My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  187. #endif
  188. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  189. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  190. int feedmultiply = 100; //100->1 200->2
  191. int saved_feedmultiply;
  192. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  193. bool volumetric_enabled = false;
  194. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  195. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  196. float current_position[NUM_AXIS] = { 0.0 };
  197. float home_offset[3] = { 0 };
  198. #ifdef DELTA
  199. float endstop_adj[3] = { 0 };
  200. #elif defined(Z_DUAL_ENDSTOPS)
  201. float z_endstop_adj = 0;
  202. #endif
  203. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  204. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  205. bool axis_known_position[3] = { false };
  206. // Extruder offset
  207. #if EXTRUDERS > 1
  208. #ifndef EXTRUDER_OFFSET_X
  209. #define EXTRUDER_OFFSET_X 0
  210. #endif
  211. #ifndef EXTRUDER_OFFSET_Y
  212. #define EXTRUDER_OFFSET_Y 0
  213. #endif
  214. #ifndef DUAL_X_CARRIAGE
  215. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  216. #else
  217. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  218. #endif
  219. #define _EXY { EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y }
  220. float extruder_offset[EXTRUDERS][NUM_EXTRUDER_OFFSETS] = ARRAY_BY_EXTRUDERS(_EXY, _EXY, _EXY, _EXY);
  221. #endif
  222. uint8_t active_extruder = 0;
  223. int fanSpeed = 0;
  224. #ifdef SERVO_ENDSTOPS
  225. int servo_endstops[] = SERVO_ENDSTOPS;
  226. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  227. #endif
  228. #ifdef BARICUDA
  229. int ValvePressure = 0;
  230. int EtoPPressure = 0;
  231. #endif
  232. #ifdef FWRETRACT
  233. bool autoretract_enabled = false;
  234. bool retracted[EXTRUDERS] = { false };
  235. bool retracted_swap[EXTRUDERS] = { false };
  236. float retract_length = RETRACT_LENGTH;
  237. float retract_length_swap = RETRACT_LENGTH_SWAP;
  238. float retract_feedrate = RETRACT_FEEDRATE;
  239. float retract_zlift = RETRACT_ZLIFT;
  240. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  241. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  242. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  243. #endif // FWRETRACT
  244. #ifdef ULTIPANEL
  245. bool powersupply =
  246. #ifdef PS_DEFAULT_OFF
  247. false
  248. #else
  249. true
  250. #endif
  251. ;
  252. #endif
  253. #ifdef DELTA
  254. float delta[3] = { 0, 0, 0 };
  255. #define SIN_60 0.8660254037844386
  256. #define COS_60 0.5
  257. // these are the default values, can be overriden with M665
  258. float delta_radius = DELTA_RADIUS;
  259. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  260. float delta_tower1_y = -COS_60 * delta_radius;
  261. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  262. float delta_tower2_y = -COS_60 * delta_radius;
  263. float delta_tower3_x = 0; // back middle tower
  264. float delta_tower3_y = delta_radius;
  265. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  266. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  267. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  268. #ifdef ENABLE_AUTO_BED_LEVELING
  269. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  270. #endif
  271. #endif
  272. #ifdef SCARA
  273. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  274. static float delta[3] = { 0, 0, 0 };
  275. #endif
  276. bool cancel_heatup = false;
  277. #ifdef FILAMENT_SENSOR
  278. //Variables for Filament Sensor input
  279. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  280. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  281. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  282. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  283. int delay_index1=0; //index into ring buffer
  284. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  285. float delay_dist=0; //delay distance counter
  286. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  287. #endif
  288. #ifdef FILAMENT_RUNOUT_SENSOR
  289. static bool filrunoutEnqued = false;
  290. #endif
  291. const char errormagic[] PROGMEM = "Error:";
  292. const char echomagic[] PROGMEM = "echo:";
  293. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  294. static float destination[NUM_AXIS] = { 0 };
  295. static float offset[3] = { 0 };
  296. #ifndef DELTA
  297. static bool home_all_axis = true;
  298. #endif
  299. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  300. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  301. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  302. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  303. #ifdef SDSUPPORT
  304. static bool fromsd[BUFSIZE];
  305. #endif
  306. static int bufindr = 0;
  307. static int bufindw = 0;
  308. static int buflen = 0;
  309. static char serial_char;
  310. static int serial_count = 0;
  311. static boolean comment_mode = false;
  312. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  313. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  314. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  315. // Inactivity shutdown
  316. static unsigned long previous_millis_cmd = 0;
  317. static unsigned long max_inactive_time = 0;
  318. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  319. unsigned long starttime = 0; ///< Print job start time
  320. unsigned long stoptime = 0; ///< Print job stop time
  321. static uint8_t tmp_extruder;
  322. bool Stopped = false;
  323. #if NUM_SERVOS > 0
  324. Servo servos[NUM_SERVOS];
  325. #endif
  326. bool CooldownNoWait = true;
  327. bool target_direction;
  328. #ifdef CHDK
  329. unsigned long chdkHigh = 0;
  330. boolean chdkActive = false;
  331. #endif
  332. //===========================================================================
  333. //=============================Routines======================================
  334. //===========================================================================
  335. void get_arc_coordinates();
  336. bool setTargetedHotend(int code);
  337. void serial_echopair_P(const char *s_P, float v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. void serial_echopair_P(const char *s_P, double v)
  340. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  341. void serial_echopair_P(const char *s_P, unsigned long v)
  342. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  343. #ifdef SDSUPPORT
  344. #include "SdFatUtil.h"
  345. int freeMemory() { return SdFatUtil::FreeRam(); }
  346. #else
  347. extern "C" {
  348. extern unsigned int __bss_end;
  349. extern unsigned int __heap_start;
  350. extern void *__brkval;
  351. int freeMemory() {
  352. int free_memory;
  353. if ((int)__brkval == 0)
  354. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  355. else
  356. free_memory = ((int)&free_memory) - ((int)__brkval);
  357. return free_memory;
  358. }
  359. }
  360. #endif //!SDSUPPORT
  361. //Injects the next command from the pending sequence of commands, when possible
  362. //Return false if and only if no command was pending
  363. static bool drain_queued_commands_P()
  364. {
  365. char cmd[30];
  366. if(!queued_commands_P)
  367. return false;
  368. // Get the next 30 chars from the sequence of gcodes to run
  369. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  370. cmd[sizeof(cmd)-1]= 0;
  371. // Look for the end of line, or the end of sequence
  372. size_t i= 0;
  373. char c;
  374. while( (c= cmd[i]) && c!='\n' )
  375. ++i; // look for the end of this gcode command
  376. cmd[i]= 0;
  377. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  378. {
  379. if(c)
  380. queued_commands_P+= i+1; // move to next command
  381. else
  382. queued_commands_P= NULL; // will have no more commands in the sequence
  383. }
  384. return true;
  385. }
  386. //Record one or many commands to run from program memory.
  387. //Aborts the current queue, if any.
  388. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  389. void enquecommands_P(const char* pgcode)
  390. {
  391. queued_commands_P= pgcode;
  392. drain_queued_commands_P(); // first command exectuted asap (when possible)
  393. }
  394. //adds a single command to the main command buffer, from RAM
  395. //that is really done in a non-safe way.
  396. //needs overworking someday
  397. //Returns false if it failed to do so
  398. bool enquecommand(const char *cmd)
  399. {
  400. if(*cmd==';')
  401. return false;
  402. if(buflen >= BUFSIZE)
  403. return false;
  404. //this is dangerous if a mixing of serial and this happens
  405. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  406. SERIAL_ECHO_START;
  407. SERIAL_ECHOPGM(MSG_Enqueing);
  408. SERIAL_ECHO(cmdbuffer[bufindw]);
  409. SERIAL_ECHOLNPGM("\"");
  410. bufindw= (bufindw + 1)%BUFSIZE;
  411. buflen += 1;
  412. return true;
  413. }
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. void setup_filrunoutpin()
  422. {
  423. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  424. pinMode(FILRUNOUT_PIN,INPUT);
  425. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  426. WRITE(FILLRUNOUT_PIN,HIGH);
  427. #endif
  428. #endif
  429. }
  430. // Set home pin
  431. void setup_homepin(void)
  432. {
  433. #if defined(HOME_PIN) && HOME_PIN > -1
  434. SET_INPUT(HOME_PIN);
  435. WRITE(HOME_PIN,HIGH);
  436. #endif
  437. }
  438. void setup_photpin()
  439. {
  440. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  441. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  442. #endif
  443. }
  444. void setup_powerhold()
  445. {
  446. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  447. OUT_WRITE(SUICIDE_PIN, HIGH);
  448. #endif
  449. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  450. #if defined(PS_DEFAULT_OFF)
  451. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  452. #else
  453. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  454. #endif
  455. #endif
  456. }
  457. void suicide()
  458. {
  459. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  460. OUT_WRITE(SUICIDE_PIN, LOW);
  461. #endif
  462. }
  463. void servo_init()
  464. {
  465. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  466. servos[0].attach(SERVO0_PIN);
  467. #endif
  468. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  469. servos[1].attach(SERVO1_PIN);
  470. #endif
  471. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  472. servos[2].attach(SERVO2_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  475. servos[3].attach(SERVO3_PIN);
  476. #endif
  477. #if (NUM_SERVOS >= 5)
  478. #error "TODO: enter initalisation code for more servos"
  479. #endif
  480. // Set position of Servo Endstops that are defined
  481. #ifdef SERVO_ENDSTOPS
  482. for(int8_t i = 0; i < 3; i++)
  483. {
  484. if(servo_endstops[i] > -1) {
  485. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  486. }
  487. }
  488. #endif
  489. #if SERVO_LEVELING
  490. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  491. servos[servo_endstops[Z_AXIS]].detach();
  492. #endif
  493. }
  494. void setup()
  495. {
  496. setup_killpin();
  497. setup_filrunoutpin();
  498. setup_powerhold();
  499. MYSERIAL.begin(BAUDRATE);
  500. SERIAL_PROTOCOLLNPGM("start");
  501. SERIAL_ECHO_START;
  502. // Check startup - does nothing if bootloader sets MCUSR to 0
  503. byte mcu = MCUSR;
  504. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  505. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  506. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  507. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  508. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  509. MCUSR=0;
  510. SERIAL_ECHOPGM(MSG_MARLIN);
  511. SERIAL_ECHOLNPGM(STRING_VERSION);
  512. #ifdef STRING_VERSION_CONFIG_H
  513. #ifdef STRING_CONFIG_H_AUTHOR
  514. SERIAL_ECHO_START;
  515. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  516. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  517. SERIAL_ECHOPGM(MSG_AUTHOR);
  518. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  519. SERIAL_ECHOPGM("Compiled: ");
  520. SERIAL_ECHOLNPGM(__DATE__);
  521. #endif // STRING_CONFIG_H_AUTHOR
  522. #endif // STRING_VERSION_CONFIG_H
  523. SERIAL_ECHO_START;
  524. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  525. SERIAL_ECHO(freeMemory());
  526. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  527. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  528. #ifdef SDSUPPORT
  529. for(int8_t i = 0; i < BUFSIZE; i++)
  530. {
  531. fromsd[i] = false;
  532. }
  533. #endif //!SDSUPPORT
  534. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  535. Config_RetrieveSettings();
  536. tp_init(); // Initialize temperature loop
  537. plan_init(); // Initialize planner;
  538. watchdog_init();
  539. st_init(); // Initialize stepper, this enables interrupts!
  540. setup_photpin();
  541. servo_init();
  542. lcd_init();
  543. _delay_ms(1000); // wait 1sec to display the splash screen
  544. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  545. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  546. #endif
  547. #ifdef DIGIPOT_I2C
  548. digipot_i2c_init();
  549. #endif
  550. #ifdef Z_PROBE_SLED
  551. pinMode(SERVO0_PIN, OUTPUT);
  552. digitalWrite(SERVO0_PIN, LOW); // turn it off
  553. #endif // Z_PROBE_SLED
  554. setup_homepin();
  555. #ifdef STAT_LED_RED
  556. pinMode(STAT_LED_RED, OUTPUT);
  557. digitalWrite(STAT_LED_RED, LOW); // turn it off
  558. #endif
  559. #ifdef STAT_LED_BLUE
  560. pinMode(STAT_LED_BLUE, OUTPUT);
  561. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  562. #endif
  563. }
  564. void loop()
  565. {
  566. if(buflen < (BUFSIZE-1))
  567. get_command();
  568. #ifdef SDSUPPORT
  569. card.checkautostart(false);
  570. #endif
  571. if(buflen)
  572. {
  573. #ifdef SDSUPPORT
  574. if(card.saving)
  575. {
  576. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  577. {
  578. card.write_command(cmdbuffer[bufindr]);
  579. if(card.logging)
  580. {
  581. process_commands();
  582. }
  583. else
  584. {
  585. SERIAL_PROTOCOLLNPGM(MSG_OK);
  586. }
  587. }
  588. else
  589. {
  590. card.closefile();
  591. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  592. }
  593. }
  594. else
  595. {
  596. process_commands();
  597. }
  598. #else
  599. process_commands();
  600. #endif //SDSUPPORT
  601. buflen = (buflen-1);
  602. bufindr = (bufindr + 1)%BUFSIZE;
  603. }
  604. //check heater every n milliseconds
  605. manage_heater();
  606. manage_inactivity();
  607. checkHitEndstops();
  608. lcd_update();
  609. }
  610. void get_command()
  611. {
  612. if(drain_queued_commands_P()) // priority is given to non-serial commands
  613. return;
  614. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  615. serial_char = MYSERIAL.read();
  616. if(serial_char == '\n' ||
  617. serial_char == '\r' ||
  618. serial_count >= (MAX_CMD_SIZE - 1) )
  619. {
  620. // end of line == end of comment
  621. comment_mode = false;
  622. if(!serial_count) {
  623. // short cut for empty lines
  624. return;
  625. }
  626. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  627. #ifdef SDSUPPORT
  628. fromsd[bufindw] = false;
  629. #endif //!SDSUPPORT
  630. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  631. {
  632. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  633. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  634. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  635. SERIAL_ERROR_START;
  636. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  637. SERIAL_ERRORLN(gcode_LastN);
  638. //Serial.println(gcode_N);
  639. FlushSerialRequestResend();
  640. serial_count = 0;
  641. return;
  642. }
  643. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  644. {
  645. byte checksum = 0;
  646. byte count = 0;
  647. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  648. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  649. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  650. SERIAL_ERROR_START;
  651. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  652. SERIAL_ERRORLN(gcode_LastN);
  653. FlushSerialRequestResend();
  654. serial_count = 0;
  655. return;
  656. }
  657. //if no errors, continue parsing
  658. }
  659. else
  660. {
  661. SERIAL_ERROR_START;
  662. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  663. SERIAL_ERRORLN(gcode_LastN);
  664. FlushSerialRequestResend();
  665. serial_count = 0;
  666. return;
  667. }
  668. gcode_LastN = gcode_N;
  669. //if no errors, continue parsing
  670. }
  671. else // if we don't receive 'N' but still see '*'
  672. {
  673. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  674. {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. serial_count = 0;
  679. return;
  680. }
  681. }
  682. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  683. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  684. switch(strtol(strchr_pointer + 1, NULL, 10)){
  685. case 0:
  686. case 1:
  687. case 2:
  688. case 3:
  689. if (Stopped == true) {
  690. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  691. LCD_MESSAGEPGM(MSG_STOPPED);
  692. }
  693. break;
  694. default:
  695. break;
  696. }
  697. }
  698. //If command was e-stop process now
  699. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  700. kill();
  701. bufindw = (bufindw + 1)%BUFSIZE;
  702. buflen += 1;
  703. serial_count = 0; //clear buffer
  704. }
  705. else if(serial_char == '\\') { //Handle escapes
  706. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  707. // if we have one more character, copy it over
  708. serial_char = MYSERIAL.read();
  709. cmdbuffer[bufindw][serial_count++] = serial_char;
  710. }
  711. //otherwise do nothing
  712. }
  713. else { // its not a newline, carriage return or escape char
  714. if(serial_char == ';') comment_mode = true;
  715. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  716. }
  717. }
  718. #ifdef SDSUPPORT
  719. if(!card.sdprinting || serial_count!=0){
  720. return;
  721. }
  722. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  723. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  724. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  725. static bool stop_buffering=false;
  726. if(buflen==0) stop_buffering=false;
  727. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  728. int16_t n=card.get();
  729. serial_char = (char)n;
  730. if(serial_char == '\n' ||
  731. serial_char == '\r' ||
  732. (serial_char == '#' && comment_mode == false) ||
  733. (serial_char == ':' && comment_mode == false) ||
  734. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  735. {
  736. if(card.eof()){
  737. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  738. stoptime=millis();
  739. char time[30];
  740. unsigned long t=(stoptime-starttime)/1000;
  741. int hours, minutes;
  742. minutes=(t/60)%60;
  743. hours=t/60/60;
  744. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  745. SERIAL_ECHO_START;
  746. SERIAL_ECHOLN(time);
  747. lcd_setstatus(time);
  748. card.printingHasFinished();
  749. card.checkautostart(true);
  750. }
  751. if(serial_char=='#')
  752. stop_buffering=true;
  753. if(!serial_count)
  754. {
  755. comment_mode = false; //for new command
  756. return; //if empty line
  757. }
  758. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  759. // if(!comment_mode){
  760. fromsd[bufindw] = true;
  761. buflen += 1;
  762. bufindw = (bufindw + 1)%BUFSIZE;
  763. // }
  764. comment_mode = false; //for new command
  765. serial_count = 0; //clear buffer
  766. }
  767. else
  768. {
  769. if(serial_char == ';') comment_mode = true;
  770. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  771. }
  772. }
  773. #endif //SDSUPPORT
  774. }
  775. float code_value() {
  776. float ret;
  777. char *e = strchr(strchr_pointer, 'E');
  778. if (e) {
  779. *e = 0;
  780. ret = strtod(strchr_pointer+1, NULL);
  781. *e = 'E';
  782. }
  783. else
  784. ret = strtod(strchr_pointer+1, NULL);
  785. return ret;
  786. }
  787. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  788. bool code_seen(char code) {
  789. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  790. return (strchr_pointer != NULL); //Return True if a character was found
  791. }
  792. #define DEFINE_PGM_READ_ANY(type, reader) \
  793. static inline type pgm_read_any(const type *p) \
  794. { return pgm_read_##reader##_near(p); }
  795. DEFINE_PGM_READ_ANY(float, float);
  796. DEFINE_PGM_READ_ANY(signed char, byte);
  797. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  798. static const PROGMEM type array##_P[3] = \
  799. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  800. static inline type array(int axis) \
  801. { return pgm_read_any(&array##_P[axis]); }
  802. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  803. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  804. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  805. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  806. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  807. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  808. #ifdef DUAL_X_CARRIAGE
  809. #define DXC_FULL_CONTROL_MODE 0
  810. #define DXC_AUTO_PARK_MODE 1
  811. #define DXC_DUPLICATION_MODE 2
  812. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  813. static float x_home_pos(int extruder) {
  814. if (extruder == 0)
  815. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  816. else
  817. // In dual carriage mode the extruder offset provides an override of the
  818. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  819. // This allow soft recalibration of the second extruder offset position without firmware reflash
  820. // (through the M218 command).
