My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 146KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  114. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  115. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  117. // M140 - Set bed target temp
  118. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  119. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  120. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  121. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  122. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  123. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  124. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  125. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  126. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  127. // M206 - set additional homing offset
  128. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  129. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  130. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  131. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  132. // M220 S<factor in percent>- set speed factor override percentage
  133. // M221 S<factor in percent>- set extrude factor override percentage
  134. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  135. // M240 - Trigger a camera to take a photograph
  136. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  137. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  138. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  139. // M301 - Set PID parameters P I and D
  140. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  141. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  142. // M304 - Set bed PID parameters P I and D
  143. // M400 - Finish all moves
  144. // M401 - Lower z-probe if present
  145. // M402 - Raise z-probe if present
  146. // M500 - stores parameters in EEPROM
  147. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  148. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  149. // M503 - print the current settings (from memory not from EEPROM)
  150. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  151. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  152. // M665 - set delta configurations
  153. // M666 - set delta endstop adjustment
  154. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  155. // M907 - Set digital trimpot motor current using axis codes.
  156. // M908 - Control digital trimpot directly.
  157. // M350 - Set microstepping mode.
  158. // M351 - Toggle MS1 MS2 pins directly.
  159. // ************ SCARA Specific - This can change to suit future G-code regulations
  160. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  161. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  162. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  163. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  164. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  165. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  166. //************* SCARA End ***************
  167. // M928 - Start SD logging (M928 filename.g) - ended by M29
  168. // M999 - Restart after being stopped by error
  169. //Stepper Movement Variables
  170. //===========================================================================
  171. //=============================imported variables============================
  172. //===========================================================================
  173. //===========================================================================
  174. //=============================public variables=============================
  175. //===========================================================================
  176. #ifdef SDSUPPORT
  177. CardReader card;
  178. #endif
  179. float homing_feedrate[] = HOMING_FEEDRATE;
  180. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  181. int feedmultiply=100; //100->1 200->2
  182. int saved_feedmultiply;
  183. int extrudemultiply=100; //100->1 200->2
  184. int extruder_multiply[EXTRUDERS] = {100
  185. #if EXTRUDERS > 1
  186. , 100
  187. #if EXTRUDERS > 2
  188. , 100
  189. #endif
  190. #endif
  191. };
  192. float volumetric_multiplier[EXTRUDERS] = {1.0
  193. #if EXTRUDERS > 1
  194. , 1.0
  195. #if EXTRUDERS > 2
  196. , 1.0
  197. #endif
  198. #endif
  199. };
  200. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  201. float add_homeing[3]={0,0,0};
  202. #ifdef DELTA
  203. float endstop_adj[3]={0,0,0};
  204. #endif
  205. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  206. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  207. bool axis_known_position[3] = {false, false, false};
  208. float zprobe_zoffset;
  209. // Extruder offset
  210. #if EXTRUDERS > 1
  211. #ifndef DUAL_X_CARRIAGE
  212. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  213. #else
  214. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  215. #endif
  216. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  217. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  218. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  219. #endif
  220. };
  221. #endif
  222. uint8_t active_extruder = 0;
  223. int fanSpeed=0;
  224. #ifdef SERVO_ENDSTOPS
  225. int servo_endstops[] = SERVO_ENDSTOPS;
  226. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  227. #endif
  228. #ifdef BARICUDA
  229. int ValvePressure=0;
  230. int EtoPPressure=0;
  231. #endif
  232. #ifdef FWRETRACT
  233. bool autoretract_enabled=false;
  234. bool retracted[EXTRUDERS]={false
  235. #if EXTRUDERS > 1
  236. , false
  237. #if EXTRUDERS > 2
  238. , false
  239. #endif
  240. #endif
  241. };
  242. bool retracted_swap[EXTRUDERS]={false
  243. #if EXTRUDERS > 1
  244. , false
  245. #if EXTRUDERS > 2
  246. , false
  247. #endif
  248. #endif
  249. };
  250. float retract_length = RETRACT_LENGTH;
  251. float retract_length_swap = RETRACT_LENGTH_SWAP;
  252. float retract_feedrate = RETRACT_FEEDRATE;
  253. float retract_zlift = RETRACT_ZLIFT;
  254. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  255. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  256. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  257. #endif
  258. #ifdef ULTIPANEL
  259. #ifdef PS_DEFAULT_OFF
  260. bool powersupply = false;
  261. #else
  262. bool powersupply = true;
  263. #endif
  264. #endif
  265. #ifdef DELTA
  266. float delta[3] = {0.0, 0.0, 0.0};
  267. #define SIN_60 0.8660254037844386
  268. #define COS_60 0.5
  269. // these are the default values, can be overriden with M665
  270. float delta_radius= DELTA_RADIUS;
  271. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  272. float delta_tower1_y= -COS_60*delta_radius;
  273. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  274. float delta_tower2_y= -COS_60*delta_radius;
  275. float delta_tower3_x= 0.0; // back middle tower
  276. float delta_tower3_y= delta_radius;
  277. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  278. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  279. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  280. #endif
  281. #ifdef SCARA // Build size scaling
  282. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  283. #endif
  284. bool cancel_heatup = false ;
  285. //===========================================================================
  286. //=============================Private Variables=============================
  287. //===========================================================================
  288. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  289. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  290. static float delta[3] = {0.0, 0.0, 0.0};
  291. static float offset[3] = {0.0, 0.0, 0.0};
  292. static bool home_all_axis = true;
  293. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  294. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  295. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  296. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  297. static bool fromsd[BUFSIZE];
  298. static int bufindr = 0;
  299. static int bufindw = 0;
  300. static int buflen = 0;
  301. //static int i = 0;
  302. static char serial_char;
  303. static int serial_count = 0;
  304. static boolean comment_mode = false;
  305. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  306. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  307. //static float tt = 0;
  308. //static float bt = 0;
  309. //Inactivity shutdown variables
  310. static unsigned long previous_millis_cmd = 0;
  311. static unsigned long max_inactive_time = 0;
  312. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  313. unsigned long starttime=0;
  314. unsigned long stoptime=0;
  315. static uint8_t tmp_extruder;
  316. bool Stopped=false;
  317. #if NUM_SERVOS > 0
  318. Servo servos[NUM_SERVOS];
  319. #endif
  320. bool CooldownNoWait = true;
  321. bool target_direction;
  322. //Insert variables if CHDK is defined
  323. #ifdef CHDK
  324. unsigned long chdkHigh = 0;
  325. boolean chdkActive = false;
  326. #endif
  327. //===========================================================================
  328. //=============================Routines======================================
  329. //===========================================================================
  330. void get_arc_coordinates();
  331. bool setTargetedHotend(int code);
  332. void serial_echopair_P(const char *s_P, float v)
  333. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  334. void serial_echopair_P(const char *s_P, double v)
  335. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  336. void serial_echopair_P(const char *s_P, unsigned long v)
  337. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  338. extern "C"{
  339. extern unsigned int __bss_end;
  340. extern unsigned int __heap_start;
  341. extern void *__brkval;
  342. int freeMemory() {
  343. int free_memory;
  344. if((int)__brkval == 0)
  345. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  346. else
  347. free_memory = ((int)&free_memory) - ((int)__brkval);
  348. return free_memory;
  349. }
  350. }
  351. //adds an command to the main command buffer
  352. //thats really done in a non-safe way.
  353. //needs overworking someday
  354. void enquecommand(const char *cmd)
  355. {
  356. if(buflen < BUFSIZE)
  357. {
  358. //this is dangerous if a mixing of serial and this happens
  359. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  360. SERIAL_ECHO_START;
  361. SERIAL_ECHOPGM("enqueing \"");
  362. SERIAL_ECHO(cmdbuffer[bufindw]);
  363. SERIAL_ECHOLNPGM("\"");
  364. bufindw= (bufindw + 1)%BUFSIZE;
  365. buflen += 1;
  366. }
  367. }
  368. void enquecommand_P(const char *cmd)
  369. {
  370. if(buflen < BUFSIZE)
  371. {
  372. //this is dangerous if a mixing of serial and this happens
  373. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  374. SERIAL_ECHO_START;
  375. SERIAL_ECHOPGM("enqueing \"");
  376. SERIAL_ECHO(cmdbuffer[bufindw]);
  377. SERIAL_ECHOLNPGM("\"");
  378. bufindw= (bufindw + 1)%BUFSIZE;
  379. buflen += 1;
  380. }
  381. }
  382. void setup_killpin()
  383. {
  384. #if defined(KILL_PIN) && KILL_PIN > -1
  385. pinMode(KILL_PIN,INPUT);
  386. WRITE(KILL_PIN,HIGH);
  387. #endif
  388. }
  389. void setup_photpin()
  390. {
  391. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  392. SET_OUTPUT(PHOTOGRAPH_PIN);
  393. WRITE(PHOTOGRAPH_PIN, LOW);
  394. #endif
  395. }
  396. void setup_powerhold()
  397. {
  398. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  399. SET_OUTPUT(SUICIDE_PIN);
  400. WRITE(SUICIDE_PIN, HIGH);
  401. #endif
  402. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  403. SET_OUTPUT(PS_ON_PIN);
  404. #if defined(PS_DEFAULT_OFF)
  405. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  406. #else
  407. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  408. #endif
  409. #endif
  410. }
  411. void suicide()
  412. {
  413. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  414. SET_OUTPUT(SUICIDE_PIN);
  415. WRITE(SUICIDE_PIN, LOW);
  416. #endif
  417. }
  418. void servo_init()
  419. {
  420. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  421. servos[0].attach(SERVO0_PIN);
  422. #endif
  423. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  424. servos[1].attach(SERVO1_PIN);
  425. #endif
  426. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  427. servos[2].attach(SERVO2_PIN);
  428. #endif
  429. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  430. servos[3].attach(SERVO3_PIN);
  431. #endif
  432. #if (NUM_SERVOS >= 5)
  433. #error "TODO: enter initalisation code for more servos"
  434. #endif
  435. // Set position of Servo Endstops that are defined
  436. #ifdef SERVO_ENDSTOPS
  437. for(int8_t i = 0; i < 3; i++)
  438. {
  439. if(servo_endstops[i] > -1) {
  440. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  441. }
  442. }
  443. #endif
  444. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  445. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  446. servos[servo_endstops[Z_AXIS]].detach();
  447. #endif
  448. }
  449. void setup()
  450. {
  451. setup_killpin();
  452. setup_powerhold();
  453. MYSERIAL.begin(BAUDRATE);
  454. SERIAL_PROTOCOLLNPGM("start");
  455. SERIAL_ECHO_START;
  456. // Check startup - does nothing if bootloader sets MCUSR to 0
  457. byte mcu = MCUSR;
  458. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  459. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  460. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  461. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  462. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  463. MCUSR=0;
  464. SERIAL_ECHOPGM(MSG_MARLIN);
  465. SERIAL_ECHOLNPGM(VERSION_STRING);
  466. #ifdef STRING_VERSION_CONFIG_H
  467. #ifdef STRING_CONFIG_H_AUTHOR
  468. SERIAL_ECHO_START;
  469. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  470. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  471. SERIAL_ECHOPGM(MSG_AUTHOR);
  472. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  473. SERIAL_ECHOPGM("Compiled: ");
  474. SERIAL_ECHOLNPGM(__DATE__);
  475. #endif
  476. #endif
  477. SERIAL_ECHO_START;
  478. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  479. SERIAL_ECHO(freeMemory());
  480. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  481. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  482. for(int8_t i = 0; i < BUFSIZE; i++)
  483. {
  484. fromsd[i] = false;
  485. }
  486. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  487. Config_RetrieveSettings();
  488. tp_init(); // Initialize temperature loop
  489. plan_init(); // Initialize planner;
  490. watchdog_init();
  491. st_init(); // Initialize stepper, this enables interrupts!
