My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 193KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "configuration_store.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "blinkm.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. /**
  56. * Look here for descriptions of G-codes:
  57. * - http://linuxcnc.org/handbook/gcode/g-code.html
  58. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  59. *
  60. * Help us document these G-codes online:
  61. * - http://reprap.org/wiki/G-code
  62. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  63. */
  64. /**
  65. * Implemented Codes
  66. * -------------------
  67. *
  68. * "G" Codes
  69. *
  70. * G0 -> G1
  71. * G1 - Coordinated Movement X Y Z E
  72. * G2 - CW ARC
  73. * G3 - CCW ARC
  74. * G4 - Dwell S<seconds> or P<milliseconds>
  75. * G10 - retract filament according to settings of M207
  76. * G11 - retract recover filament according to settings of M208
  77. * G28 - Home one or more axes
  78. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  79. * G30 - Single Z Probe, probes bed at current XY location.
  80. * G31 - Dock sled (Z_PROBE_SLED only)
  81. * G32 - Undock sled (Z_PROBE_SLED only)
  82. * G90 - Use Absolute Coordinates
  83. * G91 - Use Relative Coordinates
  84. * G92 - Set current position to coordinates given
  85. *
  86. * "M" Codes
  87. *
  88. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  89. * M1 - Same as M0
  90. * M17 - Enable/Power all stepper motors
  91. * M18 - Disable all stepper motors; same as M84
  92. * M20 - List SD card
  93. * M21 - Init SD card
  94. * M22 - Release SD card
  95. * M23 - Select SD file (M23 filename.g)
  96. * M24 - Start/resume SD print
  97. * M25 - Pause SD print
  98. * M26 - Set SD position in bytes (M26 S12345)
  99. * M27 - Report SD print status
  100. * M28 - Start SD write (M28 filename.g)
  101. * M29 - Stop SD write
  102. * M30 - Delete file from SD (M30 filename.g)
  103. * M31 - Output time since last M109 or SD card start to serial
  104. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  105. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  106. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  107. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  108. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  109. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  110. * M80 - Turn on Power Supply
  111. * M81 - Turn off Power Supply
  112. * M82 - Set E codes absolute (default)
  113. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  114. * M84 - Disable steppers until next move,
  115. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  116. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  117. * M92 - Set axis_steps_per_unit - same syntax as G92
  118. * M104 - Set extruder target temp
  119. * M105 - Read current temp
  120. * M106 - Fan on
  121. * M107 - Fan off
  122. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  123. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  124. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  125. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  126. * M112 - Emergency stop
  127. * M114 - Output current position to serial port
  128. * M115 - Capabilities string
  129. * M117 - display message
  130. * M119 - Output Endstop status to serial port
  131. * M120 - Enable endstop detection
  132. * M121 - Disable endstop detection
  133. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. * M140 - Set bed target temp
  138. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  139. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  143. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  147. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. * M206 - Set additional homing offset
  149. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. * M220 - Set speed factor override percentage: S<factor in percent>
  154. * M221 - Set extrude factor override percentage: S<factor in percent>
  155. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  156. * M240 - Trigger a camera to take a photograph
  157. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  159. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. * M301 - Set PID parameters P I and D
  161. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. * M304 - Set bed PID parameters P I and D
  164. * M380 - Activate solenoid on active extruder
  165. * M381 - Disable all solenoids
  166. * M400 - Finish all moves
  167. * M401 - Lower z-probe if present
  168. * M402 - Raise z-probe if present
  169. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  170. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  171. * M406 - Turn off Filament Sensor extrusion control
  172. * M407 - Display measured filament diameter
  173. * M410 - Quickstop. Abort all the planned moves
  174. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  175. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  176. * M500 - Store parameters in EEPROM
  177. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  178. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  179. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  180. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  181. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  182. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  183. * M666 - Set delta endstop adjustment
  184. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  185. * M907 - Set digital trimpot motor current using axis codes.
  186. * M908 - Control digital trimpot directly.
  187. * M350 - Set microstepping mode.
  188. * M351 - Toggle MS1 MS2 pins directly.
  189. *
  190. * ************ SCARA Specific - This can change to suit future G-code regulations
  191. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  192. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  193. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  194. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  195. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  196. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  197. * ************* SCARA End ***************
  198. *
  199. * M928 - Start SD logging (M928 filename.g) - ended by M29
  200. * M999 - Restart after being stopped by error
  201. */
  202. #ifdef SDSUPPORT
  203. CardReader card;
  204. #endif
  205. bool Running = true;
  206. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  207. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  208. float current_position[NUM_AXIS] = { 0.0 };
  209. static float destination[NUM_AXIS] = { 0.0 };
  210. bool axis_known_position[3] = { false };
  211. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  212. static int cmd_queue_index_r = 0;
  213. static int cmd_queue_index_w = 0;
  214. static int commands_in_queue = 0;
  215. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  216. float homing_feedrate[] = HOMING_FEEDRATE;
  217. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  218. int feedrate_multiplier = 100; //100->1 200->2
  219. int saved_feedrate_multiplier;
  220. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  221. bool volumetric_enabled = false;
  222. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  223. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  224. float home_offset[3] = { 0 };
  225. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  226. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  227. uint8_t active_extruder = 0;
  228. int fanSpeed = 0;
  229. bool cancel_heatup = false;
  230. const char errormagic[] PROGMEM = "Error:";
  231. const char echomagic[] PROGMEM = "echo:";
  232. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  233. static float offset[3] = { 0 };
  234. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  235. static char serial_char;
  236. static int serial_count = 0;
  237. static boolean comment_mode = false;
  238. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  239. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  240. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  241. // Inactivity shutdown
  242. millis_t previous_cmd_ms = 0;
  243. static millis_t max_inactive_time = 0;
  244. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  245. millis_t print_job_start_ms = 0; ///< Print job start time
  246. millis_t print_job_stop_ms = 0; ///< Print job stop time
  247. static uint8_t target_extruder;
  248. bool no_wait_for_cooling = true;
  249. bool target_direction;
  250. #ifdef ENABLE_AUTO_BED_LEVELING
  251. int xy_travel_speed = XY_TRAVEL_SPEED;
  252. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  253. #endif
  254. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  255. float z_endstop_adj = 0;
  256. #endif
  257. // Extruder offsets
  258. #if EXTRUDERS > 1
  259. #ifndef EXTRUDER_OFFSET_X
  260. #define EXTRUDER_OFFSET_X { 0 }
  261. #endif
  262. #ifndef EXTRUDER_OFFSET_Y
  263. #define EXTRUDER_OFFSET_Y { 0 }
  264. #endif
  265. float extruder_offset[][EXTRUDERS] = {
  266. EXTRUDER_OFFSET_X,
  267. EXTRUDER_OFFSET_Y
  268. #ifdef DUAL_X_CARRIAGE
  269. , { 0 } // supports offsets in XYZ plane
  270. #endif
  271. };
  272. #endif
  273. #ifdef SERVO_ENDSTOPS
  274. int servo_endstops[] = SERVO_ENDSTOPS;
  275. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  276. #endif
  277. #ifdef BARICUDA
  278. int ValvePressure = 0;
  279. int EtoPPressure = 0;
  280. #endif
  281. #ifdef FWRETRACT
  282. bool autoretract_enabled = false;
  283. bool retracted[EXTRUDERS] = { false };
  284. bool retracted_swap[EXTRUDERS] = { false };
  285. float retract_length = RETRACT_LENGTH;
  286. float retract_length_swap = RETRACT_LENGTH_SWAP;
  287. float retract_feedrate = RETRACT_FEEDRATE;
  288. float retract_zlift = RETRACT_ZLIFT;
  289. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  290. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  291. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  292. #endif // FWRETRACT
  293. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  294. bool powersupply =
  295. #ifdef PS_DEFAULT_OFF
  296. false
  297. #else
  298. true
  299. #endif
  300. ;
  301. #endif
  302. #ifdef DELTA
  303. float delta[3] = { 0 };
  304. #define SIN_60 0.8660254037844386
  305. #define COS_60 0.5
  306. float endstop_adj[3] = { 0 };
  307. // these are the default values, can be overriden with M665
  308. float delta_radius = DELTA_RADIUS;
  309. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  310. float delta_tower1_y = -COS_60 * delta_radius;
  311. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  312. float delta_tower2_y = -COS_60 * delta_radius;
  313. float delta_tower3_x = 0; // back middle tower
  314. float delta_tower3_y = delta_radius;
  315. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  316. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  317. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  318. #ifdef ENABLE_AUTO_BED_LEVELING
  319. int delta_grid_spacing[2] = { 0, 0 };
  320. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  321. #endif
  322. #else
  323. static bool home_all_axis = true;
  324. #endif
  325. #ifdef SCARA
  326. static float delta[3] = { 0 };
  327. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  328. #endif
  329. #ifdef FILAMENT_SENSOR
  330. //Variables for Filament Sensor input
  331. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  332. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  333. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  334. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  335. int delay_index1 = 0; //index into ring buffer
  336. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  337. float delay_dist = 0; //delay distance counter
  338. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  339. #endif
  340. #ifdef FILAMENT_RUNOUT_SENSOR
  341. static bool filrunoutEnqueued = false;
  342. #endif
  343. #ifdef SDSUPPORT
  344. static bool fromsd[BUFSIZE];
  345. #endif
  346. #if NUM_SERVOS > 0
  347. Servo servo[NUM_SERVOS];
  348. #endif
  349. #ifdef CHDK
  350. unsigned long chdkHigh = 0;
  351. boolean chdkActive = false;
  352. #endif
  353. //===========================================================================
  354. //================================ Functions ================================
  355. //===========================================================================
  356. void get_arc_coordinates();
  357. bool setTargetedHotend(int code);
  358. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  359. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  360. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  361. #ifdef PREVENT_DANGEROUS_EXTRUDE
  362. float extrude_min_temp = EXTRUDE_MINTEMP;
  363. #endif
  364. #ifdef SDSUPPORT
  365. #include "SdFatUtil.h"
  366. int freeMemory() { return SdFatUtil::FreeRam(); }
  367. #else
  368. extern "C" {
  369. extern unsigned int __bss_end;
  370. extern unsigned int __heap_start;
  371. extern void *__brkval;
  372. int freeMemory() {
  373. int free_memory;
  374. if ((int)__brkval == 0)
  375. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  376. else
  377. free_memory = ((int)&free_memory) - ((int)__brkval);
  378. return free_memory;
  379. }
  380. }
  381. #endif //!SDSUPPORT
  382. /**
  383. * Inject the next command from the command queue, when possible
  384. * Return false only if no command was pending
  385. */
  386. static bool drain_queued_commands_P() {
  387. if (!queued_commands_P) return false;
  388. // Get the next 30 chars from the sequence of gcodes to run
  389. char cmd[30];
  390. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  391. cmd[sizeof(cmd) - 1] = '\0';
  392. // Look for the end of line, or the end of sequence
  393. size_t i = 0;
  394. char c;
  395. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  396. cmd[i] = '\0';
  397. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  398. if (c)
  399. queued_commands_P += i + 1; // move to next command
  400. else
  401. queued_commands_P = NULL; // will have no more commands in the sequence
  402. }
  403. return true;
  404. }
  405. /**
  406. * Record one or many commands to run from program memory.
  407. * Aborts the current queue, if any.
  408. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  409. */
  410. void enqueuecommands_P(const char* pgcode) {
  411. queued_commands_P = pgcode;
  412. drain_queued_commands_P(); // first command executed asap (when possible)
  413. }
  414. /**
  415. * Copy a command directly into the main command buffer, from RAM.
  416. *
  417. * This is done in a non-safe way and needs a rework someday.
  418. * Returns false if it doesn't add any command
  419. */
  420. bool enqueuecommand(const char *cmd) {
  421. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  422. // This is dangerous if a mixing of serial and this happens
  423. char *command = command_queue[cmd_queue_index_w];
  424. strcpy(command, cmd);
  425. SERIAL_ECHO_START;
  426. SERIAL_ECHOPGM(MSG_Enqueueing);
  427. SERIAL_ECHO(command);
  428. SERIAL_ECHOLNPGM("\"");
  429. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  430. commands_in_queue++;
  431. return true;
  432. }
  433. void setup_killpin() {
  434. #if HAS_KILL
  435. SET_INPUT(KILL_PIN);
  436. WRITE(KILL_PIN, HIGH);
  437. #endif
  438. }
  439. void setup_filrunoutpin() {
  440. #if HAS_FILRUNOUT
  441. pinMode(FILRUNOUT_PIN, INPUT);
  442. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  443. WRITE(FILLRUNOUT_PIN, HIGH);
  444. #endif
  445. #endif
  446. }
  447. // Set home pin
  448. void setup_homepin(void) {
  449. #if HAS_HOME
  450. SET_INPUT(HOME_PIN);
  451. WRITE(HOME_PIN, HIGH);
  452. #endif
  453. }
  454. void setup_photpin() {
  455. #if HAS_PHOTOGRAPH
  456. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  457. #endif
  458. }
  459. void setup_powerhold() {
  460. #if HAS_SUICIDE
  461. OUT_WRITE(SUICIDE_PIN, HIGH);
  462. #endif
  463. #if HAS_POWER_SWITCH
  464. #ifdef PS_DEFAULT_OFF
  465. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  466. #else
  467. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  468. #endif
  469. #endif
  470. }
  471. void suicide() {
  472. #if HAS_SUICIDE
  473. OUT_WRITE(SUICIDE_PIN, LOW);
  474. #endif
  475. }
  476. void servo_init() {
  477. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  478. servo[0].attach(SERVO0_PIN);
  479. #endif
  480. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  481. servo[1].attach(SERVO1_PIN);
  482. #endif
  483. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  484. servo[2].attach(SERVO2_PIN);
  485. #endif
  486. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  487. servo[3].attach(SERVO3_PIN);
  488. #endif
  489. // Set position of Servo Endstops that are defined
  490. #ifdef SERVO_ENDSTOPS
  491. for (int i = 0; i < 3; i++)
  492. if (servo_endstops[i] >= 0)
  493. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  494. #endif
  495. #if SERVO_LEVELING
  496. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  497. servo[servo_endstops[Z_AXIS]].detach();
  498. #endif
  499. }
  500. /**
  501. * Marlin entry-point: Set up before the program loop
  502. * - Set up the kill pin, filament runout, power hold
  503. * - Start the serial port
  504. * - Print startup messages and diagnostics
  505. * - Get EEPROM or default settings
  506. * - Initialize managers for:
  507. * • temperature
  508. * • planner
  509. * • watchdog
  510. * • stepper
  511. * • photo pin
  512. * • servos
  513. * • LCD controller
  514. * • Digipot I2C
  515. * • Z probe sled
  516. * • status LEDs
  517. */
  518. void setup() {
  519. setup_killpin();
  520. setup_filrunoutpin();
  521. setup_powerhold();
  522. MYSERIAL.begin(BAUDRATE);
  523. SERIAL_PROTOCOLLNPGM("start");
  524. SERIAL_ECHO_START;
  525. // Check startup - does nothing if bootloader sets MCUSR to 0
  526. byte mcu = MCUSR;
  527. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  528. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  529. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  530. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  531. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  532. MCUSR = 0;
  533. SERIAL_ECHOPGM(MSG_MARLIN);
  534. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  535. #ifdef STRING_VERSION_CONFIG_H
  536. #ifdef STRING_CONFIG_H_AUTHOR
  537. SERIAL_ECHO_START;
  538. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  539. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  540. SERIAL_ECHOPGM(MSG_AUTHOR);
  541. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  542. SERIAL_ECHOPGM("Compiled: ");
  543. SERIAL_ECHOLNPGM(__DATE__);
  544. #endif // STRING_CONFIG_H_AUTHOR
  545. #endif // STRING_VERSION_CONFIG_H
  546. SERIAL_ECHO_START;
  547. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  548. SERIAL_ECHO(freeMemory());
  549. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  550. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  551. #ifdef SDSUPPORT
  552. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  553. #endif
  554. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  555. Config_RetrieveSettings();
  556. tp_init(); // Initialize temperature loop
  557. plan_init(); // Initialize planner;
  558. watchdog_init();
  559. st_init(); // Initialize stepper, this enables interrupts!
  560. setup_photpin();
  561. servo_init();
  562. lcd_init();
  563. _delay_ms(1000); // wait 1sec to display the splash screen
  564. #if HAS_CONTROLLERFAN
  565. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  566. #endif
  567. #ifdef DIGIPOT_I2C
  568. digipot_i2c_init();
  569. #endif
  570. #ifdef Z_PROBE_SLED
  571. pinMode(SERVO0_PIN, OUTPUT);
  572. digitalWrite(SERVO0_PIN, LOW); // turn it off
  573. #endif // Z_PROBE_SLED
  574. setup_homepin();
  575. #ifdef STAT_LED_RED
  576. pinMode(STAT_LED_RED, OUTPUT);
  577. digitalWrite(STAT_LED_RED, LOW); // turn it off
  578. #endif
  579. #ifdef STAT_LED_BLUE
  580. pinMode(STAT_LED_BLUE, OUTPUT);
  581. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  582. #endif
  583. }
  584. /**
  585. * The main Marlin program loop
  586. *
  587. * - Save or log commands to SD
  588. * - Process available commands (if not saving)
  589. * - Call heater manager
  590. * - Call inactivity manager
  591. * - Call endstop manager
  592. * - Call LCD update
  593. */
  594. void loop() {
  595. if (commands_in_queue < BUFSIZE - 1) get_command();
  596. #ifdef SDSUPPORT
  597. card.checkautostart(false);
  598. #endif
  599. if (commands_in_queue) {
  600. #ifdef SDSUPPORT
  601. if (card.saving) {
  602. char *command = command_queue[cmd_queue_index_r];
  603. if (strstr_P(command, PSTR("M29"))) {
  604. // M29 closes the file
  605. card.closefile();
  606. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  607. }
  608. else {
  609. // Write the string from the read buffer to SD
  610. card.write_command(command);
  611. if (card.logging)
  612. process_commands(); // The card is saving because it's logging
  613. else
  614. SERIAL_PROTOCOLLNPGM(MSG_OK);
  615. }
  616. }
  617. else
  618. process_commands();
  619. #else
  620. process_commands();
  621. #endif // SDSUPPORT
  622. commands_in_queue--;
  623. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  624. }
  625. // Check heater every n milliseconds
  626. manage_heater();
  627. manage_inactivity();
  628. checkHitEndstops();
  629. lcd_update();
  630. }
  631. /**
  632. * Add to the circular command queue the next command from:
  633. * - The command-injection queue (queued_commands_P)
  634. * - The active serial input (usually USB)
  635. * - The SD card file being actively printed
  636. */
  637. void get_command() {
  638. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  639. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  640. serial_char = MYSERIAL.read();
  641. if (serial_char == '\n' || serial_char == '\r' ||
  642. serial_count >= (MAX_CMD_SIZE - 1)
  643. ) {
  644. // end of line == end of comment
  645. comment_mode = false;
  646. if (!serial_count) return; // shortcut for empty lines
  647. char *command = command_queue[cmd_queue_index_w];
  648. command[serial_count] = 0; // terminate string
  649. #ifdef SDSUPPORT
  650. fromsd[cmd_queue_index_w] = false;
  651. #endif
  652. if (strchr(command, 'N') != NULL) {
  653. strchr_pointer = strchr(command, 'N');
  654. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  655. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  656. SERIAL_ERROR_START;
  657. SERIAL_ERRORPGM(MSG_ERR_LINE_NO1);
  658. SERIAL_ERROR(gcode_LastN + 1);
  659. SERIAL_ERRORPGM(MSG_ERR_LINE_NO2);
  660. SERIAL_ERRORLN(gcode_N);
  661. FlushSerialRequestResend();
  662. serial_count = 0;
  663. return;
  664. }
  665. if (strchr(command, '*') != NULL) {
  666. byte checksum = 0;
  667. byte count = 0;
  668. while (command[count] != '*') checksum ^= command[count++];
  669. strchr_pointer = strchr(command, '*');
  670. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  671. SERIAL_ERROR_START;
  672. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  673. SERIAL_ERRORLN(gcode_LastN);
  674. FlushSerialRequestResend();
  675. serial_count = 0;
  676. return;
  677. }
  678. //if no errors, continue parsing
  679. }
  680. else {
  681. SERIAL_ERROR_START;
  682. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  683. SERIAL_ERRORLN(gcode_LastN);
  684. FlushSerialRequestResend();
  685. serial_count = 0;
  686. return;
  687. }
  688. gcode_LastN = gcode_N;
  689. //if no errors, continue parsing
  690. }
  691. else { // if we don't receive 'N' but still see '*'
  692. if ((strchr(command, '*') != NULL)) {
  693. SERIAL_ERROR_START;
  694. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  695. SERIAL_ERRORLN(gcode_LastN);
  696. serial_count = 0;
  697. return;
  698. }
  699. }
  700. if (strchr(command, 'G') != NULL) {
  701. strchr_pointer = strchr(command, 'G');
  702. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  703. case 0:
  704. case 1:
  705. case 2:
  706. case 3:
  707. if (IsStopped()) {
  708. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  709. LCD_MESSAGEPGM(MSG_STOPPED);
  710. }
  711. break;
  712. default:
  713. break;
  714. }
  715. }
  716. // If command was e-stop process now
  717. if (strcmp(command, "M112") == 0) kill();
  718. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  719. commands_in_queue += 1;
  720. serial_count = 0; //clear buffer
  721. }
  722. else if (serial_char == '\\') { // Handle escapes
  723. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  724. // if we have one more character, copy it over
  725. serial_char = MYSERIAL.read();
  726. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  727. }
  728. // otherwise do nothing
  729. }
  730. else { // its not a newline, carriage return or escape char
  731. if (serial_char == ';') comment_mode = true;
  732. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  733. }
  734. }
  735. #ifdef SDSUPPORT
  736. if (!card.sdprinting || serial_count) return;
  737. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  738. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  739. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  740. static bool stop_buffering = false;
  741. if (commands_in_queue == 0) stop_buffering = false;
  742. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  743. int16_t n = card.get();
  744. serial_char = (char)n;
  745. if (serial_char == '\n' || serial_char == '\r' ||
  746. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  747. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  748. ) {
  749. if (card.eof()) {
  750. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  751. print_job_stop_ms = millis();
  752. char time[30];
  753. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  754. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  755. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  756. SERIAL_ECHO_START;
  757. SERIAL_ECHOLN(time);
  758. lcd_setstatus(time, true);
  759. card.printingHasFinished();
  760. card.checkautostart(true);
  761. }
  762. if (serial_char == '#') stop_buffering = true;
  763. if (!serial_count) {
  764. comment_mode = false; //for new command
  765. return; //if empty line
  766. }
  767. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  768. // if (!comment_mode) {
  769. fromsd[cmd_queue_index_w] = true;
  770. commands_in_queue += 1;
  771. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  772. // }
  773. comment_mode = false; //for new command
  774. serial_count = 0; //clear buffer
  775. }
  776. else {
  777. if (serial_char == ';') comment_mode = true;
  778. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  779. }
  780. }
  781. #endif // SDSUPPORT
  782. }
  783. bool code_has_value() {
  784. int i = 1;
  785. char c = strchr_pointer[i];
  786. if (c == '-' || c == '+') c = strchr_pointer[++i];
  787. if (c == '.') c = strchr_pointer[++i];
  788. return (c >= '0' && c <= '9');
  789. }
  790. float code_value() {
  791. float ret;
  792. char *e = strchr(strchr_pointer, 'E');
  793. if (e) {
  794. *e = 0;
  795. ret = strtod(strchr_pointer+1, NULL);
  796. *e = 'E';
  797. }
  798. else
  799. ret = strtod(strchr_pointer+1, NULL);
  800. return ret;
  801. }
  802. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  803. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  804. bool code_seen(char code) {
  805. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  806. return (strchr_pointer != NULL); //Return True if a character was found
  807. }
  808. #define DEFINE_PGM_READ_ANY(type, reader) \
  809. static inline type pgm_read_any(const type *p) \
  810. { return pgm_read_##reader##_near(p); }
  811. DEFINE_PGM_READ_ANY(float, float);
  812. DEFINE_PGM_READ_ANY(signed char, byte);
  813. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  814. static const PROGMEM type array##_P[3] = \
  815. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  816. static inline type array(int axis) \
  817. { return pgm_read_any(&array##_P[axis]); }
  818. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  819. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  820. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  821. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  822. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  823. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  824. #ifdef DUAL_X_CARRIAGE
  825. #define DXC_FULL_CONTROL_MODE 0
  826. #define DXC_AUTO_PARK_MODE 1
  827. #define DXC_DUPLICATION_MODE 2
  828. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  829. static float x_home_pos(int extruder) {
  830. if (extruder == 0)
  831. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  832. else
  833. // In dual carriage mode the extruder offset provides an override of the
  834. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  835. // This allow soft recalibration of the second extruder offset position without firmware reflash
  836. // (through the M218 command).
