My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.h 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.h - temperature controller
  24. */
  25. #ifndef TEMPERATURE_H
  26. #define TEMPERATURE_H
  27. #include "thermistor/thermistors.h"
  28. #if ENABLED(BABYSTEPPING)
  29. extern bool axis_known_position[XYZ];
  30. #endif
  31. #if ENABLED(PID_EXTRUSION_SCALING)
  32. #include "stepper.h"
  33. #endif
  34. #ifndef SOFT_PWM_SCALE
  35. #define SOFT_PWM_SCALE 0
  36. #endif
  37. /**
  38. * States for ADC reading in the ISR
  39. */
  40. enum ADCSensorState {
  41. #if HAS_TEMP_0
  42. PrepareTemp_0,
  43. MeasureTemp_0,
  44. #endif
  45. #if HAS_TEMP_1
  46. PrepareTemp_1,
  47. MeasureTemp_1,
  48. #endif
  49. #if HAS_TEMP_2
  50. PrepareTemp_2,
  51. MeasureTemp_2,
  52. #endif
  53. #if HAS_TEMP_3
  54. PrepareTemp_3,
  55. MeasureTemp_3,
  56. #endif
  57. #if HAS_TEMP_4
  58. PrepareTemp_4,
  59. MeasureTemp_4,
  60. #endif
  61. #if HAS_TEMP_BED
  62. PrepareTemp_BED,
  63. MeasureTemp_BED,
  64. #endif
  65. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  66. Prepare_FILWIDTH,
  67. Measure_FILWIDTH,
  68. #endif
  69. #if ENABLED(ADC_KEYPAD)
  70. Prepare_ADC_KEY,
  71. Measure_ADC_KEY,
  72. #endif
  73. SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
  74. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  75. };
  76. // Minimum number of Temperature::ISR loops between sensor readings.
  77. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
  78. // get all oversampled sensor readings
  79. #define MIN_ADC_ISR_LOOPS 10
  80. #define ACTUAL_ADC_SAMPLES max(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
  81. #if !HAS_HEATER_BED
  82. constexpr int16_t target_temperature_bed = 0;
  83. #endif
  84. class Temperature {
  85. public:
  86. static float current_temperature[HOTENDS],
  87. current_temperature_bed;
  88. static int16_t current_temperature_raw[HOTENDS],
  89. target_temperature[HOTENDS],
  90. current_temperature_bed_raw;
  91. #if HAS_HEATER_BED
  92. static int16_t target_temperature_bed;
  93. #endif
  94. static volatile bool in_temp_isr;
  95. static uint8_t soft_pwm_amount[HOTENDS],
  96. soft_pwm_amount_bed;
  97. #if ENABLED(FAN_SOFT_PWM)
  98. static uint8_t soft_pwm_amount_fan[FAN_COUNT],
  99. soft_pwm_count_fan[FAN_COUNT];
  100. #endif
  101. #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
  102. #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
  103. #endif
  104. #if ENABLED(PIDTEMP)
  105. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  106. static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
  107. #if ENABLED(PID_EXTRUSION_SCALING)
  108. static float Kc[HOTENDS];
  109. #endif
  110. #define PID_PARAM(param, h) Temperature::param[h]
  111. #else
  112. static float Kp, Ki, Kd;
  113. #if ENABLED(PID_EXTRUSION_SCALING)
  114. static float Kc;
  115. #endif
  116. #define PID_PARAM(param, h) Temperature::param
  117. #endif // PID_PARAMS_PER_HOTEND
  118. // Apply the scale factors to the PID values
  119. #define scalePID_i(i) ( (i) * PID_dT )
  120. #define unscalePID_i(i) ( (i) / PID_dT )
  121. #define scalePID_d(d) ( (d) / PID_dT )
  122. #define unscalePID_d(d) ( (d) * PID_dT )
  123. #endif
  124. #if ENABLED(PIDTEMPBED)
  125. static float bedKp, bedKi, bedKd;
  126. #endif
  127. #if ENABLED(BABYSTEPPING)
  128. static volatile int babystepsTodo[3];
  129. #endif
  130. #if WATCH_HOTENDS
  131. static uint16_t watch_target_temp[HOTENDS];
  132. static millis_t watch_heater_next_ms[HOTENDS];
  133. #endif
  134. #if WATCH_THE_BED
  135. static uint16_t watch_target_bed_temp;
  136. static millis_t watch_bed_next_ms;
  137. #endif
  138. #if ENABLED(PREVENT_COLD_EXTRUSION)
  139. static bool allow_cold_extrude;
  140. static int16_t extrude_min_temp;
  141. static bool tooColdToExtrude(uint8_t e) {
  142. #if HOTENDS == 1
  143. UNUSED(e);
  144. #endif
  145. return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp;
  146. }
  147. #else
  148. static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
