My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 250KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "temperature.h"
  48. #include "cardreader.h"
  49. #include "configuration_store.h"
  50. #include "language.h"
  51. #include "pins_arduino.h"
  52. #include "math.h"
  53. #include "buzzer.h"
  54. #if ENABLED(USE_WATCHDOG)
  55. #include "watchdog.h"
  56. #endif
  57. #if ENABLED(BLINKM)
  58. #include "blinkm.h"
  59. #include "Wire.h"
  60. #endif
  61. #if HAS_SERVOS
  62. #include "servo.h"
  63. #endif
  64. #if HAS_DIGIPOTSS
  65. #include <SPI.h>
  66. #endif
  67. #if ENABLED(DAC_STEPPER_CURRENT)
  68. #include "stepper_dac.h"
  69. #endif
  70. #if ENABLED(EXPERIMENTAL_I2CBUS)
  71. #include "twibus.h"
  72. #endif
  73. /**
  74. * Look here for descriptions of G-codes:
  75. * - http://linuxcnc.org/handbook/gcode/g-code.html
  76. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  77. *
  78. * Help us document these G-codes online:
  79. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  80. * - http://reprap.org/wiki/G-code
  81. *
  82. * -----------------
  83. * Implemented Codes
  84. * -----------------
  85. *
  86. * "G" Codes
  87. *
  88. * G0 -> G1
  89. * G1 - Coordinated Movement X Y Z E
  90. * G2 - CW ARC
  91. * G3 - CCW ARC
  92. * G4 - Dwell S<seconds> or P<milliseconds>
  93. * G10 - retract filament according to settings of M207
  94. * G11 - retract recover filament according to settings of M208
  95. * G28 - Home one or more axes
  96. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  97. * G30 - Single Z probe, probes bed at current XY location.
  98. * G31 - Dock sled (Z_PROBE_SLED only)
  99. * G32 - Undock sled (Z_PROBE_SLED only)
  100. * G90 - Use Absolute Coordinates
  101. * G91 - Use Relative Coordinates
  102. * G92 - Set current position to coordinates given
  103. *
  104. * "M" Codes
  105. *
  106. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  107. * M1 - Same as M0
  108. * M17 - Enable/Power all stepper motors
  109. * M18 - Disable all stepper motors; same as M84
  110. * M20 - List SD card
  111. * M21 - Init SD card
  112. * M22 - Release SD card
  113. * M23 - Select SD file (M23 filename.g)
  114. * M24 - Start/resume SD print
  115. * M25 - Pause SD print
  116. * M26 - Set SD position in bytes (M26 S12345)
  117. * M27 - Report SD print status
  118. * M28 - Start SD write (M28 filename.g)
  119. * M29 - Stop SD write
  120. * M30 - Delete file from SD (M30 filename.g)
  121. * M31 - Output time since last M109 or SD card start to serial
  122. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  123. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  124. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  125. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  126. * M33 - Get the longname version of a path
  127. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  128. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  129. * M75 - Start the print job timer
  130. * M76 - Pause the print job timer
  131. * M77 - Stop the print job timer
  132. * M78 - Show statistical information about the print jobs
  133. * M80 - Turn on Power Supply
  134. * M81 - Turn off Power Supply
  135. * M82 - Set E codes absolute (default)
  136. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  137. * M84 - Disable steppers until next move,
  138. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  139. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  140. * M92 - Set planner.axis_steps_per_unit - same syntax as G92
  141. * M104 - Set extruder target temp
  142. * M105 - Read current temp
  143. * M106 - Fan on
  144. * M107 - Fan off
  145. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  146. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  147. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  148. * M110 - Set the current line number
  149. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  150. * M112 - Emergency stop
  151. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  152. * M114 - Output current position to serial port
  153. * M115 - Capabilities string
  154. * M117 - Display a message on the controller screen
  155. * M119 - Output Endstop status to serial port
  156. * M120 - Enable endstop detection
  157. * M121 - Disable endstop detection
  158. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  159. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  160. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  161. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  162. * M140 - Set bed target temp
  163. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  164. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  165. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  166. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  167. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  168. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  169. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  170. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  171. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  172. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  173. * M206 - Set additional homing offset
  174. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  175. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  176. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  177. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  178. * M220 - Set speed factor override percentage: S<factor in percent>
  179. * M221 - Set extrude factor override percentage: S<factor in percent>
  180. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  181. * M240 - Trigger a camera to take a photograph
  182. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  183. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  184. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  185. * M301 - Set PID parameters P I and D
  186. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  187. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  188. * M304 - Set bed PID parameters P I and D
  189. * M380 - Activate solenoid on active extruder
  190. * M381 - Disable all solenoids
  191. * M400 - Finish all moves
  192. * M401 - Lower Z probe if present
  193. * M402 - Raise Z probe if present
  194. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  195. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  196. * M406 - Turn off Filament Sensor extrusion control
  197. * M407 - Display measured filament diameter
  198. * M410 - Quickstop. Abort all the planned moves
  199. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  200. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  201. * M428 - Set the home_offset logically based on the current_position
  202. * M500 - Store parameters in EEPROM
  203. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  204. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  205. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  206. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  207. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  208. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  209. * M666 - Set delta endstop adjustment
  210. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  211. * M907 - Set digital trimpot motor current using axis codes.
  212. * M908 - Control digital trimpot directly.
  213. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  214. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  215. * M350 - Set microstepping mode.
  216. * M351 - Toggle MS1 MS2 pins directly.
  217. *
  218. * ************ SCARA Specific - This can change to suit future G-code regulations
  219. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  220. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  221. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  222. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  223. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  224. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  225. * ************* SCARA End ***************
  226. *
  227. * ************ Custom codes - This can change to suit future G-code regulations
  228. * M100 - Watch Free Memory (For Debugging Only)
  229. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  230. * M928 - Start SD logging (M928 filename.g) - ended by M29
  231. * M999 - Restart after being stopped by error
  232. *
  233. * "T" Codes
  234. *
  235. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  236. *
  237. */
  238. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  239. void gcode_M100();
  240. #endif
  241. #if ENABLED(SDSUPPORT)
  242. CardReader card;
  243. #endif
  244. #if ENABLED(EXPERIMENTAL_I2CBUS)
  245. TWIBus i2c;
  246. #endif
  247. bool Running = true;
  248. uint8_t marlin_debug_flags = DEBUG_NONE;
  249. static float feedrate = 1500.0, saved_feedrate;
  250. float current_position[NUM_AXIS] = { 0.0 };
  251. static float destination[NUM_AXIS] = { 0.0 };
  252. bool axis_known_position[3] = { false };
  253. bool axis_homed[3] = { false };
  254. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  255. static char* current_command, *current_command_args;
  256. static int cmd_queue_index_r = 0;
  257. static int cmd_queue_index_w = 0;
  258. static int commands_in_queue = 0;
  259. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  260. const float homing_feedrate[] = HOMING_FEEDRATE;
  261. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  262. int feedrate_multiplier = 100; //100->1 200->2
  263. int saved_feedrate_multiplier;
  264. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  265. bool volumetric_enabled = false;
  266. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  267. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  268. // The distance that XYZ has been offset by G92. Reset by G28.
  269. float position_shift[3] = { 0 };
  270. // This offset is added to the configured home position.
  271. // Set by M206, M428, or menu item. Saved to EEPROM.
  272. float home_offset[3] = { 0 };
  273. // Software Endstops. Default to configured limits.
  274. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  275. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  276. #if FAN_COUNT > 0
  277. int fanSpeeds[FAN_COUNT] = { 0 };
  278. #endif
  279. // The active extruder (tool). Set with T<extruder> command.
  280. uint8_t active_extruder = 0;
  281. // Relative Mode. Enable with G91, disable with G90.
  282. static bool relative_mode = false;
  283. bool cancel_heatup = false;
  284. const char errormagic[] PROGMEM = "Error:";
  285. const char echomagic[] PROGMEM = "echo:";
  286. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  287. static int serial_count = 0;
  288. // GCode parameter pointer used by code_seen(), code_value(), etc.
  289. static char* seen_pointer;
  290. // Next Immediate GCode Command pointer. NULL if none.
  291. const char* queued_commands_P = NULL;
  292. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  293. // Inactivity shutdown
  294. millis_t previous_cmd_ms = 0;
  295. static millis_t max_inactive_time = 0;
  296. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  297. // Print Job Timer
  298. #if ENABLED(PRINTCOUNTER)
  299. PrintCounter print_job_timer = PrintCounter();
  300. #else
  301. Stopwatch print_job_timer = Stopwatch();
  302. #endif
  303. static uint8_t target_extruder;
  304. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  305. int xy_travel_speed = XY_TRAVEL_SPEED;
  306. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  307. bool bed_leveling_in_progress = false;
  308. #endif
  309. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  310. float z_endstop_adj = 0;
  311. #endif
  312. // Extruder offsets
  313. #if EXTRUDERS > 1
  314. #ifndef EXTRUDER_OFFSET_X
  315. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  316. #endif
  317. #ifndef EXTRUDER_OFFSET_Y
  318. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  319. #endif
  320. float extruder_offset[][EXTRUDERS] = {
  321. EXTRUDER_OFFSET_X,
  322. EXTRUDER_OFFSET_Y
  323. #if ENABLED(DUAL_X_CARRIAGE)
  324. , { 0 } // Z offsets for each extruder
  325. #endif
  326. };
  327. #endif
  328. #if HAS_SERVO_ENDSTOPS
  329. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  330. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  331. #endif
  332. #if ENABLED(BARICUDA)
  333. int baricuda_valve_pressure = 0;
  334. int baricuda_e_to_p_pressure = 0;
  335. #endif
  336. #if ENABLED(FWRETRACT)
  337. bool autoretract_enabled = false;
  338. bool retracted[EXTRUDERS] = { false };
  339. bool retracted_swap[EXTRUDERS] = { false };
  340. float retract_length = RETRACT_LENGTH;
  341. float retract_length_swap = RETRACT_LENGTH_SWAP;
  342. float retract_feedrate = RETRACT_FEEDRATE;
  343. float retract_zlift = RETRACT_ZLIFT;
  344. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  345. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  346. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  347. #endif // FWRETRACT
  348. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  349. bool powersupply =
  350. #if ENABLED(PS_DEFAULT_OFF)
  351. false
  352. #else
  353. true
  354. #endif
  355. ;
  356. #endif
  357. #if ENABLED(DELTA)
  358. #define TOWER_1 X_AXIS
  359. #define TOWER_2 Y_AXIS
  360. #define TOWER_3 Z_AXIS
  361. float delta[3] = { 0 };
  362. #define SIN_60 0.8660254037844386
  363. #define COS_60 0.5
  364. float endstop_adj[3] = { 0 };
  365. // these are the default values, can be overriden with M665
  366. float delta_radius = DELTA_RADIUS;
  367. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  368. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  369. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  370. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  371. float delta_tower3_x = 0; // back middle tower
  372. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  373. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  374. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  375. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  376. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  377. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  378. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  379. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  380. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  381. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  382. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  383. int delta_grid_spacing[2] = { 0, 0 };
  384. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  385. #endif
  386. #else
  387. static bool home_all_axis = true;
  388. #endif
  389. #if ENABLED(SCARA)
  390. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  391. static float delta[3] = { 0 };
  392. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  393. #endif
  394. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  395. //Variables for Filament Sensor input
  396. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  397. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  398. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  399. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  400. int filwidth_delay_index1 = 0; //index into ring buffer
  401. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  402. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  403. #endif
  404. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  405. static bool filament_ran_out = false;
  406. #endif
  407. static bool send_ok[BUFSIZE];
  408. #if HAS_SERVOS
  409. Servo servo[NUM_SERVOS];
  410. #endif
  411. #ifdef CHDK
  412. millis_t chdkHigh = 0;
  413. boolean chdkActive = false;
  414. #endif
  415. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  416. int lpq_len = 20;
  417. #endif
  418. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  419. // States for managing Marlin and host communication
  420. // Marlin sends messages if blocked or busy
  421. enum MarlinBusyState {
  422. NOT_BUSY, // Not in a handler
  423. IN_HANDLER, // Processing a GCode
  424. IN_PROCESS, // Known to be blocking command input (as in G29)
  425. PAUSED_FOR_USER, // Blocking pending any input
  426. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  427. };
  428. static MarlinBusyState busy_state = NOT_BUSY;
  429. static millis_t next_busy_signal_ms = 0;
  430. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  431. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  432. #else
  433. #define host_keepalive() ;
  434. #define KEEPALIVE_STATE(n) ;
  435. #endif // HOST_KEEPALIVE_FEATURE
  436. /**
  437. * ***************************************************************************
  438. * ******************************** FUNCTIONS ********************************
  439. * ***************************************************************************
  440. */
  441. void stop();
  442. void get_available_commands();
  443. void process_next_command();
  444. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  445. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  446. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  447. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  448. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  449. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. static void report_current_position();
  451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  452. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  453. SERIAL_ECHO(prefix);
  454. SERIAL_ECHOPAIR(": (", x);
  455. SERIAL_ECHOPAIR(", ", y);
  456. SERIAL_ECHOPAIR(", ", z);
  457. SERIAL_ECHOLNPGM(")");
  458. }
  459. void print_xyz(const char* prefix, const float xyz[]) {
  460. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  461. }
  462. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  463. void print_xyz(const char* prefix, const vector_3 &xyz) {
  464. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  465. }
  466. #endif
  467. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  468. #endif
  469. #if ENABLED(DELTA) || ENABLED(SCARA)
  470. inline void sync_plan_position_delta() {
  471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  472. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  473. #endif
  474. calculate_delta(current_position);
  475. planner.set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  476. }
  477. #endif
  478. #if ENABLED(SDSUPPORT)
  479. #include "SdFatUtil.h"
  480. int freeMemory() { return SdFatUtil::FreeRam(); }
  481. #else
  482. extern "C" {
  483. extern unsigned int __bss_end;
  484. extern unsigned int __heap_start;
  485. extern void* __brkval;
  486. int freeMemory() {
  487. int free_memory;
  488. if ((int)__brkval == 0)
  489. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  490. else
  491. free_memory = ((int)&free_memory) - ((int)__brkval);
  492. return free_memory;
  493. }
  494. }
  495. #endif //!SDSUPPORT
  496. /**
  497. * Inject the next "immediate" command, when possible.
  498. * Return true if any immediate commands remain to inject.