  492. setup_photpin();
  493. servo_init();
  494. lcd_init();
  495. _delay_ms(1000); // wait 1sec to display the splash screen
  496. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  497. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  498. #endif
  499. #ifdef DIGIPOT_I2C
  500. digipot_i2c_init();
  501. #endif
  502. #ifdef Z_PROBE_SLED
  503. pinMode(SERVO0_PIN, OUTPUT);
  504. digitalWrite(SERVO0_PIN, LOW); // turn it off
  505. #endif // Z_PROBE_SLED
  506. }
  507. void loop()
  508. {
  509. if(buflen < (BUFSIZE-1))
  510. get_command();
  511. #ifdef SDSUPPORT
  512. card.checkautostart(false);
  513. #endif
  514. if(buflen)
  515. {
  516. #ifdef SDSUPPORT
  517. if(card.saving)
  518. {
  519. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  520. {
  521. card.write_command(cmdbuffer[bufindr]);
  522. if(card.logging)
  523. {
  524. process_commands();
  525. }
  526. else
  527. {
  528. SERIAL_PROTOCOLLNPGM(MSG_OK);
  529. }
  530. }
  531. else
  532. {
  533. card.closefile();
  534. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  535. }
  536. }
  537. else
  538. {
  539. process_commands();
  540. }
  541. #else
  542. process_commands();
  543. #endif //SDSUPPORT
  544. buflen = (buflen-1);
  545. bufindr = (bufindr + 1)%BUFSIZE;
  546. }
  547. //check heater every n milliseconds
  548. manage_heater();
  549. manage_inactivity();
  550. checkHitEndstops();
  551. lcd_update();
  552. }
  553. void get_command()
  554. {
  555. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  556. serial_char = MYSERIAL.read();
  557. if(serial_char == '\n' ||
  558. serial_char == '\r' ||
  559. (serial_char == ':' && comment_mode == false) ||
  560. serial_count >= (MAX_CMD_SIZE - 1) )
  561. {
  562. if(!serial_count) { //if empty line
  563. comment_mode = false; //for new command
  564. return;
  565. }
  566. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  567. if(!comment_mode){
  568. comment_mode = false; //for new command
  569. fromsd[bufindw] = false;
  570. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  571. {
  572. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  573. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  574. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  575. SERIAL_ERROR_START;
  576. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  577. SERIAL_ERRORLN(gcode_LastN);
  578. //Serial.println(gcode_N);
  579. FlushSerialRequestResend();
  580. serial_count = 0;
  581. return;
  582. }
  583. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  584. {
  585. byte checksum = 0;
  586. byte count = 0;
  587. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  588. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  589. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  590. SERIAL_ERROR_START;
  591. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  592. SERIAL_ERRORLN(gcode_LastN);
  593. FlushSerialRequestResend();
  594. serial_count = 0;
  595. return;
  596. }
  597. //if no errors, continue parsing
  598. }
  599. else
  600. {
  601. SERIAL_ERROR_START;
  602. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  603. SERIAL_ERRORLN(gcode_LastN);
  604. FlushSerialRequestResend();
  605. serial_count = 0;
  606. return;
  607. }
  608. gcode_LastN = gcode_N;
  609. //if no errors, continue parsing
  610. }
  611. else // if we don't receive 'N' but still see '*'
  612. {
  613. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  614. {
  615. SERIAL_ERROR_START;
  616. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  617. SERIAL_ERRORLN(gcode_LastN);
  618. serial_count = 0;
  619. return;
  620. }
  621. }
  622. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  623. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  624. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  625. case 0:
  626. case 1:
  627. case 2:
  628. case 3:
  629. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  630. #ifdef SDSUPPORT
  631. if(card.saving)
  632. break;
  633. #endif //SDSUPPORT
  634. SERIAL_PROTOCOLLNPGM(MSG_OK);
  635. }
  636. else {
  637. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  638. LCD_MESSAGEPGM(MSG_STOPPED);
  639. }
  640. break;
  641. default:
  642. break;
  643. }
  644. }
  645. //If command was e-stop process now
  646. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  647. kill();
  648. bufindw = (bufindw + 1)%BUFSIZE;
  649. buflen += 1;
  650. }
  651. serial_count = 0; //clear buffer
  652. }
  653. else
  654. {
  655. if(serial_char == ';') comment_mode = true;
  656. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  657. }
  658. }
  659. #ifdef SDSUPPORT
  660. if(!card.sdprinting || serial_count!=0){
  661. return;
  662. }
  663. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  664. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  665. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  666. static bool stop_buffering=false;
  667. if(buflen==0) stop_buffering=false;
  668. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  669. int16_t n=card.get();
  670. serial_char = (char)n;
  671. if(serial_char == '\n' ||
  672. serial_char == '\r' ||
  673. (serial_char == '#' && comment_mode == false) ||
  674. (serial_char == ':' && comment_mode == false) ||
  675. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  676. {
  677. if(card.eof()){
  678. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  679. stoptime=millis();
  680. char time[30];
  681. unsigned long t=(stoptime-starttime)/1000;
  682. int hours, minutes;
  683. minutes=(t/60)%60;
  684. hours=t/60/60;
  685. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  686. SERIAL_ECHO_START;
  687. SERIAL_ECHOLN(time);
  688. lcd_setstatus(time);
  689. card.printingHasFinished();
  690. card.checkautostart(true);
  691. }
  692. if(serial_char=='#')
  693. stop_buffering=true;
  694. if(!serial_count)
  695. {
  696. comment_mode = false; //for new command
  697. return; //if empty line
  698. }
  699. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  700. // if(!comment_mode){
  701. fromsd[bufindw] = true;
  702. buflen += 1;
  703. bufindw = (bufindw + 1)%BUFSIZE;
  704. // }
  705. comment_mode = false; //for new command
  706. serial_count = 0; //clear buffer
  707. }
  708. else
  709. {
  710. if(serial_char == ';') comment_mode = true;
  711. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  712. }
  713. }
  714. #endif //SDSUPPORT
  715. }
  716. float code_value()
  717. {
  718. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  719. }
  720. long code_value_long()
  721. {
  722. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  723. }
  724. bool code_seen(char code)
  725. {
  726. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  727. return (strchr_pointer != NULL); //Return True if a character was found
  728. }
  729. #define DEFINE_PGM_READ_ANY(type, reader) \
  730. static inline type pgm_read_any(const type *p) \
  731. { return pgm_read_##reader##_near(p); }
  732. DEFINE_PGM_READ_ANY(float, float);
  733. DEFINE_PGM_READ_ANY(signed char, byte);
  734. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  735. static const PROGMEM type array##_P[3] = \
  736. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  737. static inline type array(int axis) \
  738. { return pgm_read_any(&array##_P[axis]); }
  739. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  740. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  741. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  742. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  743. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  744. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  745. #ifdef DUAL_X_CARRIAGE
  746. #if EXTRUDERS == 1 || defined(COREXY) \
  747. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  748. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  749. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  750. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  751. #endif
  752. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  753. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  754. #endif
  755. #define DXC_FULL_CONTROL_MODE 0
  756. #define DXC_AUTO_PARK_MODE 1
  757. #define DXC_DUPLICATION_MODE 2
  758. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  759. static float x_home_pos(int extruder) {
  760. if (extruder == 0)
  761. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  762. else
  763. // In dual carriage mode the extruder offset provides an override of the
  764. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  765. // This allow soft recalibration of the second extruder offset position without firmware reflash
  766. // (through the M218 command).
  767. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  768. }
  769. static int x_home_dir(int extruder) {
  770. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  771. }
  772. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  773. static bool active_extruder_parked = false; // used in mode 1 & 2
  774. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  775. static unsigned long delayed_move_time = 0; // used in mode 1
  776. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  777. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  778. bool extruder_duplication_enabled = false; // used in mode 2
  779. #endif //DUAL_X_CARRIAGE
  780. static void axis_is_at_home(int axis) {
  781. #ifdef DUAL_X_CARRIAGE
  782. if (axis == X_AXIS) {
  783. if (active_extruder != 0) {
  784. current_position[X_AXIS] = x_home_pos(active_extruder);
  785. min_pos[X_AXIS] = X2_MIN_POS;
  786. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  787. return;
  788. }
  789. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  790. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  791. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  792. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  793. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  794. return;
  795. }
  796. }
  797. #endif
  798. #ifdef SCARA
  799. float homeposition[3];
  800. char i;
  801. if (axis < 2)
  802. {
  803. for (i=0; i<3; i++)
  804. {
  805. homeposition[i] = base_home_pos(i);
  806. }
  807. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  808. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  809. // Works out real Homeposition angles using inverse kinematics,
  810. // and calculates homing offset using forward kinematics
  811. calculate_delta(homeposition);
  812. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  813. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  814. for (i=0; i<2; i++)
  815. {
  816. delta[i] -= add_homeing[i];
  817. }
  818. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homeing[X_AXIS]);
  819. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homeing[Y_AXIS]);
  820. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  821. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  822. calculate_SCARA_forward_Transform(delta);
  823. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  824. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  825. current_position[axis] = delta[axis];
  826. // SCARA home positions are based on configuration since the actual limits are determined by the
  827. // inverse kinematic transform.
  828. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  829. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  830. }
  831. else
  832. {
  833. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  834. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  835. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  836. }
  837. #else
  838. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  839. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  840. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  841. #endif
  842. }
  843. #ifdef ENABLE_AUTO_BED_LEVELING
  844. #ifdef AUTO_BED_LEVELING_GRID
  845. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  846. {
  847. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  848. planeNormal.debug("planeNormal");
  849. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  850. //bedLevel.debug("bedLevel");
  851. //plan_bed_level_matrix.debug("bed level before");
  852. //vector_3 uncorrected_position = plan_get_position_mm();
  853. //uncorrected_position.debug("position before");
  854. vector_3 corrected_position = plan_get_position();
  855. // corrected_position.debug("position after");
  856. current_position[X_AXIS] = corrected_position.x;
  857. current_position[Y_AXIS] = corrected_position.y;
  858. current_position[Z_AXIS] = corrected_position.z;
  859. // put the bed at 0 so we don't go below it.
  860. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  861. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  862. }
  863. #else // not AUTO_BED_LEVELING_GRID
  864. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  865. plan_bed_level_matrix.set_to_identity();
  866. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  867. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  868. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  869. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  870. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  871. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  872. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  873. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  874. vector_3 corrected_position = plan_get_position();
  875. current_position[X_AXIS] = corrected_position.x;
  876. current_position[Y_AXIS] = corrected_position.y;
  877. current_position[Z_AXIS] = corrected_position.z;
  878. // put the bed at 0 so we don't go below it.
  879. current_position[Z_AXIS] = zprobe_zoffset;
  880. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  881. }
  882. #endif // AUTO_BED_LEVELING_GRID
  883. static void run_z_probe() {
  884. plan_bed_level_matrix.set_to_identity();
  885. feedrate = homing_feedrate[Z_AXIS];
  886. // move down until you find the bed
  887. float zPosition = -10;
  888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  889. st_synchronize();
  890. // we have to let the planner know where we are right now as it is not where we said to go.
  891. zPosition = st_get_position_mm(Z_AXIS);
  892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  893. // move up the retract distance
  894. zPosition += home_retract_mm(Z_AXIS);
  895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  896. st_synchronize();
  897. // move back down slowly to find bed
  898. feedrate = homing_feedrate[Z_AXIS]/4;
  899. zPosition -= home_retract_mm(Z_AXIS) * 2;
  900. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  901. st_synchronize();
  902. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  903. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  904. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  905. }
  906. static void do_blocking_move_to(float x, float y, float z) {
  907. float oldFeedRate = feedrate;
  908. feedrate = XY_TRAVEL_SPEED;
  909. current_position[X_AXIS] = x;
  910. current_position[Y_AXIS] = y;
  911. current_position[Z_AXIS] = z;
  912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  913. st_synchronize();
  914. feedrate = oldFeedRate;
  915. }
  916. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  917. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  918. }
  919. static void setup_for_endstop_move() {
  920. saved_feedrate = feedrate;
  921. saved_feedmultiply = feedmultiply;
  922. feedmultiply = 100;
  923. previous_millis_cmd = millis();
  924. enable_endstops(true);
  925. }
  926. static void clean_up_after_endstop_move() {
  927. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  928. enable_endstops(false);
  929. #endif
  930. feedrate = saved_feedrate;
  931. feedmultiply = saved_feedmultiply;
  932. previous_millis_cmd = millis();
  933. }
  934. static void engage_z_probe() {
  935. // Engage Z Servo endstop if enabled
  936. #ifdef SERVO_ENDSTOPS
  937. if (servo_endstops[Z_AXIS] > -1) {
  938. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  939. servos[servo_endstops[Z_AXIS]].attach(0);
  940. #endif
  941. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  942. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  943. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  944. servos[servo_endstops[Z_AXIS]].detach();
  945. #endif
  946. }
  947. #endif
  948. }
  949. static void retract_z_probe() {
  950. // Retract Z Servo endstop if enabled
  951. #ifdef SERVO_ENDSTOPS
  952. if (servo_endstops[Z_AXIS] > -1) {
  953. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  954. servos[servo_endstops[Z_AXIS]].attach(0);
  955. #endif
  956. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  957. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  958. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  959. servos[servo_endstops[Z_AXIS]].detach();
  960. #endif
  961. }
  962. #endif
  963. }
  964. /// Probe bed height at position (x,y), returns the measured z value
  965. static float probe_pt(float x, float y, float z_before) {
  966. // move to right place
  967. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  968. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  969. #ifndef Z_PROBE_SLED
  970. engage_z_probe(); // Engage Z Servo endstop if available
  971. #endif // Z_PROBE_SLED
  972. run_z_probe();
  973. float measured_z = current_position[Z_AXIS];
  974. #ifndef Z_PROBE_SLED
  975. retract_z_probe();
  976. #endif // Z_PROBE_SLED
  977. SERIAL_PROTOCOLPGM(MSG_BED);
  978. SERIAL_PROTOCOLPGM(" x: ");
  979. SERIAL_PROTOCOL(x);
  980. SERIAL_PROTOCOLPGM(" y: ");
  981. SERIAL_PROTOCOL(y);
  982. SERIAL_PROTOCOLPGM(" z: ");
  983. SERIAL_PROTOCOL(measured_z);
  984. SERIAL_PROTOCOLPGM("\n");
  985. return measured_z;
  986. }
  987. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  988. static void homeaxis(int axis) {
  989. #define HOMEAXIS_DO(LETTER) \
  990. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  991. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  992. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  993. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  994. 0) {
  995. int axis_home_dir = home_dir(axis);
  996. #ifdef DUAL_X_CARRIAGE
  997. if (axis == X_AXIS)
  998. axis_home_dir = x_home_dir(active_extruder);
  999. #endif
  1000. current_position[axis] = 0;
  1001. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1002. #ifndef Z_PROBE_SLED
  1003. // Engage Servo endstop if enabled
  1004. #ifdef SERVO_ENDSTOPS
  1005. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1006. if (axis==Z_AXIS) {
  1007. engage_z_probe();
  1008. }
  1009. else
  1010. #endif
  1011. if (servo_endstops[axis] > -1) {
  1012. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1013. }
  1014. #endif
  1015. #endif // Z_PROBE_SLED
  1016. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1017. feedrate = homing_feedrate[axis];
  1018. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1019. st_synchronize();
  1020. current_position[axis] = 0;
  1021. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1022. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1023. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1024. st_synchronize();
  1025. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1026. #ifdef DELTA
  1027. feedrate = homing_feedrate[axis]/10;
  1028. #else
  1029. feedrate = homing_feedrate[axis]/2 ;
  1030. #endif
  1031. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1032. st_synchronize();
  1033. #ifdef DELTA
  1034. // retrace by the amount specified in endstop_adj
  1035. if (endstop_adj[axis] * axis_home_dir < 0) {
  1036. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1037. destination[axis] = endstop_adj[axis];
  1038. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1039. st_synchronize();
  1040. }
  1041. #endif
  1042. axis_is_at_home(axis);
  1043. destination[axis] = current_position[axis];
  1044. feedrate = 0.0;
  1045. endstops_hit_on_purpose();
  1046. axis_known_position[axis] = true;
  1047. // Retract Servo endstop if enabled
  1048. #ifdef SERVO_ENDSTOPS
  1049. if (servo_endstops[axis] > -1) {
  1050. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1051. }
  1052. #endif
  1053. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1054. #ifndef Z_PROBE_SLED
  1055. if (axis==Z_AXIS) retract_z_probe();
  1056. #endif
  1057. #endif
  1058. }
  1059. }
  1060. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1061. void refresh_cmd_timeout(void)
  1062. {
  1063. previous_millis_cmd = millis();
  1064. }
  1065. #ifdef FWRETRACT
  1066. void retract(bool retracting, bool swapretract = false) {
  1067. if(retracting && !retracted[active_extruder]) {
  1068. destination[X_AXIS]=current_position[X_AXIS];
  1069. destination[Y_AXIS]=current_position[Y_AXIS];
  1070. destination[Z_AXIS]=current_position[Z_AXIS];
  1071. destination[E_AXIS]=current_position[E_AXIS];
  1072. if (swapretract) {
  1073. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1074. } else {
  1075. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1076. }
  1077. plan_set_e_position(current_position[E_AXIS]);
  1078. float oldFeedrate = feedrate;
  1079. feedrate=retract_feedrate*60;
  1080. retracted[active_extruder]=true;
  1081. prepare_move();
  1082. current_position[Z_AXIS]-=retract_zlift;
  1083. #ifdef DELTA
  1084. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1085. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1086. #else
  1087. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1088. #endif
  1089. prepare_move();
  1090. feedrate = oldFeedrate;
  1091. } else if(!retracting && retracted[active_extruder]) {
  1092. destination[X_AXIS]=current_position[X_AXIS];
  1093. destination[Y_AXIS]=current_position[Y_AXIS];
  1094. destination[Z_AXIS]=current_position[Z_AXIS];
  1095. destination[E_AXIS]=current_position[E_AXIS];
  1096. current_position[Z_AXIS]+=retract_zlift;
  1097. #ifdef DELTA
  1098. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1099. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1100. #else
  1101. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1102. #endif
  1103. //prepare_move();
  1104. if (swapretract) {
  1105. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1106. } else {
  1107. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1108. }
  1109. plan_set_e_position(current_position[E_AXIS]);
  1110. float oldFeedrate = feedrate;
  1111. feedrate=retract_recover_feedrate*60;
  1112. retracted[active_extruder]=false;
  1113. prepare_move();
  1114. feedrate = oldFeedrate;
  1115. }
  1116. } //retract
  1117. #endif //FWRETRACT
  1118. #ifdef Z_PROBE_SLED
  1119. //
  1120. // Method to dock/undock a sled designed by Charles Bell.
