My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 252KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "temperature.h"
  48. #include "cardreader.h"
  49. #include "configuration_store.h"
  50. #include "language.h"
  51. #include "pins_arduino.h"
  52. #include "math.h"
  53. #include "buzzer.h"
  54. #if ENABLED(USE_WATCHDOG)
  55. #include "watchdog.h"
  56. #endif
  57. #if ENABLED(BLINKM)
  58. #include "blinkm.h"
  59. #include "Wire.h"
  60. #endif
  61. #if HAS_SERVOS
  62. #include "servo.h"
  63. #endif
  64. #if HAS_DIGIPOTSS
  65. #include <SPI.h>
  66. #endif
  67. #if ENABLED(DAC_STEPPER_CURRENT)
  68. #include "stepper_dac.h"
  69. #endif
  70. #if ENABLED(EXPERIMENTAL_I2CBUS)
  71. #include "twibus.h"
  72. #endif
  73. /**
  74. * Look here for descriptions of G-codes:
  75. * - http://linuxcnc.org/handbook/gcode/g-code.html
  76. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  77. *
  78. * Help us document these G-codes online:
  79. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  80. * - http://reprap.org/wiki/G-code
  81. *
  82. * -----------------
  83. * Implemented Codes
  84. * -----------------
  85. *
  86. * "G" Codes
  87. *
  88. * G0 -> G1
  89. * G1 - Coordinated Movement X Y Z E
  90. * G2 - CW ARC
  91. * G3 - CCW ARC
  92. * G4 - Dwell S<seconds> or P<milliseconds>
  93. * G10 - retract filament according to settings of M207
  94. * G11 - retract recover filament according to settings of M208
  95. * G28 - Home one or more axes
  96. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  97. * G30 - Single Z probe, probes bed at current XY location.
  98. * G31 - Dock sled (Z_PROBE_SLED only)
  99. * G32 - Undock sled (Z_PROBE_SLED only)
  100. * G90 - Use Absolute Coordinates
  101. * G91 - Use Relative Coordinates
  102. * G92 - Set current position to coordinates given
  103. *
  104. * "M" Codes
  105. *
  106. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  107. * M1 - Same as M0
  108. * M17 - Enable/Power all stepper motors
  109. * M18 - Disable all stepper motors; same as M84
  110. * M20 - List SD card
  111. * M21 - Init SD card
  112. * M22 - Release SD card
  113. * M23 - Select SD file (M23 filename.g)
  114. * M24 - Start/resume SD print
  115. * M25 - Pause SD print
  116. * M26 - Set SD position in bytes (M26 S12345)
  117. * M27 - Report SD print status
  118. * M28 - Start SD write (M28 filename.g)
  119. * M29 - Stop SD write
  120. * M30 - Delete file from SD (M30 filename.g)
  121. * M31 - Output time since last M109 or SD card start to serial
  122. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  123. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  124. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  125. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  126. * M33 - Get the longname version of a path
  127. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  128. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  129. * M75 - Start the print job timer
  130. * M76 - Pause the print job timer
  131. * M77 - Stop the print job timer
  132. * M78 - Show statistical information about the print jobs
  133. * M80 - Turn on Power Supply
  134. * M81 - Turn off Power Supply
  135. * M82 - Set E codes absolute (default)
  136. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  137. * M84 - Disable steppers until next move,
  138. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  139. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  140. * M92 - Set planner.axis_steps_per_unit - same syntax as G92
  141. * M104 - Set extruder target temp
  142. * M105 - Read current temp
  143. * M106 - Fan on
  144. * M107 - Fan off
  145. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  146. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  147. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  148. * M110 - Set the current line number
  149. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  150. * M112 - Emergency stop
  151. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  152. * M114 - Output current position to serial port
  153. * M115 - Capabilities string
  154. * M117 - Display a message on the controller screen
  155. * M119 - Output Endstop status to serial port
  156. * M120 - Enable endstop detection
  157. * M121 - Disable endstop detection
  158. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  159. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  160. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  161. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  162. * M140 - Set bed target temp
  163. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  164. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  165. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  166. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  167. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  168. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  169. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  170. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  171. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  172. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  173. * M206 - Set additional homing offset
  174. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  175. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  176. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  177. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  178. * M220 - Set speed factor override percentage: S<factor in percent>
  179. * M221 - Set extrude factor override percentage: S<factor in percent>
  180. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  181. * M240 - Trigger a camera to take a photograph
  182. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  183. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  184. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  185. * M301 - Set PID parameters P I and D
  186. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  187. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  188. * M304 - Set bed PID parameters P I and D
  189. * M380 - Activate solenoid on active extruder
  190. * M381 - Disable all solenoids
  191. * M400 - Finish all moves
  192. * M401 - Lower Z probe if present
  193. * M402 - Raise Z probe if present
  194. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  195. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  196. * M406 - Turn off Filament Sensor extrusion control
  197. * M407 - Display measured filament diameter
  198. * M410 - Quickstop. Abort all the planned moves
  199. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  200. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  201. * M428 - Set the home_offset logically based on the current_position
  202. * M500 - Store parameters in EEPROM
  203. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  204. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  205. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  206. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  207. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  208. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  209. * M666 - Set delta endstop adjustment
  210. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  211. * M907 - Set digital trimpot motor current using axis codes.
  212. * M908 - Control digital trimpot directly.
  213. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  214. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  215. * M350 - Set microstepping mode.
  216. * M351 - Toggle MS1 MS2 pins directly.
  217. *
  218. * ************ SCARA Specific - This can change to suit future G-code regulations
  219. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  220. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  221. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  222. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  223. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  224. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  225. * ************* SCARA End ***************
  226. *
  227. * ************ Custom codes - This can change to suit future G-code regulations
  228. * M100 - Watch Free Memory (For Debugging Only)
  229. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  230. * M928 - Start SD logging (M928 filename.g) - ended by M29
  231. * M999 - Restart after being stopped by error
  232. *
  233. * "T" Codes
  234. *
  235. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  236. *
  237. */
  238. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  239. void gcode_M100();
  240. #endif
  241. #if ENABLED(SDSUPPORT)
  242. CardReader card;
  243. #endif
  244. #if ENABLED(EXPERIMENTAL_I2CBUS)
  245. TWIBus i2c;
  246. #endif
  247. bool Running = true;
  248. uint8_t marlin_debug_flags = DEBUG_NONE;
  249. static float feedrate = 1500.0, saved_feedrate;
  250. float current_position[NUM_AXIS] = { 0.0 };
  251. static float destination[NUM_AXIS] = { 0.0 };
  252. bool axis_known_position[3] = { false };
  253. bool axis_homed[3] = { false };
  254. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  255. static char* current_command, *current_command_args;
  256. static int cmd_queue_index_r = 0;
  257. static int cmd_queue_index_w = 0;
  258. static int commands_in_queue = 0;
  259. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  260. const float homing_feedrate[] = HOMING_FEEDRATE;
  261. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  262. int feedrate_multiplier = 100; //100->1 200->2
  263. int saved_feedrate_multiplier;
  264. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  265. bool volumetric_enabled = false;
  266. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  267. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  268. // The distance that XYZ has been offset by G92. Reset by G28.
  269. float position_shift[3] = { 0 };
  270. // This offset is added to the configured home position.
  271. // Set by M206, M428, or menu item. Saved to EEPROM.
  272. float home_offset[3] = { 0 };
  273. // Software Endstops. Default to configured limits.
  274. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  275. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  276. #if FAN_COUNT > 0
  277. int fanSpeeds[FAN_COUNT] = { 0 };
  278. #endif
  279. // The active extruder (tool). Set with T<extruder> command.
  280. uint8_t active_extruder = 0;
  281. // Relative Mode. Enable with G91, disable with G90.
  282. static bool relative_mode = false;
  283. bool cancel_heatup = false;
  284. const char errormagic[] PROGMEM = "Error:";
  285. const char echomagic[] PROGMEM = "echo:";
  286. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  287. static int serial_count = 0;
  288. // GCode parameter pointer used by code_seen(), code_value(), etc.
  289. static char* seen_pointer;
  290. // Next Immediate GCode Command pointer. NULL if none.
  291. const char* queued_commands_P = NULL;
  292. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  293. // Inactivity shutdown
  294. millis_t previous_cmd_ms = 0;
  295. static millis_t max_inactive_time = 0;
  296. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  297. // Print Job Timer
  298. #if ENABLED(PRINTCOUNTER)
  299. PrintCounter print_job_timer = PrintCounter();
  300. #else
  301. Stopwatch print_job_timer = Stopwatch();
  302. #endif
  303. static uint8_t target_extruder;
  304. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  305. int xy_travel_speed = XY_TRAVEL_SPEED;
  306. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  307. bool bed_leveling_in_progress = false;
  308. #endif
  309. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  310. float z_endstop_adj = 0;
  311. #endif
  312. // Extruder offsets
  313. #if EXTRUDERS > 1
  314. #ifndef EXTRUDER_OFFSET_X
  315. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  316. #endif
  317. #ifndef EXTRUDER_OFFSET_Y
  318. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  319. #endif
  320. float extruder_offset[][EXTRUDERS] = {
  321. EXTRUDER_OFFSET_X,
  322. EXTRUDER_OFFSET_Y
  323. #if ENABLED(DUAL_X_CARRIAGE)
  324. , { 0 } // Z offsets for each extruder
  325. #endif
  326. };
  327. #endif
  328. #if HAS_SERVO_ENDSTOPS
  329. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  330. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  331. #endif
  332. #if ENABLED(BARICUDA)
  333. int baricuda_valve_pressure = 0;
  334. int baricuda_e_to_p_pressure = 0;
  335. #endif
  336. #if ENABLED(FWRETRACT)
  337. bool autoretract_enabled = false;
  338. bool retracted[EXTRUDERS] = { false };
  339. bool retracted_swap[EXTRUDERS] = { false };
  340. float retract_length = RETRACT_LENGTH;
  341. float retract_length_swap = RETRACT_LENGTH_SWAP;
  342. float retract_feedrate = RETRACT_FEEDRATE;
  343. float retract_zlift = RETRACT_ZLIFT;
  344. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  345. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  346. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  347. #endif // FWRETRACT
  348. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  349. bool powersupply =
  350. #if ENABLED(PS_DEFAULT_OFF)
  351. false
  352. #else
  353. true
  354. #endif
  355. ;
  356. #endif
  357. #if ENABLED(DELTA)
  358. #define TOWER_1 X_AXIS
  359. #define TOWER_2 Y_AXIS
  360. #define TOWER_3 Z_AXIS
  361. float delta[3] = { 0 };
  362. #define SIN_60 0.8660254037844386
  363. #define COS_60 0.5
  364. float endstop_adj[3] = { 0 };
  365. // these are the default values, can be overriden with M665
  366. float delta_radius = DELTA_RADIUS;
  367. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  368. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  369. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  370. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  371. float delta_tower3_x = 0; // back middle tower
  372. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  373. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  374. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  375. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  376. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  377. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  378. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  379. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  380. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  381. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  382. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  383. int delta_grid_spacing[2] = { 0, 0 };
  384. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  385. #endif
  386. #else
  387. static bool home_all_axis = true;
  388. #endif
  389. #if ENABLED(SCARA)
  390. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  391. static float delta[3] = { 0 };
  392. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  393. #endif
  394. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  395. //Variables for Filament Sensor input
  396. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  397. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  398. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  399. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  400. int filwidth_delay_index1 = 0; //index into ring buffer
  401. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  402. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  403. #endif
  404. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  405. static bool filament_ran_out = false;
  406. #endif
  407. static bool send_ok[BUFSIZE];
  408. #if HAS_SERVOS
  409. Servo servo[NUM_SERVOS];
  410. #endif
  411. #ifdef CHDK
  412. millis_t chdkHigh = 0;
  413. boolean chdkActive = false;
  414. #endif
  415. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  416. int lpq_len = 20;
  417. #endif
  418. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  419. // States for managing Marlin and host communication
  420. // Marlin sends messages if blocked or busy
  421. enum MarlinBusyState {
  422. NOT_BUSY, // Not in a handler
  423. IN_HANDLER, // Processing a GCode
  424. IN_PROCESS, // Known to be blocking command input (as in G29)
  425. PAUSED_FOR_USER, // Blocking pending any input
  426. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  427. };
  428. static MarlinBusyState busy_state = NOT_BUSY;
  429. static millis_t next_busy_signal_ms = 0;
  430. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  431. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  432. #else
  433. #define host_keepalive() ;
  434. #define KEEPALIVE_STATE(n) ;
  435. #endif // HOST_KEEPALIVE_FEATURE
  436. /**
  437. * ***************************************************************************
  438. * ******************************** FUNCTIONS ********************************
  439. * ***************************************************************************
  440. */
  441. void stop();
  442. void get_available_commands();
  443. void process_next_command();
  444. #if ENABLED(ARC_SUPPORT)
  445. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  446. #endif
  447. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  448. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  449. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  451. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. static void report_current_position();
  453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  454. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  455. SERIAL_ECHO(prefix);
  456. SERIAL_ECHOPAIR(": (", x);
  457. SERIAL_ECHOPAIR(", ", y);
  458. SERIAL_ECHOPAIR(", ", z);
  459. SERIAL_ECHOLNPGM(")");
  460. }
  461. void print_xyz(const char* prefix, const float xyz[]) {
  462. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  463. }
  464. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  465. void print_xyz(const char* prefix, const vector_3 &xyz) {
  466. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  467. }
  468. #endif
  469. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  470. #endif
  471. #if ENABLED(DELTA) || ENABLED(SCARA)
  472. inline void sync_plan_position_delta() {
  473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  474. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  475. #endif
  476. calculate_delta(current_position);
  477. planner.set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  478. }
  479. #endif
  480. #if ENABLED(SDSUPPORT)
  481. #include "SdFatUtil.h"
  482. int freeMemory() { return SdFatUtil::FreeRam(); }
  483. #else
  484. extern "C" {
  485. extern unsigned int __bss_end;
  486. extern unsigned int __heap_start;
  487. extern void* __brkval;
  488. int freeMemory() {
  489. int free_memory;
  490. if ((int)__brkval == 0)
  491. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  492. else
  493. free_memory = ((int)&free_memory) - ((int)__brkval);
  494. return free_memory;
  495. }
  496. }
  497. #endif //!SDSUPPORT
  498. /**
  499. * Inject the next "immediate" command, when possible.
  500. * Return true if any immediate commands remain to inject.
  501. */
  502. static bool drain_queued_commands_P() {
  503. if (queued_commands_P != NULL) {
  504. size_t i = 0;
  505. char c, cmd[30];
  506. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  507. cmd[sizeof(cmd) - 1] = '\0';
  508. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  509. cmd[i] = '\0';
  510. if (enqueue_and_echo_command(cmd)) { // success?
  511. if (c) // newline char?
  512. queued_commands_P += i + 1; // advance to the next command
  513. else
  514. queued_commands_P = NULL; // nul char? no more commands
  515. }
  516. }
  517. return (queued_commands_P != NULL); // return whether any more remain
  518. }
  519. /**
  520. * Record one or many commands to run from program memory.
  521. * Aborts the current queue, if any.
  522. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  523. */
  524. void enqueue_and_echo_commands_P(const char* pgcode) {
  525. queued_commands_P = pgcode;
  526. drain_queued_commands_P(); // first command executed asap (when possible)
  527. }
  528. /**
  529. * Once a new command is in the ring buffer, call this to commit it
  530. */
  531. inline void _commit_command(bool say_ok) {
  532. send_ok[cmd_queue_index_w] = say_ok;
  533. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  534. commands_in_queue++;
  535. }
  536. /**
  537. * Copy a command directly into the main command buffer, from RAM.
  538. * Returns true if successfully adds the command
  539. */
  540. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  541. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  542. strcpy(command_queue[cmd_queue_index_w], cmd);
  543. _commit_command(say_ok);
  544. return true;
  545. }
  546. void enqueue_and_echo_command_now(const char* cmd) {
  547. while (!enqueue_and_echo_command(cmd)) idle();
  548. }
  549. /**
  550. * Enqueue with Serial Echo
  551. */
  552. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  553. if (_enqueuecommand(cmd, say_ok)) {
  554. SERIAL_ECHO_START;
  555. SERIAL_ECHOPGM(MSG_Enqueueing);
  556. SERIAL_ECHO(cmd);
  557. SERIAL_ECHOLNPGM("\"");
  558. return true;
  559. }
  560. return false;
  561. }
  562. void setup_killpin() {
  563. #if HAS_KILL
  564. SET_INPUT(KILL_PIN);
  565. WRITE(KILL_PIN, HIGH);
  566. #endif
  567. }
  568. void setup_filrunoutpin() {
  569. #if HAS_FILRUNOUT
  570. pinMode(FILRUNOUT_PIN, INPUT);
  571. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  572. WRITE(FILRUNOUT_PIN, HIGH);
  573. #endif
  574. #endif
  575. }
  576. // Set home pin
  577. void setup_homepin(void) {
  578. #if HAS_HOME
  579. SET_INPUT(HOME_PIN);
  580. WRITE(HOME_PIN, HIGH);
  581. #endif
  582. }
  583. void setup_photpin() {
  584. #if HAS_PHOTOGRAPH
  585. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  586. #endif
  587. }
  588. void setup_powerhold() {
  589. #if HAS_SUICIDE
  590. OUT_WRITE(SUICIDE_PIN, HIGH);
  591. #endif
  592. #if HAS_POWER_SWITCH
  593. #if ENABLED(PS_DEFAULT_OFF)
  594. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  595. #else
  596. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  597. #endif
  598. #endif
  599. }
  600. void suicide() {
  601. #if HAS_SUICIDE
  602. OUT_WRITE(SUICIDE_PIN, LOW);
  603. #endif
  604. }
  605. void servo_init() {
  606. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  607. servo[0].attach(SERVO0_PIN);
  608. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  609. #endif
  610. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  611. servo[1].attach(SERVO1_PIN);
  612. servo[1].detach();
  613. #endif
  614. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  615. servo[2].attach(SERVO2_PIN);
  616. servo[2].detach();
  617. #endif
  618. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  619. servo[3].attach(SERVO3_PIN);
  620. servo[3].detach();
  621. #endif
  622. #if HAS_SERVO_ENDSTOPS
  623. endstops.enable_z_probe(false);
  624. /**
  625. * Set position of all defined Servo Endstops
  626. *
  627. * ** UNSAFE! - NEEDS UPDATE! **
  628. *
  629. * The servo might be deployed and positioned too low to stow
  630. * when starting up the machine or rebooting the board.
  631. * There's no way to know where the nozzle is positioned until
  632. * homing has been done - no homing with z-probe without init!
  633. *
  634. */
  635. for (int i = 0; i < 3; i++)
  636. if (servo_endstop_id[i] >= 0)
  637. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  638. #endif // HAS_SERVO_ENDSTOPS
  639. }
  640. /**
  641. * Stepper Reset (RigidBoard, et.al.)
  642. */
  643. #if HAS_STEPPER_RESET
  644. void disableStepperDrivers() {
  645. pinMode(STEPPER_RESET_PIN, OUTPUT);
  646. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  647. }
  648. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  649. #endif
  650. /**
  651. * Marlin entry-point: Set up before the program loop
  652. * - Set up the kill pin, filament runout, power hold
  653. * - Start the serial port
  654. * - Print startup messages and diagnostics
  655. * - Get EEPROM or default settings
  656. * - Initialize managers for:
  657. * • temperature
  658. * • planner
  659. * • watchdog
  660. * • stepper
  661. * • photo pin
  662. * • servos
  663. * • LCD controller
  664. * • Digipot I2C
  665. * • Z probe sled
  666. * • status LEDs
  667. */
  668. void setup() {
  669. #ifdef DISABLE_JTAG
  670. // Disable JTAG on AT90USB chips to free up pins for IO
  671. MCUCR = 0x80;
  672. MCUCR = 0x80;
  673. #endif
  674. setup_killpin();
  675. setup_filrunoutpin();
  676. setup_powerhold();
  677. #if HAS_STEPPER_RESET
  678. disableStepperDrivers();
  679. #endif
  680. MYSERIAL.begin(BAUDRATE);
  681. SERIAL_PROTOCOLLNPGM("start");
  682. SERIAL_ECHO_START;
  683. // Check startup - does nothing if bootloader sets MCUSR to 0
  684. byte mcu = MCUSR;
  685. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  686. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  687. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  688. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  689. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  690. MCUSR = 0;
  691. SERIAL_ECHOPGM(MSG_MARLIN);
  692. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  693. #ifdef STRING_DISTRIBUTION_DATE
  694. #ifdef STRING_CONFIG_H_AUTHOR
  695. SERIAL_ECHO_START;
  696. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  697. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  698. SERIAL_ECHOPGM(MSG_AUTHOR);
  699. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  700. SERIAL_ECHOPGM("Compiled: ");
  701. SERIAL_ECHOLNPGM(__DATE__);
  702. #endif // STRING_CONFIG_H_AUTHOR
  703. #endif // STRING_DISTRIBUTION_DATE
  704. SERIAL_ECHO_START;
  705. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  706. SERIAL_ECHO(freeMemory());
  707. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  708. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  709. // Send "ok" after commands by default
  710. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  711. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  712. Config_RetrieveSettings();
  713. lcd_init();
  714. thermalManager.init(); // Initialize temperature loop
  715. #if ENABLED(DELTA) || ENABLED(SCARA)
  716. // Vital to init kinematic equivalent for X0 Y0 Z0
  717. sync_plan_position_delta();
  718. #endif
  719. #if ENABLED(USE_WATCHDOG)
  720. watchdog_init();
  721. #endif
  722. stepper.init(); // Initialize stepper, this enables interrupts!
  723. setup_photpin();
  724. servo_init();
  725. #if HAS_CONTROLLERFAN
  726. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  727. #endif
  728. #if HAS_STEPPER_RESET
  729. enableStepperDrivers();
  730. #endif
  731. #if ENABLED(DIGIPOT_I2C)
  732. digipot_i2c_init();
  733. #endif
  734. #if ENABLED(Z_PROBE_SLED)
  735. pinMode(SLED_PIN, OUTPUT);
  736. digitalWrite(SLED_PIN, LOW); // turn it off
  737. #endif // Z_PROBE_SLED
  738. setup_homepin();
  739. #ifdef STAT_LED_RED
  740. pinMode(STAT_LED_RED, OUTPUT);
  741. digitalWrite(STAT_LED_RED, LOW); // turn it off
  742. #endif
  743. #ifdef STAT_LED_BLUE
  744. pinMode(STAT_LED_BLUE, OUTPUT);
  745. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  746. #endif
  747. }
  748. /**
  749. * The main Marlin program loop
  750. *
  751. * - Save or log commands to SD
  752. * - Process available commands (if not saving)
  753. * - Call heater manager
  754. * - Call inactivity manager
  755. * - Call endstop manager
  756. * - Call LCD update
  757. */
  758. void loop() {
  759. if (commands_in_queue < BUFSIZE) get_available_commands();
  760. #if ENABLED(SDSUPPORT)
  761. card.checkautostart(false);
  762. #endif
  763. if (commands_in_queue) {
  764. #if ENABLED(SDSUPPORT)
  765. if (card.saving) {
  766. char* command = command_queue[cmd_queue_index_r];
  767. if (strstr_P(command, PSTR("M29"))) {
  768. // M29 closes the file
  769. card.closefile();
  770. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  771. ok_to_send();
  772. }
  773. else {
  774. // Write the string from the read buffer to SD
  775. card.write_command(command);
  776. if (card.logging)
  777. process_next_command(); // The card is saving because it's logging
  778. else
  779. ok_to_send();
  780. }
  781. }
  782. else
  783. process_next_command();
  784. #else
  785. process_next_command();
  786. #endif // SDSUPPORT
  787. commands_in_queue--;
  788. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  789. }
  790. endstops.report_state();
  791. idle();
  792. }
  793. void gcode_line_error(const char* err, bool doFlush = true) {
  794. SERIAL_ERROR_START;
  795. serialprintPGM(err);
  796. SERIAL_ERRORLN(gcode_LastN);
  797. //Serial.println(gcode_N);
  798. if (doFlush) FlushSerialRequestResend();
  799. serial_count = 0;
  800. }
  801. inline void get_serial_commands() {
  802. static char serial_line_buffer[MAX_CMD_SIZE];
  803. static boolean serial_comment_mode = false;
  804. // If the command buffer is empty for too long,
  805. // send "wait" to indicate Marlin is still waiting.
  806. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  807. static millis_t last_command_time = 0;
  808. millis_t ms = millis();
  809. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  810. SERIAL_ECHOLNPGM(MSG_WAIT);
  811. last_command_time = ms;
  812. }
  813. #endif
  814. /**
  815. * Loop while serial characters are incoming and the queue is not full
  816. */
  817. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  818. char serial_char = MYSERIAL.read();
  819. /**
  820. * If the character ends the line
  821. */
  822. if (serial_char == '\n' || serial_char == '\r') {
  823. serial_comment_mode = false; // end of line == end of comment
  824. if (!serial_count) continue; // skip empty lines
  825. serial_line_buffer[serial_count] = 0; // terminate string
  826. serial_count = 0; //reset buffer
  827. char* command = serial_line_buffer;
  828. while (*command == ' ') command++; // skip any leading spaces
  829. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  830. char* apos = strchr(command, '*');
  831. if (npos) {
  832. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  833. if (M110) {
  834. char* n2pos = strchr(command + 4, 'N');
  835. if (n2pos) npos = n2pos;
  836. }
  837. gcode_N = strtol(npos + 1, NULL, 10);
  838. if (gcode_N != gcode_LastN + 1 && !M110) {
  839. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  840. return;
  841. }
  842. if (apos) {
  843. byte checksum = 0, count = 0;
  844. while (command[count] != '*') checksum ^= command[count++];
  845. if (strtol(apos + 1, NULL, 10) != checksum) {
  846. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  847. return;
  848. }
  849. // if no errors, continue parsing
  850. }
  851. else {
  852. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  853. return;
  854. }
  855. gcode_LastN = gcode_N;
  856. // if no errors, continue parsing
  857. }
  858. else if (apos) { // No '*' without 'N'
  859. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  860. return;
  861. }
  862. // Movement commands alert when stopped
  863. if (IsStopped()) {
  864. char* gpos = strchr(command, 'G');
  865. if (gpos) {
  866. int codenum = strtol(gpos + 1, NULL, 10);
  867. switch (codenum) {
  868. case 0:
  869. case 1:
  870. case 2:
  871. case 3:
  872. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  873. LCD_MESSAGEPGM(MSG_STOPPED);
  874. break;
  875. }
  876. }
  877. }
  878. // If command was e-stop process now
  879. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  880. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  881. last_command_time = ms;
  882. #endif
  883. // Add the command to the queue
  884. _enqueuecommand(serial_line_buffer, true);
  885. }
  886. else if (serial_count >= MAX_CMD_SIZE - 1) {
  887. // Keep fetching, but ignore normal characters beyond the max length
  888. // The command will be injected when EOL is reached
  889. }
  890. else if (serial_char == '\\') { // Handle escapes
  891. if (MYSERIAL.available() > 0) {
  892. // if we have one more character, copy it over
  893. serial_char = MYSERIAL.read();
  894. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  895. }
  896. // otherwise do nothing
  897. }
  898. else { // it's not a newline, carriage return or escape char
  899. if (serial_char == ';') serial_comment_mode = true;
  900. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  901. }
  902. } // queue has space, serial has data
  903. }
  904. #if ENABLED(SDSUPPORT)
  905. inline void get_sdcard_commands() {
  906. static bool stop_buffering = false,
  907. sd_comment_mode = false;
  908. if (!card.sdprinting) return;
  909. /**
  910. * '#' stops reading from SD to the buffer prematurely, so procedural
  911. * macro calls are possible. If it occurs, stop_buffering is triggered
  912. * and the buffer is run dry; this character _can_ occur in serial com
  913. * due to checksums, however, no checksums are used in SD printing.