  837. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  838. }
  839. static int x_home_dir(int extruder) {
  840. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  841. }
  842. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  843. static bool active_extruder_parked = false; // used in mode 1 & 2
  844. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  845. static millis_t delayed_move_time = 0; // used in mode 1
  846. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  847. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  848. bool extruder_duplication_enabled = false; // used in mode 2
  849. #endif //DUAL_X_CARRIAGE
  850. static void axis_is_at_home(int axis) {
  851. #ifdef DUAL_X_CARRIAGE
  852. if (axis == X_AXIS) {
  853. if (active_extruder != 0) {
  854. current_position[X_AXIS] = x_home_pos(active_extruder);
  855. min_pos[X_AXIS] = X2_MIN_POS;
  856. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  857. return;
  858. }
  859. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  860. float xoff = home_offset[X_AXIS];
  861. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  862. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  863. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  864. return;
  865. }
  866. }
  867. #endif
  868. #ifdef SCARA
  869. if (axis == X_AXIS || axis == Y_AXIS) {
  870. float homeposition[3];
  871. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  872. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  873. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  874. // Works out real Homeposition angles using inverse kinematics,
  875. // and calculates homing offset using forward kinematics
  876. calculate_delta(homeposition);
  877. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  878. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  879. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  880. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  881. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  882. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  883. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  884. calculate_SCARA_forward_Transform(delta);
  885. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  886. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  887. current_position[axis] = delta[axis];
  888. // SCARA home positions are based on configuration since the actual limits are determined by the
  889. // inverse kinematic transform.
  890. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  891. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  892. }
  893. else
  894. #endif
  895. {
  896. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  897. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  898. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  899. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  900. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  901. #endif
  902. }
  903. }
  904. /**
  905. * Some planner shorthand inline functions
  906. */
  907. inline void set_homing_bump_feedrate(AxisEnum axis) {
  908. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  909. if (homing_bump_divisor[axis] >= 1)
  910. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  911. else {
  912. feedrate = homing_feedrate[axis] / 10;
  913. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  914. }
  915. }
  916. inline void line_to_current_position() {
  917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  918. }
  919. inline void line_to_z(float zPosition) {
  920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  921. }
  922. inline void line_to_destination(float mm_m) {
  923. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  924. }
  925. inline void line_to_destination() {
  926. line_to_destination(feedrate);
  927. }
  928. inline void sync_plan_position() {
  929. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  930. }
  931. #if defined(DELTA) || defined(SCARA)
  932. inline void sync_plan_position_delta() {
  933. calculate_delta(current_position);
  934. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  935. }
  936. #endif
  937. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  938. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  939. #ifdef ENABLE_AUTO_BED_LEVELING
  940. #ifdef DELTA
  941. /**
  942. * Calculate delta, start a line, and set current_position to destination
  943. */
  944. void prepare_move_raw() {
  945. refresh_cmd_timeout();
  946. calculate_delta(destination);
  947. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  948. set_current_to_destination();
  949. }
  950. #endif
  951. #ifdef AUTO_BED_LEVELING_GRID
  952. #ifndef DELTA
  953. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  954. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  955. planeNormal.debug("planeNormal");
  956. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  957. //bedLevel.debug("bedLevel");
  958. //plan_bed_level_matrix.debug("bed level before");
  959. //vector_3 uncorrected_position = plan_get_position_mm();
  960. //uncorrected_position.debug("position before");
  961. vector_3 corrected_position = plan_get_position();
  962. //corrected_position.debug("position after");
  963. current_position[X_AXIS] = corrected_position.x;
  964. current_position[Y_AXIS] = corrected_position.y;
  965. current_position[Z_AXIS] = corrected_position.z;
  966. sync_plan_position();
  967. }
  968. #endif // !DELTA
  969. #else // !AUTO_BED_LEVELING_GRID
  970. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  971. plan_bed_level_matrix.set_to_identity();
  972. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  973. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  974. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  975. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  976. if (planeNormal.z < 0) {
  977. planeNormal.x = -planeNormal.x;
  978. planeNormal.y = -planeNormal.y;
  979. planeNormal.z = -planeNormal.z;
  980. }
  981. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  982. vector_3 corrected_position = plan_get_position();
  983. current_position[X_AXIS] = corrected_position.x;
  984. current_position[Y_AXIS] = corrected_position.y;
  985. current_position[Z_AXIS] = corrected_position.z;
  986. sync_plan_position();
  987. }
  988. #endif // !AUTO_BED_LEVELING_GRID
  989. static void run_z_probe() {
  990. #ifdef DELTA
  991. float start_z = current_position[Z_AXIS];
  992. long start_steps = st_get_position(Z_AXIS);
  993. // move down slowly until you find the bed
  994. feedrate = homing_feedrate[Z_AXIS] / 4;
  995. destination[Z_AXIS] = -10;
  996. prepare_move_raw(); // this will also set_current_to_destination
  997. st_synchronize();
  998. endstops_hit_on_purpose(); // clear endstop hit flags
  999. // we have to let the planner know where we are right now as it is not where we said to go.
  1000. long stop_steps = st_get_position(Z_AXIS);
  1001. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1002. current_position[Z_AXIS] = mm;
  1003. sync_plan_position_delta();
  1004. #else // !DELTA
  1005. plan_bed_level_matrix.set_to_identity();
  1006. feedrate = homing_feedrate[Z_AXIS];
  1007. // move down until you find the bed
  1008. float zPosition = -10;
  1009. line_to_z(zPosition);
  1010. st_synchronize();
  1011. // we have to let the planner know where we are right now as it is not where we said to go.
  1012. zPosition = st_get_position_mm(Z_AXIS);
  1013. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1014. // move up the retract distance
  1015. zPosition += home_bump_mm(Z_AXIS);
  1016. line_to_z(zPosition);
  1017. st_synchronize();
  1018. endstops_hit_on_purpose(); // clear endstop hit flags
  1019. // move back down slowly to find bed
  1020. set_homing_bump_feedrate(Z_AXIS);
  1021. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1022. line_to_z(zPosition);
  1023. st_synchronize();
  1024. endstops_hit_on_purpose(); // clear endstop hit flags
  1025. // Get the current stepper position after bumping an endstop
  1026. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1027. sync_plan_position();
  1028. #endif // !DELTA
  1029. }
  1030. /**
  1031. * Plan a move to (X, Y, Z) and set the current_position
  1032. * The final current_position may not be the one that was requested
  1033. */
  1034. static void do_blocking_move_to(float x, float y, float z) {
  1035. float oldFeedRate = feedrate;
  1036. #ifdef DELTA
  1037. feedrate = XY_TRAVEL_SPEED;
  1038. destination[X_AXIS] = x;
  1039. destination[Y_AXIS] = y;
  1040. destination[Z_AXIS] = z;
  1041. prepare_move_raw(); // this will also set_current_to_destination
  1042. st_synchronize();
  1043. #else
  1044. feedrate = homing_feedrate[Z_AXIS];
  1045. current_position[Z_AXIS] = z;
  1046. line_to_current_position();
  1047. st_synchronize();
  1048. feedrate = xy_travel_speed;
  1049. current_position[X_AXIS] = x;
  1050. current_position[Y_AXIS] = y;
  1051. line_to_current_position();
  1052. st_synchronize();
  1053. #endif
  1054. feedrate = oldFeedRate;
  1055. }
  1056. static void setup_for_endstop_move() {
  1057. saved_feedrate = feedrate;
  1058. saved_feedrate_multiplier = feedrate_multiplier;
  1059. feedrate_multiplier = 100;
  1060. refresh_cmd_timeout();
  1061. enable_endstops(true);
  1062. }
  1063. static void clean_up_after_endstop_move() {
  1064. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1065. enable_endstops(false);
  1066. #endif
  1067. feedrate = saved_feedrate;
  1068. feedrate_multiplier = saved_feedrate_multiplier;
  1069. refresh_cmd_timeout();
  1070. }
  1071. static void deploy_z_probe() {
  1072. #ifdef SERVO_ENDSTOPS
  1073. // Engage Z Servo endstop if enabled
  1074. if (servo_endstops[Z_AXIS] >= 0) {
  1075. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1076. #if SERVO_LEVELING
  1077. srv->attach(0);
  1078. #endif
  1079. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1080. #if SERVO_LEVELING
  1081. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1082. srv->detach();
  1083. #endif
  1084. }
  1085. #elif defined(Z_PROBE_ALLEN_KEY)
  1086. feedrate = homing_feedrate[X_AXIS];
  1087. // Move to the start position to initiate deployment
  1088. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1089. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1090. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1091. prepare_move_raw(); // this will also set_current_to_destination
  1092. // Home X to touch the belt
  1093. feedrate = homing_feedrate[X_AXIS]/10;
  1094. destination[X_AXIS] = 0;
  1095. prepare_move_raw(); // this will also set_current_to_destination
  1096. // Home Y for safety
  1097. feedrate = homing_feedrate[X_AXIS]/2;
  1098. destination[Y_AXIS] = 0;
  1099. prepare_move_raw(); // this will also set_current_to_destination
  1100. st_synchronize();
  1101. #ifdef Z_PROBE_ENDSTOP
  1102. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1103. if (z_probe_endstop)
  1104. #else
  1105. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1106. if (z_min_endstop)
  1107. #endif
  1108. {
  1109. if (IsRunning()) {
  1110. SERIAL_ERROR_START;
  1111. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1112. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1113. }
  1114. Stop();
  1115. }
  1116. #endif // Z_PROBE_ALLEN_KEY
  1117. }
  1118. static void stow_z_probe(bool doRaise=true) {
  1119. #ifdef SERVO_ENDSTOPS
  1120. // Retract Z Servo endstop if enabled
  1121. if (servo_endstops[Z_AXIS] >= 0) {
  1122. #if Z_RAISE_AFTER_PROBING > 0
  1123. if (doRaise) {
  1124. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1125. st_synchronize();
  1126. }
  1127. #endif
  1128. // Change the Z servo angle
  1129. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1130. #if SERVO_LEVELING
  1131. srv->attach(0);
  1132. #endif
  1133. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1134. #if SERVO_LEVELING
  1135. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1136. srv->detach();
  1137. #endif
  1138. }
  1139. #elif defined(Z_PROBE_ALLEN_KEY)
  1140. // Move up for safety
  1141. feedrate = homing_feedrate[X_AXIS];
  1142. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1143. prepare_move_raw(); // this will also set_current_to_destination
  1144. // Move to the start position to initiate retraction
  1145. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1146. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1147. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1148. prepare_move_raw(); // this will also set_current_to_destination
  1149. // Move the nozzle down to push the probe into retracted position
  1150. feedrate = homing_feedrate[Z_AXIS]/10;
  1151. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1152. prepare_move_raw(); // this will also set_current_to_destination
  1153. // Move up for safety
  1154. feedrate = homing_feedrate[Z_AXIS]/2;
  1155. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1156. prepare_move_raw(); // this will also set_current_to_destination
  1157. // Home XY for safety
  1158. feedrate = homing_feedrate[X_AXIS]/2;
  1159. destination[X_AXIS] = 0;
  1160. destination[Y_AXIS] = 0;
  1161. prepare_move_raw(); // this will also set_current_to_destination
  1162. st_synchronize();
  1163. #ifdef Z_PROBE_ENDSTOP
  1164. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1165. if (!z_probe_endstop)
  1166. #else
  1167. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1168. if (!z_min_endstop)
  1169. #endif
  1170. {
  1171. if (IsRunning()) {
  1172. SERIAL_ERROR_START;
  1173. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1174. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1175. }
  1176. Stop();
  1177. }
  1178. #endif
  1179. }
  1180. enum ProbeAction {
  1181. ProbeStay = 0,
  1182. ProbeDeploy = BIT(0),
  1183. ProbeStow = BIT(1),
  1184. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1185. };
  1186. // Probe bed height at position (x,y), returns the measured z value
  1187. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1188. // move to right place
  1189. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1190. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1191. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1192. if (retract_action & ProbeDeploy) deploy_z_probe();
  1193. #endif
  1194. run_z_probe();
  1195. float measured_z = current_position[Z_AXIS];
  1196. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1197. if (retract_action == ProbeStay) {
  1198. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1199. st_synchronize();
  1200. }
  1201. #endif
  1202. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1203. if (retract_action & ProbeStow) stow_z_probe();
  1204. #endif
  1205. if (verbose_level > 2) {
  1206. SERIAL_PROTOCOLPGM("Bed");
  1207. SERIAL_PROTOCOLPGM(" X: ");
  1208. SERIAL_PROTOCOL_F(x, 3);
  1209. SERIAL_PROTOCOLPGM(" Y: ");
  1210. SERIAL_PROTOCOL_F(y, 3);
  1211. SERIAL_PROTOCOLPGM(" Z: ");
  1212. SERIAL_PROTOCOL_F(measured_z, 3);
  1213. SERIAL_EOL;
  1214. }
  1215. return measured_z;
  1216. }
  1217. #ifdef DELTA
  1218. /**
  1219. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1220. */
  1221. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1222. if (bed_level[x][y] != 0.0) {
  1223. return; // Don't overwrite good values.
  1224. }
  1225. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1226. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1227. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1228. float median = c; // Median is robust (ignores outliers).
  1229. if (a < b) {
  1230. if (b < c) median = b;
  1231. if (c < a) median = a;
  1232. } else { // b <= a
  1233. if (c < b) median = b;
  1234. if (a < c) median = a;
  1235. }
  1236. bed_level[x][y] = median;
  1237. }
  1238. // Fill in the unprobed points (corners of circular print surface)
  1239. // using linear extrapolation, away from the center.
  1240. static void extrapolate_unprobed_bed_level() {
  1241. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1242. for (int y = 0; y <= half; y++) {
  1243. for (int x = 0; x <= half; x++) {
  1244. if (x + y < 3) continue;
  1245. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1246. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1247. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1248. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1249. }
  1250. }
  1251. }
  1252. // Print calibration results for plotting or manual frame adjustment.
  1253. static void print_bed_level() {
  1254. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1255. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1256. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1257. SERIAL_PROTOCOLCHAR(' ');
  1258. }
  1259. SERIAL_EOL;
  1260. }
  1261. }
  1262. // Reset calibration results to zero.