  821. return (extruder_offset[1][X_AXIS] > 0) ? extruder_offset[1][X_AXIS] : X2_HOME_POS;
  822. }
  823. static int x_home_dir(int extruder) {
  824. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  825. }
  826. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  827. static bool active_extruder_parked = false; // used in mode 1 & 2
  828. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  829. static unsigned long delayed_move_time = 0; // used in mode 1
  830. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  831. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  832. bool extruder_duplication_enabled = false; // used in mode 2
  833. #endif //DUAL_X_CARRIAGE
  834. static void axis_is_at_home(int axis) {
  835. #ifdef DUAL_X_CARRIAGE
  836. if (axis == X_AXIS) {
  837. if (active_extruder != 0) {
  838. current_position[X_AXIS] = x_home_pos(active_extruder);
  839. min_pos[X_AXIS] = X2_MIN_POS;
  840. max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
  841. return;
  842. }
  843. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  844. float xoff = home_offset[X_AXIS];
  845. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  846. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  847. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
  848. return;
  849. }
  850. }
  851. #endif
  852. #ifdef SCARA
  853. float homeposition[3];
  854. if (axis < 2) {
  855. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  856. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  857. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  858. // Works out real Homeposition angles using inverse kinematics,
  859. // and calculates homing offset using forward kinematics
  860. calculate_delta(homeposition);
  861. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  862. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  863. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  864. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  865. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  866. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  867. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  868. calculate_SCARA_forward_Transform(delta);
  869. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  870. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  871. current_position[axis] = delta[axis];
  872. // SCARA home positions are based on configuration since the actual limits are determined by the
  873. // inverse kinematic transform.
  874. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  875. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  876. }
  877. else {
  878. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  879. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  880. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  881. }
  882. #else
  883. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  884. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  885. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  886. #endif
  887. }
  888. /**
  889. * Some planner shorthand inline functions
  890. */
  891. inline void line_to_current_position() {
  892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  893. }
  894. inline void line_to_z(float zPosition) {
  895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  896. }
  897. inline void line_to_destination() {
  898. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  899. }
  900. inline void sync_plan_position() {
  901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  902. }
  903. #ifdef ENABLE_AUTO_BED_LEVELING
  904. #ifdef AUTO_BED_LEVELING_GRID
  905. #ifndef DELTA
  906. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  907. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  908. planeNormal.debug("planeNormal");
  909. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  910. //bedLevel.debug("bedLevel");
  911. //plan_bed_level_matrix.debug("bed level before");
  912. //vector_3 uncorrected_position = plan_get_position_mm();
  913. //uncorrected_position.debug("position before");
  914. vector_3 corrected_position = plan_get_position();
  915. //corrected_position.debug("position after");
  916. current_position[X_AXIS] = corrected_position.x;
  917. current_position[Y_AXIS] = corrected_position.y;
  918. current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
  919. sync_plan_position();
  920. }
  921. #endif // !DELTA
  922. #else // !AUTO_BED_LEVELING_GRID
  923. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  924. plan_bed_level_matrix.set_to_identity();
  925. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  926. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  927. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  928. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  929. if (planeNormal.z < 0) {
  930. planeNormal.x = -planeNormal.x;
  931. planeNormal.y = -planeNormal.y;
  932. planeNormal.z = -planeNormal.z;
  933. }
  934. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  935. vector_3 corrected_position = plan_get_position();
  936. current_position[X_AXIS] = corrected_position.x;
  937. current_position[Y_AXIS] = corrected_position.y;
  938. current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
  939. sync_plan_position();
  940. }
  941. #endif // !AUTO_BED_LEVELING_GRID
  942. static void run_z_probe() {
  943. #ifdef DELTA
  944. float start_z = current_position[Z_AXIS];
  945. long start_steps = st_get_position(Z_AXIS);
  946. // move down slowly until you find the bed
  947. feedrate = homing_feedrate[Z_AXIS] / 4;
  948. destination[Z_AXIS] = -10;
  949. prepare_move_raw();
  950. st_synchronize();
  951. endstops_hit_on_purpose();
  952. // we have to let the planner know where we are right now as it is not where we said to go.
  953. long stop_steps = st_get_position(Z_AXIS);
  954. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  955. current_position[Z_AXIS] = mm;
  956. calculate_delta(current_position);
  957. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  958. #else // !DELTA
  959. plan_bed_level_matrix.set_to_identity();
  960. feedrate = homing_feedrate[Z_AXIS];
  961. // move down until you find the bed
  962. float zPosition = -10;
  963. line_to_z(zPosition);
  964. st_synchronize();
  965. // we have to let the planner know where we are right now as it is not where we said to go.
  966. zPosition = st_get_position_mm(Z_AXIS);
  967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  968. // move up the retract distance
  969. zPosition += home_retract_mm(Z_AXIS);
  970. line_to_z(zPosition);
  971. st_synchronize();
  972. endstops_hit_on_purpose();
  973. // move back down slowly to find bed
  974. if (homing_bump_divisor[Z_AXIS] >= 1)
  975. feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
  976. else {
  977. feedrate = homing_feedrate[Z_AXIS] / 10;
  978. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  979. }
  980. zPosition -= home_retract_mm(Z_AXIS) * 2;
  981. line_to_z(zPosition);
  982. st_synchronize();
  983. endstops_hit_on_purpose();
  984. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  985. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  986. sync_plan_position();
  987. #endif // !DELTA
  988. }
  989. static void do_blocking_move_to(float x, float y, float z) {
  990. float oldFeedRate = feedrate;
  991. #ifdef DELTA
  992. feedrate = XY_TRAVEL_SPEED;
  993. destination[X_AXIS] = x;
  994. destination[Y_AXIS] = y;
  995. destination[Z_AXIS] = z;
  996. prepare_move_raw();
  997. st_synchronize();
  998. #else
  999. feedrate = homing_feedrate[Z_AXIS];
  1000. current_position[Z_AXIS] = z;
  1001. line_to_current_position();
  1002. st_synchronize();
  1003. feedrate = xy_travel_speed;
  1004. current_position[X_AXIS] = x;
  1005. current_position[Y_AXIS] = y;
  1006. line_to_current_position();
  1007. st_synchronize();
  1008. #endif
  1009. feedrate = oldFeedRate;
  1010. }
  1011. static void setup_for_endstop_move() {
  1012. saved_feedrate = feedrate;
  1013. saved_feedmultiply = feedmultiply;
  1014. feedmultiply = 100;
  1015. previous_millis_cmd = millis();
  1016. enable_endstops(true);
  1017. }
  1018. static void clean_up_after_endstop_move() {
  1019. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1020. enable_endstops(false);
  1021. #endif
  1022. feedrate = saved_feedrate;
  1023. feedmultiply = saved_feedmultiply;
  1024. previous_millis_cmd = millis();
  1025. }
  1026. <<<<<<< HEAD
  1027. static void engage_z_probe() {
  1028. // Engage Z Servo endstop if enabled
  1029. #ifdef SERVO_ENDSTOPS
  1030. if (servo_endstops[Z_AXIS] > -1) {
  1031. #if SERVO_LEVELING
  1032. servos[servo_endstops[Z_AXIS]].attach(0);
  1033. #endif
  1034. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1035. #if SERVO_LEVELING
  1036. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1037. servos[servo_endstops[Z_AXIS]].detach();
  1038. #endif
  1039. }
  1040. #elif defined(Z_PROBE_ALLEN_KEY)
  1041. feedrate = homing_feedrate[X_AXIS];
  1042. // Move to the start position to initiate deployment
  1043. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1044. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1045. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1046. prepare_move_raw();
  1047. // Home X to touch the belt
  1048. feedrate = homing_feedrate[X_AXIS]/10;
  1049. destination[X_AXIS] = 0;
  1050. prepare_move_raw();
  1051. // Home Y for safety
  1052. feedrate = homing_feedrate[X_AXIS]/2;
  1053. destination[Y_AXIS] = 0;
  1054. prepare_move_raw();
  1055. st_synchronize();
  1056. #if defined(Z_PROBE_AND_ENDSTOP)
  1057. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1058. if (z_probe_endstop)
  1059. #else
  1060. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1061. if (z_min_endstop)
  1062. #endif
  1063. {
  1064. if (!Stopped)
  1065. {
  1066. SERIAL_ERROR_START;
  1067. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1068. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1069. =======
  1070. static void engage_z_probe() {
  1071. #ifdef SERVO_ENDSTOPS
  1072. // Engage Z Servo endstop if enabled
  1073. if (servo_endstops[Z_AXIS] >= 0) {
  1074. #if SERVO_LEVELING
  1075. servos[servo_endstops[Z_AXIS]].attach(0);
  1076. #endif
  1077. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1078. #if SERVO_LEVELING
  1079. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1080. servos[servo_endstops[Z_AXIS]].detach();
  1081. #endif
  1082. }
  1083. #elif defined(Z_PROBE_ALLEN_KEY)
  1084. feedrate = homing_feedrate[X_AXIS];
  1085. // Move to the start position to initiate deployment
  1086. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1087. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1088. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1089. prepare_move_raw();
  1090. // Home X to touch the belt
  1091. feedrate = homing_feedrate[X_AXIS]/10;
  1092. destination[X_AXIS] = 0;
  1093. prepare_move_raw();
  1094. // Home Y for safety
  1095. feedrate = homing_feedrate[X_AXIS]/2;
  1096. destination[Y_AXIS] = 0;
  1097. prepare_move_raw();
  1098. st_synchronize();
  1099. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1100. if (z_min_endstop) {
  1101. if (!Stopped) {
  1102. SERIAL_ERROR_START;
  1103. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1104. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1105. >>>>>>> MarlinFirmware/Development
  1106. }
  1107. Stop();
  1108. }
  1109. #endif // Z_PROBE_ALLEN_KEY
  1110. <<<<<<< HEAD
  1111. static void retract_z_probe() {
  1112. // Retract Z Servo endstop if enabled
  1113. #ifdef SERVO_ENDSTOPS
  1114. if (servo_endstops[Z_AXIS] > -1)
  1115. {
  1116. #if Z_RAISE_AFTER_PROBING > 0
  1117. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1118. st_synchronize();
  1119. #endif
  1120. #if SERVO_LEVELING
  1121. servos[servo_endstops[Z_AXIS]].attach(0);
  1122. #endif
  1123. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1124. #if SERVO_LEVELING
  1125. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1126. servos[servo_endstops[Z_AXIS]].detach();
  1127. #endif
  1128. }
  1129. #elif defined(Z_PROBE_ALLEN_KEY)
  1130. // Move up for safety
  1131. feedrate = homing_feedrate[X_AXIS];
  1132. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1133. prepare_move_raw();
  1134. // Move to the start position to initiate retraction
  1135. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1136. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1137. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1138. prepare_move_raw();
  1139. // Move the nozzle down to push the probe into retracted position
  1140. feedrate = homing_feedrate[Z_AXIS]/10;
  1141. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1142. prepare_move_raw();
  1143. // Move up for safety
  1144. feedrate = homing_feedrate[Z_AXIS]/2;
  1145. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1146. prepare_move_raw();
  1147. // Home XY for safety
  1148. feedrate = homing_feedrate[X_AXIS]/2;
  1149. destination[X_AXIS] = 0;
  1150. destination[Y_AXIS] = 0;
  1151. prepare_move_raw();
  1152. st_synchronize();
  1153. #if defined(Z_PROBE_AND_ENDSTOP)
  1154. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1155. if (z_probe_endstop)
  1156. #else
  1157. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1158. if (z_min_endstop)
  1159. #endif
  1160. {
  1161. if (!Stopped)
  1162. {
  1163. SERIAL_ERROR_START;
  1164. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1165. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1166. =======
  1167. }
  1168. static void retract_z_probe(const float z_after=Z_RAISE_AFTER_PROBING) {
  1169. #ifdef SERVO_ENDSTOPS
  1170. // Retract Z Servo endstop if enabled
  1171. if (servo_endstops[Z_AXIS] >= 0) {
  1172. if (z_after > 0) {
  1173. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_after);
  1174. st_synchronize();
  1175. >>>>>>> MarlinFirmware/Development
  1176. }
  1177. #if SERVO_LEVELING
  1178. servos[servo_endstops[Z_AXIS]].attach(0);
  1179. #endif
  1180. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1181. #if SERVO_LEVELING
  1182. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1183. servos[servo_endstops[Z_AXIS]].detach();
  1184. #endif
  1185. }
  1186. #elif defined(Z_PROBE_ALLEN_KEY)
  1187. // Move up for safety
  1188. feedrate = homing_feedrate[X_AXIS];
  1189. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1190. prepare_move_raw();
  1191. // Move to the start position to initiate retraction
  1192. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1193. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1194. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1195. prepare_move_raw();
  1196. // Move the nozzle down to push the probe into retracted position
  1197. feedrate = homing_feedrate[Z_AXIS]/10;
  1198. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1199. prepare_move_raw();
  1200. // Move up for safety
  1201. feedrate = homing_feedrate[Z_AXIS]/2;
  1202. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1203. prepare_move_raw();
  1204. // Home XY for safety
  1205. feedrate = homing_feedrate[X_AXIS]/2;
  1206. destination[X_AXIS] = 0;
  1207. destination[Y_AXIS] = 0;
  1208. prepare_move_raw();
  1209. st_synchronize();
  1210. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1211. if (!z_min_endstop) {
  1212. if (!Stopped) {
  1213. SERIAL_ERROR_START;
  1214. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1215. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1216. }
  1217. Stop();
  1218. }
  1219. #endif
  1220. }
  1221. enum ProbeAction {
  1222. ProbeStay = 0,
  1223. ProbeEngage = BIT(0),
  1224. ProbeRetract = BIT(1),
  1225. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1226. };
  1227. // Probe bed height at position (x,y), returns the measured z value
  1228. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1229. // move to right place
  1230. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1231. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1232. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1233. if (retract_action & ProbeEngage) engage_z_probe();
  1234. #endif
  1235. run_z_probe();
  1236. float measured_z = current_position[Z_AXIS];
  1237. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1238. if (retract_action & ProbeRetract) retract_z_probe(z_before);
  1239. #endif
  1240. if (verbose_level > 2) {
  1241. SERIAL_PROTOCOLPGM(MSG_BED);
  1242. SERIAL_PROTOCOLPGM(" X: ");
  1243. SERIAL_PROTOCOL_F(x, 3);
  1244. SERIAL_PROTOCOLPGM(" Y: ");
  1245. SERIAL_PROTOCOL_F(y, 3);
  1246. SERIAL_PROTOCOLPGM(" Z: ");
  1247. SERIAL_PROTOCOL_F(measured_z, 3);
  1248. SERIAL_EOL;
  1249. }
  1250. return measured_z;
  1251. }
  1252. #ifdef DELTA
  1253. /**
  1254. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1255. */
  1256. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1257. if (bed_level[x][y] != 0.0) {
  1258. return; // Don't overwrite good values.
  1259. }
  1260. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1261. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1262. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1263. float median = c; // Median is robust (ignores outliers).
  1264. if (a < b) {
  1265. if (b < c) median = b;
  1266. if (c < a) median = a;
  1267. } else { // b <= a
  1268. if (c < b) median = b;
  1269. if (a < c) median = a;
  1270. }
  1271. bed_level[x][y] = median;
  1272. }
  1273. // Fill in the unprobed points (corners of circular print surface)
  1274. // using linear extrapolation, away from the center.
  1275. static void extrapolate_unprobed_bed_level() {
  1276. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1277. for (int y = 0; y <= half; y++) {
  1278. for (int x = 0; x <= half; x++) {
  1279. if (x + y < 3) continue;
  1280. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1281. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1282. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1283. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1284. }
  1285. }
  1286. }
  1287. // Print calibration results for plotting or manual frame adjustment.
  1288. static void print_bed_level() {
  1289. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1290. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1291. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1292. SERIAL_PROTOCOLPGM(" ");
  1293. }
  1294. SERIAL_ECHOLN("");
  1295. }
  1296. }
  1297. // Reset calibration results to zero.
  1298. void reset_bed_level() {
  1299. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1300. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1301. bed_level[x][y] = 0.0;
  1302. }
  1303. }
  1304. }
  1305. #endif // DELTA
  1306. #endif // ENABLE_AUTO_BED_LEVELING
  1307. static void homeaxis(int axis) {
  1308. #define HOMEAXIS_DO(LETTER) \
  1309. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1310. if (axis == X_AXIS ? HOMEAXIS_DO(X) :
  1311. axis == Y_AXIS ? HOMEAXIS_DO(Y) :
  1312. axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1313. int axis_home_dir;
  1314. #ifdef DUAL_X_CARRIAGE
  1315. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1316. #else
  1317. axis_home_dir = home_dir(axis);
  1318. #endif
  1319. current_position[axis] = 0;
  1320. sync_plan_position();
  1321. #ifndef Z_PROBE_SLED
  1322. // Engage Servo endstop if enabled
  1323. #ifdef SERVO_ENDSTOPS
  1324. #if SERVO_LEVELING
  1325. if (axis == Z_AXIS) {
  1326. engage_z_probe();
  1327. }
  1328. else
  1329. #endif // SERVO_LEVELING
  1330. if (servo_endstops[axis] > -1)
  1331. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1332. #endif // SERVO_ENDSTOPS
  1333. #endif // Z_PROBE_SLED
  1334. <<<<<<< HEAD
  1335. #ifndef Z_PROBE_SLED
  1336. // Engage Servo endstop if enabled and we are not using Z_PROBE_AND_ENDSTOP unless we are using Z_SAFE_HOMING
  1337. #ifdef SERVO_ENDSTOPS && (defined (Z_SAFE_HOMING) || ! defined (Z_PROBE_AND_ENDSTOP))
  1338. #if SERVO_LEVELING
  1339. if (axis==Z_AXIS) {
  1340. engage_z_probe();
  1341. }
  1342. else
  1343. #endif
  1344. if (servo_endstops[axis] > -1) {
  1345. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1346. }
  1347. #endif
  1348. #endif // Z_PROBE_SLED
  1349. =======
  1350. >>>>>>> MarlinFirmware/Development
  1351. #ifdef Z_DUAL_ENDSTOPS
  1352. if (axis == Z_AXIS) In_Homing_Process(true);
  1353. #endif
  1354. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1355. feedrate = homing_feedrate[axis];
  1356. line_to_destination();
  1357. st_synchronize();
  1358. current_position[axis] = 0;
  1359. sync_plan_position();
  1360. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1361. line_to_destination();
  1362. st_synchronize();
  1363. destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
  1364. if (homing_bump_divisor[axis] >= 1)
  1365. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  1366. else {
  1367. feedrate = homing_feedrate[axis] / 10;
  1368. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  1369. }
  1370. line_to_destination();
  1371. st_synchronize();
  1372. #ifdef Z_DUAL_ENDSTOPS
  1373. if (axis==Z_AXIS)
  1374. {
  1375. feedrate = homing_feedrate[axis];
  1376. sync_plan_position();
  1377. if (axis_home_dir > 0)
  1378. {
  1379. destination[axis] = (-1) * fabs(z_endstop_adj);
  1380. if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1381. } else {
  1382. destination[axis] = fabs(z_endstop_adj);
  1383. if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1384. }
  1385. line_to_destination();
  1386. st_synchronize();
  1387. Lock_z_motor(false);
  1388. Lock_z2_motor(false);
  1389. In_Homing_Process(false);
  1390. }
  1391. #endif
  1392. #ifdef DELTA
  1393. // retrace by the amount specified in endstop_adj
  1394. if (endstop_adj[axis] * axis_home_dir < 0) {
  1395. sync_plan_position();
  1396. destination[axis] = endstop_adj[axis];
  1397. line_to_destination();
  1398. st_synchronize();
  1399. }
  1400. #endif
  1401. axis_is_at_home(axis);
  1402. destination[axis] = current_position[axis];
  1403. feedrate = 0.0;
  1404. endstops_hit_on_purpose();
  1405. axis_known_position[axis] = true;
  1406. // Retract Servo endstop if enabled
  1407. #ifdef SERVO_ENDSTOPS
  1408. if (servo_endstops[axis] > -1) {
  1409. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1410. }
  1411. #endif
  1412. #if SERVO_LEVELING
  1413. #ifndef Z_PROBE_SLED
  1414. if (axis==Z_AXIS) retract_z_probe();
  1415. #endif
  1416. #endif
  1417. }
  1418. }
  1419. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1420. void refresh_cmd_timeout(void)
  1421. {
  1422. previous_millis_cmd = millis();
  1423. }
  1424. #ifdef FWRETRACT
  1425. void retract(bool retracting, bool swapretract = false) {
  1426. if(retracting && !retracted[active_extruder]) {
  1427. destination[X_AXIS]=current_position[X_AXIS];
  1428. destination[Y_AXIS]=current_position[Y_AXIS];
  1429. destination[Z_AXIS]=current_position[Z_AXIS];
  1430. destination[E_AXIS]=current_position[E_AXIS];
  1431. if (swapretract) {
  1432. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1433. } else {
  1434. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1435. }
  1436. plan_set_e_position(current_position[E_AXIS]);
  1437. float oldFeedrate = feedrate;
  1438. feedrate = retract_feedrate * 60;
  1439. retracted[active_extruder]=true;
  1440. prepare_move();
  1441. if(retract_zlift > 0.01) {
  1442. current_position[Z_AXIS]-=retract_zlift;
  1443. #ifdef DELTA
  1444. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1445. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1446. #else
  1447. sync_plan_position();
  1448. #endif
  1449. prepare_move();
  1450. }
  1451. feedrate = oldFeedrate;
  1452. } else if(!retracting && retracted[active_extruder]) {
  1453. destination[X_AXIS]=current_position[X_AXIS];
  1454. destination[Y_AXIS]=current_position[Y_AXIS];
  1455. destination[Z_AXIS]=current_position[Z_AXIS];
  1456. destination[E_AXIS]=current_position[E_AXIS];
  1457. if(retract_zlift > 0.01) {
  1458. current_position[Z_AXIS]+=retract_zlift;
  1459. #ifdef DELTA
  1460. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1461. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1462. #else
  1463. sync_plan_position();
  1464. #endif
  1465. //prepare_move();
  1466. }
  1467. if (swapretract) {
  1468. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1469. } else {
  1470. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1471. }
  1472. plan_set_e_position(current_position[E_AXIS]);
  1473. float oldFeedrate = feedrate;
  1474. feedrate = retract_recover_feedrate * 60;
  1475. retracted[active_extruder] = false;
  1476. prepare_move();
  1477. feedrate = oldFeedrate;
  1478. }
  1479. } //retract
  1480. #endif //FWRETRACT
  1481. #ifdef Z_PROBE_SLED
  1482. #ifndef SLED_DOCKING_OFFSET
  1483. #define SLED_DOCKING_OFFSET 0
  1484. #endif
  1485. //
  1486. // Method to dock/undock a sled designed by Charles Bell.