  1121. //
  1122. // dock[in] If true, move to MAX_X and engage the electromagnet
  1123. // offset[in] The additional distance to move to adjust docking location
  1124. //
  1125. static void dock_sled(bool dock, int offset=0) {
  1126. int z_loc;
  1127. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1128. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1129. SERIAL_ECHO_START;
  1130. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1131. return;
  1132. }
  1133. if (dock) {
  1134. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1135. current_position[Y_AXIS],
  1136. current_position[Z_AXIS]);
  1137. // turn off magnet
  1138. digitalWrite(SERVO0_PIN, LOW);
  1139. } else {
  1140. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1141. z_loc = Z_RAISE_BEFORE_PROBING;
  1142. else
  1143. z_loc = current_position[Z_AXIS];
  1144. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1145. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1146. // turn on magnet
  1147. digitalWrite(SERVO0_PIN, HIGH);
  1148. }
  1149. }
  1150. #endif
  1151. void process_commands()
  1152. {
  1153. unsigned long codenum; //throw away variable
  1154. char *starpos = NULL;
  1155. #ifdef ENABLE_AUTO_BED_LEVELING
  1156. float x_tmp, y_tmp, z_tmp, real_z;
  1157. #endif
  1158. if(code_seen('G'))
  1159. {
  1160. switch((int)code_value())
  1161. {
  1162. case 0: // G0 -> G1
  1163. case 1: // G1
  1164. if(Stopped == false) {
  1165. get_coordinates(); // For X Y Z E F
  1166. #ifdef FWRETRACT
  1167. if(autoretract_enabled)
  1168. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1169. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1170. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1171. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1172. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1173. retract(!retracted);
  1174. return;
  1175. }
  1176. }
  1177. #endif //FWRETRACT
  1178. prepare_move();
  1179. //ClearToSend();
  1180. return;
  1181. }
  1182. break;
  1183. #ifndef SCARA //disable arc support
  1184. case 2: // G2 - CW ARC
  1185. if(Stopped == false) {
  1186. get_arc_coordinates();
  1187. prepare_arc_move(true);
  1188. return;
  1189. }
  1190. break;
  1191. case 3: // G3 - CCW ARC
  1192. if(Stopped == false) {
  1193. get_arc_coordinates();
  1194. prepare_arc_move(false);
  1195. return;
  1196. }
  1197. break;
  1198. #endif
  1199. case 4: // G4 dwell
  1200. LCD_MESSAGEPGM(MSG_DWELL);
  1201. codenum = 0;
  1202. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1203. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1204. st_synchronize();
  1205. codenum += millis(); // keep track of when we started waiting
  1206. previous_millis_cmd = millis();
  1207. while(millis() < codenum ){
  1208. manage_heater();
  1209. manage_inactivity();
  1210. lcd_update();
  1211. }
  1212. break;
  1213. #ifdef FWRETRACT
  1214. case 10: // G10 retract
  1215. #if EXTRUDERS > 1
  1216. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1217. retract(true,retracted_swap[active_extruder]);
  1218. #else
  1219. retract(true);
  1220. #endif
  1221. break;
  1222. case 11: // G11 retract_recover
  1223. #if EXTRUDERS > 1
  1224. retract(false,retracted_swap[active_extruder]);
  1225. #else
  1226. retract(false);
  1227. #endif
  1228. break;
  1229. #endif //FWRETRACT
  1230. case 28: //G28 Home all Axis one at a time
  1231. #ifdef ENABLE_AUTO_BED_LEVELING
  1232. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1233. #endif //ENABLE_AUTO_BED_LEVELING
  1234. saved_feedrate = feedrate;
  1235. saved_feedmultiply = feedmultiply;
  1236. feedmultiply = 100;
  1237. previous_millis_cmd = millis();
  1238. enable_endstops(true);
  1239. for(int8_t i=0; i < NUM_AXIS; i++) {
  1240. destination[i] = current_position[i];
  1241. }
  1242. feedrate = 0.0;
  1243. #ifdef DELTA
  1244. // A delta can only safely home all axis at the same time
  1245. // all axis have to home at the same time
  1246. // Move all carriages up together until the first endstop is hit.
  1247. current_position[X_AXIS] = 0;
  1248. current_position[Y_AXIS] = 0;
  1249. current_position[Z_AXIS] = 0;
  1250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1251. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1252. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1253. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1254. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1255. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1256. st_synchronize();
  1257. endstops_hit_on_purpose();
  1258. current_position[X_AXIS] = destination[X_AXIS];
  1259. current_position[Y_AXIS] = destination[Y_AXIS];
  1260. current_position[Z_AXIS] = destination[Z_AXIS];
  1261. // take care of back off and rehome now we are all at the top
  1262. HOMEAXIS(X);
  1263. HOMEAXIS(Y);
  1264. HOMEAXIS(Z);
  1265. calculate_delta(current_position);
  1266. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1267. #else // NOT DELTA
  1268. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1269. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1270. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1271. HOMEAXIS(Z);
  1272. }
  1273. #endif
  1274. #ifdef QUICK_HOME
  1275. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1276. {
  1277. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1278. #ifndef DUAL_X_CARRIAGE
  1279. int x_axis_home_dir = home_dir(X_AXIS);
  1280. #else
  1281. int x_axis_home_dir = x_home_dir(active_extruder);
  1282. extruder_duplication_enabled = false;
  1283. #endif
  1284. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1285. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1286. feedrate = homing_feedrate[X_AXIS];
  1287. if(homing_feedrate[Y_AXIS]<feedrate)
  1288. feedrate = homing_feedrate[Y_AXIS];
  1289. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1290. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1291. } else {
  1292. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1293. }
  1294. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1295. st_synchronize();
  1296. axis_is_at_home(X_AXIS);
  1297. axis_is_at_home(Y_AXIS);
  1298. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1299. destination[X_AXIS] = current_position[X_AXIS];
  1300. destination[Y_AXIS] = current_position[Y_AXIS];
  1301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1302. feedrate = 0.0;
  1303. st_synchronize();
  1304. endstops_hit_on_purpose();
  1305. current_position[X_AXIS] = destination[X_AXIS];
  1306. current_position[Y_AXIS] = destination[Y_AXIS];
  1307. #ifndef SCARA
  1308. current_position[Z_AXIS] = destination[Z_AXIS];
  1309. #endif
  1310. }
  1311. #endif
  1312. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1313. {
  1314. #ifdef DUAL_X_CARRIAGE
  1315. int tmp_extruder = active_extruder;
  1316. extruder_duplication_enabled = false;
  1317. active_extruder = !active_extruder;
  1318. HOMEAXIS(X);
  1319. inactive_extruder_x_pos = current_position[X_AXIS];
  1320. active_extruder = tmp_extruder;
  1321. HOMEAXIS(X);
  1322. // reset state used by the different modes
  1323. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1324. delayed_move_time = 0;
  1325. active_extruder_parked = true;
  1326. #else
  1327. HOMEAXIS(X);
  1328. #endif
  1329. }
  1330. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1331. HOMEAXIS(Y);
  1332. }
  1333. if(code_seen(axis_codes[X_AXIS]))
  1334. {
  1335. if(code_value_long() != 0) {
  1336. #ifdef SCARA
  1337. current_position[X_AXIS]=code_value();
  1338. #else
  1339. current_position[X_AXIS]=code_value()+add_homeing[0];
  1340. #endif
  1341. }
  1342. }
  1343. if(code_seen(axis_codes[Y_AXIS])) {
  1344. if(code_value_long() != 0) {
  1345. #ifdef SCARA
  1346. current_position[Y_AXIS]=code_value();
  1347. #else
  1348. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1349. #endif
  1350. }
  1351. }
  1352. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1353. #ifndef Z_SAFE_HOMING
  1354. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1355. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1356. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1357. feedrate = max_feedrate[Z_AXIS];
  1358. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1359. st_synchronize();
  1360. #endif
  1361. HOMEAXIS(Z);
  1362. }
  1363. #else // Z Safe mode activated.
  1364. if(home_all_axis) {
  1365. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1366. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1367. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1368. feedrate = XY_TRAVEL_SPEED;
  1369. current_position[Z_AXIS] = 0;
  1370. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1371. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1372. st_synchronize();
  1373. current_position[X_AXIS] = destination[X_AXIS];
  1374. current_position[Y_AXIS] = destination[Y_AXIS];
  1375. HOMEAXIS(Z);
  1376. }
  1377. // Let's see if X and Y are homed and probe is inside bed area.
  1378. if(code_seen(axis_codes[Z_AXIS])) {
  1379. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1380. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1381. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1382. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1383. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1384. current_position[Z_AXIS] = 0;
  1385. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1386. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1387. feedrate = max_feedrate[Z_AXIS];
  1388. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1389. st_synchronize();
  1390. HOMEAXIS(Z);
  1391. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1392. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1393. SERIAL_ECHO_START;
  1394. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1395. } else {
  1396. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1397. SERIAL_ECHO_START;
  1398. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1399. }
  1400. }
  1401. #endif
  1402. #endif
  1403. if(code_seen(axis_codes[Z_AXIS])) {
  1404. if(code_value_long() != 0) {
  1405. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1406. }
  1407. }
  1408. #ifdef ENABLE_AUTO_BED_LEVELING
  1409. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1410. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1411. }
  1412. #endif
  1413. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1414. #endif // else DELTA
  1415. #ifdef SCARA
  1416. calculate_delta(current_position);
  1417. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1418. #endif SCARA
  1419. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1420. enable_endstops(false);
  1421. #endif
  1422. feedrate = saved_feedrate;
  1423. feedmultiply = saved_feedmultiply;
  1424. previous_millis_cmd = millis();
  1425. endstops_hit_on_purpose();
  1426. break;
  1427. #ifdef ENABLE_AUTO_BED_LEVELING
  1428. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1429. {
  1430. #if Z_MIN_PIN == -1
  1431. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1432. #endif
  1433. // Prevent user from running a G29 without first homing in X and Y
  1434. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1435. {
  1436. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1437. SERIAL_ECHO_START;
  1438. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1439. break; // abort G29, since we don't know where we are
  1440. }
  1441. #ifdef Z_PROBE_SLED
  1442. dock_sled(false);
  1443. #endif // Z_PROBE_SLED
  1444. st_synchronize();
  1445. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1446. //vector_3 corrected_position = plan_get_position_mm();
  1447. //corrected_position.debug("position before G29");
  1448. plan_bed_level_matrix.set_to_identity();
  1449. vector_3 uncorrected_position = plan_get_position();
  1450. //uncorrected_position.debug("position durring G29");
  1451. current_position[X_AXIS] = uncorrected_position.x;
  1452. current_position[Y_AXIS] = uncorrected_position.y;
  1453. current_position[Z_AXIS] = uncorrected_position.z;
  1454. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1455. setup_for_endstop_move();
  1456. feedrate = homing_feedrate[Z_AXIS];
  1457. #ifdef AUTO_BED_LEVELING_GRID
  1458. // probe at the points of a lattice grid
  1459. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1460. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1461. // solve the plane equation ax + by + d = z
  1462. // A is the matrix with rows [x y 1] for all the probed points
  1463. // B is the vector of the Z positions
  1464. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1465. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1466. // "A" matrix of the linear system of equations
  1467. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1468. // "B" vector of Z points
  1469. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1470. int probePointCounter = 0;
  1471. bool zig = true;
  1472. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1473. {
  1474. int xProbe, xInc;
  1475. if (zig)
  1476. {
  1477. xProbe = LEFT_PROBE_BED_POSITION;
  1478. //xEnd = RIGHT_PROBE_BED_POSITION;
  1479. xInc = xGridSpacing;
  1480. zig = false;
  1481. } else // zag
  1482. {
  1483. xProbe = RIGHT_PROBE_BED_POSITION;
  1484. //xEnd = LEFT_PROBE_BED_POSITION;
  1485. xInc = -xGridSpacing;
  1486. zig = true;
  1487. }
  1488. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1489. {
  1490. float z_before;
  1491. if (probePointCounter == 0)
  1492. {
  1493. // raise before probing
  1494. z_before = Z_RAISE_BEFORE_PROBING;
  1495. } else
  1496. {
  1497. // raise extruder
  1498. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1499. }
  1500. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1501. eqnBVector[probePointCounter] = measured_z;
  1502. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1503. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1504. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1505. probePointCounter++;
  1506. xProbe += xInc;
  1507. }
  1508. }
  1509. clean_up_after_endstop_move();
  1510. // solve lsq problem
  1511. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1512. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1513. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1514. SERIAL_PROTOCOLPGM(" b: ");
  1515. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1516. SERIAL_PROTOCOLPGM(" d: ");
  1517. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1518. set_bed_level_equation_lsq(plane_equation_coefficients);
  1519. free(plane_equation_coefficients);
  1520. #else // AUTO_BED_LEVELING_GRID not defined
  1521. // Probe at 3 arbitrary points
  1522. // probe 1
  1523. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1524. // probe 2
  1525. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1526. // probe 3
  1527. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1528. clean_up_after_endstop_move();
  1529. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1530. #endif // AUTO_BED_LEVELING_GRID
  1531. st_synchronize();
  1532. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1533. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1534. // When the bed is uneven, this height must be corrected.