  914. */
  915. if (commands_in_queue == 0) stop_buffering = false;
  916. uint16_t sd_count = 0;
  917. bool card_eof = card.eof();
  918. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  919. int16_t n = card.get();
  920. char sd_char = (char)n;
  921. card_eof = card.eof();
  922. if (card_eof || n == -1
  923. || sd_char == '\n' || sd_char == '\r'
  924. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  925. ) {
  926. if (card_eof) {
  927. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  928. print_job_timer.stop();
  929. char time[30];
  930. millis_t t = print_job_timer.duration();
  931. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  932. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  933. SERIAL_ECHO_START;
  934. SERIAL_ECHOLN(time);
  935. lcd_setstatus(time, true);
  936. card.printingHasFinished();
  937. card.checkautostart(true);
  938. }
  939. if (sd_char == '#') stop_buffering = true;
  940. sd_comment_mode = false; //for new command
  941. if (!sd_count) continue; //skip empty lines
  942. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  943. sd_count = 0; //clear buffer
  944. _commit_command(false);
  945. }
  946. else if (sd_count >= MAX_CMD_SIZE - 1) {
  947. /**
  948. * Keep fetching, but ignore normal characters beyond the max length
  949. * The command will be injected when EOL is reached
  950. */
  951. }
  952. else {
  953. if (sd_char == ';') sd_comment_mode = true;
  954. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  955. }
  956. }
  957. }
  958. #endif // SDSUPPORT
  959. /**
  960. * Add to the circular command queue the next command from:
  961. * - The command-injection queue (queued_commands_P)
  962. * - The active serial input (usually USB)
  963. * - The SD card file being actively printed
  964. */
  965. void get_available_commands() {
  966. // if any immediate commands remain, don't get other commands yet
  967. if (drain_queued_commands_P()) return;
  968. get_serial_commands();
  969. #if ENABLED(SDSUPPORT)
  970. get_sdcard_commands();
  971. #endif
  972. }
  973. bool code_has_value() {
  974. int i = 1;
  975. char c = seen_pointer[i];
  976. while (c == ' ') c = seen_pointer[++i];
  977. if (c == '-' || c == '+') c = seen_pointer[++i];
  978. if (c == '.') c = seen_pointer[++i];
  979. return NUMERIC(c);
  980. }
  981. float code_value() {
  982. float ret;
  983. char* e = strchr(seen_pointer, 'E');
  984. if (e) {
  985. *e = 0;
  986. ret = strtod(seen_pointer + 1, NULL);
  987. *e = 'E';
  988. }
  989. else
  990. ret = strtod(seen_pointer + 1, NULL);
  991. return ret;
  992. }
  993. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  994. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  995. bool code_seen(char code) {
  996. seen_pointer = strchr(current_command_args, code);
  997. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  998. }
  999. /**
  1000. * Set target_extruder from the T parameter or the active_extruder
  1001. *
  1002. * Returns TRUE if the target is invalid
  1003. */
  1004. bool get_target_extruder_from_command(int code) {
  1005. if (code_seen('T')) {
  1006. short t = code_value_short();
  1007. if (t >= EXTRUDERS) {
  1008. SERIAL_ECHO_START;
  1009. SERIAL_CHAR('M');
  1010. SERIAL_ECHO(code);
  1011. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1012. SERIAL_EOL;
  1013. return true;
  1014. }
  1015. target_extruder = t;
  1016. }
  1017. else
  1018. target_extruder = active_extruder;
  1019. return false;
  1020. }
  1021. #define DEFINE_PGM_READ_ANY(type, reader) \
  1022. static inline type pgm_read_any(const type *p) \
  1023. { return pgm_read_##reader##_near(p); }
  1024. DEFINE_PGM_READ_ANY(float, float);
  1025. DEFINE_PGM_READ_ANY(signed char, byte);
  1026. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1027. static const PROGMEM type array##_P[3] = \
  1028. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1029. static inline type array(int axis) \
  1030. { return pgm_read_any(&array##_P[axis]); }
  1031. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1032. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1033. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1034. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1035. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1036. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1037. #if ENABLED(DUAL_X_CARRIAGE)
  1038. #define DXC_FULL_CONTROL_MODE 0
  1039. #define DXC_AUTO_PARK_MODE 1
  1040. #define DXC_DUPLICATION_MODE 2
  1041. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1042. static float x_home_pos(int extruder) {
  1043. if (extruder == 0)
  1044. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1045. else
  1046. /**
  1047. * In dual carriage mode the extruder offset provides an override of the
  1048. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1049. * This allow soft recalibration of the second extruder offset position
  1050. * without firmware reflash (through the M218 command).
  1051. */
  1052. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1053. }
  1054. static int x_home_dir(int extruder) {
  1055. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1056. }
  1057. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1058. static bool active_extruder_parked = false; // used in mode 1 & 2
  1059. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1060. static millis_t delayed_move_time = 0; // used in mode 1
  1061. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1062. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1063. bool extruder_duplication_enabled = false; // used in mode 2
  1064. #endif //DUAL_X_CARRIAGE
  1065. /**
  1066. * Software endstops can be used to monitor the open end of
  1067. * an axis that has a hardware endstop on the other end. Or
  1068. * they can prevent axes from moving past endstops and grinding.
  1069. *
  1070. * To keep doing their job as the coordinate system changes,
  1071. * the software endstop positions must be refreshed to remain
  1072. * at the same positions relative to the machine.
  1073. */
  1074. static void update_software_endstops(AxisEnum axis) {
  1075. float offs = home_offset[axis] + position_shift[axis];
  1076. #if ENABLED(DUAL_X_CARRIAGE)
  1077. if (axis == X_AXIS) {
  1078. float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1079. if (active_extruder != 0) {
  1080. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1081. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1082. return;
  1083. }
  1084. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1085. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1086. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1087. return;
  1088. }
  1089. }
  1090. else
  1091. #endif
  1092. {
  1093. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1094. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1095. }
  1096. }
  1097. /**
  1098. * Change the home offset for an axis, update the current
  1099. * position and the software endstops to retain the same
  1100. * relative distance to the new home.
  1101. *
  1102. * Since this changes the current_position, code should
  1103. * call sync_plan_position soon after this.
  1104. */
  1105. static void set_home_offset(AxisEnum axis, float v) {
  1106. current_position[axis] += v - home_offset[axis];
  1107. home_offset[axis] = v;
  1108. update_software_endstops(axis);
  1109. }
  1110. static void set_axis_is_at_home(AxisEnum axis) {
  1111. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1112. if (DEBUGGING(LEVELING)) {
  1113. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1114. SERIAL_ECHOLNPGM(") >>>");
  1115. }
  1116. #endif
  1117. position_shift[axis] = 0;
  1118. #if ENABLED(DUAL_X_CARRIAGE)
  1119. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1120. if (active_extruder != 0)
  1121. current_position[X_AXIS] = x_home_pos(active_extruder);
  1122. else
  1123. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1124. update_software_endstops(X_AXIS);
  1125. return;
  1126. }
  1127. #endif
  1128. #if ENABLED(SCARA)
  1129. if (axis == X_AXIS || axis == Y_AXIS) {
  1130. float homeposition[3];
  1131. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1132. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1133. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1134. /**
  1135. * Works out real Homeposition angles using inverse kinematics,
  1136. * and calculates homing offset using forward kinematics
  1137. */
  1138. calculate_delta(homeposition);
  1139. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1140. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1141. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1142. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1143. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1144. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1145. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1146. calculate_SCARA_forward_Transform(delta);
  1147. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1148. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1149. current_position[axis] = delta[axis];
  1150. /**
  1151. * SCARA home positions are based on configuration since the actual
  1152. * limits are determined by the inverse kinematic transform.
  1153. */
  1154. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1155. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1156. }
  1157. else
  1158. #endif
  1159. {
  1160. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1161. update_software_endstops(axis);
  1162. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1163. if (axis == Z_AXIS) {
  1164. current_position[Z_AXIS] -= zprobe_zoffset;
  1165. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1166. if (DEBUGGING(LEVELING)) {
  1167. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1168. SERIAL_EOL;
  1169. }
  1170. #endif
  1171. }
  1172. #endif
  1173. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1174. if (DEBUGGING(LEVELING)) {
  1175. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1176. DEBUG_POS("", current_position);
  1177. }
  1178. #endif
  1179. }
  1180. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1181. if (DEBUGGING(LEVELING)) {
  1182. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1183. SERIAL_ECHOLNPGM(")");
  1184. }
  1185. #endif
  1186. }
  1187. /**
  1188. * Some planner shorthand inline functions
  1189. */
  1190. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1191. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1192. int hbd = homing_bump_divisor[axis];
  1193. if (hbd < 1) {
  1194. hbd = 10;
  1195. SERIAL_ECHO_START;
  1196. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1197. }
  1198. feedrate = homing_feedrate[axis] / hbd;
  1199. }
  1200. //
  1201. // line_to_current_position
  1202. // Move the planner to the current position from wherever it last moved
  1203. // (or from wherever it has been told it is located).
  1204. //
  1205. inline void line_to_current_position() {
  1206. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1207. }
  1208. inline void line_to_z(float zPosition) {
  1209. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1210. }
  1211. //
  1212. // line_to_destination
  1213. // Move the planner, not necessarily synced with current_position
  1214. //
  1215. inline void line_to_destination(float mm_m) {
  1216. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1217. }
  1218. inline void line_to_destination() {
  1219. line_to_destination(feedrate);
  1220. }
  1221. /**
  1222. * sync_plan_position
  1223. * Set planner / stepper positions to the cartesian current_position.
  1224. * The stepper code translates these coordinates into step units.
  1225. * Allows translation between steps and units (mm) for cartesian & core robots
  1226. */
  1227. inline void sync_plan_position() {
  1228. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1229. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1230. #endif
  1231. planner.set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1232. }
  1233. inline void sync_plan_position_e() { planner.set_e_position(current_position[E_AXIS]); }
  1234. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1235. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1236. static void setup_for_endstop_move() {
  1237. saved_feedrate = feedrate;
  1238. saved_feedrate_multiplier = feedrate_multiplier;
  1239. feedrate_multiplier = 100;
  1240. refresh_cmd_timeout();
  1241. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1242. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
  1243. #endif
  1244. endstops.enable();
  1245. }
  1246. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1247. #if ENABLED(DELTA)
  1248. /**
  1249. * Calculate delta, start a line, and set current_position to destination
  1250. */
  1251. void prepare_move_raw() {
  1252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1253. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1254. #endif
  1255. refresh_cmd_timeout();
  1256. calculate_delta(destination);
  1257. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1258. set_current_to_destination();
  1259. }
  1260. #endif
  1261. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1262. #if DISABLED(DELTA)
  1263. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1264. //planner.bed_level_matrix.debug("bed level before");
  1265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1266. planner.bed_level_matrix.set_to_identity();
  1267. if (DEBUGGING(LEVELING)) {
  1268. vector_3 uncorrected_position = planner.adjusted_position();
  1269. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1270. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1271. }
  1272. #endif
  1273. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1274. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1275. vector_3 corrected_position = planner.adjusted_position();
  1276. current_position[X_AXIS] = corrected_position.x;
  1277. current_position[Y_AXIS] = corrected_position.y;
  1278. current_position[Z_AXIS] = corrected_position.z;
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1281. #endif
  1282. sync_plan_position();
  1283. }
  1284. #endif // !DELTA
  1285. #else // !AUTO_BED_LEVELING_GRID
  1286. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1287. planner.bed_level_matrix.set_to_identity();
  1288. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1289. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1290. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1291. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1292. if (planeNormal.z < 0) {
  1293. planeNormal.x = -planeNormal.x;
  1294. planeNormal.y = -planeNormal.y;
  1295. planeNormal.z = -planeNormal.z;
  1296. }
  1297. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1298. vector_3 corrected_position = planner.adjusted_position();
  1299. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1300. if (DEBUGGING(LEVELING)) {
  1301. vector_3 uncorrected_position = corrected_position;
  1302. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1303. }
  1304. #endif
  1305. current_position[X_AXIS] = corrected_position.x;
  1306. current_position[Y_AXIS] = corrected_position.y;
  1307. current_position[Z_AXIS] = corrected_position.z;
  1308. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1309. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1310. #endif
  1311. sync_plan_position();
  1312. }
  1313. #endif // !AUTO_BED_LEVELING_GRID
  1314. static void run_z_probe() {
  1315. /**
  1316. * To prevent stepper_inactive_time from running out and
  1317. * EXTRUDER_RUNOUT_PREVENT from extruding
  1318. */
  1319. refresh_cmd_timeout();
  1320. #if ENABLED(DELTA)
  1321. float start_z = current_position[Z_AXIS];
  1322. long start_steps = stepper.position(Z_AXIS);
  1323. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1324. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1325. #endif
  1326. // move down slowly until you find the bed
  1327. feedrate = homing_feedrate[Z_AXIS] / 4;
  1328. destination[Z_AXIS] = -10;
  1329. prepare_move_raw(); // this will also set_current_to_destination
  1330. stepper.synchronize();
  1331. endstops.hit_on_purpose(); // clear endstop hit flags
  1332. /**
  1333. * We have to let the planner know where we are right now as it
  1334. * is not where we said to go.
  1335. */
  1336. long stop_steps = stepper.position(Z_AXIS);
  1337. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_unit[Z_AXIS];
  1338. current_position[Z_AXIS] = mm;
  1339. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1340. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1341. #endif
  1342. sync_plan_position_delta();
  1343. #else // !DELTA
  1344. planner.bed_level_matrix.set_to_identity();
  1345. feedrate = homing_feedrate[Z_AXIS];
  1346. // Move down until the Z probe (or endstop?) is triggered
  1347. float zPosition = -(Z_MAX_LENGTH + 10);
  1348. line_to_z(zPosition);
  1349. stepper.synchronize();
  1350. // Tell the planner where we ended up - Get this from the stepper handler
  1351. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1352. planner.set_position(
  1353. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1354. current_position[E_AXIS]
  1355. );
  1356. // move up the retract distance
  1357. zPosition += home_bump_mm(Z_AXIS);
  1358. line_to_z(zPosition);
  1359. stepper.synchronize();
  1360. endstops.hit_on_purpose(); // clear endstop hit flags
  1361. // move back down slowly to find bed
  1362. set_homing_bump_feedrate(Z_AXIS);
  1363. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1364. line_to_z(zPosition);
  1365. stepper.synchronize();
  1366. endstops.hit_on_purpose(); // clear endstop hit flags
  1367. // Get the current stepper position after bumping an endstop
  1368. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1369. sync_plan_position();
  1370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1371. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1372. #endif
  1373. #endif // !DELTA
  1374. }
  1375. /**
  1376. * Plan a move to (X, Y, Z) and set the current_position
  1377. * The final current_position may not be the one that was requested
  1378. */
  1379. static void do_blocking_move_to(float x, float y, float z) {
  1380. float oldFeedRate = feedrate;
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1383. #endif
  1384. #if ENABLED(DELTA)
  1385. feedrate = XY_TRAVEL_SPEED;
  1386. destination[X_AXIS] = x;
  1387. destination[Y_AXIS] = y;
  1388. destination[Z_AXIS] = z;
  1389. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1390. prepare_move_raw(); // this will also set_current_to_destination
  1391. else
  1392. prepare_move(); // this will also set_current_to_destination
  1393. stepper.synchronize();
  1394. #else
  1395. feedrate = homing_feedrate[Z_AXIS];
  1396. current_position[Z_AXIS] = z;
  1397. line_to_current_position();
  1398. stepper.synchronize();
  1399. feedrate = xy_travel_speed;
  1400. current_position[X_AXIS] = x;
  1401. current_position[Y_AXIS] = y;
  1402. line_to_current_position();
  1403. stepper.synchronize();
  1404. #endif
  1405. feedrate = oldFeedRate;
  1406. }
  1407. inline void do_blocking_move_to_xy(float x, float y) {
  1408. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1409. }
  1410. inline void do_blocking_move_to_x(float x) {
  1411. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1412. }
  1413. inline void do_blocking_move_to_z(float z) {
  1414. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1415. }
  1416. inline void raise_z_after_probing() {
  1417. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1418. }
  1419. static void clean_up_after_endstop_move() {
  1420. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1421. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
  1422. #endif
  1423. endstops.not_homing();
  1424. feedrate = saved_feedrate;
  1425. feedrate_multiplier = saved_feedrate_multiplier;
  1426. refresh_cmd_timeout();
  1427. }
  1428. #if HAS_BED_PROBE
  1429. static void deploy_z_probe() {
  1430. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1431. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1432. #endif
  1433. if (endstops.z_probe_enabled) return;
  1434. #if HAS_SERVO_ENDSTOPS
  1435. // Engage Z Servo endstop if enabled
  1436. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1437. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1438. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1439. // If endstop is already false, the Z probe is deployed
  1440. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1441. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1442. if (z_probe_endstop)
  1443. #else
  1444. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1445. if (z_min_endstop)
  1446. #endif
  1447. {
  1448. // Move to the start position to initiate deployment
  1449. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1450. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1451. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1452. prepare_move_raw(); // this will also set_current_to_destination
  1453. // Move to engage deployment
  1454. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1455. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1456. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1457. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1458. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1459. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1460. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1461. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1462. prepare_move_raw();
  1463. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1464. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1465. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1466. // Move to trigger deployment
  1467. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1468. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1469. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1470. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1471. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1472. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1473. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1474. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1475. prepare_move_raw();
  1476. #endif
  1477. }
  1478. // Partially Home X,Y for safety
  1479. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1480. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1481. prepare_move_raw(); // this will also set_current_to_destination
  1482. stepper.synchronize();
  1483. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1484. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1485. if (z_probe_endstop)
  1486. #else
  1487. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1488. if (z_min_endstop)
  1489. #endif
  1490. {
  1491. if (IsRunning()) {
  1492. SERIAL_ERROR_START;
  1493. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1494. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1495. }
  1496. stop();
  1497. }
  1498. #endif // Z_PROBE_ALLEN_KEY
  1499. #if ENABLED(FIX_MOUNTED_PROBE)
  1500. // Noting to be done. Just set endstops.z_probe_enabled
  1501. #endif
  1502. endstops.enable_z_probe();
  1503. }
  1504. static void stow_z_probe(bool doRaise = true) {
  1505. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1506. UNUSED(doRaise);
  1507. #endif
  1508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1509. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1510. #endif
  1511. if (!endstops.z_probe_enabled) return;
  1512. #if HAS_SERVO_ENDSTOPS
  1513. // Retract Z Servo endstop if enabled
  1514. if (servo_endstop_id[Z_AXIS] >= 0) {
  1515. #if Z_RAISE_AFTER_PROBING > 0
  1516. if (doRaise) {
  1517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1518. if (DEBUGGING(LEVELING)) {
  1519. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1520. SERIAL_EOL;
  1521. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1522. SERIAL_EOL;
  1523. }
  1524. #endif
  1525. raise_z_after_probing(); // this also updates current_position
  1526. stepper.synchronize();
  1527. }
  1528. #endif
  1529. // Change the Z servo angle
  1530. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1531. }
  1532. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1533. // Move up for safety
  1534. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1535. #if Z_RAISE_AFTER_PROBING > 0
  1536. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1537. prepare_move_raw(); // this will also set_current_to_destination
  1538. #endif
  1539. // Move to the start position to initiate retraction
  1540. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1541. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1542. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1543. prepare_move_raw();
  1544. // Move the nozzle down to push the Z probe into retracted position
  1545. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1546. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1547. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1548. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1549. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1550. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1551. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1552. prepare_move_raw();
  1553. // Move up for safety
  1554. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1555. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1556. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1557. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1558. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1559. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1560. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1561. prepare_move_raw();
  1562. // Home XY for safety
  1563. feedrate = homing_feedrate[X_AXIS] / 2;
  1564. destination[X_AXIS] = 0;
  1565. destination[Y_AXIS] = 0;
  1566. prepare_move_raw(); // this will also set_current_to_destination
  1567. stepper.synchronize();
  1568. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1569. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1570. if (!z_probe_endstop)
  1571. #else
  1572. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1573. if (!z_min_endstop)
  1574. #endif
  1575. {
  1576. if (IsRunning()) {
  1577. SERIAL_ERROR_START;
  1578. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1579. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1580. }
  1581. stop();
  1582. }
  1583. #endif // Z_PROBE_ALLEN_KEY
  1584. #if ENABLED(FIX_MOUNTED_PROBE)
  1585. // Nothing to do here. Just clear endstops.z_probe_enabled
  1586. #endif
  1587. endstops.enable_z_probe(false);
  1588. }
  1589. #endif // HAS_BED_PROBE
  1590. enum ProbeAction {
  1591. ProbeStay = 0,
  1592. ProbeDeploy = _BV(0),
  1593. ProbeStow = _BV(1),
  1594. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1595. };
  1596. // Probe bed height at position (x,y), returns the measured z value
  1597. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1598. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1599. if (DEBUGGING(LEVELING)) {
  1600. SERIAL_ECHOLNPGM("probe_pt >>>");
  1601. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1602. SERIAL_EOL;
  1603. DEBUG_POS("", current_position);
  1604. }
  1605. #endif
  1606. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1607. if (DEBUGGING(LEVELING)) {
  1608. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1609. SERIAL_EOL;
  1610. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1611. SERIAL_EOL;
  1612. }
  1613. #endif
  1614. // Move Z up to the z_before height, then move the Z probe to the given XY
  1615. do_blocking_move_to_z(z_before); // this also updates current_position
  1616. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1617. if (DEBUGGING(LEVELING)) {
  1618. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1619. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1620. SERIAL_EOL;
  1621. }
  1622. #endif
  1623. // this also updates current_position
  1624. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1625. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1626. if (probe_action & ProbeDeploy) {
  1627. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1628. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1629. #endif
  1630. deploy_z_probe();
  1631. }
  1632. #endif
  1633. run_z_probe();
  1634. float measured_z = current_position[Z_AXIS];
  1635. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1636. if (probe_action & ProbeStow) {
  1637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1638. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1639. #endif
  1640. stow_z_probe();
  1641. }
  1642. #endif
  1643. if (verbose_level > 2) {
  1644. SERIAL_PROTOCOLPGM("Bed X: ");
  1645. SERIAL_PROTOCOL_F(x, 3);
  1646. SERIAL_PROTOCOLPGM(" Y: ");
  1647. SERIAL_PROTOCOL_F(y, 3);
  1648. SERIAL_PROTOCOLPGM(" Z: ");
  1649. SERIAL_PROTOCOL_F(measured_z, 3);
  1650. SERIAL_EOL;
  1651. }
  1652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1653. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1654. #endif
  1655. return measured_z;
  1656. }
  1657. #if ENABLED(DELTA)
  1658. /**
  1659. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1660. */
  1661. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1662. if (bed_level[x][y] != 0.0) {
  1663. return; // Don't overwrite good values.
  1664. }
  1665. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1666. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1667. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1668. float median = c; // Median is robust (ignores outliers).
  1669. if (a < b) {
  1670. if (b < c) median = b;
  1671. if (c < a) median = a;
  1672. }
  1673. else { // b <= a
  1674. if (c < b) median = b;
  1675. if (a < c) median = a;
  1676. }
  1677. bed_level[x][y] = median;
  1678. }
  1679. /**
  1680. * Fill in the unprobed points (corners of circular print surface)
  1681. * using linear extrapolation, away from the center.
  1682. */
  1683. static void extrapolate_unprobed_bed_level() {
  1684. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1685. for (int y = 0; y <= half; y++) {
  1686. for (int x = 0; x <= half; x++) {
  1687. if (x + y < 3) continue;
  1688. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1689. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1690. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1691. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1692. }
  1693. }
  1694. }
  1695. /**
  1696. * Print calibration results for plotting or manual frame adjustment.
  1697. */
  1698. static void print_bed_level() {
  1699. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1700. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1701. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1702. SERIAL_PROTOCOLCHAR(' ');
  1703. }
  1704. SERIAL_EOL;
  1705. }
  1706. }
  1707. /**
  1708. * Reset calibration results to zero.
  1709. */
  1710. void reset_bed_level() {
  1711. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1712. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1713. #endif
  1714. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1715. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1716. bed_level[x][y] = 0.0;
  1717. }
  1718. }
  1719. }
  1720. #endif // DELTA
  1721. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1722. void raise_z_for_servo() {
  1723. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1724. /**
  1725. * The zprobe_zoffset is negative any switch below the nozzle, so
  1726. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1727. */
  1728. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1729. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1730. }
  1731. #endif
  1732. #endif // AUTO_BED_LEVELING_FEATURE
  1733. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1734. static void axis_unhomed_error() {
  1735. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1736. SERIAL_ECHO_START;
  1737. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1738. }
  1739. #endif
  1740. #if ENABLED(Z_PROBE_SLED)
  1741. #ifndef SLED_DOCKING_OFFSET
  1742. #define SLED_DOCKING_OFFSET 0
  1743. #endif
  1744. /**
  1745. * Method to dock/undock a sled designed by Charles Bell.