  499. */
  500. static bool drain_queued_commands_P() {
  501. if (queued_commands_P != NULL) {
  502. size_t i = 0;
  503. char c, cmd[30];
  504. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  505. cmd[sizeof(cmd) - 1] = '\0';
  506. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  507. cmd[i] = '\0';
  508. if (enqueue_and_echo_command(cmd)) { // success?
  509. if (c) // newline char?
  510. queued_commands_P += i + 1; // advance to the next command
  511. else
  512. queued_commands_P = NULL; // nul char? no more commands
  513. }
  514. }
  515. return (queued_commands_P != NULL); // return whether any more remain
  516. }
  517. /**
  518. * Record one or many commands to run from program memory.
  519. * Aborts the current queue, if any.
  520. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  521. */
  522. void enqueue_and_echo_commands_P(const char* pgcode) {
  523. queued_commands_P = pgcode;
  524. drain_queued_commands_P(); // first command executed asap (when possible)
  525. }
  526. /**
  527. * Once a new command is in the ring buffer, call this to commit it
  528. */
  529. inline void _commit_command(bool say_ok) {
  530. send_ok[cmd_queue_index_w] = say_ok;
  531. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  532. commands_in_queue++;
  533. }
  534. /**
  535. * Copy a command directly into the main command buffer, from RAM.
  536. * Returns true if successfully adds the command
  537. */
  538. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  539. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  540. strcpy(command_queue[cmd_queue_index_w], cmd);
  541. _commit_command(say_ok);
  542. return true;
  543. }
  544. void enqueue_and_echo_command_now(const char* cmd) {
  545. while (!enqueue_and_echo_command(cmd)) idle();
  546. }
  547. /**
  548. * Enqueue with Serial Echo
  549. */
  550. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  551. if (_enqueuecommand(cmd, say_ok)) {
  552. SERIAL_ECHO_START;
  553. SERIAL_ECHOPGM(MSG_Enqueueing);
  554. SERIAL_ECHO(cmd);
  555. SERIAL_ECHOLNPGM("\"");
  556. return true;
  557. }
  558. return false;
  559. }
  560. void setup_killpin() {
  561. #if HAS_KILL
  562. SET_INPUT(KILL_PIN);
  563. WRITE(KILL_PIN, HIGH);
  564. #endif
  565. }
  566. void setup_filrunoutpin() {
  567. #if HAS_FILRUNOUT
  568. pinMode(FILRUNOUT_PIN, INPUT);
  569. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  570. WRITE(FILRUNOUT_PIN, HIGH);
  571. #endif
  572. #endif
  573. }
  574. // Set home pin
  575. void setup_homepin(void) {
  576. #if HAS_HOME
  577. SET_INPUT(HOME_PIN);
  578. WRITE(HOME_PIN, HIGH);
  579. #endif
  580. }
  581. void setup_photpin() {
  582. #if HAS_PHOTOGRAPH
  583. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  584. #endif
  585. }
  586. void setup_powerhold() {
  587. #if HAS_SUICIDE
  588. OUT_WRITE(SUICIDE_PIN, HIGH);
  589. #endif
  590. #if HAS_POWER_SWITCH
  591. #if ENABLED(PS_DEFAULT_OFF)
  592. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  593. #else
  594. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  595. #endif
  596. #endif
  597. }
  598. void suicide() {
  599. #if HAS_SUICIDE
  600. OUT_WRITE(SUICIDE_PIN, LOW);
  601. #endif
  602. }
  603. void servo_init() {
  604. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  605. servo[0].attach(SERVO0_PIN);
  606. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  607. #endif
  608. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  609. servo[1].attach(SERVO1_PIN);
  610. servo[1].detach();
  611. #endif
  612. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  613. servo[2].attach(SERVO2_PIN);
  614. servo[2].detach();
  615. #endif
  616. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  617. servo[3].attach(SERVO3_PIN);
  618. servo[3].detach();
  619. #endif
  620. #if HAS_SERVO_ENDSTOPS
  621. endstops.enable_z_probe(false);
  622. /**
  623. * Set position of all defined Servo Endstops
  624. *
  625. * ** UNSAFE! - NEEDS UPDATE! **
  626. *
  627. * The servo might be deployed and positioned too low to stow
  628. * when starting up the machine or rebooting the board.
  629. * There's no way to know where the nozzle is positioned until
  630. * homing has been done - no homing with z-probe without init!
  631. *
  632. */
  633. for (int i = 0; i < 3; i++)
  634. if (servo_endstop_id[i] >= 0)
  635. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  636. #endif // HAS_SERVO_ENDSTOPS
  637. }
  638. /**
  639. * Stepper Reset (RigidBoard, et.al.)
  640. */
  641. #if HAS_STEPPER_RESET
  642. void disableStepperDrivers() {
  643. pinMode(STEPPER_RESET_PIN, OUTPUT);
  644. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  645. }
  646. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  647. #endif
  648. /**
  649. * Marlin entry-point: Set up before the program loop
  650. * - Set up the kill pin, filament runout, power hold
  651. * - Start the serial port
  652. * - Print startup messages and diagnostics
  653. * - Get EEPROM or default settings
  654. * - Initialize managers for:
  655. * • temperature
  656. * • planner
  657. * • watchdog
  658. * • stepper
  659. * • photo pin
  660. * • servos
  661. * • LCD controller
  662. * • Digipot I2C
  663. * • Z probe sled
  664. * • status LEDs
  665. */
  666. void setup() {
  667. #ifdef DISABLE_JTAG
  668. // Disable JTAG on AT90USB chips to free up pins for IO
  669. MCUCR = 0x80;
  670. MCUCR = 0x80;
  671. #endif
  672. setup_killpin();
  673. setup_filrunoutpin();
  674. setup_powerhold();
  675. #if HAS_STEPPER_RESET
  676. disableStepperDrivers();
  677. #endif
  678. MYSERIAL.begin(BAUDRATE);
  679. SERIAL_PROTOCOLLNPGM("start");
  680. SERIAL_ECHO_START;
  681. // Check startup - does nothing if bootloader sets MCUSR to 0
  682. byte mcu = MCUSR;
  683. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  684. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  685. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  686. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  687. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  688. MCUSR = 0;
  689. SERIAL_ECHOPGM(MSG_MARLIN);
  690. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  691. #ifdef STRING_DISTRIBUTION_DATE
  692. #ifdef STRING_CONFIG_H_AUTHOR
  693. SERIAL_ECHO_START;
  694. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  695. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  696. SERIAL_ECHOPGM(MSG_AUTHOR);
  697. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  698. SERIAL_ECHOPGM("Compiled: ");
  699. SERIAL_ECHOLNPGM(__DATE__);
  700. #endif // STRING_CONFIG_H_AUTHOR
  701. #endif // STRING_DISTRIBUTION_DATE
  702. SERIAL_ECHO_START;
  703. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  704. SERIAL_ECHO(freeMemory());
  705. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  706. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  707. // Send "ok" after commands by default
  708. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  709. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  710. Config_RetrieveSettings();
  711. lcd_init();
  712. thermalManager.init(); // Initialize temperature loop
  713. #if ENABLED(DELTA) || ENABLED(SCARA)
  714. // Vital to init kinematic equivalent for X0 Y0 Z0
  715. sync_plan_position_delta();
  716. #endif
  717. #if ENABLED(USE_WATCHDOG)
  718. watchdog_init();
  719. #endif
  720. stepper.init(); // Initialize stepper, this enables interrupts!
  721. setup_photpin();
  722. servo_init();
  723. #if HAS_CONTROLLERFAN
  724. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  725. #endif
  726. #if HAS_STEPPER_RESET
  727. enableStepperDrivers();
  728. #endif
  729. #if ENABLED(DIGIPOT_I2C)
  730. digipot_i2c_init();
  731. #endif
  732. #if ENABLED(Z_PROBE_SLED)
  733. pinMode(SLED_PIN, OUTPUT);
  734. digitalWrite(SLED_PIN, LOW); // turn it off
  735. #endif // Z_PROBE_SLED
  736. setup_homepin();
  737. #ifdef STAT_LED_RED
  738. pinMode(STAT_LED_RED, OUTPUT);
  739. digitalWrite(STAT_LED_RED, LOW); // turn it off
  740. #endif
  741. #ifdef STAT_LED_BLUE
  742. pinMode(STAT_LED_BLUE, OUTPUT);
  743. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  744. #endif
  745. }
  746. /**
  747. * The main Marlin program loop
  748. *
  749. * - Save or log commands to SD
  750. * - Process available commands (if not saving)
  751. * - Call heater manager
  752. * - Call inactivity manager
  753. * - Call endstop manager
  754. * - Call LCD update
  755. */
  756. void loop() {
  757. if (commands_in_queue < BUFSIZE) get_available_commands();
  758. #if ENABLED(SDSUPPORT)
  759. card.checkautostart(false);
  760. #endif
  761. if (commands_in_queue) {
  762. #if ENABLED(SDSUPPORT)
  763. if (card.saving) {
  764. char* command = command_queue[cmd_queue_index_r];
  765. if (strstr_P(command, PSTR("M29"))) {
  766. // M29 closes the file
  767. card.closefile();
  768. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  769. ok_to_send();
  770. }
  771. else {
  772. // Write the string from the read buffer to SD
  773. card.write_command(command);
  774. if (card.logging)
  775. process_next_command(); // The card is saving because it's logging
  776. else
  777. ok_to_send();
  778. }
  779. }
  780. else
  781. process_next_command();
  782. #else
  783. process_next_command();
  784. #endif // SDSUPPORT
  785. commands_in_queue--;
  786. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  787. }
  788. endstops.report_state();
  789. idle();
  790. }
  791. void gcode_line_error(const char* err, bool doFlush = true) {
  792. SERIAL_ERROR_START;
  793. serialprintPGM(err);
  794. SERIAL_ERRORLN(gcode_LastN);
  795. //Serial.println(gcode_N);
  796. if (doFlush) FlushSerialRequestResend();
  797. serial_count = 0;
  798. }
  799. inline void get_serial_commands() {
  800. static char serial_line_buffer[MAX_CMD_SIZE];
  801. static boolean serial_comment_mode = false;
  802. // If the command buffer is empty for too long,
  803. // send "wait" to indicate Marlin is still waiting.
  804. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  805. static millis_t last_command_time = 0;
  806. millis_t ms = millis();
  807. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  808. SERIAL_ECHOLNPGM(MSG_WAIT);
  809. last_command_time = ms;
  810. }
  811. #endif
  812. /**
  813. * Loop while serial characters are incoming and the queue is not full
  814. */
  815. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  816. char serial_char = MYSERIAL.read();
  817. /**
  818. * If the character ends the line
  819. */
  820. if (serial_char == '\n' || serial_char == '\r') {
  821. serial_comment_mode = false; // end of line == end of comment
  822. if (!serial_count) continue; // skip empty lines
  823. serial_line_buffer[serial_count] = 0; // terminate string
  824. serial_count = 0; //reset buffer
  825. char* command = serial_line_buffer;
  826. while (*command == ' ') command++; // skip any leading spaces
  827. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  828. char* apos = strchr(command, '*');
  829. if (npos) {
  830. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  831. if (M110) {
  832. char* n2pos = strchr(command + 4, 'N');
  833. if (n2pos) npos = n2pos;
  834. }
  835. gcode_N = strtol(npos + 1, NULL, 10);
  836. if (gcode_N != gcode_LastN + 1 && !M110) {
  837. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  838. return;
  839. }
  840. if (apos) {
  841. byte checksum = 0, count = 0;
  842. while (command[count] != '*') checksum ^= command[count++];
  843. if (strtol(apos + 1, NULL, 10) != checksum) {
  844. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  845. return;
  846. }
  847. // if no errors, continue parsing
  848. }
  849. else {
  850. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  851. return;
  852. }
  853. gcode_LastN = gcode_N;
  854. // if no errors, continue parsing
  855. }
  856. else if (apos) { // No '*' without 'N'
  857. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  858. return;
  859. }
  860. // Movement commands alert when stopped
  861. if (IsStopped()) {
  862. char* gpos = strchr(command, 'G');
  863. if (gpos) {
  864. int codenum = strtol(gpos + 1, NULL, 10);
  865. switch (codenum) {
  866. case 0:
  867. case 1:
  868. case 2:
  869. case 3:
  870. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  871. LCD_MESSAGEPGM(MSG_STOPPED);
  872. break;
  873. }
  874. }
  875. }
  876. // If command was e-stop process now
  877. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  878. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  879. last_command_time = ms;
  880. #endif
  881. // Add the command to the queue
  882. _enqueuecommand(serial_line_buffer, true);
  883. }
  884. else if (serial_count >= MAX_CMD_SIZE - 1) {
  885. // Keep fetching, but ignore normal characters beyond the max length
  886. // The command will be injected when EOL is reached
  887. }
  888. else if (serial_char == '\\') { // Handle escapes
  889. if (MYSERIAL.available() > 0) {
  890. // if we have one more character, copy it over
  891. serial_char = MYSERIAL.read();
  892. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  893. }
  894. // otherwise do nothing
  895. }
  896. else { // it's not a newline, carriage return or escape char
  897. if (serial_char == ';') serial_comment_mode = true;
  898. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  899. }
  900. } // queue has space, serial has data
  901. }
  902. #if ENABLED(SDSUPPORT)
  903. inline void get_sdcard_commands() {
  904. static bool stop_buffering = false,
  905. sd_comment_mode = false;
  906. if (!card.sdprinting) return;
  907. /**
  908. * '#' stops reading from SD to the buffer prematurely, so procedural
  909. * macro calls are possible. If it occurs, stop_buffering is triggered
  910. * and the buffer is run dry; this character _can_ occur in serial com
  911. * due to checksums, however, no checksums are used in SD printing.