  149. #endif
  150. private:
  151. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  152. static uint16_t redundant_temperature_raw;
  153. static float redundant_temperature;
  154. #endif
  155. static volatile bool temp_meas_ready;
  156. #if ENABLED(PIDTEMP)
  157. static float temp_iState[HOTENDS],
  158. temp_dState[HOTENDS],
  159. pTerm[HOTENDS],
  160. iTerm[HOTENDS],
  161. dTerm[HOTENDS];
  162. #if ENABLED(PID_EXTRUSION_SCALING)
  163. static float cTerm[HOTENDS];
  164. static long last_e_position;
  165. static long lpq[LPQ_MAX_LEN];
  166. static int lpq_ptr;
  167. #endif
  168. static float pid_error[HOTENDS];
  169. static bool pid_reset[HOTENDS];
  170. #endif
  171. #if ENABLED(PIDTEMPBED)
  172. static float temp_iState_bed,
  173. temp_dState_bed,
  174. pTerm_bed,
  175. iTerm_bed,
  176. dTerm_bed,
  177. pid_error_bed;
  178. #else
  179. static millis_t next_bed_check_ms;
  180. #endif
  181. static uint16_t raw_temp_value[MAX_EXTRUDERS],
  182. raw_temp_bed_value;
  183. // Init min and max temp with extreme values to prevent false errors during startup
  184. static int16_t minttemp_raw[HOTENDS],
  185. maxttemp_raw[HOTENDS],
  186. minttemp[HOTENDS],
  187. maxttemp[HOTENDS];
  188. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  189. static uint8_t consecutive_low_temperature_error[HOTENDS];
  190. #endif
  191. #ifdef MILLISECONDS_PREHEAT_TIME
  192. static millis_t preheat_end_time[HOTENDS];
  193. #endif
  194. #ifdef BED_MINTEMP
  195. static int16_t bed_minttemp_raw;
  196. #endif
  197. #ifdef BED_MAXTEMP
  198. static int16_t bed_maxttemp_raw;
  199. #endif
  200. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  201. static int8_t meas_shift_index; // Index of a delayed sample in buffer
  202. #endif
  203. #if HAS_AUTO_FAN
  204. static millis_t next_auto_fan_check_ms;
  205. #endif
  206. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  207. static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only
  208. #endif
  209. #if ENABLED(PROBING_HEATERS_OFF)
  210. static bool paused;
  211. #endif
  212. #if HEATER_IDLE_HANDLER
  213. static millis_t heater_idle_timeout_ms[HOTENDS];
  214. static bool heater_idle_timeout_exceeded[HOTENDS];
  215. #if HAS_TEMP_BED
  216. static millis_t bed_idle_timeout_ms;
  217. static bool bed_idle_timeout_exceeded;
  218. #endif
  219. #endif
  220. public:
  221. #if ENABLED(ADC_KEYPAD)
  222. static uint32_t current_ADCKey_raw;
  223. static uint8_t ADCKey_count;
  224. #endif
  225. /**
  226. * Instance Methods
  227. */
  228. Temperature();
  229. void init();
  230. /**
  231. * Static (class) methods
  232. */
  233. static float analog2temp(int raw, uint8_t e);
  234. static float analog2tempBed(int raw);
  235. /**
  236. * Called from the Temperature ISR
  237. */
  238. static void isr();
  239. /**
  240. * Call periodically to manage heaters
  241. */
  242. static void manage_heater() _O2; // Added _O2 to work around a compiler error
  243. /**
  244. * Preheating hotends
  245. */
  246. #ifdef MILLISECONDS_PREHEAT_TIME
  247. static bool is_preheating(uint8_t e) {
  248. #if HOTENDS == 1
  249. UNUSED(e);
  250. #endif
  251. return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
  252. }
  253. static void start_preheat_time(uint8_t e) {
  254. #if HOTENDS == 1
  255. UNUSED(e);
  256. #endif
  257. preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
  258. }
  259. static void reset_preheat_time(uint8_t e) {
  260. #if HOTENDS == 1
  261. UNUSED(e);
  262. #endif
  263. preheat_end_time[HOTEND_INDEX] = 0;
  264. }
  265. #else
  266. #define is_preheating(n) (false)
  267. #endif
  268. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  269. static float analog2widthFil(); // Convert raw Filament Width to millimeters
  270. static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
  271. #endif
  272. //high level conversion routines, for use outside of temperature.cpp
  273. //inline so that there is no performance decrease.