  1535. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1536. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1537. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1538. z_tmp = current_position[Z_AXIS];
  1539. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1540. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1541. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1542. #ifdef Z_PROBE_SLED
  1543. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1544. #endif // Z_PROBE_SLED
  1545. }
  1546. break;
  1547. #ifndef Z_PROBE_SLED
  1548. case 30: // G30 Single Z Probe
  1549. {
  1550. engage_z_probe(); // Engage Z Servo endstop if available
  1551. st_synchronize();
  1552. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1553. setup_for_endstop_move();
  1554. feedrate = homing_feedrate[Z_AXIS];
  1555. run_z_probe();
  1556. SERIAL_PROTOCOLPGM(MSG_BED);
  1557. SERIAL_PROTOCOLPGM(" X: ");
  1558. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1559. SERIAL_PROTOCOLPGM(" Y: ");
  1560. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1561. SERIAL_PROTOCOLPGM(" Z: ");
  1562. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1563. SERIAL_PROTOCOLPGM("\n");
  1564. clean_up_after_endstop_move();
  1565. retract_z_probe(); // Retract Z Servo endstop if available
  1566. }
  1567. break;
  1568. #else
  1569. case 31: // dock the sled
  1570. dock_sled(true);
  1571. break;
  1572. case 32: // undock the sled
  1573. dock_sled(false);
  1574. break;
  1575. #endif // Z_PROBE_SLED
  1576. #endif // ENABLE_AUTO_BED_LEVELING
  1577. case 90: // G90
  1578. relative_mode = false;
  1579. break;
  1580. case 91: // G91
  1581. relative_mode = true;
  1582. break;
  1583. case 92: // G92
  1584. if(!code_seen(axis_codes[E_AXIS]))
  1585. st_synchronize();
  1586. for(int8_t i=0; i < NUM_AXIS; i++) {
  1587. if(code_seen(axis_codes[i])) {
  1588. if(i == E_AXIS) {
  1589. current_position[i] = code_value();
  1590. plan_set_e_position(current_position[E_AXIS]);
  1591. }
  1592. else {
  1593. #ifdef SCARA
  1594. if (i == X_AXIS || i == Y_AXIS) {
  1595. current_position[i] = code_value();
  1596. }
  1597. else {
  1598. current_position[i] = code_value()+add_homeing[i];
  1599. }
  1600. #else
  1601. current_position[i] = code_value()+add_homeing[i];
  1602. #endif
  1603. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1604. }
  1605. }
  1606. }
  1607. break;
  1608. }
  1609. }
  1610. else if(code_seen('M'))
  1611. {
  1612. switch( (int)code_value() )
  1613. {
  1614. #ifdef ULTIPANEL
  1615. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1616. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1617. {
  1618. char *src = strchr_pointer + 2;
  1619. codenum = 0;
  1620. bool hasP = code_seen('P');
  1621. if (hasP) codenum = code_value(); // milliseconds to wait
  1622. bool hasS = code_seen('S');
  1623. if (hasS) codenum = code_value() * 1000; // seconds to wait
  1624. if (!hasP && !hasS && *src != '\0') {
  1625. while (*src == ' ') ++src;
  1626. starpos = strchr(src, '*');
  1627. if (starpos != NULL) *(starpos) = '\0';
  1628. lcd_setstatus(src);
  1629. } else {
  1630. LCD_MESSAGEPGM(MSG_USERWAIT);
  1631. }
  1632. lcd_ignore_click();
  1633. st_synchronize();
  1634. previous_millis_cmd = millis();
  1635. if (codenum > 0){
  1636. codenum += millis(); // keep track of when we started waiting
  1637. while(millis() < codenum && !lcd_clicked()){
  1638. manage_heater();
  1639. manage_inactivity();
  1640. lcd_update();
  1641. }
  1642. lcd_ignore_click(false);
  1643. }else{
  1644. while(!lcd_clicked()){
  1645. manage_heater();
  1646. manage_inactivity();
  1647. lcd_update();
  1648. }
  1649. }
  1650. LCD_MESSAGEPGM(MSG_RESUMING);
  1651. }
  1652. break;
  1653. #endif
  1654. case 17:
  1655. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1656. enable_x();
  1657. enable_y();
  1658. enable_z();
  1659. enable_e0();
  1660. enable_e1();
  1661. enable_e2();
  1662. break;
  1663. #ifdef SDSUPPORT
  1664. case 20: // M20 - list SD card
  1665. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1666. card.ls();
  1667. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1668. break;
  1669. case 21: // M21 - init SD card
  1670. card.initsd();
  1671. break;
  1672. case 22: //M22 - release SD card
  1673. card.release();
  1674. break;
  1675. case 23: //M23 - Select file
  1676. starpos = (strchr(strchr_pointer + 4,'*'));
  1677. if(starpos!=NULL)
  1678. *(starpos)='\0';
  1679. card.openFile(strchr_pointer + 4,true);
  1680. break;
  1681. case 24: //M24 - Start SD print
  1682. card.startFileprint();
  1683. starttime=millis();
  1684. break;
  1685. case 25: //M25 - Pause SD print
  1686. card.pauseSDPrint();
  1687. break;
  1688. case 26: //M26 - Set SD index
  1689. if(card.cardOK && code_seen('S')) {
  1690. card.setIndex(code_value_long());
  1691. }
  1692. break;
  1693. case 27: //M27 - Get SD status
  1694. card.getStatus();
  1695. break;
  1696. case 28: //M28 - Start SD write
  1697. starpos = (strchr(strchr_pointer + 4,'*'));
  1698. if(starpos != NULL){
  1699. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1700. strchr_pointer = strchr(npos,' ') + 1;
  1701. *(starpos) = '\0';
  1702. }
  1703. card.openFile(strchr_pointer+4,false);
  1704. break;
  1705. case 29: //M29 - Stop SD write
  1706. //processed in write to file routine above
  1707. //card,saving = false;
  1708. break;
  1709. case 30: //M30 <filename> Delete File
  1710. if (card.cardOK){
  1711. card.closefile();
  1712. starpos = (strchr(strchr_pointer + 4,'*'));
  1713. if(starpos != NULL){
  1714. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1715. strchr_pointer = strchr(npos,' ') + 1;
  1716. *(starpos) = '\0';
  1717. }
  1718. card.removeFile(strchr_pointer + 4);
  1719. }
  1720. break;
  1721. case 32: //M32 - Select file and start SD print
  1722. {
  1723. if(card.sdprinting) {
  1724. st_synchronize();
  1725. }
  1726. starpos = (strchr(strchr_pointer + 4,'*'));
  1727. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1728. if(namestartpos==NULL)
  1729. {
  1730. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1731. }
  1732. else
  1733. namestartpos++; //to skip the '!'
  1734. if(starpos!=NULL)
  1735. *(starpos)='\0';
  1736. bool call_procedure=(code_seen('P'));
  1737. if(strchr_pointer>namestartpos)
  1738. call_procedure=false; //false alert, 'P' found within filename
  1739. if( card.cardOK )
  1740. {
  1741. card.openFile(namestartpos,true,!call_procedure);
  1742. if(code_seen('S'))
  1743. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1744. card.setIndex(code_value_long());
  1745. card.startFileprint();
  1746. if(!call_procedure)
  1747. starttime=millis(); //procedure calls count as normal print time.
  1748. }
  1749. } break;
  1750. case 928: //M928 - Start SD write
  1751. starpos = (strchr(strchr_pointer + 5,'*'));
  1752. if(starpos != NULL){
  1753. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1754. strchr_pointer = strchr(npos,' ') + 1;
  1755. *(starpos) = '\0';
  1756. }
  1757. card.openLogFile(strchr_pointer+5);
  1758. break;
  1759. #endif //SDSUPPORT
  1760. case 31: //M31 take time since the start of the SD print or an M109 command
  1761. {
  1762. stoptime=millis();
  1763. char time[30];
  1764. unsigned long t=(stoptime-starttime)/1000;
  1765. int sec,min;
  1766. min=t/60;
  1767. sec=t%60;
  1768. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1769. SERIAL_ECHO_START;
  1770. SERIAL_ECHOLN(time);
  1771. lcd_setstatus(time);
  1772. autotempShutdown();
  1773. }
  1774. break;
  1775. case 42: //M42 -Change pin status via gcode
  1776. if (code_seen('S'))
  1777. {
  1778. int pin_status = code_value();
  1779. int pin_number = LED_PIN;
  1780. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1781. pin_number = code_value();
  1782. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1783. {
  1784. if (sensitive_pins[i] == pin_number)
  1785. {
  1786. pin_number = -1;
  1787. break;
  1788. }
  1789. }
  1790. #if defined(FAN_PIN) && FAN_PIN > -1
  1791. if (pin_number == FAN_PIN)
  1792. fanSpeed = pin_status;
  1793. #endif
  1794. if (pin_number > -1)
  1795. {
  1796. pinMode(pin_number, OUTPUT);
  1797. digitalWrite(pin_number, pin_status);
  1798. analogWrite(pin_number, pin_status);
  1799. }
  1800. }
  1801. break;
  1802. // M48 Z-Probe repeatability measurement function.
  1803. //
  1804. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1805. //
  1806. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1807. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1808. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1809. // regenerated.
  1810. //
  1811. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1812. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1813. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1814. //
  1815. #ifdef ENABLE_AUTO_BED_LEVELING
  1816. #ifdef Z_PROBE_REPEATABILITY_TEST
  1817. case 48: // M48 Z-Probe repeatability
  1818. {
  1819. #if Z_MIN_PIN == -1
  1820. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1821. #endif
  1822. double sum=0.0;
  1823. double mean=0.0;
  1824. double sigma=0.0;
  1825. double sample_set[50];
  1826. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1827. double X_current, Y_current, Z_current;
  1828. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1829. if (code_seen('V') || code_seen('v')) {
  1830. verbose_level = code_value();
  1831. if (verbose_level<0 || verbose_level>4 ) {
  1832. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1833. goto Sigma_Exit;
  1834. }
  1835. }
  1836. if (verbose_level > 0) {
  1837. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1838. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1839. }
  1840. if (code_seen('n')) {
  1841. n_samples = code_value();
  1842. if (n_samples<4 || n_samples>50 ) {
  1843. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1844. goto Sigma_Exit;
  1845. }
  1846. }
  1847. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1848. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1849. Z_current = st_get_position_mm(Z_AXIS);
  1850. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1851. ext_position = st_get_position_mm(E_AXIS);
  1852. if (code_seen('E') || code_seen('e') )
  1853. engage_probe_for_each_reading++;
  1854. if (code_seen('X') || code_seen('x') ) {
  1855. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1856. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1857. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1858. goto Sigma_Exit;
  1859. }
  1860. }
  1861. if (code_seen('Y') || code_seen('y') ) {
  1862. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1863. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1864. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1865. goto Sigma_Exit;
  1866. }
  1867. }
  1868. if (code_seen('L') || code_seen('l') ) {
  1869. n_legs = code_value();
  1870. if ( n_legs==1 )
  1871. n_legs = 2;
  1872. if ( n_legs<0 || n_legs>15 ) {
  1873. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1874. goto Sigma_Exit;
  1875. }
  1876. }
  1877. //
  1878. // Do all the preliminary setup work. First raise the probe.
  1879. //
  1880. st_synchronize();
  1881. plan_bed_level_matrix.set_to_identity();
  1882. plan_buffer_line( X_current, Y_current, Z_start_location,
  1883. ext_position,
  1884. homing_feedrate[Z_AXIS]/60,
  1885. active_extruder);
  1886. st_synchronize();
  1887. //
  1888. // Now get everything to the specified probe point So we can safely do a probe to
  1889. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1890. // use that as a starting point for each probe.
  1891. //
  1892. if (verbose_level > 2)
  1893. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1894. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1895. ext_position,
  1896. homing_feedrate[X_AXIS]/60,
  1897. active_extruder);
  1898. st_synchronize();
  1899. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1900. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1901. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1902. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1903. //
  1904. // OK, do the inital probe to get us close to the bed.