  1487. //
  1488. // dock[in] If true, move to MAX_X and engage the electromagnet
  1489. // offset[in] The additional distance to move to adjust docking location
  1490. //
  1491. static void dock_sled(bool dock, int offset=0) {
  1492. int z_loc;
  1493. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1494. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1495. SERIAL_ECHO_START;
  1496. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1497. return;
  1498. }
  1499. if (dock) {
  1500. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1501. current_position[Y_AXIS],
  1502. current_position[Z_AXIS]);
  1503. // turn off magnet
  1504. digitalWrite(SERVO0_PIN, LOW);
  1505. } else {
  1506. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1507. z_loc = Z_RAISE_BEFORE_PROBING;
  1508. else
  1509. z_loc = current_position[Z_AXIS];
  1510. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1511. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1512. // turn on magnet
  1513. digitalWrite(SERVO0_PIN, HIGH);
  1514. }
  1515. }
  1516. #endif
  1517. /**
  1518. *
  1519. * G-Code Handler functions
  1520. *
  1521. */
  1522. /**
  1523. * G0, G1: Coordinated movement of X Y Z E axes
  1524. */
  1525. inline void gcode_G0_G1() {
  1526. if (!Stopped) {
  1527. get_coordinates(); // For X Y Z E F
  1528. #ifdef FWRETRACT
  1529. if (autoretract_enabled)
  1530. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1531. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1532. // Is this move an attempt to retract or recover?
  1533. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1534. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1535. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1536. retract(!retracted[active_extruder]);
  1537. return;
  1538. }
  1539. }
  1540. #endif //FWRETRACT
  1541. prepare_move();
  1542. //ClearToSend();
  1543. }
  1544. }
  1545. /**
  1546. * G2: Clockwise Arc
  1547. * G3: Counterclockwise Arc
  1548. */
  1549. inline void gcode_G2_G3(bool clockwise) {
  1550. if (!Stopped) {
  1551. get_arc_coordinates();
  1552. prepare_arc_move(clockwise);
  1553. }
  1554. }
  1555. /**
  1556. * G4: Dwell S<seconds> or P<milliseconds>
  1557. */
  1558. inline void gcode_G4() {
  1559. unsigned long codenum=0;
  1560. LCD_MESSAGEPGM(MSG_DWELL);
  1561. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1562. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1563. st_synchronize();
  1564. previous_millis_cmd = millis();
  1565. codenum += previous_millis_cmd; // keep track of when we started waiting
  1566. while(millis() < codenum) {
  1567. manage_heater();
  1568. manage_inactivity();
  1569. lcd_update();
  1570. }
  1571. }
  1572. #ifdef FWRETRACT
  1573. /**
  1574. * G10 - Retract filament according to settings of M207
  1575. * G11 - Recover filament according to settings of M208
  1576. */
  1577. inline void gcode_G10_G11(bool doRetract=false) {
  1578. #if EXTRUDERS > 1
  1579. if (doRetract) {
  1580. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1581. }
  1582. #endif
  1583. retract(doRetract
  1584. #if EXTRUDERS > 1
  1585. , retracted_swap[active_extruder]
  1586. #endif
  1587. );
  1588. }
  1589. #endif //FWRETRACT
  1590. /**
  1591. * G28: Home all axes according to settings
  1592. *
  1593. * Parameters
  1594. *
  1595. * None Home to all axes with no parameters.
  1596. * With QUICK_HOME enabled XY will home together, then Z.
  1597. *
  1598. * Cartesian parameters
  1599. *
  1600. * X Home to the X endstop
  1601. * Y Home to the Y endstop
  1602. * Z Home to the Z endstop
  1603. *
  1604. * If numbers are included with XYZ set the position as with G92
  1605. * Currently adds the home_offset, which may be wrong and removed soon.
  1606. *
  1607. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1608. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1609. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1610. */
  1611. inline void gcode_G28() {
  1612. #ifdef ENABLE_AUTO_BED_LEVELING
  1613. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1614. #ifdef DELTA
  1615. reset_bed_level();
  1616. #endif
  1617. #endif
  1618. #if defined(MESH_BED_LEVELING)
  1619. uint8_t mbl_was_active = mbl.active;
  1620. mbl.active = 0;
  1621. #endif
  1622. saved_feedrate = feedrate;
  1623. saved_feedmultiply = feedmultiply;
  1624. feedmultiply = 100;
  1625. previous_millis_cmd = millis();
  1626. enable_endstops(true);
  1627. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1628. feedrate = 0.0;
  1629. #ifdef DELTA
  1630. // A delta can only safely home all axis at the same time
  1631. // all axis have to home at the same time
  1632. // Move all carriages up together until the first endstop is hit.
  1633. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1634. sync_plan_position();
  1635. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1636. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1637. line_to_destination();
  1638. st_synchronize();
  1639. endstops_hit_on_purpose();
  1640. // Destination reached
  1641. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1642. // take care of back off and rehome now we are all at the top
  1643. HOMEAXIS(X);
  1644. HOMEAXIS(Y);
  1645. HOMEAXIS(Z);
  1646. calculate_delta(current_position);
  1647. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1648. #else // NOT DELTA
  1649. bool homeX = code_seen(axis_codes[X_AXIS]),
  1650. homeY = code_seen(axis_codes[Y_AXIS]),
  1651. homeZ = code_seen(axis_codes[Z_AXIS]);
  1652. home_all_axis = !homeX && !homeY && !homeZ; // No parameters means home all axes
  1653. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1654. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1655. #endif
  1656. #ifdef QUICK_HOME
  1657. if (home_all_axis || (homeX && homeY)) { //first diagonal move
  1658. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1659. #ifdef DUAL_X_CARRIAGE
  1660. int x_axis_home_dir = x_home_dir(active_extruder);
  1661. extruder_duplication_enabled = false;
  1662. #else
  1663. int x_axis_home_dir = home_dir(X_AXIS);
  1664. #endif
  1665. sync_plan_position();
  1666. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1667. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1668. feedrate = homing_feedrate[X_AXIS];
  1669. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1670. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1671. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1672. } else {
  1673. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1674. }
  1675. line_to_destination();
  1676. st_synchronize();
  1677. axis_is_at_home(X_AXIS);
  1678. axis_is_at_home(Y_AXIS);
  1679. sync_plan_position();
  1680. destination[X_AXIS] = current_position[X_AXIS];
  1681. destination[Y_AXIS] = current_position[Y_AXIS];
  1682. line_to_destination();
  1683. feedrate = 0.0;
  1684. st_synchronize();
  1685. endstops_hit_on_purpose();
  1686. current_position[X_AXIS] = destination[X_AXIS];
  1687. current_position[Y_AXIS] = destination[Y_AXIS];
  1688. #ifndef SCARA
  1689. current_position[Z_AXIS] = destination[Z_AXIS];
  1690. #endif
  1691. }
  1692. #endif //QUICK_HOME
  1693. // Home X
  1694. if (home_all_axis || homeX) {
  1695. #ifdef DUAL_X_CARRIAGE
  1696. int tmp_extruder = active_extruder;
  1697. extruder_duplication_enabled = false;
  1698. active_extruder = !active_extruder;
  1699. HOMEAXIS(X);
  1700. inactive_extruder_x_pos = current_position[X_AXIS];
  1701. active_extruder = tmp_extruder;
  1702. HOMEAXIS(X);
  1703. // reset state used by the different modes
  1704. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1705. delayed_move_time = 0;
  1706. active_extruder_parked = true;
  1707. #else
  1708. HOMEAXIS(X);
  1709. #endif
  1710. }
  1711. // Home Y
  1712. if (home_all_axis || homeY) HOMEAXIS(Y);
  1713. // Set the X position, if included
  1714. // Adds the home_offset as well, which may be wrong
  1715. if (code_seen(axis_codes[X_AXIS])) {
  1716. float v = code_value();
  1717. if (v) current_position[X_AXIS] = v
  1718. #ifndef SCARA
  1719. + home_offset[X_AXIS]
  1720. #endif
  1721. ;
  1722. }
  1723. // Set the Y position, if included
  1724. // Adds the home_offset as well, which may be wrong
  1725. if (code_seen(axis_codes[Y_AXIS])) {
  1726. float v = code_value();
  1727. if (v) current_position[Y_AXIS] = v
  1728. #ifndef SCARA
  1729. + home_offset[Y_AXIS]
  1730. #endif
  1731. ;
  1732. }
  1733. // Home Z last if homing towards the bed
  1734. #if Z_HOME_DIR < 0
  1735. #ifndef Z_SAFE_HOMING
  1736. if (home_all_axis || homeZ) {
  1737. // Raise Z before homing Z? Shouldn't this happen before homing X or Y?
  1738. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1739. #ifndef Z_PROBE_AND_ENDSTOP
  1740. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1741. feedrate = max_feedrate[Z_AXIS];
  1742. line_to_destination();
  1743. st_synchronize();
  1744. #endif
  1745. #endif
  1746. HOMEAXIS(Z);
  1747. }
  1748. #else // Z_SAFE_HOMING
  1749. if (home_all_axis) {
  1750. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1751. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1752. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1753. feedrate = XY_TRAVEL_SPEED;
  1754. current_position[Z_AXIS] = 0;
  1755. sync_plan_position();
  1756. line_to_destination();
  1757. st_synchronize();
  1758. current_position[X_AXIS] = destination[X_AXIS];
  1759. current_position[Y_AXIS] = destination[Y_AXIS];
  1760. HOMEAXIS(Z);
  1761. }
  1762. // Let's see if X and Y are homed and probe is inside bed area.
  1763. if (homeZ) {
  1764. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1765. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1766. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1767. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1768. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1769. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1770. current_position[Z_AXIS] = 0;
  1771. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1772. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1773. feedrate = max_feedrate[Z_AXIS];
  1774. line_to_destination();
  1775. st_synchronize();
  1776. HOMEAXIS(Z);
  1777. }
  1778. else {
  1779. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1780. SERIAL_ECHO_START;
  1781. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1782. }
  1783. }
  1784. else {
  1785. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1786. SERIAL_ECHO_START;
  1787. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1788. }
  1789. }
  1790. #endif // Z_SAFE_HOMING
  1791. #endif // Z_HOME_DIR < 0
  1792. // Set the Z position, if included
  1793. // Adds the home_offset as well, which may be wrong
  1794. if (code_seen(axis_codes[Z_AXIS])) {
  1795. float v = code_value();
  1796. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1797. }
  1798. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1799. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1800. #endif
  1801. sync_plan_position();
  1802. #endif // else DELTA
  1803. #ifdef SCARA
  1804. calculate_delta(current_position);
  1805. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1806. #endif
  1807. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1808. enable_endstops(false);
  1809. #endif
  1810. #if defined(MESH_BED_LEVELING)
  1811. if (mbl_was_active) {
  1812. current_position[X_AXIS] = mbl.get_x(0);
  1813. current_position[Y_AXIS] = mbl.get_y(0);
  1814. destination[X_AXIS] = current_position[X_AXIS];
  1815. destination[Y_AXIS] = current_position[Y_AXIS];
  1816. destination[Z_AXIS] = current_position[Z_AXIS];
  1817. destination[E_AXIS] = current_position[E_AXIS];
  1818. feedrate = homing_feedrate[X_AXIS];
  1819. line_to_destination();
  1820. st_synchronize();
  1821. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1822. sync_plan_position();
  1823. mbl.active = 1;
  1824. }
  1825. #endif
  1826. feedrate = saved_feedrate;
  1827. feedmultiply = saved_feedmultiply;
  1828. previous_millis_cmd = millis();
  1829. endstops_hit_on_purpose();
  1830. }
  1831. #if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
  1832. // Check for known positions in X and Y
  1833. inline bool can_run_bed_leveling() {
  1834. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true;
  1835. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1836. SERIAL_ECHO_START;
  1837. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1838. return false;
  1839. }
  1840. #endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
  1841. #ifdef MESH_BED_LEVELING
  1842. /**
  1843. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1844. * mesh to compensate for variable bed height
  1845. *
  1846. * Parameters With MESH_BED_LEVELING:
  1847. *
  1848. * S0 Produce a mesh report
  1849. * S1 Start probing mesh points
  1850. * S2 Probe the next mesh point
  1851. *
  1852. */
  1853. inline void gcode_G29() {
  1854. // Prevent leveling without first homing in X and Y
  1855. if (!can_run_bed_leveling()) return;
  1856. static int probe_point = -1;
  1857. int state = 0;
  1858. if (code_seen('S') || code_seen('s')) {
  1859. state = code_value_long();
  1860. if (state < 0 || state > 2) {
  1861. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1862. return;
  1863. }
  1864. }
  1865. if (state == 0) { // Dump mesh_bed_leveling
  1866. if (mbl.active) {
  1867. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1868. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1869. SERIAL_PROTOCOLPGM(",");
  1870. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1871. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1872. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1873. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1874. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1875. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1876. SERIAL_PROTOCOLPGM(" ");
  1877. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1878. }
  1879. SERIAL_EOL;
  1880. }
  1881. } else {
  1882. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1883. }
  1884. } else if (state == 1) { // Begin probing mesh points
  1885. mbl.reset();
  1886. probe_point = 0;
  1887. enquecommands_P(PSTR("G28"));
  1888. enquecommands_P(PSTR("G29 S2"));
  1889. } else if (state == 2) { // Goto next point
  1890. if (probe_point < 0) {
  1891. SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
  1892. return;
  1893. }
  1894. int ix, iy;
  1895. if (probe_point == 0) {
  1896. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1897. sync_plan_position();
  1898. } else {
  1899. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1900. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1901. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1902. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1903. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1904. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1905. st_synchronize();
  1906. }
  1907. if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1908. SERIAL_PROTOCOLPGM("Mesh probing done.\n");
  1909. probe_point = -1;
  1910. mbl.active = 1;
  1911. enquecommands_P(PSTR("G28"));
  1912. return;
  1913. }
  1914. ix = probe_point % MESH_NUM_X_POINTS;
  1915. iy = probe_point / MESH_NUM_X_POINTS;
  1916. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1917. current_position[X_AXIS] = mbl.get_x(ix);
  1918. current_position[Y_AXIS] = mbl.get_y(iy);
  1919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1920. st_synchronize();
  1921. probe_point++;
  1922. }
  1923. }
  1924. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1925. /**
  1926. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1927. * Will fail if the printer has not been homed with G28.
  1928. *
  1929. * Enhanced G29 Auto Bed Leveling Probe Routine
  1930. *
  1931. * Parameters With AUTO_BED_LEVELING_GRID:
  1932. *
  1933. * P Set the size of the grid that will be probed (P x P points).
  1934. * Not supported by non-linear delta printer bed leveling.
  1935. * Example: "G29 P4"
  1936. *
  1937. * S Set the XY travel speed between probe points (in mm/min)
  1938. *
  1939. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1940. * or clean the rotation Matrix. Useful to check the topology
  1941. * after a first run of G29.
  1942. *
  1943. * V Set the verbose level (0-4). Example: "G29 V3"
  1944. *
  1945. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1946. * This is useful for manual bed leveling and finding flaws in the bed (to
  1947. * assist with part placement).
  1948. * Not supported by non-linear delta printer bed leveling.
  1949. *
  1950. * F Set the Front limit of the probing grid
  1951. * B Set the Back limit of the probing grid
  1952. * L Set the Left limit of the probing grid
  1953. * R Set the Right limit of the probing grid
  1954. *
  1955. * Global Parameters:
  1956. *
  1957. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1958. * Include "E" to engage/disengage the probe for each sample.
  1959. * There's no extra effect if you have a fixed probe.
  1960. * Usage: "G29 E" or "G29 e"
  1961. *
  1962. */
  1963. inline void gcode_G29() {
  1964. // Prevent leveling without first homing in X and Y
  1965. if (!can_run_bed_leveling()) return;
  1966. int verbose_level = 1;
  1967. if (code_seen('V') || code_seen('v')) {
  1968. verbose_level = code_value_long();
  1969. if (verbose_level < 0 || verbose_level > 4) {
  1970. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1971. return;
  1972. }
  1973. }
  1974. bool dryrun = code_seen('D') || code_seen('d');
  1975. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1976. #ifdef AUTO_BED_LEVELING_GRID
  1977. #ifndef DELTA
  1978. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1979. #endif
  1980. if (verbose_level > 0)
  1981. {
  1982. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1983. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1984. }
  1985. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1986. #ifndef DELTA
  1987. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1988. if (auto_bed_leveling_grid_points < 2) {
  1989. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1990. return;
  1991. }
  1992. #endif
  1993. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1994. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1995. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1996. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1997. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1998. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1999. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2000. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2001. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2002. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2003. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2004. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2005. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2006. if (left_out || right_out || front_out || back_out) {
  2007. if (left_out) {
  2008. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  2009. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2010. }
  2011. if (right_out) {
  2012. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  2013. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2014. }
  2015. if (front_out) {
  2016. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  2017. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2018. }
  2019. if (back_out) {
  2020. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  2021. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2022. }
  2023. return;
  2024. }
  2025. #endif // AUTO_BED_LEVELING_GRID
  2026. #ifdef Z_PROBE_SLED
  2027. dock_sled(false); // engage (un-dock) the probe
  2028. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2029. engage_z_probe();
  2030. #endif
  2031. st_synchronize();
  2032. if (!dryrun) {
  2033. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2034. plan_bed_level_matrix.set_to_identity();
  2035. #ifdef DELTA
  2036. reset_bed_level();
  2037. #else //!DELTA
  2038. //vector_3 corrected_position = plan_get_position_mm();
  2039. //corrected_position.debug("position before G29");
  2040. vector_3 uncorrected_position = plan_get_position();
  2041. //uncorrected_position.debug("position during G29");
  2042. current_position[X_AXIS] = uncorrected_position.x;
  2043. current_position[Y_AXIS] = uncorrected_position.y;
  2044. current_position[Z_AXIS] = uncorrected_position.z;
  2045. sync_plan_position();
  2046. #endif // !DELTA
  2047. }
  2048. setup_for_endstop_move();
  2049. feedrate = homing_feedrate[Z_AXIS];
  2050. #ifdef AUTO_BED_LEVELING_GRID
  2051. // probe at the points of a lattice grid
  2052. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  2053. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  2054. #ifdef DELTA
  2055. delta_grid_spacing[0] = xGridSpacing;
  2056. delta_grid_spacing[1] = yGridSpacing;
  2057. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2058. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2059. #else // !DELTA
  2060. // solve the plane equation ax + by + d = z
  2061. // A is the matrix with rows [x y 1] for all the probed points
  2062. // B is the vector of the Z positions
  2063. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2064. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2065. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2066. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2067. eqnBVector[abl2], // "B" vector of Z points
  2068. mean = 0.0;
  2069. #endif // !DELTA
  2070. int probePointCounter = 0;
  2071. bool zig = true;
  2072. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2073. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2074. int xStart, xStop, xInc;
  2075. if (zig) {
  2076. xStart = 0;
  2077. xStop = auto_bed_leveling_grid_points;
  2078. xInc = 1;
  2079. }
  2080. else {
  2081. xStart = auto_bed_leveling_grid_points - 1;
  2082. xStop = -1;
  2083. xInc = -1;
  2084. }
  2085. #ifndef DELTA
  2086. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2087. // This gets the probe points in more readable order.
