);
  3691. }
  3692. }
  3693. #endif
  3694. if (verbose_level > 3) {
  3695. SERIAL_PROTOCOLPGM("Going to:");
  3696. SERIAL_ECHOPAIR(" X", X_current);
  3697. SERIAL_ECHOPAIR(" Y", Y_current);
  3698. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3699. }
  3700. do_blocking_move_to_xy(X_current, Y_current);
  3701. } // n_legs loop
  3702. } // n_legs
  3703. // Probe a single point
  3704. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3705. /**
  3706. * Get the current mean for the data points we have so far
  3707. */
  3708. double sum = 0.0;
  3709. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3710. mean = sum / (n + 1);
  3711. /**
  3712. * Now, use that mean to calculate the standard deviation for the
  3713. * data points we have so far
  3714. */
  3715. sum = 0.0;
  3716. for (uint8_t j = 0; j <= n; j++)
  3717. sum += sq(sample_set[j] - mean);
  3718. sigma = sqrt(sum / (n + 1));
  3719. if (verbose_level > 0) {
  3720. if (verbose_level > 1) {
  3721. SERIAL_PROTOCOL(n + 1);
  3722. SERIAL_PROTOCOLPGM(" of ");
  3723. SERIAL_PROTOCOL((int)n_samples);
  3724. SERIAL_PROTOCOLPGM(" z: ");
  3725. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3726. if (verbose_level > 2) {
  3727. SERIAL_PROTOCOLPGM(" mean: ");
  3728. SERIAL_PROTOCOL_F(mean, 6);
  3729. SERIAL_PROTOCOLPGM(" sigma: ");
  3730. SERIAL_PROTOCOL_F(sigma, 6);
  3731. }
  3732. }
  3733. SERIAL_EOL;
  3734. }
  3735. } // End of probe loop
  3736. if (STOW_PROBE()) return;
  3737. if (verbose_level > 0) {
  3738. SERIAL_PROTOCOLPGM("Mean: ");
  3739. SERIAL_PROTOCOL_F(mean, 6);
  3740. SERIAL_EOL;
  3741. }
  3742. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3743. SERIAL_PROTOCOL_F(sigma, 6);
  3744. SERIAL_EOL; SERIAL_EOL;
  3745. clean_up_after_endstop_or_probe_move();
  3746. report_current_position();
  3747. }
  3748. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3749. /**
  3750. * M75: Start print timer
  3751. */
  3752. inline void gcode_M75() { print_job_timer.start(); }
  3753. /**
  3754. * M76: Pause print timer
  3755. */
  3756. inline void gcode_M76() { print_job_timer.pause(); }
  3757. /**
  3758. * M77: Stop print timer
  3759. */
  3760. inline void gcode_M77() { print_job_timer.stop(); }
  3761. #if ENABLED(PRINTCOUNTER)
  3762. /**
  3763. * M78: Show print statistics
  3764. */
  3765. inline void gcode_M78() {
  3766. // "M78 S78" will reset the statistics
  3767. if (code_seen('S') && code_value_int() == 78)
  3768. print_job_timer.initStats();
  3769. else
  3770. print_job_timer.showStats();
  3771. }
  3772. #endif
  3773. /**
  3774. * M104: Set hot end temperature
  3775. */
  3776. inline void gcode_M104() {
  3777. if (get_target_extruder_from_command(104)) return;
  3778. if (DEBUGGING(DRYRUN)) return;
  3779. #if ENABLED(SINGLENOZZLE)
  3780. if (target_extruder != active_extruder) return;
  3781. #endif
  3782. if (code_seen('S')) {
  3783. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3784. #if ENABLED(DUAL_X_CARRIAGE)
  3785. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3786. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3787. #endif
  3788. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3789. /**
  3790. * Stop the timer at the end of print, starting is managed by
  3791. * 'heat and wait' M109.
  3792. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3793. * stand by mode, for instance in a dual extruder setup, without affecting
  3794. * the running print timer.
  3795. */
  3796. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3797. print_job_timer.stop();
  3798. LCD_MESSAGEPGM(WELCOME_MSG);
  3799. }
  3800. #endif
  3801. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3802. }
  3803. }
  3804. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3805. void print_heaterstates() {
  3806. #if HAS_TEMP_HOTEND
  3807. SERIAL_PROTOCOLPGM(" T:");
  3808. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3809. SERIAL_PROTOCOLPGM(" /");
  3810. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3811. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3812. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3813. SERIAL_CHAR(')');
  3814. #endif
  3815. #endif
  3816. #if HAS_TEMP_BED
  3817. SERIAL_PROTOCOLPGM(" B:");
  3818. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3819. SERIAL_PROTOCOLPGM(" /");
  3820. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3821. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3822. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3823. SERIAL_CHAR(')');
  3824. #endif
  3825. #endif
  3826. #if HOTENDS > 1
  3827. HOTEND_LOOP() {
  3828. SERIAL_PROTOCOLPAIR(" T", e);
  3829. SERIAL_PROTOCOLCHAR(':');
  3830. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3831. SERIAL_PROTOCOLPGM(" /");
  3832. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3833. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3834. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3835. SERIAL_CHAR(')');
  3836. #endif
  3837. }
  3838. #endif
  3839. SERIAL_PROTOCOLPGM(" @:");
  3840. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3841. #if HAS_TEMP_BED
  3842. SERIAL_PROTOCOLPGM(" B@:");
  3843. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3844. #endif
  3845. #if HOTENDS > 1
  3846. HOTEND_LOOP() {
  3847. SERIAL_PROTOCOLPAIR(" @", e);
  3848. SERIAL_PROTOCOLCHAR(':');
  3849. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3850. }
  3851. #endif
  3852. }
  3853. #endif
  3854. /**
  3855. * M105: Read hot end and bed temperature
  3856. */
  3857. inline void gcode_M105() {
  3858. if (get_target_extruder_from_command(105)) return;
  3859. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3860. SERIAL_PROTOCOLPGM(MSG_OK);
  3861. print_heaterstates();
  3862. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3863. SERIAL_ERROR_START;
  3864. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3865. #endif
  3866. SERIAL_EOL;
  3867. }
  3868. #if FAN_COUNT > 0
  3869. /**
  3870. * M106: Set Fan Speed
  3871. *
  3872. * S<int> Speed between 0-255
  3873. * P<index> Fan index, if more than one fan
  3874. */
  3875. inline void gcode_M106() {
  3876. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3877. p = code_seen('P') ? code_value_ushort() : 0;
  3878. NOMORE(s, 255);
  3879. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3880. }
  3881. /**
  3882. * M107: Fan Off
  3883. */
  3884. inline void gcode_M107() {
  3885. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3886. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3887. }
  3888. #endif // FAN_COUNT > 0
  3889. #if DISABLED(EMERGENCY_PARSER)
  3890. /**
  3891. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3892. */
  3893. inline void gcode_M108() { wait_for_heatup = false; }
  3894. /**
  3895. * M112: Emergency Stop
  3896. */
  3897. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3898. /**
  3899. * M410: Quickstop - Abort all planned moves
  3900. *
  3901. * This will stop the carriages mid-move, so most likely they
  3902. * will be out of sync with the stepper position after this.
  3903. */
  3904. inline void gcode_M410() { quickstop_stepper(); }
  3905. #endif
  3906. #ifndef MIN_COOLING_SLOPE_DEG
  3907. #define MIN_COOLING_SLOPE_DEG 1.50
  3908. #endif
  3909. #ifndef MIN_COOLING_SLOPE_TIME
  3910. #define MIN_COOLING_SLOPE_TIME 60
  3911. #endif
  3912. /**
  3913. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3914. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3915. */
  3916. inline void gcode_M109() {
  3917. if (get_target_extruder_from_command(109)) return;
  3918. if (DEBUGGING(DRYRUN)) return;
  3919. #if ENABLED(SINGLENOZZLE)
  3920. if (target_extruder != active_extruder) return;
  3921. #endif
  3922. bool no_wait_for_cooling = code_seen('S');
  3923. if (no_wait_for_cooling || code_seen('R')) {
  3924. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3925. #if ENABLED(DUAL_X_CARRIAGE)
  3926. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3927. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3928. #endif
  3929. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3930. /**
  3931. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3932. * stand by mode, for instance in a dual extruder setup, without affecting
  3933. * the running print timer.
  3934. */
  3935. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3936. print_job_timer.stop();
  3937. LCD_MESSAGEPGM(WELCOME_MSG);
  3938. }
  3939. /**
  3940. * We do not check if the timer is already running because this check will
  3941. * be done for us inside the Stopwatch::start() method thus a running timer
  3942. * will not restart.
  3943. */
  3944. else print_job_timer.start();
  3945. #endif
  3946. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3947. }
  3948. #if ENABLED(AUTOTEMP)
  3949. planner.autotemp_M109();
  3950. #endif
  3951. #if TEMP_RESIDENCY_TIME > 0
  3952. millis_t residency_start_ms = 0;
  3953. // Loop until the temperature has stabilized
  3954. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3955. #else
  3956. // Loop until the temperature is very close target
  3957. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3958. #endif //TEMP_RESIDENCY_TIME > 0
  3959. float theTarget = -1.0, old_temp = 9999.0;
  3960. bool wants_to_cool = false;
  3961. wait_for_heatup = true;
  3962. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3963. KEEPALIVE_STATE(NOT_BUSY);
  3964. do {
  3965. // Target temperature might be changed during the loop
  3966. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3967. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3968. theTarget = thermalManager.degTargetHotend(target_extruder);
  3969. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3970. if (no_wait_for_cooling && wants_to_cool) break;
  3971. }
  3972. now = millis();
  3973. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3974. next_temp_ms = now + 1000UL;
  3975. print_heaterstates();
  3976. #if TEMP_RESIDENCY_TIME > 0
  3977. SERIAL_PROTOCOLPGM(" W:");
  3978. if (residency_start_ms) {
  3979. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3980. SERIAL_PROTOCOLLN(rem);
  3981. }
  3982. else {
  3983. SERIAL_PROTOCOLLNPGM("?");
  3984. }
  3985. #else
  3986. SERIAL_EOL;
  3987. #endif
  3988. }
  3989. idle();
  3990. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3991. float temp = thermalManager.degHotend(target_extruder);
  3992. #if TEMP_RESIDENCY_TIME > 0
  3993. float temp_diff = fabs(theTarget - temp);
  3994. if (!residency_start_ms) {
  3995. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3996. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3997. }
  3998. else if (temp_diff > TEMP_HYSTERESIS) {
  3999. // Restart the timer whenever the temperature falls outside the hysteresis.
  4000. residency_start_ms = now;
  4001. }
  4002. #endif //TEMP_RESIDENCY_TIME > 0
  4003. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4004. if (wants_to_cool) {
  4005. // break after MIN_COOLING_SLOPE_TIME seconds
  4006. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4007. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4008. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4009. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4010. old_temp = temp;
  4011. }
  4012. }
  4013. } while (wait_for_heatup && TEMP_CONDITIONS);
  4014. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4015. KEEPALIVE_STATE(IN_HANDLER);
  4016. }
  4017. #if HAS_TEMP_BED
  4018. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4019. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4020. #endif
  4021. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4022. #define MIN_COOLING_SLOPE_TIME_BED 60
  4023. #endif
  4024. /**
  4025. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4026. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4027. */
  4028. inline void gcode_M190() {
  4029. if (DEBUGGING(DRYRUN)) return;
  4030. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4031. bool no_wait_for_cooling = code_seen('S');
  4032. if (no_wait_for_cooling || code_seen('R')) {
  4033. thermalManager.setTargetBed(code_value_temp_abs());
  4034. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4035. if (code_value_temp_abs() > BED_MINTEMP) {
  4036. /**
  4037. * We start the timer when 'heating and waiting' command arrives, LCD
  4038. * functions never wait. Cooling down managed by extruders.
  4039. *
  4040. * We do not check if the timer is already running because this check will
  4041. * be done for us inside the Stopwatch::start() method thus a running timer
  4042. * will not restart.
  4043. */
  4044. print_job_timer.start();
  4045. }
  4046. #endif
  4047. }
  4048. #if TEMP_BED_RESIDENCY_TIME > 0
  4049. millis_t residency_start_ms = 0;
  4050. // Loop until the temperature has stabilized
  4051. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4052. #else
  4053. // Loop until the temperature is very close target
  4054. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4055. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4056. float theTarget = -1.0, old_temp = 9999.0;
  4057. bool wants_to_cool = false;
  4058. wait_for_heatup = true;
  4059. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4060. KEEPALIVE_STATE(NOT_BUSY);
  4061. target_extruder = active_extruder; // for print_heaterstates
  4062. do {
  4063. // Target temperature might be changed during the loop
  4064. if (theTarget != thermalManager.degTargetBed()) {
  4065. wants_to_cool = thermalManager.isCoolingBed();
  4066. theTarget = thermalManager.degTargetBed();
  4067. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4068. if (no_wait_for_cooling && wants_to_cool) break;
  4069. }
  4070. now = millis();
  4071. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4072. next_temp_ms = now + 1000UL;
  4073. print_heaterstates();
  4074. #if TEMP_BED_RESIDENCY_TIME > 0
  4075. SERIAL_PROTOCOLPGM(" W:");
  4076. if (residency_start_ms) {
  4077. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4078. SERIAL_PROTOCOLLN(rem);
  4079. }
  4080. else {
  4081. SERIAL_PROTOCOLLNPGM("?");
  4082. }
  4083. #else
  4084. SERIAL_EOL;
  4085. #endif
  4086. }
  4087. idle();
  4088. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4089. float temp = thermalManager.degBed();
  4090. #if TEMP_BED_RESIDENCY_TIME > 0
  4091. float temp_diff = fabs(theTarget - temp);
  4092. if (!residency_start_ms) {
  4093. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4094. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4095. }
  4096. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4097. // Restart the timer whenever the temperature falls outside the hysteresis.
  4098. residency_start_ms = now;
  4099. }
  4100. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4101. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4102. if (wants_to_cool) {
  4103. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4104. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4105. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4106. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4107. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4108. old_temp = temp;
  4109. }
  4110. }
  4111. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4112. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4113. KEEPALIVE_STATE(IN_HANDLER);
  4114. }
  4115. #endif // HAS_TEMP_BED
  4116. /**
  4117. * M110: Set Current Line Number
  4118. */
  4119. inline void gcode_M110() {
  4120. if (code_seen('N')) gcode_N = code_value_long();
  4121. }
  4122. /**
  4123. * M111: Set the debug level
  4124. */
  4125. inline void gcode_M111() {
  4126. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4127. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4128. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4129. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4130. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4131. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4133. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4134. #endif
  4135. const static char* const debug_strings[] PROGMEM = {
  4136. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4138. str_debug_32
  4139. #endif
  4140. };
  4141. SERIAL_ECHO_START;
  4142. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4143. if (marlin_debug_flags) {
  4144. uint8_t comma = 0;
  4145. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4146. if (TEST(marlin_debug_flags, i)) {
  4147. if (comma++) SERIAL_CHAR(',');
  4148. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4149. }
  4150. }
  4151. }
  4152. else {
  4153. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4154. }
  4155. SERIAL_EOL;
  4156. }
  4157. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4158. /**
  4159. * M113: Get or set Host Keepalive interval (0 to disable)
  4160. *
  4161. * S<seconds> Optional. Set the keepalive interval.