  1263. void reset_bed_level() {
  1264. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1265. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1266. bed_level[x][y] = 0.0;
  1267. }
  1268. }
  1269. }
  1270. #endif // DELTA
  1271. #endif // ENABLE_AUTO_BED_LEVELING
  1272. /**
  1273. * Home an individual axis
  1274. */
  1275. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1276. static void homeaxis(AxisEnum axis) {
  1277. #define HOMEAXIS_DO(LETTER) \
  1278. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1279. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1280. int axis_home_dir =
  1281. #ifdef DUAL_X_CARRIAGE
  1282. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1283. #endif
  1284. home_dir(axis);
  1285. // Set the axis position as setup for the move
  1286. current_position[axis] = 0;
  1287. sync_plan_position();
  1288. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1289. // Deploy a probe if there is one, and homing towards the bed
  1290. if (axis == Z_AXIS) {
  1291. if (axis_home_dir < 0) deploy_z_probe();
  1292. }
  1293. else
  1294. #endif
  1295. #ifdef SERVO_ENDSTOPS
  1296. {
  1297. // Engage Servo endstop if enabled
  1298. if (servo_endstops[axis] > -1)
  1299. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1300. }
  1301. #endif
  1302. // Set a flag for Z motor locking
  1303. #ifdef Z_DUAL_ENDSTOPS
  1304. if (axis == Z_AXIS) In_Homing_Process(true);
  1305. #endif
  1306. // Move towards the endstop until an endstop is triggered
  1307. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1308. feedrate = homing_feedrate[axis];
  1309. line_to_destination();
  1310. st_synchronize();
  1311. // Set the axis position as setup for the move
  1312. current_position[axis] = 0;
  1313. sync_plan_position();
  1314. enable_endstops(false); // Disable endstops while moving away
  1315. // Move away from the endstop by the axis HOME_BUMP_MM
  1316. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1317. line_to_destination();
  1318. st_synchronize();
  1319. enable_endstops(true); // Enable endstops for next homing move
  1320. // Slow down the feedrate for the next move
  1321. set_homing_bump_feedrate(axis);
  1322. // Move slowly towards the endstop until triggered
  1323. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1324. line_to_destination();
  1325. st_synchronize();
  1326. #ifdef Z_DUAL_ENDSTOPS
  1327. if (axis == Z_AXIS) {
  1328. float adj = fabs(z_endstop_adj);
  1329. bool lockZ1;
  1330. if (axis_home_dir > 0) {
  1331. adj = -adj;
  1332. lockZ1 = (z_endstop_adj > 0);
  1333. }
  1334. else
  1335. lockZ1 = (z_endstop_adj < 0);
  1336. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1337. sync_plan_position();
  1338. // Move to the adjusted endstop height
  1339. feedrate = homing_feedrate[axis];
  1340. destination[Z_AXIS] = adj;
  1341. line_to_destination();
  1342. st_synchronize();
  1343. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1344. In_Homing_Process(false);
  1345. } // Z_AXIS
  1346. #endif
  1347. #ifdef DELTA
  1348. // retrace by the amount specified in endstop_adj
  1349. if (endstop_adj[axis] * axis_home_dir < 0) {
  1350. enable_endstops(false); // Disable endstops while moving away
  1351. sync_plan_position();
  1352. destination[axis] = endstop_adj[axis];
  1353. line_to_destination();
  1354. st_synchronize();
  1355. enable_endstops(true); // Enable endstops for next homing move
  1356. }
  1357. #endif
  1358. // Set the axis position to its home position (plus home offsets)
  1359. axis_is_at_home(axis);
  1360. sync_plan_position();
  1361. destination[axis] = current_position[axis];
  1362. feedrate = 0.0;
  1363. endstops_hit_on_purpose(); // clear endstop hit flags
  1364. axis_known_position[axis] = true;
  1365. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1366. // Deploy a probe if there is one, and homing towards the bed
  1367. if (axis == Z_AXIS) {
  1368. if (axis_home_dir < 0) stow_z_probe();
  1369. }
  1370. else
  1371. #endif
  1372. #ifdef SERVO_ENDSTOPS
  1373. {
  1374. // Retract Servo endstop if enabled
  1375. if (servo_endstops[axis] > -1)
  1376. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1377. }
  1378. #endif
  1379. }
  1380. }
  1381. #ifdef FWRETRACT
  1382. void retract(bool retracting, bool swapretract = false) {
  1383. if (retracting == retracted[active_extruder]) return;
  1384. float oldFeedrate = feedrate;
  1385. set_destination_to_current();
  1386. if (retracting) {
  1387. feedrate = retract_feedrate * 60;
  1388. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1389. plan_set_e_position(current_position[E_AXIS]);
  1390. prepare_move();
  1391. if (retract_zlift > 0.01) {
  1392. current_position[Z_AXIS] -= retract_zlift;
  1393. #ifdef DELTA
  1394. sync_plan_position_delta();
  1395. #else
  1396. sync_plan_position();
  1397. #endif
  1398. prepare_move();
  1399. }
  1400. }
  1401. else {
  1402. if (retract_zlift > 0.01) {
  1403. current_position[Z_AXIS] += retract_zlift;
  1404. #ifdef DELTA
  1405. sync_plan_position_delta();
  1406. #else
  1407. sync_plan_position();
  1408. #endif
  1409. //prepare_move();
  1410. }
  1411. feedrate = retract_recover_feedrate * 60;
  1412. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1413. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1414. plan_set_e_position(current_position[E_AXIS]);
  1415. prepare_move();
  1416. }
  1417. feedrate = oldFeedrate;
  1418. retracted[active_extruder] = retracting;
  1419. } // retract()
  1420. #endif // FWRETRACT
  1421. #ifdef Z_PROBE_SLED
  1422. #ifndef SLED_DOCKING_OFFSET
  1423. #define SLED_DOCKING_OFFSET 0
  1424. #endif
  1425. /**
  1426. * Method to dock/undock a sled designed by Charles Bell.
  1427. *
  1428. * dock[in] If true, move to MAX_X and engage the electromagnet
  1429. * offset[in] The additional distance to move to adjust docking location
  1430. */
  1431. static void dock_sled(bool dock, int offset=0) {
  1432. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1433. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1436. return;
  1437. }
  1438. if (dock) {
  1439. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
  1440. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1441. } else {
  1442. float z_loc = current_position[Z_AXIS];
  1443. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1444. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
  1445. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1446. }
  1447. }
  1448. #endif // Z_PROBE_SLED
  1449. /**
  1450. *
  1451. * G-Code Handler functions
  1452. *
  1453. */
  1454. /**
  1455. * G0, G1: Coordinated movement of X Y Z E axes
  1456. */
  1457. inline void gcode_G0_G1() {
  1458. if (IsRunning()) {
  1459. get_coordinates(); // For X Y Z E F
  1460. #ifdef FWRETRACT
  1461. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1462. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1463. // Is this move an attempt to retract or recover?
  1464. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1465. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1466. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1467. retract(!retracted[active_extruder]);
  1468. return;
  1469. }
  1470. }
  1471. #endif //FWRETRACT
  1472. prepare_move();
  1473. //ClearToSend();
  1474. }
  1475. }
  1476. /**
  1477. * G2: Clockwise Arc
  1478. * G3: Counterclockwise Arc
  1479. */
  1480. inline void gcode_G2_G3(bool clockwise) {
  1481. if (IsRunning()) {
  1482. get_arc_coordinates();
  1483. prepare_arc_move(clockwise);
  1484. }
  1485. }
  1486. /**
  1487. * G4: Dwell S<seconds> or P<milliseconds>
  1488. */
  1489. inline void gcode_G4() {
  1490. millis_t codenum = 0;
  1491. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1492. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1493. st_synchronize();
  1494. refresh_cmd_timeout();
  1495. codenum += previous_cmd_ms; // keep track of when we started waiting
  1496. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1497. while (millis() < codenum) {
  1498. manage_heater();
  1499. manage_inactivity();
  1500. lcd_update();
  1501. }
  1502. }
  1503. #ifdef FWRETRACT
  1504. /**
  1505. * G10 - Retract filament according to settings of M207
  1506. * G11 - Recover filament according to settings of M208
  1507. */
  1508. inline void gcode_G10_G11(bool doRetract=false) {
  1509. #if EXTRUDERS > 1
  1510. if (doRetract) {
  1511. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1512. }
  1513. #endif
  1514. retract(doRetract
  1515. #if EXTRUDERS > 1
  1516. , retracted_swap[active_extruder]
  1517. #endif
  1518. );
  1519. }
  1520. #endif //FWRETRACT
  1521. /**
  1522. * G28: Home all axes according to settings
  1523. *
  1524. * Parameters
  1525. *
  1526. * None Home to all axes with no parameters.
  1527. * With QUICK_HOME enabled XY will home together, then Z.
  1528. *
  1529. * Cartesian parameters
  1530. *
  1531. * X Home to the X endstop
  1532. * Y Home to the Y endstop
  1533. * Z Home to the Z endstop
  1534. *
  1535. */
  1536. inline void gcode_G28() {
  1537. // For auto bed leveling, clear the level matrix
  1538. #ifdef ENABLE_AUTO_BED_LEVELING
  1539. plan_bed_level_matrix.set_to_identity();
  1540. #ifdef DELTA
  1541. reset_bed_level();
  1542. #endif
  1543. #endif
  1544. // For manual bed leveling deactivate the matrix temporarily
  1545. #ifdef MESH_BED_LEVELING
  1546. uint8_t mbl_was_active = mbl.active;
  1547. mbl.active = 0;
  1548. #endif
  1549. saved_feedrate = feedrate;
  1550. saved_feedrate_multiplier = feedrate_multiplier;
  1551. feedrate_multiplier = 100;
  1552. refresh_cmd_timeout();
  1553. enable_endstops(true);
  1554. set_destination_to_current();
  1555. feedrate = 0.0;
  1556. #ifdef DELTA
  1557. // A delta can only safely home all axis at the same time
  1558. // all axis have to home at the same time
  1559. // Pretend the current position is 0,0,0
  1560. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1561. sync_plan_position();
  1562. // Move all carriages up together until the first endstop is hit.
  1563. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1564. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1565. line_to_destination();
  1566. st_synchronize();
  1567. endstops_hit_on_purpose(); // clear endstop hit flags
  1568. // Destination reached
  1569. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1570. // take care of back off and rehome now we are all at the top
  1571. HOMEAXIS(X);
  1572. HOMEAXIS(Y);
  1573. HOMEAXIS(Z);
  1574. sync_plan_position_delta();
  1575. #else // NOT DELTA
  1576. bool homeX = code_seen(axis_codes[X_AXIS]),
  1577. homeY = code_seen(axis_codes[Y_AXIS]),
  1578. homeZ = code_seen(axis_codes[Z_AXIS]);
  1579. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1580. if (home_all_axis || homeZ) {
  1581. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1582. HOMEAXIS(Z);
  1583. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1584. // Raise Z before homing any other axes
  1585. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1586. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1587. feedrate = max_feedrate[Z_AXIS] * 60;
  1588. line_to_destination();
  1589. st_synchronize();
  1590. #endif
  1591. } // home_all_axis || homeZ
  1592. #ifdef QUICK_HOME
  1593. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1594. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1595. #ifdef DUAL_X_CARRIAGE
  1596. int x_axis_home_dir = x_home_dir(active_extruder);
  1597. extruder_duplication_enabled = false;
  1598. #else
  1599. int x_axis_home_dir = home_dir(X_AXIS);
  1600. #endif
  1601. sync_plan_position();
  1602. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1603. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1604. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1605. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1606. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1607. line_to_destination();
  1608. st_synchronize();
  1609. axis_is_at_home(X_AXIS);
  1610. axis_is_at_home(Y_AXIS);
  1611. sync_plan_position();
  1612. destination[X_AXIS] = current_position[X_AXIS];
  1613. destination[Y_AXIS] = current_position[Y_AXIS];
  1614. line_to_destination();
  1615. feedrate = 0.0;
  1616. st_synchronize();
  1617. endstops_hit_on_purpose(); // clear endstop hit flags
  1618. current_position[X_AXIS] = destination[X_AXIS];
  1619. current_position[Y_AXIS] = destination[Y_AXIS];
  1620. #ifndef SCARA
  1621. current_position[Z_AXIS] = destination[Z_AXIS];
  1622. #endif
  1623. }
  1624. #endif // QUICK_HOME
  1625. #ifdef HOME_Y_BEFORE_X
  1626. // Home Y
  1627. if (home_all_axis || homeY) HOMEAXIS(Y);
  1628. #endif
  1629. // Home X
  1630. if (home_all_axis || homeX) {
  1631. #ifdef DUAL_X_CARRIAGE
  1632. int tmp_extruder = active_extruder;
  1633. extruder_duplication_enabled = false;
  1634. active_extruder = !active_extruder;
  1635. HOMEAXIS(X);
  1636. inactive_extruder_x_pos = current_position[X_AXIS];
  1637. active_extruder = tmp_extruder;
  1638. HOMEAXIS(X);
  1639. // reset state used by the different modes
  1640. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1641. delayed_move_time = 0;
  1642. active_extruder_parked = true;
  1643. #else
  1644. HOMEAXIS(X);
  1645. #endif
  1646. }
  1647. #ifndef HOME_Y_BEFORE_X
  1648. // Home Y
  1649. if (home_all_axis || homeY) HOMEAXIS(Y);
  1650. #endif
  1651. // Home Z last if homing towards the bed
  1652. #if Z_HOME_DIR < 0
  1653. if (home_all_axis || homeZ) {
  1654. #ifdef Z_SAFE_HOMING
  1655. if (home_all_axis) {
  1656. current_position[Z_AXIS] = 0;
  1657. sync_plan_position();
  1658. //
  1659. // Set the probe (or just the nozzle) destination to the safe homing point
  1660. //
  1661. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1662. // then this may not work as expected.
  1663. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1664. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1665. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1666. feedrate = XY_TRAVEL_SPEED;
  1667. // This could potentially move X, Y, Z all together
  1668. line_to_destination();
  1669. st_synchronize();
  1670. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1671. current_position[X_AXIS] = destination[X_AXIS];
  1672. current_position[Y_AXIS] = destination[Y_AXIS];
  1673. // Home the Z axis
  1674. HOMEAXIS(Z);
  1675. }
  1676. else if (homeZ) { // Don't need to Home Z twice
  1677. // Let's see if X and Y are homed
  1678. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1679. // Make sure the probe is within the physical limits
  1680. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1681. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1682. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1683. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1684. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1685. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1686. // Set the plan current position to X, Y, 0
  1687. current_position[Z_AXIS] = 0;
  1688. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1689. // Set Z destination away from bed and raise the axis
  1690. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1691. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1692. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1693. line_to_destination();
  1694. st_synchronize();
  1695. // Home the Z axis
  1696. HOMEAXIS(Z);
  1697. }
  1698. else {
  1699. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1700. SERIAL_ECHO_START;
  1701. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1702. }
  1703. }
  1704. else {
  1705. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1706. SERIAL_ECHO_START;
  1707. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1708. }
  1709. } // !home_all_axes && homeZ
  1710. #else // !Z_SAFE_HOMING
  1711. HOMEAXIS(Z);
  1712. #endif // !Z_SAFE_HOMING
  1713. } // home_all_axis || homeZ
  1714. #endif // Z_HOME_DIR < 0
  1715. sync_plan_position();
  1716. #endif // else DELTA
  1717. #ifdef SCARA
  1718. sync_plan_position_delta();
  1719. #endif
  1720. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1721. enable_endstops(false);
  1722. #endif
  1723. // For manual leveling move back to 0,0
  1724. #ifdef MESH_BED_LEVELING
  1725. if (mbl_was_active) {
  1726. current_position[X_AXIS] = mbl.get_x(0);
  1727. current_position[Y_AXIS] = mbl.get_y(0);
  1728. set_destination_to_current();
  1729. feedrate = homing_feedrate[X_AXIS];
  1730. line_to_destination();
  1731. st_synchronize();
  1732. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1733. sync_plan_position();
  1734. mbl.active = 1;
  1735. }
  1736. #endif
  1737. feedrate = saved_feedrate;
  1738. feedrate_multiplier = saved_feedrate_multiplier;
  1739. refresh_cmd_timeout();
  1740. endstops_hit_on_purpose(); // clear endstop hit flags
  1741. }
  1742. #ifdef MESH_BED_LEVELING
  1743. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1744. /**
  1745. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1746. * mesh to compensate for variable bed height
  1747. *
  1748. * Parameters With MESH_BED_LEVELING:
  1749. *
  1750. * S0 Produce a mesh report
  1751. * S1 Start probing mesh points
  1752. * S2 Probe the next mesh point
  1753. * S3 Xn Yn Zn.nn Manually modify a single point
  1754. *
  1755. * The S0 report the points as below
  1756. *
  1757. * +----> X-axis
  1758. * |
  1759. * |
  1760. * v Y-axis
  1761. *
  1762. */
  1763. inline void gcode_G29() {
  1764. static int probe_point = -1;
  1765. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1766. if (state < 0 || state > 3) {
  1767. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1768. return;
  1769. }
  1770. int ix, iy;
  1771. float z;
  1772. switch(state) {
  1773. case MeshReport:
  1774. if (mbl.active) {
  1775. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1776. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1777. SERIAL_PROTOCOLCHAR(',');
  1778. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1779. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1780. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1781. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1782. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1783. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1784. SERIAL_PROTOCOLPGM(" ");
  1785. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1786. }
  1787. SERIAL_EOL;
  1788. }
  1789. }
  1790. else
  1791. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1792. break;
  1793. case MeshStart:
  1794. mbl.reset();
  1795. probe_point = 0;
  1796. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1797. break;
  1798. case MeshNext:
  1799. if (probe_point < 0) {
  1800. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1801. return;
  1802. }
  1803. if (probe_point == 0) {
  1804. // Set Z to a positive value before recording the first Z.
  1805. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1806. sync_plan_position();
  1807. }
  1808. else {
  1809. // For others, save the Z of the previous point, then raise Z again.
  1810. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1811. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1812. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1813. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1814. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1816. st_synchronize();
  1817. }
  1818. // Is there another point to sample? Move there.
  1819. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1820. ix = probe_point % MESH_NUM_X_POINTS;
  1821. iy = probe_point / MESH_NUM_X_POINTS;
  1822. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1823. current_position[X_AXIS] = mbl.get_x(ix);
  1824. current_position[Y_AXIS] = mbl.get_y(iy);
  1825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1826. st_synchronize();
  1827. probe_point++;
  1828. }
  1829. else {
  1830. // After recording the last point, activate the mbl and home
  1831. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1832. probe_point = -1;
  1833. mbl.active = 1;
  1834. enqueuecommands_P(PSTR("G28"));
  1835. }
  1836. break;
  1837. case MeshSet:
  1838. if (code_seen('X') || code_seen('x')) {
  1839. ix = code_value_long()-1;
  1840. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1841. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1842. return;
  1843. }
  1844. } else {
  1845. SERIAL_PROTOCOLPGM("X not entered.\n");
  1846. return;
  1847. }
  1848. if (code_seen('Y') || code_seen('y')) {
  1849. iy = code_value_long()-1;
  1850. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1851. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1852. return;
  1853. }
  1854. } else {
  1855. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1856. return;
  1857. }
  1858. if (code_seen('Z') || code_seen('z')) {
  1859. z = code_value();
  1860. } else {
  1861. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1862. return;
  1863. }
  1864. mbl.z_values[iy][ix] = z;
  1865. } // switch(state)
  1866. }
  1867. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1868. /**
  1869. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1870. * Will fail if the printer has not been homed with G28.
  1871. *
  1872. * Enhanced G29 Auto Bed Leveling Probe Routine
  1873. *
  1874. * Parameters With AUTO_BED_LEVELING_GRID:
  1875. *
  1876. * P Set the size of the grid that will be probed (P x P points).
  1877. * Not supported by non-linear delta printer bed leveling.
  1878. * Example: "G29 P4"
  1879. *
  1880. * S Set the XY travel speed between probe points (in mm/min)
  1881. *
  1882. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1883. * or clean the rotation Matrix. Useful to check the topology
  1884. * after a first run of G29.
  1885. *
  1886. * V Set the verbose level (0-4). Example: "G29 V3"
  1887. *
  1888. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1889. * This is useful for manual bed leveling and finding flaws in the bed (to
  1890. * assist with part placement).
  1891. * Not supported by non-linear delta printer bed leveling.
  1892. *
  1893. * F Set the Front limit of the probing grid
  1894. * B Set the Back limit of the probing grid
  1895. * L Set the Left limit of the probing grid
  1896. * R Set the Right limit of the probing grid
  1897. *
  1898. * Global Parameters:
  1899. *
  1900. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1901. * Include "E" to engage/disengage the probe for each sample.
  1902. * There's no extra effect if you have a fixed probe.
  1903. * Usage: "G29 E" or "G29 e"
  1904. *
  1905. */
  1906. inline void gcode_G29() {
  1907. // Don't allow auto-leveling without homing first
  1908. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1909. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1910. SERIAL_ECHO_START;
  1911. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1912. return;
  1913. }
  1914. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1915. if (verbose_level < 0 || verbose_level > 4) {
  1916. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1917. return;
  1918. }
  1919. bool dryrun = code_seen('D') || code_seen('d'),
  1920. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1921. #ifdef AUTO_BED_LEVELING_GRID
  1922. #ifndef DELTA
  1923. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1924. #endif
  1925. if (verbose_level > 0) {
  1926. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1927. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1928. }
  1929. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1930. #ifndef DELTA
  1931. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1932. if (auto_bed_leveling_grid_points < 2) {
  1933. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1934. return;
  1935. }
  1936. #endif
  1937. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1938. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1939. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1940. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1941. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1942. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1943. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1944. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1945. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1946. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1947. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1948. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1949. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1950. if (left_out || right_out || front_out || back_out) {
  1951. if (left_out) {
  1952. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1953. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1954. }
  1955. if (right_out) {
  1956. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1957. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1958. }
  1959. if (front_out) {
  1960. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1961. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1962. }
  1963. if (back_out) {
  1964. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1965. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1966. }
  1967. return;
  1968. }
  1969. #endif // AUTO_BED_LEVELING_GRID
  1970. #ifdef Z_PROBE_SLED
  1971. dock_sled(false); // engage (un-dock) the probe
  1972. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1973. deploy_z_probe();
  1974. #endif
  1975. st_synchronize();
  1976. if (!dryrun) {
  1977. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1978. plan_bed_level_matrix.set_to_identity();
  1979. #ifdef DELTA
  1980. reset_bed_level();
  1981. #else //!DELTA
  1982. //vector_3 corrected_position = plan_get_position_mm();
  1983. //corrected_position.debug("position before G29");
  1984. vector_3 uncorrected_position = plan_get_position();
  1985. //uncorrected_position.debug("position during G29");
  1986. current_position[X_AXIS] = uncorrected_position.x;
  1987. current_position[Y_AXIS] = uncorrected_position.y;
  1988. current_position[Z_AXIS] = uncorrected_position.z;
  1989. sync_plan_position();
  1990. #endif // !DELTA
  1991. }
  1992. setup_for_endstop_move();
  1993. feedrate = homing_feedrate[Z_AXIS];
  1994. #ifdef AUTO_BED_LEVELING_GRID
  1995. // probe at the points of a lattice grid
  1996. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1997. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1998. #ifdef DELTA
  1999. delta_grid_spacing[0] = xGridSpacing;
  2000. delta_grid_spacing[1] = yGridSpacing;
  2001. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2002. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2003. #else // !DELTA
  2004. // solve the plane equation ax + by + d = z
  2005. // A is the matrix with rows [x y 1] for all the probed points
  2006. // B is the vector of the Z positions
  2007. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2008. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2009. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2010. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2011. eqnBVector[abl2], // "B" vector of Z points
  2012. mean = 0.0;
  2013. #endif // !DELTA
  2014. int probePointCounter = 0;
  2015. bool zig = true;
  2016. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2017. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2018. int xStart, xStop, xInc;
  2019. if (zig) {
  2020. xStart = 0;
  2021. xStop = auto_bed_leveling_grid_points;
  2022. xInc = 1;
  2023. }
  2024. else {
  2025. xStart = auto_bed_leveling_grid_points - 1;
  2026. xStop = -1;
  2027. xInc = -1;
  2028. }
  2029. #ifndef DELTA
  2030. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2031. // This gets the probe points in more readable order.