  1746. *
  1747. * dock[in] If true, move to MAX_X and engage the electromagnet
  1748. * offset[in] The additional distance to move to adjust docking location
  1749. */
  1750. static void dock_sled(bool dock, int offset = 0) {
  1751. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1752. if (DEBUGGING(LEVELING)) {
  1753. SERIAL_ECHOPAIR("dock_sled(", dock);
  1754. SERIAL_ECHOLNPGM(")");
  1755. }
  1756. #endif
  1757. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1758. axis_unhomed_error();
  1759. return;
  1760. }
  1761. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1762. float oldXpos = current_position[X_AXIS]; // save x position
  1763. if (dock) {
  1764. #if Z_RAISE_AFTER_PROBING > 0
  1765. raise_z_after_probing(); // raise Z
  1766. #endif
  1767. // Dock sled a bit closer to ensure proper capturing
  1768. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1769. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1770. }
  1771. else {
  1772. float z_loc = current_position[Z_AXIS];
  1773. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1774. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1775. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1776. }
  1777. do_blocking_move_to_x(oldXpos); // return to position before docking
  1778. endstops.enable_z_probe(!dock); // logically disable docked probe
  1779. }
  1780. #endif // Z_PROBE_SLED
  1781. /**
  1782. * Home an individual axis
  1783. */
  1784. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1785. static void homeaxis(AxisEnum axis) {
  1786. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1787. if (DEBUGGING(LEVELING)) {
  1788. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1789. SERIAL_ECHOLNPGM(")");
  1790. }
  1791. #endif
  1792. #define HOMEAXIS_DO(LETTER) \
  1793. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1794. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1795. int axis_home_dir =
  1796. #if ENABLED(DUAL_X_CARRIAGE)
  1797. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1798. #endif
  1799. home_dir(axis);
  1800. // Set the axis position as setup for the move
  1801. current_position[axis] = 0;
  1802. sync_plan_position();
  1803. #if ENABLED(Z_PROBE_SLED)
  1804. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1805. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1806. #define _Z_DEPLOY (dock_sled(false))
  1807. #define _Z_STOW (dock_sled(true))
  1808. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1809. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1810. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1811. #define _Z_DEPLOY (deploy_z_probe())
  1812. #define _Z_STOW (stow_z_probe())
  1813. #elif HAS_SERVO_ENDSTOPS
  1814. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1815. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1816. #endif
  1817. if (axis == Z_AXIS) {
  1818. // If there's a Z probe that needs deployment...
  1819. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1820. // ...and homing Z towards the bed? Deploy it.
  1821. if (axis_home_dir < 0) _Z_DEPLOY;
  1822. #endif
  1823. }
  1824. #if HAS_SERVO_ENDSTOPS
  1825. // Engage an X or Y Servo endstop if enabled
  1826. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1827. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1828. if (_Z_PROBE_SUBTEST) endstops.z_probe_enabled = true;
  1829. }
  1830. #endif
  1831. // Set a flag for Z motor locking
  1832. #if ENABLED(Z_DUAL_ENDSTOPS)
  1833. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1834. #endif
  1835. // Move towards the endstop until an endstop is triggered
  1836. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1837. feedrate = homing_feedrate[axis];
  1838. line_to_destination();
  1839. stepper.synchronize();
  1840. // Set the axis position as setup for the move
  1841. current_position[axis] = 0;
  1842. sync_plan_position();
  1843. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1844. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1845. #endif
  1846. endstops.enable(false); // Disable endstops while moving away
  1847. // Move away from the endstop by the axis HOME_BUMP_MM
  1848. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1849. line_to_destination();
  1850. stepper.synchronize();
  1851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1852. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1853. #endif
  1854. endstops.enable(true); // Enable endstops for next homing move
  1855. // Slow down the feedrate for the next move
  1856. set_homing_bump_feedrate(axis);
  1857. // Move slowly towards the endstop until triggered
  1858. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1859. line_to_destination();
  1860. stepper.synchronize();
  1861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1862. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1863. #endif
  1864. #if ENABLED(Z_DUAL_ENDSTOPS)
  1865. if (axis == Z_AXIS) {
  1866. float adj = fabs(z_endstop_adj);
  1867. bool lockZ1;
  1868. if (axis_home_dir > 0) {
  1869. adj = -adj;
  1870. lockZ1 = (z_endstop_adj > 0);
  1871. }
  1872. else
  1873. lockZ1 = (z_endstop_adj < 0);
  1874. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1875. sync_plan_position();
  1876. // Move to the adjusted endstop height
  1877. feedrate = homing_feedrate[axis];
  1878. destination[Z_AXIS] = adj;
  1879. line_to_destination();
  1880. stepper.synchronize();
  1881. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1882. stepper.set_homing_flag(false);
  1883. } // Z_AXIS
  1884. #endif
  1885. #if ENABLED(DELTA)
  1886. // retrace by the amount specified in endstop_adj
  1887. if (endstop_adj[axis] * axis_home_dir < 0) {
  1888. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1889. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1890. #endif
  1891. endstops.enable(false); // Disable endstops while moving away
  1892. sync_plan_position();
  1893. destination[axis] = endstop_adj[axis];
  1894. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1895. if (DEBUGGING(LEVELING)) {
  1896. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1897. DEBUG_POS("", destination);
  1898. }
  1899. #endif
  1900. line_to_destination();
  1901. stepper.synchronize();
  1902. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1903. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1904. #endif
  1905. endstops.enable(true); // Enable endstops for next homing move
  1906. }
  1907. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1908. else {
  1909. if (DEBUGGING(LEVELING)) {
  1910. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1911. SERIAL_EOL;
  1912. }
  1913. }
  1914. #endif
  1915. #endif
  1916. // Set the axis position to its home position (plus home offsets)
  1917. set_axis_is_at_home(axis);
  1918. sync_plan_position();
  1919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1920. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1921. #endif
  1922. destination[axis] = current_position[axis];
  1923. feedrate = 0.0;
  1924. endstops.hit_on_purpose(); // clear endstop hit flags
  1925. axis_known_position[axis] = true;
  1926. axis_homed[axis] = true;
  1927. // Put away the Z probe
  1928. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1929. if (axis == Z_AXIS && axis_home_dir < 0) {
  1930. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1931. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1932. #endif
  1933. _Z_STOW;
  1934. }
  1935. #endif
  1936. // Retract Servo endstop if enabled
  1937. #if HAS_SERVO_ENDSTOPS
  1938. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1939. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1940. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1941. #endif
  1942. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1943. if (_Z_PROBE_SUBTEST) endstops.enable_z_probe(false);
  1944. }
  1945. #endif
  1946. }
  1947. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1948. if (DEBUGGING(LEVELING)) {
  1949. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1950. SERIAL_ECHOLNPGM(")");
  1951. }
  1952. #endif
  1953. }
  1954. #if ENABLED(FWRETRACT)
  1955. void retract(bool retracting, bool swapping = false) {
  1956. if (retracting == retracted[active_extruder]) return;
  1957. float oldFeedrate = feedrate;
  1958. set_destination_to_current();
  1959. if (retracting) {
  1960. feedrate = retract_feedrate * 60;
  1961. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1962. sync_plan_position_e();
  1963. prepare_move();
  1964. if (retract_zlift > 0.01) {
  1965. current_position[Z_AXIS] -= retract_zlift;
  1966. #if ENABLED(DELTA)
  1967. sync_plan_position_delta();
  1968. #else
  1969. sync_plan_position();
  1970. #endif
  1971. prepare_move();
  1972. }
  1973. }
  1974. else {
  1975. if (retract_zlift > 0.01) {
  1976. current_position[Z_AXIS] += retract_zlift;
  1977. #if ENABLED(DELTA)
  1978. sync_plan_position_delta();
  1979. #else
  1980. sync_plan_position();
  1981. #endif
  1982. }
  1983. feedrate = retract_recover_feedrate * 60;
  1984. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1985. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1986. sync_plan_position_e();
  1987. prepare_move();
  1988. }
  1989. feedrate = oldFeedrate;
  1990. retracted[active_extruder] = retracting;
  1991. } // retract()
  1992. #endif // FWRETRACT
  1993. /**
  1994. * ***************************************************************************
  1995. * ***************************** G-CODE HANDLING *****************************
  1996. * ***************************************************************************
  1997. */
  1998. /**
  1999. * Set XYZE destination and feedrate from the current GCode command
  2000. *
  2001. * - Set destination from included axis codes
  2002. * - Set to current for missing axis codes
  2003. * - Set the feedrate, if included
  2004. */
  2005. void gcode_get_destination() {
  2006. for (int i = 0; i < NUM_AXIS; i++) {
  2007. if (code_seen(axis_codes[i]))
  2008. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2009. else
  2010. destination[i] = current_position[i];
  2011. }
  2012. if (code_seen('F')) {
  2013. float next_feedrate = code_value();
  2014. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2015. }
  2016. }
  2017. void unknown_command_error() {
  2018. SERIAL_ECHO_START;
  2019. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2020. SERIAL_ECHO(current_command);
  2021. SERIAL_ECHOPGM("\"\n");
  2022. }
  2023. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2024. /**
  2025. * Output a "busy" message at regular intervals
  2026. * while the machine is not accepting commands.
  2027. */
  2028. void host_keepalive() {
  2029. millis_t ms = millis();
  2030. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2031. if (PENDING(ms, next_busy_signal_ms)) return;
  2032. switch (busy_state) {
  2033. case IN_HANDLER:
  2034. case IN_PROCESS:
  2035. SERIAL_ECHO_START;
  2036. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2037. break;
  2038. case PAUSED_FOR_USER:
  2039. SERIAL_ECHO_START;
  2040. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2041. break;
  2042. case PAUSED_FOR_INPUT:
  2043. SERIAL_ECHO_START;
  2044. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2045. break;
  2046. default:
  2047. break;
  2048. }
  2049. }
  2050. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2051. }
  2052. #endif //HOST_KEEPALIVE_FEATURE
  2053. /**
  2054. * G0, G1: Coordinated movement of X Y Z E axes
  2055. */
  2056. inline void gcode_G0_G1() {
  2057. if (IsRunning()) {
  2058. gcode_get_destination(); // For X Y Z E F
  2059. #if ENABLED(FWRETRACT)
  2060. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2061. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2062. // Is this move an attempt to retract or recover?
  2063. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2064. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2065. sync_plan_position_e(); // AND from the planner
  2066. retract(!retracted[active_extruder]);
  2067. return;
  2068. }
  2069. }
  2070. #endif //FWRETRACT
  2071. prepare_move();
  2072. }
  2073. }
  2074. /**
  2075. * G2: Clockwise Arc
  2076. * G3: Counterclockwise Arc
  2077. */
  2078. #if ENABLED(ARC_SUPPORT)
  2079. inline void gcode_G2_G3(bool clockwise) {
  2080. if (IsRunning()) {
  2081. #if ENABLED(SF_ARC_FIX)
  2082. bool relative_mode_backup = relative_mode;
  2083. relative_mode = true;
  2084. #endif
  2085. gcode_get_destination();
  2086. #if ENABLED(SF_ARC_FIX)
  2087. relative_mode = relative_mode_backup;
  2088. #endif
  2089. // Center of arc as offset from current_position
  2090. float arc_offset[2] = {
  2091. code_seen('I') ? code_value() : 0,
  2092. code_seen('J') ? code_value() : 0
  2093. };
  2094. // Send an arc to the planner
  2095. plan_arc(destination, arc_offset, clockwise);
  2096. refresh_cmd_timeout();
  2097. }
  2098. }
  2099. #endif
  2100. /**
  2101. * G4: Dwell S<seconds> or P<milliseconds>
  2102. */
  2103. inline void gcode_G4() {
  2104. millis_t codenum = 0;
  2105. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2106. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2107. stepper.synchronize();
  2108. refresh_cmd_timeout();
  2109. codenum += previous_cmd_ms; // keep track of when we started waiting
  2110. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2111. while (PENDING(millis(), codenum)) idle();
  2112. }
  2113. #if ENABLED(FWRETRACT)
  2114. /**
  2115. * G10 - Retract filament according to settings of M207
  2116. * G11 - Recover filament according to settings of M208
  2117. */
  2118. inline void gcode_G10_G11(bool doRetract=false) {
  2119. #if EXTRUDERS > 1
  2120. if (doRetract) {
  2121. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2122. }
  2123. #endif
  2124. retract(doRetract
  2125. #if EXTRUDERS > 1
  2126. , retracted_swap[active_extruder]
  2127. #endif
  2128. );
  2129. }
  2130. #endif //FWRETRACT
  2131. /**
  2132. * G28: Home all axes according to settings
  2133. *
  2134. * Parameters
  2135. *
  2136. * None Home to all axes with no parameters.
  2137. * With QUICK_HOME enabled XY will home together, then Z.
  2138. *
  2139. * Cartesian parameters
  2140. *
  2141. * X Home to the X endstop
  2142. * Y Home to the Y endstop
  2143. * Z Home to the Z endstop
  2144. *
  2145. */
  2146. inline void gcode_G28() {
  2147. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2148. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2149. #endif
  2150. // Wait for planner moves to finish!
  2151. stepper.synchronize();
  2152. // For auto bed leveling, clear the level matrix
  2153. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2154. planner.bed_level_matrix.set_to_identity();
  2155. #if ENABLED(DELTA)
  2156. reset_bed_level();
  2157. #endif
  2158. #endif
  2159. /**
  2160. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2161. * on again when homing all axis
  2162. */
  2163. #if ENABLED(MESH_BED_LEVELING)
  2164. uint8_t mbl_was_active = mbl.active;
  2165. mbl.active = false;
  2166. #endif
  2167. setup_for_endstop_move();
  2168. /**
  2169. * Directly after a reset this is all 0. Later we get a hint if we have
  2170. * to raise z or not.
  2171. */
  2172. set_destination_to_current();
  2173. feedrate = 0.0;
  2174. #if ENABLED(DELTA)
  2175. /**
  2176. * A delta can only safely home all axis at the same time
  2177. * all axis have to home at the same time
  2178. */
  2179. // Pretend the current position is 0,0,0
  2180. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2181. sync_plan_position();
  2182. // Move all carriages up together until the first endstop is hit.
  2183. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2184. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2185. line_to_destination();
  2186. stepper.synchronize();
  2187. endstops.hit_on_purpose(); // clear endstop hit flags
  2188. // Destination reached
  2189. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2190. // take care of back off and rehome now we are all at the top
  2191. HOMEAXIS(X);
  2192. HOMEAXIS(Y);
  2193. HOMEAXIS(Z);
  2194. sync_plan_position_delta();
  2195. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2196. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2197. #endif
  2198. #else // NOT DELTA
  2199. bool homeX = code_seen(axis_codes[X_AXIS]),
  2200. homeY = code_seen(axis_codes[Y_AXIS]),
  2201. homeZ = code_seen(axis_codes[Z_AXIS]);
  2202. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2203. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2204. if (home_all_axis || homeZ) {
  2205. HOMEAXIS(Z);
  2206. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2207. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2208. #endif
  2209. }
  2210. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2211. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2212. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2213. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2214. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2216. if (DEBUGGING(LEVELING)) {
  2217. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2218. SERIAL_EOL;
  2219. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2220. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2221. }
  2222. #endif
  2223. line_to_destination();
  2224. stepper.synchronize();
  2225. /**
  2226. * Update the current Z position even if it currently not real from
  2227. * Z-home otherwise each call to line_to_destination() will want to
  2228. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2229. */
  2230. current_position[Z_AXIS] = destination[Z_AXIS];
  2231. }
  2232. #endif
  2233. #if ENABLED(QUICK_HOME)
  2234. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2235. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2236. #if ENABLED(DUAL_X_CARRIAGE)
  2237. int x_axis_home_dir = x_home_dir(active_extruder);
  2238. extruder_duplication_enabled = false;
  2239. #else
  2240. int x_axis_home_dir = home_dir(X_AXIS);
  2241. #endif
  2242. sync_plan_position();
  2243. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2244. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2245. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2246. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2247. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2248. line_to_destination();
  2249. stepper.synchronize();
  2250. set_axis_is_at_home(X_AXIS);
  2251. set_axis_is_at_home(Y_AXIS);
  2252. sync_plan_position();
  2253. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2254. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2255. #endif
  2256. destination[X_AXIS] = current_position[X_AXIS];
  2257. destination[Y_AXIS] = current_position[Y_AXIS];
  2258. line_to_destination();
  2259. feedrate = 0.0;
  2260. stepper.synchronize();
  2261. endstops.hit_on_purpose(); // clear endstop hit flags
  2262. current_position[X_AXIS] = destination[X_AXIS];
  2263. current_position[Y_AXIS] = destination[Y_AXIS];
  2264. #if DISABLED(SCARA)
  2265. current_position[Z_AXIS] = destination[Z_AXIS];
  2266. #endif
  2267. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2268. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2269. #endif
  2270. }
  2271. #endif // QUICK_HOME
  2272. #if ENABLED(HOME_Y_BEFORE_X)
  2273. // Home Y
  2274. if (home_all_axis || homeY) HOMEAXIS(Y);
  2275. #endif
  2276. // Home X
  2277. if (home_all_axis || homeX) {
  2278. #if ENABLED(DUAL_X_CARRIAGE)
  2279. int tmp_extruder = active_extruder;
  2280. extruder_duplication_enabled = false;
  2281. active_extruder = !active_extruder;
  2282. HOMEAXIS(X);
  2283. inactive_extruder_x_pos = current_position[X_AXIS];
  2284. active_extruder = tmp_extruder;
  2285. HOMEAXIS(X);
  2286. // reset state used by the different modes
  2287. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2288. delayed_move_time = 0;
  2289. active_extruder_parked = true;
  2290. #else
  2291. HOMEAXIS(X);
  2292. #endif
  2293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2294. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2295. #endif
  2296. }
  2297. #if DISABLED(HOME_Y_BEFORE_X)
  2298. // Home Y
  2299. if (home_all_axis || homeY) {
  2300. HOMEAXIS(Y);
  2301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2302. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2303. #endif
  2304. }
  2305. #endif
  2306. // Home Z last if homing towards the bed
  2307. #if Z_HOME_DIR < 0
  2308. if (home_all_axis || homeZ) {
  2309. #if ENABLED(Z_SAFE_HOMING)
  2310. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2311. if (DEBUGGING(LEVELING)) {
  2312. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2313. }
  2314. #endif
  2315. if (home_all_axis) {
  2316. /**
  2317. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2318. * No need to move Z any more as this height should already be safe
  2319. * enough to reach Z_SAFE_HOMING XY positions.
  2320. * Just make sure the planner is in sync.
  2321. */
  2322. sync_plan_position();
  2323. /**
  2324. * Set the Z probe (or just the nozzle) destination to the safe
  2325. * homing point
  2326. */
  2327. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2328. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2329. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2330. feedrate = XY_TRAVEL_SPEED;
  2331. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2332. if (DEBUGGING(LEVELING)) {
  2333. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2334. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2335. }
  2336. #endif
  2337. // Move in the XY plane
  2338. line_to_destination();
  2339. stepper.synchronize();
  2340. /**
  2341. * Update the current positions for XY, Z is still at least at
  2342. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2343. */
  2344. current_position[X_AXIS] = destination[X_AXIS];
  2345. current_position[Y_AXIS] = destination[Y_AXIS];
  2346. // Home the Z axis
  2347. HOMEAXIS(Z);
  2348. }
  2349. else if (homeZ) { // Don't need to Home Z twice
  2350. // Let's see if X and Y are homed
  2351. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2352. /**
  2353. * Make sure the Z probe is within the physical limits
  2354. * NOTE: This doesn't necessarily ensure the Z probe is also
  2355. * within the bed!
  2356. */
  2357. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2358. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2359. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2360. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2361. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2362. // Home the Z axis
  2363. HOMEAXIS(Z);
  2364. }
  2365. else {
  2366. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2367. SERIAL_ECHO_START;
  2368. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2369. }
  2370. }
  2371. else {
  2372. axis_unhomed_error();
  2373. }
  2374. } // !home_all_axes && homeZ
  2375. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2376. if (DEBUGGING(LEVELING)) {
  2377. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2378. }
  2379. #endif
  2380. #else // !Z_SAFE_HOMING
  2381. HOMEAXIS(Z);
  2382. #endif // !Z_SAFE_HOMING
  2383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2384. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2385. #endif
  2386. } // home_all_axis || homeZ
  2387. #endif // Z_HOME_DIR < 0
  2388. sync_plan_position();
  2389. #endif // else DELTA
  2390. #if ENABLED(SCARA)
  2391. sync_plan_position_delta();
  2392. #endif
  2393. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2394. endstops.enable(false);
  2395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2396. if (DEBUGGING(LEVELING)) {
  2397. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
  2398. }
  2399. #endif
  2400. #endif
  2401. // For mesh leveling move back to Z=0
  2402. #if ENABLED(MESH_BED_LEVELING)
  2403. if (mbl_was_active && home_all_axis) {
  2404. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2405. sync_plan_position();
  2406. mbl.active = 1;
  2407. current_position[Z_AXIS] = 0.0;
  2408. set_destination_to_current();
  2409. feedrate = homing_feedrate[Z_AXIS];
  2410. line_to_destination();
  2411. stepper.synchronize();
  2412. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2413. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2414. #endif
  2415. }
  2416. #endif
  2417. feedrate = saved_feedrate;
  2418. feedrate_multiplier = saved_feedrate_multiplier;
  2419. refresh_cmd_timeout();
  2420. endstops.hit_on_purpose(); // clear endstop hit flags
  2421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2422. if (DEBUGGING(LEVELING)) {
  2423. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2424. }
  2425. #endif
  2426. report_current_position();
  2427. }
  2428. #if ENABLED(MESH_BED_LEVELING)
  2429. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2430. inline void _mbl_goto_xy(float x, float y) {
  2431. saved_feedrate = feedrate;
  2432. feedrate = homing_feedrate[X_AXIS];
  2433. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2434. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2435. + MIN_Z_HEIGHT_FOR_HOMING
  2436. #endif
  2437. ;
  2438. line_to_current_position();
  2439. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2440. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2441. line_to_current_position();
  2442. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2443. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2444. line_to_current_position();
  2445. #endif
  2446. feedrate = saved_feedrate;
  2447. stepper.synchronize();
  2448. }
  2449. /**
  2450. * G29: Mesh-based Z probe, probes a grid and produces a
  2451. * mesh to compensate for variable bed height
  2452. *
  2453. * Parameters With MESH_BED_LEVELING:
  2454. *
  2455. * S0 Produce a mesh report
  2456. * S1 Start probing mesh points
  2457. * S2 Probe the next mesh point
  2458. * S3 Xn Yn Zn.nn Manually modify a single point
  2459. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2460. *
  2461. * The S0 report the points as below
  2462. *
  2463. * +----> X-axis 1-n
  2464. * |
  2465. * |
  2466. * v Y-axis 1-n
  2467. *
  2468. */
  2469. inline void gcode_G29() {
  2470. static int probe_point = -1;
  2471. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2472. if (state < 0 || state > 4) {
  2473. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2474. return;
  2475. }
  2476. int8_t ix, iy;
  2477. float z;
  2478. switch (state) {
  2479. case MeshReport:
  2480. if (mbl.active) {
  2481. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2482. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2483. SERIAL_PROTOCOLCHAR(',');
  2484. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2485. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2486. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2487. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2488. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2489. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2490. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2491. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2492. SERIAL_PROTOCOLPGM(" ");
  2493. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2494. }
  2495. SERIAL_EOL;
  2496. }
  2497. }
  2498. else
  2499. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2500. break;
  2501. case MeshStart:
  2502. mbl.reset();
  2503. probe_point = 0;
  2504. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2505. break;
  2506. case MeshNext:
  2507. if (probe_point < 0) {
  2508. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2509. return;
  2510. }
  2511. // For each G29 S2...
  2512. if (probe_point == 0) {
  2513. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2514. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2515. sync_plan_position();
  2516. }
  2517. else {
  2518. // For G29 S2 after adjusting Z.
  2519. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2520. }
  2521. // If there's another point to sample, move there with optional lift.
  2522. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2523. mbl.zigzag(probe_point, ix, iy);
  2524. _mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy));
  2525. probe_point++;
  2526. }
  2527. else {
  2528. // One last "return to the bed" (as originally coded) at completion
  2529. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2530. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2531. + MIN_Z_HEIGHT_FOR_HOMING
  2532. #endif
  2533. ;
  2534. line_to_current_position();
  2535. stepper.synchronize();
  2536. // After recording the last point, activate the mbl and home
  2537. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2538. probe_point = -1;
  2539. mbl.active = true;
  2540. enqueue_and_echo_commands_P(PSTR("G28"));
  2541. }
  2542. break;
  2543. case MeshSet:
  2544. if (code_seen('X')) {
  2545. ix = code_value_long() - 1;
  2546. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2547. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2548. return;
  2549. }
  2550. }
  2551. else {
  2552. SERIAL_PROTOCOLPGM("X not entered.\n");
  2553. return;
  2554. }
  2555. if (code_seen('Y')) {
  2556. iy = code_value_long() - 1;
  2557. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2558. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2559. return;
  2560. }
  2561. }
  2562. else {
  2563. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2564. return;
  2565. }
  2566. if (code_seen('Z')) {
  2567. z = code_value();
  2568. }
  2569. else {
  2570. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2571. return;
  2572. }
  2573. mbl.z_values[iy][ix] = z;
  2574. break;
  2575. case MeshSetZOffset:
  2576. if (code_seen('Z')) {
  2577. z = code_value();
  2578. }
  2579. else {
  2580. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2581. return;
  2582. }
  2583. mbl.z_offset = z;
  2584. } // switch(state)
  2585. }
  2586. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2587. void out_of_range_error(const char* p_edge) {
  2588. SERIAL_PROTOCOLPGM("?Probe ");
  2589. serialprintPGM(p_edge);
  2590. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2591. }
  2592. /**
  2593. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2594. * Will fail if the printer has not been homed with G28.
  2595. *
  2596. * Enhanced G29 Auto Bed Leveling Probe Routine
  2597. *
  2598. * Parameters With AUTO_BED_LEVELING_GRID:
  2599. *
  2600. * P Set the size of the grid that will be probed (P x P points).
  2601. * Not supported by non-linear delta printer bed leveling.
  2602. * Example: "G29 P4"
  2603. *
  2604. * S Set the XY travel speed between probe points (in mm/min)
  2605. *
  2606. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2607. * or clean the rotation Matrix. Useful to check the topology
  2608. * after a first run of G29.