  912. */
  913. if (commands_in_queue == 0) stop_buffering = false;
  914. uint16_t sd_count = 0;
  915. bool card_eof = card.eof();
  916. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  917. int16_t n = card.get();
  918. char sd_char = (char)n;
  919. card_eof = card.eof();
  920. if (card_eof || n == -1
  921. || sd_char == '\n' || sd_char == '\r'
  922. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  923. ) {
  924. if (card_eof) {
  925. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  926. print_job_timer.stop();
  927. char time[30];
  928. millis_t t = print_job_timer.duration();
  929. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  930. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  931. SERIAL_ECHO_START;
  932. SERIAL_ECHOLN(time);
  933. lcd_setstatus(time, true);
  934. card.printingHasFinished();
  935. card.checkautostart(true);
  936. }
  937. if (sd_char == '#') stop_buffering = true;
  938. sd_comment_mode = false; //for new command
  939. if (!sd_count) continue; //skip empty lines
  940. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  941. sd_count = 0; //clear buffer
  942. _commit_command(false);
  943. }
  944. else if (sd_count >= MAX_CMD_SIZE - 1) {
  945. /**
  946. * Keep fetching, but ignore normal characters beyond the max length
  947. * The command will be injected when EOL is reached
  948. */
  949. }
  950. else {
  951. if (sd_char == ';') sd_comment_mode = true;
  952. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  953. }
  954. }
  955. }
  956. #endif // SDSUPPORT
  957. /**
  958. * Add to the circular command queue the next command from:
  959. * - The command-injection queue (queued_commands_P)
  960. * - The active serial input (usually USB)
  961. * - The SD card file being actively printed
  962. */
  963. void get_available_commands() {
  964. // if any immediate commands remain, don't get other commands yet
  965. if (drain_queued_commands_P()) return;
  966. get_serial_commands();
  967. #if ENABLED(SDSUPPORT)
  968. get_sdcard_commands();
  969. #endif
  970. }
  971. bool code_has_value() {
  972. int i = 1;
  973. char c = seen_pointer[i];
  974. while (c == ' ') c = seen_pointer[++i];
  975. if (c == '-' || c == '+') c = seen_pointer[++i];
  976. if (c == '.') c = seen_pointer[++i];
  977. return NUMERIC(c);
  978. }
  979. float code_value() {
  980. float ret;
  981. char* e = strchr(seen_pointer, 'E');
  982. if (e) {
  983. *e = 0;
  984. ret = strtod(seen_pointer + 1, NULL);
  985. *e = 'E';
  986. }
  987. else
  988. ret = strtod(seen_pointer + 1, NULL);
  989. return ret;
  990. }
  991. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  992. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  993. bool code_seen(char code) {
  994. seen_pointer = strchr(current_command_args, code);
  995. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  996. }
  997. /**
  998. * Set target_extruder from the T parameter or the active_extruder
  999. *
  1000. * Returns TRUE if the target is invalid
  1001. */
  1002. bool get_target_extruder_from_command(int code) {
  1003. if (code_seen('T')) {
  1004. short t = code_value_short();
  1005. if (t >= EXTRUDERS) {
  1006. SERIAL_ECHO_START;
  1007. SERIAL_CHAR('M');
  1008. SERIAL_ECHO(code);
  1009. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1010. SERIAL_EOL;
  1011. return true;
  1012. }
  1013. target_extruder = t;
  1014. }
  1015. else
  1016. target_extruder = active_extruder;
  1017. return false;
  1018. }
  1019. #define DEFINE_PGM_READ_ANY(type, reader) \
  1020. static inline type pgm_read_any(const type *p) \
  1021. { return pgm_read_##reader##_near(p); }
  1022. DEFINE_PGM_READ_ANY(float, float);
  1023. DEFINE_PGM_READ_ANY(signed char, byte);
  1024. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1025. static const PROGMEM type array##_P[3] = \
  1026. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1027. static inline type array(int axis) \
  1028. { return pgm_read_any(&array##_P[axis]); }
  1029. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1030. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1031. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1032. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1033. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1034. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1035. #if ENABLED(DUAL_X_CARRIAGE)
  1036. #define DXC_FULL_CONTROL_MODE 0
  1037. #define DXC_AUTO_PARK_MODE 1
  1038. #define DXC_DUPLICATION_MODE 2
  1039. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1040. static float x_home_pos(int extruder) {
  1041. if (extruder == 0)
  1042. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1043. else
  1044. /**
  1045. * In dual carriage mode the extruder offset provides an override of the
  1046. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1047. * This allow soft recalibration of the second extruder offset position
  1048. * without firmware reflash (through the M218 command).
  1049. */
  1050. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1051. }
  1052. static int x_home_dir(int extruder) {
  1053. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1054. }
  1055. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1056. static bool active_extruder_parked = false; // used in mode 1 & 2
  1057. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1058. static millis_t delayed_move_time = 0; // used in mode 1
  1059. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1060. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1061. bool extruder_duplication_enabled = false; // used in mode 2
  1062. #endif //DUAL_X_CARRIAGE
  1063. /**
  1064. * Software endstops can be used to monitor the open end of
  1065. * an axis that has a hardware endstop on the other end. Or
  1066. * they can prevent axes from moving past endstops and grinding.
  1067. *
  1068. * To keep doing their job as the coordinate system changes,
  1069. * the software endstop positions must be refreshed to remain
  1070. * at the same positions relative to the machine.
  1071. */
  1072. static void update_software_endstops(AxisEnum axis) {
  1073. float offs = home_offset[axis] + position_shift[axis];
  1074. #if ENABLED(DUAL_X_CARRIAGE)
  1075. if (axis == X_AXIS) {
  1076. float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1077. if (active_extruder != 0) {
  1078. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1079. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1080. return;
  1081. }
  1082. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1083. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1084. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1085. return;
  1086. }
  1087. }
  1088. else
  1089. #endif
  1090. {
  1091. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1092. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1093. }
  1094. }
  1095. /**
  1096. * Change the home offset for an axis, update the current
  1097. * position and the software endstops to retain the same
  1098. * relative distance to the new home.
  1099. *
  1100. * Since this changes the current_position, code should
  1101. * call sync_plan_position soon after this.
  1102. */
  1103. static void set_home_offset(AxisEnum axis, float v) {
  1104. current_position[axis] += v - home_offset[axis];
  1105. home_offset[axis] = v;
  1106. update_software_endstops(axis);
  1107. }
  1108. static void set_axis_is_at_home(AxisEnum axis) {
  1109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1110. if (DEBUGGING(LEVELING)) {
  1111. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1112. SERIAL_ECHOLNPGM(") >>>");
  1113. }
  1114. #endif
  1115. position_shift[axis] = 0;
  1116. #if ENABLED(DUAL_X_CARRIAGE)
  1117. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1118. if (active_extruder != 0)
  1119. current_position[X_AXIS] = x_home_pos(active_extruder);
  1120. else
  1121. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1122. update_software_endstops(X_AXIS);
  1123. return;
  1124. }
  1125. #endif
  1126. #if ENABLED(SCARA)
  1127. if (axis == X_AXIS || axis == Y_AXIS) {
  1128. float homeposition[3];
  1129. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1130. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1131. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1132. /**
  1133. * Works out real Homeposition angles using inverse kinematics,
  1134. * and calculates homing offset using forward kinematics
  1135. */
  1136. calculate_delta(homeposition);
  1137. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1138. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1139. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1140. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1141. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1142. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1143. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1144. calculate_SCARA_forward_Transform(delta);
  1145. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1146. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1147. current_position[axis] = delta[axis];
  1148. /**
  1149. * SCARA home positions are based on configuration since the actual
  1150. * limits are determined by the inverse kinematic transform.
  1151. */
  1152. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1153. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1154. }
  1155. else
  1156. #endif
  1157. {
  1158. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1159. update_software_endstops(axis);
  1160. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1161. if (axis == Z_AXIS) {
  1162. current_position[Z_AXIS] -= zprobe_zoffset;
  1163. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1164. if (DEBUGGING(LEVELING)) {
  1165. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1166. SERIAL_EOL;
  1167. }
  1168. #endif
  1169. }
  1170. #endif
  1171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1172. if (DEBUGGING(LEVELING)) {
  1173. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1174. DEBUG_POS("", current_position);
  1175. }
  1176. #endif
  1177. }
  1178. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1179. if (DEBUGGING(LEVELING)) {
  1180. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1181. SERIAL_ECHOLNPGM(")");
  1182. }
  1183. #endif
  1184. }
  1185. /**
  1186. * Some planner shorthand inline functions
  1187. */
  1188. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1189. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1190. int hbd = homing_bump_divisor[axis];
  1191. if (hbd < 1) {
  1192. hbd = 10;
  1193. SERIAL_ECHO_START;
  1194. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1195. }
  1196. feedrate = homing_feedrate[axis] / hbd;
  1197. }
  1198. //
  1199. // line_to_current_position
  1200. // Move the planner to the current position from wherever it last moved
  1201. // (or from wherever it has been told it is located).
  1202. //
  1203. inline void line_to_current_position() {
  1204. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1205. }
  1206. inline void line_to_z(float zPosition) {
  1207. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1208. }
  1209. //
  1210. // line_to_destination
  1211. // Move the planner, not necessarily synced with current_position
  1212. //
  1213. inline void line_to_destination(float mm_m) {
  1214. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1215. }
  1216. inline void line_to_destination() {
  1217. line_to_destination(feedrate);
  1218. }
  1219. /**
  1220. * sync_plan_position
  1221. * Set planner / stepper positions to the cartesian current_position.
  1222. * The stepper code translates these coordinates into step units.
  1223. * Allows translation between steps and units (mm) for cartesian & core robots
  1224. */
  1225. inline void sync_plan_position() {
  1226. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1227. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1228. #endif
  1229. planner.set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1230. }
  1231. inline void sync_plan_position_e() { planner.set_e_position(current_position[E_AXIS]); }
  1232. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1233. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1234. static void setup_for_endstop_move() {
  1235. saved_feedrate = feedrate;
  1236. saved_feedrate_multiplier = feedrate_multiplier;
  1237. feedrate_multiplier = 100;
  1238. refresh_cmd_timeout();
  1239. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1240. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
  1241. #endif
  1242. endstops.enable();
  1243. }
  1244. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1245. #if ENABLED(DELTA)
  1246. /**
  1247. * Calculate delta, start a line, and set current_position to destination
  1248. */
  1249. void prepare_move_raw() {
  1250. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1251. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1252. #endif
  1253. refresh_cmd_timeout();
  1254. calculate_delta(destination);
  1255. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1256. set_current_to_destination();
  1257. }
  1258. #endif
  1259. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1260. #if DISABLED(DELTA)
  1261. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1262. //planner.bed_level_matrix.debug("bed level before");
  1263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1264. planner.bed_level_matrix.set_to_identity();
  1265. if (DEBUGGING(LEVELING)) {
  1266. vector_3 uncorrected_position = planner.adjusted_position();
  1267. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1268. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1269. }
  1270. #endif
  1271. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1272. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1273. vector_3 corrected_position = planner.adjusted_position();
  1274. current_position[X_AXIS] = corrected_position.x;
  1275. current_position[Y_AXIS] = corrected_position.y;
  1276. current_position[Z_AXIS] = corrected_position.z;
  1277. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1278. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1279. #endif
  1280. sync_plan_position();
  1281. }
  1282. #endif // !DELTA
  1283. #else // !AUTO_BED_LEVELING_GRID
  1284. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1285. planner.bed_level_matrix.set_to_identity();
  1286. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1287. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1288. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1289. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1290. if (planeNormal.z < 0) {
  1291. planeNormal.x = -planeNormal.x;
  1292. planeNormal.y = -planeNormal.y;
  1293. planeNormal.z = -planeNormal.z;
  1294. }
  1295. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1296. vector_3 corrected_position = planner.adjusted_position();
  1297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1298. if (DEBUGGING(LEVELING)) {
  1299. vector_3 uncorrected_position = corrected_position;
  1300. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1301. }
  1302. #endif
  1303. current_position[X_AXIS] = corrected_position.x;
  1304. current_position[Y_AXIS] = corrected_position.y;
  1305. current_position[Z_AXIS] = corrected_position.z;
  1306. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1307. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1308. #endif
  1309. sync_plan_position();
  1310. }
  1311. #endif // !AUTO_BED_LEVELING_GRID
  1312. static void run_z_probe() {
  1313. /**
  1314. * To prevent stepper_inactive_time from running out and
  1315. * EXTRUDER_RUNOUT_PREVENT from extruding
  1316. */
  1317. refresh_cmd_timeout();
  1318. #if ENABLED(DELTA)
  1319. float start_z = current_position[Z_AXIS];
  1320. long start_steps = stepper.position(Z_AXIS);
  1321. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1322. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1323. #endif
  1324. // move down slowly until you find the bed
  1325. feedrate = homing_feedrate[Z_AXIS] / 4;
  1326. destination[Z_AXIS] = -10;
  1327. prepare_move_raw(); // this will also set_current_to_destination
  1328. stepper.synchronize();
  1329. endstops.hit_on_purpose(); // clear endstop hit flags
  1330. /**
  1331. * We have to let the planner know where we are right now as it
  1332. * is not where we said to go.