  2088. if (!do_topography_map) zig = !zig;
  2089. #endif
  2090. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2091. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2092. // raise extruder
  2093. float measured_z,
  2094. z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
  2095. #ifdef DELTA
  2096. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2097. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2098. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2099. #endif //DELTA
  2100. // Enhanced G29 - Do not retract servo between probes
  2101. ProbeAction act;
  2102. if (engage_probe_for_each_reading)
  2103. act = ProbeEngageAndRetract;
  2104. else if (yProbe == front_probe_bed_position && xCount == 0)
  2105. act = ProbeEngage;
  2106. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  2107. act = ProbeRetract;
  2108. else
  2109. act = ProbeStay;
  2110. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2111. #ifndef DELTA
  2112. mean += measured_z;
  2113. eqnBVector[probePointCounter] = measured_z;
  2114. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2115. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2116. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2117. #else
  2118. bed_level[xCount][yCount] = measured_z + z_offset;
  2119. #endif
  2120. probePointCounter++;
  2121. manage_heater();
  2122. manage_inactivity();
  2123. lcd_update();
  2124. } //xProbe
  2125. } //yProbe
  2126. clean_up_after_endstop_move();
  2127. #ifdef DELTA
  2128. if (!dryrun) extrapolate_unprobed_bed_level();
  2129. print_bed_level();
  2130. #else // !DELTA
  2131. // solve lsq problem
  2132. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2133. mean /= abl2;
  2134. if (verbose_level) {
  2135. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2136. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2137. SERIAL_PROTOCOLPGM(" b: ");
  2138. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2139. SERIAL_PROTOCOLPGM(" d: ");
  2140. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2141. SERIAL_EOL;
  2142. if (verbose_level > 2) {
  2143. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2144. SERIAL_PROTOCOL_F(mean, 8);
  2145. SERIAL_EOL;
  2146. }
  2147. }
  2148. // Show the Topography map if enabled
  2149. if (do_topography_map) {
  2150. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2151. SERIAL_PROTOCOLPGM("+-----------+\n");
  2152. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2153. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2154. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2155. SERIAL_PROTOCOLPGM("+-----------+\n");
  2156. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2157. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2158. int ind = yy * auto_bed_leveling_grid_points + xx;
  2159. float diff = eqnBVector[ind] - mean;
  2160. if (diff >= 0.0)
  2161. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2162. else
  2163. SERIAL_PROTOCOLPGM(" ");
  2164. SERIAL_PROTOCOL_F(diff, 5);
  2165. } // xx
  2166. SERIAL_EOL;
  2167. } // yy
  2168. SERIAL_EOL;
  2169. } //do_topography_map
  2170. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2171. free(plane_equation_coefficients);
  2172. #endif //!DELTA
  2173. #else // !AUTO_BED_LEVELING_GRID
  2174. // Actions for each probe
  2175. ProbeAction p1, p2, p3;
  2176. if (engage_probe_for_each_reading)
  2177. p1 = p2 = p3 = ProbeEngageAndRetract;
  2178. else
  2179. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2180. // Probe at 3 arbitrary points
  2181. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2182. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2183. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2184. clean_up_after_endstop_move();
  2185. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2186. #endif // !AUTO_BED_LEVELING_GRID
  2187. #ifndef DELTA
  2188. if (verbose_level > 0)
  2189. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2190. if (!dryrun) {
  2191. // Correct the Z height difference from z-probe position and hotend tip position.
  2192. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2193. // When the bed is uneven, this height must be corrected.
  2194. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2195. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2196. z_tmp = current_position[Z_AXIS],
  2197. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2198. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2199. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2200. sync_plan_position();
  2201. }
  2202. #endif // !DELTA
  2203. #ifdef Z_PROBE_SLED
  2204. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2205. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2206. retract_z_probe();
  2207. #endif
  2208. #ifdef Z_PROBE_END_SCRIPT
  2209. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2210. st_synchronize();
  2211. #endif
  2212. }
  2213. #ifndef Z_PROBE_SLED
  2214. inline void gcode_G30() {
  2215. engage_z_probe(); // Engage Z Servo endstop if available
  2216. st_synchronize();
  2217. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2218. setup_for_endstop_move();
  2219. feedrate = homing_feedrate[Z_AXIS];
  2220. run_z_probe();
  2221. SERIAL_PROTOCOLPGM(MSG_BED);
  2222. SERIAL_PROTOCOLPGM(" X: ");
  2223. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2224. SERIAL_PROTOCOLPGM(" Y: ");
  2225. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2226. SERIAL_PROTOCOLPGM(" Z: ");
  2227. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2228. SERIAL_EOL;
  2229. clean_up_after_endstop_move();
  2230. retract_z_probe(); // Retract Z Servo endstop if available
  2231. }
  2232. #endif //!Z_PROBE_SLED
  2233. #endif //ENABLE_AUTO_BED_LEVELING
  2234. /**
  2235. * G92: Set current position to given X Y Z E
  2236. */
  2237. inline void gcode_G92() {
  2238. if (!code_seen(axis_codes[E_AXIS]))
  2239. st_synchronize();
  2240. bool didXYZ = false;
  2241. for (int i = 0; i < NUM_AXIS; i++) {
  2242. if (code_seen(axis_codes[i])) {
  2243. float v = current_position[i] = code_value();
  2244. if (i == E_AXIS)
  2245. plan_set_e_position(v);
  2246. else
  2247. didXYZ = true;
  2248. }
  2249. }
  2250. if (didXYZ) sync_plan_position();
  2251. }
  2252. #ifdef ULTIPANEL
  2253. /**
  2254. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2255. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2256. */
  2257. inline void gcode_M0_M1() {
  2258. char *src = strchr_pointer + 2;
  2259. unsigned long codenum = 0;
  2260. bool hasP = false, hasS = false;
  2261. if (code_seen('P')) {
  2262. codenum = code_value(); // milliseconds to wait
  2263. hasP = codenum > 0;
  2264. }
  2265. if (code_seen('S')) {
  2266. codenum = code_value() * 1000; // seconds to wait
  2267. hasS = codenum > 0;
  2268. }
  2269. char* starpos = strchr(src, '*');
  2270. if (starpos != NULL) *(starpos) = '\0';
  2271. while (*src == ' ') ++src;
  2272. if (!hasP && !hasS && *src != '\0')
  2273. lcd_setstatus(src);
  2274. else
  2275. LCD_MESSAGEPGM(MSG_USERWAIT);
  2276. lcd_ignore_click();
  2277. st_synchronize();
  2278. previous_millis_cmd = millis();
  2279. if (codenum > 0) {
  2280. codenum += previous_millis_cmd; // keep track of when we started waiting
  2281. while(millis() < codenum && !lcd_clicked()) {
  2282. manage_heater();
  2283. manage_inactivity();
  2284. lcd_update();
  2285. }
  2286. lcd_ignore_click(false);
  2287. }
  2288. else {
  2289. if (!lcd_detected()) return;
  2290. while (!lcd_clicked()) {
  2291. manage_heater();
  2292. manage_inactivity();
  2293. lcd_update();
  2294. }
  2295. }
  2296. if (IS_SD_PRINTING)
  2297. LCD_MESSAGEPGM(MSG_RESUMING);
  2298. else
  2299. LCD_MESSAGEPGM(WELCOME_MSG);
  2300. }
  2301. #endif // ULTIPANEL
  2302. /**
  2303. * M17: Enable power on all stepper motors
  2304. */
  2305. inline void gcode_M17() {
  2306. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2307. enable_x();
  2308. enable_y();
  2309. enable_z();
  2310. enable_e0();
  2311. enable_e1();
  2312. enable_e2();
  2313. enable_e3();
  2314. }
  2315. #ifdef SDSUPPORT
  2316. /**
  2317. * M20: List SD card to serial output
  2318. */
  2319. inline void gcode_M20() {
  2320. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2321. card.ls();
  2322. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2323. }
  2324. /**
  2325. * M21: Init SD Card
  2326. */
  2327. inline void gcode_M21() {
  2328. card.initsd();
  2329. }
  2330. /**
  2331. * M22: Release SD Card
  2332. */
  2333. inline void gcode_M22() {
  2334. card.release();
  2335. }
  2336. /**
  2337. * M23: Select a file
  2338. */
  2339. inline void gcode_M23() {
  2340. char* codepos = strchr_pointer + 4;
  2341. char* starpos = strchr(codepos, '*');
  2342. if (starpos) *starpos = '\0';
  2343. card.openFile(codepos, true);
  2344. }
  2345. /**
  2346. * M24: Start SD Print
  2347. */
  2348. inline void gcode_M24() {
  2349. card.startFileprint();
  2350. starttime = millis();
  2351. }
  2352. /**
  2353. * M25: Pause SD Print
  2354. */
  2355. inline void gcode_M25() {
  2356. card.pauseSDPrint();
  2357. }
  2358. /**
  2359. * M26: Set SD Card file index
  2360. */
  2361. inline void gcode_M26() {
  2362. if (card.cardOK && code_seen('S'))
  2363. card.setIndex(code_value_long());
  2364. }
  2365. /**
  2366. * M27: Get SD Card status
  2367. */
  2368. inline void gcode_M27() {
  2369. card.getStatus();
  2370. }
  2371. /**
  2372. * M28: Start SD Write
  2373. */
  2374. inline void gcode_M28() {
  2375. char* codepos = strchr_pointer + 4;
  2376. char* starpos = strchr(codepos, '*');
  2377. if (starpos) {
  2378. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2379. strchr_pointer = strchr(npos, ' ') + 1;
  2380. *(starpos) = '\0';
  2381. }
  2382. card.openFile(codepos, false);
  2383. }
  2384. /**
  2385. * M29: Stop SD Write
  2386. * Processed in write to file routine above
  2387. */
  2388. inline void gcode_M29() {
  2389. // card.saving = false;
  2390. }
  2391. /**
  2392. * M30 <filename>: Delete SD Card file
  2393. */
  2394. inline void gcode_M30() {
  2395. if (card.cardOK) {
  2396. card.closefile();
  2397. char* starpos = strchr(strchr_pointer + 4, '*');
  2398. if (starpos) {
  2399. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2400. strchr_pointer = strchr(npos, ' ') + 1;
  2401. *(starpos) = '\0';
  2402. }
  2403. card.removeFile(strchr_pointer + 4);
  2404. }
  2405. }
  2406. #endif
  2407. /**
  2408. * M31: Get the time since the start of SD Print (or last M109)
  2409. */
  2410. inline void gcode_M31() {
  2411. stoptime = millis();
  2412. unsigned long t = (stoptime - starttime) / 1000;
  2413. int min = t / 60, sec = t % 60;
  2414. char time[30];
  2415. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2416. SERIAL_ECHO_START;
  2417. SERIAL_ECHOLN(time);
  2418. lcd_setstatus(time);
  2419. autotempShutdown();
  2420. }
  2421. #ifdef SDSUPPORT
  2422. /**
  2423. * M32: Select file and start SD Print
  2424. */
  2425. inline void gcode_M32() {
  2426. if (card.sdprinting)
  2427. st_synchronize();
  2428. char* codepos = strchr_pointer + 4;
  2429. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2430. if (! namestartpos)
  2431. namestartpos = codepos; //default name position, 4 letters after the M
  2432. else
  2433. namestartpos++; //to skip the '!'
  2434. char* starpos = strchr(codepos, '*');
  2435. if (starpos) *(starpos) = '\0';
  2436. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2437. if (card.cardOK) {
  2438. card.openFile(namestartpos, true, !call_procedure);
  2439. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2440. card.setIndex(code_value_long());
  2441. card.startFileprint();
  2442. if (!call_procedure)
  2443. starttime = millis(); //procedure calls count as normal print time.
  2444. }
  2445. }
  2446. /**
  2447. * M928: Start SD Write
  2448. */
  2449. inline void gcode_M928() {
  2450. char* starpos = strchr(strchr_pointer + 5, '*');
  2451. if (starpos) {
  2452. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2453. strchr_pointer = strchr(npos, ' ') + 1;
  2454. *(starpos) = '\0';
  2455. }
  2456. card.openLogFile(strchr_pointer + 5);
  2457. }
  2458. #endif // SDSUPPORT
  2459. /**
  2460. * M42: Change pin status via GCode
  2461. */
  2462. inline void gcode_M42() {
  2463. if (code_seen('S')) {
  2464. int pin_status = code_value(),
  2465. pin_number = LED_PIN;
  2466. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2467. pin_number = code_value();
  2468. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2469. if (sensitive_pins[i] == pin_number) {
  2470. pin_number = -1;
  2471. break;
  2472. }
  2473. }
  2474. #if defined(FAN_PIN) && FAN_PIN > -1
  2475. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2476. #endif
  2477. if (pin_number > -1) {
  2478. pinMode(pin_number, OUTPUT);
  2479. digitalWrite(pin_number, pin_status);
  2480. analogWrite(pin_number, pin_status);
  2481. }
  2482. } // code_seen('S')
  2483. }
  2484. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2485. #if Z_MIN_PIN == -1
  2486. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2487. #endif
  2488. /**
  2489. * M48: Z-Probe repeatability measurement function.
  2490. *
  2491. * Usage:
  2492. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2493. * P = Number of sampled points (4-50, default 10)
  2494. * X = Sample X position
  2495. * Y = Sample Y position
  2496. * V = Verbose level (0-4, default=1)
  2497. * E = Engage probe for each reading
  2498. * L = Number of legs of movement before probe
  2499. *
  2500. * This function assumes the bed has been homed. Specifically, that a G28 command
  2501. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2502. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2503. * regenerated.
  2504. *
  2505. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2506. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2507. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2508. */
  2509. inline void gcode_M48() {
  2510. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2511. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2512. double X_current, Y_current, Z_current;
  2513. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2514. if (code_seen('V') || code_seen('v')) {
  2515. verbose_level = code_value();
  2516. if (verbose_level < 0 || verbose_level > 4 ) {
  2517. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2518. return;
  2519. }
  2520. }
  2521. if (verbose_level > 0)
  2522. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2523. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2524. n_samples = code_value();
  2525. if (n_samples < 4 || n_samples > 50) {
  2526. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2527. return;
  2528. }
  2529. }
  2530. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2531. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2532. Z_current = st_get_position_mm(Z_AXIS);
  2533. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2534. ext_position = st_get_position_mm(E_AXIS);
  2535. if (code_seen('E') || code_seen('e'))
  2536. engage_probe_for_each_reading++;
  2537. if (code_seen('X') || code_seen('x')) {
  2538. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2539. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2540. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2541. return;
  2542. }
  2543. }
  2544. if (code_seen('Y') || code_seen('y')) {
  2545. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2546. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2547. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2548. return;
  2549. }
  2550. }
  2551. if (code_seen('L') || code_seen('l')) {
  2552. n_legs = code_value();
  2553. if (n_legs == 1) n_legs = 2;
  2554. if (n_legs < 0 || n_legs > 15) {
  2555. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2556. return;
  2557. }
  2558. }
  2559. //
  2560. // Do all the preliminary setup work. First raise the probe.
  2561. //
  2562. st_synchronize();
  2563. plan_bed_level_matrix.set_to_identity();
  2564. plan_buffer_line(X_current, Y_current, Z_start_location,
  2565. ext_position,
  2566. homing_feedrate[Z_AXIS] / 60,
  2567. active_extruder);
  2568. st_synchronize();
  2569. //
  2570. // Now get everything to the specified probe point So we can safely do a probe to
  2571. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2572. // use that as a starting point for each probe.
  2573. //
  2574. if (verbose_level > 2)
  2575. SERIAL_PROTOCOL("Positioning the probe...\n");
  2576. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2577. ext_position,
  2578. homing_feedrate[X_AXIS]/60,
  2579. active_extruder);
  2580. st_synchronize();
  2581. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2582. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2583. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2584. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2585. //
  2586. // OK, do the inital probe to get us close to the bed.