  4162. */
  4163. inline void gcode_M113() {
  4164. if (code_seen('S')) {
  4165. host_keepalive_interval = code_value_byte();
  4166. NOMORE(host_keepalive_interval, 60);
  4167. }
  4168. else {
  4169. SERIAL_ECHO_START;
  4170. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4171. }
  4172. }
  4173. #endif
  4174. #if ENABLED(BARICUDA)
  4175. #if HAS_HEATER_1
  4176. /**
  4177. * M126: Heater 1 valve open
  4178. */
  4179. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4180. /**
  4181. * M127: Heater 1 valve close
  4182. */
  4183. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4184. #endif
  4185. #if HAS_HEATER_2
  4186. /**
  4187. * M128: Heater 2 valve open
  4188. */
  4189. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4190. /**
  4191. * M129: Heater 2 valve close
  4192. */
  4193. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4194. #endif
  4195. #endif //BARICUDA
  4196. /**
  4197. * M140: Set bed temperature
  4198. */
  4199. inline void gcode_M140() {
  4200. if (DEBUGGING(DRYRUN)) return;
  4201. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4202. }
  4203. #if ENABLED(ULTIPANEL)
  4204. /**
  4205. * M145: Set the heatup state for a material in the LCD menu
  4206. * S<material> (0=PLA, 1=ABS)
  4207. * H<hotend temp>
  4208. * B<bed temp>
  4209. * F<fan speed>
  4210. */
  4211. inline void gcode_M145() {
  4212. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4213. if (material < 0 || material > 1) {
  4214. SERIAL_ERROR_START;
  4215. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4216. }
  4217. else {
  4218. int v;
  4219. switch (material) {
  4220. case 0:
  4221. if (code_seen('H')) {
  4222. v = code_value_int();
  4223. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4224. }
  4225. if (code_seen('F')) {
  4226. v = code_value_int();
  4227. preheatFanSpeed1 = constrain(v, 0, 255);
  4228. }
  4229. #if TEMP_SENSOR_BED != 0
  4230. if (code_seen('B')) {
  4231. v = code_value_int();
  4232. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4233. }
  4234. #endif
  4235. break;
  4236. case 1:
  4237. if (code_seen('H')) {
  4238. v = code_value_int();
  4239. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4240. }
  4241. if (code_seen('F')) {
  4242. v = code_value_int();
  4243. preheatFanSpeed2 = constrain(v, 0, 255);
  4244. }
  4245. #if TEMP_SENSOR_BED != 0
  4246. if (code_seen('B')) {
  4247. v = code_value_int();
  4248. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4249. }
  4250. #endif
  4251. break;
  4252. }
  4253. }
  4254. }
  4255. #endif // ULTIPANEL
  4256. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4257. /**
  4258. * M149: Set temperature units
  4259. */
  4260. inline void gcode_M149() {
  4261. if (code_seen('C')) {
  4262. set_input_temp_units(TEMPUNIT_C);
  4263. } else if (code_seen('K')) {
  4264. set_input_temp_units(TEMPUNIT_K);
  4265. } else if (code_seen('F')) {
  4266. set_input_temp_units(TEMPUNIT_F);
  4267. }
  4268. }
  4269. #endif
  4270. #if HAS_POWER_SWITCH
  4271. /**
  4272. * M80: Turn on Power Supply
  4273. */
  4274. inline void gcode_M80() {
  4275. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4276. /**
  4277. * If you have a switch on suicide pin, this is useful
  4278. * if you want to start another print with suicide feature after
  4279. * a print without suicide...
  4280. */
  4281. #if HAS_SUICIDE
  4282. OUT_WRITE(SUICIDE_PIN, HIGH);
  4283. #endif
  4284. #if ENABLED(ULTIPANEL)
  4285. powersupply = true;
  4286. LCD_MESSAGEPGM(WELCOME_MSG);
  4287. lcd_update();
  4288. #endif
  4289. }
  4290. #endif // HAS_POWER_SWITCH
  4291. /**
  4292. * M81: Turn off Power, including Power Supply, if there is one.
  4293. *
  4294. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4295. */
  4296. inline void gcode_M81() {
  4297. thermalManager.disable_all_heaters();
  4298. stepper.finish_and_disable();
  4299. #if FAN_COUNT > 0
  4300. #if FAN_COUNT > 1
  4301. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4302. #else
  4303. fanSpeeds[0] = 0;
  4304. #endif
  4305. #endif
  4306. delay(1000); // Wait 1 second before switching off
  4307. #if HAS_SUICIDE
  4308. stepper.synchronize();
  4309. suicide();
  4310. #elif HAS_POWER_SWITCH
  4311. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4312. #endif
  4313. #if ENABLED(ULTIPANEL)
  4314. #if HAS_POWER_SWITCH
  4315. powersupply = false;
  4316. #endif
  4317. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4318. lcd_update();
  4319. #endif
  4320. }
  4321. /**
  4322. * M82: Set E codes absolute (default)
  4323. */
  4324. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4325. /**
  4326. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4327. */
  4328. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4329. /**
  4330. * M18, M84: Disable all stepper motors
  4331. */
  4332. inline void gcode_M18_M84() {
  4333. if (code_seen('S')) {
  4334. stepper_inactive_time = code_value_millis_from_seconds();
  4335. }
  4336. else {
  4337. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4338. if (all_axis) {
  4339. stepper.finish_and_disable();
  4340. }
  4341. else {
  4342. stepper.synchronize();
  4343. if (code_seen('X')) disable_x();
  4344. if (code_seen('Y')) disable_y();
  4345. if (code_seen('Z')) disable_z();
  4346. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4347. if (code_seen('E')) {
  4348. disable_e0();
  4349. disable_e1();
  4350. disable_e2();
  4351. disable_e3();
  4352. }
  4353. #endif
  4354. }
  4355. }
  4356. }
  4357. /**
  4358. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4359. */
  4360. inline void gcode_M85() {
  4361. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4362. }
  4363. /**
  4364. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4365. * (Follows the same syntax as G92)
  4366. */
  4367. inline void gcode_M92() {
  4368. LOOP_XYZE(i) {
  4369. if (code_seen(axis_codes[i])) {
  4370. if (i == E_AXIS) {
  4371. float value = code_value_per_axis_unit(i);
  4372. if (value < 20.0) {
  4373. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4374. planner.max_e_jerk *= factor;
  4375. planner.max_feedrate_mm_s[i] *= factor;
  4376. planner.max_acceleration_steps_per_s2[i] *= factor;
  4377. }
  4378. planner.axis_steps_per_mm[i] = value;
  4379. }
  4380. else {
  4381. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4382. }
  4383. }
  4384. }
  4385. planner.refresh_positioning();
  4386. }
  4387. /**
  4388. * Output the current position to serial
  4389. */
  4390. static void report_current_position() {
  4391. SERIAL_PROTOCOLPGM("X:");
  4392. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4393. SERIAL_PROTOCOLPGM(" Y:");
  4394. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4395. SERIAL_PROTOCOLPGM(" Z:");
  4396. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4397. SERIAL_PROTOCOLPGM(" E:");
  4398. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4399. stepper.report_positions();
  4400. #if IS_SCARA
  4401. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_mm(A_AXIS));
  4402. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_mm(B_AXIS));
  4403. SERIAL_EOL;
  4404. #endif
  4405. }
  4406. /**
  4407. * M114: Output current position to serial port
  4408. */
  4409. inline void gcode_M114() { report_current_position(); }
  4410. /**
  4411. * M115: Capabilities string
  4412. */
  4413. inline void gcode_M115() {
  4414. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4415. }
  4416. /**
  4417. * M117: Set LCD Status Message
  4418. */
  4419. inline void gcode_M117() {
  4420. lcd_setstatus(current_command_args);
  4421. }
  4422. /**
  4423. * M119: Output endstop states to serial output
  4424. */
  4425. inline void gcode_M119() { endstops.M119(); }
  4426. /**
  4427. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4428. */
  4429. inline void gcode_M120() { endstops.enable_globally(true); }
  4430. /**
  4431. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4432. */
  4433. inline void gcode_M121() { endstops.enable_globally(false); }
  4434. #if ENABLED(BLINKM)
  4435. /**
  4436. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4437. */
  4438. inline void gcode_M150() {
  4439. SendColors(
  4440. code_seen('R') ? code_value_byte() : 0,
  4441. code_seen('U') ? code_value_byte() : 0,
  4442. code_seen('B') ? code_value_byte() : 0
  4443. );
  4444. }
  4445. #endif // BLINKM
  4446. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4447. /**
  4448. * M155: Send data to a I2C slave device
  4449. *
  4450. * This is a PoC, the formating and arguments for the GCODE will
  4451. * change to be more compatible, the current proposal is:
  4452. *
  4453. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4454. *
  4455. * M155 B<byte-1 value in base 10>
  4456. * M155 B<byte-2 value in base 10>
  4457. * M155 B<byte-3 value in base 10>
  4458. *
  4459. * M155 S1 ; Send the buffered data and reset the buffer
  4460. * M155 R1 ; Reset the buffer without sending data
  4461. *
  4462. */
  4463. inline void gcode_M155() {
  4464. // Set the target address
  4465. if (code_seen('A')) i2c.address(code_value_byte());
  4466. // Add a new byte to the buffer
  4467. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4468. // Flush the buffer to the bus
  4469. if (code_seen('S')) i2c.send();
  4470. // Reset and rewind the buffer
  4471. else if (code_seen('R')) i2c.reset();
  4472. }
  4473. /**
  4474. * M156: Request X bytes from I2C slave device
  4475. *
  4476. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4477. */
  4478. inline void gcode_M156() {
  4479. if (code_seen('A')) i2c.address(code_value_byte());
  4480. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4481. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4482. i2c.relay(bytes);
  4483. }
  4484. else {
  4485. SERIAL_ERROR_START;
  4486. SERIAL_ERRORLN("Bad i2c request");
  4487. }
  4488. }
  4489. #endif // EXPERIMENTAL_I2CBUS
  4490. /**
  4491. * M200: Set filament diameter and set E axis units to cubic units
  4492. *
  4493. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4494. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4495. */
  4496. inline void gcode_M200() {
  4497. if (get_target_extruder_from_command(200)) return;
  4498. if (code_seen('D')) {
  4499. // setting any extruder filament size disables volumetric on the assumption that
  4500. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4501. // for all extruders
  4502. volumetric_enabled = (code_value_linear_units() != 0.0);
  4503. if (volumetric_enabled) {
  4504. filament_size[target_extruder] = code_value_linear_units();
  4505. // make sure all extruders have some sane value for the filament size
  4506. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4507. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4508. }
  4509. }
  4510. else {
  4511. //reserved for setting filament diameter via UFID or filament measuring device
  4512. return;
  4513. }
  4514. calculate_volumetric_multipliers();
  4515. }
  4516. /**
  4517. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4518. */
  4519. inline void gcode_M201() {
  4520. LOOP_XYZE(i) {
  4521. if (code_seen(axis_codes[i])) {
  4522. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4523. }
  4524. }
  4525. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4526. planner.reset_acceleration_rates();
  4527. }
  4528. #if 0 // Not used for Sprinter/grbl gen6
  4529. inline void gcode_M202() {
  4530. LOOP_XYZE(i) {
  4531. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4532. }
  4533. }
  4534. #endif
  4535. /**
  4536. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4537. */
  4538. inline void gcode_M203() {
  4539. LOOP_XYZE(i)
  4540. if (code_seen(axis_codes[i]))
  4541. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4542. }
  4543. /**
  4544. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4545. *
  4546. * P = Printing moves
  4547. * R = Retract only (no X, Y, Z) moves
  4548. * T = Travel (non printing) moves
  4549. *
  4550. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4551. */
  4552. inline void gcode_M204() {
  4553. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4554. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4555. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4556. }
  4557. if (code_seen('P')) {
  4558. planner.acceleration = code_value_linear_units();
  4559. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4560. }
  4561. if (code_seen('R')) {
  4562. planner.retract_acceleration = code_value_linear_units();
  4563. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4564. }
  4565. if (code_seen('T')) {
  4566. planner.travel_acceleration = code_value_linear_units();
  4567. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4568. }
  4569. }
  4570. /**
  4571. * M205: Set Advanced Settings
  4572. *
  4573. * S = Min Feed Rate (units/s)
  4574. * T = Min Travel Feed Rate (units/s)
  4575. * B = Min Segment Time (µs)
  4576. * X = Max XY Jerk (units/sec^2)
  4577. * Z = Max Z Jerk (units/sec^2)
  4578. * E = Max E Jerk (units/sec^2)
  4579. */
  4580. inline void gcode_M205() {
  4581. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4582. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4583. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4584. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4585. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4586. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4587. }
  4588. /**
  4589. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4590. */
  4591. inline void gcode_M206() {
  4592. LOOP_XYZ(i)
  4593. if (code_seen(axis_codes[i]))
  4594. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4595. #if ENABLED(MORGAN_SCARA)
  4596. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4597. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4598. #endif
  4599. SYNC_PLAN_POSITION_KINEMATIC();
  4600. report_current_position();
  4601. }
  4602. #if ENABLED(DELTA)
  4603. /**
  4604. * M665: Set delta configurations
  4605. *
  4606. * L = diagonal rod
  4607. * R = delta radius
  4608. * S = segments per second
  4609. * A = Alpha (Tower 1) diagonal rod trim
  4610. * B = Beta (Tower 2) diagonal rod trim
  4611. * C = Gamma (Tower 3) diagonal rod trim
  4612. */
  4613. inline void gcode_M665() {
  4614. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4615. if (code_seen('R')) delta_radius = code_value_linear_units();
  4616. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4617. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4618. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4619. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4620. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4621. }
  4622. /**
  4623. * M666: Set delta endstop adjustment
  4624. */
  4625. inline void gcode_M666() {
  4626. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4627. if (DEBUGGING(LEVELING)) {
  4628. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4629. }
  4630. #endif
  4631. LOOP_XYZ(i) {
  4632. if (code_seen(axis_codes[i])) {
  4633. endstop_adj[i] = code_value_axis_units(i);
  4634. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4635. if (DEBUGGING(LEVELING)) {
  4636. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4637. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4638. }
  4639. #endif
  4640. }
  4641. }
  4642. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4643. if (DEBUGGING(LEVELING)) {
  4644. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4645. }
  4646. #endif
  4647. }
  4648. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4649. /**
  4650. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4651. */
  4652. inline void gcode_M666() {
  4653. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4654. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4655. }
  4656. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4657. #if ENABLED(FWRETRACT)
  4658. /**
  4659. * M207: Set firmware retraction values
  4660. *
  4661. * S[+units] retract_length
  4662. * W[+units] retract_length_swap (multi-extruder)
  4663. * F[units/min] retract_feedrate_mm_s
  4664. * Z[units] retract_zlift
  4665. */
  4666. inline void gcode_M207() {
  4667. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4668. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4669. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4670. #if EXTRUDERS > 1
  4671. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4672. #endif
  4673. }
  4674. /**
  4675. * M208: Set firmware un-retraction values
  4676. *
  4677. * S[+units] retract_recover_length (in addition to M207 S*)
  4678. * W[+units] retract_recover_length_swap (multi-extruder)
  4679. * F[units/min] retract_recover_feedrate_mm_s
  4680. */
  4681. inline void gcode_M208() {
  4682. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4683. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4684. #if EXTRUDERS > 1
  4685. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4686. #endif
  4687. }
  4688. /**
  4689. * M209: Enable automatic retract (M209 S1)
  4690. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4691. */
  4692. inline void gcode_M209() {
  4693. if (code_seen('S')) {
  4694. autoretract_enabled = code_value_bool();
  4695. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4696. }
  4697. }
  4698. #endif // FWRETRACT
  4699. /**
  4700. * M211: Enable, Disable, and/or Report software endstops
  4701. *
  4702. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4703. */
  4704. inline void gcode_M211() {
  4705. SERIAL_ECHO_START;
  4706. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4707. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4708. #endif
  4709. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4710. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4711. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4712. #else
  4713. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4714. SERIAL_ECHOPGM(MSG_OFF);
  4715. #endif
  4716. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4717. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4718. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4719. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4720. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4721. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4722. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4723. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4724. }
  4725. #if HOTENDS > 1
  4726. /**
  4727. * M218 - set hotend offset (in linear units)
  4728. *
  4729. * T<tool>
  4730. * X<xoffset>
  4731. * Y<yoffset>
  4732. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4733. */
  4734. inline void gcode_M218() {
  4735. if (get_target_extruder_from_command(218)) return;
  4736. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4737. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4738. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4739. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4740. #endif
  4741. SERIAL_ECHO_START;
  4742. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4743. HOTEND_LOOP() {
  4744. SERIAL_CHAR(' ');
  4745. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4746. SERIAL_CHAR(',');
  4747. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4748. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4749. SERIAL_CHAR(',');
  4750. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4751. #endif
  4752. }
  4753. SERIAL_EOL;
  4754. }
  4755. #endif // HOTENDS > 1
  4756. /**
  4757. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4758. */
  4759. inline void gcode_M220() {
  4760. if (code_seen('S')) feedrate_percentage = code_value_int();
  4761. }
  4762. /**
  4763. * M221: Set extrusion percentage (M221 T0 S95)
  4764. */
  4765. inline void gcode_M221() {
  4766. if (get_target_extruder_from_command(221)) return;
  4767. if (code_seen('S'))
  4768. flow_percentage[target_extruder] = code_value_int();
  4769. }
  4770. /**
  4771. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4772. */
  4773. inline void gcode_M226() {
  4774. if (code_seen('P')) {
  4775. int pin_number = code_value_int();
  4776. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4777. if (pin_state >= -1 && pin_state <= 1) {
  4778. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4779. if (sensitive_pins[i] == pin_number) {
  4780. pin_number = -1;
  4781. break;
  4782. }
  4783. }
  4784. if (pin_number > -1) {
  4785. int target = LOW;
  4786. stepper.synchronize();
  4787. pinMode(pin_number, INPUT);
  4788. switch (pin_state) {
  4789. case 1:
  4790. target = HIGH;
  4791. break;
  4792. case 0:
  4793. target = LOW;
  4794. break;
  4795. case -1:
  4796. target = !digitalRead(pin_number);
  4797. break;
  4798. }
  4799. while (digitalRead(pin_number) != target) idle();
  4800. } // pin_number > -1
  4801. } // pin_state -1 0 1
  4802. } // code_seen('P')
  4803. }
  4804. #if HAS_SERVOS
  4805. /**
  4806. * M280: Get or set servo position. P<index> [S<angle>]
  4807. */
  4808. inline void gcode_M280() {
  4809. if (!code_seen('P')) return;
  4810. int servo_index = code_value_int();
  4811. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4812. if (code_seen('S'))
  4813. MOVE_SERVO(servo_index, code_value_int());
  4814. else {
  4815. SERIAL_ECHO_START;
  4816. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4817. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4818. }
  4819. }
  4820. else {
  4821. SERIAL_ERROR_START;
  4822. SERIAL_ECHOPAIR("Servo ", servo_index);
  4823. SERIAL_ECHOLNPGM(" out of range");
  4824. }
  4825. }
  4826. #endif // HAS_SERVOS
  4827. #if HAS_BUZZER
  4828. /**
  4829. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4830. */
  4831. inline void gcode_M300() {
  4832. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4833. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4834. // Limits the tone duration to 0-5 seconds.