  2609. *
  2610. * V Set the verbose level (0-4). Example: "G29 V3"
  2611. *
  2612. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2613. * This is useful for manual bed leveling and finding flaws in the bed (to
  2614. * assist with part placement).
  2615. * Not supported by non-linear delta printer bed leveling.
  2616. *
  2617. * F Set the Front limit of the probing grid
  2618. * B Set the Back limit of the probing grid
  2619. * L Set the Left limit of the probing grid
  2620. * R Set the Right limit of the probing grid
  2621. *
  2622. * Global Parameters:
  2623. *
  2624. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2625. * Include "E" to engage/disengage the Z probe for each sample.
  2626. * There's no extra effect if you have a fixed Z probe.
  2627. * Usage: "G29 E" or "G29 e"
  2628. *
  2629. */
  2630. inline void gcode_G29() {
  2631. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2632. if (DEBUGGING(LEVELING)) {
  2633. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2634. DEBUG_POS("", current_position);
  2635. }
  2636. #endif
  2637. // Don't allow auto-leveling without homing first
  2638. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2639. axis_unhomed_error();
  2640. return;
  2641. }
  2642. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2643. if (verbose_level < 0 || verbose_level > 4) {
  2644. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2645. return;
  2646. }
  2647. bool dryrun = code_seen('D'),
  2648. deploy_probe_for_each_reading = code_seen('E');
  2649. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2650. #if DISABLED(DELTA)
  2651. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2652. #endif
  2653. if (verbose_level > 0) {
  2654. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2655. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2656. }
  2657. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2658. #if DISABLED(DELTA)
  2659. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2660. if (auto_bed_leveling_grid_points < 2) {
  2661. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2662. return;
  2663. }
  2664. #endif
  2665. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2666. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2667. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2668. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2669. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2670. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2671. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2672. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2673. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2674. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2675. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2676. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2677. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2678. if (left_out || right_out || front_out || back_out) {
  2679. if (left_out) {
  2680. out_of_range_error(PSTR("(L)eft"));
  2681. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2682. }
  2683. if (right_out) {
  2684. out_of_range_error(PSTR("(R)ight"));
  2685. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2686. }
  2687. if (front_out) {
  2688. out_of_range_error(PSTR("(F)ront"));
  2689. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2690. }
  2691. if (back_out) {
  2692. out_of_range_error(PSTR("(B)ack"));
  2693. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2694. }
  2695. return;
  2696. }
  2697. #endif // AUTO_BED_LEVELING_GRID
  2698. if (!dryrun) {
  2699. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2700. if (DEBUGGING(LEVELING)) {
  2701. vector_3 corrected_position = planner.adjusted_position();
  2702. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2703. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2704. }
  2705. #endif
  2706. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2707. planner.bed_level_matrix.set_to_identity();
  2708. #if ENABLED(DELTA)
  2709. reset_bed_level();
  2710. #else //!DELTA
  2711. //vector_3 corrected_position = planner.adjusted_position();
  2712. //corrected_position.debug("position before G29");
  2713. vector_3 uncorrected_position = planner.adjusted_position();
  2714. //uncorrected_position.debug("position during G29");
  2715. current_position[X_AXIS] = uncorrected_position.x;
  2716. current_position[Y_AXIS] = uncorrected_position.y;
  2717. current_position[Z_AXIS] = uncorrected_position.z;
  2718. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2719. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2720. #endif
  2721. sync_plan_position();
  2722. #endif // !DELTA
  2723. }
  2724. #if ENABLED(Z_PROBE_SLED)
  2725. dock_sled(false); // engage (un-dock) the Z probe
  2726. #elif ENABLED(FIX_MOUNTED_PROBE) || ENABLED(MECHANICAL_PROBE) || ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2727. deploy_z_probe();
  2728. #endif
  2729. stepper.synchronize();
  2730. setup_for_endstop_move();
  2731. feedrate = homing_feedrate[Z_AXIS];
  2732. bed_leveling_in_progress = true;
  2733. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2734. // probe at the points of a lattice grid
  2735. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2736. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2737. #if ENABLED(DELTA)
  2738. delta_grid_spacing[0] = xGridSpacing;
  2739. delta_grid_spacing[1] = yGridSpacing;
  2740. float zoffset = zprobe_zoffset;
  2741. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2742. #else // !DELTA
  2743. /**
  2744. * solve the plane equation ax + by + d = z
  2745. * A is the matrix with rows [x y 1] for all the probed points
  2746. * B is the vector of the Z positions
  2747. * the normal vector to the plane is formed by the coefficients of the
  2748. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2749. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2750. */
  2751. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2752. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2753. eqnBVector[abl2], // "B" vector of Z points
  2754. mean = 0.0;
  2755. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2756. #endif // !DELTA
  2757. int probePointCounter = 0;
  2758. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2759. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2760. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2761. int xStart, xStop, xInc;
  2762. if (zig) {
  2763. xStart = 0;
  2764. xStop = auto_bed_leveling_grid_points;
  2765. xInc = 1;
  2766. }
  2767. else {
  2768. xStart = auto_bed_leveling_grid_points - 1;
  2769. xStop = -1;
  2770. xInc = -1;
  2771. }
  2772. zig = !zig;
  2773. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2774. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2775. // raise extruder
  2776. float measured_z,
  2777. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2778. if (probePointCounter) {
  2779. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2780. if (DEBUGGING(LEVELING)) {
  2781. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2782. SERIAL_EOL;
  2783. }
  2784. #endif
  2785. }
  2786. else {
  2787. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2788. if (DEBUGGING(LEVELING)) {
  2789. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2790. SERIAL_EOL;
  2791. }
  2792. #endif
  2793. }
  2794. #if ENABLED(DELTA)
  2795. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2796. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2797. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2798. #endif //DELTA
  2799. ProbeAction act;
  2800. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2801. act = ProbeDeployAndStow;
  2802. else if (yCount == 0 && xCount == xStart)
  2803. act = ProbeDeploy;
  2804. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2805. act = ProbeStow;
  2806. else
  2807. act = ProbeStay;
  2808. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2809. #if DISABLED(DELTA)
  2810. mean += measured_z;
  2811. eqnBVector[probePointCounter] = measured_z;
  2812. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2813. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2814. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2815. indexIntoAB[xCount][yCount] = probePointCounter;
  2816. #else
  2817. bed_level[xCount][yCount] = measured_z + zoffset;
  2818. #endif
  2819. probePointCounter++;
  2820. idle();
  2821. } //xProbe
  2822. } //yProbe
  2823. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2824. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2825. #endif
  2826. clean_up_after_endstop_move();
  2827. #if ENABLED(DELTA)
  2828. if (!dryrun) extrapolate_unprobed_bed_level();
  2829. print_bed_level();
  2830. #else // !DELTA
  2831. // solve lsq problem
  2832. double plane_equation_coefficients[3];
  2833. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2834. mean /= abl2;
  2835. if (verbose_level) {
  2836. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2837. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2838. SERIAL_PROTOCOLPGM(" b: ");
  2839. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2840. SERIAL_PROTOCOLPGM(" d: ");
  2841. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2842. SERIAL_EOL;
  2843. if (verbose_level > 2) {
  2844. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2845. SERIAL_PROTOCOL_F(mean, 8);
  2846. SERIAL_EOL;
  2847. }
  2848. }
  2849. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2850. // Show the Topography map if enabled
  2851. if (do_topography_map) {
  2852. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2853. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2854. SERIAL_PROTOCOLPGM(" | |\n");
  2855. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2856. SERIAL_PROTOCOLPGM(" E | | I\n");
  2857. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2858. SERIAL_PROTOCOLPGM(" T | | H\n");
  2859. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2860. SERIAL_PROTOCOLPGM(" | |\n");
  2861. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2862. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2863. float min_diff = 999;
  2864. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2865. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2866. int ind = indexIntoAB[xx][yy];
  2867. float diff = eqnBVector[ind] - mean;
  2868. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2869. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2870. z_tmp = 0;
  2871. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2872. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2873. if (diff >= 0.0)
  2874. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2875. else
  2876. SERIAL_PROTOCOLCHAR(' ');
  2877. SERIAL_PROTOCOL_F(diff, 5);
  2878. } // xx
  2879. SERIAL_EOL;
  2880. } // yy
  2881. SERIAL_EOL;
  2882. if (verbose_level > 3) {
  2883. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2884. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2885. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2886. int ind = indexIntoAB[xx][yy];
  2887. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2888. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2889. z_tmp = 0;
  2890. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2891. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2892. if (diff >= 0.0)
  2893. SERIAL_PROTOCOLPGM(" +");
  2894. // Include + for column alignment
  2895. else
  2896. SERIAL_PROTOCOLCHAR(' ');
  2897. SERIAL_PROTOCOL_F(diff, 5);
  2898. } // xx
  2899. SERIAL_EOL;
  2900. } // yy
  2901. SERIAL_EOL;
  2902. }
  2903. } //do_topography_map
  2904. #endif //!DELTA
  2905. #else // !AUTO_BED_LEVELING_GRID
  2906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2907. if (DEBUGGING(LEVELING)) {
  2908. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2909. }
  2910. #endif
  2911. // Actions for each probe
  2912. ProbeAction p1, p2, p3;
  2913. if (deploy_probe_for_each_reading)
  2914. p1 = p2 = p3 = ProbeDeployAndStow;
  2915. else
  2916. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2917. // Probe at 3 arbitrary points
  2918. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2919. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2920. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2921. p1, verbose_level),
  2922. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2923. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2924. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2925. p2, verbose_level),
  2926. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2927. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2928. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2929. p3, verbose_level);
  2930. clean_up_after_endstop_move();
  2931. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2932. #endif // !AUTO_BED_LEVELING_GRID
  2933. #if ENABLED(DELTA)
  2934. // Allen Key Probe for Delta
  2935. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2936. stow_z_probe();
  2937. #elif Z_RAISE_AFTER_PROBING > 0
  2938. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  2939. #endif
  2940. #else // !DELTA
  2941. if (verbose_level > 0)
  2942. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2943. if (!dryrun) {
  2944. /**
  2945. * Correct the Z height difference from Z probe position and nozzle tip position.
  2946. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2947. * from the nozzle. When the bed is uneven, this height must be corrected.
  2948. */
  2949. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2950. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2951. z_tmp = current_position[Z_AXIS],
  2952. real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  2953. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2954. if (DEBUGGING(LEVELING)) {
  2955. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2956. SERIAL_EOL;
  2957. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2958. SERIAL_EOL;
  2959. }
  2960. #endif
  2961. // Apply the correction sending the Z probe offset
  2962. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2963. /*
  2964. * Get the current Z position and send it to the planner.
  2965. *
  2966. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2967. * (most recent planner.set_position/sync_plan_position)
  2968. *
  2969. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2970. * (set by default, M851, EEPROM, or Menu)
  2971. *
  2972. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2973. * after the last probe
  2974. *
  2975. * >> Should home_offset[Z_AXIS] be included?
  2976. *
  2977. *
  2978. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2979. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2980. * not actually "homing" Z... then perhaps it should not be included
  2981. * here. The purpose of home_offset[] is to adjust for inaccurate
  2982. * endstops, not for reasonably accurate probes. If it were added
  2983. * here, it could be seen as a compensating factor for the Z probe.
  2984. */
  2985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2986. if (DEBUGGING(LEVELING)) {
  2987. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2988. SERIAL_EOL;
  2989. }
  2990. #endif
  2991. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2992. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2993. + Z_RAISE_AFTER_PROBING
  2994. #endif
  2995. ;
  2996. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2997. sync_plan_position();
  2998. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2999. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3000. #endif
  3001. }
  3002. // Sled assembly for Cartesian bots
  3003. #if ENABLED(Z_PROBE_SLED)
  3004. dock_sled(true); // dock the sled
  3005. #elif Z_RAISE_AFTER_PROBING > 0
  3006. // Raise Z axis for non-delta and non servo based probes
  3007. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  3008. raise_z_after_probing();
  3009. #endif
  3010. #endif
  3011. #endif // !DELTA
  3012. #if ENABLED(MECHANICAL_PROBE)
  3013. stow_z_probe();
  3014. #endif
  3015. #ifdef Z_PROBE_END_SCRIPT
  3016. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3017. if (DEBUGGING(LEVELING)) {
  3018. SERIAL_ECHO("Z Probe End Script: ");
  3019. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3020. }
  3021. #endif
  3022. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3023. #if HAS_BED_PROBE
  3024. endstops.enable_z_probe(false);
  3025. #endif
  3026. stepper.synchronize();
  3027. #endif
  3028. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3029. if (DEBUGGING(LEVELING)) {
  3030. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3031. }
  3032. #endif
  3033. bed_leveling_in_progress = false;
  3034. report_current_position();
  3035. KEEPALIVE_STATE(IN_HANDLER);
  3036. }
  3037. #if DISABLED(Z_PROBE_SLED) // could be avoided
  3038. /**
  3039. * G30: Do a single Z probe at the current XY
  3040. */
  3041. inline void gcode_G30() {
  3042. #if HAS_SERVO_ENDSTOPS
  3043. raise_z_for_servo();
  3044. #endif
  3045. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3046. stepper.synchronize();
  3047. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3048. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3049. feedrate = homing_feedrate[Z_AXIS];
  3050. run_z_probe();
  3051. SERIAL_PROTOCOLPGM("Bed X: ");
  3052. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3053. SERIAL_PROTOCOLPGM(" Y: ");
  3054. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3055. SERIAL_PROTOCOLPGM(" Z: ");
  3056. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3057. SERIAL_EOL;
  3058. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3059. #if HAS_SERVO_ENDSTOPS
  3060. raise_z_for_servo();
  3061. #endif
  3062. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3063. report_current_position();
  3064. }
  3065. #endif //!Z_PROBE_SLED
  3066. #endif //AUTO_BED_LEVELING_FEATURE
  3067. /**
  3068. * G92: Set current position to given X Y Z E
  3069. */
  3070. inline void gcode_G92() {
  3071. bool didE = code_seen(axis_codes[E_AXIS]);
  3072. if (!didE) stepper.synchronize();
  3073. bool didXYZ = false;
  3074. for (int i = 0; i < NUM_AXIS; i++) {
  3075. if (code_seen(axis_codes[i])) {
  3076. float p = current_position[i],
  3077. v = code_value();
  3078. current_position[i] = v;
  3079. if (i != E_AXIS) {
  3080. position_shift[i] += v - p; // Offset the coordinate space
  3081. update_software_endstops((AxisEnum)i);
  3082. didXYZ = true;
  3083. }
  3084. }
  3085. }
  3086. if (didXYZ) {
  3087. #if ENABLED(DELTA) || ENABLED(SCARA)
  3088. sync_plan_position_delta();
  3089. #else
  3090. sync_plan_position();
  3091. #endif
  3092. }
  3093. else if (didE) {
  3094. sync_plan_position_e();
  3095. }
  3096. }
  3097. #if ENABLED(ULTIPANEL)
  3098. /**
  3099. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3100. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3101. */
  3102. inline void gcode_M0_M1() {
  3103. char* args = current_command_args;
  3104. uint8_t test_value = 12;
  3105. SERIAL_ECHOPAIR("TEST", test_value);
  3106. millis_t codenum = 0;
  3107. bool hasP = false, hasS = false;
  3108. if (code_seen('P')) {
  3109. codenum = code_value_short(); // milliseconds to wait
  3110. hasP = codenum > 0;
  3111. }
  3112. if (code_seen('S')) {
  3113. codenum = code_value() * 1000UL; // seconds to wait
  3114. hasS = codenum > 0;
  3115. }
  3116. if (!hasP && !hasS && *args != '\0')
  3117. lcd_setstatus(args, true);
  3118. else {
  3119. LCD_MESSAGEPGM(MSG_USERWAIT);
  3120. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3121. dontExpireStatus();
  3122. #endif
  3123. }
  3124. lcd_ignore_click();
  3125. stepper.synchronize();
  3126. refresh_cmd_timeout();
  3127. if (codenum > 0) {
  3128. codenum += previous_cmd_ms; // wait until this time for a click
  3129. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3130. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3131. KEEPALIVE_STATE(IN_HANDLER);
  3132. lcd_ignore_click(false);
  3133. }
  3134. else {
  3135. if (!lcd_detected()) return;
  3136. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3137. while (!lcd_clicked()) idle();
  3138. KEEPALIVE_STATE(IN_HANDLER);
  3139. }
  3140. if (IS_SD_PRINTING)
  3141. LCD_MESSAGEPGM(MSG_RESUMING);
  3142. else
  3143. LCD_MESSAGEPGM(WELCOME_MSG);
  3144. }
  3145. #endif // ULTIPANEL
  3146. /**
  3147. * M17: Enable power on all stepper motors
  3148. */
  3149. inline void gcode_M17() {
  3150. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3151. enable_all_steppers();
  3152. }
  3153. #if ENABLED(SDSUPPORT)
  3154. /**
  3155. * M20: List SD card to serial output
  3156. */
  3157. inline void gcode_M20() {
  3158. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3159. card.ls();
  3160. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3161. }
  3162. /**
  3163. * M21: Init SD Card
  3164. */
  3165. inline void gcode_M21() {
  3166. card.initsd();
  3167. }
  3168. /**
  3169. * M22: Release SD Card
  3170. */
  3171. inline void gcode_M22() {
  3172. card.release();
  3173. }
  3174. /**
  3175. * M23: Open a file
  3176. */
  3177. inline void gcode_M23() {
  3178. card.openFile(current_command_args, true);
  3179. }
  3180. /**
  3181. * M24: Start SD Print
  3182. */
  3183. inline void gcode_M24() {
  3184. card.startFileprint();
  3185. print_job_timer.start();
  3186. }
  3187. /**
  3188. * M25: Pause SD Print
  3189. */
  3190. inline void gcode_M25() {
  3191. card.pauseSDPrint();
  3192. }
  3193. /**
  3194. * M26: Set SD Card file index
  3195. */
  3196. inline void gcode_M26() {
  3197. if (card.cardOK && code_seen('S'))
  3198. card.setIndex(code_value_long());
  3199. }
  3200. /**
  3201. * M27: Get SD Card status
  3202. */
  3203. inline void gcode_M27() {
  3204. card.getStatus();
  3205. }
  3206. /**
  3207. * M28: Start SD Write
  3208. */
  3209. inline void gcode_M28() {
  3210. card.openFile(current_command_args, false);
  3211. }
  3212. /**
  3213. * M29: Stop SD Write
  3214. * Processed in write to file routine above
  3215. */
  3216. inline void gcode_M29() {
  3217. // card.saving = false;
  3218. }
  3219. /**
  3220. * M30 <filename>: Delete SD Card file
  3221. */
  3222. inline void gcode_M30() {
  3223. if (card.cardOK) {
  3224. card.closefile();
  3225. card.removeFile(current_command_args);
  3226. }
  3227. }
  3228. #endif //SDSUPPORT
  3229. /**
  3230. * M31: Get the time since the start of SD Print (or last M109)
  3231. */
  3232. inline void gcode_M31() {
  3233. millis_t t = print_job_timer.duration();
  3234. int min = t / 60, sec = t % 60;
  3235. char time[30];
  3236. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3237. SERIAL_ECHO_START;
  3238. SERIAL_ECHOLN(time);
  3239. lcd_setstatus(time);
  3240. thermalManager.autotempShutdown();
  3241. }
  3242. #if ENABLED(SDSUPPORT)
  3243. /**
  3244. * M32: Select file and start SD Print
  3245. */
  3246. inline void gcode_M32() {
  3247. if (card.sdprinting)
  3248. stepper.synchronize();
  3249. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3250. if (!namestartpos)
  3251. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3252. else
  3253. namestartpos++; //to skip the '!'
  3254. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3255. if (card.cardOK) {
  3256. card.openFile(namestartpos, true, call_procedure);
  3257. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3258. card.setIndex(code_value_long());
  3259. card.startFileprint();
  3260. // Procedure calls count as normal print time.
  3261. if (!call_procedure) print_job_timer.start();
  3262. }
  3263. }
  3264. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3265. /**
  3266. * M33: Get the long full path of a file or folder
  3267. *
  3268. * Parameters:
  3269. * <dospath> Case-insensitive DOS-style path to a file or folder
  3270. *
  3271. * Example:
  3272. * M33 miscel~1/armchair/armcha~1.gco
  3273. *
  3274. * Output:
  3275. * /Miscellaneous/Armchair/Armchair.gcode
  3276. */
  3277. inline void gcode_M33() {
  3278. card.printLongPath(current_command_args);
  3279. }
  3280. #endif
  3281. /**
  3282. * M928: Start SD Write
  3283. */
  3284. inline void gcode_M928() {
  3285. card.openLogFile(current_command_args);
  3286. }
  3287. #endif // SDSUPPORT
  3288. /**
  3289. * M42: Change pin status via GCode
  3290. *
  3291. * P<pin> Pin number (LED if omitted)
  3292. * S<byte> Pin status from 0 - 255
  3293. */
  3294. inline void gcode_M42() {
  3295. if (code_seen('S')) {
  3296. int pin_status = code_value_short();
  3297. if (pin_status < 0 || pin_status > 255) return;
  3298. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3299. if (pin_number < 0) return;
  3300. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3301. if (pin_number == sensitive_pins[i]) return;
  3302. pinMode(pin_number, OUTPUT);
  3303. digitalWrite(pin_number, pin_status);
  3304. analogWrite(pin_number, pin_status);
  3305. #if FAN_COUNT > 0
  3306. switch (pin_number) {
  3307. #if HAS_FAN0
  3308. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3309. #endif
  3310. #if HAS_FAN1
  3311. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3312. #endif
  3313. #if HAS_FAN2
  3314. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3315. #endif
  3316. }
  3317. #endif
  3318. } // code_seen('S')
  3319. }
  3320. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3321. /**
  3322. * This is redundant since the SanityCheck.h already checks for a valid
  3323. * Z_MIN_PROBE_PIN, but here for clarity.
  3324. */
  3325. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3326. #if !HAS_Z_MIN_PROBE_PIN
  3327. #error "You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation."
  3328. #endif
  3329. #elif !HAS_Z_MIN
  3330. #error "You must define Z_MIN_PIN to enable Z probe repeatability calculation."
  3331. #endif
  3332. /**
  3333. * M48: Z probe repeatability measurement function.
  3334. *
  3335. * Usage:
  3336. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3337. * P = Number of sampled points (4-50, default 10)
  3338. * X = Sample X position
  3339. * Y = Sample Y position
  3340. * V = Verbose level (0-4, default=1)
  3341. * E = Engage Z probe for each reading
  3342. * L = Number of legs of movement before probe
  3343. * S = Schizoid (Or Star if you prefer)
  3344. *
  3345. * This function assumes the bed has been homed. Specifically, that a G28 command
  3346. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3347. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3348. * regenerated.
  3349. */
  3350. inline void gcode_M48() {
  3351. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3352. axis_unhomed_error();
  3353. return;
  3354. }
  3355. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3356. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3357. if (code_seen('V')) {
  3358. verbose_level = code_value_short();
  3359. if (verbose_level < 0 || verbose_level > 4) {
  3360. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3361. return;
  3362. }
  3363. }
  3364. if (verbose_level > 0)
  3365. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3366. if (code_seen('P')) {
  3367. n_samples = code_value_short();
  3368. if (n_samples < 4 || n_samples > 50) {
  3369. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3370. return;
  3371. }
  3372. }
  3373. float X_current = current_position[X_AXIS],
  3374. Y_current = current_position[Y_AXIS],
  3375. Z_current = current_position[Z_AXIS],
  3376. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3377. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3378. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3379. bool deploy_probe_for_each_reading = code_seen('E');
  3380. if (code_seen('X')) {
  3381. X_probe_location = code_value();
  3382. #if DISABLED(DELTA)
  3383. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3384. out_of_range_error(PSTR("X"));
  3385. return;
  3386. }
  3387. #endif
  3388. }
  3389. if (code_seen('Y')) {
  3390. Y_probe_location = code_value();
  3391. #if DISABLED(DELTA)
  3392. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3393. out_of_range_error(PSTR("Y"));
  3394. return;
  3395. }
  3396. #endif
  3397. }
  3398. #if ENABLED(DELTA)
  3399. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3400. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3401. return;
  3402. }
  3403. #endif
  3404. bool seen_L = code_seen('L');
  3405. if (seen_L) {
  3406. n_legs = code_value_short();
  3407. if (n_legs < 0 || n_legs > 15) {
  3408. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3409. return;
  3410. }
  3411. if (n_legs == 1) n_legs = 2;
  3412. }
  3413. if (code_seen('S')) {
  3414. schizoid_flag++;
  3415. if (!seen_L) n_legs = 7;
  3416. }
  3417. /**
  3418. * Now get everything to the specified probe point So we can safely do a
  3419. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3420. * we don't want to use that as a starting point for each probe.
  3421. */
  3422. if (verbose_level > 2)
  3423. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3424. #if ENABLED(DELTA)
  3425. // we don't do bed level correction in M48 because we want the raw data when we probe
  3426. reset_bed_level();
  3427. #else
  3428. // we don't do bed level correction in M48 because we want the raw data when we probe
  3429. planner.bed_level_matrix.set_to_identity();
  3430. #endif
  3431. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3432. do_blocking_move_to_z(Z_start_location);
  3433. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3434. /**
  3435. * OK, do the initial probe to get us close to the bed.
  3436. * Then retrace the right amount and use that in subsequent probes
  3437. */
  3438. setup_for_endstop_move();
  3439. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3440. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3441. verbose_level);
  3442. raise_z_after_probing();
  3443. for (uint8_t n = 0; n < n_samples; n++) {
  3444. randomSeed(millis());
  3445. delay(500);
  3446. if (n_legs) {
  3447. float radius, angle = random(0.0, 360.0);
  3448. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3449. radius = random(
  3450. #if ENABLED(DELTA)
  3451. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3452. #else
  3453. 5, X_MAX_LENGTH / 8
  3454. #endif
  3455. );
  3456. if (verbose_level > 3) {
  3457. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3458. SERIAL_ECHOPAIR(" angle: ", angle);
  3459. delay(100);
  3460. if (dir > 0)
  3461. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3462. else
  3463. SERIAL_ECHO(" Direction: Clockwise \n");
  3464. delay(100);
  3465. }
  3466. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3467. double delta_angle;
  3468. if (schizoid_flag)
  3469. // The points of a 5 point star are 72 degrees apart. We need to
  3470. // skip a point and go to the next one on the star.
  3471. delta_angle = dir * 2.0 * 72.0;
  3472. else
  3473. // If we do this line, we are just trying to move further
  3474. // around the circle.