  2587. // Then retrace the right amount and use that in subsequent probes
  2588. //
  2589. engage_z_probe();
  2590. setup_for_endstop_move();
  2591. run_z_probe();
  2592. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2593. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2594. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2595. ext_position,
  2596. homing_feedrate[X_AXIS]/60,
  2597. active_extruder);
  2598. st_synchronize();
  2599. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2600. if (engage_probe_for_each_reading) retract_z_probe();
  2601. for (n=0; n < n_samples; n++) {
  2602. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2603. if (n_legs) {
  2604. double radius=0.0, theta=0.0;
  2605. int l;
  2606. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2607. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2608. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2609. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2610. //SERIAL_ECHOPAIR(" theta: ",theta);
  2611. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2612. //SERIAL_EOL;
  2613. float dir = rotational_direction ? 1 : -1;
  2614. for (l = 0; l < n_legs - 1; l++) {
  2615. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2616. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2617. if (radius < 0.0) radius = -radius;
  2618. X_current = X_probe_location + cos(theta) * radius;
  2619. Y_current = Y_probe_location + sin(theta) * radius;
  2620. // Make sure our X & Y are sane
  2621. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2622. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2623. if (verbose_level > 3) {
  2624. SERIAL_ECHOPAIR("x: ", X_current);
  2625. SERIAL_ECHOPAIR("y: ", Y_current);
  2626. SERIAL_EOL;
  2627. }
  2628. do_blocking_move_to( X_current, Y_current, Z_current );
  2629. }
  2630. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2631. }
  2632. if (engage_probe_for_each_reading) {
  2633. engage_z_probe();
  2634. delay(1000);
  2635. }
  2636. setup_for_endstop_move();
  2637. run_z_probe();
  2638. sample_set[n] = current_position[Z_AXIS];
  2639. //
  2640. // Get the current mean for the data points we have so far
  2641. //
  2642. sum = 0.0;
  2643. for (j=0; j<=n; j++) sum += sample_set[j];
  2644. mean = sum / (double (n+1));
  2645. //
  2646. // Now, use that mean to calculate the standard deviation for the
  2647. // data points we have so far
  2648. //
  2649. sum = 0.0;
  2650. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2651. sigma = sqrt( sum / (double (n+1)) );
  2652. if (verbose_level > 1) {
  2653. SERIAL_PROTOCOL(n+1);
  2654. SERIAL_PROTOCOL(" of ");
  2655. SERIAL_PROTOCOL(n_samples);
  2656. SERIAL_PROTOCOLPGM(" z: ");
  2657. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2658. }
  2659. if (verbose_level > 2) {
  2660. SERIAL_PROTOCOL(" mean: ");
  2661. SERIAL_PROTOCOL_F(mean,6);
  2662. SERIAL_PROTOCOL(" sigma: ");
  2663. SERIAL_PROTOCOL_F(sigma,6);
  2664. }
  2665. if (verbose_level > 0) SERIAL_EOL;
  2666. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2667. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2668. st_synchronize();
  2669. if (engage_probe_for_each_reading) {
  2670. retract_z_probe();
  2671. delay(1000);
  2672. }
  2673. }
  2674. retract_z_probe();
  2675. delay(1000);
  2676. clean_up_after_endstop_move();
  2677. // enable_endstops(true);
  2678. if (verbose_level > 0) {
  2679. SERIAL_PROTOCOLPGM("Mean: ");
  2680. SERIAL_PROTOCOL_F(mean, 6);
  2681. SERIAL_EOL;
  2682. }
  2683. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2684. SERIAL_PROTOCOL_F(sigma, 6);
  2685. SERIAL_EOL; SERIAL_EOL;
  2686. }
  2687. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2688. /**
  2689. * M104: Set hot end temperature
  2690. */
  2691. inline void gcode_M104() {
  2692. if (setTargetedHotend(104)) return;
  2693. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2694. #ifdef DUAL_X_CARRIAGE
  2695. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2696. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2697. #endif
  2698. setWatch();
  2699. }
  2700. /**
  2701. * M105: Read hot end and bed temperature
  2702. */
  2703. inline void gcode_M105() {
  2704. if (setTargetedHotend(105)) return;
  2705. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2706. SERIAL_PROTOCOLPGM("ok T:");
  2707. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2708. SERIAL_PROTOCOLPGM(" /");
  2709. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2710. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2711. SERIAL_PROTOCOLPGM(" B:");
  2712. SERIAL_PROTOCOL_F(degBed(),1);
  2713. SERIAL_PROTOCOLPGM(" /");
  2714. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2715. #endif //TEMP_BED_PIN
  2716. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2717. SERIAL_PROTOCOLPGM(" T");
  2718. SERIAL_PROTOCOL(cur_extruder);
  2719. SERIAL_PROTOCOLPGM(":");
  2720. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2721. SERIAL_PROTOCOLPGM(" /");
  2722. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2723. }
  2724. #else
  2725. SERIAL_ERROR_START;
  2726. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2727. #endif
  2728. SERIAL_PROTOCOLPGM(" @:");
  2729. #ifdef EXTRUDER_WATTS
  2730. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2731. SERIAL_PROTOCOLPGM("W");
  2732. #else
  2733. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2734. #endif
  2735. SERIAL_PROTOCOLPGM(" B@:");
  2736. #ifdef BED_WATTS
  2737. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2738. SERIAL_PROTOCOLPGM("W");
  2739. #else
  2740. SERIAL_PROTOCOL(getHeaterPower(-1));
  2741. #endif
  2742. #ifdef SHOW_TEMP_ADC_VALUES
  2743. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2744. SERIAL_PROTOCOLPGM(" ADC B:");
  2745. SERIAL_PROTOCOL_F(degBed(),1);
  2746. SERIAL_PROTOCOLPGM("C->");
  2747. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2748. #endif
  2749. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2750. SERIAL_PROTOCOLPGM(" T");
  2751. SERIAL_PROTOCOL(cur_extruder);
  2752. SERIAL_PROTOCOLPGM(":");
  2753. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2754. SERIAL_PROTOCOLPGM("C->");
  2755. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2756. }
  2757. #endif
  2758. SERIAL_PROTOCOLLN("");
  2759. }
  2760. #if defined(FAN_PIN) && FAN_PIN > -1
  2761. /**
  2762. * M106: Set Fan Speed
  2763. */
  2764. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2765. /**
  2766. * M107: Fan Off
  2767. */
  2768. inline void gcode_M107() { fanSpeed = 0; }
  2769. #endif //FAN_PIN
  2770. /**
  2771. * M109: Wait for extruder(s) to reach temperature
  2772. */
  2773. inline void gcode_M109() {
  2774. if (setTargetedHotend(109)) return;
  2775. LCD_MESSAGEPGM(MSG_HEATING);
  2776. CooldownNoWait = code_seen('S');
  2777. if (CooldownNoWait || code_seen('R')) {
  2778. setTargetHotend(code_value(), tmp_extruder);
  2779. #ifdef DUAL_X_CARRIAGE
  2780. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2781. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2782. #endif
  2783. }
  2784. #ifdef AUTOTEMP
  2785. autotemp_enabled = code_seen('F');
  2786. if (autotemp_enabled) autotemp_factor = code_value();
  2787. if (code_seen('S')) autotemp_min = code_value();
  2788. if (code_seen('B')) autotemp_max = code_value();
  2789. #endif
  2790. setWatch();
  2791. unsigned long timetemp = millis();
  2792. /* See if we are heating up or cooling down */
  2793. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2794. cancel_heatup = false;
  2795. #ifdef TEMP_RESIDENCY_TIME
  2796. long residencyStart = -1;
  2797. /* continue to loop until we have reached the target temp
  2798. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2799. while((!cancel_heatup)&&((residencyStart == -1) ||
  2800. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2801. #else
  2802. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2803. #endif //TEMP_RESIDENCY_TIME
  2804. { // while loop
  2805. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2806. SERIAL_PROTOCOLPGM("T:");
  2807. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2808. SERIAL_PROTOCOLPGM(" E:");
  2809. SERIAL_PROTOCOL((int)tmp_extruder);
  2810. #ifdef TEMP_RESIDENCY_TIME
  2811. SERIAL_PROTOCOLPGM(" W:");
  2812. if (residencyStart > -1) {
  2813. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2814. SERIAL_PROTOCOLLN( timetemp );
  2815. }
  2816. else {
  2817. SERIAL_PROTOCOLLN( "?" );
  2818. }
  2819. #else
  2820. SERIAL_PROTOCOLLN("");
  2821. #endif
  2822. timetemp = millis();
  2823. }
  2824. manage_heater();
  2825. manage_inactivity();
  2826. lcd_update();
  2827. #ifdef TEMP_RESIDENCY_TIME
  2828. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2829. // or when current temp falls outside the hysteresis after target temp was reached
  2830. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2831. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2832. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2833. {
  2834. residencyStart = millis();
  2835. }
  2836. #endif //TEMP_RESIDENCY_TIME
  2837. }
  2838. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2839. starttime = previous_millis_cmd = millis();
  2840. }
  2841. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2842. /**
  2843. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2844. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2845. */
  2846. inline void gcode_M190() {
  2847. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2848. CooldownNoWait = code_seen('S');
  2849. if (CooldownNoWait || code_seen('R'))
  2850. setTargetBed(code_value());
  2851. unsigned long timetemp = millis();
  2852. cancel_heatup = false;
  2853. target_direction = isHeatingBed(); // true if heating, false if cooling
  2854. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2855. unsigned long ms = millis();
  2856. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2857. timetemp = ms;
  2858. float tt = degHotend(active_extruder);
  2859. SERIAL_PROTOCOLPGM("T:");
  2860. SERIAL_PROTOCOL(tt);
  2861. SERIAL_PROTOCOLPGM(" E:");
  2862. SERIAL_PROTOCOL((int)active_extruder);
  2863. SERIAL_PROTOCOLPGM(" B:");
  2864. SERIAL_PROTOCOL_F(degBed(), 1);
  2865. SERIAL_PROTOCOLLN("");
  2866. }
  2867. manage_heater();
  2868. manage_inactivity();
  2869. lcd_update();
  2870. }
  2871. LCD_MESSAGEPGM(MSG_BED_DONE);
  2872. previous_millis_cmd = millis();
  2873. }
  2874. #endif // TEMP_BED_PIN > -1
  2875. /**
  2876. * M112: Emergency Stop
  2877. */
  2878. inline void gcode_M112() {
  2879. kill();
  2880. }
  2881. #ifdef BARICUDA
  2882. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2883. /**
  2884. * M126: Heater 1 valve open
  2885. */
  2886. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2887. /**
  2888. * M127: Heater 1 valve close
  2889. */
  2890. inline void gcode_M127() { ValvePressure = 0; }
  2891. #endif
  2892. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2893. /**
  2894. * M128: Heater 2 valve open
  2895. */
  2896. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2897. /**
  2898. * M129: Heater 2 valve close
  2899. */
  2900. inline void gcode_M129() { EtoPPressure = 0; }
  2901. #endif
  2902. #endif //BARICUDA
  2903. /**
  2904. * M140: Set bed temperature
  2905. */
  2906. inline void gcode_M140() {
  2907. if (code_seen('S')) setTargetBed(code_value());
  2908. }
  2909. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2910. /**
  2911. * M80: Turn on Power Supply
  2912. */
  2913. inline void gcode_M80() {
  2914. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2915. // If you have a switch on suicide pin, this is useful
  2916. // if you want to start another print with suicide feature after
  2917. // a print without suicide...
  2918. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2919. OUT_WRITE(SUICIDE_PIN, HIGH);
  2920. #endif
  2921. #ifdef ULTIPANEL
  2922. powersupply = true;
  2923. LCD_MESSAGEPGM(WELCOME_MSG);
  2924. lcd_update();
  2925. #endif
  2926. }
  2927. #endif // PS_ON_PIN
  2928. /**
  2929. * M81: Turn off Power Supply
  2930. */
  2931. inline void gcode_M81() {
  2932. disable_heater();
  2933. st_synchronize();
  2934. disable_e0();
  2935. disable_e1();
  2936. disable_e2();
  2937. disable_e3();
  2938. finishAndDisableSteppers();
  2939. fanSpeed = 0;
  2940. delay(1000); // Wait 1 second before switching off
  2941. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2942. st_synchronize();
  2943. suicide();
  2944. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2945. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2946. #endif
  2947. #ifdef ULTIPANEL
  2948. powersupply = false;
  2949. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2950. lcd_update();
  2951. #endif
  2952. }
  2953. /**
  2954. * M82: Set E codes absolute (default)
  2955. */
  2956. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2957. /**
  2958. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2959. */
  2960. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2961. /**
  2962. * M18, M84: Disable all stepper motors
  2963. */
  2964. inline void gcode_M18_M84() {
  2965. if (code_seen('S')) {
  2966. stepper_inactive_time = code_value() * 1000;
  2967. }
  2968. else {
  2969. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2970. if (all_axis) {
  2971. st_synchronize();
  2972. disable_e0();
  2973. disable_e1();
  2974. disable_e2();
  2975. disable_e3();
  2976. finishAndDisableSteppers();
  2977. }
  2978. else {
  2979. st_synchronize();
  2980. if (code_seen('X')) disable_x();
  2981. if (code_seen('Y')) disable_y();
  2982. if (code_seen('Z')) disable_z();
  2983. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2984. if (code_seen('E')) {
  2985. disable_e0();
  2986. disable_e1();
  2987. disable_e2();
  2988. disable_e3();
  2989. }
  2990. #endif
  2991. }
  2992. }
  2993. }
  2994. /**
  2995. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2996. */
  2997. inline void gcode_M85() {
  2998. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2999. }
  3000. /**
  3001. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3002. */
  3003. inline void gcode_M92() {
  3004. for(int8_t i=0; i < NUM_AXIS; i++) {
  3005. if (code_seen(axis_codes[i])) {
  3006. if (i == E_AXIS) {
  3007. float value = code_value();
  3008. if (value < 20.0) {
  3009. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3010. max_e_jerk *= factor;
  3011. max_feedrate[i] *= factor;
  3012. axis_steps_per_sqr_second[i] *= factor;
  3013. }
  3014. axis_steps_per_unit[i] = value;
  3015. }
  3016. else {
  3017. axis_steps_per_unit[i] = code_value();
  3018. }
  3019. }
  3020. }
  3021. }
  3022. /**
  3023. * M114: Output current position to serial port
  3024. */
  3025. inline void gcode_M114() {
  3026. SERIAL_PROTOCOLPGM("X:");
  3027. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3028. SERIAL_PROTOCOLPGM(" Y:");
  3029. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3030. SERIAL_PROTOCOLPGM(" Z:");
  3031. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3032. SERIAL_PROTOCOLPGM(" E:");
  3033. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3034. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3035. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3036. SERIAL_PROTOCOLPGM(" Y:");
  3037. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3038. SERIAL_PROTOCOLPGM(" Z:");
  3039. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3040. SERIAL_PROTOCOLLN("");
  3041. #ifdef SCARA
  3042. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3043. SERIAL_PROTOCOL(delta[X_AXIS]);
  3044. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3045. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3046. SERIAL_PROTOCOLLN("");
  3047. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3048. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3049. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3050. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3051. SERIAL_PROTOCOLLN("");
  3052. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3053. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3054. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3055. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3056. SERIAL_PROTOCOLLN("");
  3057. SERIAL_PROTOCOLLN("");
  3058. #endif
  3059. }
  3060. /**
  3061. * M115: Capabilities string
  3062. */
  3063. inline void gcode_M115() {
  3064. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3065. }
  3066. /**
  3067. * M117: Set LCD Status Message
  3068. */
  3069. inline void gcode_M117() {
  3070. char* codepos = strchr_pointer + 5;
  3071. char* starpos = strchr(codepos, '*');
  3072. if (starpos) *starpos = '\0';
  3073. lcd_setstatus(codepos);
  3074. }
  3075. /**
  3076. * M119: Output endstop states to serial output
  3077. */
  3078. inline void gcode_M119() {
  3079. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3080. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3081. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3082. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3083. #endif
  3084. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3085. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3086. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3087. #endif
  3088. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3089. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3090. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3091. #endif
  3092. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3093. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3094. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3095. #endif
  3096. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3097. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3098. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3099. #endif
  3100. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3101. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3102. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3103. #endif
  3104. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  3105. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3106. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3107. #endif
  3108. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN >-1
  3109. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3110. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3111. #endif
  3112. }
  3113. /**
  3114. * M120: Enable endstops
  3115. */
  3116. inline void gcode_M120() { enable_endstops(false); }
  3117. /**
  3118. * M121: Disable endstops
  3119. */
  3120. inline void gcode_M121() { enable_endstops(true); }
  3121. #ifdef BLINKM
  3122. /**
  3123. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3124. */
  3125. inline void gcode_M150() {
  3126. SendColors(
  3127. code_seen('R') ? (byte)code_value() : 0,
  3128. code_seen('U') ? (byte)code_value() : 0,
  3129. code_seen('B') ? (byte)code_value() : 0
  3130. );
  3131. }
  3132. #endif // BLINKM
  3133. /**
  3134. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3135. * T<extruder>
  3136. * D<millimeters>
  3137. */
  3138. inline void gcode_M200() {
  3139. tmp_extruder = active_extruder;
  3140. if (code_seen('T')) {
  3141. tmp_extruder = code_value();
  3142. if (tmp_extruder >= EXTRUDERS) {
  3143. SERIAL_ECHO_START;
  3144. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3145. return;
  3146. }
  3147. }
  3148. if (code_seen('D')) {
  3149. float diameter = code_value();
  3150. // setting any extruder filament size disables volumetric on the assumption that
  3151. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3152. // for all extruders
  3153. volumetric_enabled = (diameter != 0.0);
  3154. if (volumetric_enabled) {
  3155. filament_size[tmp_extruder] = diameter;
  3156. // make sure all extruders have some sane value for the filament size
  3157. for (int i=0; i<EXTRUDERS; i++)
  3158. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3159. }
  3160. }
  3161. else {
  3162. //reserved for setting filament diameter via UFID or filament measuring device
  3163. return;
  3164. }
  3165. calculate_volumetric_multipliers();
  3166. }
  3167. /**
  3168. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3169. */
  3170. inline void gcode_M201() {
  3171. for (int8_t i=0; i < NUM_AXIS; i++) {
  3172. if (code_seen(axis_codes[i])) {
  3173. max_acceleration_units_per_sq_second[i] = code_value();
  3174. }
  3175. }
  3176. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3177. reset_acceleration_rates();
  3178. }
  3179. #if 0 // Not used for Sprinter/grbl gen6
  3180. inline void gcode_M202() {
  3181. for(int8_t i=0; i < NUM_AXIS; i++) {
  3182. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3183. }
  3184. }
  3185. #endif
  3186. /**
  3187. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3188. */
  3189. inline void gcode_M203() {
  3190. for (int8_t i=0; i < NUM_AXIS; i++) {
  3191. if (code_seen(axis_codes[i])) {
  3192. max_feedrate[i] = code_value();
  3193. }
  3194. }
  3195. }
  3196. /**
  3197. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3198. *
  3199. * P = Printing moves
  3200. * R = Retract only (no X, Y, Z) moves
  3201. * T = Travel (non printing) moves
  3202. *
  3203. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3204. */
  3205. inline void gcode_M204() {
  3206. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3207. {
  3208. acceleration = code_value();
  3209. travel_acceleration = acceleration;
  3210. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3211. SERIAL_EOL;
  3212. }
  3213. if (code_seen('P'))
  3214. {
  3215. acceleration = code_value();
  3216. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3217. SERIAL_EOL;
  3218. }
  3219. if (code_seen('R'))
  3220. {
  3221. retract_acceleration = code_value();
  3222. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3223. SERIAL_EOL;
  3224. }
  3225. if (code_seen('T'))
  3226. {
  3227. travel_acceleration = code_value();
  3228. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3229. SERIAL_EOL;
  3230. }
  3231. }
  3232. /**
  3233. * M205: Set Advanced Settings
  3234. *
  3235. * S = Min Feed Rate (mm/s)
  3236. * T = Min Travel Feed Rate (mm/s)
  3237. * B = Min Segment Time (µs)
  3238. * X = Max XY Jerk (mm/s/s)
  3239. * Z = Max Z Jerk (mm/s/s)
  3240. * E = Max E Jerk (mm/s/s)
  3241. */
  3242. inline void gcode_M205() {
  3243. if (code_seen('S')) minimumfeedrate = code_value();