  1333. */
  1334. long stop_steps = stepper.position(Z_AXIS);
  1335. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_unit[Z_AXIS];
  1336. current_position[Z_AXIS] = mm;
  1337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1338. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1339. #endif
  1340. sync_plan_position_delta();
  1341. #else // !DELTA
  1342. planner.bed_level_matrix.set_to_identity();
  1343. feedrate = homing_feedrate[Z_AXIS];
  1344. // Move down until the Z probe (or endstop?) is triggered
  1345. float zPosition = -(Z_MAX_LENGTH + 10);
  1346. line_to_z(zPosition);
  1347. stepper.synchronize();
  1348. // Tell the planner where we ended up - Get this from the stepper handler
  1349. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1350. planner.set_position(
  1351. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1352. current_position[E_AXIS]
  1353. );
  1354. // move up the retract distance
  1355. zPosition += home_bump_mm(Z_AXIS);
  1356. line_to_z(zPosition);
  1357. stepper.synchronize();
  1358. endstops.hit_on_purpose(); // clear endstop hit flags
  1359. // move back down slowly to find bed
  1360. set_homing_bump_feedrate(Z_AXIS);
  1361. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1362. line_to_z(zPosition);
  1363. stepper.synchronize();
  1364. endstops.hit_on_purpose(); // clear endstop hit flags
  1365. // Get the current stepper position after bumping an endstop
  1366. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1367. sync_plan_position();
  1368. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1369. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1370. #endif
  1371. #endif // !DELTA
  1372. }
  1373. /**
  1374. * Plan a move to (X, Y, Z) and set the current_position
  1375. * The final current_position may not be the one that was requested
  1376. */
  1377. static void do_blocking_move_to(float x, float y, float z) {
  1378. float oldFeedRate = feedrate;
  1379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1380. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1381. #endif
  1382. #if ENABLED(DELTA)
  1383. feedrate = XY_TRAVEL_SPEED;
  1384. destination[X_AXIS] = x;
  1385. destination[Y_AXIS] = y;
  1386. destination[Z_AXIS] = z;
  1387. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1388. prepare_move_raw(); // this will also set_current_to_destination
  1389. else
  1390. prepare_move(); // this will also set_current_to_destination
  1391. stepper.synchronize();
  1392. #else
  1393. feedrate = homing_feedrate[Z_AXIS];
  1394. current_position[Z_AXIS] = z;
  1395. line_to_current_position();
  1396. stepper.synchronize();
  1397. feedrate = xy_travel_speed;
  1398. current_position[X_AXIS] = x;
  1399. current_position[Y_AXIS] = y;
  1400. line_to_current_position();
  1401. stepper.synchronize();
  1402. #endif
  1403. feedrate = oldFeedRate;
  1404. }
  1405. inline void do_blocking_move_to_xy(float x, float y) {
  1406. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1407. }
  1408. inline void do_blocking_move_to_x(float x) {
  1409. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1410. }
  1411. inline void do_blocking_move_to_z(float z) {
  1412. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1413. }
  1414. inline void raise_z_after_probing() {
  1415. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1416. }
  1417. static void clean_up_after_endstop_move() {
  1418. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1419. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
  1420. #endif
  1421. endstops.not_homing();
  1422. feedrate = saved_feedrate;
  1423. feedrate_multiplier = saved_feedrate_multiplier;
  1424. refresh_cmd_timeout();
  1425. }
  1426. #if HAS_BED_PROBE
  1427. static void deploy_z_probe() {
  1428. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1429. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1430. #endif
  1431. if (endstops.z_probe_enabled) return;
  1432. #if HAS_SERVO_ENDSTOPS
  1433. // Engage Z Servo endstop if enabled
  1434. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1435. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1436. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1437. // If endstop is already false, the Z probe is deployed
  1438. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1439. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1440. if (z_probe_endstop)
  1441. #else
  1442. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1443. if (z_min_endstop)
  1444. #endif
  1445. {
  1446. // Move to the start position to initiate deployment
  1447. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1448. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1449. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1450. prepare_move_raw(); // this will also set_current_to_destination
  1451. // Move to engage deployment
  1452. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1453. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1454. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1455. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1456. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1457. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1458. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1459. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1460. prepare_move_raw();
  1461. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1462. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1463. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1464. // Move to trigger deployment
  1465. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1466. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1467. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1468. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1469. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1470. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1471. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1472. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1473. prepare_move_raw();
  1474. #endif
  1475. }
  1476. // Partially Home X,Y for safety
  1477. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1478. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1479. prepare_move_raw(); // this will also set_current_to_destination
  1480. stepper.synchronize();
  1481. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1482. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1483. if (z_probe_endstop)
  1484. #else
  1485. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1486. if (z_min_endstop)
  1487. #endif
  1488. {
  1489. if (IsRunning()) {
  1490. SERIAL_ERROR_START;
  1491. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1492. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1493. }
  1494. stop();
  1495. }
  1496. #endif // Z_PROBE_ALLEN_KEY
  1497. #if ENABLED(FIX_MOUNTED_PROBE)
  1498. // Noting to be done. Just set endstops.z_probe_enabled
  1499. #endif
  1500. endstops.enable_z_probe();
  1501. }
  1502. static void stow_z_probe(bool doRaise = true) {
  1503. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1504. UNUSED(doRaise);
  1505. #endif
  1506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1507. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1508. #endif
  1509. if (!endstops.z_probe_enabled) return;
  1510. #if HAS_SERVO_ENDSTOPS
  1511. // Retract Z Servo endstop if enabled
  1512. if (servo_endstop_id[Z_AXIS] >= 0) {
  1513. #if Z_RAISE_AFTER_PROBING > 0
  1514. if (doRaise) {
  1515. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1516. if (DEBUGGING(LEVELING)) {
  1517. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1518. SERIAL_EOL;
  1519. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1520. SERIAL_EOL;
  1521. }
  1522. #endif
  1523. raise_z_after_probing(); // this also updates current_position
  1524. stepper.synchronize();
  1525. }
  1526. #endif
  1527. // Change the Z servo angle
  1528. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1529. }
  1530. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1531. // Move up for safety
  1532. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1533. #if Z_RAISE_AFTER_PROBING > 0
  1534. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1535. prepare_move_raw(); // this will also set_current_to_destination
  1536. #endif
  1537. // Move to the start position to initiate retraction
  1538. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1539. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1540. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1541. prepare_move_raw();
  1542. // Move the nozzle down to push the Z probe into retracted position
  1543. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1544. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1545. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1546. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1547. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1548. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1549. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1550. prepare_move_raw();
  1551. // Move up for safety
  1552. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1553. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1554. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1555. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1556. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1557. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1558. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1559. prepare_move_raw();
  1560. // Home XY for safety
  1561. feedrate = homing_feedrate[X_AXIS] / 2;
  1562. destination[X_AXIS] = 0;
  1563. destination[Y_AXIS] = 0;
  1564. prepare_move_raw(); // this will also set_current_to_destination
  1565. stepper.synchronize();
  1566. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1567. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1568. if (!z_probe_endstop)
  1569. #else
  1570. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1571. if (!z_min_endstop)
  1572. #endif
  1573. {
  1574. if (IsRunning()) {
  1575. SERIAL_ERROR_START;
  1576. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1577. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1578. }
  1579. stop();
  1580. }
  1581. #endif // Z_PROBE_ALLEN_KEY
  1582. #if ENABLED(FIX_MOUNTED_PROBE)
  1583. // Nothing to do here. Just clear endstops.z_probe_enabled
  1584. #endif
  1585. endstops.enable_z_probe(false);
  1586. }
  1587. #endif // HAS_BED_PROBE
  1588. enum ProbeAction {
  1589. ProbeStay = 0,
  1590. ProbeDeploy = _BV(0),
  1591. ProbeStow = _BV(1),
  1592. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1593. };
  1594. // Probe bed height at position (x,y), returns the measured z value
  1595. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1596. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1597. if (DEBUGGING(LEVELING)) {
  1598. SERIAL_ECHOLNPGM("probe_pt >>>");
  1599. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1600. SERIAL_EOL;
  1601. DEBUG_POS("", current_position);
  1602. }
  1603. #endif
  1604. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1605. if (DEBUGGING(LEVELING)) {
  1606. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1607. SERIAL_EOL;
  1608. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1609. SERIAL_EOL;
  1610. }
  1611. #endif
  1612. // Move Z up to the z_before height, then move the Z probe to the given XY
  1613. do_blocking_move_to_z(z_before); // this also updates current_position
  1614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1615. if (DEBUGGING(LEVELING)) {
  1616. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1617. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1618. SERIAL_EOL;
  1619. }
  1620. #endif
  1621. // this also updates current_position
  1622. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1623. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1624. if (probe_action & ProbeDeploy) {
  1625. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1626. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1627. #endif
  1628. deploy_z_probe();
  1629. }
  1630. #endif
  1631. run_z_probe();
  1632. float measured_z = current_position[Z_AXIS];
  1633. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1634. if (probe_action & ProbeStow) {
  1635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1636. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1637. #endif
  1638. stow_z_probe();
  1639. }
  1640. #endif
  1641. if (verbose_level > 2) {
  1642. SERIAL_PROTOCOLPGM("Bed X: ");
  1643. SERIAL_PROTOCOL_F(x, 3);
  1644. SERIAL_PROTOCOLPGM(" Y: ");
  1645. SERIAL_PROTOCOL_F(y, 3);
  1646. SERIAL_PROTOCOLPGM(" Z: ");
  1647. SERIAL_PROTOCOL_F(measured_z, 3);
  1648. SERIAL_EOL;
  1649. }
  1650. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1651. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1652. #endif
  1653. return measured_z;
  1654. }
  1655. #if ENABLED(DELTA)
  1656. /**
  1657. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1658. */
  1659. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1660. if (bed_level[x][y] != 0.0) {
  1661. return; // Don't overwrite good values.
  1662. }
  1663. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1664. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1665. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1666. float median = c; // Median is robust (ignores outliers).
  1667. if (a < b) {
  1668. if (b < c) median = b;
  1669. if (c < a) median = a;
  1670. }
  1671. else { // b <= a
  1672. if (c < b) median = b;
  1673. if (a < c) median = a;
  1674. }
  1675. bed_level[x][y] = median;
  1676. }
  1677. /**
  1678. * Fill in the unprobed points (corners of circular print surface)
  1679. * using linear extrapolation, away from the center.
  1680. */
  1681. static void extrapolate_unprobed_bed_level() {
  1682. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1683. for (int y = 0; y <= half; y++) {
  1684. for (int x = 0; x <= half; x++) {
  1685. if (x + y < 3) continue;
  1686. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1687. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1688. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1689. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1690. }
  1691. }
  1692. }
  1693. /**
  1694. * Print calibration results for plotting or manual frame adjustment.
  1695. */
  1696. static void print_bed_level() {
  1697. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1698. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1699. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1700. SERIAL_PROTOCOLCHAR(' ');
  1701. }
  1702. SERIAL_EOL;
  1703. }
  1704. }
  1705. /**
  1706. * Reset calibration results to zero.
  1707. */
  1708. void reset_bed_level() {
  1709. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1710. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1711. #endif
  1712. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1713. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1714. bed_level[x][y] = 0.0;
  1715. }
  1716. }
  1717. }
  1718. #endif // DELTA
  1719. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1720. void raise_z_for_servo() {
  1721. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1722. /**
  1723. * The zprobe_zoffset is negative any switch below the nozzle, so
  1724. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1725. */
  1726. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1727. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1728. }
  1729. #endif
  1730. #endif // AUTO_BED_LEVELING_FEATURE
  1731. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1732. static void axis_unhomed_error() {
  1733. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1734. SERIAL_ECHO_START;
  1735. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1736. }
  1737. #endif
  1738. #if ENABLED(Z_PROBE_SLED)
  1739. #ifndef SLED_DOCKING_OFFSET
  1740. #define SLED_DOCKING_OFFSET 0
  1741. #endif
  1742. /**
  1743. * Method to dock/undock a sled designed by Charles Bell.
  1744. *
  1745. * dock[in] If true, move to MAX_X and engage the electromagnet
  1746. * offset[in] The additional distance to move to adjust docking location
  1747. */
  1748. static void dock_sled(bool dock, int offset = 0) {
  1749. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1750. if (DEBUGGING(LEVELING)) {
  1751. SERIAL_ECHOPAIR("dock_sled(", dock);
  1752. SERIAL_ECHOLNPGM(")");
  1753. }
  1754. #endif
  1755. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1756. axis_unhomed_error();
  1757. return;
  1758. }
  1759. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1760. float oldXpos = current_position[X_AXIS]; // save x position
  1761. if (dock) {
  1762. #if Z_RAISE_AFTER_PROBING > 0
  1763. raise_z_after_probing(); // raise Z
  1764. #endif
  1765. // Dock sled a bit closer to ensure proper capturing
  1766. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1767. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1768. }
  1769. else {
  1770. float z_loc = current_position[Z_AXIS];
  1771. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1772. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1773. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1774. }
  1775. do_blocking_move_to_x(oldXpos); // return to position before docking
  1776. endstops.enable_z_probe(!dock); // logically disable docked probe
  1777. }
  1778. #endif // Z_PROBE_SLED
  1779. /**
  1780. * Home an individual axis
  1781. */
  1782. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1783. static void homeaxis(AxisEnum axis) {
  1784. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1785. if (DEBUGGING(LEVELING)) {
  1786. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1787. SERIAL_ECHOLNPGM(")");
  1788. }
  1789. #endif
  1790. #define HOMEAXIS_DO(LETTER) \
  1791. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1792. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1793. int axis_home_dir =
  1794. #if ENABLED(DUAL_X_CARRIAGE)
  1795. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1796. #endif
  1797. home_dir(axis);
  1798. // Set the axis position as setup for the move
  1799. current_position[axis] = 0;
  1800. sync_plan_position();
  1801. #if ENABLED(Z_PROBE_SLED)
  1802. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1803. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1804. #define _Z_DEPLOY (dock_sled(false))
  1805. #define _Z_STOW (dock_sled(true))
  1806. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1807. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1808. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1809. #define _Z_DEPLOY (deploy_z_probe())
  1810. #define _Z_STOW (stow_z_probe())
  1811. #elif HAS_SERVO_ENDSTOPS
  1812. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1813. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1814. #endif
  1815. if (axis == Z_AXIS) {
  1816. // If there's a Z probe that needs deployment...
  1817. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1818. // ...and homing Z towards the bed? Deploy it.