  1905. // Then retrace the right amount and use that in subsequent probes
  1906. //
  1907. engage_z_probe();
  1908. setup_for_endstop_move();
  1909. run_z_probe();
  1910. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1911. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1912. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1913. ext_position,
  1914. homing_feedrate[X_AXIS]/60,
  1915. active_extruder);
  1916. st_synchronize();
  1917. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1918. if (engage_probe_for_each_reading)
  1919. retract_z_probe();
  1920. for( n=0; n<n_samples; n++) {
  1921. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  1922. if ( n_legs) {
  1923. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  1924. int rotational_direction, l;
  1925. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  1926. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  1927. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  1928. //SERIAL_ECHOPAIR("starting radius: ",radius);
  1929. //SERIAL_ECHOPAIR(" theta: ",theta);
  1930. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  1931. //SERIAL_PROTOCOLLNPGM("");
  1932. for( l=0; l<n_legs-1; l++) {
  1933. if (rotational_direction==1)
  1934. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1935. else
  1936. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1937. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  1938. if ( radius<0.0 )
  1939. radius = -radius;
  1940. X_current = X_probe_location + cos(theta) * radius;
  1941. Y_current = Y_probe_location + sin(theta) * radius;
  1942. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  1943. X_current = X_MIN_POS;
  1944. if ( X_current>X_MAX_POS)
  1945. X_current = X_MAX_POS;
  1946. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  1947. Y_current = Y_MIN_POS;
  1948. if ( Y_current>Y_MAX_POS)
  1949. Y_current = Y_MAX_POS;
  1950. if (verbose_level>3 ) {
  1951. SERIAL_ECHOPAIR("x: ", X_current);
  1952. SERIAL_ECHOPAIR("y: ", Y_current);
  1953. SERIAL_PROTOCOLLNPGM("");
  1954. }
  1955. do_blocking_move_to( X_current, Y_current, Z_current );
  1956. }
  1957. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  1958. }
  1959. if (engage_probe_for_each_reading) {
  1960. engage_z_probe();
  1961. delay(1000);
  1962. }
  1963. setup_for_endstop_move();
  1964. run_z_probe();
  1965. sample_set[n] = current_position[Z_AXIS];
  1966. //
  1967. // Get the current mean for the data points we have so far
  1968. //
  1969. sum=0.0;
  1970. for( j=0; j<=n; j++) {
  1971. sum = sum + sample_set[j];
  1972. }
  1973. mean = sum / (double (n+1));
  1974. //
  1975. // Now, use that mean to calculate the standard deviation for the
  1976. // data points we have so far
  1977. //
  1978. sum=0.0;
  1979. for( j=0; j<=n; j++) {
  1980. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  1981. }
  1982. sigma = sqrt( sum / (double (n+1)) );
  1983. if (verbose_level > 1) {
  1984. SERIAL_PROTOCOL(n+1);
  1985. SERIAL_PROTOCOL(" of ");
  1986. SERIAL_PROTOCOL(n_samples);
  1987. SERIAL_PROTOCOLPGM(" z: ");
  1988. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  1989. }
  1990. if (verbose_level > 2) {
  1991. SERIAL_PROTOCOL(" mean: ");
  1992. SERIAL_PROTOCOL_F(mean,6);
  1993. SERIAL_PROTOCOL(" sigma: ");
  1994. SERIAL_PROTOCOL_F(sigma,6);
  1995. }
  1996. if (verbose_level > 0)
  1997. SERIAL_PROTOCOLPGM("\n");
  1998. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1999. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2000. st_synchronize();
  2001. if (engage_probe_for_each_reading) {
  2002. retract_z_probe();
  2003. delay(1000);
  2004. }
  2005. }
  2006. retract_z_probe();
  2007. delay(1000);
  2008. clean_up_after_endstop_move();
  2009. // enable_endstops(true);
  2010. if (verbose_level > 0) {
  2011. SERIAL_PROTOCOLPGM("Mean: ");
  2012. SERIAL_PROTOCOL_F(mean, 6);
  2013. SERIAL_PROTOCOLPGM("\n");
  2014. }
  2015. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2016. SERIAL_PROTOCOL_F(sigma, 6);
  2017. SERIAL_PROTOCOLPGM("\n\n");
  2018. Sigma_Exit:
  2019. break;
  2020. }
  2021. #endif // Z_PROBE_REPEATABILITY_TEST
  2022. #endif // ENABLE_AUTO_BED_LEVELING
  2023. case 104: // M104
  2024. if(setTargetedHotend(104)){
  2025. break;
  2026. }
  2027. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2028. #ifdef DUAL_X_CARRIAGE
  2029. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2030. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2031. #endif
  2032. setWatch();
  2033. break;
  2034. case 112: // M112 -Emergency Stop
  2035. kill();
  2036. break;
  2037. case 140: // M140 set bed temp
  2038. if (code_seen('S')) setTargetBed(code_value());
  2039. break;
  2040. case 105 : // M105
  2041. if(setTargetedHotend(105)){
  2042. break;
  2043. }
  2044. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2045. SERIAL_PROTOCOLPGM("ok T:");
  2046. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2047. SERIAL_PROTOCOLPGM(" /");
  2048. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2049. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2050. SERIAL_PROTOCOLPGM(" B:");
  2051. SERIAL_PROTOCOL_F(degBed(),1);
  2052. SERIAL_PROTOCOLPGM(" /");
  2053. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2054. #endif //TEMP_BED_PIN
  2055. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2056. SERIAL_PROTOCOLPGM(" T");
  2057. SERIAL_PROTOCOL(cur_extruder);
  2058. SERIAL_PROTOCOLPGM(":");
  2059. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2060. SERIAL_PROTOCOLPGM(" /");
  2061. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2062. }
  2063. #else
  2064. SERIAL_ERROR_START;
  2065. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2066. #endif
  2067. SERIAL_PROTOCOLPGM(" @:");
  2068. #ifdef EXTRUDER_WATTS
  2069. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2070. SERIAL_PROTOCOLPGM("W");
  2071. #else
  2072. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2073. #endif
  2074. SERIAL_PROTOCOLPGM(" B@:");
  2075. #ifdef BED_WATTS
  2076. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2077. SERIAL_PROTOCOLPGM("W");
  2078. #else
  2079. SERIAL_PROTOCOL(getHeaterPower(-1));
  2080. #endif
  2081. #ifdef SHOW_TEMP_ADC_VALUES
  2082. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2083. SERIAL_PROTOCOLPGM(" ADC B:");
  2084. SERIAL_PROTOCOL_F(degBed(),1);
  2085. SERIAL_PROTOCOLPGM("C->");
  2086. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2087. #endif
  2088. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2089. SERIAL_PROTOCOLPGM(" T");
  2090. SERIAL_PROTOCOL(cur_extruder);
  2091. SERIAL_PROTOCOLPGM(":");
  2092. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2093. SERIAL_PROTOCOLPGM("C->");
  2094. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2095. }
  2096. #endif
  2097. SERIAL_PROTOCOLLN("");
  2098. return;
  2099. break;
  2100. case 109:
  2101. {// M109 - Wait for extruder heater to reach target.
  2102. if(setTargetedHotend(109)){
  2103. break;
  2104. }
  2105. LCD_MESSAGEPGM(MSG_HEATING);
  2106. #ifdef AUTOTEMP
  2107. autotemp_enabled=false;
  2108. #endif
  2109. if (code_seen('S')) {
  2110. setTargetHotend(code_value(), tmp_extruder);
  2111. #ifdef DUAL_X_CARRIAGE
  2112. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2113. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2114. #endif
  2115. CooldownNoWait = true;
  2116. } else if (code_seen('R')) {
  2117. setTargetHotend(code_value(), tmp_extruder);
  2118. #ifdef DUAL_X_CARRIAGE
  2119. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2120. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2121. #endif
  2122. CooldownNoWait = false;
  2123. }
  2124. #ifdef AUTOTEMP
  2125. if (code_seen('S')) autotemp_min=code_value();
  2126. if (code_seen('B')) autotemp_max=code_value();
  2127. if (code_seen('F'))
  2128. {
  2129. autotemp_factor=code_value();
  2130. autotemp_enabled=true;
  2131. }
  2132. #endif
  2133. setWatch();
  2134. codenum = millis();
  2135. /* See if we are heating up or cooling down */
  2136. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2137. cancel_heatup = false;
  2138. #ifdef TEMP_RESIDENCY_TIME
  2139. long residencyStart;
  2140. residencyStart = -1;
  2141. /* continue to loop until we have reached the target temp
  2142. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2143. while((!cancel_heatup)&&((residencyStart == -1) ||
  2144. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2145. #else
  2146. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2147. #endif //TEMP_RESIDENCY_TIME
  2148. if( (millis() - codenum) > 1000UL )
  2149. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2150. SERIAL_PROTOCOLPGM("T:");
  2151. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2152. SERIAL_PROTOCOLPGM(" E:");
  2153. SERIAL_PROTOCOL((int)tmp_extruder);
  2154. #ifdef TEMP_RESIDENCY_TIME
  2155. SERIAL_PROTOCOLPGM(" W:");
  2156. if(residencyStart > -1)
  2157. {
  2158. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2159. SERIAL_PROTOCOLLN( codenum );
  2160. }
  2161. else
  2162. {
  2163. SERIAL_PROTOCOLLN( "?" );
  2164. }
  2165. #else
  2166. SERIAL_PROTOCOLLN("");
  2167. #endif
  2168. codenum = millis();
  2169. }
  2170. manage_heater();
  2171. manage_inactivity();
  2172. lcd_update();
  2173. #ifdef TEMP_RESIDENCY_TIME
  2174. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2175. or when current temp falls outside the hysteresis after target temp was reached */
  2176. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2177. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2178. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2179. {
  2180. residencyStart = millis();
  2181. }
  2182. #endif //TEMP_RESIDENCY_TIME
  2183. }
  2184. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2185. starttime=millis();
  2186. previous_millis_cmd = millis();
  2187. }
  2188. break;
  2189. case 190: // M190 - Wait for bed heater to reach target.
  2190. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2191. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2192. if (code_seen('S')) {
  2193. setTargetBed(code_value());
  2194. CooldownNoWait = true;
  2195. } else if (code_seen('R')) {
  2196. setTargetBed(code_value());
  2197. CooldownNoWait = false;
  2198. }
  2199. codenum = millis();
  2200. cancel_heatup = false;
  2201. target_direction = isHeatingBed(); // true if heating, false if cooling
  2202. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2203. {
  2204. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2205. {
  2206. float tt=degHotend(active_extruder);
  2207. SERIAL_PROTOCOLPGM("T:");
  2208. SERIAL_PROTOCOL(tt);
  2209. SERIAL_PROTOCOLPGM(" E:");
  2210. SERIAL_PROTOCOL((int)active_extruder);
  2211. SERIAL_PROTOCOLPGM(" B:");
  2212. SERIAL_PROTOCOL_F(degBed(),1);
  2213. SERIAL_PROTOCOLLN("");
  2214. codenum = millis();
  2215. }
  2216. manage_heater();
  2217. manage_inactivity();
  2218. lcd_update();
  2219. }
  2220. LCD_MESSAGEPGM(MSG_BED_DONE);
  2221. previous_millis_cmd = millis();
  2222. #endif
  2223. break;
  2224. #if defined(FAN_PIN) && FAN_PIN > -1
  2225. case 106: //M106 Fan On
  2226. if (code_seen('S')){
  2227. fanSpeed=constrain(code_value(),0,255);
  2228. }
  2229. else {
  2230. fanSpeed=255;
  2231. }
  2232. break;
  2233. case 107: //M107 Fan Off
  2234. fanSpeed = 0;
  2235. break;
  2236. #endif //FAN_PIN
  2237. #ifdef BARICUDA
  2238. // PWM for HEATER_1_PIN
  2239. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2240. case 126: //M126 valve open
  2241. if (code_seen('S')){
  2242. ValvePressure=constrain(code_value(),0,255);
  2243. }
  2244. else {
  2245. ValvePressure=255;
  2246. }
  2247. break;
  2248. case 127: //M127 valve closed
  2249. ValvePressure = 0;
  2250. break;
  2251. #endif //HEATER_1_PIN
  2252. // PWM for HEATER_2_PIN
  2253. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2254. case 128: //M128 valve open
  2255. if (code_seen('S')){
  2256. EtoPPressure=constrain(code_value(),0,255);
  2257. }
  2258. else {
  2259. EtoPPressure=255;
  2260. }
  2261. break;
  2262. case 129: //M129 valve closed
  2263. EtoPPressure = 0;
  2264. break;
  2265. #endif //HEATER_2_PIN
  2266. #endif
  2267. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2268. case 80: // M80 - Turn on Power Supply
  2269. SET_OUTPUT(PS_ON_PIN); //GND
  2270. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2271. // If you have a switch on suicide pin, this is useful
  2272. // if you want to start another print with suicide feature after
  2273. // a print without suicide...
  2274. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2275. SET_OUTPUT(SUICIDE_PIN);
  2276. WRITE(SUICIDE_PIN, HIGH);
  2277. #endif
  2278. #ifdef ULTIPANEL
  2279. powersupply = true;
  2280. LCD_MESSAGEPGM(WELCOME_MSG);
  2281. lcd_update();
  2282. #endif
  2283. break;
  2284. #endif
  2285. case 81: // M81 - Turn off Power Supply
  2286. disable_heater();
  2287. st_synchronize();
  2288. disable_e0();
  2289. disable_e1();
  2290. disable_e2();
  2291. finishAndDisableSteppers();
  2292. fanSpeed = 0;
  2293. delay(1000); // Wait a little before to switch off
  2294. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2295. st_synchronize();
  2296. suicide();
  2297. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2298. SET_OUTPUT(PS_ON_PIN);
  2299. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2300. #endif
  2301. #ifdef ULTIPANEL
  2302. powersupply = false;
  2303. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2304. lcd_update();
  2305. #endif
  2306. break;
  2307. case 82:
  2308. axis_relative_modes[3] = false;
  2309. break;
  2310. case 83:
  2311. axis_relative_modes[3] = true;
  2312. break;
  2313. case 18: //compatibility
  2314. case 84: // M84
  2315. if(code_seen('S')){
  2316. stepper_inactive_time = code_value() * 1000;
  2317. }
  2318. else
  2319. {
  2320. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2321. if(all_axis)
  2322. {
  2323. st_synchronize();
  2324. disable_e0();
  2325. disable_e1();
  2326. disable_e2();
  2327. finishAndDisableSteppers();
  2328. }
  2329. else
  2330. {
  2331. st_synchronize();
  2332. if(code_seen('X')) disable_x();
  2333. if(code_seen('Y')) disable_y();
  2334. if(code_seen('Z')) disable_z();
  2335. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2336. if(code_seen('E')) {
  2337. disable_e0();
  2338. disable_e1();
  2339. disable_e2();
  2340. }
  2341. #endif
  2342. }
  2343. }
  2344. break;
  2345. case 85: // M85
  2346. if(code_seen('S')) {
  2347. max_inactive_time = code_value() * 1000;
  2348. }
  2349. break;
  2350. case 92: // M92
  2351. for(int8_t i=0; i < NUM_AXIS; i++)
  2352. {
  2353. if(code_seen(axis_codes[i]))
  2354. {
  2355. if(i == 3) { // E
  2356. float value = code_value();
  2357. if(value < 20.0) {
  2358. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2359. max_e_jerk *= factor;
  2360. max_feedrate[i] *= factor;
  2361. axis_steps_per_sqr_second[i] *= factor;
  2362. }
  2363. axis_steps_per_unit[i] = value;
  2364. }
  2365. else {
  2366. axis_steps_per_unit[i] = code_value();
  2367. }
  2368. }
  2369. }
  2370. break;
  2371. case 115: // M115
  2372. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2373. break;
  2374. case 117: // M117 display message
  2375. starpos = (strchr(strchr_pointer + 5,'*'));
  2376. if(starpos!=NULL)
  2377. *(starpos)='\0';
  2378. lcd_setstatus(strchr_pointer + 5);
  2379. break;
  2380. case 114: // M114
  2381. SERIAL_PROTOCOLPGM("X:");
  2382. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2383. SERIAL_PROTOCOLPGM(" Y:");
  2384. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2385. SERIAL_PROTOCOLPGM(" Z:");
  2386. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2387. SERIAL_PROTOCOLPGM(" E:");
  2388. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2389. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2390. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2391. SERIAL_PROTOCOLPGM(" Y:");
  2392. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2393. SERIAL_PROTOCOLPGM(" Z:");
  2394. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2395. SERIAL_PROTOCOLLN("");
  2396. #ifdef SCARA