  3475. delta_angle = dir * (float) random(25, 45);
  3476. angle += delta_angle;
  3477. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3478. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3479. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3480. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3481. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3482. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3483. #if DISABLED(DELTA)
  3484. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3485. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3486. #else
  3487. // If we have gone out too far, we can do a simple fix and scale the numbers
  3488. // back in closer to the origin.
  3489. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3490. X_current /= 1.25;
  3491. Y_current /= 1.25;
  3492. if (verbose_level > 3) {
  3493. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3494. SERIAL_ECHOPAIR(", ", Y_current);
  3495. SERIAL_EOL;
  3496. delay(50);
  3497. }
  3498. }
  3499. #endif
  3500. if (verbose_level > 3) {
  3501. SERIAL_PROTOCOL("Going to:");
  3502. SERIAL_ECHOPAIR("x: ", X_current);
  3503. SERIAL_ECHOPAIR("y: ", Y_current);
  3504. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3505. SERIAL_EOL;
  3506. delay(55);
  3507. }
  3508. do_blocking_move_to_xy(X_current, Y_current);
  3509. } // n_legs loop
  3510. } // n_legs
  3511. /**
  3512. * We don't really have to do this move, but if we don't we can see a
  3513. * funny shift in the Z Height because the user might not have the
  3514. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3515. * height. This gets us back to the probe location at the same height that
  3516. * we have been running around the circle at.
  3517. */
  3518. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3519. if (deploy_probe_for_each_reading)
  3520. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3521. else {
  3522. if (n == n_samples - 1)
  3523. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3524. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3525. }
  3526. /**
  3527. * Get the current mean for the data points we have so far
  3528. */
  3529. sum = 0.0;
  3530. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3531. mean = sum / (n + 1);
  3532. /**
  3533. * Now, use that mean to calculate the standard deviation for the
  3534. * data points we have so far
  3535. */
  3536. sum = 0.0;
  3537. for (uint8_t j = 0; j <= n; j++) {
  3538. float ss = sample_set[j] - mean;
  3539. sum += ss * ss;
  3540. }
  3541. sigma = sqrt(sum / (n + 1));
  3542. if (verbose_level > 1) {
  3543. SERIAL_PROTOCOL(n + 1);
  3544. SERIAL_PROTOCOLPGM(" of ");
  3545. SERIAL_PROTOCOL((int)n_samples);
  3546. SERIAL_PROTOCOLPGM(" z: ");
  3547. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3548. delay(50);
  3549. if (verbose_level > 2) {
  3550. SERIAL_PROTOCOLPGM(" mean: ");
  3551. SERIAL_PROTOCOL_F(mean, 6);
  3552. SERIAL_PROTOCOLPGM(" sigma: ");
  3553. SERIAL_PROTOCOL_F(sigma, 6);
  3554. }
  3555. }
  3556. if (verbose_level > 0) SERIAL_EOL;
  3557. delay(50);
  3558. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3559. } // End of probe loop code
  3560. // raise_z_after_probing();
  3561. if (verbose_level > 0) {
  3562. SERIAL_PROTOCOLPGM("Mean: ");
  3563. SERIAL_PROTOCOL_F(mean, 6);
  3564. SERIAL_EOL;
  3565. delay(25);
  3566. }
  3567. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3568. SERIAL_PROTOCOL_F(sigma, 6);
  3569. SERIAL_EOL; SERIAL_EOL;
  3570. delay(25);
  3571. clean_up_after_endstop_move();
  3572. report_current_position();
  3573. }
  3574. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3575. /**
  3576. * M75: Start print timer
  3577. */
  3578. inline void gcode_M75() { print_job_timer.start(); }
  3579. /**
  3580. * M76: Pause print timer
  3581. */
  3582. inline void gcode_M76() { print_job_timer.pause(); }
  3583. /**
  3584. * M77: Stop print timer
  3585. */
  3586. inline void gcode_M77() { print_job_timer.stop(); }
  3587. #if ENABLED(PRINTCOUNTER)
  3588. /*+
  3589. * M78: Show print statistics
  3590. */
  3591. inline void gcode_M78() {
  3592. // "M78 S78" will reset the statistics
  3593. if (code_seen('S') && code_value_short() == 78)
  3594. print_job_timer.initStats();
  3595. else print_job_timer.showStats();
  3596. }
  3597. #endif
  3598. /**
  3599. * M104: Set hot end temperature
  3600. */
  3601. inline void gcode_M104() {
  3602. if (get_target_extruder_from_command(104)) return;
  3603. if (DEBUGGING(DRYRUN)) return;
  3604. if (code_seen('S')) {
  3605. float temp = code_value();
  3606. thermalManager.setTargetHotend(temp, target_extruder);
  3607. #if ENABLED(DUAL_X_CARRIAGE)
  3608. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3609. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3610. #endif
  3611. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3612. /**
  3613. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3614. * stand by mode, for instance in a dual extruder setup, without affecting
  3615. * the running print timer.
  3616. */
  3617. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3618. print_job_timer.stop();
  3619. LCD_MESSAGEPGM(WELCOME_MSG);
  3620. }
  3621. /**
  3622. * We do not check if the timer is already running because this check will
  3623. * be done for us inside the Stopwatch::start() method thus a running timer
  3624. * will not restart.
  3625. */
  3626. else print_job_timer.start();
  3627. #endif
  3628. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3629. }
  3630. }
  3631. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3632. void print_heaterstates() {
  3633. #if HAS_TEMP_HOTEND
  3634. SERIAL_PROTOCOLPGM(" T:");
  3635. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3636. SERIAL_PROTOCOLPGM(" /");
  3637. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3638. #endif
  3639. #if HAS_TEMP_BED
  3640. SERIAL_PROTOCOLPGM(" B:");
  3641. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3642. SERIAL_PROTOCOLPGM(" /");
  3643. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3644. #endif
  3645. #if EXTRUDERS > 1
  3646. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3647. SERIAL_PROTOCOLPGM(" T");
  3648. SERIAL_PROTOCOL(e);
  3649. SERIAL_PROTOCOLCHAR(':');
  3650. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3651. SERIAL_PROTOCOLPGM(" /");
  3652. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3653. }
  3654. #endif
  3655. #if HAS_TEMP_BED
  3656. SERIAL_PROTOCOLPGM(" B@:");
  3657. #ifdef BED_WATTS
  3658. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3659. SERIAL_PROTOCOLCHAR('W');
  3660. #else
  3661. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3662. #endif
  3663. #endif
  3664. SERIAL_PROTOCOLPGM(" @:");
  3665. #ifdef EXTRUDER_WATTS
  3666. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3667. SERIAL_PROTOCOLCHAR('W');
  3668. #else
  3669. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3670. #endif
  3671. #if EXTRUDERS > 1
  3672. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3673. SERIAL_PROTOCOLPGM(" @");
  3674. SERIAL_PROTOCOL(e);
  3675. SERIAL_PROTOCOLCHAR(':');
  3676. #ifdef EXTRUDER_WATTS
  3677. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3678. SERIAL_PROTOCOLCHAR('W');
  3679. #else
  3680. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3681. #endif
  3682. }
  3683. #endif
  3684. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3685. #if HAS_TEMP_BED
  3686. SERIAL_PROTOCOLPGM(" ADC B:");
  3687. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3688. SERIAL_PROTOCOLPGM("C->");
  3689. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3690. #endif
  3691. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3692. SERIAL_PROTOCOLPGM(" T");
  3693. SERIAL_PROTOCOL(cur_extruder);
  3694. SERIAL_PROTOCOLCHAR(':');
  3695. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_extruder), 1);
  3696. SERIAL_PROTOCOLPGM("C->");
  3697. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3698. }
  3699. #endif
  3700. }
  3701. #endif
  3702. /**
  3703. * M105: Read hot end and bed temperature
  3704. */
  3705. inline void gcode_M105() {
  3706. if (get_target_extruder_from_command(105)) return;
  3707. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3708. SERIAL_PROTOCOLPGM(MSG_OK);
  3709. print_heaterstates();
  3710. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3711. SERIAL_ERROR_START;
  3712. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3713. #endif
  3714. SERIAL_EOL;
  3715. }
  3716. #if FAN_COUNT > 0
  3717. /**
  3718. * M106: Set Fan Speed
  3719. *
  3720. * S<int> Speed between 0-255
  3721. * P<index> Fan index, if more than one fan
  3722. */
  3723. inline void gcode_M106() {
  3724. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3725. p = code_seen('P') ? code_value_short() : 0;
  3726. NOMORE(s, 255);
  3727. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3728. }
  3729. /**
  3730. * M107: Fan Off
  3731. */
  3732. inline void gcode_M107() {
  3733. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3734. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3735. }
  3736. #endif // FAN_COUNT > 0
  3737. /**
  3738. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3739. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3740. */
  3741. inline void gcode_M109() {
  3742. if (get_target_extruder_from_command(109)) return;
  3743. if (DEBUGGING(DRYRUN)) return;
  3744. bool no_wait_for_cooling = code_seen('S');
  3745. if (no_wait_for_cooling || code_seen('R')) {
  3746. float temp = code_value();
  3747. thermalManager.setTargetHotend(temp, target_extruder);
  3748. #if ENABLED(DUAL_X_CARRIAGE)
  3749. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3750. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3751. #endif
  3752. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3753. /**
  3754. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3755. * stand by mode, for instance in a dual extruder setup, without affecting
  3756. * the running print timer.
  3757. */
  3758. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3759. print_job_timer.stop();
  3760. LCD_MESSAGEPGM(WELCOME_MSG);
  3761. }
  3762. /**
  3763. * We do not check if the timer is already running because this check will
  3764. * be done for us inside the Stopwatch::start() method thus a running timer
  3765. * will not restart.
  3766. */
  3767. else print_job_timer.start();
  3768. #endif
  3769. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3770. }
  3771. #if ENABLED(AUTOTEMP)
  3772. planner.autotemp_M109();
  3773. #endif
  3774. #if TEMP_RESIDENCY_TIME > 0
  3775. millis_t residency_start_ms = 0;
  3776. // Loop until the temperature has stabilized
  3777. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3778. #else
  3779. // Loop until the temperature is very close target
  3780. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3781. #endif //TEMP_RESIDENCY_TIME > 0
  3782. float theTarget = -1;
  3783. bool wants_to_cool;
  3784. cancel_heatup = false;
  3785. millis_t now, next_temp_ms = 0;
  3786. KEEPALIVE_STATE(NOT_BUSY);
  3787. do {
  3788. now = millis();
  3789. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3790. next_temp_ms = now + 1000UL;
  3791. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3792. print_heaterstates();
  3793. #endif
  3794. #if TEMP_RESIDENCY_TIME > 0
  3795. SERIAL_PROTOCOLPGM(" W:");
  3796. if (residency_start_ms) {
  3797. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3798. SERIAL_PROTOCOLLN(rem);
  3799. }
  3800. else {
  3801. SERIAL_PROTOCOLLNPGM("?");
  3802. }
  3803. #else
  3804. SERIAL_EOL;
  3805. #endif
  3806. }
  3807. // Target temperature might be changed during the loop
  3808. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3809. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3810. theTarget = thermalManager.degTargetHotend(target_extruder);
  3811. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3812. if (no_wait_for_cooling && wants_to_cool) break;
  3813. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3814. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3815. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3816. }
  3817. idle();
  3818. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3819. #if TEMP_RESIDENCY_TIME > 0
  3820. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  3821. if (!residency_start_ms) {
  3822. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3823. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3824. }
  3825. else if (temp_diff > TEMP_HYSTERESIS) {
  3826. // Restart the timer whenever the temperature falls outside the hysteresis.
  3827. residency_start_ms = millis();
  3828. }
  3829. #endif //TEMP_RESIDENCY_TIME > 0
  3830. } while (!cancel_heatup && TEMP_CONDITIONS);
  3831. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3832. KEEPALIVE_STATE(IN_HANDLER);
  3833. }
  3834. #if HAS_TEMP_BED
  3835. /**
  3836. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3837. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3838. */
  3839. inline void gcode_M190() {
  3840. if (DEBUGGING(DRYRUN)) return;
  3841. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3842. bool no_wait_for_cooling = code_seen('S');
  3843. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value());
  3844. #if TEMP_BED_RESIDENCY_TIME > 0
  3845. millis_t residency_start_ms = 0;
  3846. // Loop until the temperature has stabilized
  3847. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3848. #else
  3849. // Loop until the temperature is very close target
  3850. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3851. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3852. float theTarget = -1;
  3853. bool wants_to_cool;
  3854. cancel_heatup = false;
  3855. millis_t now, next_temp_ms = 0;
  3856. KEEPALIVE_STATE(NOT_BUSY);
  3857. do {
  3858. now = millis();
  3859. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3860. next_temp_ms = now + 1000UL;
  3861. print_heaterstates();
  3862. #if TEMP_BED_RESIDENCY_TIME > 0
  3863. SERIAL_PROTOCOLPGM(" W:");
  3864. if (residency_start_ms) {
  3865. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3866. SERIAL_PROTOCOLLN(rem);
  3867. }
  3868. else {
  3869. SERIAL_PROTOCOLLNPGM("?");
  3870. }
  3871. #else
  3872. SERIAL_EOL;
  3873. #endif
  3874. }
  3875. // Target temperature might be changed during the loop
  3876. if (theTarget != thermalManager.degTargetBed()) {
  3877. wants_to_cool = thermalManager.isCoolingBed();
  3878. theTarget = thermalManager.degTargetBed();
  3879. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3880. if (no_wait_for_cooling && wants_to_cool) break;
  3881. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3882. // Simply don't wait to cool a bed under 30C
  3883. if (wants_to_cool && theTarget < 30) break;
  3884. }
  3885. idle();
  3886. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3887. #if TEMP_BED_RESIDENCY_TIME > 0
  3888. float temp_diff = fabs(theTarget - thermalManager.degBed());
  3889. if (!residency_start_ms) {
  3890. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3891. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  3892. }
  3893. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3894. // Restart the timer whenever the temperature falls outside the hysteresis.
  3895. residency_start_ms = millis();
  3896. }
  3897. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3898. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3899. LCD_MESSAGEPGM(MSG_BED_DONE);
  3900. KEEPALIVE_STATE(IN_HANDLER);
  3901. }
  3902. #endif // HAS_TEMP_BED
  3903. /**
  3904. * M110: Set Current Line Number
  3905. */
  3906. inline void gcode_M110() {
  3907. if (code_seen('N')) gcode_N = code_value_long();
  3908. }
  3909. /**
  3910. * M111: Set the debug level
  3911. */
  3912. inline void gcode_M111() {
  3913. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3914. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3915. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3916. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3917. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3918. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3920. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3921. #endif
  3922. const static char* const debug_strings[] PROGMEM = {
  3923. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3924. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3925. str_debug_32
  3926. #endif
  3927. };
  3928. SERIAL_ECHO_START;
  3929. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3930. if (marlin_debug_flags) {
  3931. uint8_t comma = 0;
  3932. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3933. if (TEST(marlin_debug_flags, i)) {
  3934. if (comma++) SERIAL_CHAR(',');
  3935. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3936. }
  3937. }
  3938. }
  3939. else {
  3940. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3941. }
  3942. SERIAL_EOL;
  3943. }
  3944. /**
  3945. * M112: Emergency Stop
  3946. */
  3947. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3948. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3949. /**
  3950. * M113: Get or set Host Keepalive interval (0 to disable)
  3951. *
  3952. * S<seconds> Optional. Set the keepalive interval.
  3953. */
  3954. inline void gcode_M113() {
  3955. if (code_seen('S')) {
  3956. host_keepalive_interval = (uint8_t)code_value_short();
  3957. NOMORE(host_keepalive_interval, 60);
  3958. }
  3959. else {
  3960. SERIAL_ECHO_START;
  3961. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3962. SERIAL_EOL;
  3963. }
  3964. }
  3965. #endif
  3966. #if ENABLED(BARICUDA)
  3967. #if HAS_HEATER_1
  3968. /**
  3969. * M126: Heater 1 valve open
  3970. */
  3971. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3972. /**
  3973. * M127: Heater 1 valve close
  3974. */
  3975. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  3976. #endif
  3977. #if HAS_HEATER_2
  3978. /**
  3979. * M128: Heater 2 valve open
  3980. */
  3981. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3982. /**
  3983. * M129: Heater 2 valve close
  3984. */
  3985. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  3986. #endif
  3987. #endif //BARICUDA
  3988. /**
  3989. * M140: Set bed temperature
  3990. */
  3991. inline void gcode_M140() {
  3992. if (DEBUGGING(DRYRUN)) return;
  3993. if (code_seen('S')) thermalManager.setTargetBed(code_value());
  3994. }
  3995. #if ENABLED(ULTIPANEL)
  3996. /**
  3997. * M145: Set the heatup state for a material in the LCD menu
  3998. * S<material> (0=PLA, 1=ABS)
  3999. * H<hotend temp>
  4000. * B<bed temp>
  4001. * F<fan speed>
  4002. */
  4003. inline void gcode_M145() {
  4004. int8_t material = code_seen('S') ? code_value_short() : 0;
  4005. if (material < 0 || material > 1) {
  4006. SERIAL_ERROR_START;
  4007. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4008. }
  4009. else {
  4010. int v;
  4011. switch (material) {
  4012. case 0:
  4013. if (code_seen('H')) {
  4014. v = code_value_short();
  4015. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4016. }
  4017. if (code_seen('F')) {
  4018. v = code_value_short();
  4019. plaPreheatFanSpeed = constrain(v, 0, 255);
  4020. }
  4021. #if TEMP_SENSOR_BED != 0
  4022. if (code_seen('B')) {
  4023. v = code_value_short();
  4024. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4025. }
  4026. #endif
  4027. break;
  4028. case 1:
  4029. if (code_seen('H')) {
  4030. v = code_value_short();
  4031. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4032. }
  4033. if (code_seen('F')) {
  4034. v = code_value_short();
  4035. absPreheatFanSpeed = constrain(v, 0, 255);
  4036. }
  4037. #if TEMP_SENSOR_BED != 0
  4038. if (code_seen('B')) {
  4039. v = code_value_short();
  4040. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4041. }
  4042. #endif
  4043. break;
  4044. }
  4045. }
  4046. }
  4047. #endif
  4048. #if HAS_POWER_SWITCH
  4049. /**
  4050. * M80: Turn on Power Supply
  4051. */
  4052. inline void gcode_M80() {
  4053. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4054. /**
  4055. * If you have a switch on suicide pin, this is useful
  4056. * if you want to start another print with suicide feature after
  4057. * a print without suicide...
  4058. */
  4059. #if HAS_SUICIDE
  4060. OUT_WRITE(SUICIDE_PIN, HIGH);
  4061. #endif
  4062. #if ENABLED(ULTIPANEL)
  4063. powersupply = true;
  4064. LCD_MESSAGEPGM(WELCOME_MSG);
  4065. lcd_update();
  4066. #endif
  4067. }
  4068. #endif // HAS_POWER_SWITCH
  4069. /**
  4070. * M81: Turn off Power, including Power Supply, if there is one.