  1819. if (axis_home_dir < 0) _Z_DEPLOY;
  1820. #endif
  1821. }
  1822. #if HAS_SERVO_ENDSTOPS
  1823. // Engage an X or Y Servo endstop if enabled
  1824. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1825. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1826. if (_Z_PROBE_SUBTEST) endstops.z_probe_enabled = true;
  1827. }
  1828. #endif
  1829. // Set a flag for Z motor locking
  1830. #if ENABLED(Z_DUAL_ENDSTOPS)
  1831. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1832. #endif
  1833. // Move towards the endstop until an endstop is triggered
  1834. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1835. feedrate = homing_feedrate[axis];
  1836. line_to_destination();
  1837. stepper.synchronize();
  1838. // Set the axis position as setup for the move
  1839. current_position[axis] = 0;
  1840. sync_plan_position();
  1841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1842. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1843. #endif
  1844. endstops.enable(false); // Disable endstops while moving away
  1845. // Move away from the endstop by the axis HOME_BUMP_MM
  1846. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1847. line_to_destination();
  1848. stepper.synchronize();
  1849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1850. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1851. #endif
  1852. endstops.enable(true); // Enable endstops for next homing move
  1853. // Slow down the feedrate for the next move
  1854. set_homing_bump_feedrate(axis);
  1855. // Move slowly towards the endstop until triggered
  1856. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1857. line_to_destination();
  1858. stepper.synchronize();
  1859. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1860. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1861. #endif
  1862. #if ENABLED(Z_DUAL_ENDSTOPS)
  1863. if (axis == Z_AXIS) {
  1864. float adj = fabs(z_endstop_adj);
  1865. bool lockZ1;
  1866. if (axis_home_dir > 0) {
  1867. adj = -adj;
  1868. lockZ1 = (z_endstop_adj > 0);
  1869. }
  1870. else
  1871. lockZ1 = (z_endstop_adj < 0);
  1872. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1873. sync_plan_position();
  1874. // Move to the adjusted endstop height
  1875. feedrate = homing_feedrate[axis];
  1876. destination[Z_AXIS] = adj;
  1877. line_to_destination();
  1878. stepper.synchronize();
  1879. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1880. stepper.set_homing_flag(false);
  1881. } // Z_AXIS
  1882. #endif
  1883. #if ENABLED(DELTA)
  1884. // retrace by the amount specified in endstop_adj
  1885. if (endstop_adj[axis] * axis_home_dir < 0) {
  1886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1887. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1888. #endif
  1889. endstops.enable(false); // Disable endstops while moving away
  1890. sync_plan_position();
  1891. destination[axis] = endstop_adj[axis];
  1892. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1893. if (DEBUGGING(LEVELING)) {
  1894. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1895. DEBUG_POS("", destination);
  1896. }
  1897. #endif
  1898. line_to_destination();
  1899. stepper.synchronize();
  1900. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1901. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1902. #endif
  1903. endstops.enable(true); // Enable endstops for next homing move
  1904. }
  1905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1906. else {
  1907. if (DEBUGGING(LEVELING)) {
  1908. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1909. SERIAL_EOL;
  1910. }
  1911. }
  1912. #endif
  1913. #endif
  1914. // Set the axis position to its home position (plus home offsets)
  1915. set_axis_is_at_home(axis);
  1916. sync_plan_position();
  1917. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1918. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1919. #endif
  1920. destination[axis] = current_position[axis];
  1921. feedrate = 0.0;
  1922. endstops.hit_on_purpose(); // clear endstop hit flags
  1923. axis_known_position[axis] = true;
  1924. axis_homed[axis] = true;
  1925. // Put away the Z probe
  1926. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1927. if (axis == Z_AXIS && axis_home_dir < 0) {
  1928. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1929. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1930. #endif
  1931. _Z_STOW;
  1932. }
  1933. #endif
  1934. // Retract Servo endstop if enabled
  1935. #if HAS_SERVO_ENDSTOPS
  1936. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1937. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1938. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1939. #endif
  1940. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1941. if (_Z_PROBE_SUBTEST) endstops.enable_z_probe(false);
  1942. }
  1943. #endif
  1944. }
  1945. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1946. if (DEBUGGING(LEVELING)) {
  1947. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1948. SERIAL_ECHOLNPGM(")");
  1949. }
  1950. #endif
  1951. }
  1952. #if ENABLED(FWRETRACT)
  1953. void retract(bool retracting, bool swapping = false) {
  1954. if (retracting == retracted[active_extruder]) return;
  1955. float oldFeedrate = feedrate;
  1956. set_destination_to_current();
  1957. if (retracting) {
  1958. feedrate = retract_feedrate * 60;
  1959. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1960. sync_plan_position_e();
  1961. prepare_move();
  1962. if (retract_zlift > 0.01) {
  1963. current_position[Z_AXIS] -= retract_zlift;
  1964. #if ENABLED(DELTA)
  1965. sync_plan_position_delta();
  1966. #else
  1967. sync_plan_position();
  1968. #endif
  1969. prepare_move();
  1970. }
  1971. }
  1972. else {
  1973. if (retract_zlift > 0.01) {
  1974. current_position[Z_AXIS] += retract_zlift;
  1975. #if ENABLED(DELTA)
  1976. sync_plan_position_delta();
  1977. #else
  1978. sync_plan_position();
  1979. #endif
  1980. }
  1981. feedrate = retract_recover_feedrate * 60;
  1982. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1983. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1984. sync_plan_position_e();
  1985. prepare_move();
  1986. }
  1987. feedrate = oldFeedrate;
  1988. retracted[active_extruder] = retracting;
  1989. } // retract()
  1990. #endif // FWRETRACT
  1991. /**
  1992. * ***************************************************************************
  1993. * ***************************** G-CODE HANDLING *****************************
  1994. * ***************************************************************************
  1995. */
  1996. /**
  1997. * Set XYZE destination and feedrate from the current GCode command
  1998. *
  1999. * - Set destination from included axis codes
  2000. * - Set to current for missing axis codes
  2001. * - Set the feedrate, if included
  2002. */
  2003. void gcode_get_destination() {
  2004. for (int i = 0; i < NUM_AXIS; i++) {
  2005. if (code_seen(axis_codes[i]))
  2006. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2007. else
  2008. destination[i] = current_position[i];
  2009. }
  2010. if (code_seen('F')) {
  2011. float next_feedrate = code_value();
  2012. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2013. }
  2014. }
  2015. void unknown_command_error() {
  2016. SERIAL_ECHO_START;
  2017. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2018. SERIAL_ECHO(current_command);
  2019. SERIAL_ECHOPGM("\"\n");
  2020. }
  2021. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2022. /**
  2023. * Output a "busy" message at regular intervals
  2024. * while the machine is not accepting commands.
  2025. */
  2026. void host_keepalive() {
  2027. millis_t ms = millis();
  2028. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2029. if (PENDING(ms, next_busy_signal_ms)) return;
  2030. switch (busy_state) {
  2031. case IN_HANDLER:
  2032. case IN_PROCESS:
  2033. SERIAL_ECHO_START;
  2034. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2035. break;
  2036. case PAUSED_FOR_USER:
  2037. SERIAL_ECHO_START;
  2038. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2039. break;
  2040. case PAUSED_FOR_INPUT:
  2041. SERIAL_ECHO_START;
  2042. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2043. break;
  2044. default:
  2045. break;
  2046. }
  2047. }
  2048. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2049. }
  2050. #endif //HOST_KEEPALIVE_FEATURE
  2051. /**
  2052. * G0, G1: Coordinated movement of X Y Z E axes
  2053. */
  2054. inline void gcode_G0_G1() {
  2055. if (IsRunning()) {
  2056. gcode_get_destination(); // For X Y Z E F
  2057. #if ENABLED(FWRETRACT)
  2058. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2059. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2060. // Is this move an attempt to retract or recover?
  2061. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2062. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2063. sync_plan_position_e(); // AND from the planner
  2064. retract(!retracted[active_extruder]);
  2065. return;
  2066. }
  2067. }
  2068. #endif //FWRETRACT
  2069. prepare_move();
  2070. }
  2071. }
  2072. /**
  2073. * G2: Clockwise Arc
  2074. * G3: Counterclockwise Arc
  2075. */
  2076. inline void gcode_G2_G3(bool clockwise) {
  2077. if (IsRunning()) {
  2078. #if ENABLED(SF_ARC_FIX)
  2079. bool relative_mode_backup = relative_mode;
  2080. relative_mode = true;
  2081. #endif
  2082. gcode_get_destination();
  2083. #if ENABLED(SF_ARC_FIX)
  2084. relative_mode = relative_mode_backup;
  2085. #endif
  2086. // Center of arc as offset from current_position
  2087. float arc_offset[2] = {
  2088. code_seen('I') ? code_value() : 0,
  2089. code_seen('J') ? code_value() : 0
  2090. };
  2091. // Send an arc to the planner
  2092. plan_arc(destination, arc_offset, clockwise);
  2093. refresh_cmd_timeout();
  2094. }
  2095. }
  2096. /**
  2097. * G4: Dwell S<seconds> or P<milliseconds>
  2098. */
  2099. inline void gcode_G4() {
  2100. millis_t codenum = 0;
  2101. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2102. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2103. stepper.synchronize();
  2104. refresh_cmd_timeout();
  2105. codenum += previous_cmd_ms; // keep track of when we started waiting
  2106. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2107. while (PENDING(millis(), codenum)) idle();
  2108. }
  2109. #if ENABLED(FWRETRACT)
  2110. /**
  2111. * G10 - Retract filament according to settings of M207
  2112. * G11 - Recover filament according to settings of M208
  2113. */
  2114. inline void gcode_G10_G11(bool doRetract=false) {
  2115. #if EXTRUDERS > 1
  2116. if (doRetract) {
  2117. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2118. }
  2119. #endif
  2120. retract(doRetract
  2121. #if EXTRUDERS > 1
  2122. , retracted_swap[active_extruder]
  2123. #endif
  2124. );
  2125. }
  2126. #endif //FWRETRACT
  2127. /**
  2128. * G28: Home all axes according to settings
  2129. *
  2130. * Parameters
  2131. *
  2132. * None Home to all axes with no parameters.
  2133. * With QUICK_HOME enabled XY will home together, then Z.
  2134. *
  2135. * Cartesian parameters
  2136. *
  2137. * X Home to the X endstop
  2138. * Y Home to the Y endstop
  2139. * Z Home to the Z endstop
  2140. *
  2141. */
  2142. inline void gcode_G28() {
  2143. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2144. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2145. #endif
  2146. // Wait for planner moves to finish!
  2147. stepper.synchronize();
  2148. // For auto bed leveling, clear the level matrix
  2149. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2150. planner.bed_level_matrix.set_to_identity();
  2151. #if ENABLED(DELTA)
  2152. reset_bed_level();
  2153. #endif
  2154. #endif
  2155. /**
  2156. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2157. * on again when homing all axis
  2158. */
  2159. #if ENABLED(MESH_BED_LEVELING)
  2160. uint8_t mbl_was_active = mbl.active;
  2161. mbl.active = false;
  2162. #endif
  2163. setup_for_endstop_move();
  2164. /**
  2165. * Directly after a reset this is all 0. Later we get a hint if we have
  2166. * to raise z or not.
  2167. */
  2168. set_destination_to_current();
  2169. feedrate = 0.0;
  2170. #if ENABLED(DELTA)
  2171. /**
  2172. * A delta can only safely home all axis at the same time
  2173. * all axis have to home at the same time
  2174. */
  2175. // Pretend the current position is 0,0,0
  2176. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2177. sync_plan_position();
  2178. // Move all carriages up together until the first endstop is hit.
  2179. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2180. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2181. line_to_destination();
  2182. stepper.synchronize();
  2183. endstops.hit_on_purpose(); // clear endstop hit flags
  2184. // Destination reached
  2185. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2186. // take care of back off and rehome now we are all at the top
  2187. HOMEAXIS(X);
  2188. HOMEAXIS(Y);
  2189. HOMEAXIS(Z);
  2190. sync_plan_position_delta();
  2191. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2192. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2193. #endif
  2194. #else // NOT DELTA
  2195. bool homeX = code_seen(axis_codes[X_AXIS]),
  2196. homeY = code_seen(axis_codes[Y_AXIS]),
  2197. homeZ = code_seen(axis_codes[Z_AXIS]);
  2198. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2199. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2200. if (home_all_axis || homeZ) {
  2201. HOMEAXIS(Z);
  2202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2203. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2204. #endif
  2205. }
  2206. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2207. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2208. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2209. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2210. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2211. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2212. if (DEBUGGING(LEVELING)) {
  2213. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2214. SERIAL_EOL;
  2215. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2216. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2217. }
  2218. #endif
  2219. line_to_destination();
  2220. stepper.synchronize();
  2221. /**
  2222. * Update the current Z position even if it currently not real from
  2223. * Z-home otherwise each call to line_to_destination() will want to
  2224. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2225. */
  2226. current_position[Z_AXIS] = destination[Z_AXIS];
  2227. }
  2228. #endif
  2229. #if ENABLED(QUICK_HOME)
  2230. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2231. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2232. #if ENABLED(DUAL_X_CARRIAGE)
  2233. int x_axis_home_dir = x_home_dir(active_extruder);
  2234. extruder_duplication_enabled = false;
  2235. #else
  2236. int x_axis_home_dir = home_dir(X_AXIS);
  2237. #endif
  2238. sync_plan_position();
  2239. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2240. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2241. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2242. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2243. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2244. line_to_destination();
  2245. stepper.synchronize();
  2246. set_axis_is_at_home(X_AXIS);
  2247. set_axis_is_at_home(Y_AXIS);
  2248. sync_plan_position();
  2249. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2250. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2251. #endif
  2252. destination[X_AXIS] = current_position[X_AXIS];
  2253. destination[Y_AXIS] = current_position[Y_AXIS];
  2254. line_to_destination();
  2255. feedrate = 0.0;
  2256. stepper.synchronize();
  2257. endstops.hit_on_purpose(); // clear endstop hit flags
  2258. current_position[X_AXIS] = destination[X_AXIS];
  2259. current_position[Y_AXIS] = destination[Y_AXIS];
  2260. #if DISABLED(SCARA)
  2261. current_position[Z_AXIS] = destination[Z_AXIS];
  2262. #endif
  2263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2264. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2265. #endif
  2266. }
  2267. #endif // QUICK_HOME
  2268. #if ENABLED(HOME_Y_BEFORE_X)
  2269. // Home Y
  2270. if (home_all_axis || homeY) HOMEAXIS(Y);
  2271. #endif
  2272. // Home X
  2273. if (home_all_axis || homeX) {
  2274. #if ENABLED(DUAL_X_CARRIAGE)
  2275. int tmp_extruder = active_extruder;
  2276. extruder_duplication_enabled = false;
  2277. active_extruder = !active_extruder;
  2278. HOMEAXIS(X);
  2279. inactive_extruder_x_pos = current_position[X_AXIS];
  2280. active_extruder = tmp_extruder;
  2281. HOMEAXIS(X);
  2282. // reset state used by the different modes
  2283. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2284. delayed_move_time = 0;
  2285. active_extruder_parked = true;
  2286. #else
  2287. HOMEAXIS(X);
  2288. #endif
  2289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2290. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2291. #endif
  2292. }
  2293. #if DISABLED(HOME_Y_BEFORE_X)
  2294. // Home Y
  2295. if (home_all_axis || homeY) {
  2296. HOMEAXIS(Y);
  2297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2298. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2299. #endif
  2300. }
  2301. #endif
  2302. // Home Z last if homing towards the bed
  2303. #if Z_HOME_DIR < 0
  2304. if (home_all_axis || homeZ) {
  2305. #if ENABLED(Z_SAFE_HOMING)
  2306. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2307. if (DEBUGGING(LEVELING)) {
  2308. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2309. }
  2310. #endif
  2311. if (home_all_axis) {
  2312. /**
  2313. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2314. * No need to move Z any more as this height should already be safe
  2315. * enough to reach Z_SAFE_HOMING XY positions.
  2316. * Just make sure the planner is in sync.
  2317. */
  2318. sync_plan_position();
  2319. /**
  2320. * Set the Z probe (or just the nozzle) destination to the safe
  2321. * homing point
  2322. */
  2323. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2324. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2325. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2326. feedrate = XY_TRAVEL_SPEED;
  2327. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2328. if (DEBUGGING(LEVELING)) {
  2329. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2330. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2331. }
  2332. #endif
  2333. // Move in the XY plane
  2334. line_to_destination();
  2335. stepper.synchronize();
  2336. /**
  2337. * Update the current positions for XY, Z is still at least at
  2338. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2339. */
  2340. current_position[X_AXIS] = destination[X_AXIS];
  2341. current_position[Y_AXIS] = destination[Y_AXIS];
  2342. // Home the Z axis
  2343. HOMEAXIS(Z);
  2344. }
  2345. else if (homeZ) { // Don't need to Home Z twice
  2346. // Let's see if X and Y are homed
  2347. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2348. /**
  2349. * Make sure the Z probe is within the physical limits
  2350. * NOTE: This doesn't necessarily ensure the Z probe is also
  2351. * within the bed!