  4835. NOMORE(duration, 5000);
  4836. BUZZ(duration, frequency);
  4837. }
  4838. #endif // HAS_BUZZER
  4839. #if ENABLED(PIDTEMP)
  4840. /**
  4841. * M301: Set PID parameters P I D (and optionally C, L)
  4842. *
  4843. * P[float] Kp term
  4844. * I[float] Ki term (unscaled)
  4845. * D[float] Kd term (unscaled)
  4846. *
  4847. * With PID_EXTRUSION_SCALING:
  4848. *
  4849. * C[float] Kc term
  4850. * L[float] LPQ length
  4851. */
  4852. inline void gcode_M301() {
  4853. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4854. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4855. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4856. if (e < HOTENDS) { // catch bad input value
  4857. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4858. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4859. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4860. #if ENABLED(PID_EXTRUSION_SCALING)
  4861. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4862. if (code_seen('L')) lpq_len = code_value_float();
  4863. NOMORE(lpq_len, LPQ_MAX_LEN);
  4864. #endif
  4865. thermalManager.updatePID();
  4866. SERIAL_ECHO_START;
  4867. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4868. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  4869. #endif // PID_PARAMS_PER_HOTEND
  4870. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  4871. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  4872. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  4873. #if ENABLED(PID_EXTRUSION_SCALING)
  4874. //Kc does not have scaling applied above, or in resetting defaults
  4875. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  4876. #endif
  4877. SERIAL_EOL;
  4878. }
  4879. else {
  4880. SERIAL_ERROR_START;
  4881. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4882. }
  4883. }
  4884. #endif // PIDTEMP
  4885. #if ENABLED(PIDTEMPBED)
  4886. inline void gcode_M304() {
  4887. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4888. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4889. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4890. thermalManager.updatePID();
  4891. SERIAL_ECHO_START;
  4892. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  4893. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  4894. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  4895. }
  4896. #endif // PIDTEMPBED
  4897. #if defined(CHDK) || HAS_PHOTOGRAPH
  4898. /**
  4899. * M240: Trigger a camera by emulating a Canon RC-1
  4900. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4901. */
  4902. inline void gcode_M240() {
  4903. #ifdef CHDK
  4904. OUT_WRITE(CHDK, HIGH);
  4905. chdkHigh = millis();
  4906. chdkActive = true;
  4907. #elif HAS_PHOTOGRAPH
  4908. const uint8_t NUM_PULSES = 16;
  4909. const float PULSE_LENGTH = 0.01524;
  4910. for (int i = 0; i < NUM_PULSES; i++) {
  4911. WRITE(PHOTOGRAPH_PIN, HIGH);
  4912. _delay_ms(PULSE_LENGTH);
  4913. WRITE(PHOTOGRAPH_PIN, LOW);
  4914. _delay_ms(PULSE_LENGTH);
  4915. }
  4916. delay(7.33);
  4917. for (int i = 0; i < NUM_PULSES; i++) {
  4918. WRITE(PHOTOGRAPH_PIN, HIGH);
  4919. _delay_ms(PULSE_LENGTH);
  4920. WRITE(PHOTOGRAPH_PIN, LOW);
  4921. _delay_ms(PULSE_LENGTH);
  4922. }
  4923. #endif // !CHDK && HAS_PHOTOGRAPH
  4924. }
  4925. #endif // CHDK || PHOTOGRAPH_PIN
  4926. #if HAS_LCD_CONTRAST
  4927. /**
  4928. * M250: Read and optionally set the LCD contrast
  4929. */
  4930. inline void gcode_M250() {
  4931. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4932. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4933. SERIAL_PROTOCOL(lcd_contrast);
  4934. SERIAL_EOL;
  4935. }
  4936. #endif // HAS_LCD_CONTRAST
  4937. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4938. /**
  4939. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4940. *
  4941. * S<temperature> sets the minimum extrude temperature
  4942. * P<bool> enables (1) or disables (0) cold extrusion
  4943. *
  4944. * Examples:
  4945. *
  4946. * M302 ; report current cold extrusion state
  4947. * M302 P0 ; enable cold extrusion checking
  4948. * M302 P1 ; disables cold extrusion checking
  4949. * M302 S0 ; always allow extrusion (disables checking)
  4950. * M302 S170 ; only allow extrusion above 170
  4951. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4952. */
  4953. inline void gcode_M302() {
  4954. bool seen_S = code_seen('S');
  4955. if (seen_S) {
  4956. thermalManager.extrude_min_temp = code_value_temp_abs();
  4957. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4958. }
  4959. if (code_seen('P'))
  4960. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4961. else if (!seen_S) {
  4962. // Report current state
  4963. SERIAL_ECHO_START;
  4964. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4965. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4966. SERIAL_ECHOLNPGM("C)");
  4967. }
  4968. }
  4969. #endif // PREVENT_COLD_EXTRUSION
  4970. /**
  4971. * M303: PID relay autotune
  4972. *
  4973. * S<temperature> sets the target temperature. (default 150C)
  4974. * E<extruder> (-1 for the bed) (default 0)
  4975. * C<cycles>
  4976. * U<bool> with a non-zero value will apply the result to current settings
  4977. */
  4978. inline void gcode_M303() {
  4979. #if HAS_PID_HEATING
  4980. int e = code_seen('E') ? code_value_int() : 0;
  4981. int c = code_seen('C') ? code_value_int() : 5;
  4982. bool u = code_seen('U') && code_value_bool();
  4983. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4984. if (e >= 0 && e < HOTENDS)
  4985. target_extruder = e;
  4986. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4987. thermalManager.PID_autotune(temp, e, c, u);
  4988. KEEPALIVE_STATE(IN_HANDLER);
  4989. #else
  4990. SERIAL_ERROR_START;
  4991. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4992. #endif
  4993. }
  4994. #if ENABLED(MORGAN_SCARA)
  4995. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  4996. if (IsRunning()) {
  4997. forward_kinematics_SCARA(delta_a, delta_b);
  4998. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  4999. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5000. destination[Z_AXIS] = current_position[Z_AXIS];
  5001. prepare_move_to_destination();
  5002. return true;
  5003. }
  5004. return false;
  5005. }
  5006. /**
  5007. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5008. */
  5009. inline bool gcode_M360() {
  5010. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5011. return SCARA_move_to_cal(0, 120);
  5012. }
  5013. /**
  5014. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5015. */
  5016. inline bool gcode_M361() {
  5017. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5018. return SCARA_move_to_cal(90, 130);
  5019. }
  5020. /**
  5021. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5022. */
  5023. inline bool gcode_M362() {
  5024. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5025. return SCARA_move_to_cal(60, 180);
  5026. }
  5027. /**
  5028. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5029. */
  5030. inline bool gcode_M363() {
  5031. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5032. return SCARA_move_to_cal(50, 90);
  5033. }
  5034. /**
  5035. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5036. */
  5037. inline bool gcode_M364() {
  5038. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5039. return SCARA_move_to_cal(45, 135);
  5040. }
  5041. #endif // SCARA
  5042. #if ENABLED(EXT_SOLENOID)
  5043. void enable_solenoid(uint8_t num) {
  5044. switch (num) {
  5045. case 0:
  5046. OUT_WRITE(SOL0_PIN, HIGH);
  5047. break;
  5048. #if HAS_SOLENOID_1
  5049. case 1:
  5050. OUT_WRITE(SOL1_PIN, HIGH);
  5051. break;
  5052. #endif
  5053. #if HAS_SOLENOID_2
  5054. case 2:
  5055. OUT_WRITE(SOL2_PIN, HIGH);
  5056. break;
  5057. #endif
  5058. #if HAS_SOLENOID_3
  5059. case 3:
  5060. OUT_WRITE(SOL3_PIN, HIGH);
  5061. break;
  5062. #endif
  5063. default:
  5064. SERIAL_ECHO_START;
  5065. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5066. break;
  5067. }
  5068. }
  5069. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5070. void disable_all_solenoids() {
  5071. OUT_WRITE(SOL0_PIN, LOW);
  5072. OUT_WRITE(SOL1_PIN, LOW);
  5073. OUT_WRITE(SOL2_PIN, LOW);
  5074. OUT_WRITE(SOL3_PIN, LOW);
  5075. }
  5076. /**
  5077. * M380: Enable solenoid on the active extruder
  5078. */
  5079. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5080. /**
  5081. * M381: Disable all solenoids
  5082. */
  5083. inline void gcode_M381() { disable_all_solenoids(); }
  5084. #endif // EXT_SOLENOID
  5085. /**
  5086. * M400: Finish all moves
  5087. */
  5088. inline void gcode_M400() { stepper.synchronize(); }
  5089. #if HAS_BED_PROBE
  5090. /**
  5091. * M401: Engage Z Servo endstop if available
  5092. */
  5093. inline void gcode_M401() { DEPLOY_PROBE(); }
  5094. /**
  5095. * M402: Retract Z Servo endstop if enabled
  5096. */
  5097. inline void gcode_M402() { STOW_PROBE(); }
  5098. #endif // HAS_BED_PROBE
  5099. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5100. /**
  5101. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5102. */
  5103. inline void gcode_M404() {
  5104. if (code_seen('W')) {
  5105. filament_width_nominal = code_value_linear_units();
  5106. }
  5107. else {
  5108. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5109. SERIAL_PROTOCOLLN(filament_width_nominal);
  5110. }
  5111. }
  5112. /**
  5113. * M405: Turn on filament sensor for control
  5114. */
  5115. inline void gcode_M405() {
  5116. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5117. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5118. if (code_seen('D')) meas_delay_cm = code_value_int();
  5119. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5120. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5121. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5122. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5123. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5124. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5125. }
  5126. filament_sensor = true;
  5127. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5128. //SERIAL_PROTOCOL(filament_width_meas);
  5129. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5130. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5131. }
  5132. /**
  5133. * M406: Turn off filament sensor for control
  5134. */
  5135. inline void gcode_M406() { filament_sensor = false; }
  5136. /**
  5137. * M407: Get measured filament diameter on serial output
  5138. */
  5139. inline void gcode_M407() {
  5140. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5141. SERIAL_PROTOCOLLN(filament_width_meas);
  5142. }
  5143. #endif // FILAMENT_WIDTH_SENSOR
  5144. void quickstop_stepper() {
  5145. stepper.quick_stop();
  5146. stepper.synchronize();
  5147. set_current_from_steppers_for_axis(ALL_AXES);
  5148. SYNC_PLAN_POSITION_KINEMATIC();
  5149. }
  5150. #if ENABLED(MESH_BED_LEVELING)
  5151. /**
  5152. * M420: Enable/Disable Mesh Bed Leveling
  5153. */
  5154. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5155. /**
  5156. * M421: Set a single Mesh Bed Leveling Z coordinate
  5157. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5158. */
  5159. inline void gcode_M421() {
  5160. int8_t px = 0, py = 0;
  5161. float z = 0;
  5162. bool hasX, hasY, hasZ, hasI, hasJ;
  5163. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5164. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5165. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5166. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5167. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5168. if (hasX && hasY && hasZ) {
  5169. if (px >= 0 && py >= 0)
  5170. mbl.set_z(px, py, z);
  5171. else {
  5172. SERIAL_ERROR_START;
  5173. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5174. }
  5175. }
  5176. else if (hasI && hasJ && hasZ) {
  5177. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5178. mbl.set_z(px, py, z);
  5179. else {
  5180. SERIAL_ERROR_START;
  5181. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5182. }
  5183. }
  5184. else {
  5185. SERIAL_ERROR_START;
  5186. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5187. }
  5188. }
  5189. #endif
  5190. /**
  5191. * M428: Set home_offset based on the distance between the
  5192. * current_position and the nearest "reference point."
  5193. * If an axis is past center its endstop position
  5194. * is the reference-point. Otherwise it uses 0. This allows
  5195. * the Z offset to be set near the bed when using a max endstop.
  5196. *
  5197. * M428 can't be used more than 2cm away from 0 or an endstop.
  5198. *
  5199. * Use M206 to set these values directly.
  5200. */
  5201. inline void gcode_M428() {
  5202. bool err = false;
  5203. LOOP_XYZ(i) {
  5204. if (axis_homed[i]) {
  5205. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5206. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5207. if (diff > -20 && diff < 20) {
  5208. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5209. }
  5210. else {
  5211. SERIAL_ERROR_START;
  5212. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5213. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5214. BUZZ(200, 40);
  5215. err = true;
  5216. break;
  5217. }
  5218. }
  5219. }
  5220. if (!err) {
  5221. SYNC_PLAN_POSITION_KINEMATIC();
  5222. report_current_position();
  5223. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5224. BUZZ(200, 659);
  5225. BUZZ(200, 698);
  5226. }
  5227. }
  5228. /**
  5229. * M500: Store settings in EEPROM
  5230. */
  5231. inline void gcode_M500() {
  5232. Config_StoreSettings();
  5233. }
  5234. /**
  5235. * M501: Read settings from EEPROM
  5236. */
  5237. inline void gcode_M501() {
  5238. Config_RetrieveSettings();
  5239. }
  5240. /**
  5241. * M502: Revert to default settings
  5242. */
  5243. inline void gcode_M502() {
  5244. Config_ResetDefault();
  5245. }
  5246. /**
  5247. * M503: print settings currently in memory
  5248. */
  5249. inline void gcode_M503() {
  5250. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5251. }
  5252. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5253. /**
  5254. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5255. */
  5256. inline void gcode_M540() {
  5257. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5258. }
  5259. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5260. #if HAS_BED_PROBE
  5261. inline void gcode_M851() {
  5262. SERIAL_ECHO_START;
  5263. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5264. SERIAL_CHAR(' ');
  5265. if (code_seen('Z')) {
  5266. float value = code_value_axis_units(Z_AXIS);
  5267. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5268. zprobe_zoffset = value;
  5269. SERIAL_ECHO(zprobe_zoffset);
  5270. }
  5271. else {
  5272. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5273. SERIAL_CHAR(' ');
  5274. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5275. }
  5276. }
  5277. else {
  5278. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5279. }
  5280. SERIAL_EOL;
  5281. }
  5282. #endif // HAS_BED_PROBE
  5283. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5284. /**
  5285. * M600: Pause for filament change
  5286. *
  5287. * E[distance] - Retract the filament this far (negative value)
  5288. * Z[distance] - Move the Z axis by this distance
  5289. * X[position] - Move to this X position, with Y
  5290. * Y[position] - Move to this Y position, with X
  5291. * L[distance] - Retract distance for removal (manual reload)
  5292. *
  5293. * Default values are used for omitted arguments.