  2032. if (!do_topography_map) zig = !zig;
  2033. #endif
  2034. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2035. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2036. // raise extruder
  2037. float measured_z,
  2038. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2039. #ifdef DELTA
  2040. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2041. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2042. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2043. #endif //DELTA
  2044. ProbeAction act;
  2045. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2046. act = ProbeDeployAndStow;
  2047. else if (yCount == 0 && xCount == xStart)
  2048. act = ProbeDeploy;
  2049. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2050. act = ProbeStow;
  2051. else
  2052. act = ProbeStay;
  2053. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2054. #ifndef DELTA
  2055. mean += measured_z;
  2056. eqnBVector[probePointCounter] = measured_z;
  2057. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2058. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2059. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2060. #else
  2061. bed_level[xCount][yCount] = measured_z + z_offset;
  2062. #endif
  2063. probePointCounter++;
  2064. manage_heater();
  2065. manage_inactivity();
  2066. lcd_update();
  2067. } //xProbe
  2068. } //yProbe
  2069. clean_up_after_endstop_move();
  2070. #ifdef DELTA
  2071. if (!dryrun) extrapolate_unprobed_bed_level();
  2072. print_bed_level();
  2073. #else // !DELTA
  2074. // solve lsq problem
  2075. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2076. mean /= abl2;
  2077. if (verbose_level) {
  2078. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2079. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2080. SERIAL_PROTOCOLPGM(" b: ");
  2081. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2082. SERIAL_PROTOCOLPGM(" d: ");
  2083. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2084. SERIAL_EOL;
  2085. if (verbose_level > 2) {
  2086. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2087. SERIAL_PROTOCOL_F(mean, 8);
  2088. SERIAL_EOL;
  2089. }
  2090. }
  2091. // Show the Topography map if enabled
  2092. if (do_topography_map) {
  2093. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2094. SERIAL_PROTOCOLPGM("+-----------+\n");
  2095. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2096. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2097. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2098. SERIAL_PROTOCOLPGM("+-----------+\n");
  2099. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2100. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2101. int ind = yy * auto_bed_leveling_grid_points + xx;
  2102. float diff = eqnBVector[ind] - mean;
  2103. if (diff >= 0.0)
  2104. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2105. else
  2106. SERIAL_PROTOCOLCHAR(' ');
  2107. SERIAL_PROTOCOL_F(diff, 5);
  2108. } // xx
  2109. SERIAL_EOL;
  2110. } // yy
  2111. SERIAL_EOL;
  2112. } //do_topography_map
  2113. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2114. free(plane_equation_coefficients);
  2115. #endif //!DELTA
  2116. #else // !AUTO_BED_LEVELING_GRID
  2117. // Actions for each probe
  2118. ProbeAction p1, p2, p3;
  2119. if (deploy_probe_for_each_reading)
  2120. p1 = p2 = p3 = ProbeDeployAndStow;
  2121. else
  2122. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2123. // Probe at 3 arbitrary points
  2124. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2125. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2126. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2127. clean_up_after_endstop_move();
  2128. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2129. #endif // !AUTO_BED_LEVELING_GRID
  2130. #ifndef DELTA
  2131. if (verbose_level > 0)
  2132. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2133. if (!dryrun) {
  2134. // Correct the Z height difference from z-probe position and hotend tip position.
  2135. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2136. // When the bed is uneven, this height must be corrected.
  2137. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2138. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2139. z_tmp = current_position[Z_AXIS],
  2140. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2141. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2142. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2143. sync_plan_position();
  2144. }
  2145. #endif // !DELTA
  2146. #ifdef Z_PROBE_SLED
  2147. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2148. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2149. stow_z_probe();
  2150. #endif
  2151. #ifdef Z_PROBE_END_SCRIPT
  2152. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2153. st_synchronize();
  2154. #endif
  2155. }
  2156. #ifndef Z_PROBE_SLED
  2157. inline void gcode_G30() {
  2158. deploy_z_probe(); // Engage Z Servo endstop if available
  2159. st_synchronize();
  2160. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2161. setup_for_endstop_move();
  2162. feedrate = homing_feedrate[Z_AXIS];
  2163. run_z_probe();
  2164. SERIAL_PROTOCOLPGM("Bed");
  2165. SERIAL_PROTOCOLPGM(" X: ");
  2166. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2167. SERIAL_PROTOCOLPGM(" Y: ");
  2168. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2169. SERIAL_PROTOCOLPGM(" Z: ");
  2170. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2171. SERIAL_EOL;
  2172. clean_up_after_endstop_move();
  2173. stow_z_probe(); // Retract Z Servo endstop if available
  2174. }
  2175. #endif //!Z_PROBE_SLED
  2176. #endif //ENABLE_AUTO_BED_LEVELING
  2177. /**
  2178. * G92: Set current position to given X Y Z E
  2179. */
  2180. inline void gcode_G92() {
  2181. if (!code_seen(axis_codes[E_AXIS]))
  2182. st_synchronize();
  2183. bool didXYZ = false;
  2184. for (int i = 0; i < NUM_AXIS; i++) {
  2185. if (code_seen(axis_codes[i])) {
  2186. float v = current_position[i] = code_value();
  2187. if (i == E_AXIS)
  2188. plan_set_e_position(v);
  2189. else
  2190. didXYZ = true;
  2191. }
  2192. }
  2193. if (didXYZ) sync_plan_position();
  2194. }
  2195. #ifdef ULTIPANEL
  2196. /**
  2197. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2198. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2199. */
  2200. inline void gcode_M0_M1() {
  2201. char *src = strchr_pointer + 2;
  2202. millis_t codenum = 0;
  2203. bool hasP = false, hasS = false;
  2204. if (code_seen('P')) {
  2205. codenum = code_value_short(); // milliseconds to wait
  2206. hasP = codenum > 0;
  2207. }
  2208. if (code_seen('S')) {
  2209. codenum = code_value_short() * 1000UL; // seconds to wait
  2210. hasS = codenum > 0;
  2211. }
  2212. char* starpos = strchr(src, '*');
  2213. if (starpos != NULL) *(starpos) = '\0';
  2214. while (*src == ' ') ++src;
  2215. if (!hasP && !hasS && *src != '\0')
  2216. lcd_setstatus(src, true);
  2217. else {
  2218. LCD_MESSAGEPGM(MSG_USERWAIT);
  2219. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2220. dontExpireStatus();
  2221. #endif
  2222. }
  2223. lcd_ignore_click();
  2224. st_synchronize();
  2225. refresh_cmd_timeout();
  2226. if (codenum > 0) {
  2227. codenum += previous_cmd_ms; // keep track of when we started waiting
  2228. while(millis() < codenum && !lcd_clicked()) {
  2229. manage_heater();
  2230. manage_inactivity();
  2231. lcd_update();
  2232. }
  2233. lcd_ignore_click(false);
  2234. }
  2235. else {
  2236. if (!lcd_detected()) return;
  2237. while (!lcd_clicked()) {
  2238. manage_heater();
  2239. manage_inactivity();
  2240. lcd_update();
  2241. }
  2242. }
  2243. if (IS_SD_PRINTING)
  2244. LCD_MESSAGEPGM(MSG_RESUMING);
  2245. else
  2246. LCD_MESSAGEPGM(WELCOME_MSG);
  2247. }
  2248. #endif // ULTIPANEL
  2249. /**
  2250. * M17: Enable power on all stepper motors
  2251. */
  2252. inline void gcode_M17() {
  2253. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2254. enable_all_steppers();
  2255. }
  2256. #ifdef SDSUPPORT
  2257. /**
  2258. * M20: List SD card to serial output
  2259. */
  2260. inline void gcode_M20() {
  2261. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2262. card.ls();
  2263. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2264. }
  2265. /**
  2266. * M21: Init SD Card
  2267. */
  2268. inline void gcode_M21() {
  2269. card.initsd();
  2270. }
  2271. /**
  2272. * M22: Release SD Card
  2273. */
  2274. inline void gcode_M22() {
  2275. card.release();
  2276. }
  2277. /**
  2278. * M23: Select a file
  2279. */
  2280. inline void gcode_M23() {
  2281. char* codepos = strchr_pointer + 4;
  2282. char* starpos = strchr(codepos, '*');
  2283. if (starpos) *starpos = '\0';
  2284. card.openFile(codepos, true);
  2285. }
  2286. /**
  2287. * M24: Start SD Print
  2288. */
  2289. inline void gcode_M24() {
  2290. card.startFileprint();
  2291. print_job_start_ms = millis();
  2292. }
  2293. /**
  2294. * M25: Pause SD Print
  2295. */
  2296. inline void gcode_M25() {
  2297. card.pauseSDPrint();
  2298. }
  2299. /**
  2300. * M26: Set SD Card file index
  2301. */
  2302. inline void gcode_M26() {
  2303. if (card.cardOK && code_seen('S'))
  2304. card.setIndex(code_value_short());
  2305. }
  2306. /**
  2307. * M27: Get SD Card status
  2308. */
  2309. inline void gcode_M27() {
  2310. card.getStatus();
  2311. }
  2312. /**
  2313. * M28: Start SD Write
  2314. */
  2315. inline void gcode_M28() {
  2316. char* codepos = strchr_pointer + 4;
  2317. char* starpos = strchr(codepos, '*');
  2318. if (starpos) {
  2319. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2320. strchr_pointer = strchr(npos, ' ') + 1;
  2321. *(starpos) = '\0';
  2322. }
  2323. card.openFile(codepos, false);
  2324. }
  2325. /**
  2326. * M29: Stop SD Write
  2327. * Processed in write to file routine above
  2328. */
  2329. inline void gcode_M29() {
  2330. // card.saving = false;
  2331. }
  2332. /**
  2333. * M30 <filename>: Delete SD Card file
  2334. */
  2335. inline void gcode_M30() {
  2336. if (card.cardOK) {
  2337. card.closefile();
  2338. char* starpos = strchr(strchr_pointer + 4, '*');
  2339. if (starpos) {
  2340. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2341. strchr_pointer = strchr(npos, ' ') + 1;
  2342. *(starpos) = '\0';
  2343. }
  2344. card.removeFile(strchr_pointer + 4);
  2345. }
  2346. }
  2347. #endif
  2348. /**
  2349. * M31: Get the time since the start of SD Print (or last M109)
  2350. */
  2351. inline void gcode_M31() {
  2352. print_job_stop_ms = millis();
  2353. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2354. int min = t / 60, sec = t % 60;
  2355. char time[30];
  2356. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2357. SERIAL_ECHO_START;
  2358. SERIAL_ECHOLN(time);
  2359. lcd_setstatus(time);
  2360. autotempShutdown();
  2361. }
  2362. #ifdef SDSUPPORT
  2363. /**
  2364. * M32: Select file and start SD Print
  2365. */
  2366. inline void gcode_M32() {
  2367. if (card.sdprinting)
  2368. st_synchronize();
  2369. char* codepos = strchr_pointer + 4;
  2370. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2371. if (! namestartpos)
  2372. namestartpos = codepos; //default name position, 4 letters after the M
  2373. else
  2374. namestartpos++; //to skip the '!'
  2375. char* starpos = strchr(codepos, '*');
  2376. if (starpos) *(starpos) = '\0';
  2377. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2378. if (card.cardOK) {
  2379. card.openFile(namestartpos, true, !call_procedure);
  2380. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2381. card.setIndex(code_value_short());
  2382. card.startFileprint();
  2383. if (!call_procedure)
  2384. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2385. }
  2386. }
  2387. /**
  2388. * M928: Start SD Write
  2389. */
  2390. inline void gcode_M928() {
  2391. char* starpos = strchr(strchr_pointer + 5, '*');
  2392. if (starpos) {
  2393. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2394. strchr_pointer = strchr(npos, ' ') + 1;
  2395. *(starpos) = '\0';
  2396. }
  2397. card.openLogFile(strchr_pointer + 5);
  2398. }
  2399. #endif // SDSUPPORT
  2400. /**
  2401. * M42: Change pin status via GCode
  2402. */
  2403. inline void gcode_M42() {
  2404. if (code_seen('S')) {
  2405. int pin_status = code_value_short(),
  2406. pin_number = LED_PIN;
  2407. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2408. pin_number = code_value_short();
  2409. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2410. if (sensitive_pins[i] == pin_number) {
  2411. pin_number = -1;
  2412. break;
  2413. }
  2414. }
  2415. #if HAS_FAN
  2416. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2417. #endif
  2418. if (pin_number > -1) {
  2419. pinMode(pin_number, OUTPUT);
  2420. digitalWrite(pin_number, pin_status);
  2421. analogWrite(pin_number, pin_status);
  2422. }
  2423. } // code_seen('S')
  2424. }
  2425. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2426. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2427. #ifdef Z_PROBE_ENDSTOP
  2428. #if !HAS_Z_PROBE
  2429. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2430. #endif
  2431. #elif !HAS_Z_MIN
  2432. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2433. #endif
  2434. /**
  2435. * M48: Z-Probe repeatability measurement function.
  2436. *
  2437. * Usage:
  2438. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2439. * P = Number of sampled points (4-50, default 10)
  2440. * X = Sample X position
  2441. * Y = Sample Y position
  2442. * V = Verbose level (0-4, default=1)
  2443. * E = Engage probe for each reading
  2444. * L = Number of legs of movement before probe
  2445. *
  2446. * This function assumes the bed has been homed. Specifically, that a G28 command
  2447. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2448. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2449. * regenerated.
  2450. */
  2451. inline void gcode_M48() {
  2452. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2453. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2454. if (code_seen('V') || code_seen('v')) {
  2455. verbose_level = code_value_short();
  2456. if (verbose_level < 0 || verbose_level > 4 ) {
  2457. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2458. return;
  2459. }
  2460. }
  2461. if (verbose_level > 0)
  2462. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2463. if (code_seen('P') || code_seen('p')) {
  2464. n_samples = code_value_short();
  2465. if (n_samples < 4 || n_samples > 50) {
  2466. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2467. return;
  2468. }
  2469. }
  2470. double X_current = st_get_position_mm(X_AXIS),
  2471. Y_current = st_get_position_mm(Y_AXIS),
  2472. Z_current = st_get_position_mm(Z_AXIS),
  2473. E_current = st_get_position_mm(E_AXIS),
  2474. X_probe_location = X_current, Y_probe_location = Y_current,
  2475. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2476. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2477. if (code_seen('X') || code_seen('x')) {
  2478. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2479. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2480. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2481. return;
  2482. }
  2483. }
  2484. if (code_seen('Y') || code_seen('y')) {
  2485. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2486. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2487. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2488. return;
  2489. }
  2490. }
  2491. if (code_seen('L') || code_seen('l')) {
  2492. n_legs = code_value_short();
  2493. if (n_legs == 1) n_legs = 2;
  2494. if (n_legs < 0 || n_legs > 15) {
  2495. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2496. return;
  2497. }
  2498. }
  2499. //
  2500. // Do all the preliminary setup work. First raise the probe.
  2501. //
  2502. st_synchronize();
  2503. plan_bed_level_matrix.set_to_identity();
  2504. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2505. st_synchronize();
  2506. //
  2507. // Now get everything to the specified probe point So we can safely do a probe to
  2508. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2509. // use that as a starting point for each probe.
  2510. //
  2511. if (verbose_level > 2)
  2512. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2513. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2514. E_current,
  2515. homing_feedrate[X_AXIS]/60,
  2516. active_extruder);
  2517. st_synchronize();
  2518. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2519. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2520. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2521. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2522. //
  2523. // OK, do the initial probe to get us close to the bed.