  2352. */
  2353. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2354. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2355. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2356. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2357. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2358. // Home the Z axis
  2359. HOMEAXIS(Z);
  2360. }
  2361. else {
  2362. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2363. SERIAL_ECHO_START;
  2364. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2365. }
  2366. }
  2367. else {
  2368. axis_unhomed_error();
  2369. }
  2370. } // !home_all_axes && homeZ
  2371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2372. if (DEBUGGING(LEVELING)) {
  2373. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2374. }
  2375. #endif
  2376. #else // !Z_SAFE_HOMING
  2377. HOMEAXIS(Z);
  2378. #endif // !Z_SAFE_HOMING
  2379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2380. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2381. #endif
  2382. } // home_all_axis || homeZ
  2383. #endif // Z_HOME_DIR < 0
  2384. sync_plan_position();
  2385. #endif // else DELTA
  2386. #if ENABLED(SCARA)
  2387. sync_plan_position_delta();
  2388. #endif
  2389. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2390. endstops.enable(false);
  2391. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2392. if (DEBUGGING(LEVELING)) {
  2393. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
  2394. }
  2395. #endif
  2396. #endif
  2397. // For mesh leveling move back to Z=0
  2398. #if ENABLED(MESH_BED_LEVELING)
  2399. if (mbl_was_active && home_all_axis) {
  2400. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2401. sync_plan_position();
  2402. mbl.active = 1;
  2403. current_position[Z_AXIS] = 0.0;
  2404. set_destination_to_current();
  2405. feedrate = homing_feedrate[Z_AXIS];
  2406. line_to_destination();
  2407. stepper.synchronize();
  2408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2409. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2410. #endif
  2411. }
  2412. #endif
  2413. feedrate = saved_feedrate;
  2414. feedrate_multiplier = saved_feedrate_multiplier;
  2415. refresh_cmd_timeout();
  2416. endstops.hit_on_purpose(); // clear endstop hit flags
  2417. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2418. if (DEBUGGING(LEVELING)) {
  2419. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2420. }
  2421. #endif
  2422. report_current_position();
  2423. }
  2424. #if ENABLED(MESH_BED_LEVELING)
  2425. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2426. inline void _mbl_goto_xy(float x, float y) {
  2427. saved_feedrate = feedrate;
  2428. feedrate = homing_feedrate[X_AXIS];
  2429. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2430. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2431. + MIN_Z_HEIGHT_FOR_HOMING
  2432. #endif
  2433. ;
  2434. line_to_current_position();
  2435. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2436. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2437. line_to_current_position();
  2438. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2439. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2440. line_to_current_position();
  2441. #endif
  2442. feedrate = saved_feedrate;
  2443. stepper.synchronize();
  2444. }
  2445. /**
  2446. * G29: Mesh-based Z probe, probes a grid and produces a
  2447. * mesh to compensate for variable bed height
  2448. *
  2449. * Parameters With MESH_BED_LEVELING:
  2450. *
  2451. * S0 Produce a mesh report
  2452. * S1 Start probing mesh points
  2453. * S2 Probe the next mesh point
  2454. * S3 Xn Yn Zn.nn Manually modify a single point
  2455. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2456. *
  2457. * The S0 report the points as below
  2458. *
  2459. * +----> X-axis 1-n
  2460. * |
  2461. * |
  2462. * v Y-axis 1-n
  2463. *
  2464. */
  2465. inline void gcode_G29() {
  2466. static int probe_point = -1;
  2467. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2468. if (state < 0 || state > 4) {
  2469. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2470. return;
  2471. }
  2472. int ix, iy;
  2473. float z;
  2474. switch (state) {
  2475. case MeshReport:
  2476. if (mbl.active) {
  2477. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2478. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2479. SERIAL_PROTOCOLCHAR(',');
  2480. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2481. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2482. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2483. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2484. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2485. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2486. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2487. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2488. SERIAL_PROTOCOLPGM(" ");
  2489. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2490. }
  2491. SERIAL_EOL;
  2492. }
  2493. }
  2494. else
  2495. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2496. break;
  2497. case MeshStart:
  2498. mbl.reset();
  2499. probe_point = 0;
  2500. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2501. break;
  2502. case MeshNext:
  2503. if (probe_point < 0) {
  2504. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2505. return;
  2506. }
  2507. // For each G29 S2...
  2508. if (probe_point == 0) {
  2509. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2510. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2511. sync_plan_position();
  2512. }
  2513. else {
  2514. // For G29 S2 after adjusting Z.
  2515. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2516. }
  2517. // If there's another point to sample, move there with optional lift.
  2518. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2519. mbl.zigzag(probe_point, ix, iy);
  2520. _mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy));
  2521. probe_point++;
  2522. }
  2523. else {
  2524. // One last "return to the bed" (as originally coded) at completion
  2525. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2526. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2527. + MIN_Z_HEIGHT_FOR_HOMING
  2528. #endif
  2529. ;
  2530. line_to_current_position();
  2531. stepper.synchronize();
  2532. // After recording the last point, activate the mbl and home
  2533. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2534. probe_point = -1;
  2535. mbl.active = true;
  2536. enqueue_and_echo_commands_P(PSTR("G28"));
  2537. }
  2538. break;
  2539. case MeshSet:
  2540. if (code_seen('X')) {
  2541. ix = code_value_long() - 1;
  2542. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2543. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2544. return;
  2545. }
  2546. }
  2547. else {
  2548. SERIAL_PROTOCOLPGM("X not entered.\n");
  2549. return;
  2550. }
  2551. if (code_seen('Y')) {
  2552. iy = code_value_long() - 1;
  2553. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2554. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2555. return;
  2556. }
  2557. }
  2558. else {
  2559. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2560. return;
  2561. }
  2562. if (code_seen('Z')) {
  2563. z = code_value();
  2564. }
  2565. else {
  2566. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2567. return;
  2568. }
  2569. mbl.z_values[iy][ix] = z;
  2570. break;
  2571. case MeshSetZOffset:
  2572. if (code_seen('Z')) {
  2573. z = code_value();
  2574. }
  2575. else {
  2576. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2577. return;
  2578. }
  2579. mbl.z_offset = z;
  2580. } // switch(state)
  2581. }
  2582. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2583. void out_of_range_error(const char* p_edge) {
  2584. SERIAL_PROTOCOLPGM("?Probe ");
  2585. serialprintPGM(p_edge);
  2586. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2587. }
  2588. /**
  2589. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2590. * Will fail if the printer has not been homed with G28.
  2591. *
  2592. * Enhanced G29 Auto Bed Leveling Probe Routine
  2593. *
  2594. * Parameters With AUTO_BED_LEVELING_GRID:
  2595. *
  2596. * P Set the size of the grid that will be probed (P x P points).
  2597. * Not supported by non-linear delta printer bed leveling.
  2598. * Example: "G29 P4"
  2599. *
  2600. * S Set the XY travel speed between probe points (in mm/min)
  2601. *
  2602. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2603. * or clean the rotation Matrix. Useful to check the topology
  2604. * after a first run of G29.
  2605. *
  2606. * V Set the verbose level (0-4). Example: "G29 V3"
  2607. *
  2608. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2609. * This is useful for manual bed leveling and finding flaws in the bed (to
  2610. * assist with part placement).
  2611. * Not supported by non-linear delta printer bed leveling.
  2612. *
  2613. * F Set the Front limit of the probing grid
  2614. * B Set the Back limit of the probing grid
  2615. * L Set the Left limit of the probing grid
  2616. * R Set the Right limit of the probing grid
  2617. *
  2618. * Global Parameters:
  2619. *
  2620. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2621. * Include "E" to engage/disengage the Z probe for each sample.
  2622. * There's no extra effect if you have a fixed Z probe.
  2623. * Usage: "G29 E" or "G29 e"
  2624. *
  2625. */
  2626. inline void gcode_G29() {
  2627. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2628. if (DEBUGGING(LEVELING)) {
  2629. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2630. DEBUG_POS("", current_position);
  2631. }
  2632. #endif
  2633. // Don't allow auto-leveling without homing first
  2634. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2635. axis_unhomed_error();
  2636. return;
  2637. }
  2638. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2639. if (verbose_level < 0 || verbose_level > 4) {
  2640. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2641. return;
  2642. }
  2643. bool dryrun = code_seen('D'),
  2644. deploy_probe_for_each_reading = code_seen('E');
  2645. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2646. #if DISABLED(DELTA)
  2647. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2648. #endif
  2649. if (verbose_level > 0) {
  2650. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2651. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2652. }
  2653. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2654. #if DISABLED(DELTA)
  2655. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2656. if (auto_bed_leveling_grid_points < 2) {
  2657. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2658. return;
  2659. }
  2660. #endif
  2661. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2662. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2663. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2664. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2665. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2666. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2667. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2668. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2669. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2670. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2671. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2672. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2673. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2674. if (left_out || right_out || front_out || back_out) {
  2675. if (left_out) {
  2676. out_of_range_error(PSTR("(L)eft"));
  2677. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2678. }
  2679. if (right_out) {
  2680. out_of_range_error(PSTR("(R)ight"));
  2681. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2682. }
  2683. if (front_out) {
  2684. out_of_range_error(PSTR("(F)ront"));
  2685. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2686. }
  2687. if (back_out) {
  2688. out_of_range_error(PSTR("(B)ack"));
  2689. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2690. }
  2691. return;
  2692. }
  2693. #endif // AUTO_BED_LEVELING_GRID
  2694. if (!dryrun) {
  2695. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2696. if (DEBUGGING(LEVELING)) {
  2697. vector_3 corrected_position = planner.adjusted_position();
  2698. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2699. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2700. }
  2701. #endif
  2702. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2703. planner.bed_level_matrix.set_to_identity();
  2704. #if ENABLED(DELTA)
  2705. reset_bed_level();
  2706. #else //!DELTA
  2707. //vector_3 corrected_position = planner.adjusted_position();
  2708. //corrected_position.debug("position before G29");
  2709. vector_3 uncorrected_position = planner.adjusted_position();
  2710. //uncorrected_position.debug("position during G29");
  2711. current_position[X_AXIS] = uncorrected_position.x;
  2712. current_position[Y_AXIS] = uncorrected_position.y;
  2713. current_position[Z_AXIS] = uncorrected_position.z;
  2714. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2715. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2716. #endif
  2717. sync_plan_position();
  2718. #endif // !DELTA
  2719. }
  2720. #if ENABLED(Z_PROBE_SLED)
  2721. dock_sled(false); // engage (un-dock) the Z probe
  2722. #elif ENABLED(MECHANICAL_PROBE) || (ENABLED(DELTA) && SERVO_LEVELING)
  2723. deploy_z_probe();
  2724. #endif
  2725. stepper.synchronize();
  2726. setup_for_endstop_move();
  2727. feedrate = homing_feedrate[Z_AXIS];
  2728. bed_leveling_in_progress = true;
  2729. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2730. // probe at the points of a lattice grid
  2731. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2732. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2733. #if ENABLED(DELTA)
  2734. delta_grid_spacing[0] = xGridSpacing;
  2735. delta_grid_spacing[1] = yGridSpacing;
  2736. float zoffset = zprobe_zoffset;
  2737. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2738. #else // !DELTA
  2739. /**
  2740. * solve the plane equation ax + by + d = z
  2741. * A is the matrix with rows [x y 1] for all the probed points
  2742. * B is the vector of the Z positions
  2743. * the normal vector to the plane is formed by the coefficients of the
  2744. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2745. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2746. */
  2747. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2748. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2749. eqnBVector[abl2], // "B" vector of Z points
  2750. mean = 0.0;
  2751. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2752. #endif // !DELTA
  2753. int probePointCounter = 0;
  2754. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2755. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2756. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2757. int xStart, xStop, xInc;
  2758. if (zig) {
  2759. xStart = 0;
  2760. xStop = auto_bed_leveling_grid_points;
  2761. xInc = 1;
  2762. }
  2763. else {
  2764. xStart = auto_bed_leveling_grid_points - 1;
  2765. xStop = -1;
  2766. xInc = -1;
  2767. }
  2768. zig = !zig;
  2769. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2770. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2771. // raise extruder
  2772. float measured_z,
  2773. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2774. if (probePointCounter) {
  2775. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2776. if (DEBUGGING(LEVELING)) {
  2777. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2778. SERIAL_EOL;
  2779. }
  2780. #endif
  2781. }
  2782. else {
  2783. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2784. if (DEBUGGING(LEVELING)) {
  2785. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2786. SERIAL_EOL;
  2787. }
  2788. #endif
  2789. }
  2790. #if ENABLED(DELTA)
  2791. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2792. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2793. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2794. #endif //DELTA
  2795. ProbeAction act;
  2796. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2797. act = ProbeDeployAndStow;
  2798. else if (yCount == 0 && xCount == xStart)
  2799. act = ProbeDeploy;
  2800. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2801. act = ProbeStow;
  2802. else
  2803. act = ProbeStay;
  2804. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2805. #if DISABLED(DELTA)
  2806. mean += measured_z;
  2807. eqnBVector[probePointCounter] = measured_z;
  2808. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2809. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2810. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2811. indexIntoAB[xCount][yCount] = probePointCounter;
  2812. #else
  2813. bed_level[xCount][yCount] = measured_z + zoffset;
  2814. #endif
  2815. probePointCounter++;
  2816. idle();
  2817. } //xProbe
  2818. } //yProbe
  2819. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2820. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2821. #endif
  2822. clean_up_after_endstop_move();
  2823. #if ENABLED(DELTA)
  2824. if (!dryrun) extrapolate_unprobed_bed_level();
  2825. print_bed_level();
  2826. #else // !DELTA
  2827. // solve lsq problem
  2828. double plane_equation_coefficients[3];
  2829. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2830. mean /= abl2;
  2831. if (verbose_level) {
  2832. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2833. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2834. SERIAL_PROTOCOLPGM(" b: ");
  2835. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2836. SERIAL_PROTOCOLPGM(" d: ");
  2837. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2838. SERIAL_EOL;
  2839. if (verbose_level > 2) {
  2840. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2841. SERIAL_PROTOCOL_F(mean, 8);
  2842. SERIAL_EOL;
  2843. }
  2844. }
  2845. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2846. // Show the Topography map if enabled
  2847. if (do_topography_map) {
  2848. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2849. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2850. SERIAL_PROTOCOLPGM(" | |\n");
  2851. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2852. SERIAL_PROTOCOLPGM(" E | | I\n");
  2853. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2854. SERIAL_PROTOCOLPGM(" T | | H\n");
  2855. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2856. SERIAL_PROTOCOLPGM(" | |\n");
  2857. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2858. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2859. float min_diff = 999;
  2860. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2861. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2862. int ind = indexIntoAB[xx][yy];
  2863. float diff = eqnBVector[ind] - mean;
  2864. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2865. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2866. z_tmp = 0;
  2867. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2868. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2869. if (diff >= 0.0)
  2870. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2871. else
  2872. SERIAL_PROTOCOLCHAR(' ');
  2873. SERIAL_PROTOCOL_F(diff, 5);
  2874. } // xx
  2875. SERIAL_EOL;
  2876. } // yy
  2877. SERIAL_EOL;
  2878. if (verbose_level > 3) {
  2879. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2880. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2881. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2882. int ind = indexIntoAB[xx][yy];
  2883. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2884. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2885. z_tmp = 0;
  2886. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2887. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2888. if (diff >= 0.0)
  2889. SERIAL_PROTOCOLPGM(" +");
  2890. // Include + for column alignment
  2891. else
  2892. SERIAL_PROTOCOLCHAR(' ');
  2893. SERIAL_PROTOCOL_F(diff, 5);
  2894. } // xx
  2895. SERIAL_EOL;
  2896. } // yy
  2897. SERIAL_EOL;
  2898. }
  2899. } //do_topography_map
  2900. #endif //!DELTA
  2901. #else // !AUTO_BED_LEVELING_GRID
  2902. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2903. if (DEBUGGING(LEVELING)) {
  2904. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2905. }
  2906. #endif
  2907. // Actions for each probe
  2908. ProbeAction p1, p2, p3;
  2909. if (deploy_probe_for_each_reading)
  2910. p1 = p2 = p3 = ProbeDeployAndStow;
  2911. else
  2912. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2913. // Probe at 3 arbitrary points
  2914. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2915. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2916. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2917. p1, verbose_level),
  2918. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2919. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2920. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2921. p2, verbose_level),
  2922. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2923. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2924. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2925. p3, verbose_level);
  2926. clean_up_after_endstop_move();
  2927. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2928. #endif // !AUTO_BED_LEVELING_GRID
  2929. #if ENABLED(DELTA)
  2930. // Allen Key Probe for Delta
  2931. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2932. stow_z_probe();
  2933. #elif Z_RAISE_AFTER_PROBING > 0
  2934. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  2935. #endif
  2936. #else // !DELTA
  2937. if (verbose_level > 0)
  2938. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2939. if (!dryrun) {
  2940. /**
  2941. * Correct the Z height difference from Z probe position and nozzle tip position.