  5294. *
  5295. */
  5296. inline void gcode_M600() {
  5297. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5298. SERIAL_ERROR_START;
  5299. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5300. return;
  5301. }
  5302. // Show initial message and wait for synchronize steppers
  5303. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5304. stepper.synchronize();
  5305. float lastpos[NUM_AXIS];
  5306. // Save current position of all axes
  5307. LOOP_XYZE(i)
  5308. lastpos[i] = destination[i] = current_position[i];
  5309. // Define runplan for move axes
  5310. #if IS_KINEMATIC
  5311. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5312. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5313. #else
  5314. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5315. #endif
  5316. KEEPALIVE_STATE(IN_HANDLER);
  5317. // Initial retract before move to filament change position
  5318. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5319. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5320. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5321. #endif
  5322. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5323. // Lift Z axis
  5324. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5325. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5326. FILAMENT_CHANGE_Z_ADD
  5327. #else
  5328. 0
  5329. #endif
  5330. ;
  5331. if (z_lift > 0) {
  5332. destination[Z_AXIS] += z_lift;
  5333. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5334. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5335. }
  5336. // Move XY axes to filament exchange position
  5337. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5338. #ifdef FILAMENT_CHANGE_X_POS
  5339. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5340. #endif
  5341. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5342. #ifdef FILAMENT_CHANGE_Y_POS
  5343. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5344. #endif
  5345. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5346. stepper.synchronize();
  5347. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5348. // Unload filament
  5349. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5350. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5351. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5352. #endif
  5353. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5354. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5355. stepper.synchronize();
  5356. disable_e0();
  5357. disable_e1();
  5358. disable_e2();
  5359. disable_e3();
  5360. delay(100);
  5361. #if HAS_BUZZER
  5362. millis_t next_tick = 0;
  5363. #endif
  5364. // Wait for filament insert by user and press button
  5365. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5366. while (!lcd_clicked()) {
  5367. #if HAS_BUZZER
  5368. millis_t ms = millis();
  5369. if (ms >= next_tick) {
  5370. BUZZ(300, 2000);
  5371. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5372. }
  5373. #endif
  5374. idle(true);
  5375. }
  5376. delay(100);
  5377. while (lcd_clicked()) idle(true);
  5378. delay(100);
  5379. // Show load message
  5380. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5381. // Load filament
  5382. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5383. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5384. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5385. #endif
  5386. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5387. stepper.synchronize();
  5388. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5389. do {
  5390. // Extrude filament to get into hotend
  5391. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5392. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5393. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5394. stepper.synchronize();
  5395. // Ask user if more filament should be extruded
  5396. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5397. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5398. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5399. KEEPALIVE_STATE(IN_HANDLER);
  5400. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5401. #endif
  5402. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5403. KEEPALIVE_STATE(IN_HANDLER);
  5404. // Set extruder to saved position
  5405. current_position[E_AXIS] = lastpos[E_AXIS];
  5406. destination[E_AXIS] = lastpos[E_AXIS];
  5407. planner.set_e_position_mm(current_position[E_AXIS]);
  5408. #if IS_KINEMATIC
  5409. // Move XYZ to starting position, then E
  5410. inverse_kinematics(lastpos);
  5411. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5412. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5413. #else
  5414. // Move XY to starting position, then Z, then E
  5415. destination[X_AXIS] = lastpos[X_AXIS];
  5416. destination[Y_AXIS] = lastpos[Y_AXIS];
  5417. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5418. destination[Z_AXIS] = lastpos[Z_AXIS];
  5419. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5420. #endif
  5421. stepper.synchronize();
  5422. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5423. filament_ran_out = false;
  5424. #endif
  5425. // Show status screen
  5426. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5427. }
  5428. #endif // FILAMENT_CHANGE_FEATURE
  5429. #if ENABLED(DUAL_X_CARRIAGE)
  5430. /**
  5431. * M605: Set dual x-carriage movement mode
  5432. *
  5433. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5434. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5435. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5436. * units x-offset and an optional differential hotend temperature of
  5437. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5438. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5439. *
  5440. * Note: the X axis should be homed after changing dual x-carriage mode.
  5441. */
  5442. inline void gcode_M605() {
  5443. stepper.synchronize();
  5444. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5445. switch (dual_x_carriage_mode) {
  5446. case DXC_DUPLICATION_MODE:
  5447. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5448. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5449. SERIAL_ECHO_START;
  5450. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5451. SERIAL_CHAR(' ');
  5452. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5453. SERIAL_CHAR(',');
  5454. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5455. SERIAL_CHAR(' ');
  5456. SERIAL_ECHO(duplicate_extruder_x_offset);
  5457. SERIAL_CHAR(',');
  5458. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5459. break;
  5460. case DXC_FULL_CONTROL_MODE:
  5461. case DXC_AUTO_PARK_MODE:
  5462. break;
  5463. default:
  5464. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5465. break;
  5466. }
  5467. active_extruder_parked = false;
  5468. extruder_duplication_enabled = false;
  5469. delayed_move_time = 0;
  5470. }
  5471. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5472. inline void gcode_M605() {
  5473. stepper.synchronize();
  5474. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5475. SERIAL_ECHO_START;
  5476. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5477. }
  5478. #endif // M605
  5479. #if ENABLED(LIN_ADVANCE)
  5480. /**
  5481. * M905: Set advance factor
  5482. */
  5483. inline void gcode_M905() {
  5484. stepper.synchronize();
  5485. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5486. }
  5487. #endif
  5488. /**
  5489. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5490. */
  5491. inline void gcode_M907() {
  5492. #if HAS_DIGIPOTSS
  5493. LOOP_XYZE(i)
  5494. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5495. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5496. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5497. #endif
  5498. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5499. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5500. #endif
  5501. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5502. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5503. #endif
  5504. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5505. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5506. #endif
  5507. #if ENABLED(DIGIPOT_I2C)
  5508. // this one uses actual amps in floating point
  5509. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5510. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5511. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5512. #endif
  5513. #if ENABLED(DAC_STEPPER_CURRENT)
  5514. if (code_seen('S')) {
  5515. float dac_percent = code_value_float();
  5516. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5517. }
  5518. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5519. #endif
  5520. }
  5521. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5522. /**
  5523. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5524. */
  5525. inline void gcode_M908() {
  5526. #if HAS_DIGIPOTSS
  5527. stepper.digitalPotWrite(
  5528. code_seen('P') ? code_value_int() : 0,
  5529. code_seen('S') ? code_value_int() : 0
  5530. );
  5531. #endif
  5532. #ifdef DAC_STEPPER_CURRENT
  5533. dac_current_raw(
  5534. code_seen('P') ? code_value_byte() : -1,
  5535. code_seen('S') ? code_value_ushort() : 0
  5536. );
  5537. #endif
  5538. }
  5539. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5540. inline void gcode_M909() { dac_print_values(); }
  5541. inline void gcode_M910() { dac_commit_eeprom(); }
  5542. #endif
  5543. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5544. #if HAS_MICROSTEPS
  5545. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5546. inline void gcode_M350() {
  5547. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5548. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5549. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5550. stepper.microstep_readings();
  5551. }
  5552. /**
  5553. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5554. * S# determines MS1 or MS2, X# sets the pin high/low.
  5555. */
  5556. inline void gcode_M351() {
  5557. if (code_seen('S')) switch (code_value_byte()) {
  5558. case 1:
  5559. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5560. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5561. break;
  5562. case 2:
  5563. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5564. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5565. break;
  5566. }
  5567. stepper.microstep_readings();
  5568. }
  5569. #endif // HAS_MICROSTEPS
  5570. #if ENABLED(MIXING_EXTRUDER)
  5571. /**
  5572. * M163: Set a single mix factor for a mixing extruder
  5573. * This is called "weight" by some systems.
  5574. *
  5575. * S[index] The channel index to set
  5576. * P[float] The mix value
  5577. *
  5578. */
  5579. inline void gcode_M163() {
  5580. int mix_index = code_seen('S') ? code_value_int() : 0;
  5581. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5582. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5583. }
  5584. #if MIXING_VIRTUAL_TOOLS > 1
  5585. /**
  5586. * M164: Store the current mix factors as a virtual tool.
  5587. *
  5588. * S[index] The virtual tool to store
  5589. *
  5590. */
  5591. inline void gcode_M164() {
  5592. int tool_index = code_seen('S') ? code_value_int() : 0;
  5593. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5594. normalize_mix();
  5595. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5596. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5597. }
  5598. }
  5599. #endif
  5600. #if ENABLED(DIRECT_MIXING_IN_G1)
  5601. /**
  5602. * M165: Set multiple mix factors for a mixing extruder.
  5603. * Factors that are left out will be set to 0.
  5604. * All factors together must add up to 1.0.
  5605. *
  5606. * A[factor] Mix factor for extruder stepper 1
  5607. * B[factor] Mix factor for extruder stepper 2
  5608. * C[factor] Mix factor for extruder stepper 3
  5609. * D[factor] Mix factor for extruder stepper 4
  5610. * H[factor] Mix factor for extruder stepper 5
  5611. * I[factor] Mix factor for extruder stepper 6
  5612. *
  5613. */
  5614. inline void gcode_M165() { gcode_get_mix(); }
  5615. #endif
  5616. #endif // MIXING_EXTRUDER
  5617. /**
  5618. * M999: Restart after being stopped
  5619. *
  5620. * Default behaviour is to flush the serial buffer and request
  5621. * a resend to the host starting on the last N line received.
  5622. *
  5623. * Sending "M999 S1" will resume printing without flushing the
  5624. * existing command buffer.
  5625. *
  5626. */
  5627. inline void gcode_M999() {
  5628. Running = true;
  5629. lcd_reset_alert_level();
  5630. if (code_seen('S') && code_value_bool()) return;
  5631. // gcode_LastN = Stopped_gcode_LastN;
  5632. FlushSerialRequestResend();
  5633. }
  5634. #if ENABLED(SWITCHING_EXTRUDER)
  5635. inline void move_extruder_servo(uint8_t e) {
  5636. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5637. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5638. }
  5639. #endif
  5640. inline void invalid_extruder_error(const uint8_t &e) {
  5641. SERIAL_ECHO_START;
  5642. SERIAL_CHAR('T');
  5643. SERIAL_PROTOCOL_F(e, DEC);
  5644. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5645. }
  5646. /**
  5647. * Perform a tool-change, which may result in moving the
  5648. * previous tool out of the way and the new tool into place.
  5649. */
  5650. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5651. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5652. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5653. invalid_extruder_error(tmp_extruder);
  5654. return;
  5655. }
  5656. // T0-Tnnn: Switch virtual tool by changing the mix
  5657. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5658. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5659. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5660. #if HOTENDS > 1
  5661. if (tmp_extruder >= EXTRUDERS) {
  5662. invalid_extruder_error(tmp_extruder);
  5663. return;
  5664. }
  5665. float old_feedrate_mm_s = feedrate_mm_s;
  5666. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5667. if (tmp_extruder != active_extruder) {
  5668. if (!no_move && axis_unhomed_error(true, true, true)) {
  5669. SERIAL_ECHOLNPGM("No move on toolchange");
  5670. no_move = true;
  5671. }
  5672. // Save current position to destination, for use later
  5673. set_destination_to_current();
  5674. #if ENABLED(DUAL_X_CARRIAGE)
  5675. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5676. if (DEBUGGING(LEVELING)) {
  5677. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5678. switch (dual_x_carriage_mode) {
  5679. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5680. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5681. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5682. }
  5683. }
  5684. #endif
  5685. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5686. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5687. ) {
  5688. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5689. if (DEBUGGING(LEVELING)) {
  5690. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5691. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5692. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5693. }
  5694. #endif
  5695. // Park old head: 1) raise 2) move to park position 3) lower
  5696. for (uint8_t i = 0; i < 3; i++)
  5697. planner.buffer_line(
  5698. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5699. current_position[Y_AXIS],
  5700. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5701. current_position[E_AXIS],
  5702. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5703. active_extruder
  5704. );
  5705. stepper.synchronize();
  5706. }
  5707. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5708. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5709. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5710. active_extruder = tmp_extruder;
  5711. // This function resets the max/min values - the current position may be overwritten below.
  5712. set_axis_is_at_home(X_AXIS);
  5713. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5714. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5715. #endif
  5716. switch (dual_x_carriage_mode) {
  5717. case DXC_FULL_CONTROL_MODE:
  5718. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5719. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5720. break;
  5721. case DXC_DUPLICATION_MODE:
  5722. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5723. if (active_extruder_parked)
  5724. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5725. else
  5726. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5727. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5728. extruder_duplication_enabled = false;
  5729. break;
  5730. default:
  5731. // record raised toolhead position for use by unpark
  5732. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5733. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5734. active_extruder_parked = true;
  5735. delayed_move_time = 0;
  5736. break;
  5737. }
  5738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5739. if (DEBUGGING(LEVELING)) {
  5740. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5741. DEBUG_POS("New extruder (parked)", current_position);
  5742. }
  5743. #endif
  5744. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5745. #else // !DUAL_X_CARRIAGE
  5746. #if ENABLED(SWITCHING_EXTRUDER)
  5747. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5748. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5749. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5750. // Always raise by some amount
  5751. planner.buffer_line(
  5752. current_position[X_AXIS],
  5753. current_position[Y_AXIS],
  5754. current_position[Z_AXIS] + z_raise,
  5755. current_position[E_AXIS],
  5756. planner.max_feedrate_mm_s[Z_AXIS],
  5757. active_extruder
  5758. );
  5759. stepper.synchronize();
  5760. move_extruder_servo(active_extruder);
  5761. delay(500);
  5762. // Move back down, if needed
  5763. if (z_raise != z_diff) {
  5764. planner.buffer_line(
  5765. current_position[X_AXIS],
  5766. current_position[Y_AXIS],
  5767. current_position[Z_AXIS] + z_diff,
  5768. current_position[E_AXIS],
  5769. planner.max_feedrate_mm_s[Z_AXIS],
  5770. active_extruder
  5771. );
  5772. stepper.synchronize();
  5773. }
  5774. #endif
  5775. /**
  5776. * Set current_position to the position of the new nozzle.
  5777. * Offsets are based on linear distance, so we need to get
  5778. * the resulting position in coordinate space.
  5779. *
  5780. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5781. * - With mesh leveling, update Z for the new position
  5782. * - Otherwise, just use the raw linear distance
  5783. *
  5784. * Software endstops are altered here too. Consider a case where:
  5785. * E0 at X=0 ... E1 at X=10
  5786. * When we switch to E1 now X=10, but E1 can't move left.
  5787. * To express this we apply the change in XY to the software endstops.
  5788. * E1 can move farther right than E0, so the right limit is extended.
  5789. *
  5790. * Note that we don't adjust the Z software endstops. Why not?
  5791. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5792. * because the bed is 1mm lower at the new position. As long as
  5793. * the first nozzle is out of the way, the carriage should be
  5794. * allowed to move 1mm lower. This technically "breaks" the
  5795. * Z software endstop. But this is technically correct (and
  5796. * there is no viable alternative).
  5797. */
  5798. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  5799. // Offset extruder, make sure to apply the bed level rotation matrix
  5800. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5801. hotend_offset[Y_AXIS][tmp_extruder],
  5802. 0),
  5803. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5804. hotend_offset[Y_AXIS][active_extruder],
  5805. 0),
  5806. offset_vec = tmp_offset_vec - act_offset_vec;
  5807. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5808. if (DEBUGGING(LEVELING)) {
  5809. tmp_offset_vec.debug("tmp_offset_vec");
  5810. act_offset_vec.debug("act_offset_vec");
  5811. offset_vec.debug("offset_vec (BEFORE)");
  5812. }
  5813. #endif
  5814. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5815. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5816. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5817. #endif
  5818. // Adjustments to the current position
  5819. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5820. current_position[Z_AXIS] += offset_vec.z;
  5821. #else // !AUTO_BED_LEVELING_LINEAR
  5822. float xydiff[2] = {
  5823. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5824. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5825. };
  5826. #if ENABLED(MESH_BED_LEVELING)
  5827. if (mbl.active()) {
  5828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5829. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5830. #endif
  5831. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5832. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5833. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5834. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5835. if (DEBUGGING(LEVELING))
  5836. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5837. #endif
  5838. }
  5839. #endif // MESH_BED_LEVELING
  5840. #endif // !AUTO_BED_LEVELING_FEATURE
  5841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5842. if (DEBUGGING(LEVELING)) {
  5843. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5844. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5845. SERIAL_ECHOLNPGM(" }");
  5846. }
  5847. #endif
  5848. // The newly-selected extruder XY is actually at...