  2524. // Then retrace the right amount and use that in subsequent probes
  2525. //
  2526. deploy_z_probe();
  2527. setup_for_endstop_move();
  2528. run_z_probe();
  2529. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2530. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2531. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2532. E_current,
  2533. homing_feedrate[X_AXIS]/60,
  2534. active_extruder);
  2535. st_synchronize();
  2536. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2537. if (deploy_probe_for_each_reading) stow_z_probe();
  2538. for (uint8_t n=0; n < n_samples; n++) {
  2539. // Make sure we are at the probe location
  2540. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2541. if (n_legs) {
  2542. millis_t ms = millis();
  2543. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2544. theta = RADIANS(ms % 360L);
  2545. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2546. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2547. //SERIAL_ECHOPAIR(" theta: ",theta);
  2548. //SERIAL_ECHOPAIR(" direction: ",dir);
  2549. //SERIAL_EOL;
  2550. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2551. ms = millis();
  2552. theta += RADIANS(dir * (ms % 20L));
  2553. radius += (ms % 10L) - 5L;
  2554. if (radius < 0.0) radius = -radius;
  2555. X_current = X_probe_location + cos(theta) * radius;
  2556. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2557. Y_current = Y_probe_location + sin(theta) * radius;
  2558. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2559. if (verbose_level > 3) {
  2560. SERIAL_ECHOPAIR("x: ", X_current);
  2561. SERIAL_ECHOPAIR("y: ", Y_current);
  2562. SERIAL_EOL;
  2563. }
  2564. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2565. } // n_legs loop
  2566. // Go back to the probe location
  2567. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2568. } // n_legs
  2569. if (deploy_probe_for_each_reading) {
  2570. deploy_z_probe();
  2571. delay(1000);
  2572. }
  2573. setup_for_endstop_move();
  2574. run_z_probe();
  2575. sample_set[n] = current_position[Z_AXIS];
  2576. //
  2577. // Get the current mean for the data points we have so far
  2578. //
  2579. sum = 0.0;
  2580. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2581. mean = sum / (n + 1);
  2582. //
  2583. // Now, use that mean to calculate the standard deviation for the
  2584. // data points we have so far
  2585. //
  2586. sum = 0.0;
  2587. for (uint8_t j = 0; j <= n; j++) {
  2588. float ss = sample_set[j] - mean;
  2589. sum += ss * ss;
  2590. }
  2591. sigma = sqrt(sum / (n + 1));
  2592. if (verbose_level > 1) {
  2593. SERIAL_PROTOCOL(n+1);
  2594. SERIAL_PROTOCOLPGM(" of ");
  2595. SERIAL_PROTOCOL(n_samples);
  2596. SERIAL_PROTOCOLPGM(" z: ");
  2597. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2598. if (verbose_level > 2) {
  2599. SERIAL_PROTOCOLPGM(" mean: ");
  2600. SERIAL_PROTOCOL_F(mean,6);
  2601. SERIAL_PROTOCOLPGM(" sigma: ");
  2602. SERIAL_PROTOCOL_F(sigma,6);
  2603. }
  2604. }
  2605. if (verbose_level > 0) SERIAL_EOL;
  2606. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2607. st_synchronize();
  2608. // Stow between
  2609. if (deploy_probe_for_each_reading) {
  2610. stow_z_probe();
  2611. delay(1000);
  2612. }
  2613. }
  2614. // Stow after
  2615. if (!deploy_probe_for_each_reading) {
  2616. stow_z_probe();
  2617. delay(1000);
  2618. }
  2619. clean_up_after_endstop_move();
  2620. // enable_endstops(true);
  2621. if (verbose_level > 0) {
  2622. SERIAL_PROTOCOLPGM("Mean: ");
  2623. SERIAL_PROTOCOL_F(mean, 6);
  2624. SERIAL_EOL;
  2625. }
  2626. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2627. SERIAL_PROTOCOL_F(sigma, 6);
  2628. SERIAL_EOL; SERIAL_EOL;
  2629. }
  2630. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2631. /**
  2632. * M104: Set hot end temperature
  2633. */
  2634. inline void gcode_M104() {
  2635. if (setTargetedHotend(104)) return;
  2636. if (code_seen('S')) {
  2637. float temp = code_value();
  2638. setTargetHotend(temp, target_extruder);
  2639. #ifdef DUAL_X_CARRIAGE
  2640. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2641. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2642. #endif
  2643. setWatch();
  2644. }
  2645. }
  2646. /**
  2647. * M105: Read hot end and bed temperature
  2648. */
  2649. inline void gcode_M105() {
  2650. if (setTargetedHotend(105)) return;
  2651. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2652. SERIAL_PROTOCOLPGM("ok");
  2653. #if HAS_TEMP_0
  2654. SERIAL_PROTOCOLPGM(" T:");
  2655. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2656. SERIAL_PROTOCOLPGM(" /");
  2657. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2658. #endif
  2659. #if HAS_TEMP_BED
  2660. SERIAL_PROTOCOLPGM(" B:");
  2661. SERIAL_PROTOCOL_F(degBed(), 1);
  2662. SERIAL_PROTOCOLPGM(" /");
  2663. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2664. #endif
  2665. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2666. SERIAL_PROTOCOLPGM(" T");
  2667. SERIAL_PROTOCOL(e);
  2668. SERIAL_PROTOCOLCHAR(':');
  2669. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2670. SERIAL_PROTOCOLPGM(" /");
  2671. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2672. }
  2673. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2674. SERIAL_ERROR_START;
  2675. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2676. #endif
  2677. SERIAL_PROTOCOLPGM(" @:");
  2678. #ifdef EXTRUDER_WATTS
  2679. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2680. SERIAL_PROTOCOLCHAR('W');
  2681. #else
  2682. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2683. #endif
  2684. SERIAL_PROTOCOLPGM(" B@:");
  2685. #ifdef BED_WATTS
  2686. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2687. SERIAL_PROTOCOLCHAR('W');
  2688. #else
  2689. SERIAL_PROTOCOL(getHeaterPower(-1));
  2690. #endif
  2691. #ifdef SHOW_TEMP_ADC_VALUES
  2692. #if HAS_TEMP_BED
  2693. SERIAL_PROTOCOLPGM(" ADC B:");
  2694. SERIAL_PROTOCOL_F(degBed(),1);
  2695. SERIAL_PROTOCOLPGM("C->");
  2696. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2697. #endif
  2698. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2699. SERIAL_PROTOCOLPGM(" T");
  2700. SERIAL_PROTOCOL(cur_extruder);
  2701. SERIAL_PROTOCOLCHAR(':');
  2702. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2703. SERIAL_PROTOCOLPGM("C->");
  2704. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2705. }
  2706. #endif
  2707. SERIAL_EOL;
  2708. }
  2709. #if HAS_FAN
  2710. /**
  2711. * M106: Set Fan Speed
  2712. */
  2713. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2714. /**
  2715. * M107: Fan Off
  2716. */
  2717. inline void gcode_M107() { fanSpeed = 0; }
  2718. #endif // HAS_FAN
  2719. /**
  2720. * M109: Wait for extruder(s) to reach temperature
  2721. */
  2722. inline void gcode_M109() {
  2723. if (setTargetedHotend(109)) return;
  2724. LCD_MESSAGEPGM(MSG_HEATING);
  2725. no_wait_for_cooling = code_seen('S');
  2726. if (no_wait_for_cooling || code_seen('R')) {
  2727. float temp = code_value();
  2728. setTargetHotend(temp, target_extruder);
  2729. #ifdef DUAL_X_CARRIAGE
  2730. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2731. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2732. #endif
  2733. }
  2734. #ifdef AUTOTEMP
  2735. autotemp_enabled = code_seen('F');
  2736. if (autotemp_enabled) autotemp_factor = code_value();
  2737. if (code_seen('S')) autotemp_min = code_value();
  2738. if (code_seen('B')) autotemp_max = code_value();
  2739. #endif
  2740. setWatch();
  2741. millis_t temp_ms = millis();
  2742. /* See if we are heating up or cooling down */
  2743. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2744. cancel_heatup = false;
  2745. #ifdef TEMP_RESIDENCY_TIME
  2746. long residency_start_ms = -1;
  2747. /* continue to loop until we have reached the target temp
  2748. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2749. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2750. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2751. #else
  2752. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2753. #endif //TEMP_RESIDENCY_TIME
  2754. { // while loop
  2755. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2756. SERIAL_PROTOCOLPGM("T:");
  2757. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2758. SERIAL_PROTOCOLPGM(" E:");
  2759. SERIAL_PROTOCOL((int)target_extruder);
  2760. #ifdef TEMP_RESIDENCY_TIME
  2761. SERIAL_PROTOCOLPGM(" W:");
  2762. if (residency_start_ms > -1) {
  2763. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2764. SERIAL_PROTOCOLLN(temp_ms);
  2765. }
  2766. else {
  2767. SERIAL_PROTOCOLLNPGM("?");
  2768. }
  2769. #else
  2770. SERIAL_EOL;
  2771. #endif
  2772. temp_ms = millis();
  2773. }
  2774. manage_heater();
  2775. manage_inactivity();
  2776. lcd_update();
  2777. #ifdef TEMP_RESIDENCY_TIME
  2778. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2779. // or when current temp falls outside the hysteresis after target temp was reached
  2780. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2781. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2782. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2783. {
  2784. residency_start_ms = millis();
  2785. }
  2786. #endif //TEMP_RESIDENCY_TIME
  2787. }
  2788. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2789. refresh_cmd_timeout();
  2790. print_job_start_ms = previous_cmd_ms;
  2791. }
  2792. #if HAS_TEMP_BED
  2793. /**
  2794. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2795. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2796. */
  2797. inline void gcode_M190() {
  2798. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2799. no_wait_for_cooling = code_seen('S');
  2800. if (no_wait_for_cooling || code_seen('R'))
  2801. setTargetBed(code_value());
  2802. millis_t temp_ms = millis();
  2803. cancel_heatup = false;
  2804. target_direction = isHeatingBed(); // true if heating, false if cooling
  2805. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2806. millis_t ms = millis();
  2807. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2808. temp_ms = ms;
  2809. float tt = degHotend(active_extruder);
  2810. SERIAL_PROTOCOLPGM("T:");
  2811. SERIAL_PROTOCOL(tt);
  2812. SERIAL_PROTOCOLPGM(" E:");
  2813. SERIAL_PROTOCOL((int)active_extruder);
  2814. SERIAL_PROTOCOLPGM(" B:");
  2815. SERIAL_PROTOCOL_F(degBed(), 1);
  2816. SERIAL_EOL;
  2817. }
  2818. manage_heater();
  2819. manage_inactivity();
  2820. lcd_update();
  2821. }
  2822. LCD_MESSAGEPGM(MSG_BED_DONE);
  2823. refresh_cmd_timeout();
  2824. }
  2825. #endif // HAS_TEMP_BED
  2826. /**
  2827. * M111: Set the debug level
  2828. */
  2829. inline void gcode_M111() {
  2830. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2831. }
  2832. /**
  2833. * M112: Emergency Stop
  2834. */
  2835. inline void gcode_M112() { kill(); }
  2836. #ifdef BARICUDA
  2837. #if HAS_HEATER_1
  2838. /**
  2839. * M126: Heater 1 valve open
  2840. */
  2841. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2842. /**
  2843. * M127: Heater 1 valve close
  2844. */
  2845. inline void gcode_M127() { ValvePressure = 0; }
  2846. #endif
  2847. #if HAS_HEATER_2
  2848. /**
  2849. * M128: Heater 2 valve open
  2850. */
  2851. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2852. /**
  2853. * M129: Heater 2 valve close
  2854. */
  2855. inline void gcode_M129() { EtoPPressure = 0; }
  2856. #endif
  2857. #endif //BARICUDA
  2858. /**
  2859. * M140: Set bed temperature
  2860. */
  2861. inline void gcode_M140() {
  2862. if (code_seen('S')) setTargetBed(code_value());
  2863. }
  2864. #ifdef ULTIPANEL
  2865. /**
  2866. * M145: Set the heatup state for a material in the LCD menu
  2867. * S<material> (0=PLA, 1=ABS)
  2868. * H<hotend temp>
  2869. * B<bed temp>
  2870. * F<fan speed>
  2871. */
  2872. inline void gcode_M145() {
  2873. uint8_t material = code_seen('S') ? code_value_short() : 0;
  2874. if (material < 0 || material > 1) {
  2875. SERIAL_ERROR_START;
  2876. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  2877. }
  2878. else {
  2879. int v;
  2880. switch (material) {
  2881. case 0:
  2882. if (code_seen('H')) {
  2883. v = code_value_short();
  2884. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2885. }
  2886. if (code_seen('F')) {
  2887. v = code_value_short();
  2888. plaPreheatFanSpeed = constrain(v, 0, 255);
  2889. }
  2890. #if TEMP_SENSOR_BED != 0
  2891. if (code_seen('B')) {
  2892. v = code_value_short();
  2893. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2894. }
  2895. #endif
  2896. break;
  2897. case 1:
  2898. if (code_seen('H')) {
  2899. v = code_value_short();
  2900. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2901. }
  2902. if (code_seen('F')) {
  2903. v = code_value_short();
  2904. absPreheatFanSpeed = constrain(v, 0, 255);
  2905. }
  2906. #if TEMP_SENSOR_BED != 0
  2907. if (code_seen('B')) {
  2908. v = code_value_short();
  2909. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2910. }
  2911. #endif
  2912. break;
  2913. }
  2914. }
  2915. }
  2916. #endif
  2917. #if HAS_POWER_SWITCH
  2918. /**
  2919. * M80: Turn on Power Supply
  2920. */
  2921. inline void gcode_M80() {
  2922. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2923. // If you have a switch on suicide pin, this is useful
  2924. // if you want to start another print with suicide feature after
  2925. // a print without suicide...
  2926. #if HAS_SUICIDE
  2927. OUT_WRITE(SUICIDE_PIN, HIGH);
  2928. #endif
  2929. #ifdef ULTIPANEL
  2930. powersupply = true;
  2931. LCD_MESSAGEPGM(WELCOME_MSG);
  2932. lcd_update();
  2933. #endif
  2934. }
  2935. #endif // HAS_POWER_SWITCH
  2936. /**
  2937. * M81: Turn off Power, including Power Supply, if there is one.
  2938. *
  2939. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2940. */
  2941. inline void gcode_M81() {
  2942. disable_all_heaters();
  2943. st_synchronize();
  2944. disable_e0();
  2945. disable_e1();
  2946. disable_e2();
  2947. disable_e3();
  2948. finishAndDisableSteppers();
  2949. fanSpeed = 0;
  2950. delay(1000); // Wait 1 second before switching off
  2951. #if HAS_SUICIDE
  2952. st_synchronize();
  2953. suicide();
  2954. #elif HAS_POWER_SWITCH
  2955. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2956. #endif
  2957. #ifdef ULTIPANEL
  2958. #if HAS_POWER_SWITCH
  2959. powersupply = false;
  2960. #endif
  2961. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2962. lcd_update();
  2963. #endif
  2964. }
  2965. /**
  2966. * M82: Set E codes absolute (default)
  2967. */
  2968. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2969. /**
  2970. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2971. */
  2972. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2973. /**
  2974. * M18, M84: Disable all stepper motors
  2975. */
  2976. inline void gcode_M18_M84() {
  2977. if (code_seen('S')) {
  2978. stepper_inactive_time = code_value() * 1000;
  2979. }
  2980. else {
  2981. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2982. if (all_axis) {
  2983. st_synchronize();
  2984. disable_e0();
  2985. disable_e1();
  2986. disable_e2();
  2987. disable_e3();
  2988. finishAndDisableSteppers();
  2989. }
  2990. else {
  2991. st_synchronize();
  2992. if (code_seen('X')) disable_x();
  2993. if (code_seen('Y')) disable_y();
  2994. if (code_seen('Z')) disable_z();
  2995. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2996. if (code_seen('E')) {
  2997. disable_e0();
  2998. disable_e1();
  2999. disable_e2();
  3000. disable_e3();
  3001. }
  3002. #endif
  3003. }
  3004. }
  3005. }
  3006. /**
  3007. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3008. */
  3009. inline void gcode_M85() {
  3010. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3011. }
  3012. /**
  3013. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3014. * (Follows the same syntax as G92)
  3015. */
  3016. inline void gcode_M92() {
  3017. for(int8_t i=0; i < NUM_AXIS; i++) {
  3018. if (code_seen(axis_codes[i])) {
  3019. if (i == E_AXIS) {
  3020. float value = code_value();
  3021. if (value < 20.0) {
  3022. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3023. max_e_jerk *= factor;
  3024. max_feedrate[i] *= factor;
  3025. axis_steps_per_sqr_second[i] *= factor;
  3026. }
  3027. axis_steps_per_unit[i] = value;
  3028. }
  3029. else {
  3030. axis_steps_per_unit[i] = code_value();
  3031. }
  3032. }
  3033. }
  3034. }
  3035. /**
  3036. * M114: Output current position to serial port
  3037. */
  3038. inline void gcode_M114() {
  3039. SERIAL_PROTOCOLPGM("X:");
  3040. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3041. SERIAL_PROTOCOLPGM(" Y:");
  3042. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3043. SERIAL_PROTOCOLPGM(" Z:");
  3044. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3045. SERIAL_PROTOCOLPGM(" E:");
  3046. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3047. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3048. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3049. SERIAL_PROTOCOLPGM(" Y:");
  3050. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3051. SERIAL_PROTOCOLPGM(" Z:");
  3052. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3053. SERIAL_EOL;
  3054. #ifdef SCARA
  3055. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3056. SERIAL_PROTOCOL(delta[X_AXIS]);
  3057. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3058. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3059. SERIAL_EOL;
  3060. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3061. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3062. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3063. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3064. SERIAL_EOL;
  3065. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3066. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3067. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3068. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3069. SERIAL_EOL; SERIAL_EOL;
  3070. #endif
  3071. }
  3072. /**
  3073. * M115: Capabilities string
  3074. */
  3075. inline void gcode_M115() {
  3076. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3077. }
  3078. /**
  3079. * M117: Set LCD Status Message
  3080. */
  3081. inline void gcode_M117() {
  3082. char* codepos = strchr_pointer + 5;
  3083. char* starpos = strchr(codepos, '*');
  3084. if (starpos) *starpos = '\0';
  3085. lcd_setstatus(codepos);
  3086. }
  3087. /**
  3088. * M119: Output endstop states to serial output
  3089. */
  3090. inline void gcode_M119() {
  3091. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3092. #if HAS_X_MIN
  3093. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3094. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3095. #endif
  3096. #if HAS_X_MAX
  3097. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3098. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3099. #endif
  3100. #if HAS_Y_MIN
  3101. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3102. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3103. #endif
  3104. #if HAS_Y_MAX
  3105. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3106. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3107. #endif
  3108. #if HAS_Z_MIN
  3109. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3110. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3111. #endif
  3112. #if HAS_Z_MAX
  3113. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3114. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3115. #endif
  3116. #if HAS_Z2_MAX
  3117. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3118. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3119. #endif
  3120. #if HAS_Z_PROBE
  3121. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3122. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3123. #endif
  3124. }
  3125. /**
  3126. * M120: Enable endstops
  3127. */
  3128. inline void gcode_M120() { enable_endstops(false); }
  3129. /**
  3130. * M121: Disable endstops
  3131. */
  3132. inline void gcode_M121() { enable_endstops(true); }
  3133. #ifdef BLINKM
  3134. /**
  3135. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3136. */
  3137. inline void gcode_M150() {
  3138. SendColors(
  3139. code_seen('R') ? (byte)code_value_short() : 0,
  3140. code_seen('U') ? (byte)code_value_short() : 0,
  3141. code_seen('B') ? (byte)code_value_short() : 0
  3142. );
  3143. }
  3144. #endif // BLINKM
  3145. /**
  3146. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3147. * T<extruder>
  3148. * D<millimeters>
  3149. */
  3150. inline void gcode_M200() {
  3151. int tmp_extruder = active_extruder;
  3152. if (code_seen('T')) {
  3153. tmp_extruder = code_value_short();
  3154. if (tmp_extruder >= EXTRUDERS) {
  3155. SERIAL_ECHO_START;
  3156. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3157. return;
  3158. }
  3159. }
  3160. if (code_seen('D')) {
  3161. float diameter = code_value();
  3162. // setting any extruder filament size disables volumetric on the assumption that
  3163. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3164. // for all extruders
  3165. volumetric_enabled = (diameter != 0.0);
  3166. if (volumetric_enabled) {
  3167. filament_size[tmp_extruder] = diameter;
  3168. // make sure all extruders have some sane value for the filament size
  3169. for (int i=0; i<EXTRUDERS; i++)
  3170. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3171. }
  3172. }
  3173. else {
  3174. //reserved for setting filament diameter via UFID or filament measuring device
  3175. return;
  3176. }
  3177. calculate_volumetric_multipliers();
  3178. }
  3179. /**
  3180. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3181. */
  3182. inline void gcode_M201() {
  3183. for (int8_t i=0; i < NUM_AXIS; i++) {
  3184. if (code_seen(axis_codes[i])) {
  3185. max_acceleration_units_per_sq_second[i] = code_value();
  3186. }
  3187. }
  3188. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3189. reset_acceleration_rates();
  3190. }
  3191. #if 0 // Not used for Sprinter/grbl gen6
  3192. inline void gcode_M202() {
  3193. for(int8_t i=0; i < NUM_AXIS; i++) {
  3194. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3195. }
  3196. }
  3197. #endif
  3198. /**
  3199. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3200. */
  3201. inline void gcode_M203() {
  3202. for (int8_t i=0; i < NUM_AXIS; i++) {
  3203. if (code_seen(axis_codes[i])) {
  3204. max_feedrate[i] = code_value();
  3205. }
  3206. }
  3207. }
  3208. /**
  3209. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3210. *
  3211. * P = Printing moves
  3212. * R = Retract only (no X, Y, Z) moves
  3213. * T = Travel (non printing) moves
  3214. *
  3215. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3216. */
  3217. inline void gcode_M204() {
  3218. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3219. acceleration = code_value();
  3220. travel_acceleration = acceleration;
  3221. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3222. SERIAL_EOL;
  3223. }
  3224. if (code_seen('P')) {
  3225. acceleration = code_value();
  3226. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3227. SERIAL_EOL;
  3228. }
  3229. if (code_seen('R')) {
  3230. retract_acceleration = code_value();
  3231. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3232. SERIAL_EOL;
  3233. }
  3234. if (code_seen('T')) {
  3235. travel_acceleration = code_value();
  3236. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3237. SERIAL_EOL;
  3238. }
  3239. }
  3240. /**
  3241. * M205: Set Advanced Settings
  3242. *
  3243. * S = Min Feed Rate (mm/s)
  3244. * T = Min Travel Feed Rate (mm/s)
  3245. * B = Min Segment Time (µs)
  3246. * X = Max XY Jerk (mm/s/s)
  3247. * Z = Max Z Jerk (mm/s/s)
  3248. * E = Max E Jerk (mm/s/s)
  3249. */
  3250. inline void gcode_M205() {
  3251. if (code_seen('S')) minimumfeedrate = code_value();
  3252. if (code_seen('T')) mintravelfeedrate = code_value();