  4071. *
  4072. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4073. */
  4074. inline void gcode_M81() {
  4075. thermalManager.disable_all_heaters();
  4076. stepper.finish_and_disable();
  4077. #if FAN_COUNT > 0
  4078. #if FAN_COUNT > 1
  4079. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4080. #else
  4081. fanSpeeds[0] = 0;
  4082. #endif
  4083. #endif
  4084. delay(1000); // Wait 1 second before switching off
  4085. #if HAS_SUICIDE
  4086. stepper.synchronize();
  4087. suicide();
  4088. #elif HAS_POWER_SWITCH
  4089. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4090. #endif
  4091. #if ENABLED(ULTIPANEL)
  4092. #if HAS_POWER_SWITCH
  4093. powersupply = false;
  4094. #endif
  4095. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4096. lcd_update();
  4097. #endif
  4098. }
  4099. /**
  4100. * M82: Set E codes absolute (default)
  4101. */
  4102. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4103. /**
  4104. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4105. */
  4106. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4107. /**
  4108. * M18, M84: Disable all stepper motors
  4109. */
  4110. inline void gcode_M18_M84() {
  4111. if (code_seen('S')) {
  4112. stepper_inactive_time = code_value() * 1000UL;
  4113. }
  4114. else {
  4115. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4116. if (all_axis) {
  4117. stepper.finish_and_disable();
  4118. }
  4119. else {
  4120. stepper.synchronize();
  4121. if (code_seen('X')) disable_x();
  4122. if (code_seen('Y')) disable_y();
  4123. if (code_seen('Z')) disable_z();
  4124. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4125. if (code_seen('E')) {
  4126. disable_e0();
  4127. disable_e1();
  4128. disable_e2();
  4129. disable_e3();
  4130. }
  4131. #endif
  4132. }
  4133. }
  4134. }
  4135. /**
  4136. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4137. */
  4138. inline void gcode_M85() {
  4139. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  4140. }
  4141. /**
  4142. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4143. * (Follows the same syntax as G92)
  4144. */
  4145. inline void gcode_M92() {
  4146. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4147. if (code_seen(axis_codes[i])) {
  4148. if (i == E_AXIS) {
  4149. float value = code_value();
  4150. if (value < 20.0) {
  4151. float factor = planner.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4152. planner.max_e_jerk *= factor;
  4153. planner.max_feedrate[i] *= factor;
  4154. planner.axis_steps_per_sqr_second[i] *= factor;
  4155. }
  4156. planner.axis_steps_per_unit[i] = value;
  4157. }
  4158. else {
  4159. planner.axis_steps_per_unit[i] = code_value();
  4160. }
  4161. }
  4162. }
  4163. }
  4164. /**
  4165. * Output the current position to serial
  4166. */
  4167. static void report_current_position() {
  4168. SERIAL_PROTOCOLPGM("X:");
  4169. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4170. SERIAL_PROTOCOLPGM(" Y:");
  4171. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4172. SERIAL_PROTOCOLPGM(" Z:");
  4173. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4174. SERIAL_PROTOCOLPGM(" E:");
  4175. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4176. stepper.report_positions();
  4177. #if ENABLED(SCARA)
  4178. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4179. SERIAL_PROTOCOL(delta[X_AXIS]);
  4180. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4181. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4182. SERIAL_EOL;
  4183. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4184. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4185. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4186. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4187. SERIAL_EOL;
  4188. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4189. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_unit[X_AXIS]);
  4190. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4191. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_unit[Y_AXIS]);
  4192. SERIAL_EOL; SERIAL_EOL;
  4193. #endif
  4194. }
  4195. /**
  4196. * M114: Output current position to serial port
  4197. */
  4198. inline void gcode_M114() { report_current_position(); }
  4199. /**
  4200. * M115: Capabilities string
  4201. */
  4202. inline void gcode_M115() {
  4203. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4204. }
  4205. /**
  4206. * M117: Set LCD Status Message
  4207. */
  4208. inline void gcode_M117() {
  4209. lcd_setstatus(current_command_args);
  4210. }
  4211. /**
  4212. * M119: Output endstop states to serial output
  4213. */
  4214. inline void gcode_M119() { endstops.M119(); }
  4215. /**
  4216. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4217. */
  4218. inline void gcode_M120() { endstops.enable_globally(true); }
  4219. /**
  4220. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4221. */
  4222. inline void gcode_M121() { endstops.enable_globally(false); }
  4223. #if ENABLED(BLINKM)
  4224. /**
  4225. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4226. */
  4227. inline void gcode_M150() {
  4228. SendColors(
  4229. code_seen('R') ? (byte)code_value_short() : 0,
  4230. code_seen('U') ? (byte)code_value_short() : 0,
  4231. code_seen('B') ? (byte)code_value_short() : 0
  4232. );
  4233. }
  4234. #endif // BLINKM
  4235. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4236. /**
  4237. * M155: Send data to a I2C slave device
  4238. *
  4239. * This is a PoC, the formating and arguments for the GCODE will
  4240. * change to be more compatible, the current proposal is:
  4241. *
  4242. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4243. *
  4244. * M155 B<byte-1 value in base 10>
  4245. * M155 B<byte-2 value in base 10>
  4246. * M155 B<byte-3 value in base 10>
  4247. *
  4248. * M155 S1 ; Send the buffered data and reset the buffer
  4249. * M155 R1 ; Reset the buffer without sending data
  4250. *
  4251. */
  4252. inline void gcode_M155() {
  4253. // Set the target address
  4254. if (code_seen('A'))
  4255. i2c.address((uint8_t) code_value_short());
  4256. // Add a new byte to the buffer
  4257. else if (code_seen('B'))
  4258. i2c.addbyte((int) code_value_short());
  4259. // Flush the buffer to the bus
  4260. else if (code_seen('S')) i2c.send();
  4261. // Reset and rewind the buffer
  4262. else if (code_seen('R')) i2c.reset();
  4263. }
  4264. /**
  4265. * M156: Request X bytes from I2C slave device
  4266. *
  4267. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4268. */
  4269. inline void gcode_M156() {
  4270. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4271. int bytes = code_seen('B') ? code_value_short() : 1;
  4272. if (addr && bytes > 0 && bytes <= 32) {
  4273. i2c.address(addr);
  4274. i2c.reqbytes(bytes);
  4275. }
  4276. else {
  4277. SERIAL_ERROR_START;
  4278. SERIAL_ERRORLN("Bad i2c request");
  4279. }
  4280. }
  4281. #endif //EXPERIMENTAL_I2CBUS
  4282. /**
  4283. * M200: Set filament diameter and set E axis units to cubic millimeters
  4284. *
  4285. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4286. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4287. */
  4288. inline void gcode_M200() {
  4289. if (get_target_extruder_from_command(200)) return;
  4290. if (code_seen('D')) {
  4291. float diameter = code_value();
  4292. // setting any extruder filament size disables volumetric on the assumption that
  4293. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4294. // for all extruders
  4295. volumetric_enabled = (diameter != 0.0);
  4296. if (volumetric_enabled) {
  4297. filament_size[target_extruder] = diameter;
  4298. // make sure all extruders have some sane value for the filament size
  4299. for (int i = 0; i < EXTRUDERS; i++)
  4300. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4301. }
  4302. }
  4303. else {
  4304. //reserved for setting filament diameter via UFID or filament measuring device
  4305. return;
  4306. }
  4307. calculate_volumetric_multipliers();
  4308. }
  4309. /**
  4310. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4311. */
  4312. inline void gcode_M201() {
  4313. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4314. if (code_seen(axis_codes[i])) {
  4315. planner.max_acceleration_units_per_sq_second[i] = code_value();
  4316. }
  4317. }
  4318. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4319. planner.reset_acceleration_rates();
  4320. }
  4321. #if 0 // Not used for Sprinter/grbl gen6
  4322. inline void gcode_M202() {
  4323. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4324. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * planner.axis_steps_per_unit[i];
  4325. }
  4326. }
  4327. #endif
  4328. /**
  4329. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4330. */
  4331. inline void gcode_M203() {
  4332. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4333. if (code_seen(axis_codes[i])) {
  4334. planner.max_feedrate[i] = code_value();
  4335. }
  4336. }
  4337. }
  4338. /**
  4339. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4340. *
  4341. * P = Printing moves
  4342. * R = Retract only (no X, Y, Z) moves
  4343. * T = Travel (non printing) moves
  4344. *
  4345. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4346. */
  4347. inline void gcode_M204() {
  4348. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4349. planner.travel_acceleration = planner.acceleration = code_value();
  4350. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4351. SERIAL_EOL;
  4352. }
  4353. if (code_seen('P')) {
  4354. planner.acceleration = code_value();
  4355. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4356. SERIAL_EOL;
  4357. }
  4358. if (code_seen('R')) {
  4359. planner.retract_acceleration = code_value();
  4360. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4361. SERIAL_EOL;
  4362. }
  4363. if (code_seen('T')) {
  4364. planner.travel_acceleration = code_value();
  4365. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4366. SERIAL_EOL;
  4367. }
  4368. }
  4369. /**
  4370. * M205: Set Advanced Settings
  4371. *
  4372. * S = Min Feed Rate (mm/s)
  4373. * T = Min Travel Feed Rate (mm/s)
  4374. * B = Min Segment Time (µs)
  4375. * X = Max XY Jerk (mm/s/s)
  4376. * Z = Max Z Jerk (mm/s/s)
  4377. * E = Max E Jerk (mm/s/s)
  4378. */
  4379. inline void gcode_M205() {
  4380. if (code_seen('S')) planner.min_feedrate = code_value();
  4381. if (code_seen('T')) planner.min_travel_feedrate = code_value();
  4382. if (code_seen('B')) planner.min_segment_time = code_value();
  4383. if (code_seen('X')) planner.max_xy_jerk = code_value();
  4384. if (code_seen('Z')) planner.max_z_jerk = code_value();
  4385. if (code_seen('E')) planner.max_e_jerk = code_value();
  4386. }
  4387. /**
  4388. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4389. */
  4390. inline void gcode_M206() {
  4391. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4392. if (code_seen(axis_codes[i]))
  4393. set_home_offset((AxisEnum)i, code_value());
  4394. #if ENABLED(SCARA)
  4395. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4396. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4397. #endif
  4398. sync_plan_position();
  4399. report_current_position();
  4400. }
  4401. #if ENABLED(DELTA)
  4402. /**
  4403. * M665: Set delta configurations
  4404. *
  4405. * L = diagonal rod
  4406. * R = delta radius
  4407. * S = segments per second
  4408. * A = Alpha (Tower 1) diagonal rod trim
  4409. * B = Beta (Tower 2) diagonal rod trim
  4410. * C = Gamma (Tower 3) diagonal rod trim
  4411. */
  4412. inline void gcode_M665() {
  4413. if (code_seen('L')) delta_diagonal_rod = code_value();
  4414. if (code_seen('R')) delta_radius = code_value();
  4415. if (code_seen('S')) delta_segments_per_second = code_value();
  4416. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4417. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4418. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4419. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4420. }
  4421. /**
  4422. * M666: Set delta endstop adjustment
  4423. */
  4424. inline void gcode_M666() {
  4425. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4426. if (DEBUGGING(LEVELING)) {
  4427. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4428. }
  4429. #endif
  4430. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4431. if (code_seen(axis_codes[i])) {
  4432. endstop_adj[i] = code_value();
  4433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4434. if (DEBUGGING(LEVELING)) {
  4435. SERIAL_ECHOPGM("endstop_adj[");
  4436. SERIAL_ECHO(axis_codes[i]);
  4437. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4438. SERIAL_EOL;
  4439. }
  4440. #endif
  4441. }
  4442. }
  4443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4444. if (DEBUGGING(LEVELING)) {
  4445. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4446. }
  4447. #endif
  4448. }
  4449. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4450. /**
  4451. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4452. */
  4453. inline void gcode_M666() {
  4454. if (code_seen('Z')) z_endstop_adj = code_value();
  4455. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4456. SERIAL_EOL;
  4457. }
  4458. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4459. #if ENABLED(FWRETRACT)
  4460. /**
  4461. * M207: Set firmware retraction values
  4462. *
  4463. * S[+mm] retract_length
  4464. * W[+mm] retract_length_swap (multi-extruder)
  4465. * F[mm/min] retract_feedrate
  4466. * Z[mm] retract_zlift
  4467. */
  4468. inline void gcode_M207() {
  4469. if (code_seen('S')) retract_length = code_value();
  4470. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4471. if (code_seen('Z')) retract_zlift = code_value();
  4472. #if EXTRUDERS > 1
  4473. if (code_seen('W')) retract_length_swap = code_value();
  4474. #endif
  4475. }
  4476. /**
  4477. * M208: Set firmware un-retraction values
  4478. *
  4479. * S[+mm] retract_recover_length (in addition to M207 S*)
  4480. * W[+mm] retract_recover_length_swap (multi-extruder)
  4481. * F[mm/min] retract_recover_feedrate
  4482. */
  4483. inline void gcode_M208() {
  4484. if (code_seen('S')) retract_recover_length = code_value();
  4485. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4486. #if EXTRUDERS > 1
  4487. if (code_seen('W')) retract_recover_length_swap = code_value();
  4488. #endif
  4489. }
  4490. /**
  4491. * M209: Enable automatic retract (M209 S1)
  4492. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4493. */
  4494. inline void gcode_M209() {
  4495. if (code_seen('S')) {
  4496. int t = code_value_short();
  4497. switch (t) {
  4498. case 0:
  4499. autoretract_enabled = false;
  4500. break;
  4501. case 1:
  4502. autoretract_enabled = true;
  4503. break;
  4504. default:
  4505. unknown_command_error();
  4506. return;
  4507. }
  4508. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4509. }
  4510. }
  4511. #endif // FWRETRACT
  4512. #if EXTRUDERS > 1
  4513. /**
  4514. * M218 - set hotend offset (in mm)
  4515. *
  4516. * T<tool>
  4517. * X<xoffset>
  4518. * Y<yoffset>
  4519. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4520. */
  4521. inline void gcode_M218() {
  4522. if (get_target_extruder_from_command(218)) return;
  4523. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4524. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4525. #if ENABLED(DUAL_X_CARRIAGE)
  4526. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4527. #endif
  4528. SERIAL_ECHO_START;
  4529. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4530. for (int e = 0; e < EXTRUDERS; e++) {
  4531. SERIAL_CHAR(' ');
  4532. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4533. SERIAL_CHAR(',');
  4534. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4535. #if ENABLED(DUAL_X_CARRIAGE)
  4536. SERIAL_CHAR(',');
  4537. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4538. #endif
  4539. }
  4540. SERIAL_EOL;
  4541. }
  4542. #endif // EXTRUDERS > 1
  4543. /**
  4544. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4545. */
  4546. inline void gcode_M220() {
  4547. if (code_seen('S')) feedrate_multiplier = code_value();
  4548. }
  4549. /**
  4550. * M221: Set extrusion percentage (M221 T0 S95)
  4551. */
  4552. inline void gcode_M221() {
  4553. if (code_seen('S')) {
  4554. int sval = code_value();
  4555. if (get_target_extruder_from_command(221)) return;
  4556. extruder_multiplier[target_extruder] = sval;
  4557. }
  4558. }
  4559. /**
  4560. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4561. */
  4562. inline void gcode_M226() {
  4563. if (code_seen('P')) {
  4564. int pin_number = code_value();
  4565. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4566. if (pin_state >= -1 && pin_state <= 1) {
  4567. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4568. if (sensitive_pins[i] == pin_number) {
  4569. pin_number = -1;
  4570. break;
  4571. }
  4572. }
  4573. if (pin_number > -1) {
  4574. int target = LOW;
  4575. stepper.synchronize();
  4576. pinMode(pin_number, INPUT);
  4577. switch (pin_state) {
  4578. case 1:
  4579. target = HIGH;
  4580. break;
  4581. case 0:
  4582. target = LOW;
  4583. break;
  4584. case -1:
  4585. target = !digitalRead(pin_number);
  4586. break;
  4587. }
  4588. while (digitalRead(pin_number) != target) idle();
  4589. } // pin_number > -1
  4590. } // pin_state -1 0 1
  4591. } // code_seen('P')
  4592. }
  4593. #if HAS_SERVOS
  4594. /**
  4595. * M280: Get or set servo position. P<index> S<angle>
  4596. */
  4597. inline void gcode_M280() {
  4598. int servo_index = code_seen('P') ? code_value_short() : -1;
  4599. int servo_position = 0;
  4600. if (code_seen('S')) {
  4601. servo_position = code_value_short();
  4602. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4603. servo[servo_index].move(servo_position);
  4604. else {
  4605. SERIAL_ERROR_START;
  4606. SERIAL_ERROR("Servo ");
  4607. SERIAL_ERROR(servo_index);
  4608. SERIAL_ERRORLN(" out of range");
  4609. }
  4610. }
  4611. else if (servo_index >= 0) {
  4612. SERIAL_ECHO_START;
  4613. SERIAL_ECHO(" Servo ");
  4614. SERIAL_ECHO(servo_index);
  4615. SERIAL_ECHO(": ");
  4616. SERIAL_ECHOLN(servo[servo_index].read());
  4617. }
  4618. }
  4619. #endif // HAS_SERVOS
  4620. #if HAS_BUZZER
  4621. /**
  4622. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4623. */
  4624. inline void gcode_M300() {
  4625. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4626. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4627. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4628. buzz(beepP, beepS);
  4629. }
  4630. #endif // HAS_BUZZER
  4631. #if ENABLED(PIDTEMP)
  4632. /**
  4633. * M301: Set PID parameters P I D (and optionally C, L)
  4634. *
  4635. * P[float] Kp term
  4636. * I[float] Ki term (unscaled)
  4637. * D[float] Kd term (unscaled)
  4638. *
  4639. * With PID_ADD_EXTRUSION_RATE:
  4640. *
  4641. * C[float] Kc term
  4642. * L[float] LPQ length
  4643. */
  4644. inline void gcode_M301() {
  4645. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4646. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4647. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4648. if (e < EXTRUDERS) { // catch bad input value
  4649. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4650. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4651. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4652. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4653. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4654. if (code_seen('L')) lpq_len = code_value();
  4655. NOMORE(lpq_len, LPQ_MAX_LEN);
  4656. #endif
  4657. thermalManager.updatePID();
  4658. SERIAL_ECHO_START;
  4659. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4660. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4661. SERIAL_ECHO(e);
  4662. #endif // PID_PARAMS_PER_EXTRUDER
  4663. SERIAL_ECHO(" p:");
  4664. SERIAL_ECHO(PID_PARAM(Kp, e));
  4665. SERIAL_ECHO(" i:");
  4666. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4667. SERIAL_ECHO(" d:");
  4668. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4669. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4670. SERIAL_ECHO(" c:");
  4671. //Kc does not have scaling applied above, or in resetting defaults
  4672. SERIAL_ECHO(PID_PARAM(Kc, e));
  4673. #endif
  4674. SERIAL_EOL;
  4675. }
  4676. else {
  4677. SERIAL_ERROR_START;
  4678. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4679. }
  4680. }
  4681. #endif // PIDTEMP
  4682. #if ENABLED(PIDTEMPBED)
  4683. inline void gcode_M304() {
  4684. if (code_seen('P')) thermalManager.bedKp = code_value();
  4685. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value());
  4686. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value());
  4687. thermalManager.updatePID();
  4688. SERIAL_ECHO_START;
  4689. SERIAL_ECHO(" p:");
  4690. SERIAL_ECHO(thermalManager.bedKp);
  4691. SERIAL_ECHO(" i:");
  4692. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4693. SERIAL_ECHO(" d:");
  4694. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4695. }
  4696. #endif // PIDTEMPBED
  4697. #if defined(CHDK) || HAS_PHOTOGRAPH
  4698. /**
  4699. * M240: Trigger a camera by emulating a Canon RC-1
  4700. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4701. */
  4702. inline void gcode_M240() {
  4703. #ifdef CHDK
  4704. OUT_WRITE(CHDK, HIGH);
  4705. chdkHigh = millis();
  4706. chdkActive = true;
  4707. #elif HAS_PHOTOGRAPH
  4708. const uint8_t NUM_PULSES = 16;
  4709. const float PULSE_LENGTH = 0.01524;
  4710. for (int i = 0; i < NUM_PULSES; i++) {
  4711. WRITE(PHOTOGRAPH_PIN, HIGH);
  4712. _delay_ms(PULSE_LENGTH);
  4713. WRITE(PHOTOGRAPH_PIN, LOW);
  4714. _delay_ms(PULSE_LENGTH);
  4715. }
  4716. delay(7.33);
  4717. for (int i = 0; i < NUM_PULSES; i++) {
  4718. WRITE(PHOTOGRAPH_PIN, HIGH);
  4719. _delay_ms(PULSE_LENGTH);
  4720. WRITE(PHOTOGRAPH_PIN, LOW);
  4721. _delay_ms(PULSE_LENGTH);
  4722. }
  4723. #endif // !CHDK && HAS_PHOTOGRAPH
  4724. }
  4725. #endif // CHDK || PHOTOGRAPH_PIN
  4726. #if ENABLED(HAS_LCD_CONTRAST)
  4727. /**
  4728. * M250: Read and optionally set the LCD contrast
  4729. */
  4730. inline void gcode_M250() {
  4731. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4732. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4733. SERIAL_PROTOCOL(lcd_contrast);
  4734. SERIAL_EOL;
  4735. }
  4736. #endif // HAS_LCD_CONTRAST
  4737. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4738. /**
  4739. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4740. */
  4741. inline void gcode_M302() {
  4742. thermalManager.extrude_min_temp = code_seen('S') ? code_value() : 0;
  4743. }
  4744. #endif // PREVENT_DANGEROUS_EXTRUDE
  4745. /**
  4746. * M303: PID relay autotune
  4747. *
  4748. * S<temperature> sets the target temperature. (default 150C)
  4749. * E<extruder> (-1 for the bed) (default 0)
  4750. * C<cycles>
  4751. * U<bool> with a non-zero value will apply the result to current settings
  4752. */
  4753. inline void gcode_M303() {
  4754. #if HAS_PID_HEATING
  4755. int e = code_seen('E') ? code_value_short() : 0;
  4756. int c = code_seen('C') ? code_value_short() : 5;
  4757. bool u = code_seen('U') && code_value_short() != 0;
  4758. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4759. if (e >= 0 && e < EXTRUDERS)
  4760. target_extruder = e;
  4761. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4762. thermalManager.PID_autotune(temp, e, c, u);
  4763. KEEPALIVE_STATE(IN_HANDLER);
  4764. #else
  4765. SERIAL_ERROR_START;
  4766. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4767. #endif
  4768. }
  4769. #if ENABLED(SCARA)
  4770. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4771. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4772. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4773. if (IsRunning()) {
  4774. //gcode_get_destination(); // For X Y Z E F
  4775. delta[X_AXIS] = delta_x;
  4776. delta[Y_AXIS] = delta_y;
  4777. calculate_SCARA_forward_Transform(delta);
  4778. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4779. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4780. prepare_move();
  4781. //ok_to_send();
  4782. return true;
  4783. }
  4784. return false;
  4785. }
  4786. /**
  4787. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4788. */
  4789. inline bool gcode_M360() {
  4790. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4791. return SCARA_move_to_cal(0, 120);
  4792. }
  4793. /**
  4794. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4795. */
  4796. inline bool gcode_M361() {
  4797. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4798. return SCARA_move_to_cal(90, 130);
  4799. }
  4800. /**
  4801. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4802. */
  4803. inline bool gcode_M362() {
  4804. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4805. return SCARA_move_to_cal(60, 180);
  4806. }
  4807. /**
  4808. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4809. */
  4810. inline bool gcode_M363() {
  4811. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4812. return SCARA_move_to_cal(50, 90);
  4813. }
  4814. /**
  4815. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4816. */
  4817. inline bool gcode_M364() {
  4818. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4819. return SCARA_move_to_cal(45, 135);
  4820. }
  4821. /**
  4822. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4823. */
  4824. inline void gcode_M365() {
  4825. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4826. if (code_seen(axis_codes[i])) {
  4827. axis_scaling[i] = code_value();
  4828. }
  4829. }
  4830. }
  4831. #endif // SCARA
  4832. #if ENABLED(EXT_SOLENOID)
  4833. void enable_solenoid(uint8_t num) {
  4834. switch (num) {
  4835. case 0:
  4836. OUT_WRITE(SOL0_PIN, HIGH);
  4837. break;
  4838. #if HAS_SOLENOID_1
  4839. case 1:
  4840. OUT_WRITE(SOL1_PIN, HIGH);
  4841. break;
  4842. #endif
  4843. #if HAS_SOLENOID_2
  4844. case 2:
  4845. OUT_WRITE(SOL2_PIN, HIGH);
  4846. break;
  4847. #endif
  4848. #if HAS_SOLENOID_3
  4849. case 3:
  4850. OUT_WRITE(SOL3_PIN, HIGH);
  4851. break;
  4852. #endif
  4853. default:
  4854. SERIAL_ECHO_START;
  4855. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4856. break;
  4857. }
  4858. }
  4859. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4860. void disable_all_solenoids() {
  4861. OUT_WRITE(SOL0_PIN, LOW);
  4862. OUT_WRITE(SOL1_PIN, LOW);
  4863. OUT_WRITE(SOL2_PIN, LOW);
  4864. OUT_WRITE(SOL3_PIN, LOW);
  4865. }
  4866. /**
  4867. * M380: Enable solenoid on the active extruder
  4868. */
  4869. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4870. /**
  4871. * M381: Disable all solenoids
  4872. */
  4873. inline void gcode_M381() { disable_all_solenoids(); }
  4874. #endif // EXT_SOLENOID
  4875. /**
  4876. * M400: Finish all moves
  4877. */
  4878. inline void gcode_M400() { stepper.synchronize(); }
  4879. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4880. /**
  4881. * M401: Engage Z Servo endstop if available
  4882. */
  4883. inline void gcode_M401() {
  4884. #if HAS_SERVO_ENDSTOPS
  4885. raise_z_for_servo();
  4886. #endif
  4887. deploy_z_probe();
  4888. }
  4889. /**
  4890. * M402: Retract Z Servo endstop if enabled
  4891. */
  4892. inline void gcode_M402() {
  4893. #if HAS_SERVO_ENDSTOPS
  4894. raise_z_for_servo();
  4895. #endif
  4896. stow_z_probe(false);
  4897. }
  4898. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4899. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4900. /**
  4901. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4902. */
  4903. inline void gcode_M404() {
  4904. if (code_seen('W')) {
  4905. filament_width_nominal = code_value();
  4906. }
  4907. else {
  4908. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4909. SERIAL_PROTOCOLLN(filament_width_nominal);
  4910. }
  4911. }
  4912. /**
  4913. * M405: Turn on filament sensor for control
  4914. */
  4915. inline void gcode_M405() {
  4916. if (code_seen('D')) meas_delay_cm = code_value();
  4917. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4918. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4919. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  4920. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4921. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4922. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4923. }
  4924. filament_sensor = true;
  4925. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4926. //SERIAL_PROTOCOL(filament_width_meas);
  4927. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4928. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4929. }
  4930. /**
  4931. * M406: Turn off filament sensor for control
  4932. */
  4933. inline void gcode_M406() { filament_sensor = false; }
  4934. /**
  4935. * M407: Get measured filament diameter on serial output
  4936. */
  4937. inline void gcode_M407() {
  4938. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4939. SERIAL_PROTOCOLLN(filament_width_meas);
  4940. }
  4941. #endif // FILAMENT_WIDTH_SENSOR
  4942. /**
  4943. * M410: Quickstop - Abort all planned moves
  4944. *
  4945. * This will stop the carriages mid-move, so most likely they
  4946. * will be out of sync with the stepper position after this.
  4947. */
  4948. inline void gcode_M410() { stepper.quick_stop(); }
  4949. #if ENABLED(MESH_BED_LEVELING)
  4950. /**
  4951. * M420: Enable/Disable Mesh Bed Leveling
  4952. */
  4953. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4954. /**
  4955. * M421: Set a single Mesh Bed Leveling Z coordinate
  4956. */
  4957. inline void gcode_M421() {
  4958. float x = 0, y = 0, z = 0;
  4959. bool err = false, hasX, hasY, hasZ;
  4960. if ((hasX = code_seen('X'))) x = code_value();
  4961. if ((hasY = code_seen('Y'))) y = code_value();
  4962. if ((hasZ = code_seen('Z'))) z = code_value();
  4963. if (hasX && hasY && hasZ) {
  4964. int8_t ix = mbl.select_x_index(x),
  4965. iy = mbl.select_y_index(y);
  4966. if (ix >= 0 && iy >= 0)
  4967. mbl.set_z(ix, iy, z);
  4968. else {
  4969. SERIAL_ERROR_START;
  4970. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  4971. }
  4972. }
  4973. else {
  4974. SERIAL_ERROR_START;
  4975. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4976. }
  4977. }
  4978. #endif
  4979. /**
  4980. * M428: Set home_offset based on the distance between the
  4981. * current_position and the nearest "reference point."
  4982. * If an axis is past center its endstop position
  4983. * is the reference-point. Otherwise it uses 0. This allows
  4984. * the Z offset to be set near the bed when using a max endstop.
  4985. *
  4986. * M428 can't be used more than 2cm away from 0 or an endstop.
  4987. *
  4988. * Use M206 to set these values directly.
  4989. */
  4990. inline void gcode_M428() {
  4991. bool err = false;
  4992. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4993. if (axis_homed[i]) {
  4994. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  4995. diff = current_position[i] - base;
  4996. if (diff > -20 && diff < 20) {
  4997. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  4998. }
  4999. else {
  5000. SERIAL_ERROR_START;
  5001. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5002. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5003. #if HAS_BUZZER
  5004. buzz(200, 40);
  5005. #endif
  5006. err = true;
  5007. break;
  5008. }
  5009. }
  5010. }
  5011. if (!err) {
  5012. sync_plan_position();
  5013. report_current_position();
  5014. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5015. #if HAS_BUZZER
  5016. buzz(200, 659);
  5017. buzz(200, 698);
  5018. #endif
  5019. }
  5020. }
  5021. /**
  5022. * M500: Store settings in EEPROM
  5023. */
  5024. inline void gcode_M500() {
  5025. Config_StoreSettings();
  5026. }
  5027. /**
  5028. * M501: Read settings from EEPROM
  5029. */
  5030. inline void gcode_M501() {
  5031. Config_RetrieveSettings();
  5032. }
  5033. /**
  5034. * M502: Revert to default settings
  5035. */
  5036. inline void gcode_M502() {
  5037. Config_ResetDefault();
  5038. }
  5039. /**
  5040. * M503: print settings currently in memory
  5041. */
  5042. inline void gcode_M503() {
  5043. Config_PrintSettings(code_seen('S') && code_value() == 0);
  5044. }
  5045. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5046. /**
  5047. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5048. */
  5049. inline void gcode_M540() {
  5050. if (code_seen('S')) stepper.abort_on_endstop_hit = (code_value() > 0);
  5051. }
  5052. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5053. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5054. inline void gcode_SET_Z_PROBE_OFFSET() {
  5055. SERIAL_ECHO_START;
  5056. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5057. SERIAL_CHAR(' ');
  5058. if (code_seen('Z')) {
  5059. float value = code_value();
  5060. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5061. zprobe_zoffset = value;
  5062. SERIAL_ECHO(zprobe_zoffset);
  5063. }
  5064. else {
  5065. SERIAL_ECHOPGM(MSG_Z_MIN);
  5066. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5067. SERIAL_ECHOPGM(MSG_Z_MAX);
  5068. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5069. }
  5070. }
  5071. else {
  5072. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5073. }
  5074. SERIAL_EOL;
  5075. }
  5076. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5077. #if ENABLED(FILAMENTCHANGEENABLE)
  5078. /**
  5079. * M600: Pause for filament change
  5080. *
  5081. * E[distance] - Retract the filament this far (negative value)
  5082. * Z[distance] - Move the Z axis by this distance
  5083. * X[position] - Move to this X position, with Y
  5084. * Y[position] - Move to this Y position, with X
  5085. * L[distance] - Retract distance for removal (manual reload)
  5086. *
  5087. * Default values are used for omitted arguments.