  5849. current_position[X_AXIS] += xydiff[X_AXIS];
  5850. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5851. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5852. position_shift[i] += xydiff[i];
  5853. update_software_endstops((AxisEnum)i);
  5854. }
  5855. // Set the new active extruder
  5856. active_extruder = tmp_extruder;
  5857. #endif // !DUAL_X_CARRIAGE
  5858. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5859. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5860. #endif
  5861. // Tell the planner the new "current position"
  5862. SYNC_PLAN_POSITION_KINEMATIC();
  5863. // Move to the "old position" (move the extruder into place)
  5864. if (!no_move && IsRunning()) {
  5865. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5866. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5867. #endif
  5868. prepare_move_to_destination();
  5869. }
  5870. } // (tmp_extruder != active_extruder)
  5871. stepper.synchronize();
  5872. #if ENABLED(EXT_SOLENOID)
  5873. disable_all_solenoids();
  5874. enable_solenoid_on_active_extruder();
  5875. #endif // EXT_SOLENOID
  5876. feedrate_mm_s = old_feedrate_mm_s;
  5877. #else // HOTENDS <= 1
  5878. // Set the new active extruder
  5879. active_extruder = tmp_extruder;
  5880. UNUSED(fr_mm_s);
  5881. UNUSED(no_move);
  5882. #endif // HOTENDS <= 1
  5883. SERIAL_ECHO_START;
  5884. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  5885. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5886. }
  5887. /**
  5888. * T0-T3: Switch tool, usually switching extruders
  5889. *
  5890. * F[units/min] Set the movement feedrate
  5891. * S1 Don't move the tool in XY after change
  5892. */
  5893. inline void gcode_T(uint8_t tmp_extruder) {
  5894. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5895. if (DEBUGGING(LEVELING)) {
  5896. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5897. SERIAL_ECHOLNPGM(")");
  5898. DEBUG_POS("BEFORE", current_position);
  5899. }
  5900. #endif
  5901. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5902. tool_change(tmp_extruder);
  5903. #elif HOTENDS > 1
  5904. tool_change(
  5905. tmp_extruder,
  5906. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5907. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5908. );
  5909. #endif
  5910. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5911. if (DEBUGGING(LEVELING)) {
  5912. DEBUG_POS("AFTER", current_position);
  5913. SERIAL_ECHOLNPGM("<<< gcode_T");
  5914. }
  5915. #endif
  5916. }
  5917. /**
  5918. * Process a single command and dispatch it to its handler
  5919. * This is called from the main loop()
  5920. */
  5921. void process_next_command() {
  5922. current_command = command_queue[cmd_queue_index_r];
  5923. if (DEBUGGING(ECHO)) {
  5924. SERIAL_ECHO_START;
  5925. SERIAL_ECHOLN(current_command);
  5926. }
  5927. // Sanitize the current command:
  5928. // - Skip leading spaces
  5929. // - Bypass N[-0-9][0-9]*[ ]*
  5930. // - Overwrite * with nul to mark the end
  5931. while (*current_command == ' ') ++current_command;
  5932. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5933. current_command += 2; // skip N[-0-9]
  5934. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5935. while (*current_command == ' ') ++current_command; // skip [ ]*
  5936. }
  5937. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5938. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5939. char *cmd_ptr = current_command;
  5940. // Get the command code, which must be G, M, or T
  5941. char command_code = *cmd_ptr++;
  5942. // Skip spaces to get the numeric part
  5943. while (*cmd_ptr == ' ') cmd_ptr++;
  5944. uint16_t codenum = 0; // define ahead of goto
  5945. // Bail early if there's no code
  5946. bool code_is_good = NUMERIC(*cmd_ptr);
  5947. if (!code_is_good) goto ExitUnknownCommand;
  5948. // Get and skip the code number
  5949. do {
  5950. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5951. cmd_ptr++;
  5952. } while (NUMERIC(*cmd_ptr));
  5953. // Skip all spaces to get to the first argument, or nul
  5954. while (*cmd_ptr == ' ') cmd_ptr++;
  5955. // The command's arguments (if any) start here, for sure!
  5956. current_command_args = cmd_ptr;
  5957. KEEPALIVE_STATE(IN_HANDLER);
  5958. // Handle a known G, M, or T
  5959. switch (command_code) {
  5960. case 'G': switch (codenum) {
  5961. // G0, G1
  5962. case 0:
  5963. case 1:
  5964. #if IS_SCARA
  5965. gcode_G0_G1(codenum == 0);
  5966. #else
  5967. gcode_G0_G1();
  5968. #endif
  5969. break;
  5970. // G2, G3
  5971. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5972. case 2: // G2 - CW ARC
  5973. case 3: // G3 - CCW ARC
  5974. gcode_G2_G3(codenum == 2);
  5975. break;
  5976. #endif
  5977. // G4 Dwell
  5978. case 4:
  5979. gcode_G4();
  5980. break;
  5981. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5982. // G5
  5983. case 5: // G5 - Cubic B_spline
  5984. gcode_G5();
  5985. break;
  5986. #endif // BEZIER_CURVE_SUPPORT
  5987. #if ENABLED(FWRETRACT)
  5988. case 10: // G10: retract
  5989. case 11: // G11: retract_recover
  5990. gcode_G10_G11(codenum == 10);
  5991. break;
  5992. #endif // FWRETRACT
  5993. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5994. case 12:
  5995. gcode_G12(); // G12: Nozzle Clean
  5996. break;
  5997. #endif // NOZZLE_CLEAN_FEATURE
  5998. #if ENABLED(INCH_MODE_SUPPORT)
  5999. case 20: //G20: Inch Mode
  6000. gcode_G20();
  6001. break;
  6002. case 21: //G21: MM Mode
  6003. gcode_G21();
  6004. break;
  6005. #endif // INCH_MODE_SUPPORT
  6006. #if ENABLED(NOZZLE_PARK_FEATURE)
  6007. case 27: // G27: Nozzle Park
  6008. gcode_G27();
  6009. break;
  6010. #endif // NOZZLE_PARK_FEATURE
  6011. case 28: // G28: Home all axes, one at a time
  6012. gcode_G28();
  6013. break;
  6014. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  6015. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6016. gcode_G29();
  6017. break;
  6018. #endif // AUTO_BED_LEVELING_FEATURE
  6019. #if HAS_BED_PROBE
  6020. case 30: // G30 Single Z probe
  6021. gcode_G30();
  6022. break;
  6023. #if ENABLED(Z_PROBE_SLED)
  6024. case 31: // G31: dock the sled
  6025. gcode_G31();
  6026. break;
  6027. case 32: // G32: undock the sled
  6028. gcode_G32();
  6029. break;
  6030. #endif // Z_PROBE_SLED
  6031. #endif // HAS_BED_PROBE
  6032. case 90: // G90
  6033. relative_mode = false;
  6034. break;
  6035. case 91: // G91
  6036. relative_mode = true;
  6037. break;
  6038. case 92: // G92
  6039. gcode_G92();
  6040. break;
  6041. }
  6042. break;
  6043. case 'M': switch (codenum) {
  6044. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6045. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6046. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6047. gcode_M0_M1();
  6048. break;
  6049. #endif // ULTIPANEL
  6050. case 17:
  6051. gcode_M17();
  6052. break;
  6053. #if ENABLED(SDSUPPORT)
  6054. case 20: // M20 - list SD card
  6055. gcode_M20(); break;
  6056. case 21: // M21 - init SD card
  6057. gcode_M21(); break;
  6058. case 22: //M22 - release SD card
  6059. gcode_M22(); break;
  6060. case 23: //M23 - Select file
  6061. gcode_M23(); break;
  6062. case 24: //M24 - Start SD print
  6063. gcode_M24(); break;
  6064. case 25: //M25 - Pause SD print
  6065. gcode_M25(); break;
  6066. case 26: //M26 - Set SD index
  6067. gcode_M26(); break;
  6068. case 27: //M27 - Get SD status
  6069. gcode_M27(); break;
  6070. case 28: //M28 - Start SD write
  6071. gcode_M28(); break;
  6072. case 29: //M29 - Stop SD write
  6073. gcode_M29(); break;
  6074. case 30: //M30 <filename> Delete File
  6075. gcode_M30(); break;
  6076. case 32: //M32 - Select file and start SD print
  6077. gcode_M32(); break;
  6078. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6079. case 33: //M33 - Get the long full path to a file or folder
  6080. gcode_M33(); break;
  6081. #endif // LONG_FILENAME_HOST_SUPPORT
  6082. case 928: //M928 - Start SD write
  6083. gcode_M928(); break;
  6084. #endif //SDSUPPORT
  6085. case 31: //M31 take time since the start of the SD print or an M109 command
  6086. gcode_M31();
  6087. break;
  6088. case 42: //M42 -Change pin status via gcode
  6089. gcode_M42();
  6090. break;
  6091. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6092. case 48: // M48 Z probe repeatability
  6093. gcode_M48();
  6094. break;
  6095. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6096. case 75: // Start print timer
  6097. gcode_M75();
  6098. break;
  6099. case 76: // Pause print timer
  6100. gcode_M76();
  6101. break;
  6102. case 77: // Stop print timer
  6103. gcode_M77();
  6104. break;
  6105. #if ENABLED(PRINTCOUNTER)
  6106. case 78: // Show print statistics
  6107. gcode_M78();
  6108. break;
  6109. #endif
  6110. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6111. case 100:
  6112. gcode_M100();
  6113. break;
  6114. #endif
  6115. case 104: // M104
  6116. gcode_M104();
  6117. break;
  6118. case 110: // M110: Set Current Line Number
  6119. gcode_M110();
  6120. break;
  6121. case 111: // M111: Set debug level
  6122. gcode_M111();
  6123. break;
  6124. #if DISABLED(EMERGENCY_PARSER)
  6125. case 108: // M108: Cancel Waiting
  6126. gcode_M108();
  6127. break;
  6128. case 112: // M112: Emergency Stop
  6129. gcode_M112();
  6130. break;
  6131. case 410: // M410 quickstop - Abort all the planned moves.
  6132. gcode_M410();
  6133. break;
  6134. #endif
  6135. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6136. case 113: // M113: Set Host Keepalive interval
  6137. gcode_M113();
  6138. break;
  6139. #endif
  6140. case 140: // M140: Set bed temp
  6141. gcode_M140();
  6142. break;
  6143. case 105: // M105: Read current temperature
  6144. gcode_M105();
  6145. KEEPALIVE_STATE(NOT_BUSY);
  6146. return; // "ok" already printed
  6147. case 109: // M109: Wait for temperature
  6148. gcode_M109();
  6149. break;
  6150. #if HAS_TEMP_BED
  6151. case 190: // M190: Wait for bed heater to reach target
  6152. gcode_M190();
  6153. break;
  6154. #endif // HAS_TEMP_BED
  6155. #if FAN_COUNT > 0
  6156. case 106: // M106: Fan On
  6157. gcode_M106();
  6158. break;
  6159. case 107: // M107: Fan Off
  6160. gcode_M107();
  6161. break;
  6162. #endif // FAN_COUNT > 0
  6163. #if ENABLED(BARICUDA)
  6164. // PWM for HEATER_1_PIN
  6165. #if HAS_HEATER_1
  6166. case 126: // M126: valve open
  6167. gcode_M126();
  6168. break;
  6169. case 127: // M127: valve closed
  6170. gcode_M127();
  6171. break;
  6172. #endif // HAS_HEATER_1
  6173. // PWM for HEATER_2_PIN
  6174. #if HAS_HEATER_2
  6175. case 128: // M128: valve open
  6176. gcode_M128();
  6177. break;
  6178. case 129: // M129: valve closed
  6179. gcode_M129();
  6180. break;
  6181. #endif // HAS_HEATER_2
  6182. #endif // BARICUDA
  6183. #if HAS_POWER_SWITCH
  6184. case 80: // M80: Turn on Power Supply
  6185. gcode_M80();
  6186. break;
  6187. #endif // HAS_POWER_SWITCH
  6188. case 81: // M81: Turn off Power, including Power Supply, if possible
  6189. gcode_M81();
  6190. break;
  6191. case 82:
  6192. gcode_M82();
  6193. break;
  6194. case 83:
  6195. gcode_M83();
  6196. break;
  6197. case 18: // (for compatibility)
  6198. case 84: // M84
  6199. gcode_M18_M84();
  6200. break;
  6201. case 85: // M85
  6202. gcode_M85();
  6203. break;
  6204. case 92: // M92: Set the steps-per-unit for one or more axes
  6205. gcode_M92();
  6206. break;
  6207. case 115: // M115: Report capabilities
  6208. gcode_M115();
  6209. break;
  6210. case 117: // M117: Set LCD message text, if possible
  6211. gcode_M117();
  6212. break;
  6213. case 114: // M114: Report current position
  6214. gcode_M114();
  6215. break;
  6216. case 120: // M120: Enable endstops
  6217. gcode_M120();
  6218. break;
  6219. case 121: // M121: Disable endstops
  6220. gcode_M121();
  6221. break;
  6222. case 119: // M119: Report endstop states
  6223. gcode_M119();
  6224. break;
  6225. #if ENABLED(ULTIPANEL)
  6226. case 145: // M145: Set material heatup parameters
  6227. gcode_M145();
  6228. break;
  6229. #endif
  6230. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6231. case 149:
  6232. gcode_M149();
  6233. break;
  6234. #endif
  6235. #if ENABLED(BLINKM)
  6236. case 150: // M150
  6237. gcode_M150();
  6238. break;
  6239. #endif //BLINKM
  6240. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6241. case 155:
  6242. gcode_M155();
  6243. break;
  6244. case 156:
  6245. gcode_M156();
  6246. break;
  6247. #endif //EXPERIMENTAL_I2CBUS
  6248. #if ENABLED(MIXING_EXTRUDER)
  6249. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6250. gcode_M163();
  6251. break;
  6252. #if MIXING_VIRTUAL_TOOLS > 1
  6253. case 164: // M164 S<int> save current mix as a virtual extruder
  6254. gcode_M164();
  6255. break;
  6256. #endif
  6257. #if ENABLED(DIRECT_MIXING_IN_G1)
  6258. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6259. gcode_M165();
  6260. break;
  6261. #endif
  6262. #endif
  6263. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6264. gcode_M200();
  6265. break;
  6266. case 201: // M201
  6267. gcode_M201();
  6268. break;
  6269. #if 0 // Not used for Sprinter/grbl gen6
  6270. case 202: // M202
  6271. gcode_M202();
  6272. break;
  6273. #endif
  6274. case 203: // M203 max feedrate units/sec
  6275. gcode_M203();
  6276. break;
  6277. case 204: // M204 acclereration S normal moves T filmanent only moves
  6278. gcode_M204();
  6279. break;
  6280. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6281. gcode_M205();
  6282. break;
  6283. case 206: // M206 additional homing offset
  6284. gcode_M206();
  6285. break;
  6286. #if ENABLED(DELTA)
  6287. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6288. gcode_M665();
  6289. break;
  6290. #endif
  6291. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6292. case 666: // M666 set delta / dual endstop adjustment
  6293. gcode_M666();
  6294. break;
  6295. #endif
  6296. #if ENABLED(FWRETRACT)
  6297. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6298. gcode_M207();
  6299. break;
  6300. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6301. gcode_M208();
  6302. break;
  6303. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6304. gcode_M209();
  6305. break;
  6306. #endif // FWRETRACT
  6307. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6308. gcode_M211();
  6309. break;
  6310. #if HOTENDS > 1
  6311. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6312. gcode_M218();
  6313. break;
  6314. #endif
  6315. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6316. gcode_M220();
  6317. break;
  6318. case 221: // M221 - Set Flow Percentage: S<percent>
  6319. gcode_M221();
  6320. break;
  6321. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6322. gcode_M226();
  6323. break;
  6324. #if HAS_SERVOS
  6325. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6326. gcode_M280();
  6327. break;
  6328. #endif // HAS_SERVOS
  6329. #if HAS_BUZZER
  6330. case 300: // M300 - Play beep tone
  6331. gcode_M300();
  6332. break;
  6333. #endif // HAS_BUZZER
  6334. #if ENABLED(PIDTEMP)
  6335. case 301: // M301
  6336. gcode_M301();
  6337. break;
  6338. #endif // PIDTEMP
  6339. #if ENABLED(PIDTEMPBED)
  6340. case 304: // M304
  6341. gcode_M304();
  6342. break;
  6343. #endif // PIDTEMPBED
  6344. #if defined(CHDK) || HAS_PHOTOGRAPH
  6345. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6346. gcode_M240();
  6347. break;
  6348. #endif // CHDK || PHOTOGRAPH_PIN
  6349. #if HAS_LCD_CONTRAST
  6350. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6351. gcode_M250();
  6352. break;
  6353. #endif // HAS_LCD_CONTRAST
  6354. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6355. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6356. gcode_M302();
  6357. break;
  6358. #endif // PREVENT_COLD_EXTRUSION
  6359. case 303: // M303 PID autotune
  6360. gcode_M303();
  6361. break;
  6362. #if ENABLED(MORGAN_SCARA)
  6363. case 360: // M360 SCARA Theta pos1
  6364. if (gcode_M360()) return;
  6365. break;
  6366. case 361: // M361 SCARA Theta pos2
  6367. if (gcode_M361()) return;
  6368. break;
  6369. case 362: // M362 SCARA Psi pos1
  6370. if (gcode_M362()) return;
  6371. break;
  6372. case 363: // M363 SCARA Psi pos2
  6373. if (gcode_M363()) return;
  6374. break;
  6375. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6376. if (gcode_M364()) return;
  6377. break;
  6378. #endif // SCARA
  6379. case 400: // M400 finish all moves
  6380. gcode_M400();
  6381. break;
  6382. #if HAS_BED_PROBE
  6383. case 401:
  6384. gcode_M401();
  6385. break;
  6386. case 402:
  6387. gcode_M402();
  6388. break;
  6389. #endif // HAS_BED_PROBE
  6390. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6391. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6392. gcode_M404();
  6393. break;
  6394. case 405: //M405 Turn on filament sensor for control
  6395. gcode_M405();
  6396. break;
  6397. case 406: //M406 Turn off filament sensor for control
  6398. gcode_M406();
  6399. break;
  6400. case 407: //M407 Display measured filament diameter
  6401. gcode_M407();
  6402. break;
  6403. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6404. #if ENABLED(MESH_BED_LEVELING)
  6405. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6406. gcode_M420();
  6407. break;
  6408. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6409. gcode_M421();
  6410. break;
  6411. #endif
  6412. case 428: // M428 Apply current_position to home_offset
  6413. gcode_M428();
  6414. break;
  6415. case 500: // M500 Store settings in EEPROM
  6416. gcode_M500();
  6417. break;
  6418. case 501: // M501 Read settings from EEPROM
  6419. gcode_M501();
  6420. break;
  6421. case 502: // M502 Revert to default settings
  6422. gcode_M502();
  6423. break;
  6424. case 503: // M503 print settings currently in memory
  6425. gcode_M503();
  6426. break;
  6427. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6428. case 540:
  6429. gcode_M540();
  6430. break;
  6431. #endif
  6432. #if HAS_BED_PROBE
  6433. case 851: // Set Z Probe Z Offset
  6434. gcode_M851();
  6435. break;
  6436. #endif // HAS_BED_PROBE
  6437. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6438. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6439. gcode_M600();
  6440. break;
  6441. #endif // FILAMENT_CHANGE_FEATURE
  6442. #if ENABLED(DUAL_X_CARRIAGE)
  6443. case 605:
  6444. gcode_M605();
  6445. break;
  6446. #endif // DUAL_X_CARRIAGE
  6447. #if ENABLED(LIN_ADVANCE)
  6448. case 905: // M905 Set advance factor.