  2942. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2943. * from the nozzle. When the bed is uneven, this height must be corrected.
  2944. */
  2945. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2946. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2947. z_tmp = current_position[Z_AXIS],
  2948. real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  2949. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2950. if (DEBUGGING(LEVELING)) {
  2951. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2952. SERIAL_EOL;
  2953. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2954. SERIAL_EOL;
  2955. }
  2956. #endif
  2957. // Apply the correction sending the Z probe offset
  2958. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2959. /*
  2960. * Get the current Z position and send it to the planner.
  2961. *
  2962. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2963. * (most recent planner.set_position/sync_plan_position)
  2964. *
  2965. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2966. * (set by default, M851, EEPROM, or Menu)
  2967. *
  2968. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2969. * after the last probe
  2970. *
  2971. * >> Should home_offset[Z_AXIS] be included?
  2972. *
  2973. *
  2974. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2975. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2976. * not actually "homing" Z... then perhaps it should not be included
  2977. * here. The purpose of home_offset[] is to adjust for inaccurate
  2978. * endstops, not for reasonably accurate probes. If it were added
  2979. * here, it could be seen as a compensating factor for the Z probe.
  2980. */
  2981. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2982. if (DEBUGGING(LEVELING)) {
  2983. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2984. SERIAL_EOL;
  2985. }
  2986. #endif
  2987. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2988. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2989. + Z_RAISE_AFTER_PROBING
  2990. #endif
  2991. ;
  2992. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2993. sync_plan_position();
  2994. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2995. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2996. #endif
  2997. }
  2998. // Sled assembly for Cartesian bots
  2999. #if ENABLED(Z_PROBE_SLED)
  3000. dock_sled(true); // dock the sled
  3001. #elif Z_RAISE_AFTER_PROBING > 0
  3002. // Raise Z axis for non-delta and non servo based probes
  3003. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  3004. raise_z_after_probing();
  3005. #endif
  3006. #endif
  3007. #endif // !DELTA
  3008. #ifdef Z_PROBE_END_SCRIPT
  3009. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3010. if (DEBUGGING(LEVELING)) {
  3011. SERIAL_ECHO("Z Probe End Script: ");
  3012. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3013. }
  3014. #endif
  3015. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3016. #if HAS_BED_PROBE
  3017. endstops.enable_z_probe(false);
  3018. #endif
  3019. stepper.synchronize();
  3020. #endif
  3021. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3022. if (DEBUGGING(LEVELING)) {
  3023. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3024. }
  3025. #endif
  3026. bed_leveling_in_progress = false;
  3027. report_current_position();
  3028. KEEPALIVE_STATE(IN_HANDLER);
  3029. }
  3030. #if DISABLED(Z_PROBE_SLED) // could be avoided
  3031. /**
  3032. * G30: Do a single Z probe at the current XY
  3033. */
  3034. inline void gcode_G30() {
  3035. #if HAS_SERVO_ENDSTOPS
  3036. raise_z_for_servo();
  3037. #endif
  3038. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3039. stepper.synchronize();
  3040. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3041. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3042. feedrate = homing_feedrate[Z_AXIS];
  3043. run_z_probe();
  3044. SERIAL_PROTOCOLPGM("Bed X: ");
  3045. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3046. SERIAL_PROTOCOLPGM(" Y: ");
  3047. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3048. SERIAL_PROTOCOLPGM(" Z: ");
  3049. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3050. SERIAL_EOL;
  3051. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3052. #if HAS_SERVO_ENDSTOPS
  3053. raise_z_for_servo();
  3054. #endif
  3055. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3056. report_current_position();
  3057. }
  3058. #endif //!Z_PROBE_SLED
  3059. #endif //AUTO_BED_LEVELING_FEATURE
  3060. /**
  3061. * G92: Set current position to given X Y Z E
  3062. */
  3063. inline void gcode_G92() {
  3064. bool didE = code_seen(axis_codes[E_AXIS]);
  3065. if (!didE) stepper.synchronize();
  3066. bool didXYZ = false;
  3067. for (int i = 0; i < NUM_AXIS; i++) {
  3068. if (code_seen(axis_codes[i])) {
  3069. float p = current_position[i],
  3070. v = code_value();
  3071. current_position[i] = v;
  3072. if (i != E_AXIS) {
  3073. position_shift[i] += v - p; // Offset the coordinate space
  3074. update_software_endstops((AxisEnum)i);
  3075. didXYZ = true;
  3076. }
  3077. }
  3078. }
  3079. if (didXYZ) {
  3080. #if ENABLED(DELTA) || ENABLED(SCARA)
  3081. sync_plan_position_delta();
  3082. #else
  3083. sync_plan_position();
  3084. #endif
  3085. }
  3086. else if (didE) {
  3087. sync_plan_position_e();
  3088. }
  3089. }
  3090. #if ENABLED(ULTIPANEL)
  3091. /**
  3092. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3093. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3094. */
  3095. inline void gcode_M0_M1() {
  3096. char* args = current_command_args;
  3097. uint8_t test_value = 12;
  3098. SERIAL_ECHOPAIR("TEST", test_value);
  3099. millis_t codenum = 0;
  3100. bool hasP = false, hasS = false;
  3101. if (code_seen('P')) {
  3102. codenum = code_value_short(); // milliseconds to wait
  3103. hasP = codenum > 0;
  3104. }
  3105. if (code_seen('S')) {
  3106. codenum = code_value() * 1000UL; // seconds to wait
  3107. hasS = codenum > 0;
  3108. }
  3109. if (!hasP && !hasS && *args != '\0')
  3110. lcd_setstatus(args, true);
  3111. else {
  3112. LCD_MESSAGEPGM(MSG_USERWAIT);
  3113. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3114. dontExpireStatus();
  3115. #endif
  3116. }
  3117. lcd_ignore_click();
  3118. stepper.synchronize();
  3119. refresh_cmd_timeout();
  3120. if (codenum > 0) {
  3121. codenum += previous_cmd_ms; // wait until this time for a click
  3122. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3123. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3124. KEEPALIVE_STATE(IN_HANDLER);
  3125. lcd_ignore_click(false);
  3126. }
  3127. else {
  3128. if (!lcd_detected()) return;
  3129. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3130. while (!lcd_clicked()) idle();
  3131. KEEPALIVE_STATE(IN_HANDLER);
  3132. }
  3133. if (IS_SD_PRINTING)
  3134. LCD_MESSAGEPGM(MSG_RESUMING);
  3135. else
  3136. LCD_MESSAGEPGM(WELCOME_MSG);
  3137. }
  3138. #endif // ULTIPANEL
  3139. /**
  3140. * M17: Enable power on all stepper motors
  3141. */
  3142. inline void gcode_M17() {
  3143. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3144. enable_all_steppers();
  3145. }
  3146. #if ENABLED(SDSUPPORT)
  3147. /**
  3148. * M20: List SD card to serial output
  3149. */
  3150. inline void gcode_M20() {
  3151. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3152. card.ls();
  3153. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3154. }
  3155. /**
  3156. * M21: Init SD Card
  3157. */
  3158. inline void gcode_M21() {
  3159. card.initsd();
  3160. }
  3161. /**
  3162. * M22: Release SD Card
  3163. */
  3164. inline void gcode_M22() {
  3165. card.release();
  3166. }
  3167. /**
  3168. * M23: Open a file
  3169. */
  3170. inline void gcode_M23() {
  3171. card.openFile(current_command_args, true);
  3172. }
  3173. /**
  3174. * M24: Start SD Print
  3175. */
  3176. inline void gcode_M24() {
  3177. card.startFileprint();
  3178. print_job_timer.start();
  3179. }
  3180. /**
  3181. * M25: Pause SD Print
  3182. */
  3183. inline void gcode_M25() {
  3184. card.pauseSDPrint();
  3185. }
  3186. /**
  3187. * M26: Set SD Card file index
  3188. */
  3189. inline void gcode_M26() {
  3190. if (card.cardOK && code_seen('S'))
  3191. card.setIndex(code_value_short());
  3192. }
  3193. /**
  3194. * M27: Get SD Card status
  3195. */
  3196. inline void gcode_M27() {
  3197. card.getStatus();
  3198. }
  3199. /**
  3200. * M28: Start SD Write
  3201. */
  3202. inline void gcode_M28() {
  3203. card.openFile(current_command_args, false);
  3204. }
  3205. /**
  3206. * M29: Stop SD Write
  3207. * Processed in write to file routine above
  3208. */
  3209. inline void gcode_M29() {
  3210. // card.saving = false;
  3211. }
  3212. /**
  3213. * M30 <filename>: Delete SD Card file
  3214. */
  3215. inline void gcode_M30() {
  3216. if (card.cardOK) {
  3217. card.closefile();
  3218. card.removeFile(current_command_args);
  3219. }
  3220. }
  3221. #endif //SDSUPPORT
  3222. /**
  3223. * M31: Get the time since the start of SD Print (or last M109)
  3224. */
  3225. inline void gcode_M31() {
  3226. millis_t t = print_job_timer.duration();
  3227. int min = t / 60, sec = t % 60;
  3228. char time[30];
  3229. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3230. SERIAL_ECHO_START;
  3231. SERIAL_ECHOLN(time);
  3232. lcd_setstatus(time);
  3233. thermalManager.autotempShutdown();
  3234. }
  3235. #if ENABLED(SDSUPPORT)
  3236. /**
  3237. * M32: Select file and start SD Print
  3238. */
  3239. inline void gcode_M32() {
  3240. if (card.sdprinting)
  3241. stepper.synchronize();
  3242. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3243. if (!namestartpos)
  3244. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3245. else
  3246. namestartpos++; //to skip the '!'
  3247. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3248. if (card.cardOK) {
  3249. card.openFile(namestartpos, true, call_procedure);
  3250. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3251. card.setIndex(code_value_short());
  3252. card.startFileprint();
  3253. // Procedure calls count as normal print time.
  3254. if (!call_procedure) print_job_timer.start();
  3255. }
  3256. }
  3257. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3258. /**
  3259. * M33: Get the long full path of a file or folder
  3260. *
  3261. * Parameters:
  3262. * <dospath> Case-insensitive DOS-style path to a file or folder
  3263. *
  3264. * Example:
  3265. * M33 miscel~1/armchair/armcha~1.gco
  3266. *
  3267. * Output:
  3268. * /Miscellaneous/Armchair/Armchair.gcode
  3269. */
  3270. inline void gcode_M33() {
  3271. card.printLongPath(current_command_args);
  3272. }
  3273. #endif
  3274. /**
  3275. * M928: Start SD Write
  3276. */
  3277. inline void gcode_M928() {
  3278. card.openLogFile(current_command_args);
  3279. }
  3280. #endif // SDSUPPORT
  3281. /**
  3282. * M42: Change pin status via GCode
  3283. *
  3284. * P<pin> Pin number (LED if omitted)
  3285. * S<byte> Pin status from 0 - 255
  3286. */
  3287. inline void gcode_M42() {
  3288. if (code_seen('S')) {
  3289. int pin_status = code_value_short();
  3290. if (pin_status < 0 || pin_status > 255) return;
  3291. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3292. if (pin_number < 0) return;
  3293. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3294. if (pin_number == sensitive_pins[i]) return;
  3295. pinMode(pin_number, OUTPUT);
  3296. digitalWrite(pin_number, pin_status);
  3297. analogWrite(pin_number, pin_status);
  3298. #if FAN_COUNT > 0
  3299. switch (pin_number) {
  3300. #if HAS_FAN0
  3301. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3302. #endif
  3303. #if HAS_FAN1
  3304. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3305. #endif
  3306. #if HAS_FAN2
  3307. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3308. #endif
  3309. }
  3310. #endif
  3311. } // code_seen('S')
  3312. }
  3313. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3314. /**
  3315. * This is redundant since the SanityCheck.h already checks for a valid
  3316. * Z_MIN_PROBE_PIN, but here for clarity.