  274. //deg=degreeCelsius
  275. static float degHotend(uint8_t e) {
  276. #if HOTENDS == 1
  277. UNUSED(e);
  278. #endif
  279. return current_temperature[HOTEND_INDEX];
  280. }
  281. static float degBed() { return current_temperature_bed; }
  282. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  283. static int16_t rawHotendTemp(uint8_t e) {
  284. #if HOTENDS == 1
  285. UNUSED(e);
  286. #endif
  287. return current_temperature_raw[HOTEND_INDEX];
  288. }
  289. static int16_t rawBedTemp() { return current_temperature_bed_raw; }
  290. #endif
  291. static int16_t degTargetHotend(uint8_t e) {
  292. #if HOTENDS == 1
  293. UNUSED(e);
  294. #endif
  295. return target_temperature[HOTEND_INDEX];
  296. }
  297. static int16_t degTargetBed() { return target_temperature_bed; }
  298. #if WATCH_HOTENDS
  299. static void start_watching_heater(uint8_t e = 0);
  300. #endif
  301. #if WATCH_THE_BED
  302. static void start_watching_bed();
  303. #endif
  304. static void setTargetHotend(const int16_t celsius, uint8_t e) {
  305. #if HOTENDS == 1
  306. UNUSED(e);
  307. #endif
  308. #ifdef MILLISECONDS_PREHEAT_TIME
  309. if (celsius == 0)
  310. reset_preheat_time(HOTEND_INDEX);
  311. else if (target_temperature[HOTEND_INDEX] == 0)
  312. start_preheat_time(HOTEND_INDEX);
  313. #endif
  314. target_temperature[HOTEND_INDEX] = celsius;
  315. #if WATCH_HOTENDS
  316. start_watching_heater(HOTEND_INDEX);
  317. #endif
  318. }
  319. static void setTargetBed(const int16_t celsius) {
  320. #if HAS_HEATER_BED
  321. target_temperature_bed =
  322. #ifdef BED_MAXTEMP
  323. min(celsius, BED_MAXTEMP)
  324. #else
  325. celsius
  326. #endif
  327. ;
  328. #if WATCH_THE_BED
  329. start_watching_bed();
  330. #endif
  331. #endif
  332. }
  333. static bool isHeatingHotend(uint8_t e) {
  334. #if HOTENDS == 1
  335. UNUSED(e);
  336. #endif
  337. return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
  338. }
  339. static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
  340. static bool isCoolingHotend(uint8_t e) {
  341. #if HOTENDS == 1
  342. UNUSED(e);
  343. #endif
  344. return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
  345. }
  346. static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
  347. /**
  348. * The software PWM power for a heater
  349. */
  350. static int getHeaterPower(int heater);
  351. /**
  352. * Switch off all heaters, set all target temperatures to 0
  353. */
  354. static void disable_all_heaters();
  355. /**
  356. * Perform auto-tuning for hotend or bed in response to M303
  357. */
  358. #if HAS_PID_HEATING
  359. static void PID_autotune(const float temp, const int8_t hotend, const int8_t ncycles, const bool set_result=false);
  360. #endif
  361. /**
  362. * Update the temp manager when PID values change
  363. */
  364. static void updatePID();
  365. #if ENABLED(BABYSTEPPING)
  366. static void babystep_axis(const AxisEnum axis, const int16_t distance) {
  367. if (axis_known_position[axis]) {
  368. #if IS_CORE
  369. #if ENABLED(BABYSTEP_XY)
  370. switch (axis) {
  371. case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
  372. babystepsTodo[CORE_AXIS_1] += distance * 2;
  373. babystepsTodo[CORE_AXIS_2] += distance * 2;
  374. break;
  375. case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
  376. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  377. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  378. break;
  379. case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
  380. babystepsTodo[NORMAL_AXIS] += distance;
  381. break;
  382. }
  383. #elif CORE_IS_XZ || CORE_IS_YZ