  2397. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2398. SERIAL_PROTOCOL(delta[X_AXIS]);
  2399. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2400. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2401. SERIAL_PROTOCOLLN("");
  2402. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2403. SERIAL_PROTOCOL(delta[X_AXIS]+add_homeing[0]);
  2404. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2405. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homeing[1]);
  2406. SERIAL_PROTOCOLLN("");
  2407. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2408. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2409. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2410. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2411. SERIAL_PROTOCOLLN("");
  2412. SERIAL_PROTOCOLLN("");
  2413. #endif
  2414. break;
  2415. case 120: // M120
  2416. enable_endstops(false) ;
  2417. break;
  2418. case 121: // M121
  2419. enable_endstops(true) ;
  2420. break;
  2421. case 119: // M119
  2422. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2423. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2424. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2425. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2426. #endif
  2427. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2428. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2429. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2430. #endif
  2431. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2432. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2433. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2434. #endif
  2435. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2436. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2437. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2438. #endif
  2439. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2440. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2441. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2442. #endif
  2443. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2444. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2445. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2446. #endif
  2447. break;
  2448. //TODO: update for all axis, use for loop
  2449. #ifdef BLINKM
  2450. case 150: // M150
  2451. {
  2452. byte red;
  2453. byte grn;
  2454. byte blu;
  2455. if(code_seen('R')) red = code_value();
  2456. if(code_seen('U')) grn = code_value();
  2457. if(code_seen('B')) blu = code_value();
  2458. SendColors(red,grn,blu);
  2459. }
  2460. break;
  2461. #endif //BLINKM
  2462. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2463. {
  2464. float area = .0;
  2465. float radius = .0;
  2466. if(code_seen('D')) {
  2467. radius = (float)code_value() * .5;
  2468. if(radius == 0) {
  2469. area = 1;
  2470. } else {
  2471. area = M_PI * pow(radius, 2);
  2472. }
  2473. } else {
  2474. //reserved for setting filament diameter via UFID or filament measuring device
  2475. break;
  2476. }
  2477. tmp_extruder = active_extruder;
  2478. if(code_seen('T')) {
  2479. tmp_extruder = code_value();
  2480. if(tmp_extruder >= EXTRUDERS) {
  2481. SERIAL_ECHO_START;
  2482. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2483. break;
  2484. }
  2485. }
  2486. volumetric_multiplier[tmp_extruder] = 1 / area;
  2487. }
  2488. break;
  2489. case 201: // M201
  2490. for(int8_t i=0; i < NUM_AXIS; i++)
  2491. {
  2492. if(code_seen(axis_codes[i]))
  2493. {
  2494. max_acceleration_units_per_sq_second[i] = code_value();
  2495. }
  2496. }
  2497. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2498. reset_acceleration_rates();
  2499. break;
  2500. #if 0 // Not used for Sprinter/grbl gen6
  2501. case 202: // M202
  2502. for(int8_t i=0; i < NUM_AXIS; i++) {
  2503. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2504. }
  2505. break;
  2506. #endif
  2507. case 203: // M203 max feedrate mm/sec
  2508. for(int8_t i=0; i < NUM_AXIS; i++) {
  2509. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2510. }
  2511. break;
  2512. case 204: // M204 acclereration S normal moves T filmanent only moves
  2513. {
  2514. if(code_seen('S')) acceleration = code_value() ;
  2515. if(code_seen('T')) retract_acceleration = code_value() ;
  2516. }
  2517. break;
  2518. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2519. {
  2520. if(code_seen('S')) minimumfeedrate = code_value();
  2521. if(code_seen('T')) mintravelfeedrate = code_value();
  2522. if(code_seen('B')) minsegmenttime = code_value() ;
  2523. if(code_seen('X')) max_xy_jerk = code_value() ;
  2524. if(code_seen('Z')) max_z_jerk = code_value() ;
  2525. if(code_seen('E')) max_e_jerk = code_value() ;
  2526. }
  2527. break;
  2528. case 206: // M206 additional homeing offset
  2529. for(int8_t i=0; i < 3; i++)
  2530. {
  2531. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2532. }
  2533. #ifdef SCARA
  2534. if(code_seen('T')) // Theta
  2535. {
  2536. add_homeing[0] = code_value() ;
  2537. }
  2538. if(code_seen('P')) // Psi
  2539. {
  2540. add_homeing[1] = code_value() ;
  2541. }
  2542. #endif
  2543. break;
  2544. #ifdef DELTA
  2545. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2546. if(code_seen('L')) {
  2547. delta_diagonal_rod= code_value();
  2548. }
  2549. if(code_seen('R')) {
  2550. delta_radius= code_value();
  2551. }
  2552. if(code_seen('S')) {
  2553. delta_segments_per_second= code_value();
  2554. }
  2555. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2556. break;
  2557. case 666: // M666 set delta endstop adjustemnt
  2558. for(int8_t i=0; i < 3; i++)
  2559. {
  2560. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2561. }
  2562. break;
  2563. #endif
  2564. #ifdef FWRETRACT
  2565. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2566. {
  2567. if(code_seen('S'))
  2568. {
  2569. retract_length = code_value() ;
  2570. }
  2571. if(code_seen('F'))
  2572. {
  2573. retract_feedrate = code_value()/60 ;
  2574. }
  2575. if(code_seen('Z'))
  2576. {
  2577. retract_zlift = code_value() ;
  2578. }
  2579. }break;
  2580. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2581. {
  2582. if(code_seen('S'))
  2583. {
  2584. retract_recover_length = code_value() ;
  2585. }
  2586. if(code_seen('F'))
  2587. {
  2588. retract_recover_feedrate = code_value()/60 ;
  2589. }
  2590. }break;
  2591. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2592. {
  2593. if(code_seen('S'))
  2594. {
  2595. int t= code_value() ;
  2596. switch(t)
  2597. {
  2598. case 0:
  2599. {
  2600. autoretract_enabled=false;
  2601. retracted[0]=false;
  2602. #if EXTRUDERS > 1
  2603. retracted[1]=false;
  2604. #endif
  2605. #if EXTRUDERS > 2
  2606. retracted[2]=false;
  2607. #endif
  2608. }break;
  2609. case 1:
  2610. {
  2611. autoretract_enabled=true;
  2612. retracted[0]=false;
  2613. #if EXTRUDERS > 1
  2614. retracted[1]=false;
  2615. #endif
  2616. #if EXTRUDERS > 2
  2617. retracted[2]=false;
  2618. #endif
  2619. }break;
  2620. default:
  2621. SERIAL_ECHO_START;
  2622. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2623. SERIAL_ECHO(cmdbuffer[bufindr]);
  2624. SERIAL_ECHOLNPGM("\"");
  2625. }
  2626. }
  2627. }break;
  2628. #endif // FWRETRACT
  2629. #if EXTRUDERS > 1
  2630. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2631. {
  2632. if(setTargetedHotend(218)){
  2633. break;
  2634. }
  2635. if(code_seen('X'))
  2636. {
  2637. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2638. }
  2639. if(code_seen('Y'))
  2640. {
  2641. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2642. }
  2643. #ifdef DUAL_X_CARRIAGE
  2644. if(code_seen('Z'))
  2645. {
  2646. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2647. }
  2648. #endif
  2649. SERIAL_ECHO_START;
  2650. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2651. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2652. {
  2653. SERIAL_ECHO(" ");
  2654. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2655. SERIAL_ECHO(",");
  2656. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2657. #ifdef DUAL_X_CARRIAGE
  2658. SERIAL_ECHO(",");
  2659. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2660. #endif
  2661. }
  2662. SERIAL_ECHOLN("");
  2663. }break;
  2664. #endif
  2665. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2666. {
  2667. if(code_seen('S'))
  2668. {
  2669. feedmultiply = code_value() ;
  2670. }
  2671. }
  2672. break;
  2673. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2674. {
  2675. if(code_seen('S'))
  2676. {
  2677. int tmp_code = code_value();
  2678. if (code_seen('T'))
  2679. {
  2680. if(setTargetedHotend(221)){
  2681. break;
  2682. }
  2683. extruder_multiply[tmp_extruder] = tmp_code;
  2684. }
  2685. else
  2686. {
  2687. extrudemultiply = tmp_code ;
  2688. }
  2689. }
  2690. }
  2691. break;
  2692. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2693. {
  2694. if(code_seen('P')){
  2695. int pin_number = code_value(); // pin number
  2696. int pin_state = -1; // required pin state - default is inverted
  2697. if(code_seen('S')) pin_state = code_value(); // required pin state
  2698. if(pin_state >= -1 && pin_state <= 1){
  2699. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2700. {
  2701. if (sensitive_pins[i] == pin_number)
  2702. {
  2703. pin_number = -1;
  2704. break;
  2705. }
  2706. }
  2707. if (pin_number > -1)
  2708. {
  2709. st_synchronize();
  2710. pinMode(pin_number, INPUT);
  2711. int target;
  2712. switch(pin_state){
  2713. case 1:
  2714. target = HIGH;
  2715. break;
  2716. case 0:
  2717. target = LOW;
  2718. break;
  2719. case -1:
  2720. target = !digitalRead(pin_number);
  2721. break;
  2722. }
  2723. while(digitalRead(pin_number) != target){
  2724. manage_heater();
  2725. manage_inactivity();
  2726. lcd_update();
  2727. }
  2728. }
  2729. }
  2730. }
  2731. }
  2732. break;
  2733. #if NUM_SERVOS > 0
  2734. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2735. {
  2736. int servo_index = -1;
  2737. int servo_position = 0;
  2738. if (code_seen('P'))
  2739. servo_index = code_value();
  2740. if (code_seen('S')) {
  2741. servo_position = code_value();
  2742. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2743. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2744. servos[servo_index].attach(0);
  2745. #endif
  2746. servos[servo_index].write(servo_position);
  2747. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2748. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2749. servos[servo_index].detach();
  2750. #endif
  2751. }
  2752. else {
  2753. SERIAL_ECHO_START;
  2754. SERIAL_ECHO("Servo ");
  2755. SERIAL_ECHO(servo_index);
  2756. SERIAL_ECHOLN(" out of range");
  2757. }
  2758. }
  2759. else if (servo_index >= 0) {
  2760. SERIAL_PROTOCOL(MSG_OK);
  2761. SERIAL_PROTOCOL(" Servo ");
  2762. SERIAL_PROTOCOL(servo_index);
  2763. SERIAL_PROTOCOL(": ");
  2764. SERIAL_PROTOCOL(servos[servo_index].read());
  2765. SERIAL_PROTOCOLLN("");
  2766. }
  2767. }
  2768. break;
  2769. #endif // NUM_SERVOS > 0
  2770. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2771. case 300: // M300
  2772. {
  2773. int beepS = code_seen('S') ? code_value() : 110;
  2774. int beepP = code_seen('P') ? code_value() : 1000;
  2775. if (beepS > 0)
  2776. {
  2777. #if BEEPER > 0
  2778. tone(BEEPER, beepS);
  2779. delay(beepP);
  2780. noTone(BEEPER);
  2781. #elif defined(ULTRALCD)
  2782. lcd_buzz(beepS, beepP);
  2783. #elif defined(LCD_USE_I2C_BUZZER)
  2784. lcd_buzz(beepP, beepS);
  2785. #endif
  2786. }
  2787. else
  2788. {
  2789. delay(beepP);
  2790. }
  2791. }
  2792. break;
  2793. #endif // M300
  2794. #ifdef PIDTEMP
  2795. case 301: // M301
  2796. {
  2797. if(code_seen('P')) Kp = code_value();
  2798. if(code_seen('I')) Ki = scalePID_i(code_value());
  2799. if(code_seen('D')) Kd = scalePID_d(code_value());
  2800. #ifdef PID_ADD_EXTRUSION_RATE
  2801. if(code_seen('C')) Kc = code_value();
  2802. #endif
  2803. updatePID();
  2804. SERIAL_PROTOCOL(MSG_OK);
  2805. SERIAL_PROTOCOL(" p:");
  2806. SERIAL_PROTOCOL(Kp);
  2807. SERIAL_PROTOCOL(" i:");
  2808. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2809. SERIAL_PROTOCOL(" d:");
  2810. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2811. #ifdef PID_ADD_EXTRUSION_RATE
  2812. SERIAL_PROTOCOL(" c:");
  2813. //Kc does not have scaling applied above, or in resetting defaults
  2814. SERIAL_PROTOCOL(Kc);
  2815. #endif
  2816. SERIAL_PROTOCOLLN("");
  2817. }
  2818. break;
  2819. #endif //PIDTEMP
  2820. #ifdef PIDTEMPBED
  2821. case 304: // M304
  2822. {
  2823. if(code_seen('P')) bedKp = code_value();
  2824. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2825. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2826. updatePID();
  2827. SERIAL_PROTOCOL(MSG_OK);
  2828. SERIAL_PROTOCOL(" p:");
  2829. SERIAL_PROTOCOL(bedKp);
  2830. SERIAL_PROTOCOL(" i:");
  2831. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2832. SERIAL_PROTOCOL(" d:");
  2833. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2834. SERIAL_PROTOCOLLN("");
  2835. }
  2836. break;
  2837. #endif //PIDTEMP
  2838. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2839. {
  2840. #ifdef CHDK
  2841. SET_OUTPUT(CHDK);
  2842. WRITE(CHDK, HIGH);
  2843. chdkHigh = millis();
  2844. chdkActive = true;
  2845. #else
  2846. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2847. const uint8_t NUM_PULSES=16;
  2848. const float PULSE_LENGTH=0.01524;
  2849. for(int i=0; i < NUM_PULSES; i++) {
  2850. WRITE(PHOTOGRAPH_PIN, HIGH);
  2851. _delay_ms(PULSE_LENGTH);
  2852. WRITE(PHOTOGRAPH_PIN, LOW);
  2853. _delay_ms(PULSE_LENGTH);
  2854. }
  2855. delay(7.33);
  2856. for(int i=0; i < NUM_PULSES; i++) {
  2857. WRITE(PHOTOGRAPH_PIN, HIGH);
  2858. _delay_ms(PULSE_LENGTH);
  2859. WRITE(PHOTOGRAPH_PIN, LOW);
  2860. _delay_ms(PULSE_LENGTH);
  2861. }
  2862. #endif
  2863. #endif //chdk end if
  2864. }
  2865. break;
  2866. #ifdef DOGLCD
  2867. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2868. {
  2869. if (code_seen('C')) {
  2870. lcd_setcontrast( ((int)code_value())&63 );
  2871. }
  2872. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2873. SERIAL_PROTOCOL(lcd_contrast);
  2874. SERIAL_PROTOCOLLN("");
  2875. }
  2876. break;
  2877. #endif
  2878. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2879. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2880. {
  2881. float temp = .0;
  2882. if (code_seen('S')) temp=code_value();
  2883. set_extrude_min_temp(temp);
  2884. }
  2885. break;
  2886. #endif
  2887. case 303: // M303 PID autotune
  2888. {
  2889. float temp = 150.0;
  2890. int e=0;
  2891. int c=5;
  2892. if (code_seen('E')) e=code_value();
  2893. if (e<0)
  2894. temp=70;
  2895. if (code_seen('S')) temp=code_value();
  2896. if (code_seen('C')) c=code_value();
  2897. PID_autotune(temp, e, c);
  2898. }
  2899. break;
  2900. #ifdef SCARA
  2901. case 360: // M360 SCARA Theta pos1
  2902. SERIAL_ECHOLN(" Cal: Theta 0 ");
  2903. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2904. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2905. if(Stopped == false) {
  2906. //get_coordinates(); // For X Y Z E F
  2907. delta[0] = 0;
  2908. delta[1] = 120;
  2909. calculate_SCARA_forward_Transform(delta);
  2910. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2911. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2912. prepare_move();
  2913. //ClearToSend();
  2914. return;
  2915. }
  2916. break;
  2917. case 361: // SCARA Theta pos2
  2918. SERIAL_ECHOLN(" Cal: Theta 90 ");
  2919. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2920. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2921. if(Stopped == false) {
  2922. //get_coordinates(); // For X Y Z E F
  2923. delta[0] = 90;
  2924. delta[1] = 130;
  2925. calculate_SCARA_forward_Transform(delta);
  2926. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2927. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2928. prepare_move();
  2929. //ClearToSend();
  2930. return;
  2931. }
  2932. break;
  2933. case 362: // SCARA Psi pos1
  2934. SERIAL_ECHOLN(" Cal: Psi 0 ");
  2935. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2936. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2937. if(Stopped == false) {