  3253. if (code_seen('B')) minsegmenttime = code_value();
  3254. if (code_seen('X')) max_xy_jerk = code_value();
  3255. if (code_seen('Z')) max_z_jerk = code_value();
  3256. if (code_seen('E')) max_e_jerk = code_value();
  3257. }
  3258. /**
  3259. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3260. */
  3261. inline void gcode_M206() {
  3262. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3263. if (code_seen(axis_codes[i])) {
  3264. home_offset[i] = code_value();
  3265. }
  3266. }
  3267. #ifdef SCARA
  3268. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3269. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3270. #endif
  3271. }
  3272. #ifdef DELTA
  3273. /**
  3274. * M665: Set delta configurations
  3275. *
  3276. * L = diagonal rod
  3277. * R = delta radius
  3278. * S = segments per second
  3279. */
  3280. inline void gcode_M665() {
  3281. if (code_seen('L')) delta_diagonal_rod = code_value();
  3282. if (code_seen('R')) delta_radius = code_value();
  3283. if (code_seen('S')) delta_segments_per_second = code_value();
  3284. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3285. }
  3286. /**
  3287. * M666: Set delta endstop adjustment
  3288. */
  3289. inline void gcode_M666() {
  3290. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3291. if (code_seen(axis_codes[i])) {
  3292. endstop_adj[i] = code_value();
  3293. }
  3294. }
  3295. }
  3296. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3297. /**
  3298. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3299. */
  3300. inline void gcode_M666() {
  3301. if (code_seen('Z')) z_endstop_adj = code_value();
  3302. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3303. SERIAL_EOL;
  3304. }
  3305. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3306. #ifdef FWRETRACT
  3307. /**
  3308. * M207: Set firmware retraction values
  3309. *
  3310. * S[+mm] retract_length
  3311. * W[+mm] retract_length_swap (multi-extruder)
  3312. * F[mm/min] retract_feedrate
  3313. * Z[mm] retract_zlift
  3314. */
  3315. inline void gcode_M207() {
  3316. if (code_seen('S')) retract_length = code_value();
  3317. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3318. if (code_seen('Z')) retract_zlift = code_value();
  3319. #if EXTRUDERS > 1
  3320. if (code_seen('W')) retract_length_swap = code_value();
  3321. #endif
  3322. }
  3323. /**
  3324. * M208: Set firmware un-retraction values
  3325. *
  3326. * S[+mm] retract_recover_length (in addition to M207 S*)
  3327. * W[+mm] retract_recover_length_swap (multi-extruder)
  3328. * F[mm/min] retract_recover_feedrate
  3329. */
  3330. inline void gcode_M208() {
  3331. if (code_seen('S')) retract_recover_length = code_value();
  3332. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3333. #if EXTRUDERS > 1
  3334. if (code_seen('W')) retract_recover_length_swap = code_value();
  3335. #endif
  3336. }
  3337. /**
  3338. * M209: Enable automatic retract (M209 S1)
  3339. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3340. */
  3341. inline void gcode_M209() {
  3342. if (code_seen('S')) {
  3343. int t = code_value_short();
  3344. switch(t) {
  3345. case 0:
  3346. autoretract_enabled = false;
  3347. break;
  3348. case 1:
  3349. autoretract_enabled = true;
  3350. break;
  3351. default:
  3352. SERIAL_ECHO_START;
  3353. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3354. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3355. SERIAL_ECHOLNPGM("\"");
  3356. return;
  3357. }
  3358. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3359. }
  3360. }
  3361. #endif // FWRETRACT
  3362. #if EXTRUDERS > 1
  3363. /**
  3364. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3365. */
  3366. inline void gcode_M218() {
  3367. if (setTargetedHotend(218)) return;
  3368. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3369. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3370. #ifdef DUAL_X_CARRIAGE
  3371. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3372. #endif
  3373. SERIAL_ECHO_START;
  3374. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3375. for (int e = 0; e < EXTRUDERS; e++) {
  3376. SERIAL_CHAR(' ');
  3377. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3378. SERIAL_CHAR(',');
  3379. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3380. #ifdef DUAL_X_CARRIAGE
  3381. SERIAL_CHAR(',');
  3382. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3383. #endif
  3384. }
  3385. SERIAL_EOL;
  3386. }
  3387. #endif // EXTRUDERS > 1
  3388. /**
  3389. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3390. */
  3391. inline void gcode_M220() {
  3392. if (code_seen('S')) feedrate_multiplier = code_value();
  3393. }
  3394. /**
  3395. * M221: Set extrusion percentage (M221 T0 S95)
  3396. */
  3397. inline void gcode_M221() {
  3398. if (code_seen('S')) {
  3399. int sval = code_value();
  3400. if (code_seen('T')) {
  3401. if (setTargetedHotend(221)) return;
  3402. extruder_multiply[target_extruder] = sval;
  3403. }
  3404. else {
  3405. extruder_multiply[active_extruder] = sval;
  3406. }
  3407. }
  3408. }
  3409. /**
  3410. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3411. */
  3412. inline void gcode_M226() {
  3413. if (code_seen('P')) {
  3414. int pin_number = code_value();
  3415. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3416. if (pin_state >= -1 && pin_state <= 1) {
  3417. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3418. if (sensitive_pins[i] == pin_number) {
  3419. pin_number = -1;
  3420. break;
  3421. }
  3422. }
  3423. if (pin_number > -1) {
  3424. int target = LOW;
  3425. st_synchronize();
  3426. pinMode(pin_number, INPUT);
  3427. switch(pin_state){
  3428. case 1:
  3429. target = HIGH;
  3430. break;
  3431. case 0:
  3432. target = LOW;
  3433. break;
  3434. case -1:
  3435. target = !digitalRead(pin_number);
  3436. break;
  3437. }
  3438. while(digitalRead(pin_number) != target) {
  3439. manage_heater();
  3440. manage_inactivity();
  3441. lcd_update();
  3442. }
  3443. } // pin_number > -1
  3444. } // pin_state -1 0 1
  3445. } // code_seen('P')
  3446. }
  3447. #if NUM_SERVOS > 0
  3448. /**
  3449. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3450. */
  3451. inline void gcode_M280() {
  3452. int servo_index = code_seen('P') ? code_value() : -1;
  3453. int servo_position = 0;
  3454. if (code_seen('S')) {
  3455. servo_position = code_value();
  3456. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3457. Servo *srv = &servo[servo_index];
  3458. #if SERVO_LEVELING
  3459. srv->attach(0);
  3460. #endif
  3461. srv->write(servo_position);
  3462. #if SERVO_LEVELING
  3463. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3464. srv->detach();
  3465. #endif
  3466. }
  3467. else {
  3468. SERIAL_ECHO_START;
  3469. SERIAL_ECHO("Servo ");
  3470. SERIAL_ECHO(servo_index);
  3471. SERIAL_ECHOLN(" out of range");
  3472. }
  3473. }
  3474. else if (servo_index >= 0) {
  3475. SERIAL_PROTOCOL(MSG_OK);
  3476. SERIAL_PROTOCOL(" Servo ");
  3477. SERIAL_PROTOCOL(servo_index);
  3478. SERIAL_PROTOCOL(": ");
  3479. SERIAL_PROTOCOL(servo[servo_index].read());
  3480. SERIAL_EOL;
  3481. }
  3482. }
  3483. #endif // NUM_SERVOS > 0
  3484. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  3485. /**
  3486. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3487. */
  3488. inline void gcode_M300() {
  3489. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3490. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3491. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3492. lcd_buzz(beepP, beepS);
  3493. }
  3494. #endif // BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER
  3495. #ifdef PIDTEMP
  3496. /**
  3497. * M301: Set PID parameters P I D (and optionally C)
  3498. */
  3499. inline void gcode_M301() {
  3500. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3501. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3502. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3503. if (e < EXTRUDERS) { // catch bad input value
  3504. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3505. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3506. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3507. #ifdef PID_ADD_EXTRUSION_RATE
  3508. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3509. #endif
  3510. updatePID();
  3511. SERIAL_PROTOCOL(MSG_OK);
  3512. #ifdef PID_PARAMS_PER_EXTRUDER
  3513. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3514. SERIAL_PROTOCOL(e);
  3515. #endif // PID_PARAMS_PER_EXTRUDER
  3516. SERIAL_PROTOCOL(" p:");
  3517. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3518. SERIAL_PROTOCOL(" i:");
  3519. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3520. SERIAL_PROTOCOL(" d:");
  3521. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3522. #ifdef PID_ADD_EXTRUSION_RATE
  3523. SERIAL_PROTOCOL(" c:");
  3524. //Kc does not have scaling applied above, or in resetting defaults
  3525. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3526. #endif
  3527. SERIAL_EOL;
  3528. }
  3529. else {
  3530. SERIAL_ECHO_START;
  3531. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3532. }
  3533. }
  3534. #endif // PIDTEMP
  3535. #ifdef PIDTEMPBED
  3536. inline void gcode_M304() {
  3537. if (code_seen('P')) bedKp = code_value();
  3538. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3539. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3540. updatePID();
  3541. SERIAL_PROTOCOL(MSG_OK);
  3542. SERIAL_PROTOCOL(" p:");
  3543. SERIAL_PROTOCOL(bedKp);
  3544. SERIAL_PROTOCOL(" i:");
  3545. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3546. SERIAL_PROTOCOL(" d:");
  3547. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3548. SERIAL_EOL;
  3549. }
  3550. #endif // PIDTEMPBED
  3551. #if defined(CHDK) || HAS_PHOTOGRAPH
  3552. /**
  3553. * M240: Trigger a camera by emulating a Canon RC-1
  3554. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3555. */
  3556. inline void gcode_M240() {
  3557. #ifdef CHDK
  3558. OUT_WRITE(CHDK, HIGH);
  3559. chdkHigh = millis();
  3560. chdkActive = true;
  3561. #elif HAS_PHOTOGRAPH
  3562. const uint8_t NUM_PULSES = 16;
  3563. const float PULSE_LENGTH = 0.01524;
  3564. for (int i = 0; i < NUM_PULSES; i++) {
  3565. WRITE(PHOTOGRAPH_PIN, HIGH);
  3566. _delay_ms(PULSE_LENGTH);
  3567. WRITE(PHOTOGRAPH_PIN, LOW);
  3568. _delay_ms(PULSE_LENGTH);
  3569. }
  3570. delay(7.33);
  3571. for (int i = 0; i < NUM_PULSES; i++) {
  3572. WRITE(PHOTOGRAPH_PIN, HIGH);
  3573. _delay_ms(PULSE_LENGTH);
  3574. WRITE(PHOTOGRAPH_PIN, LOW);
  3575. _delay_ms(PULSE_LENGTH);
  3576. }
  3577. #endif // !CHDK && HAS_PHOTOGRAPH
  3578. }
  3579. #endif // CHDK || PHOTOGRAPH_PIN
  3580. #ifdef HAS_LCD_CONTRAST
  3581. /**
  3582. * M250: Read and optionally set the LCD contrast
  3583. */
  3584. inline void gcode_M250() {
  3585. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3586. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3587. SERIAL_PROTOCOL(lcd_contrast);
  3588. SERIAL_EOL;
  3589. }
  3590. #endif // HAS_LCD_CONTRAST
  3591. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3592. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3593. /**
  3594. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3595. */
  3596. inline void gcode_M302() {
  3597. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3598. }
  3599. #endif // PREVENT_DANGEROUS_EXTRUDE
  3600. /**
  3601. * M303: PID relay autotune
  3602. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3603. * E<extruder> (-1 for the bed)
  3604. * C<cycles>
  3605. */
  3606. inline void gcode_M303() {
  3607. int e = code_seen('E') ? code_value_short() : 0;
  3608. int c = code_seen('C') ? code_value_short() : 5;
  3609. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3610. PID_autotune(temp, e, c);
  3611. }
  3612. #ifdef SCARA
  3613. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3614. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3615. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3616. if (IsRunning()) {
  3617. //get_coordinates(); // For X Y Z E F
  3618. delta[X_AXIS] = delta_x;
  3619. delta[Y_AXIS] = delta_y;
  3620. calculate_SCARA_forward_Transform(delta);
  3621. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3622. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3623. prepare_move();
  3624. //ClearToSend();
  3625. return true;
  3626. }
  3627. return false;
  3628. }
  3629. /**
  3630. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3631. */
  3632. inline bool gcode_M360() {
  3633. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3634. return SCARA_move_to_cal(0, 120);
  3635. }
  3636. /**
  3637. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3638. */
  3639. inline bool gcode_M361() {
  3640. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3641. return SCARA_move_to_cal(90, 130);
  3642. }
  3643. /**
  3644. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3645. */
  3646. inline bool gcode_M362() {
  3647. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3648. return SCARA_move_to_cal(60, 180);
  3649. }
  3650. /**
  3651. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3652. */
  3653. inline bool gcode_M363() {
  3654. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3655. return SCARA_move_to_cal(50, 90);
  3656. }
  3657. /**
  3658. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3659. */
  3660. inline bool gcode_M364() {
  3661. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3662. return SCARA_move_to_cal(45, 135);
  3663. }
  3664. /**
  3665. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3666. */
  3667. inline void gcode_M365() {
  3668. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3669. if (code_seen(axis_codes[i])) {
  3670. axis_scaling[i] = code_value();
  3671. }
  3672. }
  3673. }
  3674. #endif // SCARA
  3675. #ifdef EXT_SOLENOID
  3676. void enable_solenoid(uint8_t num) {
  3677. switch(num) {
  3678. case 0:
  3679. OUT_WRITE(SOL0_PIN, HIGH);
  3680. break;
  3681. #if HAS_SOLENOID_1
  3682. case 1:
  3683. OUT_WRITE(SOL1_PIN, HIGH);
  3684. break;
  3685. #endif
  3686. #if HAS_SOLENOID_2
  3687. case 2:
  3688. OUT_WRITE(SOL2_PIN, HIGH);
  3689. break;
  3690. #endif
  3691. #if HAS_SOLENOID_3
  3692. case 3:
  3693. OUT_WRITE(SOL3_PIN, HIGH);
  3694. break;
  3695. #endif
  3696. default:
  3697. SERIAL_ECHO_START;
  3698. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3699. break;
  3700. }
  3701. }
  3702. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3703. void disable_all_solenoids() {
  3704. OUT_WRITE(SOL0_PIN, LOW);
  3705. OUT_WRITE(SOL1_PIN, LOW);
  3706. OUT_WRITE(SOL2_PIN, LOW);
  3707. OUT_WRITE(SOL3_PIN, LOW);
  3708. }
  3709. /**
  3710. * M380: Enable solenoid on the active extruder
  3711. */
  3712. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3713. /**
  3714. * M381: Disable all solenoids
  3715. */
  3716. inline void gcode_M381() { disable_all_solenoids(); }
  3717. #endif // EXT_SOLENOID
  3718. /**
  3719. * M400: Finish all moves
  3720. */
  3721. inline void gcode_M400() { st_synchronize(); }
  3722. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3723. #ifdef SERVO_ENDSTOPS
  3724. void raise_z_for_servo() {
  3725. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3726. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3727. if (zpos < z_dest)
  3728. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3729. }
  3730. #endif
  3731. /**
  3732. * M401: Engage Z Servo endstop if available
  3733. */
  3734. inline void gcode_M401() {
  3735. #ifdef SERVO_ENDSTOPS
  3736. raise_z_for_servo();
  3737. #endif
  3738. deploy_z_probe();
  3739. }
  3740. /**
  3741. * M402: Retract Z Servo endstop if enabled
  3742. */
  3743. inline void gcode_M402() {
  3744. #ifdef SERVO_ENDSTOPS
  3745. raise_z_for_servo();
  3746. #endif
  3747. stow_z_probe(false);
  3748. }
  3749. #endif
  3750. #ifdef FILAMENT_SENSOR
  3751. /**
  3752. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3753. */
  3754. inline void gcode_M404() {
  3755. #if HAS_FILWIDTH
  3756. if (code_seen('W')) {
  3757. filament_width_nominal = code_value();
  3758. }
  3759. else {
  3760. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3761. SERIAL_PROTOCOLLN(filament_width_nominal);
  3762. }
  3763. #endif
  3764. }
  3765. /**
  3766. * M405: Turn on filament sensor for control
  3767. */
  3768. inline void gcode_M405() {
  3769. if (code_seen('D')) meas_delay_cm = code_value();
  3770. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3771. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3772. int temp_ratio = widthFil_to_size_ratio();
  3773. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3774. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3775. delay_index1 = delay_index2 = 0;
  3776. }
  3777. filament_sensor = true;
  3778. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3779. //SERIAL_PROTOCOL(filament_width_meas);
  3780. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3781. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3782. }
  3783. /**
  3784. * M406: Turn off filament sensor for control
  3785. */
  3786. inline void gcode_M406() { filament_sensor = false; }
  3787. /**
  3788. * M407: Get measured filament diameter on serial output
  3789. */
  3790. inline void gcode_M407() {
  3791. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3792. SERIAL_PROTOCOLLN(filament_width_meas);
  3793. }
  3794. #endif // FILAMENT_SENSOR
  3795. /**
  3796. * M410: Quickstop - Abort all planned moves
  3797. *
  3798. * This will stop the carriages mid-move, so most likely they
  3799. * will be out of sync with the stepper position after this.
  3800. */
  3801. inline void gcode_M410() { quickStop(); }
  3802. #ifdef MESH_BED_LEVELING
  3803. /**
  3804. * M420: Enable/Disable Mesh Bed Leveling
  3805. */
  3806. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3807. /**
  3808. * M421: Set a single Mesh Bed Leveling Z coordinate
  3809. */
  3810. inline void gcode_M421() {
  3811. float x, y, z;
  3812. bool err = false, hasX, hasY, hasZ;
  3813. if ((hasX = code_seen('X'))) x = code_value();
  3814. if ((hasY = code_seen('Y'))) y = code_value();
  3815. if ((hasZ = code_seen('Z'))) z = code_value();
  3816. if (!hasX || !hasY || !hasZ) {
  3817. SERIAL_ERROR_START;
  3818. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3819. err = true;
  3820. }
  3821. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3822. SERIAL_ERROR_START;
  3823. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3824. err = true;
  3825. }
  3826. if (!err) mbl.set_z(select_x_index(x), select_y_index(y), z);
  3827. }
  3828. #endif
  3829. /**
  3830. * M500: Store settings in EEPROM
  3831. */
  3832. inline void gcode_M500() {
  3833. Config_StoreSettings();
  3834. }
  3835. /**
  3836. * M501: Read settings from EEPROM
  3837. */
  3838. inline void gcode_M501() {
  3839. Config_RetrieveSettings();
  3840. }
  3841. /**
  3842. * M502: Revert to default settings
  3843. */
  3844. inline void gcode_M502() {
  3845. Config_ResetDefault();
  3846. }
  3847. /**
  3848. * M503: print settings currently in memory
  3849. */
  3850. inline void gcode_M503() {
  3851. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3852. }
  3853. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3854. /**
  3855. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3856. */
  3857. inline void gcode_M540() {
  3858. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3859. }
  3860. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3861. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3862. inline void gcode_SET_Z_PROBE_OFFSET() {
  3863. float value;
  3864. if (code_seen('Z')) {
  3865. value = code_value();
  3866. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3867. zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
  3868. SERIAL_ECHO_START;
  3869. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3870. SERIAL_EOL;
  3871. }
  3872. else {
  3873. SERIAL_ECHO_START;
  3874. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3875. SERIAL_ECHOPGM(MSG_Z_MIN);
  3876. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3877. SERIAL_ECHOPGM(MSG_Z_MAX);
  3878. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3879. SERIAL_EOL;
  3880. }
  3881. }
  3882. else {
  3883. SERIAL_ECHO_START;
  3884. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3885. SERIAL_ECHO(-zprobe_zoffset);
  3886. SERIAL_EOL;
  3887. }
  3888. }
  3889. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3890. #ifdef FILAMENTCHANGEENABLE
  3891. /**
  3892. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3893. */
  3894. inline void gcode_M600() {
  3895. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3896. for (int i=0; i<NUM_AXIS; i++)
  3897. target[i] = lastpos[i] = current_position[i];
  3898. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3899. #ifdef DELTA
  3900. #define RUNPLAN calculate_delta(target); BASICPLAN
  3901. #else
  3902. #define RUNPLAN BASICPLAN
  3903. #endif
  3904. //retract by E
  3905. if (code_seen('E')) target[E_AXIS] += code_value();
  3906. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3907. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3908. #endif
  3909. RUNPLAN;
  3910. //lift Z
  3911. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3912. #ifdef FILAMENTCHANGE_ZADD
  3913. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3914. #endif
  3915. RUNPLAN;
  3916. //move xy
  3917. if (code_seen('X')) target[X_AXIS] = code_value();
  3918. #ifdef FILAMENTCHANGE_XPOS
  3919. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3920. #endif
  3921. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3922. #ifdef FILAMENTCHANGE_YPOS
  3923. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3924. #endif
  3925. RUNPLAN;
  3926. if (code_seen('L')) target[E_AXIS] += code_value();
  3927. #ifdef FILAMENTCHANGE_FINALRETRACT
  3928. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3929. #endif
  3930. RUNPLAN;
  3931. //finish moves
  3932. st_synchronize();
  3933. //disable extruder steppers so filament can be removed
  3934. disable_e0();
  3935. disable_e1();
  3936. disable_e2();
  3937. disable_e3();
  3938. delay(100);
  3939. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3940. uint8_t cnt = 0;
  3941. while (!lcd_clicked()) {
  3942. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  3943. manage_heater();
  3944. manage_inactivity(true);
  3945. lcd_update();
  3946. } // while(!lcd_clicked)
  3947. //return to normal
  3948. if (code_seen('L')) target[E_AXIS] -= code_value();
  3949. #ifdef FILAMENTCHANGE_FINALRETRACT
  3950. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3951. #endif
  3952. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3953. plan_set_e_position(current_position[E_AXIS]);
  3954. RUNPLAN; //should do nothing
  3955. lcd_reset_alert_level();
  3956. #ifdef DELTA
  3957. calculate_delta(lastpos);
  3958. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3959. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3960. #else
  3961. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3962. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3963. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3964. #endif
  3965. #ifdef FILAMENT_RUNOUT_SENSOR
  3966. filrunoutEnqueued = false;
  3967. #endif
  3968. }
  3969. #endif // FILAMENTCHANGEENABLE
  3970. #ifdef DUAL_X_CARRIAGE
  3971. /**
  3972. * M605: Set dual x-carriage movement mode
  3973. *
  3974. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3975. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3976. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3977. * millimeters x-offset and an optional differential hotend temperature of
  3978. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3979. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3980. *
  3981. * Note: the X axis should be homed after changing dual x-carriage mode.