  5088. *
  5089. */
  5090. inline void gcode_M600() {
  5091. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5092. SERIAL_ERROR_START;
  5093. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5094. return;
  5095. }
  5096. float lastpos[NUM_AXIS];
  5097. #if ENABLED(DELTA)
  5098. float fr60 = feedrate / 60;
  5099. #endif
  5100. for (int i = 0; i < NUM_AXIS; i++)
  5101. lastpos[i] = destination[i] = current_position[i];
  5102. #if ENABLED(DELTA)
  5103. #define RUNPLAN calculate_delta(destination); \
  5104. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5105. #else
  5106. #define RUNPLAN line_to_destination();
  5107. #endif
  5108. //retract by E
  5109. if (code_seen('E')) destination[E_AXIS] += code_value();
  5110. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5111. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5112. #endif
  5113. RUNPLAN;
  5114. //lift Z
  5115. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  5116. #ifdef FILAMENTCHANGE_ZADD
  5117. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5118. #endif
  5119. RUNPLAN;
  5120. //move xy
  5121. if (code_seen('X')) destination[X_AXIS] = code_value();
  5122. #ifdef FILAMENTCHANGE_XPOS
  5123. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5124. #endif
  5125. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5126. #ifdef FILAMENTCHANGE_YPOS
  5127. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5128. #endif
  5129. RUNPLAN;
  5130. if (code_seen('L')) destination[E_AXIS] += code_value();
  5131. #ifdef FILAMENTCHANGE_FINALRETRACT
  5132. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5133. #endif
  5134. RUNPLAN;
  5135. //finish moves
  5136. stepper.synchronize();
  5137. //disable extruder steppers so filament can be removed
  5138. disable_e0();
  5139. disable_e1();
  5140. disable_e2();
  5141. disable_e3();
  5142. delay(100);
  5143. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5144. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5145. millis_t next_tick = 0;
  5146. #endif
  5147. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5148. while (!lcd_clicked()) {
  5149. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5150. millis_t ms = millis();
  5151. if (ELAPSED(ms, next_tick)) {
  5152. lcd_quick_feedback();
  5153. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5154. }
  5155. idle(true);
  5156. #else
  5157. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5158. destination[E_AXIS] = current_position[E_AXIS];
  5159. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5160. stepper.synchronize();
  5161. #endif
  5162. } // while(!lcd_clicked)
  5163. KEEPALIVE_STATE(IN_HANDLER);
  5164. lcd_quick_feedback(); // click sound feedback
  5165. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5166. current_position[E_AXIS] = 0;
  5167. stepper.synchronize();
  5168. #endif
  5169. //return to normal
  5170. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5171. #ifdef FILAMENTCHANGE_FINALRETRACT
  5172. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5173. #endif
  5174. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5175. sync_plan_position_e();
  5176. RUNPLAN; //should do nothing
  5177. lcd_reset_alert_level();
  5178. #if ENABLED(DELTA)
  5179. // Move XYZ to starting position, then E
  5180. calculate_delta(lastpos);
  5181. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5182. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5183. #else
  5184. // Move XY to starting position, then Z, then E
  5185. destination[X_AXIS] = lastpos[X_AXIS];
  5186. destination[Y_AXIS] = lastpos[Y_AXIS];
  5187. line_to_destination();
  5188. destination[Z_AXIS] = lastpos[Z_AXIS];
  5189. line_to_destination();
  5190. destination[E_AXIS] = lastpos[E_AXIS];
  5191. line_to_destination();
  5192. #endif
  5193. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5194. filament_ran_out = false;
  5195. #endif
  5196. }
  5197. #endif // FILAMENTCHANGEENABLE
  5198. #if ENABLED(DUAL_X_CARRIAGE)
  5199. /**
  5200. * M605: Set dual x-carriage movement mode
  5201. *
  5202. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5203. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5204. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5205. * millimeters x-offset and an optional differential hotend temperature of
  5206. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5207. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5208. *
  5209. * Note: the X axis should be homed after changing dual x-carriage mode.
  5210. */
  5211. inline void gcode_M605() {
  5212. stepper.synchronize();
  5213. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5214. switch (dual_x_carriage_mode) {
  5215. case DXC_DUPLICATION_MODE:
  5216. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5217. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5218. SERIAL_ECHO_START;
  5219. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5220. SERIAL_CHAR(' ');
  5221. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5222. SERIAL_CHAR(',');
  5223. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5224. SERIAL_CHAR(' ');
  5225. SERIAL_ECHO(duplicate_extruder_x_offset);
  5226. SERIAL_CHAR(',');
  5227. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5228. break;
  5229. case DXC_FULL_CONTROL_MODE:
  5230. case DXC_AUTO_PARK_MODE:
  5231. break;
  5232. default:
  5233. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5234. break;
  5235. }
  5236. active_extruder_parked = false;
  5237. extruder_duplication_enabled = false;
  5238. delayed_move_time = 0;
  5239. }
  5240. #endif // DUAL_X_CARRIAGE
  5241. /**
  5242. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5243. */
  5244. inline void gcode_M907() {
  5245. #if HAS_DIGIPOTSS
  5246. for (int i = 0; i < NUM_AXIS; i++)
  5247. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value());
  5248. if (code_seen('B')) stepper.digipot_current(4, code_value());
  5249. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value());
  5250. #endif
  5251. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5252. if (code_seen('X')) stepper.digipot_current(0, code_value());
  5253. #endif
  5254. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5255. if (code_seen('Z')) stepper.digipot_current(1, code_value());
  5256. #endif
  5257. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5258. if (code_seen('E')) stepper.digipot_current(2, code_value());
  5259. #endif
  5260. #if ENABLED(DIGIPOT_I2C)
  5261. // this one uses actual amps in floating point
  5262. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5263. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5264. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5265. #endif
  5266. #if ENABLED(DAC_STEPPER_CURRENT)
  5267. if (code_seen('S')) {
  5268. float dac_percent = code_value();
  5269. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5270. }
  5271. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5272. #endif
  5273. }
  5274. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5275. /**
  5276. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5277. */
  5278. inline void gcode_M908() {
  5279. #if HAS_DIGIPOTSS
  5280. stepper.digitalPotWrite(
  5281. code_seen('P') ? code_value() : 0,
  5282. code_seen('S') ? code_value() : 0
  5283. );
  5284. #endif
  5285. #ifdef DAC_STEPPER_CURRENT
  5286. dac_current_raw(
  5287. code_seen('P') ? code_value_long() : -1,
  5288. code_seen('S') ? code_value_short() : 0
  5289. );
  5290. #endif
  5291. }
  5292. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5293. inline void gcode_M909() { dac_print_values(); }
  5294. inline void gcode_M910() { dac_commit_eeprom(); }
  5295. #endif
  5296. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5297. #if HAS_MICROSTEPS
  5298. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5299. inline void gcode_M350() {
  5300. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value());
  5301. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, (uint8_t)code_value());
  5302. if (code_seen('B')) stepper.microstep_mode(4, code_value());
  5303. stepper.microstep_readings();
  5304. }
  5305. /**
  5306. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5307. * S# determines MS1 or MS2, X# sets the pin high/low.
  5308. */
  5309. inline void gcode_M351() {
  5310. if (code_seen('S')) switch (code_value_short()) {
  5311. case 1:
  5312. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value(), -1);
  5313. if (code_seen('B')) stepper.microstep_ms(4, code_value(), -1);
  5314. break;
  5315. case 2:
  5316. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value());
  5317. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value());
  5318. break;
  5319. }
  5320. stepper.microstep_readings();
  5321. }
  5322. #endif // HAS_MICROSTEPS
  5323. /**
  5324. * M999: Restart after being stopped
  5325. */
  5326. inline void gcode_M999() {
  5327. Running = true;
  5328. lcd_reset_alert_level();
  5329. // gcode_LastN = Stopped_gcode_LastN;
  5330. FlushSerialRequestResend();
  5331. }
  5332. /**
  5333. * T0-T3: Switch tool, usually switching extruders
  5334. *
  5335. * F[mm/min] Set the movement feedrate
  5336. */
  5337. inline void gcode_T(uint8_t tmp_extruder) {
  5338. if (tmp_extruder >= EXTRUDERS) {
  5339. SERIAL_ECHO_START;
  5340. SERIAL_CHAR('T');
  5341. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5342. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5343. return;
  5344. }
  5345. float stored_feedrate = feedrate;
  5346. if (code_seen('F')) {
  5347. float next_feedrate = code_value();
  5348. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5349. }
  5350. else {
  5351. #ifdef XY_TRAVEL_SPEED
  5352. feedrate = XY_TRAVEL_SPEED;
  5353. #else
  5354. feedrate = min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]);
  5355. #endif
  5356. }
  5357. #if EXTRUDERS > 1
  5358. if (tmp_extruder != active_extruder) {
  5359. // Save current position to return to after applying extruder offset
  5360. set_destination_to_current();
  5361. #if ENABLED(DUAL_X_CARRIAGE)
  5362. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5363. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5364. // Park old head: 1) raise 2) move to park position 3) lower
  5365. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5366. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5367. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5368. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5369. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5370. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5371. stepper.synchronize();
  5372. }
  5373. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5374. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5375. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5376. active_extruder = tmp_extruder;
  5377. // This function resets the max/min values - the current position may be overwritten below.
  5378. set_axis_is_at_home(X_AXIS);
  5379. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5380. current_position[X_AXIS] = inactive_extruder_x_pos;
  5381. inactive_extruder_x_pos = destination[X_AXIS];
  5382. }
  5383. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5384. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5385. if (active_extruder_parked)
  5386. current_position[X_AXIS] = inactive_extruder_x_pos;
  5387. else
  5388. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5389. inactive_extruder_x_pos = destination[X_AXIS];
  5390. extruder_duplication_enabled = false;
  5391. }
  5392. else {
  5393. // record raised toolhead position for use by unpark
  5394. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5395. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5396. active_extruder_parked = true;
  5397. delayed_move_time = 0;
  5398. }
  5399. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5400. #else // !DUAL_X_CARRIAGE
  5401. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5402. // Offset extruder, make sure to apply the bed level rotation matrix
  5403. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5404. extruder_offset[Y_AXIS][tmp_extruder],
  5405. 0),
  5406. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5407. extruder_offset[Y_AXIS][active_extruder],
  5408. 0),
  5409. offset_vec = tmp_offset_vec - act_offset_vec;
  5410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5411. if (DEBUGGING(LEVELING)) {
  5412. SERIAL_ECHOLNPGM(">>> gcode_T");
  5413. tmp_offset_vec.debug("tmp_offset_vec");
  5414. act_offset_vec.debug("act_offset_vec");
  5415. offset_vec.debug("offset_vec (BEFORE)");
  5416. DEBUG_POS("BEFORE rotation", current_position);
  5417. }
  5418. #endif
  5419. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5420. current_position[X_AXIS] += offset_vec.x;
  5421. current_position[Y_AXIS] += offset_vec.y;
  5422. current_position[Z_AXIS] += offset_vec.z;
  5423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5424. if (DEBUGGING(LEVELING)) {
  5425. offset_vec.debug("offset_vec (AFTER)");
  5426. DEBUG_POS("AFTER rotation", current_position);
  5427. SERIAL_ECHOLNPGM("<<< gcode_T");
  5428. }
  5429. #endif
  5430. #else // !AUTO_BED_LEVELING_FEATURE
  5431. // Offset extruder (only by XY)
  5432. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5433. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5434. #endif // !AUTO_BED_LEVELING_FEATURE
  5435. // Set the new active extruder and position
  5436. active_extruder = tmp_extruder;
  5437. #endif // !DUAL_X_CARRIAGE
  5438. #if ENABLED(DELTA)
  5439. sync_plan_position_delta();
  5440. #else
  5441. sync_plan_position();
  5442. #endif
  5443. // Move to the old position
  5444. if (IsRunning()) prepare_move();
  5445. } // (tmp_extruder != active_extruder)
  5446. #if ENABLED(EXT_SOLENOID)
  5447. stepper.synchronize();
  5448. disable_all_solenoids();
  5449. enable_solenoid_on_active_extruder();
  5450. #endif // EXT_SOLENOID
  5451. #endif // EXTRUDERS > 1
  5452. feedrate = stored_feedrate;
  5453. SERIAL_ECHO_START;
  5454. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5455. SERIAL_PROTOCOLLN((int)active_extruder);
  5456. }
  5457. /**
  5458. * Process a single command and dispatch it to its handler
  5459. * This is called from the main loop()
  5460. */
  5461. void process_next_command() {
  5462. current_command = command_queue[cmd_queue_index_r];
  5463. if (DEBUGGING(ECHO)) {
  5464. SERIAL_ECHO_START;
  5465. SERIAL_ECHOLN(current_command);
  5466. }
  5467. // Sanitize the current command:
  5468. // - Skip leading spaces
  5469. // - Bypass N[-0-9][0-9]*[ ]*
  5470. // - Overwrite * with nul to mark the end
  5471. while (*current_command == ' ') ++current_command;
  5472. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5473. current_command += 2; // skip N[-0-9]
  5474. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5475. while (*current_command == ' ') ++current_command; // skip [ ]*
  5476. }
  5477. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5478. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5479. char *cmd_ptr = current_command;
  5480. // Get the command code, which must be G, M, or T
  5481. char command_code = *cmd_ptr++;
  5482. // Skip spaces to get the numeric part
  5483. while (*cmd_ptr == ' ') cmd_ptr++;
  5484. uint16_t codenum = 0; // define ahead of goto
  5485. // Bail early if there's no code
  5486. bool code_is_good = NUMERIC(*cmd_ptr);
  5487. if (!code_is_good) goto ExitUnknownCommand;
  5488. // Get and skip the code number
  5489. do {
  5490. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5491. cmd_ptr++;
  5492. } while (NUMERIC(*cmd_ptr));
  5493. // Skip all spaces to get to the first argument, or nul
  5494. while (*cmd_ptr == ' ') cmd_ptr++;
  5495. // The command's arguments (if any) start here, for sure!
  5496. current_command_args = cmd_ptr;
  5497. KEEPALIVE_STATE(IN_HANDLER);
  5498. // Handle a known G, M, or T
  5499. switch (command_code) {
  5500. case 'G': switch (codenum) {
  5501. // G0, G1
  5502. case 0:
  5503. case 1:
  5504. gcode_G0_G1();
  5505. break;
  5506. // G2, G3
  5507. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5508. case 2: // G2 - CW ARC
  5509. case 3: // G3 - CCW ARC
  5510. gcode_G2_G3(codenum == 2);
  5511. break;
  5512. #endif
  5513. // G4 Dwell
  5514. case 4:
  5515. gcode_G4();
  5516. break;
  5517. #if ENABLED(FWRETRACT)
  5518. case 10: // G10: retract
  5519. case 11: // G11: retract_recover
  5520. gcode_G10_G11(codenum == 10);
  5521. break;
  5522. #endif //FWRETRACT
  5523. case 28: // G28: Home all axes, one at a time
  5524. gcode_G28();
  5525. break;
  5526. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5527. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5528. gcode_G29();
  5529. break;
  5530. #endif
  5531. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5532. #if DISABLED(Z_PROBE_SLED)
  5533. case 30: // G30 Single Z probe
  5534. gcode_G30();
  5535. break;
  5536. #else // Z_PROBE_SLED
  5537. case 31: // G31: dock the sled
  5538. case 32: // G32: undock the sled
  5539. dock_sled(codenum == 31);
  5540. break;
  5541. #endif // Z_PROBE_SLED
  5542. #endif // AUTO_BED_LEVELING_FEATURE
  5543. case 90: // G90
  5544. relative_mode = false;
  5545. break;
  5546. case 91: // G91
  5547. relative_mode = true;
  5548. break;
  5549. case 92: // G92
  5550. gcode_G92();
  5551. break;
  5552. }
  5553. break;
  5554. case 'M': switch (codenum) {
  5555. #if ENABLED(ULTIPANEL)
  5556. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5557. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5558. gcode_M0_M1();
  5559. break;
  5560. #endif // ULTIPANEL
  5561. case 17:
  5562. gcode_M17();
  5563. break;
  5564. #if ENABLED(SDSUPPORT)
  5565. case 20: // M20 - list SD card
  5566. gcode_M20(); break;
  5567. case 21: // M21 - init SD card
  5568. gcode_M21(); break;
  5569. case 22: //M22 - release SD card
  5570. gcode_M22(); break;
  5571. case 23: //M23 - Select file
  5572. gcode_M23(); break;
  5573. case 24: //M24 - Start SD print
  5574. gcode_M24(); break;
  5575. case 25: //M25 - Pause SD print
  5576. gcode_M25(); break;
  5577. case 26: //M26 - Set SD index
  5578. gcode_M26(); break;
  5579. case 27: //M27 - Get SD status
  5580. gcode_M27(); break;
  5581. case 28: //M28 - Start SD write
  5582. gcode_M28(); break;
  5583. case 29: //M29 - Stop SD write
  5584. gcode_M29(); break;
  5585. case 30: //M30 <filename> Delete File
  5586. gcode_M30(); break;
  5587. case 32: //M32 - Select file and start SD print
  5588. gcode_M32(); break;
  5589. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5590. case 33: //M33 - Get the long full path to a file or folder
  5591. gcode_M33(); break;
  5592. #endif // LONG_FILENAME_HOST_SUPPORT
  5593. case 928: //M928 - Start SD write
  5594. gcode_M928(); break;
  5595. #endif //SDSUPPORT
  5596. case 31: //M31 take time since the start of the SD print or an M109 command
  5597. gcode_M31();
  5598. break;
  5599. case 42: //M42 -Change pin status via gcode
  5600. gcode_M42();
  5601. break;
  5602. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5603. case 48: // M48 Z probe repeatability
  5604. gcode_M48();
  5605. break;
  5606. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5607. case 75: // Start print timer
  5608. gcode_M75();
  5609. break;
  5610. case 76: // Pause print timer
  5611. gcode_M76();
  5612. break;
  5613. case 77: // Stop print timer
  5614. gcode_M77();
  5615. break;
  5616. #if ENABLED(PRINTCOUNTER)
  5617. case 78: // Show print statistics
  5618. gcode_M78();
  5619. break;
  5620. #endif
  5621. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5622. case 100:
  5623. gcode_M100();
  5624. break;
  5625. #endif
  5626. case 104: // M104
  5627. gcode_M104();
  5628. break;
  5629. case 110: // M110: Set Current Line Number
  5630. gcode_M110();
  5631. break;
  5632. case 111: // M111: Set debug level
  5633. gcode_M111();
  5634. break;
  5635. case 112: // M112: Emergency Stop
  5636. gcode_M112();
  5637. break;
  5638. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5639. case 113: // M113: Set Host Keepalive interval
  5640. gcode_M113();
  5641. break;
  5642. #endif
  5643. case 140: // M140: Set bed temp
  5644. gcode_M140();
  5645. break;
  5646. case 105: // M105: Read current temperature
  5647. gcode_M105();
  5648. KEEPALIVE_STATE(NOT_BUSY);
  5649. return; // "ok" already printed
  5650. case 109: // M109: Wait for temperature
  5651. gcode_M109();
  5652. break;
  5653. #if HAS_TEMP_BED
  5654. case 190: // M190: Wait for bed heater to reach target
  5655. gcode_M190();
  5656. break;
  5657. #endif // HAS_TEMP_BED
  5658. #if FAN_COUNT > 0
  5659. case 106: // M106: Fan On
  5660. gcode_M106();
  5661. break;
  5662. case 107: // M107: Fan Off
  5663. gcode_M107();
  5664. break;
  5665. #endif // FAN_COUNT > 0
  5666. #if ENABLED(BARICUDA)
  5667. // PWM for HEATER_1_PIN
  5668. #if HAS_HEATER_1
  5669. case 126: // M126: valve open
  5670. gcode_M126();
  5671. break;
  5672. case 127: // M127: valve closed
  5673. gcode_M127();
  5674. break;
  5675. #endif // HAS_HEATER_1
  5676. // PWM for HEATER_2_PIN
  5677. #if HAS_HEATER_2
  5678. case 128: // M128: valve open
  5679. gcode_M128();
  5680. break;
  5681. case 129: // M129: valve closed
  5682. gcode_M129();
  5683. break;
  5684. #endif // HAS_HEATER_2
  5685. #endif // BARICUDA
  5686. #if HAS_POWER_SWITCH
  5687. case 80: // M80: Turn on Power Supply
  5688. gcode_M80();
  5689. break;
  5690. #endif // HAS_POWER_SWITCH
  5691. case 81: // M81: Turn off Power, including Power Supply, if possible
  5692. gcode_M81();
  5693. break;
  5694. case 82:
  5695. gcode_M82();
  5696. break;
  5697. case 83:
  5698. gcode_M83();
  5699. break;
  5700. case 18: // (for compatibility)
  5701. case 84: // M84
  5702. gcode_M18_M84();
  5703. break;
  5704. case 85: // M85
  5705. gcode_M85();
  5706. break;
  5707. case 92: // M92: Set the steps-per-unit for one or more axes
  5708. gcode_M92();
  5709. break;
  5710. case 115: // M115: Report capabilities
  5711. gcode_M115();
  5712. break;
  5713. case 117: // M117: Set LCD message text, if possible
  5714. gcode_M117();
  5715. break;
  5716. case 114: // M114: Report current position
  5717. gcode_M114();
  5718. break;
  5719. case 120: // M120: Enable endstops
  5720. gcode_M120();
  5721. break;
  5722. case 121: // M121: Disable endstops
  5723. gcode_M121();
  5724. break;
  5725. case 119: // M119: Report endstop states
  5726. gcode_M119();
  5727. break;
  5728. #if ENABLED(ULTIPANEL)
  5729. case 145: // M145: Set material heatup parameters
  5730. gcode_M145();
  5731. break;
  5732. #endif
  5733. #if ENABLED(BLINKM)
  5734. case 150: // M150
  5735. gcode_M150();
  5736. break;
  5737. #endif //BLINKM
  5738. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5739. case 155:
  5740. gcode_M155();
  5741. break;
  5742. case 156:
  5743. gcode_M156();
  5744. break;
  5745. #endif //EXPERIMENTAL_I2CBUS
  5746. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5747. gcode_M200();
  5748. break;
  5749. case 201: // M201
  5750. gcode_M201();
  5751. break;
  5752. #if 0 // Not used for Sprinter/grbl gen6
  5753. case 202: // M202
  5754. gcode_M202();
  5755. break;
  5756. #endif
  5757. case 203: // M203 max feedrate mm/sec
  5758. gcode_M203();
  5759. break;
  5760. case 204: // M204 acclereration S normal moves T filmanent only moves
  5761. gcode_M204();
  5762. break;
  5763. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5764. gcode_M205();
  5765. break;
  5766. case 206: // M206 additional homing offset
  5767. gcode_M206();
  5768. break;
  5769. #if ENABLED(DELTA)
  5770. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5771. gcode_M665();
  5772. break;
  5773. #endif
  5774. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5775. case 666: // M666 set delta / dual endstop adjustment
  5776. gcode_M666();
  5777. break;
  5778. #endif
  5779. #if ENABLED(FWRETRACT)
  5780. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5781. gcode_M207();
  5782. break;
  5783. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5784. gcode_M208();
  5785. break;
  5786. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5787. gcode_M209();
  5788. break;
  5789. #endif // FWRETRACT
  5790. #if EXTRUDERS > 1
  5791. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5792. gcode_M218();
  5793. break;
  5794. #endif
  5795. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5796. gcode_M220();
  5797. break;
  5798. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5799. gcode_M221();
  5800. break;
  5801. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5802. gcode_M226();
  5803. break;
  5804. #if HAS_SERVOS
  5805. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5806. gcode_M280();
  5807. break;
  5808. #endif // HAS_SERVOS
  5809. #if HAS_BUZZER
  5810. case 300: // M300 - Play beep tone
  5811. gcode_M300();
  5812. break;
  5813. #endif // HAS_BUZZER
  5814. #if ENABLED(PIDTEMP)
  5815. case 301: // M301
  5816. gcode_M301();
  5817. break;
  5818. #endif // PIDTEMP
  5819. #if ENABLED(PIDTEMPBED)
  5820. case 304: // M304
  5821. gcode_M304();
  5822. break;
  5823. #endif // PIDTEMPBED
  5824. #if defined(CHDK) || HAS_PHOTOGRAPH
  5825. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5826. gcode_M240();
  5827. break;
  5828. #endif // CHDK || PHOTOGRAPH_PIN
  5829. #if ENABLED(HAS_LCD_CONTRAST)
  5830. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5831. gcode_M250();
  5832. break;
  5833. #endif // HAS_LCD_CONTRAST
  5834. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5835. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5836. gcode_M302();
  5837. break;
  5838. #endif // PREVENT_DANGEROUS_EXTRUDE
  5839. case 303: // M303 PID autotune
  5840. gcode_M303();
  5841. break;
  5842. #if ENABLED(SCARA)
  5843. case 360: // M360 SCARA Theta pos1
  5844. if (gcode_M360()) return;
  5845. break;
  5846. case 361: // M361 SCARA Theta pos2
  5847. if (gcode_M361()) return;
  5848. break;
  5849. case 362: // M362 SCARA Psi pos1
  5850. if (gcode_M362()) return;
  5851. break;
  5852. case 363: // M363 SCARA Psi pos2
  5853. if (gcode_M363()) return;
  5854. break;
  5855. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5856. if (gcode_M364()) return;
  5857. break;
  5858. case 365: // M365 Set SCARA scaling for X Y Z
  5859. gcode_M365();
  5860. break;
  5861. #endif // SCARA
  5862. case 400: // M400 finish all moves
  5863. gcode_M400();
  5864. break;
  5865. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5866. case 401:
  5867. gcode_M401();
  5868. break;
  5869. case 402:
  5870. gcode_M402();
  5871. break;
  5872. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5873. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5874. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5875. gcode_M404();
  5876. break;
  5877. case 405: //M405 Turn on filament sensor for control
  5878. gcode_M405();
  5879. break;
  5880. case 406: //M406 Turn off filament sensor for control
  5881. gcode_M406();
  5882. break;
  5883. case 407: //M407 Display measured filament diameter
  5884. gcode_M407();
  5885. break;
  5886. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5887. case 410: // M410 quickstop - Abort all the planned moves.
  5888. gcode_M410();
  5889. break;
  5890. #if ENABLED(MESH_BED_LEVELING)
  5891. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5892. gcode_M420();
  5893. break;
  5894. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5895. gcode_M421();
  5896. break;
  5897. #endif
  5898. case 428: // M428 Apply current_position to home_offset
  5899. gcode_M428();
  5900. break;
  5901. case 500: // M500 Store settings in EEPROM
  5902. gcode_M500();
  5903. break;
  5904. case 501: // M501 Read settings from EEPROM
  5905. gcode_M501();
  5906. break;
  5907. case 502: // M502 Revert to default settings
  5908. gcode_M502();
  5909. break;
  5910. case 503: // M503 print settings currently in memory
  5911. gcode_M503();
  5912. break;
  5913. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5914. case 540:
  5915. gcode_M540();
  5916. break;
  5917. #endif
  5918. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5919. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5920. gcode_SET_Z_PROBE_OFFSET();
  5921. break;
  5922. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5923. #if ENABLED(FILAMENTCHANGEENABLE)
  5924. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5925. gcode_M600();
  5926. break;
  5927. #endif // FILAMENTCHANGEENABLE
  5928. #if ENABLED(DUAL_X_CARRIAGE)
  5929. case 605:
  5930. gcode_M605();
  5931. break;
  5932. #endif // DUAL_X_CARRIAGE
  5933. case 907: // M907 Set digital trimpot motor current using axis codes.
  5934. gcode_M907();
  5935. break;
  5936. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5937. case 908: // M908 Control digital trimpot directly.