  2938. //get_coordinates(); // For X Y Z E F
  2939. delta[0] = 60;
  2940. delta[1] = 180;
  2941. calculate_SCARA_forward_Transform(delta);
  2942. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2943. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2944. prepare_move();
  2945. //ClearToSend();
  2946. return;
  2947. }
  2948. break;
  2949. case 363: // SCARA Psi pos2
  2950. SERIAL_ECHOLN(" Cal: Psi 90 ");
  2951. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2952. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2953. if(Stopped == false) {
  2954. //get_coordinates(); // For X Y Z E F
  2955. delta[0] = 50;
  2956. delta[1] = 90;
  2957. calculate_SCARA_forward_Transform(delta);
  2958. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2959. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2960. prepare_move();
  2961. //ClearToSend();
  2962. return;
  2963. }
  2964. break;
  2965. case 364: // SCARA Psi pos3 (90 deg to Theta)
  2966. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  2967. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2968. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2969. if(Stopped == false) {
  2970. //get_coordinates(); // For X Y Z E F
  2971. delta[0] = 45;
  2972. delta[1] = 135;
  2973. calculate_SCARA_forward_Transform(delta);
  2974. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2975. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2976. prepare_move();
  2977. //ClearToSend();
  2978. return;
  2979. }
  2980. break;
  2981. case 365: // M364 Set SCARA scaling for X Y Z
  2982. for(int8_t i=0; i < 3; i++)
  2983. {
  2984. if(code_seen(axis_codes[i]))
  2985. {
  2986. axis_scaling[i] = code_value();
  2987. }
  2988. }
  2989. break;
  2990. #endif
  2991. case 400: // M400 finish all moves
  2992. {
  2993. st_synchronize();
  2994. }
  2995. break;
  2996. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  2997. case 401:
  2998. {
  2999. engage_z_probe(); // Engage Z Servo endstop if available
  3000. }
  3001. break;
  3002. case 402:
  3003. {
  3004. retract_z_probe(); // Retract Z Servo endstop if enabled
  3005. }
  3006. break;
  3007. #endif
  3008. case 500: // M500 Store settings in EEPROM
  3009. {
  3010. Config_StoreSettings();
  3011. }
  3012. break;
  3013. case 501: // M501 Read settings from EEPROM
  3014. {
  3015. Config_RetrieveSettings();
  3016. }
  3017. break;
  3018. case 502: // M502 Revert to default settings
  3019. {
  3020. Config_ResetDefault();
  3021. }
  3022. break;
  3023. case 503: // M503 print settings currently in memory
  3024. {
  3025. Config_PrintSettings();
  3026. }
  3027. break;
  3028. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3029. case 540:
  3030. {
  3031. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3032. }
  3033. break;
  3034. #endif
  3035. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3036. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3037. {
  3038. float value;
  3039. if (code_seen('Z'))
  3040. {
  3041. value = code_value();
  3042. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3043. {
  3044. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3045. SERIAL_ECHO_START;
  3046. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3047. SERIAL_PROTOCOLLN("");
  3048. }
  3049. else
  3050. {
  3051. SERIAL_ECHO_START;
  3052. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3053. SERIAL_ECHOPGM(MSG_Z_MIN);
  3054. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3055. SERIAL_ECHOPGM(MSG_Z_MAX);
  3056. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3057. SERIAL_PROTOCOLLN("");
  3058. }
  3059. }
  3060. else
  3061. {
  3062. SERIAL_ECHO_START;
  3063. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3064. SERIAL_ECHO(-zprobe_zoffset);
  3065. SERIAL_PROTOCOLLN("");
  3066. }
  3067. break;
  3068. }
  3069. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3070. #ifdef FILAMENTCHANGEENABLE
  3071. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3072. {
  3073. float target[4];
  3074. float lastpos[4];
  3075. target[X_AXIS]=current_position[X_AXIS];
  3076. target[Y_AXIS]=current_position[Y_AXIS];
  3077. target[Z_AXIS]=current_position[Z_AXIS];
  3078. target[E_AXIS]=current_position[E_AXIS];
  3079. lastpos[X_AXIS]=current_position[X_AXIS];
  3080. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3081. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3082. lastpos[E_AXIS]=current_position[E_AXIS];
  3083. //retract by E
  3084. if(code_seen('E'))
  3085. {
  3086. target[E_AXIS]+= code_value();
  3087. }
  3088. else
  3089. {
  3090. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3091. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3092. #endif
  3093. }
  3094. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3095. //lift Z
  3096. if(code_seen('Z'))
  3097. {
  3098. target[Z_AXIS]+= code_value();
  3099. }
  3100. else
  3101. {
  3102. #ifdef FILAMENTCHANGE_ZADD
  3103. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3104. #endif
  3105. }
  3106. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3107. //move xy
  3108. if(code_seen('X'))
  3109. {
  3110. target[X_AXIS]+= code_value();
  3111. }
  3112. else
  3113. {
  3114. #ifdef FILAMENTCHANGE_XPOS
  3115. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3116. #endif
  3117. }
  3118. if(code_seen('Y'))
  3119. {
  3120. target[Y_AXIS]= code_value();
  3121. }
  3122. else
  3123. {
  3124. #ifdef FILAMENTCHANGE_YPOS
  3125. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3126. #endif
  3127. }
  3128. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3129. if(code_seen('L'))
  3130. {
  3131. target[E_AXIS]+= code_value();
  3132. }
  3133. else
  3134. {
  3135. #ifdef FILAMENTCHANGE_FINALRETRACT
  3136. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3137. #endif
  3138. }
  3139. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3140. //finish moves
  3141. st_synchronize();
  3142. //disable extruder steppers so filament can be removed
  3143. disable_e0();
  3144. disable_e1();
  3145. disable_e2();
  3146. delay(100);
  3147. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3148. uint8_t cnt=0;
  3149. while(!lcd_clicked()){
  3150. cnt++;
  3151. manage_heater();
  3152. manage_inactivity();
  3153. lcd_update();
  3154. if(cnt==0)
  3155. {
  3156. #if BEEPER > 0
  3157. SET_OUTPUT(BEEPER);
  3158. WRITE(BEEPER,HIGH);
  3159. delay(3);
  3160. WRITE(BEEPER,LOW);
  3161. delay(3);
  3162. #else
  3163. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3164. lcd_buzz(1000/6,100);
  3165. #else
  3166. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3167. #endif
  3168. #endif
  3169. }
  3170. }
  3171. //return to normal
  3172. if(code_seen('L'))
  3173. {
  3174. target[E_AXIS]+= -code_value();
  3175. }
  3176. else
  3177. {
  3178. #ifdef FILAMENTCHANGE_FINALRETRACT
  3179. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3180. #endif
  3181. }
  3182. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3183. plan_set_e_position(current_position[E_AXIS]);
  3184. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3185. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3186. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3187. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3188. }
  3189. break;
  3190. #endif //FILAMENTCHANGEENABLE
  3191. #ifdef DUAL_X_CARRIAGE
  3192. case 605: // Set dual x-carriage movement mode:
  3193. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3194. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3195. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3196. // millimeters x-offset and an optional differential hotend temperature of
  3197. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3198. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3199. //
  3200. // Note: the X axis should be homed after changing dual x-carriage mode.
  3201. {
  3202. st_synchronize();
  3203. if (code_seen('S'))
  3204. dual_x_carriage_mode = code_value();
  3205. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3206. {
  3207. if (code_seen('X'))
  3208. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3209. if (code_seen('R'))
  3210. duplicate_extruder_temp_offset = code_value();
  3211. SERIAL_ECHO_START;
  3212. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3213. SERIAL_ECHO(" ");
  3214. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3215. SERIAL_ECHO(",");
  3216. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3217. SERIAL_ECHO(" ");
  3218. SERIAL_ECHO(duplicate_extruder_x_offset);
  3219. SERIAL_ECHO(",");
  3220. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3221. }
  3222. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3223. {
  3224. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3225. }
  3226. active_extruder_parked = false;
  3227. extruder_duplication_enabled = false;
  3228. delayed_move_time = 0;
  3229. }
  3230. break;
  3231. #endif //DUAL_X_CARRIAGE
  3232. case 907: // M907 Set digital trimpot motor current using axis codes.
  3233. {
  3234. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3235. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3236. if(code_seen('B')) digipot_current(4,code_value());
  3237. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3238. #endif
  3239. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3240. if(code_seen('X')) digipot_current(0, code_value());
  3241. #endif
  3242. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3243. if(code_seen('Z')) digipot_current(1, code_value());
  3244. #endif
  3245. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3246. if(code_seen('E')) digipot_current(2, code_value());
  3247. #endif
  3248. #ifdef DIGIPOT_I2C
  3249. // this one uses actual amps in floating point
  3250. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3251. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3252. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3253. #endif
  3254. }
  3255. break;
  3256. case 908: // M908 Control digital trimpot directly.
  3257. {
  3258. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3259. uint8_t channel,current;
  3260. if(code_seen('P')) channel=code_value();
  3261. if(code_seen('S')) current=code_value();
  3262. digitalPotWrite(channel, current);
  3263. #endif
  3264. }
  3265. break;
  3266. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3267. {
  3268. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3269. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3270. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3271. if(code_seen('B')) microstep_mode(4,code_value());
  3272. microstep_readings();
  3273. #endif
  3274. }
  3275. break;
  3276. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3277. {
  3278. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3279. if(code_seen('S')) switch((int)code_value())
  3280. {
  3281. case 1:
  3282. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3283. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3284. break;
  3285. case 2:
  3286. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3287. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3288. break;
  3289. }
  3290. microstep_readings();
  3291. #endif
  3292. }
  3293. break;
  3294. case 999: // M999: Restart after being stopped
  3295. Stopped = false;
  3296. lcd_reset_alert_level();
  3297. gcode_LastN = Stopped_gcode_LastN;
  3298. FlushSerialRequestResend();
  3299. break;
  3300. }
  3301. }
  3302. else if(code_seen('T'))
  3303. {
  3304. tmp_extruder = code_value();
  3305. if(tmp_extruder >= EXTRUDERS) {
  3306. SERIAL_ECHO_START;
  3307. SERIAL_ECHO("T");
  3308. SERIAL_ECHO(tmp_extruder);
  3309. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3310. }
  3311. else {
  3312. boolean make_move = false;
  3313. if(code_seen('F')) {
  3314. make_move = true;
  3315. next_feedrate = code_value();
  3316. if(next_feedrate > 0.0) {
  3317. feedrate = next_feedrate;
  3318. }
  3319. }
  3320. #if EXTRUDERS > 1
  3321. if(tmp_extruder != active_extruder) {
  3322. // Save current position to return to after applying extruder offset
  3323. memcpy(destination, current_position, sizeof(destination));
  3324. #ifdef DUAL_X_CARRIAGE
  3325. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3326. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3327. {
  3328. // Park old head: 1) raise 2) move to park position 3) lower
  3329. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3330. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3331. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3332. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3333. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3334. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3335. st_synchronize();
  3336. }
  3337. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3338. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3339. extruder_offset[Y_AXIS][active_extruder] +
  3340. extruder_offset[Y_AXIS][tmp_extruder];
  3341. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3342. extruder_offset[Z_AXIS][active_extruder] +
  3343. extruder_offset[Z_AXIS][tmp_extruder];
  3344. active_extruder = tmp_extruder;
  3345. // This function resets the max/min values - the current position may be overwritten below.
  3346. axis_is_at_home(X_AXIS);
  3347. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3348. {
  3349. current_position[X_AXIS] = inactive_extruder_x_pos;
  3350. inactive_extruder_x_pos = destination[X_AXIS];
  3351. }
  3352. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3353. {
  3354. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3355. if (active_extruder == 0 || active_extruder_parked)
  3356. current_position[X_AXIS] = inactive_extruder_x_pos;
  3357. else
  3358. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3359. inactive_extruder_x_pos = destination[X_AXIS];
  3360. extruder_duplication_enabled = false;
  3361. }
  3362. else
  3363. {
  3364. // record raised toolhead position for use by unpark
  3365. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3366. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3367. active_extruder_parked = true;
  3368. delayed_move_time = 0;
  3369. }
  3370. #else
  3371. // Offset extruder (only by XY)
  3372. int i;
  3373. for(i = 0; i < 2; i++) {
  3374. current_position[i] = current_position[i] -
  3375. extruder_offset[i][active_extruder] +
  3376. extruder_offset[i][tmp_extruder];
  3377. }
  3378. // Set the new active extruder and position
  3379. active_extruder = tmp_extruder;
  3380. #endif //else DUAL_X_CARRIAGE
  3381. #ifdef DELTA
  3382. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3383. //sent position to plan_set_position();
  3384. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3385. #else
  3386. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3387. #endif
  3388. // Move to the old position if 'F' was in the parameters
  3389. if(make_move && Stopped == false) {
  3390. prepare_move();
  3391. }
  3392. }
  3393. #endif
  3394. SERIAL_ECHO_START;
  3395. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3396. SERIAL_PROTOCOLLN((int)active_extruder);
  3397. }
  3398. }
  3399. else
  3400. {
  3401. SERIAL_ECHO_START;
  3402. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3403. SERIAL_ECHO(cmdbuffer[bufindr]);
  3404. SERIAL_ECHOLNPGM("\"");
  3405. }
  3406. ClearToSend();
  3407. }
  3408. void FlushSerialRequestResend()
  3409. {
  3410. //char cmdbuffer[bufindr][100]="Resend:";
  3411. MYSERIAL.flush();
  3412. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3413. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3414. ClearToSend();
  3415. }
  3416. void ClearToSend()
  3417. {
  3418. previous_millis_cmd = millis();
  3419. #ifdef SDSUPPORT
  3420. if(fromsd[bufindr])
  3421. return;
  3422. #endif //SDSUPPORT
  3423. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3424. }
  3425. void get_coordinates()
  3426. {
  3427. bool seen[4]={false,false,false,false};
  3428. for(int8_t i=0; i < NUM_AXIS; i++) {
  3429. if(code_seen(axis_codes[i]))
  3430. {
  3431. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3432. seen[i]=true;
  3433. }
  3434. else destination[i] = current_position[i]; //Are these else lines really needed?