  6449. gcode_M905();
  6450. break;
  6451. #endif
  6452. case 907: // M907 Set digital trimpot motor current using axis codes.
  6453. gcode_M907();
  6454. break;
  6455. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6456. case 908: // M908 Control digital trimpot directly.
  6457. gcode_M908();
  6458. break;
  6459. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6460. case 909: // M909 Print digipot/DAC current value
  6461. gcode_M909();
  6462. break;
  6463. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6464. gcode_M910();
  6465. break;
  6466. #endif
  6467. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6468. #if HAS_MICROSTEPS
  6469. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6470. gcode_M350();
  6471. break;
  6472. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6473. gcode_M351();
  6474. break;
  6475. #endif // HAS_MICROSTEPS
  6476. case 999: // M999: Restart after being Stopped
  6477. gcode_M999();
  6478. break;
  6479. }
  6480. break;
  6481. case 'T':
  6482. gcode_T(codenum);
  6483. break;
  6484. default: code_is_good = false;
  6485. }
  6486. KEEPALIVE_STATE(NOT_BUSY);
  6487. ExitUnknownCommand:
  6488. // Still unknown command? Throw an error
  6489. if (!code_is_good) unknown_command_error();
  6490. ok_to_send();
  6491. }
  6492. /**
  6493. * Send a "Resend: nnn" message to the host to
  6494. * indicate that a command needs to be re-sent.
  6495. */
  6496. void FlushSerialRequestResend() {
  6497. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6498. MYSERIAL.flush();
  6499. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6500. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6501. ok_to_send();
  6502. }
  6503. /**
  6504. * Send an "ok" message to the host, indicating
  6505. * that a command was successfully processed.
  6506. *
  6507. * If ADVANCED_OK is enabled also include:
  6508. * N<int> Line number of the command, if any
  6509. * P<int> Planner space remaining
  6510. * B<int> Block queue space remaining
  6511. */
  6512. void ok_to_send() {
  6513. refresh_cmd_timeout();
  6514. if (!send_ok[cmd_queue_index_r]) return;
  6515. SERIAL_PROTOCOLPGM(MSG_OK);
  6516. #if ENABLED(ADVANCED_OK)
  6517. char* p = command_queue[cmd_queue_index_r];
  6518. if (*p == 'N') {
  6519. SERIAL_PROTOCOL(' ');
  6520. SERIAL_ECHO(*p++);
  6521. while (NUMERIC_SIGNED(*p))
  6522. SERIAL_ECHO(*p++);
  6523. }
  6524. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6525. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6526. #endif
  6527. SERIAL_EOL;
  6528. }
  6529. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6530. /**
  6531. * Constrain the given coordinates to the software endstops.
  6532. */
  6533. void clamp_to_software_endstops(float target[XYZ]) {
  6534. #if ENABLED(min_software_endstops)
  6535. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6536. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6537. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6538. #endif
  6539. #if ENABLED(max_software_endstops)
  6540. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6541. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6542. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6543. #endif
  6544. }
  6545. #endif
  6546. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6547. // Get the Z adjustment for non-linear bed leveling
  6548. float nonlinear_z_offset(float cartesian[XYZ]) {
  6549. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  6550. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  6551. float hx2 = half_x - 0.001, hx1 = -hx2,
  6552. hy2 = half_y - 0.001, hy1 = -hy2,
  6553. grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
  6554. grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
  6555. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6556. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6557. z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
  6558. z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
  6559. z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
  6560. z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
  6561. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6562. right = (1 - ratio_y) * z3 + ratio_y * z4;
  6563. /*
  6564. SERIAL_ECHOPAIR("grid_x=", grid_x);
  6565. SERIAL_ECHOPAIR(" grid_y=", grid_y);
  6566. SERIAL_ECHOPAIR(" floor_x=", floor_x);
  6567. SERIAL_ECHOPAIR(" floor_y=", floor_y);
  6568. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6569. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6570. SERIAL_ECHOPAIR(" z1=", z1);
  6571. SERIAL_ECHOPAIR(" z2=", z2);
  6572. SERIAL_ECHOPAIR(" z3=", z3);
  6573. SERIAL_ECHOPAIR(" z4=", z4);
  6574. SERIAL_ECHOPAIR(" left=", left);
  6575. SERIAL_ECHOPAIR(" right=", right);
  6576. SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right);
  6577. //*/
  6578. return (1 - ratio_x) * left + ratio_x * right;
  6579. }
  6580. #endif // AUTO_BED_LEVELING_NONLINEAR
  6581. #if ENABLED(DELTA)
  6582. /**
  6583. * Recalculate factors used for delta kinematics whenever
  6584. * settings have been changed (e.g., by M665).
  6585. */
  6586. void recalc_delta_settings(float radius, float diagonal_rod) {
  6587. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6588. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6589. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6590. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6591. delta_tower3_x = 0.0; // back middle tower
  6592. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6593. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6594. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6595. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6596. }
  6597. #if ENABLED(DELTA_FAST_SQRT)
  6598. /**
  6599. * Fast inverse sqrt from Quake III Arena
  6600. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6601. */
  6602. float Q_rsqrt(float number) {
  6603. long i;
  6604. float x2, y;
  6605. const float threehalfs = 1.5f;
  6606. x2 = number * 0.5f;
  6607. y = number;
  6608. i = * ( long * ) &y; // evil floating point bit level hacking
  6609. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6610. y = * ( float * ) &i;
  6611. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6612. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6613. return y;
  6614. }
  6615. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6616. #else
  6617. #define _SQRT(n) sqrt(n)
  6618. #endif
  6619. /**
  6620. * Delta Inverse Kinematics
  6621. *
  6622. * Calculate the tower positions for a given logical
  6623. * position, storing the result in the delta[] array.
  6624. *
  6625. * This is an expensive calculation, requiring 3 square
  6626. * roots per segmented linear move, and strains the limits
  6627. * of a Mega2560 with a Graphical Display.
  6628. *
  6629. * Suggested optimizations include:
  6630. *
  6631. * - Disable the home_offset (M206) and/or position_shift (G92)
  6632. * features to remove up to 12 float additions.
  6633. *
  6634. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6635. * (see above)
  6636. */
  6637. // Macro to obtain the Z position of an individual tower
  6638. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  6639. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6640. delta_tower##T##_x - raw[X_AXIS], \
  6641. delta_tower##T##_y - raw[Y_AXIS] \
  6642. ) \
  6643. )
  6644. #define DELTA_RAW_IK() do { \
  6645. delta[A_AXIS] = DELTA_Z(1); \
  6646. delta[B_AXIS] = DELTA_Z(2); \
  6647. delta[C_AXIS] = DELTA_Z(3); \
  6648. } while(0)
  6649. #define DELTA_LOGICAL_IK() do { \
  6650. const float raw[XYZ] = { \
  6651. RAW_X_POSITION(logical[X_AXIS]), \
  6652. RAW_Y_POSITION(logical[Y_AXIS]), \
  6653. RAW_Z_POSITION(logical[Z_AXIS]) \
  6654. }; \
  6655. DELTA_RAW_IK(); \
  6656. } while(0)
  6657. #define DELTA_DEBUG() do { \
  6658. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  6659. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  6660. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  6661. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  6662. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  6663. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  6664. } while(0)
  6665. void inverse_kinematics(const float logical[XYZ]) {
  6666. DELTA_LOGICAL_IK();
  6667. // DELTA_DEBUG();
  6668. }
  6669. /**
  6670. * Calculate the highest Z position where the
  6671. * effector has the full range of XY motion.
  6672. */
  6673. float delta_safe_distance_from_top() {
  6674. float cartesian[XYZ] = {
  6675. LOGICAL_X_POSITION(0),
  6676. LOGICAL_Y_POSITION(0),
  6677. LOGICAL_Z_POSITION(0)
  6678. };
  6679. inverse_kinematics(cartesian);
  6680. float distance = delta[A_AXIS];
  6681. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6682. inverse_kinematics(cartesian);
  6683. return abs(distance - delta[A_AXIS]);
  6684. }
  6685. /**
  6686. * Delta Forward Kinematics
  6687. *
  6688. * See the Wikipedia article "Trilateration"
  6689. * https://en.wikipedia.org/wiki/Trilateration
  6690. *
  6691. * Establish a new coordinate system in the plane of the
  6692. * three carriage points. This system has its origin at
  6693. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6694. * plane with a Z component of zero.
  6695. * We will define unit vectors in this coordinate system
  6696. * in our original coordinate system. Then when we calculate
  6697. * the Xnew, Ynew and Znew values, we can translate back into
  6698. * the original system by moving along those unit vectors
  6699. * by the corresponding values.
  6700. *
  6701. * Variable names matched to Marlin, c-version, and avoid the
  6702. * use of any vector library.
  6703. *
  6704. * by Andreas Hardtung 2016-06-07
  6705. * based on a Java function from "Delta Robot Kinematics V3"
  6706. * by Steve Graves
  6707. *
  6708. * The result is stored in the cartes[] array.
  6709. */
  6710. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6711. // Create a vector in old coordinates along x axis of new coordinate
  6712. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6713. // Get the Magnitude of vector.
  6714. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6715. // Create unit vector by dividing by magnitude.
  6716. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6717. // Get the vector from the origin of the new system to the third point.
  6718. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6719. // Use the dot product to find the component of this vector on the X axis.
  6720. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6721. // Create a vector along the x axis that represents the x component of p13.
  6722. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6723. // Subtract the X component from the original vector leaving only Y. We use the
  6724. // variable that will be the unit vector after we scale it.
  6725. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6726. // The magnitude of Y component
  6727. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6728. // Convert to a unit vector
  6729. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6730. // The cross product of the unit x and y is the unit z
  6731. // float[] ez = vectorCrossProd(ex, ey);
  6732. float ez[3] = {
  6733. ex[1] * ey[2] - ex[2] * ey[1],
  6734. ex[2] * ey[0] - ex[0] * ey[2],
  6735. ex[0] * ey[1] - ex[1] * ey[0]
  6736. };
  6737. // We now have the d, i and j values defined in Wikipedia.
  6738. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6739. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6740. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6741. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6742. // Start from the origin of the old coordinates and add vectors in the
  6743. // old coords that represent the Xnew, Ynew and Znew to find the point
  6744. // in the old system.
  6745. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6746. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6747. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6748. };
  6749. void forward_kinematics_DELTA(float point[ABC]) {
  6750. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6751. }
  6752. #endif // DELTA
  6753. /**
  6754. * Get the stepper positions in the cartes[] array.
  6755. * Forward kinematics are applied for DELTA and SCARA.
  6756. *
  6757. * The result is in the current coordinate space with
  6758. * leveling applied. The coordinates need to be run through
  6759. * unapply_leveling to obtain the "ideal" coordinates
  6760. * suitable for current_position, etc.
  6761. */
  6762. void get_cartesian_from_steppers() {
  6763. #if ENABLED(DELTA)
  6764. forward_kinematics_DELTA(
  6765. stepper.get_axis_position_mm(A_AXIS),
  6766. stepper.get_axis_position_mm(B_AXIS),
  6767. stepper.get_axis_position_mm(C_AXIS)
  6768. );
  6769. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6770. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6771. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  6772. #elif IS_SCARA
  6773. forward_kinematics_SCARA(
  6774. stepper.get_axis_position_degrees(A_AXIS),
  6775. stepper.get_axis_position_degrees(B_AXIS)
  6776. );
  6777. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6778. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6779. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6780. #else
  6781. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6782. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6783. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6784. #endif
  6785. }
  6786. /**
  6787. * Set the current_position for an axis based on
  6788. * the stepper positions, removing any leveling that
  6789. * may have been applied.
  6790. */
  6791. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6792. get_cartesian_from_steppers();
  6793. #if PLANNER_LEVELING
  6794. planner.unapply_leveling(cartes);
  6795. #endif
  6796. if (axis == ALL_AXES)
  6797. memcpy(current_position, cartes, sizeof(cartes));
  6798. else
  6799. current_position[axis] = cartes[axis];
  6800. }
  6801. #if ENABLED(MESH_BED_LEVELING)
  6802. /**
  6803. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6804. * splitting the move where it crosses mesh borders.