  3244. if (code_seen('T')) mintravelfeedrate = code_value();
  3245. if (code_seen('B')) minsegmenttime = code_value();
  3246. if (code_seen('X')) max_xy_jerk = code_value();
  3247. if (code_seen('Z')) max_z_jerk = code_value();
  3248. if (code_seen('E')) max_e_jerk = code_value();
  3249. }
  3250. /**
  3251. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3252. */
  3253. inline void gcode_M206() {
  3254. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3255. if (code_seen(axis_codes[i])) {
  3256. home_offset[i] = code_value();
  3257. }
  3258. }
  3259. #ifdef SCARA
  3260. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3261. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3262. #endif
  3263. }
  3264. #ifdef DELTA
  3265. /**
  3266. * M665: Set delta configurations
  3267. *
  3268. * L = diagonal rod
  3269. * R = delta radius
  3270. * S = segments per second
  3271. */
  3272. inline void gcode_M665() {
  3273. if (code_seen('L')) delta_diagonal_rod = code_value();
  3274. if (code_seen('R')) delta_radius = code_value();
  3275. if (code_seen('S')) delta_segments_per_second = code_value();
  3276. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3277. }
  3278. /**
  3279. * M666: Set delta endstop adjustment
  3280. */
  3281. inline void gcode_M666() {
  3282. for (int8_t i = 0; i < 3; i++) {
  3283. if (code_seen(axis_codes[i])) {
  3284. endstop_adj[i] = code_value();
  3285. }
  3286. }
  3287. }
  3288. #elif defined(Z_DUAL_ENDSTOPS)
  3289. /**
  3290. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3291. */
  3292. inline void gcode_M666() {
  3293. if (code_seen('Z')) z_endstop_adj = code_value();
  3294. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3295. SERIAL_EOL;
  3296. }
  3297. #endif // DELTA
  3298. #ifdef FWRETRACT
  3299. /**
  3300. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3301. */
  3302. inline void gcode_M207() {
  3303. if (code_seen('S')) retract_length = code_value();
  3304. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3305. if (code_seen('Z')) retract_zlift = code_value();
  3306. }
  3307. /**
  3308. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3309. */
  3310. inline void gcode_M208() {
  3311. if (code_seen('S')) retract_recover_length = code_value();
  3312. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3313. }
  3314. /**
  3315. * M209: Enable automatic retract (M209 S1)
  3316. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3317. */
  3318. inline void gcode_M209() {
  3319. if (code_seen('S')) {
  3320. int t = code_value();
  3321. switch(t) {
  3322. case 0:
  3323. autoretract_enabled = false;
  3324. break;
  3325. case 1:
  3326. autoretract_enabled = true;
  3327. break;
  3328. default:
  3329. SERIAL_ECHO_START;
  3330. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3331. SERIAL_ECHO(cmdbuffer[bufindr]);
  3332. SERIAL_ECHOLNPGM("\"");
  3333. return;
  3334. }
  3335. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3336. }
  3337. }
  3338. #endif // FWRETRACT
  3339. #if EXTRUDERS > 1
  3340. /**
  3341. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3342. */
  3343. inline void gcode_M218() {
  3344. if (setTargetedHotend(218)) return;
  3345. if (code_seen('X')) extruder_offset[tmp_extruder][X_AXIS] = code_value();
  3346. if (code_seen('Y')) extruder_offset[tmp_extruder][Y_AXIS] = code_value();
  3347. #ifdef DUAL_X_CARRIAGE
  3348. if (code_seen('Z')) extruder_offset[tmp_extruder][Z_AXIS] = code_value();
  3349. #endif
  3350. SERIAL_ECHO_START;
  3351. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3352. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3353. SERIAL_ECHO(" ");
  3354. SERIAL_ECHO(extruder_offset[tmp_extruder][X_AXIS]);
  3355. SERIAL_ECHO(",");
  3356. SERIAL_ECHO(extruder_offset[tmp_extruder][Y_AXIS]);
  3357. #ifdef DUAL_X_CARRIAGE
  3358. SERIAL_ECHO(",");
  3359. SERIAL_ECHO(extruder_offset[tmp_extruder][Z_AXIS]);
  3360. #endif
  3361. }
  3362. SERIAL_EOL;
  3363. }
  3364. #endif // EXTRUDERS > 1
  3365. /**
  3366. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3367. */
  3368. inline void gcode_M220() {
  3369. if (code_seen('S')) feedmultiply = code_value();
  3370. }
  3371. /**
  3372. * M221: Set extrusion percentage (M221 T0 S95)
  3373. */
  3374. inline void gcode_M221() {
  3375. if (code_seen('S')) {
  3376. int sval = code_value();
  3377. if (code_seen('T')) {
  3378. if (setTargetedHotend(221)) return;
  3379. extruder_multiply[tmp_extruder] = sval;
  3380. }
  3381. else {
  3382. extruder_multiply[active_extruder] = sval;
  3383. }
  3384. }
  3385. }
  3386. /**
  3387. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3388. */
  3389. inline void gcode_M226() {
  3390. if (code_seen('P')) {
  3391. int pin_number = code_value();
  3392. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3393. if (pin_state >= -1 && pin_state <= 1) {
  3394. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3395. if (sensitive_pins[i] == pin_number) {
  3396. pin_number = -1;
  3397. break;
  3398. }
  3399. }
  3400. if (pin_number > -1) {
  3401. int target = LOW;
  3402. st_synchronize();
  3403. pinMode(pin_number, INPUT);
  3404. switch(pin_state){
  3405. case 1:
  3406. target = HIGH;
  3407. break;
  3408. case 0:
  3409. target = LOW;
  3410. break;
  3411. case -1:
  3412. target = !digitalRead(pin_number);
  3413. break;
  3414. }
  3415. while(digitalRead(pin_number) != target) {
  3416. manage_heater();
  3417. manage_inactivity();
  3418. lcd_update();
  3419. }
  3420. } // pin_number > -1
  3421. } // pin_state -1 0 1
  3422. } // code_seen('P')
  3423. }
  3424. #if NUM_SERVOS > 0
  3425. /**
  3426. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3427. */
  3428. inline void gcode_M280() {
  3429. int servo_index = code_seen('P') ? code_value() : -1;
  3430. int servo_position = 0;
  3431. if (code_seen('S')) {
  3432. servo_position = code_value();
  3433. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3434. #if SERVO_LEVELING
  3435. servos[servo_index].attach(0);
  3436. #endif
  3437. servos[servo_index].write(servo_position);
  3438. #if SERVO_LEVELING
  3439. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3440. servos[servo_index].detach();
  3441. #endif
  3442. }
  3443. else {
  3444. SERIAL_ECHO_START;
  3445. SERIAL_ECHO("Servo ");
  3446. SERIAL_ECHO(servo_index);
  3447. SERIAL_ECHOLN(" out of range");
  3448. }
  3449. }
  3450. else if (servo_index >= 0) {
  3451. SERIAL_PROTOCOL(MSG_OK);
  3452. SERIAL_PROTOCOL(" Servo ");
  3453. SERIAL_PROTOCOL(servo_index);
  3454. SERIAL_PROTOCOL(": ");
  3455. SERIAL_PROTOCOL(servos[servo_index].read());
  3456. SERIAL_PROTOCOLLN("");
  3457. }
  3458. }
  3459. #endif // NUM_SERVOS > 0
  3460. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3461. /**
  3462. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3463. */
  3464. inline void gcode_M300() {
  3465. int beepS = code_seen('S') ? code_value() : 110;
  3466. int beepP = code_seen('P') ? code_value() : 1000;
  3467. if (beepS > 0) {
  3468. #if BEEPER > 0
  3469. tone(BEEPER, beepS);
  3470. delay(beepP);
  3471. noTone(BEEPER);
  3472. #elif defined(ULTRALCD)
  3473. lcd_buzz(beepS, beepP);
  3474. #elif defined(LCD_USE_I2C_BUZZER)
  3475. lcd_buzz(beepP, beepS);
  3476. #endif
  3477. }
  3478. else {
  3479. delay(beepP);
  3480. }
  3481. }
  3482. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3483. #ifdef PIDTEMP
  3484. /**
  3485. * M301: Set PID parameters P I D (and optionally C)
  3486. */
  3487. inline void gcode_M301() {
  3488. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3489. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3490. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3491. if (e < EXTRUDERS) { // catch bad input value
  3492. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3493. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3494. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3495. #ifdef PID_ADD_EXTRUSION_RATE
  3496. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3497. #endif
  3498. updatePID();
  3499. SERIAL_PROTOCOL(MSG_OK);
  3500. #ifdef PID_PARAMS_PER_EXTRUDER
  3501. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3502. SERIAL_PROTOCOL(e);
  3503. #endif // PID_PARAMS_PER_EXTRUDER
  3504. SERIAL_PROTOCOL(" p:");
  3505. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3506. SERIAL_PROTOCOL(" i:");
  3507. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3508. SERIAL_PROTOCOL(" d:");
  3509. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3510. #ifdef PID_ADD_EXTRUSION_RATE
  3511. SERIAL_PROTOCOL(" c:");
  3512. //Kc does not have scaling applied above, or in resetting defaults
  3513. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3514. #endif
  3515. SERIAL_PROTOCOLLN("");
  3516. }
  3517. else {
  3518. SERIAL_ECHO_START;
  3519. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3520. }
  3521. }
  3522. #endif // PIDTEMP
  3523. #ifdef PIDTEMPBED
  3524. inline void gcode_M304() {
  3525. if (code_seen('P')) bedKp = code_value();
  3526. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3527. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3528. updatePID();
  3529. SERIAL_PROTOCOL(MSG_OK);
  3530. SERIAL_PROTOCOL(" p:");
  3531. SERIAL_PROTOCOL(bedKp);
  3532. SERIAL_PROTOCOL(" i:");
  3533. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3534. SERIAL_PROTOCOL(" d:");
  3535. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3536. SERIAL_PROTOCOLLN("");
  3537. }
  3538. #endif // PIDTEMPBED
  3539. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3540. /**
  3541. * M240: Trigger a camera by emulating a Canon RC-1
  3542. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3543. */
  3544. inline void gcode_M240() {
  3545. #ifdef CHDK
  3546. OUT_WRITE(CHDK, HIGH);
  3547. chdkHigh = millis();
  3548. chdkActive = true;
  3549. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3550. const uint8_t NUM_PULSES = 16;
  3551. const float PULSE_LENGTH = 0.01524;
  3552. for (int i = 0; i < NUM_PULSES; i++) {
  3553. WRITE(PHOTOGRAPH_PIN, HIGH);
  3554. _delay_ms(PULSE_LENGTH);
  3555. WRITE(PHOTOGRAPH_PIN, LOW);
  3556. _delay_ms(PULSE_LENGTH);
  3557. }
  3558. delay(7.33);
  3559. for (int i = 0; i < NUM_PULSES; i++) {
  3560. WRITE(PHOTOGRAPH_PIN, HIGH);
  3561. _delay_ms(PULSE_LENGTH);
  3562. WRITE(PHOTOGRAPH_PIN, LOW);
  3563. _delay_ms(PULSE_LENGTH);
  3564. }
  3565. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3566. }
  3567. #endif // CHDK || PHOTOGRAPH_PIN
  3568. #ifdef DOGLCD
  3569. /**
  3570. * M250: Read and optionally set the LCD contrast
  3571. */
  3572. inline void gcode_M250() {
  3573. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3574. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3575. SERIAL_PROTOCOL(lcd_contrast);
  3576. SERIAL_PROTOCOLLN("");
  3577. }
  3578. #endif // DOGLCD
  3579. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3580. /**
  3581. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3582. */
  3583. inline void gcode_M302() {
  3584. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3585. }
  3586. #endif // PREVENT_DANGEROUS_EXTRUDE
  3587. /**
  3588. * M303: PID relay autotune
  3589. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3590. * E<extruder> (-1 for the bed)
  3591. * C<cycles>
  3592. */
  3593. inline void gcode_M303() {
  3594. int e = code_seen('E') ? code_value_long() : 0;
  3595. int c = code_seen('C') ? code_value_long() : 5;
  3596. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3597. PID_autotune(temp, e, c);
  3598. }
  3599. #ifdef SCARA
  3600. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3601. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3602. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3603. if (! Stopped) {
  3604. //get_coordinates(); // For X Y Z E F
  3605. delta[X_AXIS] = delta_x;
  3606. delta[Y_AXIS] = delta_y;
  3607. calculate_SCARA_forward_Transform(delta);
  3608. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3609. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3610. prepare_move();
  3611. //ClearToSend();
  3612. return true;
  3613. }
  3614. return false;
  3615. }
  3616. /**
  3617. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3618. */
  3619. inline bool gcode_M360() {
  3620. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3621. return SCARA_move_to_cal(0, 120);
  3622. }
  3623. /**
  3624. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3625. */
  3626. inline bool gcode_M361() {
  3627. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3628. return SCARA_move_to_cal(90, 130);
  3629. }
  3630. /**
  3631. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3632. */
  3633. inline bool gcode_M362() {
  3634. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3635. return SCARA_move_to_cal(60, 180);
  3636. }
  3637. /**
  3638. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3639. */
  3640. inline bool gcode_M363() {
  3641. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3642. return SCARA_move_to_cal(50, 90);
  3643. }
  3644. /**
  3645. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3646. */
  3647. inline bool gcode_M364() {
  3648. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3649. return SCARA_move_to_cal(45, 135);
  3650. }
  3651. /**
  3652. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3653. */
  3654. inline void gcode_M365() {
  3655. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3656. if (code_seen(axis_codes[i])) {
  3657. axis_scaling[i] = code_value();
  3658. }
  3659. }
  3660. }
  3661. #endif // SCARA
  3662. #ifdef EXT_SOLENOID
  3663. void enable_solenoid(uint8_t num) {
  3664. switch(num) {
  3665. case 0:
  3666. OUT_WRITE(SOL0_PIN, HIGH);
  3667. break;
  3668. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3669. case 1:
  3670. OUT_WRITE(SOL1_PIN, HIGH);
  3671. break;
  3672. #endif
  3673. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3674. case 2:
  3675. OUT_WRITE(SOL2_PIN, HIGH);
  3676. break;
  3677. #endif
  3678. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3679. case 3:
  3680. OUT_WRITE(SOL3_PIN, HIGH);
  3681. break;
  3682. #endif
  3683. default:
  3684. SERIAL_ECHO_START;
  3685. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3686. break;
  3687. }
  3688. }
  3689. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3690. void disable_all_solenoids() {
  3691. OUT_WRITE(SOL0_PIN, LOW);
  3692. OUT_WRITE(SOL1_PIN, LOW);
  3693. OUT_WRITE(SOL2_PIN, LOW);
  3694. OUT_WRITE(SOL3_PIN, LOW);
  3695. }
  3696. /**
  3697. * M380: Enable solenoid on the active extruder
  3698. */
  3699. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3700. /**
  3701. * M381: Disable all solenoids
  3702. */
  3703. inline void gcode_M381() { disable_all_solenoids(); }
  3704. #endif // EXT_SOLENOID
  3705. /**
  3706. * M400: Finish all moves
  3707. */
  3708. inline void gcode_M400() { st_synchronize(); }
  3709. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3710. /**
  3711. * M401: Engage Z Servo endstop if available
  3712. */
  3713. inline void gcode_M401() { engage_z_probe(); }
  3714. /**
  3715. * M402: Retract Z Servo endstop if enabled
  3716. */
  3717. inline void gcode_M402() { retract_z_probe(); }
  3718. #endif
  3719. #ifdef FILAMENT_SENSOR
  3720. /**
  3721. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3722. */
  3723. inline void gcode_M404() {
  3724. #if FILWIDTH_PIN > -1
  3725. if (code_seen('W')) {
  3726. filament_width_nominal = code_value();
  3727. }
  3728. else {
  3729. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3730. SERIAL_PROTOCOLLN(filament_width_nominal);
  3731. }
  3732. #endif
  3733. }
  3734. /**
  3735. * M405: Turn on filament sensor for control
  3736. */
  3737. inline void gcode_M405() {
  3738. if (code_seen('D')) meas_delay_cm = code_value();
  3739. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3740. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3741. int temp_ratio = widthFil_to_size_ratio();
  3742. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3743. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3744. delay_index1 = delay_index2 = 0;
  3745. }
  3746. filament_sensor = true;
  3747. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3748. //SERIAL_PROTOCOL(filament_width_meas);
  3749. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3750. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3751. }
  3752. /**
  3753. * M406: Turn off filament sensor for control
  3754. */
  3755. inline void gcode_M406() { filament_sensor = false; }
  3756. /**
  3757. * M407: Get measured filament diameter on serial output
  3758. */
  3759. inline void gcode_M407() {
  3760. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3761. SERIAL_PROTOCOLLN(filament_width_meas);
  3762. }
  3763. #endif // FILAMENT_SENSOR
  3764. /**
  3765. * M500: Store settings in EEPROM
  3766. */
  3767. inline void gcode_M500() {
  3768. Config_StoreSettings();
  3769. }
  3770. /**
  3771. * M501: Read settings from EEPROM
  3772. */
  3773. inline void gcode_M501() {
  3774. Config_RetrieveSettings();
  3775. }
  3776. /**
  3777. * M502: Revert to default settings
  3778. */
  3779. inline void gcode_M502() {
  3780. Config_ResetDefault();
  3781. }
  3782. /**
  3783. * M503: print settings currently in memory
  3784. */
  3785. inline void gcode_M503() {
  3786. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3787. }
  3788. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3789. /**
  3790. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3791. */
  3792. inline void gcode_M540() {
  3793. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3794. }
  3795. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3796. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3797. inline void gcode_SET_Z_PROBE_OFFSET() {
  3798. float value;
  3799. if (code_seen('Z')) {
  3800. value = code_value();
  3801. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3802. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3803. SERIAL_ECHO_START;
  3804. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3805. SERIAL_PROTOCOLLN("");
  3806. }
  3807. else {
  3808. SERIAL_ECHO_START;
  3809. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3810. SERIAL_ECHOPGM(MSG_Z_MIN);
  3811. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3812. SERIAL_ECHOPGM(MSG_Z_MAX);
  3813. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3814. SERIAL_PROTOCOLLN("");
  3815. }
  3816. }
  3817. else {
  3818. SERIAL_ECHO_START;
  3819. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3820. SERIAL_ECHO(-zprobe_zoffset);
  3821. SERIAL_PROTOCOLLN("");
  3822. }
  3823. }
  3824. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3825. #ifdef FILAMENTCHANGEENABLE
  3826. /**
  3827. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3828. */
  3829. inline void gcode_M600() {
  3830. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3831. for (int i=0; i<NUM_AXIS; i++)
  3832. target[i] = lastpos[i] = current_position[i];
  3833. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3834. #ifdef DELTA
  3835. #define RUNPLAN calculate_delta(target); BASICPLAN
  3836. #else
  3837. #define RUNPLAN BASICPLAN
  3838. #endif
  3839. //retract by E
  3840. if (code_seen('E')) target[E_AXIS] += code_value();
  3841. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3842. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3843. #endif
  3844. RUNPLAN;
  3845. //lift Z
  3846. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3847. #ifdef FILAMENTCHANGE_ZADD
  3848. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3849. #endif
  3850. RUNPLAN;
  3851. //move xy
  3852. if (code_seen('X')) target[X_AXIS] = code_value();
  3853. #ifdef FILAMENTCHANGE_XPOS
  3854. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3855. #endif
  3856. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3857. #ifdef FILAMENTCHANGE_YPOS
  3858. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3859. #endif
  3860. RUNPLAN;
  3861. if (code_seen('L')) target[E_AXIS] += code_value();
  3862. #ifdef FILAMENTCHANGE_FINALRETRACT
  3863. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3864. #endif
  3865. RUNPLAN;
  3866. //finish moves
  3867. st_synchronize();
  3868. //disable extruder steppers so filament can be removed
  3869. disable_e0();
  3870. disable_e1();
  3871. disable_e2();
  3872. disable_e3();
  3873. delay(100);
  3874. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3875. uint8_t cnt = 0;
  3876. while (!lcd_clicked()) {
  3877. cnt++;
  3878. manage_heater();
  3879. manage_inactivity(true);
  3880. lcd_update();
  3881. if (cnt == 0) {
  3882. #if BEEPER > 0
  3883. OUT_WRITE(BEEPER,HIGH);
  3884. delay(3);
  3885. WRITE(BEEPER,LOW);
  3886. delay(3);
  3887. #else
  3888. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3889. lcd_buzz(1000/6, 100);
  3890. #else
  3891. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3892. #endif
  3893. #endif
  3894. }
  3895. } // while(!lcd_clicked)
  3896. //return to normal
  3897. if (code_seen('L')) target[E_AXIS] -= code_value();
  3898. #ifdef FILAMENTCHANGE_FINALRETRACT
  3899. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3900. #endif
  3901. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3902. plan_set_e_position(current_position[E_AXIS]);
  3903. RUNPLAN; //should do nothing
  3904. lcd_reset_alert_level();
  3905. #ifdef DELTA
  3906. calculate_delta(lastpos);
  3907. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3908. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3909. #else
  3910. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3911. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3912. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3913. #endif
  3914. #ifdef FILAMENT_RUNOUT_SENSOR
  3915. filrunoutEnqued = false;
  3916. #endif
  3917. }
  3918. #endif // FILAMENTCHANGEENABLE
  3919. #ifdef DUAL_X_CARRIAGE
  3920. /**
  3921. * M605: Set dual x-carriage movement mode
  3922. *
  3923. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3924. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3925. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3926. * millimeters x-offset and an optional differential hotend temperature of
  3927. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3928. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3929. *
  3930. * Note: the X axis should be homed after changing dual x-carriage mode.