  3435. }
  3436. if(code_seen('F')) {
  3437. next_feedrate = code_value();
  3438. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3439. }
  3440. }
  3441. void get_arc_coordinates()
  3442. {
  3443. #ifdef SF_ARC_FIX
  3444. bool relative_mode_backup = relative_mode;
  3445. relative_mode = true;
  3446. #endif
  3447. get_coordinates();
  3448. #ifdef SF_ARC_FIX
  3449. relative_mode=relative_mode_backup;
  3450. #endif
  3451. if(code_seen('I')) {
  3452. offset[0] = code_value();
  3453. }
  3454. else {
  3455. offset[0] = 0.0;
  3456. }
  3457. if(code_seen('J')) {
  3458. offset[1] = code_value();
  3459. }
  3460. else {
  3461. offset[1] = 0.0;
  3462. }
  3463. }
  3464. void clamp_to_software_endstops(float target[3])
  3465. {
  3466. if (min_software_endstops) {
  3467. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3468. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3469. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  3470. }
  3471. if (max_software_endstops) {
  3472. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3473. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3474. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3475. }
  3476. }
  3477. #ifdef DELTA
  3478. void recalc_delta_settings(float radius, float diagonal_rod)
  3479. {
  3480. delta_tower1_x= -SIN_60*radius; // front left tower
  3481. delta_tower1_y= -COS_60*radius;
  3482. delta_tower2_x= SIN_60*radius; // front right tower
  3483. delta_tower2_y= -COS_60*radius;
  3484. delta_tower3_x= 0.0; // back middle tower
  3485. delta_tower3_y= radius;
  3486. delta_diagonal_rod_2= sq(diagonal_rod);
  3487. }
  3488. void calculate_delta(float cartesian[3])
  3489. {
  3490. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3491. - sq(delta_tower1_x-cartesian[X_AXIS])
  3492. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3493. ) + cartesian[Z_AXIS];
  3494. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3495. - sq(delta_tower2_x-cartesian[X_AXIS])
  3496. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3497. ) + cartesian[Z_AXIS];
  3498. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3499. - sq(delta_tower3_x-cartesian[X_AXIS])
  3500. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3501. ) + cartesian[Z_AXIS];
  3502. /*
  3503. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3504. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3505. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3506. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3507. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3508. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3509. */
  3510. }
  3511. #endif
  3512. void prepare_move()
  3513. {
  3514. clamp_to_software_endstops(destination);
  3515. previous_millis_cmd = millis();
  3516. #ifdef SCARA //for now same as delta-code
  3517. float difference[NUM_AXIS];
  3518. for (int8_t i=0; i < NUM_AXIS; i++) {
  3519. difference[i] = destination[i] - current_position[i];
  3520. }
  3521. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3522. sq(difference[Y_AXIS]) +
  3523. sq(difference[Z_AXIS]));
  3524. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3525. if (cartesian_mm < 0.000001) { return; }
  3526. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3527. int steps = max(1, int(scara_segments_per_second * seconds));
  3528. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3529. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3530. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3531. for (int s = 1; s <= steps; s++) {
  3532. float fraction = float(s) / float(steps);
  3533. for(int8_t i=0; i < NUM_AXIS; i++) {
  3534. destination[i] = current_position[i] + difference[i] * fraction;
  3535. }
  3536. calculate_delta(destination);
  3537. //SERIAL_ECHOPGM("destination[0]="); SERIAL_ECHOLN(destination[0]);
  3538. //SERIAL_ECHOPGM("destination[1]="); SERIAL_ECHOLN(destination[1]);
  3539. //SERIAL_ECHOPGM("destination[2]="); SERIAL_ECHOLN(destination[2]);
  3540. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3541. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3542. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3543. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3544. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3545. active_extruder);
  3546. }
  3547. #endif // SCARA
  3548. #ifdef DELTA
  3549. float difference[NUM_AXIS];
  3550. for (int8_t i=0; i < NUM_AXIS; i++) {
  3551. difference[i] = destination[i] - current_position[i];
  3552. }
  3553. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3554. sq(difference[Y_AXIS]) +
  3555. sq(difference[Z_AXIS]));
  3556. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3557. if (cartesian_mm < 0.000001) { return; }
  3558. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3559. int steps = max(1, int(delta_segments_per_second * seconds));
  3560. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3561. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3562. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3563. for (int s = 1; s <= steps; s++) {
  3564. float fraction = float(s) / float(steps);
  3565. for(int8_t i=0; i < NUM_AXIS; i++) {
  3566. destination[i] = current_position[i] + difference[i] * fraction;
  3567. }
  3568. calculate_delta(destination);
  3569. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3570. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3571. active_extruder);
  3572. }
  3573. #endif // DELTA
  3574. #ifdef DUAL_X_CARRIAGE
  3575. if (active_extruder_parked)
  3576. {
  3577. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3578. {
  3579. // move duplicate extruder into correct duplication position.
  3580. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3581. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3582. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3583. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3584. st_synchronize();
  3585. extruder_duplication_enabled = true;
  3586. active_extruder_parked = false;
  3587. }
  3588. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3589. {
  3590. if (current_position[E_AXIS] == destination[E_AXIS])
  3591. {
  3592. // this is a travel move - skit it but keep track of current position (so that it can later
  3593. // be used as start of first non-travel move)
  3594. if (delayed_move_time != 0xFFFFFFFFUL)
  3595. {
  3596. memcpy(current_position, destination, sizeof(current_position));
  3597. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3598. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3599. delayed_move_time = millis();
  3600. return;
  3601. }
  3602. }
  3603. delayed_move_time = 0;
  3604. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3605. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3607. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3609. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3610. active_extruder_parked = false;
  3611. }
  3612. }
  3613. #endif //DUAL_X_CARRIAGE
  3614. #if ! (defined DELTA || defined SCARA)
  3615. // Do not use feedmultiply for E or Z only moves
  3616. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3617. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3618. }
  3619. else {
  3620. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3621. }
  3622. #endif // !(DELTA || SCARA)
  3623. for(int8_t i=0; i < NUM_AXIS; i++) {
  3624. current_position[i] = destination[i];
  3625. }
  3626. }
  3627. void prepare_arc_move(char isclockwise) {
  3628. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3629. // Trace the arc
  3630. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3631. // As far as the parser is concerned, the position is now == target. In reality the
  3632. // motion control system might still be processing the action and the real tool position
  3633. // in any intermediate location.
  3634. for(int8_t i=0; i < NUM_AXIS; i++) {
  3635. current_position[i] = destination[i];
  3636. }
  3637. previous_millis_cmd = millis();
  3638. }
  3639. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3640. #if defined(FAN_PIN)
  3641. #if CONTROLLERFAN_PIN == FAN_PIN
  3642. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3643. #endif
  3644. #endif
  3645. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3646. unsigned long lastMotorCheck = 0;
  3647. void controllerFan()
  3648. {
  3649. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3650. {
  3651. lastMotorCheck = millis();
  3652. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3653. #if EXTRUDERS > 2
  3654. || !READ(E2_ENABLE_PIN)
  3655. #endif
  3656. #if EXTRUDER > 1
  3657. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3658. || !READ(X2_ENABLE_PIN)
  3659. #endif
  3660. || !READ(E1_ENABLE_PIN)
  3661. #endif
  3662. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3663. {
  3664. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3665. }
  3666. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3667. {
  3668. digitalWrite(CONTROLLERFAN_PIN, 0);
  3669. analogWrite(CONTROLLERFAN_PIN, 0);
  3670. }
  3671. else
  3672. {
  3673. // allows digital or PWM fan output to be used (see M42 handling)
  3674. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3675. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3676. }
  3677. }
  3678. }
  3679. #endif
  3680. #ifdef SCARA
  3681. void calculate_SCARA_forward_Transform(float f_scara[3])
  3682. {
  3683. // Perform forward kinematics, and place results in delta[3]
  3684. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3685. float x_sin, x_cos, y_sin, y_cos;
  3686. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3687. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3688. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3689. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3690. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3691. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3692. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3693. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3694. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3695. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3696. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3697. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3698. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3699. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3700. }
  3701. void calculate_delta(float cartesian[3]){
  3702. //reverse kinematics.
  3703. // Perform reversed kinematics, and place results in delta[3]
  3704. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3705. float SCARA_pos[2];
  3706. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3707. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3708. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3709. #if (Linkage_1 == Linkage_2)
  3710. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3711. #else
  3712. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3713. #endif
  3714. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3715. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3716. SCARA_K2 = Linkage_2 * SCARA_S2;
  3717. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3718. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3719. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3720. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3721. delta[Z_AXIS] = cartesian[Z_AXIS];
  3722. /*
  3723. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3724. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3725. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3726. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3727. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3728. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3729. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3730. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3731. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3732. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3733. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3734. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3735. SERIAL_ECHOLN(" ");*/
  3736. }
  3737. #endif
  3738. #ifdef TEMP_STAT_LEDS
  3739. static bool blue_led = false;
  3740. static bool red_led = false;
  3741. static uint32_t stat_update = 0;
  3742. void handle_status_leds(void) {
  3743. float max_temp = 0.0;
  3744. if(millis() > stat_update) {
  3745. stat_update += 500; // Update every 0.5s
  3746. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3747. max_temp = max(max_temp, degHotend(cur_extruder));
  3748. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3749. }
  3750. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3751. max_temp = max(max_temp, degTargetBed());
  3752. max_temp = max(max_temp, degBed());
  3753. #endif
  3754. if((max_temp > 55.0) && (red_led == false)) {
  3755. digitalWrite(STAT_LED_RED, 1);
  3756. digitalWrite(STAT_LED_BLUE, 0);
  3757. red_led = true;
  3758. blue_led = false;
  3759. }
  3760. if((max_temp < 54.0) && (blue_led == false)) {
  3761. digitalWrite(STAT_LED_RED, 0);
  3762. digitalWrite(STAT_LED_BLUE, 1);
  3763. red_led = false;
  3764. blue_led = true;
  3765. }
  3766. }
  3767. }
  3768. #endif
  3769. void manage_inactivity()
  3770. {
  3771. if(buflen < (BUFSIZE-1))
  3772. get_command();
  3773. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3774. if(max_inactive_time)
  3775. kill();
  3776. if(stepper_inactive_time) {
  3777. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3778. {
  3779. if(blocks_queued() == false) {
  3780. disable_x();
  3781. disable_y();
  3782. disable_z();
  3783. disable_e0();
  3784. disable_e1();
  3785. disable_e2();
  3786. }
  3787. }
  3788. }
  3789. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3790. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3791. {
  3792. chdkActive = false;
  3793. WRITE(CHDK, LOW);
  3794. }
  3795. #endif
  3796. #if defined(KILL_PIN) && KILL_PIN > -1
  3797. if( 0 == READ(KILL_PIN) )
  3798. kill();
  3799. #endif
  3800. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3801. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3802. #endif
  3803. #ifdef EXTRUDER_RUNOUT_PREVENT
  3804. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3805. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3806. {
  3807. bool oldstatus=READ(E0_ENABLE_PIN);
  3808. enable_e0();
  3809. float oldepos=current_position[E_AXIS];
  3810. float oldedes=destination[E_AXIS];
  3811. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3812. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3813. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3814. current_position[E_AXIS]=oldepos;
  3815. destination[E_AXIS]=oldedes;
  3816. plan_set_e_position(oldepos);
  3817. previous_millis_cmd=millis();
  3818. st_synchronize();
  3819. WRITE(E0_ENABLE_PIN,oldstatus);
  3820. }
  3821. #endif
  3822. #if defined(DUAL_X_CARRIAGE)
  3823. // handle delayed move timeout
  3824. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3825. {
  3826. // travel moves have been received so enact them
  3827. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3828. memcpy(destination,current_position,sizeof(destination));
  3829. prepare_move();
  3830. }
  3831. #endif
  3832. #ifdef TEMP_STAT_LEDS
  3833. handle_status_leds();
  3834. #endif
  3835. check_axes_activity();
  3836. }
  3837. void kill()
  3838. {
  3839. cli(); // Stop interrupts
  3840. disable_heater();
  3841. disable_x();
  3842. disable_y();
  3843. disable_z();
  3844. disable_e0();
  3845. disable_e1();
  3846. disable_e2();
  3847. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3848. pinMode(PS_ON_PIN,INPUT);
  3849. #endif
  3850. SERIAL_ERROR_START;
  3851. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3852. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3853. suicide();
  3854. while(1) { /* Intentionally left empty */ } // Wait for reset
  3855. }
  3856. void Stop()
  3857. {
  3858. disable_heater();
  3859. if(Stopped == false) {
  3860. Stopped = true;
  3861. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3862. SERIAL_ERROR_START;
  3863. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3864. LCD_MESSAGEPGM(MSG_STOPPED);
  3865. }
  3866. }
  3867. bool IsStopped() { return Stopped; };
  3868. #ifdef FAST_PWM_FAN
  3869. void setPwmFrequency(uint8_t pin, int val)
  3870. {
  3871. val &= 0x07;
  3872. switch(digitalPinToTimer(pin))
  3873. {
  3874. #if defined(TCCR0A)
  3875. case TIMER0A:
  3876. case TIMER0B:
  3877. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3878. // TCCR0B |= val;
  3879. break;
  3880. #endif
  3881. #if defined(TCCR1A)
  3882. case TIMER1A:
  3883. case TIMER1B:
  3884. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3885. // TCCR1B |= val;
  3886. break;
  3887. #endif
  3888. #if defined(TCCR2)
  3889. case TIMER2:
  3890. case TIMER2:
  3891. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3892. TCCR2 |= val;
  3893. break;
  3894. #endif
  3895. #if defined(TCCR2A)
  3896. case TIMER2A:
  3897. case TIMER2B:
  3898. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3899. TCCR2B |= val;
  3900. break;
  3901. #endif
  3902. #if defined(TCCR3A)
  3903. case TIMER3A:
  3904. case TIMER3B:
  3905. case TIMER3C:
  3906. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3907. TCCR3B |= val;
  3908. break;
  3909. #endif
  3910. #if defined(TCCR4A)
  3911. case TIMER4A:
  3912. case TIMER4B:
  3913. case TIMER4C:
  3914. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3915. TCCR4B |= val;
  3916. break;
  3917. #endif
  3918. #if defined(TCCR5A)
  3919. case TIMER5A:
  3920. case TIMER5B:
  3921. case TIMER5C:
  3922. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3923. TCCR5B |= val;
  3924. break;
  3925. #endif
  3926. }
  3927. }
  3928. #endif //FAST_PWM_FAN
  3929. bool setTargetedHotend(int code){
  3930. tmp_extruder = active_extruder;
  3931. if(code_seen('T')) {
  3932. tmp_extruder = code_value();
  3933. if(tmp_extruder >= EXTRUDERS) {
  3934. SERIAL_ECHO_START;
  3935. switch(code){
  3936. case 104:
  3937. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3938. break;
  3939. case 105:
  3940. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3941. break;
  3942. case 109:
  3943. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3944. break;
  3945. case 218:
  3946. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3947. break;
  3948. case 221:
  3949. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3950. break;
  3951. }
  3952. SERIAL_ECHOLN(tmp_extruder);
  3953. return true;
  3954. }
  3955. }
  3956. return false;
  3957. }