  6805. */
  6806. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6807. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6808. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6809. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6810. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6811. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6812. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6813. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6814. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6815. if (cx1 == cx2 && cy1 == cy2) {
  6816. // Start and end on same mesh square
  6817. line_to_destination(fr_mm_s);
  6818. set_current_to_destination();
  6819. return;
  6820. }
  6821. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6822. float normalized_dist, end[NUM_AXIS];
  6823. // Split at the left/front border of the right/top square
  6824. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6825. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6826. memcpy(end, destination, sizeof(end));
  6827. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6828. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6829. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6830. CBI(x_splits, gcx);
  6831. }
  6832. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6833. memcpy(end, destination, sizeof(end));
  6834. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6835. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6836. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6837. CBI(y_splits, gcy);
  6838. }
  6839. else {
  6840. // Already split on a border
  6841. line_to_destination(fr_mm_s);
  6842. set_current_to_destination();
  6843. return;
  6844. }
  6845. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6846. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6847. // Do the split and look for more borders
  6848. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6849. // Restore destination from stack
  6850. memcpy(destination, end, sizeof(end));
  6851. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6852. }
  6853. #endif // MESH_BED_LEVELING
  6854. #if IS_KINEMATIC
  6855. /**
  6856. * Prepare a linear move in a DELTA or SCARA setup.
  6857. *
  6858. * This calls planner.buffer_line several times, adding
  6859. * small incremental moves for DELTA or SCARA.
  6860. */
  6861. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  6862. // Get the top feedrate of the move in the XY plane
  6863. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6864. // If the move is only in Z/E don't split up the move
  6865. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  6866. inverse_kinematics(ltarget);
  6867. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  6868. return true;
  6869. }
  6870. // Get the cartesian distances moved in XYZE
  6871. float difference[NUM_AXIS];
  6872. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  6873. // Get the linear distance in XYZ
  6874. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6875. // If the move is very short, check the E move distance
  6876. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  6877. // No E move either? Game over.
  6878. if (UNEAR_ZERO(cartesian_mm)) return false;
  6879. // Minimum number of seconds to move the given distance
  6880. float seconds = cartesian_mm / _feedrate_mm_s;
  6881. // The number of segments-per-second times the duration
  6882. // gives the number of segments
  6883. uint16_t segments = delta_segments_per_second * seconds;
  6884. // For SCARA minimum segment size is 0.5mm
  6885. #if IS_SCARA
  6886. NOMORE(segments, cartesian_mm * 2);
  6887. #endif
  6888. // At least one segment is required
  6889. NOLESS(segments, 1);
  6890. // The approximate length of each segment
  6891. float segment_distance[XYZE] = {
  6892. difference[X_AXIS] / segments,
  6893. difference[Y_AXIS] / segments,
  6894. difference[Z_AXIS] / segments,
  6895. difference[E_AXIS] / segments
  6896. };
  6897. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  6898. // SERIAL_ECHOPAIR(" seconds=", seconds);
  6899. // SERIAL_ECHOLNPAIR(" segments=", segments);
  6900. // Drop one segment so the last move is to the exact target.
  6901. // If there's only 1 segment, loops will be skipped entirely.
  6902. --segments;
  6903. // Using "raw" coordinates saves 6 float subtractions
  6904. // per segment, saving valuable CPU cycles
  6905. #if ENABLED(USE_RAW_KINEMATICS)
  6906. // Get the raw current position as starting point
  6907. float raw[XYZE] = {
  6908. RAW_CURRENT_POSITION(X_AXIS),
  6909. RAW_CURRENT_POSITION(Y_AXIS),
  6910. RAW_CURRENT_POSITION(Z_AXIS),
  6911. current_position[E_AXIS]
  6912. };
  6913. #define DELTA_VAR raw
  6914. // Delta can inline its kinematics
  6915. #if ENABLED(DELTA)
  6916. #define DELTA_IK() DELTA_RAW_IK()
  6917. #else
  6918. #define DELTA_IK() inverse_kinematics(raw)
  6919. #endif
  6920. #else
  6921. // Get the logical current position as starting point
  6922. float logical[XYZE];
  6923. memcpy(logical, current_position, sizeof(logical));
  6924. #define DELTA_VAR logical
  6925. // Delta can inline its kinematics
  6926. #if ENABLED(DELTA)
  6927. #define DELTA_IK() DELTA_LOGICAL_IK()
  6928. #else
  6929. #define DELTA_IK() inverse_kinematics(logical)
  6930. #endif
  6931. #endif
  6932. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  6933. // Only interpolate XYZ. Advance E normally.
  6934. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  6935. // Get the starting delta if interpolation is possible
  6936. if (segments >= 2) DELTA_IK();
  6937. // Loop using decrement
  6938. for (uint16_t s = segments + 1; --s;) {
  6939. // Are there at least 2 moves left?
  6940. if (s >= 2) {
  6941. // Save the previous delta for interpolation
  6942. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  6943. // Get the delta 2 segments ahead (rather than the next)
  6944. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  6945. // Advance E normally
  6946. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  6947. // Get the exact delta for the move after this
  6948. DELTA_IK();
  6949. // Move to the interpolated delta position first
  6950. planner.buffer_line(
  6951. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  6952. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  6953. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  6954. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  6955. );
  6956. // Advance E once more for the next move
  6957. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  6958. // Do an extra decrement of the loop
  6959. --s;
  6960. }
  6961. else {
  6962. // Get the last segment delta. (Used when segments is odd)
  6963. DELTA_NEXT(segment_distance[i]);
  6964. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  6965. DELTA_IK();
  6966. }
  6967. // Move to the non-interpolated position
  6968. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  6969. }
  6970. #else
  6971. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  6972. // For non-interpolated delta calculate every segment
  6973. for (uint16_t s = segments + 1; --s;) {
  6974. DELTA_NEXT(segment_distance[i]);
  6975. DELTA_IK();
  6976. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  6977. }
  6978. #endif
  6979. // Since segment_distance is only approximate,
  6980. // the final move must be to the exact destination.
  6981. inverse_kinematics(ltarget);
  6982. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  6983. return true;
  6984. }
  6985. #else
  6986. /**
  6987. * Prepare a linear move in a Cartesian setup.
  6988. * If Mesh Bed Leveling is enabled, perform a mesh move.
  6989. */
  6990. inline bool prepare_move_to_destination_cartesian() {
  6991. // Do not use feedrate_percentage for E or Z only moves
  6992. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6993. line_to_destination();
  6994. }
  6995. else {
  6996. #if ENABLED(MESH_BED_LEVELING)
  6997. if (mbl.active()) {
  6998. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6999. return false;
  7000. }
  7001. else
  7002. #endif
  7003. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7004. }
  7005. return true;
  7006. }
  7007. #endif // !IS_KINEMATIC
  7008. #if ENABLED(DUAL_X_CARRIAGE)
  7009. /**
  7010. * Prepare a linear move in a dual X axis setup
  7011. */
  7012. inline bool prepare_move_to_destination_dualx() {
  7013. if (active_extruder_parked) {
  7014. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  7015. // move duplicate extruder into correct duplication position.
  7016. planner.set_position_mm(
  7017. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7018. current_position[Y_AXIS],
  7019. current_position[Z_AXIS],
  7020. current_position[E_AXIS]
  7021. );
  7022. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7023. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7024. SYNC_PLAN_POSITION_KINEMATIC();
  7025. stepper.synchronize();
  7026. extruder_duplication_enabled = true;
  7027. active_extruder_parked = false;
  7028. }
  7029. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  7030. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7031. // This is a travel move (with no extrusion)
  7032. // Skip it, but keep track of the current position
  7033. // (so it can be used as the start of the next non-travel move)
  7034. if (delayed_move_time != 0xFFFFFFFFUL) {
  7035. set_current_to_destination();
  7036. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7037. delayed_move_time = millis();
  7038. return false;
  7039. }
  7040. }
  7041. delayed_move_time = 0;
  7042. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7043. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7044. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7045. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7046. active_extruder_parked = false;
  7047. }
  7048. }
  7049. return true;
  7050. }
  7051. #endif // DUAL_X_CARRIAGE
  7052. /**
  7053. * Prepare a single move and get ready for the next one
  7054. *
  7055. * This may result in several calls to planner.buffer_line to
  7056. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7057. */
  7058. void prepare_move_to_destination() {
  7059. clamp_to_software_endstops(destination);
  7060. refresh_cmd_timeout();
  7061. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7062. if (!DEBUGGING(DRYRUN)) {
  7063. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7064. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7065. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7066. SERIAL_ECHO_START;
  7067. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7068. }
  7069. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7070. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7071. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7072. SERIAL_ECHO_START;
  7073. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7074. }
  7075. #endif
  7076. }
  7077. }
  7078. #endif
  7079. #if IS_KINEMATIC
  7080. if (!prepare_kinematic_move_to(destination)) return;
  7081. #else
  7082. #if ENABLED(DUAL_X_CARRIAGE)
  7083. if (!prepare_move_to_destination_dualx()) return;
  7084. #endif
  7085. if (!prepare_move_to_destination_cartesian()) return;
  7086. #endif
  7087. set_current_to_destination();
  7088. }
  7089. #if ENABLED(ARC_SUPPORT)
  7090. /**
  7091. * Plan an arc in 2 dimensions
  7092. *
  7093. * The arc is approximated by generating many small linear segments.
  7094. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7095. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7096. * larger segments will tend to be more efficient. Your slicer should have
  7097. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7098. */
  7099. void plan_arc(
  7100. float logical[NUM_AXIS], // Destination position
  7101. float* offset, // Center of rotation relative to current_position
  7102. uint8_t clockwise // Clockwise?
  7103. ) {
  7104. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7105. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7106. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7107. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7108. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7109. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7110. r_Y = -offset[Y_AXIS],
  7111. rt_X = logical[X_AXIS] - center_X,
  7112. rt_Y = logical[Y_AXIS] - center_Y;
  7113. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7114. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7115. if (angular_travel < 0) angular_travel += RADIANS(360);
  7116. if (clockwise) angular_travel -= RADIANS(360);
  7117. // Make a circle if the angular rotation is 0
  7118. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7119. angular_travel += RADIANS(360);
  7120. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7121. if (mm_of_travel < 0.001) return;
  7122. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7123. if (segments == 0) segments = 1;
  7124. float theta_per_segment = angular_travel / segments;
  7125. float linear_per_segment = linear_travel / segments;
  7126. float extruder_per_segment = extruder_travel / segments;
  7127. /**
  7128. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7129. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7130. * r_T = [cos(phi) -sin(phi);
  7131. * sin(phi) cos(phi] * r ;
  7132. *
  7133. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7134. * defined from the circle center to the initial position. Each line segment is formed by successive
  7135. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7136. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7137. * all double numbers are single precision on the Arduino. (True double precision will not have
  7138. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7139. * tool precision in some cases. Therefore, arc path correction is implemented.
  7140. *
  7141. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7142. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7143. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7144. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7145. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7146. * issue for CNC machines with the single precision Arduino calculations.
  7147. *
  7148. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7149. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7150. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7151. * This is important when there are successive arc motions.
  7152. */
  7153. // Vector rotation matrix values
  7154. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7155. float sin_T = theta_per_segment;
  7156. float arc_target[NUM_AXIS];
  7157. float sin_Ti, cos_Ti, r_new_Y;
  7158. uint16_t i;
  7159. int8_t count = 0;
  7160. // Initialize the linear axis
  7161. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7162. // Initialize the extruder axis
  7163. arc_target[E_AXIS] = current_position[E_AXIS];
  7164. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7165. millis_t next_idle_ms = millis() + 200UL;
  7166. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  7167. thermalManager.manage_heater();
  7168. millis_t now = millis();
  7169. if (ELAPSED(now, next_idle_ms)) {
  7170. next_idle_ms = now + 200UL;
  7171. idle();
  7172. }
  7173. if (++count < N_ARC_CORRECTION) {
  7174. // Apply vector rotation matrix to previous r_X / 1
  7175. r_new_Y = r_X * sin_T + r_Y * cos_T;
  7176. r_X = r_X * cos_T - r_Y * sin_T;
  7177. r_Y = r_new_Y;
  7178. }
  7179. else {
  7180. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7181. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7182. // To reduce stuttering, the sin and cos could be computed at different times.
  7183. // For now, compute both at the same time.
  7184. cos_Ti = cos(i * theta_per_segment);
  7185. sin_Ti = sin(i * theta_per_segment);
  7186. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7187. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7188. count = 0;
  7189. }
  7190. // Update arc_target location
  7191. arc_target[X_AXIS] = center_X + r_X;
  7192. arc_target[Y_AXIS] = center_Y + r_Y;
  7193. arc_target[Z_AXIS] += linear_per_segment;
  7194. arc_target[E_AXIS] += extruder_per_segment;
  7195. clamp_to_software_endstops(arc_target);
  7196. #if IS_KINEMATIC
  7197. inverse_kinematics(arc_target);
  7198. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7199. #else
  7200. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7201. #endif
  7202. }
  7203. // Ensure last segment arrives at target location.
  7204. #if IS_KINEMATIC
  7205. inverse_kinematics(logical);
  7206. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7207. #else
  7208. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7209. #endif
  7210. // As far as the parser is concerned, the position is now == target. In reality the
  7211. // motion control system might still be processing the action and the real tool position
  7212. // in any intermediate location.
  7213. set_current_to_destination();
  7214. }
  7215. #endif
  7216. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7217. void plan_cubic_move(const float offset[4]) {
  7218. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7219. // As far as the parser is concerned, the position is now == destination. In reality the
  7220. // motion control system might still be processing the action and the real tool position
  7221. // in any intermediate location.
  7222. set_current_to_destination();
  7223. }
  7224. #endif // BEZIER_CURVE_SUPPORT
  7225. #if HAS_CONTROLLERFAN
  7226. void controllerFan() {
  7227. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7228. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7229. millis_t ms = millis();
  7230. if (ELAPSED(ms, nextMotorCheck)) {
  7231. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7232. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7233. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7234. #if E_STEPPERS > 1
  7235. || E1_ENABLE_READ == E_ENABLE_ON
  7236. #if HAS_X2_ENABLE
  7237. || X2_ENABLE_READ == X_ENABLE_ON
  7238. #endif
  7239. #if E_STEPPERS > 2
  7240. || E2_ENABLE_READ == E_ENABLE_ON
  7241. #if E_STEPPERS > 3
  7242. || E3_ENABLE_READ == E_ENABLE_ON
  7243. #endif
  7244. #endif
  7245. #endif
  7246. ) {
  7247. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7248. }
  7249. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7250. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7251. // allows digital or PWM fan output to be used (see M42 handling)
  7252. digitalWrite(CONTROLLERFAN_PIN, speed);
  7253. analogWrite(CONTROLLERFAN_PIN, speed);
  7254. }
  7255. }
  7256. #endif // HAS_CONTROLLERFAN
  7257. #if ENABLED(MORGAN_SCARA)
  7258. /**
  7259. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7260. * Maths and first version by QHARLEY.
  7261. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7262. */
  7263. void forward_kinematics_SCARA(const float &a, const float &b) {
  7264. float a_sin = sin(RADIANS(a)) * L1,
  7265. a_cos = cos(RADIANS(a)) * L1,
  7266. b_sin = sin(RADIANS(b)) * L2,
  7267. b_cos = cos(RADIANS(b)) * L2;
  7268. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7269. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7270. /*
  7271. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7272. SERIAL_ECHOPAIR(" b=", b);
  7273. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7274. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7275. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7276. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7277. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7278. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7279. //*/
  7280. }
  7281. /**
  7282. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7283. *
  7284. * See http://forums.reprap.org/read.php?185,283327
  7285. *
  7286. * Maths and first version by QHARLEY.