  3931. */
  3932. inline void gcode_M605() {
  3933. st_synchronize();
  3934. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3935. switch(dual_x_carriage_mode) {
  3936. case DXC_DUPLICATION_MODE:
  3937. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3938. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3939. SERIAL_ECHO_START;
  3940. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3941. SERIAL_ECHO(" ");
  3942. SERIAL_ECHO(extruder_offset[0][X_AXIS]);
  3943. SERIAL_ECHO(",");
  3944. SERIAL_ECHO(extruder_offset[0][Y_AXIS]);
  3945. SERIAL_ECHO(" ");
  3946. SERIAL_ECHO(duplicate_extruder_x_offset);
  3947. SERIAL_ECHO(",");
  3948. SERIAL_ECHOLN(extruder_offset[1][Y_AXIS]);
  3949. break;
  3950. case DXC_FULL_CONTROL_MODE:
  3951. case DXC_AUTO_PARK_MODE:
  3952. break;
  3953. default:
  3954. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3955. break;
  3956. }
  3957. active_extruder_parked = false;
  3958. extruder_duplication_enabled = false;
  3959. delayed_move_time = 0;
  3960. }
  3961. #endif // DUAL_X_CARRIAGE
  3962. /**
  3963. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3964. */
  3965. inline void gcode_M907() {
  3966. #if HAS_DIGIPOTSS
  3967. for (int i=0;i<NUM_AXIS;i++)
  3968. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3969. if (code_seen('B')) digipot_current(4, code_value());
  3970. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3971. #endif
  3972. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3973. if (code_seen('X')) digipot_current(0, code_value());
  3974. #endif
  3975. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3976. if (code_seen('Z')) digipot_current(1, code_value());
  3977. #endif
  3978. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3979. if (code_seen('E')) digipot_current(2, code_value());
  3980. #endif
  3981. #ifdef DIGIPOT_I2C
  3982. // this one uses actual amps in floating point
  3983. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3984. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3985. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3986. #endif
  3987. }
  3988. #if HAS_DIGIPOTSS
  3989. /**
  3990. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3991. */
  3992. inline void gcode_M908() {
  3993. digitalPotWrite(
  3994. code_seen('P') ? code_value() : 0,
  3995. code_seen('S') ? code_value() : 0
  3996. );
  3997. }
  3998. #endif // HAS_DIGIPOTSS
  3999. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4000. inline void gcode_M350() {
  4001. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4002. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4003. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4004. if(code_seen('B')) microstep_mode(4,code_value());
  4005. microstep_readings();
  4006. #endif
  4007. }
  4008. /**
  4009. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4010. * S# determines MS1 or MS2, X# sets the pin high/low.
  4011. */
  4012. inline void gcode_M351() {
  4013. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4014. if (code_seen('S')) switch(code_value_long()) {
  4015. case 1:
  4016. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4017. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4018. break;
  4019. case 2:
  4020. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4021. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4022. break;
  4023. }
  4024. microstep_readings();
  4025. #endif
  4026. }
  4027. /**
  4028. * M999: Restart after being stopped
  4029. */
  4030. inline void gcode_M999() {
  4031. Stopped = false;
  4032. lcd_reset_alert_level();
  4033. gcode_LastN = Stopped_gcode_LastN;
  4034. FlushSerialRequestResend();
  4035. }
  4036. inline void gcode_T() {
  4037. tmp_extruder = code_value();
  4038. if (tmp_extruder >= EXTRUDERS) {
  4039. SERIAL_ECHO_START;
  4040. SERIAL_ECHO("T");
  4041. SERIAL_ECHO(tmp_extruder);
  4042. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4043. }
  4044. else {
  4045. #if EXTRUDERS > 1
  4046. bool make_move = false;
  4047. #endif
  4048. if (code_seen('F')) {
  4049. #if EXTRUDERS > 1
  4050. make_move = true;
  4051. #endif
  4052. next_feedrate = code_value();
  4053. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4054. }
  4055. #if EXTRUDERS > 1
  4056. if (tmp_extruder != active_extruder) {
  4057. // Save current position to return to after applying extruder offset
  4058. memcpy(destination, current_position, sizeof(destination));
  4059. #ifdef DUAL_X_CARRIAGE
  4060. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  4061. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4062. // Park old head: 1) raise 2) move to park position 3) lower
  4063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4064. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4065. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4066. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4067. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4068. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4069. st_synchronize();
  4070. }
  4071. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4072. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4073. extruder_offset[active_extruder][Y_AXIS] +
  4074. extruder_offset[tmp_extruder][Y_AXIS];
  4075. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4076. extruder_offset[active_extruder][Z_AXIS] +
  4077. extruder_offset[tmp_extruder][Z_AXIS];
  4078. active_extruder = tmp_extruder;
  4079. // This function resets the max/min values - the current position may be overwritten below.
  4080. axis_is_at_home(X_AXIS);
  4081. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4082. current_position[X_AXIS] = inactive_extruder_x_pos;
  4083. inactive_extruder_x_pos = destination[X_AXIS];
  4084. }
  4085. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4086. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4087. if (active_extruder == 0 || active_extruder_parked)
  4088. current_position[X_AXIS] = inactive_extruder_x_pos;
  4089. else
  4090. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4091. inactive_extruder_x_pos = destination[X_AXIS];
  4092. extruder_duplication_enabled = false;
  4093. }
  4094. else {
  4095. // record raised toolhead position for use by unpark
  4096. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4097. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4098. active_extruder_parked = true;
  4099. delayed_move_time = 0;
  4100. }
  4101. #else // !DUAL_X_CARRIAGE
  4102. // Offset extruder (only by XY)
  4103. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4104. current_position[i] += extruder_offset[tmp_extruder][i] - extruder_offset[active_extruder][i];
  4105. // Set the new active extruder and position
  4106. active_extruder = tmp_extruder;
  4107. #endif // !DUAL_X_CARRIAGE
  4108. #ifdef DELTA
  4109. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  4110. //sent position to plan_set_position();
  4111. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  4112. #else
  4113. sync_plan_position();
  4114. #endif
  4115. // Move to the old position if 'F' was in the parameters
  4116. if (make_move && !Stopped) prepare_move();
  4117. }
  4118. #ifdef EXT_SOLENOID
  4119. st_synchronize();
  4120. disable_all_solenoids();
  4121. enable_solenoid_on_active_extruder();
  4122. #endif // EXT_SOLENOID
  4123. #endif // EXTRUDERS > 1
  4124. SERIAL_ECHO_START;
  4125. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4126. SERIAL_PROTOCOLLN((int)active_extruder);
  4127. }
  4128. }
  4129. /**
  4130. * Process Commands and dispatch them to handlers
  4131. */
  4132. void process_commands() {
  4133. if (code_seen('G')) {
  4134. int gCode = code_value_long();
  4135. switch(gCode) {
  4136. // G0, G1
  4137. case 0:
  4138. case 1:
  4139. gcode_G0_G1();
  4140. break;
  4141. // G2, G3
  4142. #ifndef SCARA
  4143. case 2: // G2 - CW ARC
  4144. case 3: // G3 - CCW ARC
  4145. gcode_G2_G3(gCode == 2);
  4146. break;
  4147. #endif
  4148. // G4 Dwell
  4149. case 4:
  4150. gcode_G4();
  4151. break;
  4152. #ifdef FWRETRACT
  4153. case 10: // G10: retract
  4154. case 11: // G11: retract_recover
  4155. gcode_G10_G11(gCode == 10);
  4156. break;
  4157. #endif //FWRETRACT
  4158. case 28: // G28: Home all axes, one at a time
  4159. gcode_G28();
  4160. break;
  4161. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4162. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4163. gcode_G29();
  4164. break;
  4165. #endif
  4166. #ifdef ENABLE_AUTO_BED_LEVELING
  4167. #ifndef Z_PROBE_SLED
  4168. case 30: // G30 Single Z Probe
  4169. gcode_G30();
  4170. break;
  4171. #else // Z_PROBE_SLED
  4172. case 31: // G31: dock the sled
  4173. case 32: // G32: undock the sled
  4174. dock_sled(gCode == 31);
  4175. break;
  4176. #endif // Z_PROBE_SLED
  4177. #endif // ENABLE_AUTO_BED_LEVELING
  4178. case 90: // G90
  4179. relative_mode = false;
  4180. break;
  4181. case 91: // G91
  4182. relative_mode = true;
  4183. break;
  4184. case 92: // G92
  4185. gcode_G92();
  4186. break;
  4187. }
  4188. }
  4189. else if (code_seen('M')) {
  4190. switch( code_value_long() ) {
  4191. #ifdef ULTIPANEL
  4192. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4193. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4194. gcode_M0_M1();
  4195. break;
  4196. #endif // ULTIPANEL
  4197. case 17:
  4198. gcode_M17();
  4199. break;
  4200. #ifdef SDSUPPORT
  4201. case 20: // M20 - list SD card
  4202. gcode_M20(); break;
  4203. case 21: // M21 - init SD card
  4204. gcode_M21(); break;
  4205. case 22: //M22 - release SD card
  4206. gcode_M22(); break;
  4207. case 23: //M23 - Select file
  4208. gcode_M23(); break;
  4209. case 24: //M24 - Start SD print
  4210. gcode_M24(); break;
  4211. case 25: //M25 - Pause SD print
  4212. gcode_M25(); break;
  4213. case 26: //M26 - Set SD index
  4214. gcode_M26(); break;
  4215. case 27: //M27 - Get SD status
  4216. gcode_M27(); break;
  4217. case 28: //M28 - Start SD write
  4218. gcode_M28(); break;
  4219. case 29: //M29 - Stop SD write
  4220. gcode_M29(); break;
  4221. case 30: //M30 <filename> Delete File
  4222. gcode_M30(); break;
  4223. case 32: //M32 - Select file and start SD print
  4224. gcode_M32(); break;
  4225. case 928: //M928 - Start SD write
  4226. gcode_M928(); break;
  4227. #endif //SDSUPPORT
  4228. case 31: //M31 take time since the start of the SD print or an M109 command
  4229. gcode_M31();
  4230. break;
  4231. case 42: //M42 -Change pin status via gcode
  4232. gcode_M42();
  4233. break;
  4234. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4235. case 48: // M48 Z-Probe repeatability
  4236. gcode_M48();
  4237. break;
  4238. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4239. case 104: // M104
  4240. gcode_M104();
  4241. break;
  4242. case 112: // M112 Emergency Stop
  4243. gcode_M112();
  4244. break;
  4245. case 140: // M140 Set bed temp
  4246. gcode_M140();
  4247. break;
  4248. case 105: // M105 Read current temperature
  4249. gcode_M105();
  4250. return;
  4251. break;
  4252. case 109: // M109 Wait for temperature
  4253. gcode_M109();
  4254. break;
  4255. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4256. case 190: // M190 - Wait for bed heater to reach target.
  4257. gcode_M190();
  4258. break;
  4259. #endif //TEMP_BED_PIN
  4260. #if defined(FAN_PIN) && FAN_PIN > -1
  4261. case 106: //M106 Fan On
  4262. gcode_M106();
  4263. break;
  4264. case 107: //M107 Fan Off
  4265. gcode_M107();
  4266. break;
  4267. #endif //FAN_PIN
  4268. #ifdef BARICUDA
  4269. // PWM for HEATER_1_PIN
  4270. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4271. case 126: // M126 valve open
  4272. gcode_M126();
  4273. break;
  4274. case 127: // M127 valve closed
  4275. gcode_M127();
  4276. break;
  4277. #endif //HEATER_1_PIN
  4278. // PWM for HEATER_2_PIN
  4279. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4280. case 128: // M128 valve open
  4281. gcode_M128();
  4282. break;
  4283. case 129: // M129 valve closed
  4284. gcode_M129();
  4285. break;
  4286. #endif //HEATER_2_PIN
  4287. #endif //BARICUDA
  4288. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4289. case 80: // M80 - Turn on Power Supply
  4290. gcode_M80();
  4291. break;
  4292. #endif // PS_ON_PIN
  4293. case 81: // M81 - Turn off Power Supply
  4294. gcode_M81();
  4295. break;
  4296. case 82:
  4297. gcode_M82();
  4298. break;
  4299. case 83:
  4300. gcode_M83();
  4301. break;
  4302. case 18: //compatibility
  4303. case 84: // M84
  4304. gcode_M18_M84();
  4305. break;
  4306. case 85: // M85
  4307. gcode_M85();
  4308. break;
  4309. case 92: // M92
  4310. gcode_M92();
  4311. break;
  4312. case 115: // M115
  4313. gcode_M115();
  4314. break;
  4315. case 117: // M117 display message
  4316. gcode_M117();
  4317. break;
  4318. case 114: // M114
  4319. gcode_M114();
  4320. break;
  4321. case 120: // M120
  4322. gcode_M120();
  4323. break;
  4324. case 121: // M121
  4325. gcode_M121();
  4326. break;
  4327. case 119: // M119
  4328. gcode_M119();
  4329. break;
  4330. //TODO: update for all axis, use for loop
  4331. #ifdef BLINKM
  4332. case 150: // M150
  4333. gcode_M150();
  4334. break;
  4335. #endif //BLINKM
  4336. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4337. gcode_M200();
  4338. break;
  4339. case 201: // M201
  4340. gcode_M201();
  4341. break;
  4342. #if 0 // Not used for Sprinter/grbl gen6
  4343. case 202: // M202
  4344. gcode_M202();
  4345. break;
  4346. #endif
  4347. case 203: // M203 max feedrate mm/sec
  4348. gcode_M203();
  4349. break;
  4350. case 204: // M204 acclereration S normal moves T filmanent only moves
  4351. gcode_M204();
  4352. break;
  4353. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4354. gcode_M205();
  4355. break;
  4356. case 206: // M206 additional homing offset
  4357. gcode_M206();
  4358. break;
  4359. #ifdef DELTA
  4360. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4361. gcode_M665();
  4362. break;
  4363. #endif
  4364. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4365. case 666: // M666 set delta / dual endstop adjustment
  4366. gcode_M666();
  4367. break;
  4368. #endif
  4369. #ifdef FWRETRACT
  4370. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4371. gcode_M207();
  4372. break;
  4373. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4374. gcode_M208();
  4375. break;
  4376. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4377. gcode_M209();
  4378. break;
  4379. #endif // FWRETRACT
  4380. #if EXTRUDERS > 1
  4381. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4382. gcode_M218();
  4383. break;
  4384. #endif
  4385. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4386. gcode_M220();
  4387. break;
  4388. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4389. gcode_M221();
  4390. break;
  4391. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4392. gcode_M226();
  4393. break;
  4394. #if NUM_SERVOS > 0
  4395. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4396. gcode_M280();
  4397. break;
  4398. #endif // NUM_SERVOS > 0
  4399. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4400. case 300: // M300 - Play beep tone
  4401. gcode_M300();
  4402. break;
  4403. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4404. #ifdef PIDTEMP
  4405. case 301: // M301
  4406. gcode_M301();
  4407. break;
  4408. #endif // PIDTEMP
  4409. #ifdef PIDTEMPBED
  4410. case 304: // M304
  4411. gcode_M304();
  4412. break;
  4413. #endif // PIDTEMPBED
  4414. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4415. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4416. gcode_M240();
  4417. break;
  4418. #endif // CHDK || PHOTOGRAPH_PIN
  4419. #ifdef DOGLCD
  4420. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4421. gcode_M250();
  4422. break;
  4423. #endif // DOGLCD
  4424. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4425. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4426. gcode_M302();
  4427. break;
  4428. #endif // PREVENT_DANGEROUS_EXTRUDE
  4429. case 303: // M303 PID autotune
  4430. gcode_M303();
  4431. break;
  4432. #ifdef SCARA
  4433. case 360: // M360 SCARA Theta pos1
  4434. if (gcode_M360()) return;
  4435. break;
  4436. case 361: // M361 SCARA Theta pos2
  4437. if (gcode_M361()) return;
  4438. break;
  4439. case 362: // M362 SCARA Psi pos1
  4440. if (gcode_M362()) return;
  4441. break;
  4442. case 363: // M363 SCARA Psi pos2
  4443. if (gcode_M363()) return;
  4444. break;
  4445. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4446. if (gcode_M364()) return;
  4447. break;
  4448. case 365: // M365 Set SCARA scaling for X Y Z
  4449. gcode_M365();
  4450. break;
  4451. #endif // SCARA
  4452. case 400: // M400 finish all moves
  4453. gcode_M400();
  4454. break;
  4455. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4456. case 401:
  4457. gcode_M401();
  4458. break;
  4459. case 402:
  4460. gcode_M402();
  4461. break;
  4462. #endif
  4463. #ifdef FILAMENT_SENSOR
  4464. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4465. gcode_M404();
  4466. break;
  4467. case 405: //M405 Turn on filament sensor for control
  4468. gcode_M405();
  4469. break;
  4470. case 406: //M406 Turn off filament sensor for control
  4471. gcode_M406();
  4472. break;
  4473. case 407: //M407 Display measured filament diameter
  4474. gcode_M407();
  4475. break;
  4476. #endif // FILAMENT_SENSOR
  4477. case 500: // M500 Store settings in EEPROM
  4478. gcode_M500();
  4479. break;
  4480. case 501: // M501 Read settings from EEPROM
  4481. gcode_M501();
  4482. break;
  4483. case 502: // M502 Revert to default settings
  4484. gcode_M502();
  4485. break;
  4486. case 503: // M503 print settings currently in memory
  4487. gcode_M503();
  4488. break;
  4489. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4490. case 540:
  4491. gcode_M540();
  4492. break;
  4493. #endif
  4494. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4495. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4496. gcode_SET_Z_PROBE_OFFSET();
  4497. break;
  4498. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4499. #ifdef FILAMENTCHANGEENABLE
  4500. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4501. gcode_M600();
  4502. break;
  4503. #endif // FILAMENTCHANGEENABLE
  4504. #ifdef DUAL_X_CARRIAGE
  4505. case 605:
  4506. gcode_M605();
  4507. break;
  4508. #endif // DUAL_X_CARRIAGE
  4509. case 907: // M907 Set digital trimpot motor current using axis codes.
  4510. gcode_M907();
  4511. break;
  4512. #if HAS_DIGIPOTSS
  4513. case 908: // M908 Control digital trimpot directly.
  4514. gcode_M908();
  4515. break;
  4516. #endif // HAS_DIGIPOTSS
  4517. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4518. gcode_M350();
  4519. break;
  4520. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4521. gcode_M351();
  4522. break;
  4523. case 999: // M999: Restart after being Stopped
  4524. gcode_M999();
  4525. break;
  4526. }
  4527. }
  4528. else if (code_seen('T')) {
  4529. gcode_T();
  4530. }
  4531. else {
  4532. SERIAL_ECHO_START;
  4533. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4534. SERIAL_ECHO(cmdbuffer[bufindr]);
  4535. SERIAL_ECHOLNPGM("\"");
  4536. }
  4537. ClearToSend();
  4538. }
  4539. void FlushSerialRequestResend()
  4540. {
  4541. //char cmdbuffer[bufindr][100]="Resend:";
  4542. MYSERIAL.flush();
  4543. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4544. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4545. ClearToSend();
  4546. }
  4547. void ClearToSend()
  4548. {
  4549. previous_millis_cmd = millis();
  4550. #ifdef SDSUPPORT
  4551. if(fromsd[bufindr])
  4552. return;
  4553. #endif //SDSUPPORT
  4554. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4555. }
  4556. void get_coordinates() {
  4557. for (int i = 0; i < NUM_AXIS; i++) {
  4558. if (code_seen(axis_codes[i]))
  4559. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4560. else
  4561. destination[i] = current_position[i];
  4562. }
  4563. if (code_seen('F')) {
  4564. next_feedrate = code_value();
  4565. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4566. }
  4567. }
  4568. void get_arc_coordinates()
  4569. {
  4570. #ifdef SF_ARC_FIX
  4571. bool relative_mode_backup = relative_mode;
  4572. relative_mode = true;
  4573. #endif
  4574. get_coordinates();
  4575. #ifdef SF_ARC_FIX
  4576. relative_mode=relative_mode_backup;
  4577. #endif
  4578. if(code_seen('I')) {
  4579. offset[0] = code_value();
  4580. }
  4581. else {
  4582. offset[0] = 0.0;
  4583. }
  4584. if(code_seen('J')) {
  4585. offset[1] = code_value();
  4586. }
  4587. else {
  4588. offset[1] = 0.0;
  4589. }
  4590. }
  4591. void clamp_to_software_endstops(float target[3])
  4592. {
  4593. if (min_software_endstops) {
  4594. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4595. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4596. float negative_z_offset = 0;
  4597. #ifdef ENABLE_AUTO_BED_LEVELING
  4598. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4599. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4600. #endif
  4601. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4602. }
  4603. if (max_software_endstops) {
  4604. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4605. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4606. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4607. }
  4608. }
  4609. #ifdef DELTA
  4610. void recalc_delta_settings(float radius, float diagonal_rod)
  4611. {
  4612. delta_tower1_x= -SIN_60*radius; // front left tower
  4613. delta_tower1_y= -COS_60*radius;
  4614. delta_tower2_x= SIN_60*radius; // front right tower
  4615. delta_tower2_y= -COS_60*radius;
  4616. delta_tower3_x= 0.0; // back middle tower
  4617. delta_tower3_y= radius;
  4618. delta_diagonal_rod_2= sq(diagonal_rod);
  4619. }
  4620. void calculate_delta(float cartesian[3])
  4621. {
  4622. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4623. - sq(delta_tower1_x-cartesian[X_AXIS])
  4624. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4625. ) + cartesian[Z_AXIS];
  4626. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4627. - sq(delta_tower2_x-cartesian[X_AXIS])
  4628. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4629. ) + cartesian[Z_AXIS];
  4630. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4631. - sq(delta_tower3_x-cartesian[X_AXIS])
  4632. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4633. ) + cartesian[Z_AXIS];
  4634. /*
  4635. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4636. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4637. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4638. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4639. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4640. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4641. */
  4642. }
  4643. #ifdef ENABLE_AUTO_BED_LEVELING
  4644. // Adjust print surface height by linear interpolation over the bed_level array.