  3982. */
  3983. inline void gcode_M605() {
  3984. st_synchronize();
  3985. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3986. switch(dual_x_carriage_mode) {
  3987. case DXC_DUPLICATION_MODE:
  3988. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3989. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3990. SERIAL_ECHO_START;
  3991. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3992. SERIAL_CHAR(' ');
  3993. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3994. SERIAL_CHAR(',');
  3995. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3996. SERIAL_CHAR(' ');
  3997. SERIAL_ECHO(duplicate_extruder_x_offset);
  3998. SERIAL_CHAR(',');
  3999. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4000. break;
  4001. case DXC_FULL_CONTROL_MODE:
  4002. case DXC_AUTO_PARK_MODE:
  4003. break;
  4004. default:
  4005. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4006. break;
  4007. }
  4008. active_extruder_parked = false;
  4009. extruder_duplication_enabled = false;
  4010. delayed_move_time = 0;
  4011. }
  4012. #endif // DUAL_X_CARRIAGE
  4013. /**
  4014. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4015. */
  4016. inline void gcode_M907() {
  4017. #if HAS_DIGIPOTSS
  4018. for (int i=0;i<NUM_AXIS;i++)
  4019. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4020. if (code_seen('B')) digipot_current(4, code_value());
  4021. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4022. #endif
  4023. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4024. if (code_seen('X')) digipot_current(0, code_value());
  4025. #endif
  4026. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4027. if (code_seen('Z')) digipot_current(1, code_value());
  4028. #endif
  4029. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4030. if (code_seen('E')) digipot_current(2, code_value());
  4031. #endif
  4032. #ifdef DIGIPOT_I2C
  4033. // this one uses actual amps in floating point
  4034. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4035. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4036. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4037. #endif
  4038. }
  4039. #if HAS_DIGIPOTSS
  4040. /**
  4041. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4042. */
  4043. inline void gcode_M908() {
  4044. digitalPotWrite(
  4045. code_seen('P') ? code_value() : 0,
  4046. code_seen('S') ? code_value() : 0
  4047. );
  4048. }
  4049. #endif // HAS_DIGIPOTSS
  4050. #if HAS_MICROSTEPS
  4051. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4052. inline void gcode_M350() {
  4053. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4054. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4055. if(code_seen('B')) microstep_mode(4,code_value());
  4056. microstep_readings();
  4057. }
  4058. /**
  4059. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4060. * S# determines MS1 or MS2, X# sets the pin high/low.
  4061. */
  4062. inline void gcode_M351() {
  4063. if (code_seen('S')) switch(code_value_short()) {
  4064. case 1:
  4065. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4066. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4067. break;
  4068. case 2:
  4069. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4070. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4071. break;
  4072. }
  4073. microstep_readings();
  4074. }
  4075. #endif // HAS_MICROSTEPS
  4076. /**
  4077. * M999: Restart after being stopped
  4078. */
  4079. inline void gcode_M999() {
  4080. Running = true;
  4081. lcd_reset_alert_level();
  4082. gcode_LastN = Stopped_gcode_LastN;
  4083. FlushSerialRequestResend();
  4084. }
  4085. /**
  4086. * T0-T3: Switch tool, usually switching extruders
  4087. */
  4088. inline void gcode_T() {
  4089. int tmp_extruder = code_value();
  4090. if (tmp_extruder >= EXTRUDERS) {
  4091. SERIAL_ECHO_START;
  4092. SERIAL_CHAR('T');
  4093. SERIAL_ECHO(tmp_extruder);
  4094. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4095. }
  4096. else {
  4097. target_extruder = tmp_extruder;
  4098. #if EXTRUDERS > 1
  4099. bool make_move = false;
  4100. #endif
  4101. if (code_seen('F')) {
  4102. #if EXTRUDERS > 1
  4103. make_move = true;
  4104. #endif
  4105. next_feedrate = code_value();
  4106. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4107. }
  4108. #if EXTRUDERS > 1
  4109. if (tmp_extruder != active_extruder) {
  4110. // Save current position to return to after applying extruder offset
  4111. set_destination_to_current();
  4112. #ifdef DUAL_X_CARRIAGE
  4113. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4114. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4115. // Park old head: 1) raise 2) move to park position 3) lower
  4116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4117. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4118. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4119. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4120. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4121. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4122. st_synchronize();
  4123. }
  4124. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4125. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4126. extruder_offset[Y_AXIS][active_extruder] +
  4127. extruder_offset[Y_AXIS][tmp_extruder];
  4128. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4129. extruder_offset[Z_AXIS][active_extruder] +
  4130. extruder_offset[Z_AXIS][tmp_extruder];
  4131. active_extruder = tmp_extruder;
  4132. // This function resets the max/min values - the current position may be overwritten below.
  4133. axis_is_at_home(X_AXIS);
  4134. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4135. current_position[X_AXIS] = inactive_extruder_x_pos;
  4136. inactive_extruder_x_pos = destination[X_AXIS];
  4137. }
  4138. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4139. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4140. if (active_extruder == 0 || active_extruder_parked)
  4141. current_position[X_AXIS] = inactive_extruder_x_pos;
  4142. else
  4143. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4144. inactive_extruder_x_pos = destination[X_AXIS];
  4145. extruder_duplication_enabled = false;
  4146. }
  4147. else {
  4148. // record raised toolhead position for use by unpark
  4149. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4150. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4151. active_extruder_parked = true;
  4152. delayed_move_time = 0;
  4153. }
  4154. #else // !DUAL_X_CARRIAGE
  4155. // Offset extruder (only by XY)
  4156. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4157. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4158. // Set the new active extruder and position
  4159. active_extruder = tmp_extruder;
  4160. #endif // !DUAL_X_CARRIAGE
  4161. #ifdef DELTA
  4162. sync_plan_position_delta();
  4163. #else
  4164. sync_plan_position();
  4165. #endif
  4166. // Move to the old position if 'F' was in the parameters
  4167. if (make_move && IsRunning()) prepare_move();
  4168. }
  4169. #ifdef EXT_SOLENOID
  4170. st_synchronize();
  4171. disable_all_solenoids();
  4172. enable_solenoid_on_active_extruder();
  4173. #endif // EXT_SOLENOID
  4174. #endif // EXTRUDERS > 1
  4175. SERIAL_ECHO_START;
  4176. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4177. SERIAL_PROTOCOLLN((int)active_extruder);
  4178. }
  4179. }
  4180. /**
  4181. * Process Commands and dispatch them to handlers
  4182. * This is called from the main loop()
  4183. */
  4184. void process_commands() {
  4185. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4186. SERIAL_ECHO_START;
  4187. SERIAL_ECHOLN(command_queue[cmd_queue_index_r]);
  4188. }
  4189. if (code_seen('G')) {
  4190. int gCode = code_value_short();
  4191. switch(gCode) {
  4192. // G0, G1
  4193. case 0:
  4194. case 1:
  4195. gcode_G0_G1();
  4196. break;
  4197. // G2, G3
  4198. #ifndef SCARA
  4199. case 2: // G2 - CW ARC
  4200. case 3: // G3 - CCW ARC
  4201. gcode_G2_G3(gCode == 2);
  4202. break;
  4203. #endif
  4204. // G4 Dwell
  4205. case 4:
  4206. gcode_G4();
  4207. break;
  4208. #ifdef FWRETRACT
  4209. case 10: // G10: retract
  4210. case 11: // G11: retract_recover
  4211. gcode_G10_G11(gCode == 10);
  4212. break;
  4213. #endif //FWRETRACT
  4214. case 28: // G28: Home all axes, one at a time
  4215. gcode_G28();
  4216. break;
  4217. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4218. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4219. gcode_G29();
  4220. break;
  4221. #endif
  4222. #ifdef ENABLE_AUTO_BED_LEVELING
  4223. #ifndef Z_PROBE_SLED
  4224. case 30: // G30 Single Z Probe
  4225. gcode_G30();
  4226. break;
  4227. #else // Z_PROBE_SLED
  4228. case 31: // G31: dock the sled
  4229. case 32: // G32: undock the sled
  4230. dock_sled(gCode == 31);
  4231. break;
  4232. #endif // Z_PROBE_SLED
  4233. #endif // ENABLE_AUTO_BED_LEVELING
  4234. case 90: // G90
  4235. relative_mode = false;
  4236. break;
  4237. case 91: // G91
  4238. relative_mode = true;
  4239. break;
  4240. case 92: // G92
  4241. gcode_G92();
  4242. break;
  4243. }
  4244. }
  4245. else if (code_seen('M')) {
  4246. switch(code_value_short()) {
  4247. #ifdef ULTIPANEL
  4248. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4249. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4250. gcode_M0_M1();
  4251. break;
  4252. #endif // ULTIPANEL
  4253. case 17:
  4254. gcode_M17();
  4255. break;
  4256. #ifdef SDSUPPORT
  4257. case 20: // M20 - list SD card
  4258. gcode_M20(); break;
  4259. case 21: // M21 - init SD card
  4260. gcode_M21(); break;
  4261. case 22: //M22 - release SD card
  4262. gcode_M22(); break;
  4263. case 23: //M23 - Select file
  4264. gcode_M23(); break;
  4265. case 24: //M24 - Start SD print
  4266. gcode_M24(); break;
  4267. case 25: //M25 - Pause SD print
  4268. gcode_M25(); break;
  4269. case 26: //M26 - Set SD index
  4270. gcode_M26(); break;
  4271. case 27: //M27 - Get SD status
  4272. gcode_M27(); break;
  4273. case 28: //M28 - Start SD write
  4274. gcode_M28(); break;
  4275. case 29: //M29 - Stop SD write
  4276. gcode_M29(); break;
  4277. case 30: //M30 <filename> Delete File
  4278. gcode_M30(); break;
  4279. case 32: //M32 - Select file and start SD print
  4280. gcode_M32(); break;
  4281. case 928: //M928 - Start SD write
  4282. gcode_M928(); break;
  4283. #endif //SDSUPPORT
  4284. case 31: //M31 take time since the start of the SD print or an M109 command
  4285. gcode_M31();
  4286. break;
  4287. case 42: //M42 -Change pin status via gcode
  4288. gcode_M42();
  4289. break;
  4290. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4291. case 48: // M48 Z-Probe repeatability
  4292. gcode_M48();
  4293. break;
  4294. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4295. case 104: // M104
  4296. gcode_M104();
  4297. break;
  4298. case 111: // M111: Set debug level
  4299. gcode_M111();
  4300. break;
  4301. case 112: // M112: Emergency Stop
  4302. gcode_M112();
  4303. break;
  4304. case 140: // M140: Set bed temp
  4305. gcode_M140();
  4306. break;
  4307. case 105: // M105: Read current temperature
  4308. gcode_M105();
  4309. return;
  4310. break;
  4311. case 109: // M109: Wait for temperature
  4312. gcode_M109();
  4313. break;
  4314. #if HAS_TEMP_BED
  4315. case 190: // M190: Wait for bed heater to reach target
  4316. gcode_M190();
  4317. break;
  4318. #endif // HAS_TEMP_BED
  4319. #if HAS_FAN
  4320. case 106: // M106: Fan On
  4321. gcode_M106();
  4322. break;
  4323. case 107: // M107: Fan Off
  4324. gcode_M107();
  4325. break;
  4326. #endif // HAS_FAN
  4327. #ifdef BARICUDA
  4328. // PWM for HEATER_1_PIN
  4329. #if HAS_HEATER_1
  4330. case 126: // M126: valve open
  4331. gcode_M126();
  4332. break;
  4333. case 127: // M127: valve closed
  4334. gcode_M127();
  4335. break;
  4336. #endif // HAS_HEATER_1
  4337. // PWM for HEATER_2_PIN
  4338. #if HAS_HEATER_2
  4339. case 128: // M128: valve open
  4340. gcode_M128();
  4341. break;
  4342. case 129: // M129: valve closed
  4343. gcode_M129();
  4344. break;
  4345. #endif // HAS_HEATER_2
  4346. #endif // BARICUDA
  4347. #if HAS_POWER_SWITCH
  4348. case 80: // M80: Turn on Power Supply
  4349. gcode_M80();
  4350. break;
  4351. #endif // HAS_POWER_SWITCH
  4352. case 81: // M81: Turn off Power, including Power Supply, if possible
  4353. gcode_M81();
  4354. break;
  4355. case 82:
  4356. gcode_M82();
  4357. break;
  4358. case 83:
  4359. gcode_M83();
  4360. break;
  4361. case 18: // (for compatibility)
  4362. case 84: // M84
  4363. gcode_M18_M84();
  4364. break;
  4365. case 85: // M85
  4366. gcode_M85();
  4367. break;
  4368. case 92: // M92: Set the steps-per-unit for one or more axes
  4369. gcode_M92();
  4370. break;
  4371. case 115: // M115: Report capabilities
  4372. gcode_M115();
  4373. break;
  4374. case 117: // M117: Set LCD message text
  4375. gcode_M117();
  4376. break;
  4377. case 114: // M114: Report current position
  4378. gcode_M114();
  4379. break;
  4380. case 120: // M120: Enable endstops
  4381. gcode_M120();
  4382. break;
  4383. case 121: // M121: Disable endstops
  4384. gcode_M121();
  4385. break;
  4386. case 119: // M119: Report endstop states
  4387. gcode_M119();
  4388. break;
  4389. #ifdef ULTIPANEL
  4390. case 145: // M145: Set material heatup parameters
  4391. gcode_M145();
  4392. break;
  4393. #endif
  4394. #ifdef BLINKM
  4395. case 150: // M150
  4396. gcode_M150();
  4397. break;
  4398. #endif //BLINKM
  4399. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4400. gcode_M200();
  4401. break;
  4402. case 201: // M201
  4403. gcode_M201();
  4404. break;
  4405. #if 0 // Not used for Sprinter/grbl gen6
  4406. case 202: // M202
  4407. gcode_M202();
  4408. break;
  4409. #endif
  4410. case 203: // M203 max feedrate mm/sec
  4411. gcode_M203();
  4412. break;
  4413. case 204: // M204 acclereration S normal moves T filmanent only moves
  4414. gcode_M204();
  4415. break;
  4416. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4417. gcode_M205();
  4418. break;
  4419. case 206: // M206 additional homing offset
  4420. gcode_M206();
  4421. break;
  4422. #ifdef DELTA
  4423. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4424. gcode_M665();
  4425. break;
  4426. #endif
  4427. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4428. case 666: // M666 set delta / dual endstop adjustment
  4429. gcode_M666();
  4430. break;
  4431. #endif
  4432. #ifdef FWRETRACT
  4433. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4434. gcode_M207();
  4435. break;
  4436. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4437. gcode_M208();
  4438. break;
  4439. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4440. gcode_M209();
  4441. break;
  4442. #endif // FWRETRACT
  4443. #if EXTRUDERS > 1
  4444. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4445. gcode_M218();
  4446. break;
  4447. #endif
  4448. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4449. gcode_M220();
  4450. break;
  4451. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4452. gcode_M221();
  4453. break;
  4454. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4455. gcode_M226();
  4456. break;
  4457. #if NUM_SERVOS > 0
  4458. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4459. gcode_M280();
  4460. break;
  4461. #endif // NUM_SERVOS > 0
  4462. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  4463. case 300: // M300 - Play beep tone
  4464. gcode_M300();
  4465. break;
  4466. #endif // BEEPER > 0 || ULTRALCD || LCD_USE_I2C_BUZZER
  4467. #ifdef PIDTEMP
  4468. case 301: // M301
  4469. gcode_M301();
  4470. break;
  4471. #endif // PIDTEMP
  4472. #ifdef PIDTEMPBED
  4473. case 304: // M304
  4474. gcode_M304();
  4475. break;
  4476. #endif // PIDTEMPBED
  4477. #if defined(CHDK) || HAS_PHOTOGRAPH
  4478. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4479. gcode_M240();
  4480. break;
  4481. #endif // CHDK || PHOTOGRAPH_PIN
  4482. #ifdef HAS_LCD_CONTRAST
  4483. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4484. gcode_M250();
  4485. break;
  4486. #endif // HAS_LCD_CONTRAST
  4487. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4488. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4489. gcode_M302();
  4490. break;
  4491. #endif // PREVENT_DANGEROUS_EXTRUDE
  4492. case 303: // M303 PID autotune
  4493. gcode_M303();
  4494. break;
  4495. #ifdef SCARA
  4496. case 360: // M360 SCARA Theta pos1
  4497. if (gcode_M360()) return;
  4498. break;
  4499. case 361: // M361 SCARA Theta pos2
  4500. if (gcode_M361()) return;
  4501. break;
  4502. case 362: // M362 SCARA Psi pos1
  4503. if (gcode_M362()) return;
  4504. break;
  4505. case 363: // M363 SCARA Psi pos2
  4506. if (gcode_M363()) return;
  4507. break;
  4508. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4509. if (gcode_M364()) return;
  4510. break;
  4511. case 365: // M365 Set SCARA scaling for X Y Z
  4512. gcode_M365();
  4513. break;
  4514. #endif // SCARA
  4515. case 400: // M400 finish all moves
  4516. gcode_M400();
  4517. break;
  4518. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4519. case 401:
  4520. gcode_M401();
  4521. break;
  4522. case 402:
  4523. gcode_M402();
  4524. break;
  4525. #endif
  4526. #ifdef FILAMENT_SENSOR
  4527. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4528. gcode_M404();
  4529. break;
  4530. case 405: //M405 Turn on filament sensor for control
  4531. gcode_M405();
  4532. break;
  4533. case 406: //M406 Turn off filament sensor for control
  4534. gcode_M406();
  4535. break;
  4536. case 407: //M407 Display measured filament diameter
  4537. gcode_M407();
  4538. break;
  4539. #endif // FILAMENT_SENSOR
  4540. case 410: // M410 quickstop - Abort all the planned moves.
  4541. gcode_M410();
  4542. break;
  4543. #ifdef MESH_BED_LEVELING
  4544. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4545. gcode_M420();
  4546. break;
  4547. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4548. gcode_M421();
  4549. break;
  4550. #endif
  4551. case 500: // M500 Store settings in EEPROM
  4552. gcode_M500();
  4553. break;
  4554. case 501: // M501 Read settings from EEPROM
  4555. gcode_M501();
  4556. break;
  4557. case 502: // M502 Revert to default settings
  4558. gcode_M502();
  4559. break;
  4560. case 503: // M503 print settings currently in memory
  4561. gcode_M503();
  4562. break;
  4563. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4564. case 540:
  4565. gcode_M540();
  4566. break;
  4567. #endif
  4568. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4569. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4570. gcode_SET_Z_PROBE_OFFSET();
  4571. break;
  4572. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4573. #ifdef FILAMENTCHANGEENABLE
  4574. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4575. gcode_M600();
  4576. break;
  4577. #endif // FILAMENTCHANGEENABLE
  4578. #ifdef DUAL_X_CARRIAGE
  4579. case 605:
  4580. gcode_M605();
  4581. break;
  4582. #endif // DUAL_X_CARRIAGE
  4583. case 907: // M907 Set digital trimpot motor current using axis codes.
  4584. gcode_M907();
  4585. break;
  4586. #if HAS_DIGIPOTSS
  4587. case 908: // M908 Control digital trimpot directly.