  384. // Only Z stepping needs to be handled here
  385. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  386. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  387. #else
  388. babystepsTodo[Z_AXIS] += distance;
  389. #endif
  390. #else
  391. babystepsTodo[axis] += distance;
  392. #endif
  393. }
  394. }
  395. #endif // BABYSTEPPING
  396. #if ENABLED(PROBING_HEATERS_OFF)
  397. static void pause(const bool p);
  398. static bool is_paused() { return paused; }
  399. #endif
  400. #if HEATER_IDLE_HANDLER
  401. static void start_heater_idle_timer(uint8_t e, millis_t timeout_ms) {
  402. #if HOTENDS == 1
  403. UNUSED(e);
  404. #endif
  405. heater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms;
  406. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  407. }
  408. static void reset_heater_idle_timer(uint8_t e) {
  409. #if HOTENDS == 1
  410. UNUSED(e);
  411. #endif
  412. heater_idle_timeout_ms[HOTEND_INDEX] = 0;
  413. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  414. #if WATCH_HOTENDS
  415. start_watching_heater(HOTEND_INDEX);
  416. #endif
  417. }
  418. static bool is_heater_idle(uint8_t e) {
  419. #if HOTENDS == 1
  420. UNUSED(e);
  421. #endif
  422. return heater_idle_timeout_exceeded[HOTEND_INDEX];
  423. }
  424. #if HAS_TEMP_BED
  425. static void start_bed_idle_timer(millis_t timeout_ms) {
  426. bed_idle_timeout_ms = millis() + timeout_ms;
  427. bed_idle_timeout_exceeded = false;
  428. }
  429. static void reset_bed_idle_timer() {
  430. bed_idle_timeout_ms = 0;
  431. bed_idle_timeout_exceeded = false;
  432. #if WATCH_THE_BED
  433. start_watching_bed();
  434. #endif
  435. }
  436. static bool is_bed_idle() {
  437. return bed_idle_timeout_exceeded;
  438. }
  439. #endif
  440. #endif
  441. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  442. static void print_heaterstates();
  443. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  444. static uint8_t auto_report_temp_interval;
  445. static millis_t next_temp_report_ms;
  446. static void auto_report_temperatures(void);
  447. FORCE_INLINE void set_auto_report_interval(uint8_t v) {
  448. NOMORE(v, 60);
  449. auto_report_temp_interval = v;
  450. next_temp_report_ms = millis() + 1000UL * v;
  451. }
  452. #endif
  453. #endif
  454. private:
  455. #if ENABLED(FAST_PWM_FAN)
  456. static void setPwmFrequency(const uint8_t pin, int val);
  457. #endif
  458. static void set_current_temp_raw();
  459. static void updateTemperaturesFromRawValues();
  460. #if ENABLED(HEATER_0_USES_MAX6675)
  461. static int read_max6675();
  462. #endif
  463. static void checkExtruderAutoFans();
  464. static float get_pid_output(const int8_t e);
  465. #if ENABLED(PIDTEMPBED)
  466. static float get_pid_output_bed();
  467. #endif
  468. static void _temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg);
  469. static void min_temp_error(const int8_t e);
  470. static void max_temp_error(const int8_t e);
  471. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  472. typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
  473. static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  474. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  475. static TRState thermal_runaway_state_machine[HOTENDS];
  476. static millis_t thermal_runaway_timer[HOTENDS];
  477. #endif
  478. #if HAS_THERMALLY_PROTECTED_BED
  479. static TRState thermal_runaway_bed_state_machine;
  480. static millis_t thermal_runaway_bed_timer;
  481. #endif
  482. #endif // THERMAL_PROTECTION
  483. };
  484. extern Temperature thermalManager;
  485. #endif // TEMPERATURE_H