  4645. int delta_grid_spacing[2] = { 0, 0 };
  4646. void adjust_delta(float cartesian[3])
  4647. {
  4648. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4649. return; // G29 not done
  4650. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4651. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4652. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4653. int floor_x = floor(grid_x);
  4654. int floor_y = floor(grid_y);
  4655. float ratio_x = grid_x - floor_x;
  4656. float ratio_y = grid_y - floor_y;
  4657. float z1 = bed_level[floor_x+half][floor_y+half];
  4658. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4659. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4660. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4661. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4662. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4663. float offset = (1-ratio_x)*left + ratio_x*right;
  4664. delta[X_AXIS] += offset;
  4665. delta[Y_AXIS] += offset;
  4666. delta[Z_AXIS] += offset;
  4667. /*
  4668. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4669. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4670. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4671. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4672. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4673. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4674. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4675. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4676. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4677. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4678. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4679. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4680. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4681. */
  4682. }
  4683. #endif //ENABLE_AUTO_BED_LEVELING
  4684. void prepare_move_raw()
  4685. {
  4686. previous_millis_cmd = millis();
  4687. calculate_delta(destination);
  4688. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4689. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4690. active_extruder);
  4691. for(int8_t i=0; i < NUM_AXIS; i++) {
  4692. current_position[i] = destination[i];
  4693. }
  4694. }
  4695. #endif //DELTA
  4696. #if defined(MESH_BED_LEVELING)
  4697. #if !defined(MIN)
  4698. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4699. #endif // ! MIN
  4700. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4701. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4702. {
  4703. if (!mbl.active) {
  4704. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4705. for(int8_t i=0; i < NUM_AXIS; i++) {
  4706. current_position[i] = destination[i];
  4707. }
  4708. return;
  4709. }
  4710. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4711. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4712. int ix = mbl.select_x_index(x);
  4713. int iy = mbl.select_y_index(y);
  4714. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4715. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4716. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4717. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4718. if (pix == ix && piy == iy) {
  4719. // Start and end on same mesh square
  4720. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4721. for(int8_t i=0; i < NUM_AXIS; i++) {
  4722. current_position[i] = destination[i];
  4723. }
  4724. return;
  4725. }
  4726. float nx, ny, ne, normalized_dist;
  4727. if (ix > pix && (x_splits) & BIT(ix)) {
  4728. nx = mbl.get_x(ix);
  4729. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4730. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4731. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4732. x_splits ^= BIT(ix);
  4733. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4734. nx = mbl.get_x(pix);
  4735. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4736. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4737. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4738. x_splits ^= BIT(pix);
  4739. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4740. ny = mbl.get_y(iy);
  4741. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4742. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4743. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4744. y_splits ^= BIT(iy);
  4745. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4746. ny = mbl.get_y(piy);
  4747. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4748. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4749. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4750. y_splits ^= BIT(piy);
  4751. } else {
  4752. // Already split on a border
  4753. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4754. for(int8_t i=0; i < NUM_AXIS; i++) {
  4755. current_position[i] = destination[i];
  4756. }
  4757. return;
  4758. }
  4759. // Do the split and look for more borders
  4760. destination[X_AXIS] = nx;
  4761. destination[Y_AXIS] = ny;
  4762. destination[E_AXIS] = ne;
  4763. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4764. destination[X_AXIS] = x;
  4765. destination[Y_AXIS] = y;
  4766. destination[E_AXIS] = e;
  4767. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4768. }
  4769. #endif // MESH_BED_LEVELING
  4770. void prepare_move()
  4771. {
  4772. clamp_to_software_endstops(destination);
  4773. previous_millis_cmd = millis();
  4774. #ifdef SCARA //for now same as delta-code
  4775. float difference[NUM_AXIS];
  4776. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4777. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4778. sq(difference[Y_AXIS]) +
  4779. sq(difference[Z_AXIS]));
  4780. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4781. if (cartesian_mm < 0.000001) { return; }
  4782. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4783. int steps = max(1, int(scara_segments_per_second * seconds));
  4784. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4785. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4786. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4787. for (int s = 1; s <= steps; s++) {
  4788. float fraction = float(s) / float(steps);
  4789. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4790. destination[i] = current_position[i] + difference[i] * fraction;
  4791. }
  4792. calculate_delta(destination);
  4793. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4794. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4795. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4796. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4797. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4798. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4799. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4800. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4801. active_extruder);
  4802. }
  4803. #endif // SCARA
  4804. #ifdef DELTA
  4805. float difference[NUM_AXIS];
  4806. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4807. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4808. sq(difference[Y_AXIS]) +
  4809. sq(difference[Z_AXIS]));
  4810. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4811. if (cartesian_mm < 0.000001) return;
  4812. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4813. int steps = max(1, int(delta_segments_per_second * seconds));
  4814. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4815. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4816. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4817. for (int s = 1; s <= steps; s++) {
  4818. float fraction = float(s) / float(steps);
  4819. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4820. calculate_delta(destination);
  4821. #ifdef ENABLE_AUTO_BED_LEVELING
  4822. adjust_delta(destination);
  4823. #endif
  4824. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4825. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4826. active_extruder);
  4827. }
  4828. #endif // DELTA
  4829. #ifdef DUAL_X_CARRIAGE
  4830. if (active_extruder_parked)
  4831. {
  4832. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4833. {
  4834. // move duplicate extruder into correct duplication position.
  4835. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4836. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4837. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4838. sync_plan_position();
  4839. st_synchronize();
  4840. extruder_duplication_enabled = true;
  4841. active_extruder_parked = false;
  4842. }
  4843. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4844. {
  4845. if (current_position[E_AXIS] == destination[E_AXIS])
  4846. {
  4847. // this is a travel move - skit it but keep track of current position (so that it can later
  4848. // be used as start of first non-travel move)
  4849. if (delayed_move_time != 0xFFFFFFFFUL)
  4850. {
  4851. memcpy(current_position, destination, sizeof(current_position));
  4852. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4853. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4854. delayed_move_time = millis();
  4855. return;
  4856. }
  4857. }
  4858. delayed_move_time = 0;
  4859. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4860. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4861. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4862. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4863. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4864. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4865. active_extruder_parked = false;
  4866. }
  4867. }
  4868. #endif //DUAL_X_CARRIAGE
  4869. #if ! (defined DELTA || defined SCARA)
  4870. // Do not use feedmultiply for E or Z only moves
  4871. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4872. line_to_destination();
  4873. } else {
  4874. #if defined(MESH_BED_LEVELING)
  4875. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4876. return;
  4877. #else
  4878. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4879. #endif // MESH_BED_LEVELING
  4880. }
  4881. #endif // !(DELTA || SCARA)
  4882. for(int8_t i=0; i < NUM_AXIS; i++) {
  4883. current_position[i] = destination[i];
  4884. }
  4885. }
  4886. void prepare_arc_move(char isclockwise) {
  4887. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4888. // Trace the arc
  4889. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4890. // As far as the parser is concerned, the position is now == target. In reality the
  4891. // motion control system might still be processing the action and the real tool position
  4892. // in any intermediate location.
  4893. for(int8_t i=0; i < NUM_AXIS; i++) {
  4894. current_position[i] = destination[i];
  4895. }
  4896. previous_millis_cmd = millis();
  4897. }
  4898. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4899. #if defined(FAN_PIN)
  4900. #if CONTROLLERFAN_PIN == FAN_PIN
  4901. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4902. #endif
  4903. #endif
  4904. unsigned long lastMotor = 0; // Last time a motor was turned on
  4905. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4906. void controllerFan() {
  4907. uint32_t ms = millis();
  4908. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4909. lastMotorCheck = ms;
  4910. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4911. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4912. #if EXTRUDERS > 1
  4913. || E1_ENABLE_READ == E_ENABLE_ON
  4914. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4915. || X2_ENABLE_READ == X_ENABLE_ON
  4916. #endif
  4917. #if EXTRUDERS > 2
  4918. || E2_ENABLE_READ == E_ENABLE_ON
  4919. #if EXTRUDERS > 3
  4920. || E3_ENABLE_READ == E_ENABLE_ON
  4921. #endif
  4922. #endif
  4923. #endif
  4924. ) {
  4925. lastMotor = ms; //... set time to NOW so the fan will turn on
  4926. }
  4927. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4928. // allows digital or PWM fan output to be used (see M42 handling)
  4929. digitalWrite(CONTROLLERFAN_PIN, speed);
  4930. analogWrite(CONTROLLERFAN_PIN, speed);
  4931. }
  4932. }
  4933. #endif
  4934. #ifdef SCARA
  4935. void calculate_SCARA_forward_Transform(float f_scara[3])
  4936. {
  4937. // Perform forward kinematics, and place results in delta[3]
  4938. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4939. float x_sin, x_cos, y_sin, y_cos;
  4940. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4941. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4942. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4943. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4944. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4945. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4946. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4947. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4948. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4949. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4950. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4951. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4952. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4953. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4954. }
  4955. void calculate_delta(float cartesian[3]){
  4956. //reverse kinematics.
  4957. // Perform reversed kinematics, and place results in delta[3]
  4958. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4959. float SCARA_pos[2];
  4960. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4961. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4962. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4963. #if (Linkage_1 == Linkage_2)
  4964. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4965. #else
  4966. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4967. #endif
  4968. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4969. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4970. SCARA_K2 = Linkage_2 * SCARA_S2;
  4971. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4972. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4973. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4974. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4975. delta[Z_AXIS] = cartesian[Z_AXIS];
  4976. /*
  4977. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4978. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4979. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4980. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4981. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4982. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4983. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4984. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4985. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4986. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4987. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4988. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4989. SERIAL_ECHOLN(" ");*/
  4990. }
  4991. #endif
  4992. #ifdef TEMP_STAT_LEDS
  4993. static bool blue_led = false;
  4994. static bool red_led = false;
  4995. static uint32_t stat_update = 0;
  4996. void handle_status_leds(void) {
  4997. float max_temp = 0.0;
  4998. if(millis() > stat_update) {
  4999. stat_update += 500; // Update every 0.5s
  5000. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5001. max_temp = max(max_temp, degHotend(cur_extruder));
  5002. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5003. }
  5004. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5005. max_temp = max(max_temp, degTargetBed());
  5006. max_temp = max(max_temp, degBed());
  5007. #endif
  5008. if((max_temp > 55.0) && (red_led == false)) {
  5009. digitalWrite(STAT_LED_RED, 1);
  5010. digitalWrite(STAT_LED_BLUE, 0);
  5011. red_led = true;
  5012. blue_led = false;
  5013. }
  5014. if((max_temp < 54.0) && (blue_led == false)) {
  5015. digitalWrite(STAT_LED_RED, 0);
  5016. digitalWrite(STAT_LED_BLUE, 1);
  5017. red_led = false;
  5018. blue_led = true;
  5019. }
  5020. }
  5021. }
  5022. #endif
  5023. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5024. {
  5025. #if defined(KILL_PIN) && KILL_PIN > -1
  5026. static int killCount = 0; // make the inactivity button a bit less responsive
  5027. const int KILL_DELAY = 750;
  5028. #endif
  5029. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  5030. if(card.sdprinting) {
  5031. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  5032. filrunout(); }
  5033. #endif
  5034. #if defined(HOME_PIN) && HOME_PIN > -1
  5035. static int homeDebounceCount = 0; // poor man's debouncing count
  5036. const int HOME_DEBOUNCE_DELAY = 750;
  5037. #endif
  5038. if(buflen < (BUFSIZE-1))
  5039. get_command();
  5040. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5041. if(max_inactive_time)
  5042. kill();
  5043. if(stepper_inactive_time) {
  5044. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5045. {
  5046. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5047. disable_x();
  5048. disable_y();
  5049. disable_z();
  5050. disable_e0();
  5051. disable_e1();
  5052. disable_e2();
  5053. disable_e3();
  5054. }
  5055. }
  5056. }
  5057. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5058. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5059. {
  5060. chdkActive = false;
  5061. WRITE(CHDK, LOW);
  5062. }
  5063. #endif
  5064. #if defined(KILL_PIN) && KILL_PIN > -1
  5065. // Check if the kill button was pressed and wait just in case it was an accidental
  5066. // key kill key press
  5067. // -------------------------------------------------------------------------------
  5068. if( 0 == READ(KILL_PIN) )
  5069. {
  5070. killCount++;
  5071. }
  5072. else if (killCount > 0)
  5073. {
  5074. killCount--;
  5075. }
  5076. // Exceeded threshold and we can confirm that it was not accidental
  5077. // KILL the machine
  5078. // ----------------------------------------------------------------
  5079. if ( killCount >= KILL_DELAY)
  5080. {
  5081. kill();
  5082. }
  5083. #endif
  5084. #if defined(HOME_PIN) && HOME_PIN > -1
  5085. // Check to see if we have to home, use poor man's debouncer
  5086. // ---------------------------------------------------------
  5087. if ( 0 == READ(HOME_PIN) )
  5088. {
  5089. if (homeDebounceCount == 0)
  5090. {
  5091. enquecommands_P((PSTR("G28")));
  5092. homeDebounceCount++;
  5093. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  5094. }
  5095. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5096. {
  5097. homeDebounceCount++;
  5098. }
  5099. else
  5100. {
  5101. homeDebounceCount = 0;
  5102. }
  5103. }
  5104. #endif
  5105. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5106. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5107. #endif
  5108. #ifdef EXTRUDER_RUNOUT_PREVENT
  5109. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5110. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5111. {
  5112. bool oldstatus=E0_ENABLE_READ;
  5113. enable_e0();
  5114. float oldepos=current_position[E_AXIS];
  5115. float oldedes=destination[E_AXIS];
  5116. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5117. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5118. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5119. current_position[E_AXIS]=oldepos;
  5120. destination[E_AXIS]=oldedes;
  5121. plan_set_e_position(oldepos);
  5122. previous_millis_cmd=millis();
  5123. st_synchronize();
  5124. E0_ENABLE_WRITE(oldstatus);
  5125. }
  5126. #endif
  5127. #if defined(DUAL_X_CARRIAGE)
  5128. // handle delayed move timeout
  5129. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5130. {
  5131. // travel moves have been received so enact them
  5132. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5133. memcpy(destination,current_position,sizeof(destination));
  5134. prepare_move();
  5135. }
  5136. #endif
  5137. #ifdef TEMP_STAT_LEDS
  5138. handle_status_leds();
  5139. #endif
  5140. check_axes_activity();
  5141. }
  5142. void kill()
  5143. {
  5144. cli(); // Stop interrupts
  5145. disable_heater();
  5146. disable_x();
  5147. disable_y();
  5148. disable_z();
  5149. disable_e0();
  5150. disable_e1();
  5151. disable_e2();
  5152. disable_e3();
  5153. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5154. pinMode(PS_ON_PIN,INPUT);
  5155. #endif
  5156. SERIAL_ERROR_START;
  5157. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5158. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5159. // FMC small patch to update the LCD before ending
  5160. sei(); // enable interrupts
  5161. for ( int i=5; i--; lcd_update())
  5162. {
  5163. delay(200);
  5164. }
  5165. cli(); // disable interrupts
  5166. suicide();
  5167. while(1) { /* Intentionally left empty */ } // Wait for reset
  5168. }
  5169. #ifdef FILAMENT_RUNOUT_SENSOR
  5170. void filrunout()
  5171. {
  5172. if filrunoutEnqued == false {
  5173. filrunoutEnqued = true;
  5174. enquecommand("M600");
  5175. }
  5176. }
  5177. #endif
  5178. void Stop()
  5179. {
  5180. disable_heater();
  5181. if(Stopped == false) {
  5182. Stopped = true;
  5183. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5184. SERIAL_ERROR_START;
  5185. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5186. LCD_MESSAGEPGM(MSG_STOPPED);
  5187. }
  5188. }
  5189. bool IsStopped() { return Stopped; };
  5190. #ifdef FAST_PWM_FAN
  5191. void setPwmFrequency(uint8_t pin, int val)
  5192. {
  5193. val &= 0x07;
  5194. switch(digitalPinToTimer(pin))
  5195. {
  5196. #if defined(TCCR0A)
  5197. case TIMER0A:
  5198. case TIMER0B:
  5199. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5200. // TCCR0B |= val;
  5201. break;
  5202. #endif
  5203. #if defined(TCCR1A)
  5204. case TIMER1A:
  5205. case TIMER1B:
  5206. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5207. // TCCR1B |= val;
  5208. break;
  5209. #endif
  5210. #if defined(TCCR2)
  5211. case TIMER2:
  5212. case TIMER2:
  5213. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5214. TCCR2 |= val;
  5215. break;
  5216. #endif
  5217. #if defined(TCCR2A)
  5218. case TIMER2A:
  5219. case TIMER2B:
  5220. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5221. TCCR2B |= val;
  5222. break;
  5223. #endif
  5224. #if defined(TCCR3A)
  5225. case TIMER3A:
  5226. case TIMER3B:
  5227. case TIMER3C:
  5228. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5229. TCCR3B |= val;
  5230. break;
  5231. #endif
  5232. #if defined(TCCR4A)
  5233. case TIMER4A:
  5234. case TIMER4B:
  5235. case TIMER4C:
  5236. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5237. TCCR4B |= val;
  5238. break;
  5239. #endif
  5240. #if defined(TCCR5A)
  5241. case TIMER5A:
  5242. case TIMER5B:
  5243. case TIMER5C:
  5244. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5245. TCCR5B |= val;
  5246. break;
  5247. #endif
  5248. }
  5249. }
  5250. #endif //FAST_PWM_FAN
  5251. bool setTargetedHotend(int code){
  5252. tmp_extruder = active_extruder;
  5253. if(code_seen('T')) {
  5254. tmp_extruder = code_value();
  5255. if(tmp_extruder >= EXTRUDERS) {
  5256. SERIAL_ECHO_START;
  5257. switch(code){
  5258. case 104:
  5259. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5260. break;
  5261. case 105:
  5262. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5263. break;
  5264. case 109:
  5265. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5266. break;
  5267. case 218:
  5268. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5269. break;
  5270. case 221:
  5271. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5272. break;
  5273. }
  5274. SERIAL_ECHOLN(tmp_extruder);
  5275. return true;
  5276. }
  5277. }
  5278. return false;
  5279. }
  5280. float calculate_volumetric_multiplier(float diameter) {
  5281. if (!volumetric_enabled || diameter == 0) return 1.0;
  5282. float d2 = diameter * 0.5;
  5283. return 1.0 / (M_PI * d2 * d2);
  5284. }
  5285. void calculate_volumetric_multipliers() {
  5286. for (int i=0; i<EXTRUDERS; i++)
  5287. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5288. }