  4588. gcode_M908();
  4589. break;
  4590. #endif // HAS_DIGIPOTSS
  4591. #if HAS_MICROSTEPS
  4592. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4593. gcode_M350();
  4594. break;
  4595. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4596. gcode_M351();
  4597. break;
  4598. #endif // HAS_MICROSTEPS
  4599. case 999: // M999: Restart after being Stopped
  4600. gcode_M999();
  4601. break;
  4602. }
  4603. }
  4604. else if (code_seen('T')) {
  4605. gcode_T();
  4606. }
  4607. else {
  4608. SERIAL_ECHO_START;
  4609. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4610. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4611. SERIAL_ECHOLNPGM("\"");
  4612. }
  4613. ClearToSend();
  4614. }
  4615. void FlushSerialRequestResend() {
  4616. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4617. MYSERIAL.flush();
  4618. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4619. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4620. ClearToSend();
  4621. }
  4622. void ClearToSend() {
  4623. refresh_cmd_timeout();
  4624. #ifdef SDSUPPORT
  4625. if (fromsd[cmd_queue_index_r]) return;
  4626. #endif
  4627. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4628. }
  4629. void get_coordinates() {
  4630. for (int i = 0; i < NUM_AXIS; i++) {
  4631. if (code_seen(axis_codes[i]))
  4632. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4633. else
  4634. destination[i] = current_position[i];
  4635. }
  4636. if (code_seen('F')) {
  4637. next_feedrate = code_value();
  4638. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4639. }
  4640. }
  4641. void get_arc_coordinates() {
  4642. #ifdef SF_ARC_FIX
  4643. bool relative_mode_backup = relative_mode;
  4644. relative_mode = true;
  4645. #endif
  4646. get_coordinates();
  4647. #ifdef SF_ARC_FIX
  4648. relative_mode = relative_mode_backup;
  4649. #endif
  4650. offset[0] = code_seen('I') ? code_value() : 0;
  4651. offset[1] = code_seen('J') ? code_value() : 0;
  4652. }
  4653. void clamp_to_software_endstops(float target[3]) {
  4654. if (min_software_endstops) {
  4655. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4656. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4657. float negative_z_offset = 0;
  4658. #ifdef ENABLE_AUTO_BED_LEVELING
  4659. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4660. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4661. #endif
  4662. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4663. }
  4664. if (max_software_endstops) {
  4665. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4666. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4667. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4668. }
  4669. }
  4670. #ifdef DELTA
  4671. void recalc_delta_settings(float radius, float diagonal_rod) {
  4672. delta_tower1_x = -SIN_60 * radius; // front left tower
  4673. delta_tower1_y = -COS_60 * radius;
  4674. delta_tower2_x = SIN_60 * radius; // front right tower
  4675. delta_tower2_y = -COS_60 * radius;
  4676. delta_tower3_x = 0.0; // back middle tower
  4677. delta_tower3_y = radius;
  4678. delta_diagonal_rod_2 = sq(diagonal_rod);
  4679. }
  4680. void calculate_delta(float cartesian[3]) {
  4681. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4682. - sq(delta_tower1_x-cartesian[X_AXIS])
  4683. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4684. ) + cartesian[Z_AXIS];
  4685. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4686. - sq(delta_tower2_x-cartesian[X_AXIS])
  4687. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4688. ) + cartesian[Z_AXIS];
  4689. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4690. - sq(delta_tower3_x-cartesian[X_AXIS])
  4691. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4692. ) + cartesian[Z_AXIS];
  4693. /*
  4694. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4695. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4696. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4697. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4698. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4699. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4700. */
  4701. }
  4702. #ifdef ENABLE_AUTO_BED_LEVELING
  4703. // Adjust print surface height by linear interpolation over the bed_level array.
  4704. void adjust_delta(float cartesian[3]) {
  4705. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4706. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4707. float h1 = 0.001 - half, h2 = half - 0.001,
  4708. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4709. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4710. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4711. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4712. z1 = bed_level[floor_x + half][floor_y + half],
  4713. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4714. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4715. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4716. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4717. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4718. offset = (1 - ratio_x) * left + ratio_x * right;
  4719. delta[X_AXIS] += offset;
  4720. delta[Y_AXIS] += offset;
  4721. delta[Z_AXIS] += offset;
  4722. /*
  4723. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4724. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4725. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4726. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4727. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4728. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4729. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4730. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4731. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4732. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4733. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4734. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4735. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4736. */
  4737. }
  4738. #endif // ENABLE_AUTO_BED_LEVELING
  4739. #endif // DELTA
  4740. #ifdef MESH_BED_LEVELING
  4741. #if !defined(MIN)
  4742. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4743. #endif // ! MIN
  4744. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4745. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4746. {
  4747. if (!mbl.active) {
  4748. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4749. set_current_to_destination();
  4750. return;
  4751. }
  4752. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4753. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4754. int ix = mbl.select_x_index(x);
  4755. int iy = mbl.select_y_index(y);
  4756. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4757. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4758. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4759. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4760. if (pix == ix && piy == iy) {
  4761. // Start and end on same mesh square
  4762. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4763. set_current_to_destination();
  4764. return;
  4765. }
  4766. float nx, ny, ne, normalized_dist;
  4767. if (ix > pix && (x_splits) & BIT(ix)) {
  4768. nx = mbl.get_x(ix);
  4769. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4770. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4771. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4772. x_splits ^= BIT(ix);
  4773. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4774. nx = mbl.get_x(pix);
  4775. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4776. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4777. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4778. x_splits ^= BIT(pix);
  4779. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4780. ny = mbl.get_y(iy);
  4781. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4782. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4783. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4784. y_splits ^= BIT(iy);
  4785. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4786. ny = mbl.get_y(piy);
  4787. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4788. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4789. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4790. y_splits ^= BIT(piy);
  4791. } else {
  4792. // Already split on a border
  4793. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4794. set_current_to_destination();
  4795. return;
  4796. }
  4797. // Do the split and look for more borders
  4798. destination[X_AXIS] = nx;
  4799. destination[Y_AXIS] = ny;
  4800. destination[E_AXIS] = ne;
  4801. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4802. destination[X_AXIS] = x;
  4803. destination[Y_AXIS] = y;
  4804. destination[E_AXIS] = e;
  4805. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4806. }
  4807. #endif // MESH_BED_LEVELING
  4808. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4809. inline float prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4810. float de = dest_e - curr_e;
  4811. if (de) {
  4812. if (degHotend(active_extruder) < extrude_min_temp) {
  4813. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4814. SERIAL_ECHO_START;
  4815. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4816. return 0;
  4817. }
  4818. #ifdef PREVENT_LENGTHY_EXTRUDE
  4819. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4820. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4821. SERIAL_ECHO_START;
  4822. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4823. return 0;
  4824. }
  4825. #endif
  4826. }
  4827. return de;
  4828. }
  4829. #endif // PREVENT_DANGEROUS_EXTRUDE
  4830. void prepare_move() {
  4831. clamp_to_software_endstops(destination);
  4832. refresh_cmd_timeout();
  4833. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4834. (void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4835. #endif
  4836. #ifdef SCARA //for now same as delta-code
  4837. float difference[NUM_AXIS];
  4838. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4839. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4840. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4841. if (cartesian_mm < 0.000001) { return; }
  4842. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4843. int steps = max(1, int(scara_segments_per_second * seconds));
  4844. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4845. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4846. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4847. for (int s = 1; s <= steps; s++) {
  4848. float fraction = float(s) / float(steps);
  4849. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4850. calculate_delta(destination);
  4851. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4852. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4853. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4854. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4855. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4856. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4857. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4858. }
  4859. #endif // SCARA
  4860. #ifdef DELTA
  4861. float difference[NUM_AXIS];
  4862. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4863. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4864. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4865. if (cartesian_mm < 0.000001) return;
  4866. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4867. int steps = max(1, int(delta_segments_per_second * seconds));
  4868. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4869. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4870. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4871. for (int s = 1; s <= steps; s++) {
  4872. float fraction = float(s) / float(steps);
  4873. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4874. calculate_delta(destination);
  4875. #ifdef ENABLE_AUTO_BED_LEVELING
  4876. adjust_delta(destination);
  4877. #endif
  4878. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4879. }
  4880. #endif // DELTA
  4881. #ifdef DUAL_X_CARRIAGE
  4882. if (active_extruder_parked) {
  4883. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4884. // move duplicate extruder into correct duplication position.
  4885. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4886. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4887. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4888. sync_plan_position();
  4889. st_synchronize();
  4890. extruder_duplication_enabled = true;
  4891. active_extruder_parked = false;
  4892. }
  4893. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4894. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4895. // This is a travel move (with no extrusion)
  4896. // Skip it, but keep track of the current position
  4897. // (so it can be used as the start of the next non-travel move)
  4898. if (delayed_move_time != 0xFFFFFFFFUL) {
  4899. set_current_to_destination();
  4900. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4901. delayed_move_time = millis();
  4902. return;
  4903. }
  4904. }
  4905. delayed_move_time = 0;
  4906. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4907. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4909. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4910. active_extruder_parked = false;
  4911. }
  4912. }
  4913. #endif // DUAL_X_CARRIAGE
  4914. #if !defined(DELTA) && !defined(SCARA)
  4915. // Do not use feedrate_multiplier for E or Z only moves
  4916. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4917. line_to_destination();
  4918. }
  4919. else {
  4920. #ifdef MESH_BED_LEVELING
  4921. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  4922. return;
  4923. #else
  4924. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  4925. #endif // MESH_BED_LEVELING
  4926. }
  4927. #endif // !(DELTA || SCARA)
  4928. set_current_to_destination();
  4929. }
  4930. void prepare_arc_move(char isclockwise) {
  4931. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4932. // Trace the arc
  4933. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
  4934. // As far as the parser is concerned, the position is now == target. In reality the
  4935. // motion control system might still be processing the action and the real tool position
  4936. // in any intermediate location.
  4937. set_current_to_destination();
  4938. refresh_cmd_timeout();
  4939. }
  4940. #if HAS_CONTROLLERFAN
  4941. millis_t lastMotor = 0; // Last time a motor was turned on
  4942. millis_t lastMotorCheck = 0; // Last time the state was checked
  4943. void controllerFan() {
  4944. millis_t ms = millis();
  4945. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4946. lastMotorCheck = ms;
  4947. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4948. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4949. #if EXTRUDERS > 1
  4950. || E1_ENABLE_READ == E_ENABLE_ON
  4951. #if HAS_X2_ENABLE
  4952. || X2_ENABLE_READ == X_ENABLE_ON
  4953. #endif
  4954. #if EXTRUDERS > 2
  4955. || E2_ENABLE_READ == E_ENABLE_ON
  4956. #if EXTRUDERS > 3
  4957. || E3_ENABLE_READ == E_ENABLE_ON
  4958. #endif
  4959. #endif
  4960. #endif
  4961. ) {
  4962. lastMotor = ms; //... set time to NOW so the fan will turn on
  4963. }
  4964. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4965. // allows digital or PWM fan output to be used (see M42 handling)
  4966. digitalWrite(CONTROLLERFAN_PIN, speed);
  4967. analogWrite(CONTROLLERFAN_PIN, speed);
  4968. }
  4969. }
  4970. #endif
  4971. #ifdef SCARA
  4972. void calculate_SCARA_forward_Transform(float f_scara[3])
  4973. {
  4974. // Perform forward kinematics, and place results in delta[3]
  4975. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4976. float x_sin, x_cos, y_sin, y_cos;
  4977. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4978. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4979. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4980. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4981. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4982. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4983. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4984. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4985. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4986. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4987. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4988. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4989. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4990. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4991. }
  4992. void calculate_delta(float cartesian[3]){
  4993. //reverse kinematics.
  4994. // Perform reversed kinematics, and place results in delta[3]
  4995. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4996. float SCARA_pos[2];
  4997. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4998. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4999. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5000. #if (Linkage_1 == Linkage_2)
  5001. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5002. #else
  5003. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5004. #endif
  5005. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5006. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5007. SCARA_K2 = Linkage_2 * SCARA_S2;
  5008. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5009. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5010. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5011. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5012. delta[Z_AXIS] = cartesian[Z_AXIS];
  5013. /*
  5014. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5015. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5016. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5017. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5018. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5019. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5020. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5021. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5022. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5023. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5024. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5025. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5026. SERIAL_ECHOLN(" ");*/
  5027. }
  5028. #endif
  5029. #ifdef TEMP_STAT_LEDS
  5030. static bool red_led = false;
  5031. static millis_t next_status_led_update_ms = 0;
  5032. void handle_status_leds(void) {
  5033. float max_temp = 0.0;
  5034. if (millis() > next_status_led_update_ms) {
  5035. next_status_led_update_ms += 500; // Update every 0.5s
  5036. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5037. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5038. #if HAS_TEMP_BED
  5039. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5040. #endif
  5041. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5042. if (new_led != red_led) {
  5043. red_led = new_led;
  5044. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5045. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5046. }
  5047. }
  5048. }
  5049. #endif
  5050. void enable_all_steppers() {
  5051. enable_x();
  5052. enable_y();
  5053. enable_z();
  5054. enable_e0();
  5055. enable_e1();
  5056. enable_e2();
  5057. enable_e3();
  5058. }
  5059. void disable_all_steppers() {
  5060. disable_x();
  5061. disable_y();
  5062. disable_z();
  5063. disable_e0();
  5064. disable_e1();
  5065. disable_e2();
  5066. disable_e3();
  5067. }
  5068. /**
  5069. * Manage several activities:
  5070. * - Check for Filament Runout
  5071. * - Keep the command buffer full
  5072. * - Check for maximum inactive time between commands
  5073. * - Check for maximum inactive time between stepper commands
  5074. * - Check if pin CHDK needs to go LOW
  5075. * - Check for KILL button held down
  5076. * - Check for HOME button held down
  5077. * - Check if cooling fan needs to be switched on
  5078. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5079. */
  5080. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5081. #if HAS_FILRUNOUT
  5082. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5083. filrunout();
  5084. #endif
  5085. if (commands_in_queue < BUFSIZE - 1) get_command();
  5086. millis_t ms = millis();
  5087. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  5088. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5089. && !ignore_stepper_queue && !blocks_queued())
  5090. disable_all_steppers();
  5091. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5092. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5093. chdkActive = false;
  5094. WRITE(CHDK, LOW);
  5095. }
  5096. #endif
  5097. #if HAS_KILL
  5098. // Check if the kill button was pressed and wait just in case it was an accidental
  5099. // key kill key press
  5100. // -------------------------------------------------------------------------------
  5101. static int killCount = 0; // make the inactivity button a bit less responsive
  5102. const int KILL_DELAY = 750;
  5103. if (!READ(KILL_PIN))
  5104. killCount++;
  5105. else if (killCount > 0)
  5106. killCount--;
  5107. // Exceeded threshold and we can confirm that it was not accidental
  5108. // KILL the machine
  5109. // ----------------------------------------------------------------
  5110. if (killCount >= KILL_DELAY) kill();
  5111. #endif
  5112. #if HAS_HOME
  5113. // Check to see if we have to home, use poor man's debouncer
  5114. // ---------------------------------------------------------
  5115. static int homeDebounceCount = 0; // poor man's debouncing count
  5116. const int HOME_DEBOUNCE_DELAY = 750;
  5117. if (!READ(HOME_PIN)) {
  5118. if (!homeDebounceCount) {
  5119. enqueuecommands_P(PSTR("G28"));
  5120. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  5121. }
  5122. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5123. homeDebounceCount++;
  5124. else
  5125. homeDebounceCount = 0;
  5126. }
  5127. #endif
  5128. #if HAS_CONTROLLERFAN
  5129. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5130. #endif
  5131. #ifdef EXTRUDER_RUNOUT_PREVENT
  5132. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5133. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5134. bool oldstatus;
  5135. switch(active_extruder) {
  5136. case 0:
  5137. oldstatus = E0_ENABLE_READ;
  5138. enable_e0();
  5139. break;
  5140. #if EXTRUDERS > 1
  5141. case 1:
  5142. oldstatus = E1_ENABLE_READ;
  5143. enable_e1();
  5144. break;
  5145. #if EXTRUDERS > 2
  5146. case 2:
  5147. oldstatus = E2_ENABLE_READ;
  5148. enable_e2();
  5149. break;
  5150. #if EXTRUDERS > 3
  5151. case 3:
  5152. oldstatus = E3_ENABLE_READ;
  5153. enable_e3();
  5154. break;
  5155. #endif
  5156. #endif
  5157. #endif
  5158. }
  5159. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5160. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5161. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5162. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5163. current_position[E_AXIS] = oldepos;
  5164. destination[E_AXIS] = oldedes;
  5165. plan_set_e_position(oldepos);
  5166. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5167. st_synchronize();
  5168. switch(active_extruder) {
  5169. case 0:
  5170. E0_ENABLE_WRITE(oldstatus);
  5171. break;
  5172. #if EXTRUDERS > 1
  5173. case 1:
  5174. E1_ENABLE_WRITE(oldstatus);
  5175. break;
  5176. #if EXTRUDERS > 2
  5177. case 2:
  5178. E2_ENABLE_WRITE(oldstatus);
  5179. break;
  5180. #if EXTRUDERS > 3
  5181. case 3:
  5182. E3_ENABLE_WRITE(oldstatus);
  5183. break;
  5184. #endif
  5185. #endif
  5186. #endif
  5187. }
  5188. }
  5189. #endif
  5190. #ifdef DUAL_X_CARRIAGE
  5191. // handle delayed move timeout
  5192. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5193. // travel moves have been received so enact them
  5194. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5195. set_destination_to_current();
  5196. prepare_move();
  5197. }
  5198. #endif
  5199. #ifdef TEMP_STAT_LEDS
  5200. handle_status_leds();
  5201. #endif
  5202. check_axes_activity();
  5203. }
  5204. void kill()
  5205. {
  5206. cli(); // Stop interrupts
  5207. disable_all_heaters();
  5208. disable_all_steppers();
  5209. #if HAS_POWER_SWITCH
  5210. pinMode(PS_ON_PIN, INPUT);
  5211. #endif
  5212. SERIAL_ERROR_START;
  5213. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5214. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5215. // FMC small patch to update the LCD before ending
  5216. sei(); // enable interrupts
  5217. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5218. cli(); // disable interrupts
  5219. suicide();
  5220. while(1) { /* Intentionally left empty */ } // Wait for reset
  5221. }
  5222. #ifdef FILAMENT_RUNOUT_SENSOR
  5223. void filrunout() {
  5224. if (!filrunoutEnqueued) {
  5225. filrunoutEnqueued = true;
  5226. enqueuecommand("M600");
  5227. }
  5228. }
  5229. #endif
  5230. void Stop() {
  5231. disable_all_heaters();
  5232. if (IsRunning()) {
  5233. Running = false;
  5234. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5235. SERIAL_ERROR_START;
  5236. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5237. LCD_MESSAGEPGM(MSG_STOPPED);
  5238. }
  5239. }
  5240. #ifdef FAST_PWM_FAN
  5241. void setPwmFrequency(uint8_t pin, int val)
  5242. {
  5243. val &= 0x07;
  5244. switch(digitalPinToTimer(pin))
  5245. {
  5246. #if defined(TCCR0A)
  5247. case TIMER0A:
  5248. case TIMER0B:
  5249. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5250. // TCCR0B |= val;
  5251. break;
  5252. #endif
  5253. #if defined(TCCR1A)
  5254. case TIMER1A:
  5255. case TIMER1B:
  5256. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5257. // TCCR1B |= val;
  5258. break;
  5259. #endif
  5260. #if defined(TCCR2)
  5261. case TIMER2:
  5262. case TIMER2:
  5263. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5264. TCCR2 |= val;
  5265. break;
  5266. #endif
  5267. #if defined(TCCR2A)
  5268. case TIMER2A:
  5269. case TIMER2B:
  5270. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5271. TCCR2B |= val;
  5272. break;
  5273. #endif
  5274. #if defined(TCCR3A)
  5275. case TIMER3A:
  5276. case TIMER3B:
  5277. case TIMER3C:
  5278. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5279. TCCR3B |= val;
  5280. break;
  5281. #endif
  5282. #if defined(TCCR4A)
  5283. case TIMER4A:
  5284. case TIMER4B:
  5285. case TIMER4C:
  5286. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5287. TCCR4B |= val;
  5288. break;
  5289. #endif
  5290. #if defined(TCCR5A)
  5291. case TIMER5A:
  5292. case TIMER5B:
  5293. case TIMER5C:
  5294. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5295. TCCR5B |= val;
  5296. break;
  5297. #endif
  5298. }
  5299. }
  5300. #endif //FAST_PWM_FAN
  5301. bool setTargetedHotend(int code){
  5302. target_extruder = active_extruder;
  5303. if (code_seen('T')) {
  5304. target_extruder = code_value_short();
  5305. if (target_extruder >= EXTRUDERS) {
  5306. SERIAL_ECHO_START;
  5307. switch(code){
  5308. case 104:
  5309. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5310. break;
  5311. case 105:
  5312. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5313. break;
  5314. case 109:
  5315. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5316. break;
  5317. case 218:
  5318. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5319. break;
  5320. case 221:
  5321. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5322. break;
  5323. }
  5324. SERIAL_ECHOLN(target_extruder);
  5325. return true;
  5326. }
  5327. }
  5328. return false;
  5329. }
  5330. float calculate_volumetric_multiplier(float diameter) {
  5331. if (!volumetric_enabled || diameter == 0) return 1.0;
  5332. float d2 = diameter * 0.5;
  5333. return 1.0 / (M_PI * d2 * d2);
  5334. }
  5335. void calculate_volumetric_multipliers() {
  5336. for (int i=0; i<EXTRUDERS; i++)
  5337. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5338. }