  7287. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7288. */
  7289. void inverse_kinematics(const float logical[XYZ]) {
  7290. static float C2, S2, SK1, SK2, THETA, PSI;
  7291. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7292. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7293. if (L1 == L2)
  7294. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7295. else
  7296. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7297. S2 = sqrt(sq(C2) - 1);
  7298. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7299. SK1 = L1 + L2 * C2;
  7300. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7301. SK2 = L2 * S2;
  7302. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7303. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7304. // Angle of Arm2
  7305. PSI = atan2(S2, C2);
  7306. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7307. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7308. delta[C_AXIS] = logical[Z_AXIS];
  7309. /*
  7310. DEBUG_POS("SCARA IK", logical);
  7311. DEBUG_POS("SCARA IK", delta);
  7312. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7313. SERIAL_ECHOPAIR(",", sy);
  7314. SERIAL_ECHOPAIR(" C2=", C2);
  7315. SERIAL_ECHOPAIR(" S2=", S2);
  7316. SERIAL_ECHOPAIR(" Theta=", THETA);
  7317. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7318. //*/
  7319. }
  7320. #endif // MORGAN_SCARA
  7321. #if ENABLED(TEMP_STAT_LEDS)
  7322. static bool red_led = false;
  7323. static millis_t next_status_led_update_ms = 0;
  7324. void handle_status_leds(void) {
  7325. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7326. next_status_led_update_ms += 500; // Update every 0.5s
  7327. float max_temp = 0.0;
  7328. #if HAS_TEMP_BED
  7329. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7330. #endif
  7331. HOTEND_LOOP() {
  7332. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7333. }
  7334. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7335. if (new_led != red_led) {
  7336. red_led = new_led;
  7337. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  7338. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  7339. }
  7340. }
  7341. }
  7342. #endif
  7343. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7344. void handle_filament_runout() {
  7345. if (!filament_ran_out) {
  7346. filament_ran_out = true;
  7347. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7348. stepper.synchronize();
  7349. }
  7350. }
  7351. #endif // FILAMENT_RUNOUT_SENSOR
  7352. #if ENABLED(FAST_PWM_FAN)
  7353. void setPwmFrequency(uint8_t pin, int val) {
  7354. val &= 0x07;
  7355. switch (digitalPinToTimer(pin)) {
  7356. #if defined(TCCR0A)
  7357. case TIMER0A:
  7358. case TIMER0B:
  7359. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7360. // TCCR0B |= val;
  7361. break;
  7362. #endif
  7363. #if defined(TCCR1A)
  7364. case TIMER1A:
  7365. case TIMER1B:
  7366. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7367. // TCCR1B |= val;
  7368. break;
  7369. #endif
  7370. #if defined(TCCR2)
  7371. case TIMER2:
  7372. case TIMER2:
  7373. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7374. TCCR2 |= val;
  7375. break;
  7376. #endif
  7377. #if defined(TCCR2A)
  7378. case TIMER2A:
  7379. case TIMER2B:
  7380. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7381. TCCR2B |= val;
  7382. break;
  7383. #endif
  7384. #if defined(TCCR3A)
  7385. case TIMER3A:
  7386. case TIMER3B:
  7387. case TIMER3C:
  7388. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7389. TCCR3B |= val;
  7390. break;
  7391. #endif
  7392. #if defined(TCCR4A)
  7393. case TIMER4A:
  7394. case TIMER4B:
  7395. case TIMER4C:
  7396. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7397. TCCR4B |= val;
  7398. break;
  7399. #endif
  7400. #if defined(TCCR5A)
  7401. case TIMER5A:
  7402. case TIMER5B:
  7403. case TIMER5C:
  7404. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7405. TCCR5B |= val;
  7406. break;
  7407. #endif
  7408. }
  7409. }
  7410. #endif // FAST_PWM_FAN
  7411. float calculate_volumetric_multiplier(float diameter) {
  7412. if (!volumetric_enabled || diameter == 0) return 1.0;
  7413. float d2 = diameter * 0.5;
  7414. return 1.0 / (M_PI * d2 * d2);
  7415. }
  7416. void calculate_volumetric_multipliers() {
  7417. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7418. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7419. }
  7420. void enable_all_steppers() {
  7421. enable_x();
  7422. enable_y();
  7423. enable_z();
  7424. enable_e0();
  7425. enable_e1();
  7426. enable_e2();
  7427. enable_e3();
  7428. }
  7429. void disable_all_steppers() {
  7430. disable_x();
  7431. disable_y();
  7432. disable_z();
  7433. disable_e0();
  7434. disable_e1();
  7435. disable_e2();
  7436. disable_e3();
  7437. }
  7438. /**
  7439. * Manage several activities:
  7440. * - Check for Filament Runout
  7441. * - Keep the command buffer full
  7442. * - Check for maximum inactive time between commands
  7443. * - Check for maximum inactive time between stepper commands
  7444. * - Check if pin CHDK needs to go LOW
  7445. * - Check for KILL button held down
  7446. * - Check for HOME button held down
  7447. * - Check if cooling fan needs to be switched on
  7448. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7449. */
  7450. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7451. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7452. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7453. handle_filament_runout();
  7454. #endif
  7455. if (commands_in_queue < BUFSIZE) get_available_commands();
  7456. millis_t ms = millis();
  7457. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7458. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7459. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7460. #if ENABLED(DISABLE_INACTIVE_X)
  7461. disable_x();
  7462. #endif
  7463. #if ENABLED(DISABLE_INACTIVE_Y)
  7464. disable_y();
  7465. #endif
  7466. #if ENABLED(DISABLE_INACTIVE_Z)
  7467. disable_z();
  7468. #endif
  7469. #if ENABLED(DISABLE_INACTIVE_E)
  7470. disable_e0();
  7471. disable_e1();
  7472. disable_e2();
  7473. disable_e3();
  7474. #endif
  7475. }
  7476. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7477. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7478. chdkActive = false;
  7479. WRITE(CHDK, LOW);
  7480. }
  7481. #endif
  7482. #if HAS_KILL
  7483. // Check if the kill button was pressed and wait just in case it was an accidental
  7484. // key kill key press
  7485. // -------------------------------------------------------------------------------
  7486. static int killCount = 0; // make the inactivity button a bit less responsive
  7487. const int KILL_DELAY = 750;
  7488. if (!READ(KILL_PIN))
  7489. killCount++;
  7490. else if (killCount > 0)
  7491. killCount--;
  7492. // Exceeded threshold and we can confirm that it was not accidental
  7493. // KILL the machine
  7494. // ----------------------------------------------------------------
  7495. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7496. #endif
  7497. #if HAS_HOME
  7498. // Check to see if we have to home, use poor man's debouncer
  7499. // ---------------------------------------------------------
  7500. static int homeDebounceCount = 0; // poor man's debouncing count
  7501. const int HOME_DEBOUNCE_DELAY = 2500;
  7502. if (!READ(HOME_PIN)) {
  7503. if (!homeDebounceCount) {
  7504. enqueue_and_echo_commands_P(PSTR("G28"));
  7505. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7506. }
  7507. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7508. homeDebounceCount++;
  7509. else
  7510. homeDebounceCount = 0;
  7511. }
  7512. #endif
  7513. #if HAS_CONTROLLERFAN
  7514. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7515. #endif
  7516. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7517. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7518. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7519. bool oldstatus;
  7520. #if ENABLED(SWITCHING_EXTRUDER)
  7521. oldstatus = E0_ENABLE_READ;
  7522. enable_e0();
  7523. #else // !SWITCHING_EXTRUDER
  7524. switch (active_extruder) {
  7525. case 0:
  7526. oldstatus = E0_ENABLE_READ;
  7527. enable_e0();
  7528. break;
  7529. #if E_STEPPERS > 1
  7530. case 1:
  7531. oldstatus = E1_ENABLE_READ;
  7532. enable_e1();
  7533. break;
  7534. #if E_STEPPERS > 2
  7535. case 2:
  7536. oldstatus = E2_ENABLE_READ;
  7537. enable_e2();
  7538. break;
  7539. #if E_STEPPERS > 3
  7540. case 3:
  7541. oldstatus = E3_ENABLE_READ;
  7542. enable_e3();
  7543. break;
  7544. #endif
  7545. #endif
  7546. #endif
  7547. }
  7548. #endif // !SWITCHING_EXTRUDER
  7549. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7550. planner.buffer_line(
  7551. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7552. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7553. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7554. );
  7555. stepper.synchronize();
  7556. planner.set_e_position_mm(current_position[E_AXIS]);
  7557. #if ENABLED(SWITCHING_EXTRUDER)
  7558. E0_ENABLE_WRITE(oldstatus);
  7559. #else
  7560. switch (active_extruder) {
  7561. case 0:
  7562. E0_ENABLE_WRITE(oldstatus);
  7563. break;
  7564. #if E_STEPPERS > 1
  7565. case 1:
  7566. E1_ENABLE_WRITE(oldstatus);
  7567. break;
  7568. #if E_STEPPERS > 2
  7569. case 2:
  7570. E2_ENABLE_WRITE(oldstatus);
  7571. break;
  7572. #if E_STEPPERS > 3
  7573. case 3:
  7574. E3_ENABLE_WRITE(oldstatus);
  7575. break;
  7576. #endif
  7577. #endif
  7578. #endif
  7579. }
  7580. #endif // !SWITCHING_EXTRUDER
  7581. }
  7582. #endif // EXTRUDER_RUNOUT_PREVENT
  7583. #if ENABLED(DUAL_X_CARRIAGE)
  7584. // handle delayed move timeout
  7585. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7586. // travel moves have been received so enact them
  7587. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7588. set_destination_to_current();
  7589. prepare_move_to_destination();
  7590. }
  7591. #endif
  7592. #if ENABLED(TEMP_STAT_LEDS)
  7593. handle_status_leds();
  7594. #endif
  7595. planner.check_axes_activity();
  7596. }
  7597. /**
  7598. * Standard idle routine keeps the machine alive
  7599. */
  7600. void idle(
  7601. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7602. bool no_stepper_sleep/*=false*/
  7603. #endif
  7604. ) {
  7605. lcd_update();
  7606. host_keepalive();
  7607. manage_inactivity(
  7608. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7609. no_stepper_sleep
  7610. #endif
  7611. );
  7612. thermalManager.manage_heater();
  7613. #if ENABLED(PRINTCOUNTER)
  7614. print_job_timer.tick();
  7615. #endif
  7616. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7617. buzzer.tick();
  7618. #endif
  7619. }
  7620. /**
  7621. * Kill all activity and lock the machine.
  7622. * After this the machine will need to be reset.
  7623. */
  7624. void kill(const char* lcd_msg) {
  7625. SERIAL_ERROR_START;
  7626. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7627. #if ENABLED(ULTRA_LCD)
  7628. kill_screen(lcd_msg);
  7629. #else
  7630. UNUSED(lcd_msg);
  7631. #endif
  7632. delay(500); // Wait a short time
  7633. cli(); // Stop interrupts
  7634. thermalManager.disable_all_heaters();
  7635. disable_all_steppers();
  7636. #if HAS_POWER_SWITCH
  7637. pinMode(PS_ON_PIN, INPUT);
  7638. #endif
  7639. suicide();
  7640. while (1) {
  7641. #if ENABLED(USE_WATCHDOG)
  7642. watchdog_reset();
  7643. #endif
  7644. } // Wait for reset
  7645. }
  7646. /**
  7647. * Turn off heaters and stop the print in progress
  7648. * After a stop the machine may be resumed with M999
  7649. */
  7650. void stop() {
  7651. thermalManager.disable_all_heaters();
  7652. if (IsRunning()) {
  7653. Running = false;
  7654. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7655. SERIAL_ERROR_START;
  7656. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7657. LCD_MESSAGEPGM(MSG_STOPPED);
  7658. }
  7659. }
  7660. /**
  7661. * Marlin entry-point: Set up before the program loop
  7662. * - Set up the kill pin, filament runout, power hold
  7663. * - Start the serial port
  7664. * - Print startup messages and diagnostics
  7665. * - Get EEPROM or default settings
  7666. * - Initialize managers for:
  7667. * • temperature
  7668. * • planner
  7669. * • watchdog
  7670. * • stepper
  7671. * • photo pin
  7672. * • servos
  7673. * • LCD controller
  7674. * • Digipot I2C
  7675. * • Z probe sled
  7676. * • status LEDs
  7677. */
  7678. void setup() {
  7679. #ifdef DISABLE_JTAG
  7680. // Disable JTAG on AT90USB chips to free up pins for IO
  7681. MCUCR = 0x80;
  7682. MCUCR = 0x80;
  7683. #endif
  7684. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7685. setup_filrunoutpin();
  7686. #endif
  7687. setup_killpin();
  7688. setup_powerhold();
  7689. #if HAS_STEPPER_RESET
  7690. disableStepperDrivers();
  7691. #endif
  7692. MYSERIAL.begin(BAUDRATE);
  7693. SERIAL_PROTOCOLLNPGM("start");
  7694. SERIAL_ECHO_START;
  7695. // Check startup - does nothing if bootloader sets MCUSR to 0
  7696. byte mcu = MCUSR;
  7697. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7698. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7699. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7700. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7701. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7702. MCUSR = 0;
  7703. SERIAL_ECHOPGM(MSG_MARLIN);
  7704. SERIAL_CHAR(' ');
  7705. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7706. SERIAL_EOL;
  7707. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7708. SERIAL_ECHO_START;
  7709. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7710. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7711. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7712. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7713. #endif
  7714. SERIAL_ECHO_START;
  7715. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7716. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7717. // Send "ok" after commands by default
  7718. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7719. // Load data from EEPROM if available (or use defaults)
  7720. // This also updates variables in the planner, elsewhere
  7721. Config_RetrieveSettings();
  7722. // Initialize current position based on home_offset
  7723. memcpy(current_position, home_offset, sizeof(home_offset));
  7724. // Vital to init stepper/planner equivalent for current_position
  7725. SYNC_PLAN_POSITION_KINEMATIC();
  7726. thermalManager.init(); // Initialize temperature loop
  7727. #if ENABLED(USE_WATCHDOG)
  7728. watchdog_init();
  7729. #endif
  7730. stepper.init(); // Initialize stepper, this enables interrupts!
  7731. setup_photpin();
  7732. servo_init();
  7733. #if HAS_BED_PROBE
  7734. endstops.enable_z_probe(false);
  7735. #endif
  7736. #if HAS_CONTROLLERFAN
  7737. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7738. #endif
  7739. #if HAS_STEPPER_RESET
  7740. enableStepperDrivers();
  7741. #endif
  7742. #if ENABLED(DIGIPOT_I2C)
  7743. digipot_i2c_init();
  7744. #endif
  7745. #if ENABLED(DAC_STEPPER_CURRENT)
  7746. dac_init();
  7747. #endif
  7748. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7749. OUT_WRITE(SLED_PIN, LOW); // turn it off
  7750. #endif // Z_PROBE_SLED
  7751. setup_homepin();
  7752. #if PIN_EXISTS(STAT_LED_RED)
  7753. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  7754. #endif
  7755. #if PIN_EXISTS(STAT_LED_BLUE)
  7756. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  7757. #endif
  7758. lcd_init();
  7759. #if ENABLED(SHOW_BOOTSCREEN)
  7760. #if ENABLED(DOGLCD)
  7761. safe_delay(BOOTSCREEN_TIMEOUT);
  7762. #elif ENABLED(ULTRA_LCD)
  7763. bootscreen();
  7764. lcd_init();
  7765. #endif
  7766. #endif
  7767. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7768. // Initialize mixing to 100% color 1
  7769. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7770. mixing_factor[i] = (i == 0) ? 1 : 0;
  7771. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7772. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7773. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7774. #endif
  7775. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7776. i2c.onReceive(i2c_on_receive);
  7777. i2c.onRequest(i2c_on_request);
  7778. #endif
  7779. }
  7780. /**
  7781. * The main Marlin program loop
  7782. *
  7783. * - Save or log commands to SD
  7784. * - Process available commands (if not saving)
  7785. * - Call heater manager
  7786. * - Call inactivity manager
  7787. * - Call endstop manager
  7788. * - Call LCD update
  7789. */
  7790. void loop() {
  7791. if (commands_in_queue < BUFSIZE) get_available_commands();
  7792. #if ENABLED(SDSUPPORT)
  7793. card.checkautostart(false);
  7794. #endif
  7795. if (commands_in_queue) {
  7796. #if ENABLED(SDSUPPORT)
  7797. if (card.saving) {
  7798. char* command = command_queue[cmd_queue_index_r];
  7799. if (strstr_P(command, PSTR("M29"))) {
  7800. // M29 closes the file
  7801. card.closefile();
  7802. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7803. ok_to_send();
  7804. }
  7805. else {
  7806. // Write the string from the read buffer to SD
  7807. card.write_command(command);
  7808. if (card.logging)
  7809. process_next_command(); // The card is saving because it's logging
  7810. else
  7811. ok_to_send();
  7812. }
  7813. }
  7814. else
  7815. process_next_command();
  7816. #else
  7817. process_next_command();
  7818. #endif // SDSUPPORT
  7819. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7820. if (commands_in_queue) {
  7821. --commands_in_queue;
  7822. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7823. }
  7824. }
  7825. endstops.report_state();
  7826. idle();
  7827. }