  5938. gcode_M908();
  5939. break;
  5940. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5941. case 909: // M909 Print digipot/DAC current value
  5942. gcode_M909();
  5943. break;
  5944. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5945. gcode_M910();
  5946. break;
  5947. #endif
  5948. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5949. #if HAS_MICROSTEPS
  5950. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5951. gcode_M350();
  5952. break;
  5953. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5954. gcode_M351();
  5955. break;
  5956. #endif // HAS_MICROSTEPS
  5957. case 999: // M999: Restart after being Stopped
  5958. gcode_M999();
  5959. break;
  5960. }
  5961. break;
  5962. case 'T':
  5963. gcode_T(codenum);
  5964. break;
  5965. default: code_is_good = false;
  5966. }
  5967. KEEPALIVE_STATE(NOT_BUSY);
  5968. ExitUnknownCommand:
  5969. // Still unknown command? Throw an error
  5970. if (!code_is_good) unknown_command_error();
  5971. ok_to_send();
  5972. }
  5973. void FlushSerialRequestResend() {
  5974. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5975. MYSERIAL.flush();
  5976. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5977. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5978. ok_to_send();
  5979. }
  5980. void ok_to_send() {
  5981. refresh_cmd_timeout();
  5982. if (!send_ok[cmd_queue_index_r]) return;
  5983. SERIAL_PROTOCOLPGM(MSG_OK);
  5984. #if ENABLED(ADVANCED_OK)
  5985. char* p = command_queue[cmd_queue_index_r];
  5986. if (*p == 'N') {
  5987. SERIAL_PROTOCOL(' ');
  5988. SERIAL_ECHO(*p++);
  5989. while (NUMERIC_SIGNED(*p))
  5990. SERIAL_ECHO(*p++);
  5991. }
  5992. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  5993. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5994. #endif
  5995. SERIAL_EOL;
  5996. }
  5997. void clamp_to_software_endstops(float target[3]) {
  5998. if (min_software_endstops) {
  5999. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6000. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6001. float negative_z_offset = 0;
  6002. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6003. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  6004. if (home_offset[Z_AXIS] < 0) {
  6005. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6006. if (DEBUGGING(LEVELING)) {
  6007. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  6008. SERIAL_EOL;
  6009. }
  6010. #endif
  6011. negative_z_offset += home_offset[Z_AXIS];
  6012. }
  6013. #endif
  6014. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS] + negative_z_offset);
  6015. }
  6016. if (max_software_endstops) {
  6017. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6018. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6019. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6020. }
  6021. }
  6022. #if ENABLED(DELTA)
  6023. void recalc_delta_settings(float radius, float diagonal_rod) {
  6024. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6025. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6026. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6027. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6028. delta_tower3_x = 0.0; // back middle tower
  6029. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6030. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6031. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6032. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6033. }
  6034. void calculate_delta(float cartesian[3]) {
  6035. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6036. - sq(delta_tower1_x - cartesian[X_AXIS])
  6037. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6038. ) + cartesian[Z_AXIS];
  6039. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6040. - sq(delta_tower2_x - cartesian[X_AXIS])
  6041. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6042. ) + cartesian[Z_AXIS];
  6043. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6044. - sq(delta_tower3_x - cartesian[X_AXIS])
  6045. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6046. ) + cartesian[Z_AXIS];
  6047. /**
  6048. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6049. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6050. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6051. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6052. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6053. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6054. */
  6055. }
  6056. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6057. // Adjust print surface height by linear interpolation over the bed_level array.
  6058. void adjust_delta(float cartesian[3]) {
  6059. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6060. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6061. float h1 = 0.001 - half, h2 = half - 0.001,
  6062. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6063. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6064. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6065. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6066. z1 = bed_level[floor_x + half][floor_y + half],
  6067. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6068. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6069. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6070. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6071. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6072. offset = (1 - ratio_x) * left + ratio_x * right;
  6073. delta[X_AXIS] += offset;
  6074. delta[Y_AXIS] += offset;
  6075. delta[Z_AXIS] += offset;
  6076. /**
  6077. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6078. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6079. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6080. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6081. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6082. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6083. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6084. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6085. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6086. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6087. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6088. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6089. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6090. */
  6091. }
  6092. #endif // AUTO_BED_LEVELING_FEATURE
  6093. #endif // DELTA
  6094. #if ENABLED(MESH_BED_LEVELING)
  6095. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6096. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6097. if (!mbl.active) {
  6098. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6099. set_current_to_destination();
  6100. return;
  6101. }
  6102. int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
  6103. int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6104. int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
  6105. int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
  6106. pix = min(pix, MESH_NUM_X_POINTS - 2);
  6107. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  6108. ix = min(ix, MESH_NUM_X_POINTS - 2);
  6109. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  6110. if (pix == ix && piy == iy) {
  6111. // Start and end on same mesh square
  6112. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6113. set_current_to_destination();
  6114. return;
  6115. }
  6116. float nx, ny, nz, ne, normalized_dist;
  6117. if (ix > pix && TEST(x_splits, ix)) {
  6118. nx = mbl.get_x(ix) + home_offset[X_AXIS];
  6119. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6120. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6121. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6122. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6123. CBI(x_splits, ix);
  6124. }
  6125. else if (ix < pix && TEST(x_splits, pix)) {
  6126. nx = mbl.get_x(pix) + home_offset[X_AXIS];
  6127. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6128. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6129. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6130. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6131. CBI(x_splits, pix);
  6132. }
  6133. else if (iy > piy && TEST(y_splits, iy)) {
  6134. ny = mbl.get_y(iy) + home_offset[Y_AXIS];
  6135. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6136. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6137. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6138. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6139. CBI(y_splits, iy);
  6140. }
  6141. else if (iy < piy && TEST(y_splits, piy)) {
  6142. ny = mbl.get_y(piy) + home_offset[Y_AXIS];
  6143. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6144. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6145. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6146. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6147. CBI(y_splits, piy);
  6148. }
  6149. else {
  6150. // Already split on a border
  6151. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6152. set_current_to_destination();
  6153. return;
  6154. }
  6155. // Do the split and look for more borders
  6156. destination[X_AXIS] = nx;
  6157. destination[Y_AXIS] = ny;
  6158. destination[Z_AXIS] = nz;
  6159. destination[E_AXIS] = ne;
  6160. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6161. destination[X_AXIS] = x;
  6162. destination[Y_AXIS] = y;
  6163. destination[Z_AXIS] = z;
  6164. destination[E_AXIS] = e;
  6165. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6166. }
  6167. #endif // MESH_BED_LEVELING
  6168. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6169. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6170. if (DEBUGGING(DRYRUN)) return;
  6171. float de = dest_e - curr_e;
  6172. if (de) {
  6173. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6174. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6175. SERIAL_ECHO_START;
  6176. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6177. }
  6178. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6179. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6180. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6181. SERIAL_ECHO_START;
  6182. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6183. }
  6184. #endif
  6185. }
  6186. }
  6187. #endif // PREVENT_DANGEROUS_EXTRUDE
  6188. #if ENABLED(DELTA) || ENABLED(SCARA)
  6189. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6190. float difference[NUM_AXIS];
  6191. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6192. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6193. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6194. if (cartesian_mm < 0.000001) return false;
  6195. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  6196. int steps = max(1, int(delta_segments_per_second * seconds));
  6197. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6198. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6199. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6200. for (int s = 1; s <= steps; s++) {
  6201. float fraction = float(s) / float(steps);
  6202. for (int8_t i = 0; i < NUM_AXIS; i++)
  6203. target[i] = current_position[i] + difference[i] * fraction;
  6204. calculate_delta(target);
  6205. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6206. if (!bed_leveling_in_progress) adjust_delta(target);
  6207. #endif
  6208. //DEBUG_POS("prepare_move_delta", target);
  6209. //DEBUG_POS("prepare_move_delta", delta);
  6210. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  6211. }
  6212. return true;
  6213. }
  6214. #endif // DELTA || SCARA
  6215. #if ENABLED(SCARA)
  6216. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6217. #endif
  6218. #if ENABLED(DUAL_X_CARRIAGE)
  6219. inline bool prepare_move_dual_x_carriage() {
  6220. if (active_extruder_parked) {
  6221. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6222. // move duplicate extruder into correct duplication position.
  6223. planner.set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6224. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6225. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6226. sync_plan_position();
  6227. stepper.synchronize();
  6228. extruder_duplication_enabled = true;
  6229. active_extruder_parked = false;
  6230. }
  6231. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6232. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6233. // This is a travel move (with no extrusion)
  6234. // Skip it, but keep track of the current position
  6235. // (so it can be used as the start of the next non-travel move)
  6236. if (delayed_move_time != 0xFFFFFFFFUL) {
  6237. set_current_to_destination();
  6238. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6239. delayed_move_time = millis();
  6240. return false;
  6241. }
  6242. }
  6243. delayed_move_time = 0;
  6244. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6245. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6246. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
  6247. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6248. active_extruder_parked = false;
  6249. }
  6250. }
  6251. return true;
  6252. }
  6253. #endif // DUAL_X_CARRIAGE
  6254. #if DISABLED(DELTA) && DISABLED(SCARA)
  6255. inline bool prepare_move_cartesian() {
  6256. // Do not use feedrate_multiplier for E or Z only moves
  6257. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6258. line_to_destination();
  6259. }
  6260. else {
  6261. #if ENABLED(MESH_BED_LEVELING)
  6262. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6263. return false;
  6264. #else
  6265. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6266. #endif
  6267. }
  6268. return true;
  6269. }
  6270. #endif // !DELTA && !SCARA
  6271. /**
  6272. * Prepare a single move and get ready for the next one
  6273. *
  6274. * (This may call planner.buffer_line several times to put
  6275. * smaller moves into the planner for DELTA or SCARA.)
  6276. */
  6277. void prepare_move() {
  6278. clamp_to_software_endstops(destination);
  6279. refresh_cmd_timeout();
  6280. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6281. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6282. #endif
  6283. #if ENABLED(SCARA)
  6284. if (!prepare_move_scara(destination)) return;
  6285. #elif ENABLED(DELTA)
  6286. if (!prepare_move_delta(destination)) return;
  6287. #else
  6288. #if ENABLED(DUAL_X_CARRIAGE)
  6289. if (!prepare_move_dual_x_carriage()) return;
  6290. #endif
  6291. if (!prepare_move_cartesian()) return;
  6292. #endif
  6293. set_current_to_destination();
  6294. }
  6295. #if ENABLED(ARC_SUPPORT)
  6296. /**
  6297. * Plan an arc in 2 dimensions
  6298. *
  6299. * The arc is approximated by generating many small linear segments.
  6300. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6301. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6302. * larger segments will tend to be more efficient. Your slicer should have
  6303. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6304. */
  6305. void plan_arc(
  6306. float target[NUM_AXIS], // Destination position
  6307. float* offset, // Center of rotation relative to current_position
  6308. uint8_t clockwise // Clockwise?
  6309. ) {
  6310. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6311. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6312. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6313. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6314. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6315. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6316. r_Y = -offset[Y_AXIS],
  6317. rt_X = target[X_AXIS] - center_X,
  6318. rt_Y = target[Y_AXIS] - center_Y;
  6319. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6320. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6321. if (angular_travel < 0) angular_travel += RADIANS(360);
  6322. if (clockwise) angular_travel -= RADIANS(360);
  6323. // Make a circle if the angular rotation is 0
  6324. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6325. angular_travel += RADIANS(360);
  6326. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6327. if (mm_of_travel < 0.001) return;
  6328. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6329. if (segments == 0) segments = 1;
  6330. float theta_per_segment = angular_travel / segments;
  6331. float linear_per_segment = linear_travel / segments;
  6332. float extruder_per_segment = extruder_travel / segments;
  6333. /**
  6334. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6335. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6336. * r_T = [cos(phi) -sin(phi);
  6337. * sin(phi) cos(phi] * r ;
  6338. *
  6339. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6340. * defined from the circle center to the initial position. Each line segment is formed by successive
  6341. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6342. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6343. * all double numbers are single precision on the Arduino. (True double precision will not have
  6344. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6345. * tool precision in some cases. Therefore, arc path correction is implemented.
  6346. *
  6347. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6348. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6349. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6350. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6351. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6352. * issue for CNC machines with the single precision Arduino calculations.
  6353. *
  6354. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6355. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6356. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6357. * This is important when there are successive arc motions.
  6358. */
  6359. // Vector rotation matrix values
  6360. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6361. float sin_T = theta_per_segment;
  6362. float arc_target[NUM_AXIS];
  6363. float sin_Ti, cos_Ti, r_new_Y;
  6364. uint16_t i;
  6365. int8_t count = 0;
  6366. // Initialize the linear axis
  6367. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6368. // Initialize the extruder axis
  6369. arc_target[E_AXIS] = current_position[E_AXIS];
  6370. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6371. millis_t previous_ms = millis();
  6372. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6373. millis_t now = millis();
  6374. if (now - previous_ms > 200UL) {
  6375. previous_ms = now;
  6376. idle();
  6377. }
  6378. if (++count < N_ARC_CORRECTION) {
  6379. // Apply vector rotation matrix to previous r_X / 1
  6380. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6381. r_X = r_X * cos_T - r_Y * sin_T;
  6382. r_Y = r_new_Y;
  6383. }
  6384. else {
  6385. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6386. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6387. // To reduce stuttering, the sin and cos could be computed at different times.
  6388. // For now, compute both at the same time.
  6389. cos_Ti = cos(i * theta_per_segment);
  6390. sin_Ti = sin(i * theta_per_segment);
  6391. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6392. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6393. count = 0;
  6394. }
  6395. // Update arc_target location
  6396. arc_target[X_AXIS] = center_X + r_X;
  6397. arc_target[Y_AXIS] = center_Y + r_Y;
  6398. arc_target[Z_AXIS] += linear_per_segment;
  6399. arc_target[E_AXIS] += extruder_per_segment;
  6400. clamp_to_software_endstops(arc_target);
  6401. #if ENABLED(DELTA) || ENABLED(SCARA)
  6402. calculate_delta(arc_target);
  6403. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6404. adjust_delta(arc_target);
  6405. #endif
  6406. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6407. #else
  6408. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6409. #endif
  6410. }
  6411. // Ensure last segment arrives at target location.
  6412. #if ENABLED(DELTA) || ENABLED(SCARA)
  6413. calculate_delta(target);
  6414. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6415. adjust_delta(target);
  6416. #endif
  6417. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6418. #else
  6419. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6420. #endif
  6421. // As far as the parser is concerned, the position is now == target. In reality the
  6422. // motion control system might still be processing the action and the real tool position
  6423. // in any intermediate location.
  6424. set_current_to_destination();
  6425. }
  6426. #endif
  6427. #if HAS_CONTROLLERFAN
  6428. void controllerFan() {
  6429. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6430. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6431. millis_t ms = millis();
  6432. if (ELAPSED(ms, nextMotorCheck)) {
  6433. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6434. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6435. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6436. #if EXTRUDERS > 1
  6437. || E1_ENABLE_READ == E_ENABLE_ON
  6438. #if HAS_X2_ENABLE
  6439. || X2_ENABLE_READ == X_ENABLE_ON
  6440. #endif
  6441. #if EXTRUDERS > 2
  6442. || E2_ENABLE_READ == E_ENABLE_ON
  6443. #if EXTRUDERS > 3
  6444. || E3_ENABLE_READ == E_ENABLE_ON
  6445. #endif
  6446. #endif
  6447. #endif
  6448. ) {
  6449. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6450. }
  6451. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6452. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6453. // allows digital or PWM fan output to be used (see M42 handling)
  6454. digitalWrite(CONTROLLERFAN_PIN, speed);
  6455. analogWrite(CONTROLLERFAN_PIN, speed);
  6456. }
  6457. }
  6458. #endif // HAS_CONTROLLERFAN
  6459. #if ENABLED(SCARA)
  6460. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6461. // Perform forward kinematics, and place results in delta[3]
  6462. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6463. float x_sin, x_cos, y_sin, y_cos;
  6464. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6465. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6466. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6467. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6468. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6469. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6470. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6471. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6472. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6473. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6474. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6475. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6476. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6477. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6478. }
  6479. void calculate_delta(float cartesian[3]) {
  6480. //reverse kinematics.
  6481. // Perform reversed kinematics, and place results in delta[3]
  6482. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6483. float SCARA_pos[2];
  6484. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6485. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6486. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6487. #if (Linkage_1 == Linkage_2)
  6488. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6489. #else
  6490. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6491. #endif
  6492. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6493. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6494. SCARA_K2 = Linkage_2 * SCARA_S2;
  6495. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6496. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6497. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6498. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6499. delta[Z_AXIS] = cartesian[Z_AXIS];
  6500. /**
  6501. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6502. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6503. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6504. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6505. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6506. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6507. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6508. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6509. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6510. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6511. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6512. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6513. SERIAL_EOL;
  6514. */
  6515. }
  6516. #endif // SCARA
  6517. #if ENABLED(TEMP_STAT_LEDS)
  6518. static bool red_led = false;
  6519. static millis_t next_status_led_update_ms = 0;
  6520. void handle_status_leds(void) {
  6521. float max_temp = 0.0;
  6522. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6523. next_status_led_update_ms += 500; // Update every 0.5s
  6524. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6525. max_temp = max(max(max_temp, thermalManager.degHotend(cur_extruder)), thermalManager.degTargetHotend(cur_extruder));
  6526. #if HAS_TEMP_BED
  6527. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6528. #endif
  6529. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6530. if (new_led != red_led) {
  6531. red_led = new_led;
  6532. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6533. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6534. }
  6535. }
  6536. }
  6537. #endif
  6538. void enable_all_steppers() {
  6539. enable_x();
  6540. enable_y();
  6541. enable_z();
  6542. enable_e0();
  6543. enable_e1();
  6544. enable_e2();
  6545. enable_e3();
  6546. }
  6547. void disable_all_steppers() {
  6548. disable_x();
  6549. disable_y();
  6550. disable_z();
  6551. disable_e0();
  6552. disable_e1();
  6553. disable_e2();
  6554. disable_e3();
  6555. }
  6556. /**
  6557. * Standard idle routine keeps the machine alive
  6558. */
  6559. void idle(
  6560. #if ENABLED(FILAMENTCHANGEENABLE)
  6561. bool no_stepper_sleep/*=false*/
  6562. #endif
  6563. ) {
  6564. thermalManager.manage_heater();
  6565. manage_inactivity(
  6566. #if ENABLED(FILAMENTCHANGEENABLE)
  6567. no_stepper_sleep
  6568. #endif
  6569. );
  6570. host_keepalive();
  6571. lcd_update();
  6572. #if ENABLED(PRINTCOUNTER)
  6573. print_job_timer.tick();
  6574. #endif
  6575. }
  6576. /**
  6577. * Manage several activities:
  6578. * - Check for Filament Runout
  6579. * - Keep the command buffer full
  6580. * - Check for maximum inactive time between commands
  6581. * - Check for maximum inactive time between stepper commands
  6582. * - Check if pin CHDK needs to go LOW
  6583. * - Check for KILL button held down
  6584. * - Check for HOME button held down
  6585. * - Check if cooling fan needs to be switched on
  6586. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6587. */
  6588. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6589. #if HAS_FILRUNOUT
  6590. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6591. handle_filament_runout();
  6592. #endif
  6593. if (commands_in_queue < BUFSIZE) get_available_commands();
  6594. millis_t ms = millis();
  6595. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6596. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6597. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6598. #if ENABLED(DISABLE_INACTIVE_X)
  6599. disable_x();
  6600. #endif
  6601. #if ENABLED(DISABLE_INACTIVE_Y)
  6602. disable_y();
  6603. #endif
  6604. #if ENABLED(DISABLE_INACTIVE_Z)
  6605. disable_z();
  6606. #endif
  6607. #if ENABLED(DISABLE_INACTIVE_E)
  6608. disable_e0();
  6609. disable_e1();
  6610. disable_e2();
  6611. disable_e3();
  6612. #endif
  6613. }
  6614. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6615. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6616. chdkActive = false;
  6617. WRITE(CHDK, LOW);
  6618. }
  6619. #endif
  6620. #if HAS_KILL
  6621. // Check if the kill button was pressed and wait just in case it was an accidental
  6622. // key kill key press
  6623. // -------------------------------------------------------------------------------
  6624. static int killCount = 0; // make the inactivity button a bit less responsive
  6625. const int KILL_DELAY = 750;
  6626. if (!READ(KILL_PIN))
  6627. killCount++;
  6628. else if (killCount > 0)
  6629. killCount--;
  6630. // Exceeded threshold and we can confirm that it was not accidental
  6631. // KILL the machine
  6632. // ----------------------------------------------------------------
  6633. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6634. #endif
  6635. #if HAS_HOME
  6636. // Check to see if we have to home, use poor man's debouncer
  6637. // ---------------------------------------------------------
  6638. static int homeDebounceCount = 0; // poor man's debouncing count
  6639. const int HOME_DEBOUNCE_DELAY = 2500;
  6640. if (!READ(HOME_PIN)) {
  6641. if (!homeDebounceCount) {
  6642. enqueue_and_echo_commands_P(PSTR("G28"));
  6643. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6644. }
  6645. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6646. homeDebounceCount++;
  6647. else
  6648. homeDebounceCount = 0;
  6649. }
  6650. #endif
  6651. #if HAS_CONTROLLERFAN
  6652. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6653. #endif
  6654. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6655. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6656. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6657. bool oldstatus;
  6658. switch (active_extruder) {
  6659. case 0:
  6660. oldstatus = E0_ENABLE_READ;
  6661. enable_e0();
  6662. break;
  6663. #if EXTRUDERS > 1
  6664. case 1:
  6665. oldstatus = E1_ENABLE_READ;
  6666. enable_e1();
  6667. break;
  6668. #if EXTRUDERS > 2
  6669. case 2:
  6670. oldstatus = E2_ENABLE_READ;
  6671. enable_e2();
  6672. break;
  6673. #if EXTRUDERS > 3
  6674. case 3:
  6675. oldstatus = E3_ENABLE_READ;
  6676. enable_e3();
  6677. break;
  6678. #endif
  6679. #endif
  6680. #endif
  6681. }
  6682. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6683. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6684. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS],
  6685. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS], active_extruder);
  6686. current_position[E_AXIS] = oldepos;
  6687. destination[E_AXIS] = oldedes;
  6688. planner.set_e_position(oldepos);
  6689. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6690. stepper.synchronize();
  6691. switch (active_extruder) {
  6692. case 0:
  6693. E0_ENABLE_WRITE(oldstatus);
  6694. break;
  6695. #if EXTRUDERS > 1
  6696. case 1:
  6697. E1_ENABLE_WRITE(oldstatus);
  6698. break;
  6699. #if EXTRUDERS > 2
  6700. case 2:
  6701. E2_ENABLE_WRITE(oldstatus);
  6702. break;
  6703. #if EXTRUDERS > 3
  6704. case 3:
  6705. E3_ENABLE_WRITE(oldstatus);
  6706. break;
  6707. #endif
  6708. #endif
  6709. #endif
  6710. }
  6711. }
  6712. #endif
  6713. #if ENABLED(DUAL_X_CARRIAGE)
  6714. // handle delayed move timeout
  6715. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6716. // travel moves have been received so enact them
  6717. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6718. set_destination_to_current();
  6719. prepare_move();
  6720. }
  6721. #endif
  6722. #if ENABLED(TEMP_STAT_LEDS)
  6723. handle_status_leds();
  6724. #endif
  6725. planner.check_axes_activity();
  6726. }
  6727. void kill(const char* lcd_msg) {
  6728. #if ENABLED(ULTRA_LCD)
  6729. lcd_setalertstatuspgm(lcd_msg);
  6730. #else
  6731. UNUSED(lcd_msg);
  6732. #endif
  6733. cli(); // Stop interrupts
  6734. thermalManager.disable_all_heaters();
  6735. disable_all_steppers();
  6736. #if HAS_POWER_SWITCH
  6737. pinMode(PS_ON_PIN, INPUT);
  6738. #endif
  6739. SERIAL_ERROR_START;
  6740. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6741. // FMC small patch to update the LCD before ending
  6742. sei(); // enable interrupts
  6743. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6744. cli(); // disable interrupts
  6745. suicide();
  6746. while (1) {
  6747. #if ENABLED(USE_WATCHDOG)
  6748. watchdog_reset();
  6749. #endif
  6750. } // Wait for reset
  6751. }
  6752. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6753. void handle_filament_runout() {
  6754. if (!filament_ran_out) {
  6755. filament_ran_out = true;
  6756. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6757. stepper.synchronize();
  6758. }
  6759. }
  6760. #endif // FILAMENT_RUNOUT_SENSOR
  6761. #if ENABLED(FAST_PWM_FAN)
  6762. void setPwmFrequency(uint8_t pin, int val) {
  6763. val &= 0x07;
  6764. switch (digitalPinToTimer(pin)) {
  6765. #if defined(TCCR0A)
  6766. case TIMER0A:
  6767. case TIMER0B:
  6768. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6769. // TCCR0B |= val;
  6770. break;
  6771. #endif
  6772. #if defined(TCCR1A)
  6773. case TIMER1A:
  6774. case TIMER1B:
  6775. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6776. // TCCR1B |= val;
  6777. break;
  6778. #endif
  6779. #if defined(TCCR2)
  6780. case TIMER2:
  6781. case TIMER2:
  6782. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6783. TCCR2 |= val;
  6784. break;
  6785. #endif
  6786. #if defined(TCCR2A)
  6787. case TIMER2A:
  6788. case TIMER2B:
  6789. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6790. TCCR2B |= val;
  6791. break;
  6792. #endif
  6793. #if defined(TCCR3A)
  6794. case TIMER3A:
  6795. case TIMER3B:
  6796. case TIMER3C:
  6797. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6798. TCCR3B |= val;
  6799. break;
  6800. #endif
  6801. #if defined(TCCR4A)
  6802. case TIMER4A:
  6803. case TIMER4B:
  6804. case TIMER4C:
  6805. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6806. TCCR4B |= val;
  6807. break;
  6808. #endif
  6809. #if defined(TCCR5A)
  6810. case TIMER5A:
  6811. case TIMER5B:
  6812. case TIMER5C:
  6813. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6814. TCCR5B |= val;
  6815. break;
  6816. #endif
  6817. }
  6818. }
  6819. #endif // FAST_PWM_FAN
  6820. void stop() {
  6821. thermalManager.disable_all_heaters();
  6822. if (IsRunning()) {
  6823. Running = false;
  6824. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6825. SERIAL_ERROR_START;
  6826. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6827. LCD_MESSAGEPGM(MSG_STOPPED);
  6828. }
  6829. }
  6830. float calculate_volumetric_multiplier(float diameter) {
  6831. if (!volumetric_enabled || diameter == 0) return 1.0;
  6832. float d2 = diameter * 0.5;
  6833. return 1.0 / (M_PI * d2 * d2);
  6834. }
  6835. void calculate_volumetric_multipliers() {
  6836. for (int i = 0; i < EXTRUDERS; i++)
  6837. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6838. }