  3317. */
  3318. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3319. #if !HAS_Z_MIN_PROBE_PIN
  3320. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3321. #endif
  3322. #elif !HAS_Z_MIN
  3323. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3324. #endif
  3325. /**
  3326. * M48: Z probe repeatability measurement function.
  3327. *
  3328. * Usage:
  3329. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3330. * P = Number of sampled points (4-50, default 10)
  3331. * X = Sample X position
  3332. * Y = Sample Y position
  3333. * V = Verbose level (0-4, default=1)
  3334. * E = Engage Z probe for each reading
  3335. * L = Number of legs of movement before probe
  3336. * S = Schizoid (Or Star if you prefer)
  3337. *
  3338. * This function assumes the bed has been homed. Specifically, that a G28 command
  3339. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3340. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3341. * regenerated.
  3342. */
  3343. inline void gcode_M48() {
  3344. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3345. axis_unhomed_error();
  3346. return;
  3347. }
  3348. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3349. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3350. if (code_seen('V')) {
  3351. verbose_level = code_value_short();
  3352. if (verbose_level < 0 || verbose_level > 4) {
  3353. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3354. return;
  3355. }
  3356. }
  3357. if (verbose_level > 0)
  3358. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3359. if (code_seen('P')) {
  3360. n_samples = code_value_short();
  3361. if (n_samples < 4 || n_samples > 50) {
  3362. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3363. return;
  3364. }
  3365. }
  3366. float X_current = current_position[X_AXIS],
  3367. Y_current = current_position[Y_AXIS],
  3368. Z_current = current_position[Z_AXIS],
  3369. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3370. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3371. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3372. bool deploy_probe_for_each_reading = code_seen('E');
  3373. if (code_seen('X')) {
  3374. X_probe_location = code_value();
  3375. #if DISABLED(DELTA)
  3376. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3377. out_of_range_error(PSTR("X"));
  3378. return;
  3379. }
  3380. #endif
  3381. }
  3382. if (code_seen('Y')) {
  3383. Y_probe_location = code_value();
  3384. #if DISABLED(DELTA)
  3385. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3386. out_of_range_error(PSTR("Y"));
  3387. return;
  3388. }
  3389. #endif
  3390. }
  3391. #if ENABLED(DELTA)
  3392. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3393. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3394. return;
  3395. }
  3396. #endif
  3397. bool seen_L = code_seen('L');
  3398. if (seen_L) {
  3399. n_legs = code_value_short();
  3400. if (n_legs < 0 || n_legs > 15) {
  3401. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3402. return;
  3403. }
  3404. if (n_legs == 1) n_legs = 2;
  3405. }
  3406. if (code_seen('S')) {
  3407. schizoid_flag++;
  3408. if (!seen_L) n_legs = 7;
  3409. }
  3410. /**
  3411. * Now get everything to the specified probe point So we can safely do a
  3412. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3413. * we don't want to use that as a starting point for each probe.
  3414. */
  3415. if (verbose_level > 2)
  3416. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3417. #if ENABLED(DELTA)
  3418. // we don't do bed level correction in M48 because we want the raw data when we probe
  3419. reset_bed_level();
  3420. #else
  3421. // we don't do bed level correction in M48 because we want the raw data when we probe
  3422. planner.bed_level_matrix.set_to_identity();
  3423. #endif
  3424. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3425. do_blocking_move_to_z(Z_start_location);
  3426. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3427. /**
  3428. * OK, do the initial probe to get us close to the bed.
  3429. * Then retrace the right amount and use that in subsequent probes
  3430. */
  3431. setup_for_endstop_move();
  3432. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3433. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3434. verbose_level);
  3435. raise_z_after_probing();
  3436. for (uint8_t n = 0; n < n_samples; n++) {
  3437. randomSeed(millis());
  3438. delay(500);
  3439. if (n_legs) {
  3440. float radius, angle = random(0.0, 360.0);
  3441. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3442. radius = random(
  3443. #if ENABLED(DELTA)
  3444. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3445. #else
  3446. 5, X_MAX_LENGTH / 8
  3447. #endif
  3448. );
  3449. if (verbose_level > 3) {
  3450. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3451. SERIAL_ECHOPAIR(" angle: ", angle);
  3452. delay(100);
  3453. if (dir > 0)
  3454. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3455. else
  3456. SERIAL_ECHO(" Direction: Clockwise \n");
  3457. delay(100);
  3458. }
  3459. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3460. double delta_angle;
  3461. if (schizoid_flag)
  3462. // The points of a 5 point star are 72 degrees apart. We need to
  3463. // skip a point and go to the next one on the star.
  3464. delta_angle = dir * 2.0 * 72.0;
  3465. else
  3466. // If we do this line, we are just trying to move further
  3467. // around the circle.
  3468. delta_angle = dir * (float) random(25, 45);
  3469. angle += delta_angle;
  3470. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3471. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3472. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3473. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3474. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3475. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3476. #if DISABLED(DELTA)
  3477. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3478. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3479. #else
  3480. // If we have gone out too far, we can do a simple fix and scale the numbers
  3481. // back in closer to the origin.
  3482. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3483. X_current /= 1.25;
  3484. Y_current /= 1.25;
  3485. if (verbose_level > 3) {
  3486. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3487. SERIAL_ECHOPAIR(", ", Y_current);
  3488. SERIAL_EOL;
  3489. delay(50);
  3490. }
  3491. }
  3492. #endif
  3493. if (verbose_level > 3) {
  3494. SERIAL_PROTOCOL("Going to:");
  3495. SERIAL_ECHOPAIR("x: ", X_current);
  3496. SERIAL_ECHOPAIR("y: ", Y_current);
  3497. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3498. SERIAL_EOL;
  3499. delay(55);
  3500. }
  3501. do_blocking_move_to_xy(X_current, Y_current);
  3502. } // n_legs loop
  3503. } // n_legs
  3504. /**
  3505. * We don't really have to do this move, but if we don't we can see a
  3506. * funny shift in the Z Height because the user might not have the
  3507. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3508. * height. This gets us back to the probe location at the same height that
  3509. * we have been running around the circle at.
  3510. */
  3511. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3512. if (deploy_probe_for_each_reading)
  3513. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3514. else {
  3515. if (n == n_samples - 1)
  3516. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3517. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3518. }
  3519. /**
  3520. * Get the current mean for the data points we have so far
  3521. */
  3522. sum = 0.0;
  3523. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3524. mean = sum / (n + 1);
  3525. /**
  3526. * Now, use that mean to calculate the standard deviation for the
  3527. * data points we have so far
  3528. */
  3529. sum = 0.0;
  3530. for (uint8_t j = 0; j <= n; j++) {
  3531. float ss = sample_set[j] - mean;
  3532. sum += ss * ss;
  3533. }
  3534. sigma = sqrt(sum / (n + 1));
  3535. if (verbose_level > 1) {
  3536. SERIAL_PROTOCOL(n + 1);
  3537. SERIAL_PROTOCOLPGM(" of ");
  3538. SERIAL_PROTOCOL((int)n_samples);
  3539. SERIAL_PROTOCOLPGM(" z: ");
  3540. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3541. delay(50);
  3542. if (verbose_level > 2) {
  3543. SERIAL_PROTOCOLPGM(" mean: ");
  3544. SERIAL_PROTOCOL_F(mean, 6);
  3545. SERIAL_PROTOCOLPGM(" sigma: ");
  3546. SERIAL_PROTOCOL_F(sigma, 6);
  3547. }
  3548. }
  3549. if (verbose_level > 0) SERIAL_EOL;
  3550. delay(50);
  3551. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3552. } // End of probe loop code
  3553. // raise_z_after_probing();
  3554. if (verbose_level > 0) {
  3555. SERIAL_PROTOCOLPGM("Mean: ");
  3556. SERIAL_PROTOCOL_F(mean, 6);
  3557. SERIAL_EOL;
  3558. delay(25);
  3559. }
  3560. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3561. SERIAL_PROTOCOL_F(sigma, 6);
  3562. SERIAL_EOL; SERIAL_EOL;
  3563. delay(25);
  3564. clean_up_after_endstop_move();
  3565. report_current_position();
  3566. }
  3567. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3568. /**
  3569. * M75: Start print timer
  3570. */
  3571. inline void gcode_M75() {
  3572. print_job_timer.start();
  3573. }
  3574. /**
  3575. * M76: Pause print timer
  3576. */
  3577. inline void gcode_M76() {
  3578. print_job_timer.pause();
  3579. }
  3580. /**
  3581. * M77: Stop print timer
  3582. */
  3583. inline void gcode_M77() {
  3584. print_job_timer.stop();
  3585. }
  3586. #if ENABLED(PRINTCOUNTER)
  3587. /*+
  3588. * M78: Show print statistics
  3589. */
  3590. inline void gcode_M78() {
  3591. print_job_timer.showStats();
  3592. }
  3593. #endif
  3594. /**
  3595. * M104: Set hot end temperature
  3596. */
  3597. inline void gcode_M104() {
  3598. if (get_target_extruder_from_command(104)) return;
  3599. if (DEBUGGING(DRYRUN)) return;
  3600. if (code_seen('S')) {
  3601. float temp = code_value();
  3602. thermalManager.setTargetHotend(temp, target_extruder);
  3603. #if ENABLED(DUAL_X_CARRIAGE)
  3604. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3605. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3606. #endif
  3607. /**
  3608. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3609. * stand by mode, for instance in a dual extruder setup, without affecting
  3610. * the running print timer.
  3611. */
  3612. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3613. print_job_timer.stop();
  3614. LCD_MESSAGEPGM(WELCOME_MSG);
  3615. }
  3616. /**
  3617. * We do not check if the timer is already running because this check will
  3618. * be done for us inside the Stopwatch::start() method thus a running timer
  3619. * will not restart.
  3620. */
  3621. else print_job_timer.start();
  3622. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3623. }
  3624. }
  3625. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3626. void print_heaterstates() {
  3627. #if HAS_TEMP_HOTEND
  3628. SERIAL_PROTOCOLPGM(" T:");
  3629. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3630. SERIAL_PROTOCOLPGM(" /");
  3631. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3632. #endif
  3633. #if HAS_TEMP_BED
  3634. SERIAL_PROTOCOLPGM(" B:");
  3635. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3636. SERIAL_PROTOCOLPGM(" /");
  3637. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3638. #endif
  3639. #if EXTRUDERS > 1
  3640. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3641. SERIAL_PROTOCOLPGM(" T");
  3642. SERIAL_PROTOCOL(e);
  3643. SERIAL_PROTOCOLCHAR(':');
  3644. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3645. SERIAL_PROTOCOLPGM(" /");
  3646. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3647. }
  3648. #endif
  3649. #if HAS_TEMP_BED
  3650. SERIAL_PROTOCOLPGM(" B@:");
  3651. #ifdef BED_WATTS
  3652. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3653. SERIAL_PROTOCOLCHAR('W');
  3654. #else
  3655. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3656. #endif
  3657. #endif
  3658. SERIAL_PROTOCOLPGM(" @:");
  3659. #ifdef EXTRUDER_WATTS
  3660. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3661. SERIAL_PROTOCOLCHAR('W');
  3662. #else
  3663. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3664. #endif
  3665. #if EXTRUDERS > 1
  3666. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3667. SERIAL_PROTOCOLPGM(" @");
  3668. SERIAL_PROTOCOL(e);
  3669. SERIAL_PROTOCOLCHAR(':');
  3670. #ifdef EXTRUDER_WATTS
  3671. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3672. SERIAL_PROTOCOLCHAR('W');
  3673. #else
  3674. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3675. #endif
  3676. }
  3677. #endif
  3678. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3679. #if HAS_TEMP_BED
  3680. SERIAL_PROTOCOLPGM(" ADC B:");
  3681. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3682. SERIAL_PROTOCOLPGM("C->");
  3683. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3684. #endif
  3685. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3686. SERIAL_PROTOCOLPGM(" T");
  3687. SERIAL_PROTOCOL(cur_extruder);
  3688. SERIAL_PROTOCOLCHAR(':');
  3689. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_extruder), 1);
  3690. SERIAL_PROTOCOLPGM("C->");
  3691. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3692. }
  3693. #endif
  3694. }
  3695. #endif
  3696. /**
  3697. * M105: Read hot end and bed temperature
  3698. */
  3699. inline void gcode_M105() {
  3700. if (get_target_extruder_from_command(105)) return;
  3701. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3702. SERIAL_PROTOCOLPGM(MSG_OK);
  3703. print_heaterstates();
  3704. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3705. SERIAL_ERROR_START;
  3706. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3707. #endif
  3708. SERIAL_EOL;
  3709. }
  3710. #if FAN_COUNT > 0
  3711. /**
  3712. * M106: Set Fan Speed
  3713. *
  3714. * S<int> Speed between 0-255
  3715. * P<index> Fan index, if more than one fan
  3716. */
  3717. inline void gcode_M106() {
  3718. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3719. p = code_seen('P') ? code_value_short() : 0;
  3720. NOMORE(s, 255);
  3721. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3722. }
  3723. /**
  3724. * M107: Fan Off
  3725. */
  3726. inline void gcode_M107() {
  3727. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3728. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3729. }
  3730. #endif // FAN_COUNT > 0
  3731. /**
  3732. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3733. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3734. */
  3735. inline void gcode_M109() {
  3736. if (get_target_extruder_from_command(109)) return;
  3737. if (DEBUGGING(DRYRUN)) return;
  3738. bool no_wait_for_cooling = code_seen('S');
  3739. if (no_wait_for_cooling || code_seen('R')) {
  3740. float temp = code_value();
  3741. thermalManager.setTargetHotend(temp, target_extruder);
  3742. #if ENABLED(DUAL_X_CARRIAGE)
  3743. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3744. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3745. #endif
  3746. /**
  3747. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3748. * stand by mode, for instance in a dual extruder setup, without affecting
  3749. * the running print timer.
  3750. */
  3751. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3752. print_job_timer.stop();
  3753. LCD_MESSAGEPGM(WELCOME_MSG);
  3754. }
  3755. /**
  3756. * We do not check if the timer is already running because this check will
  3757. * be done for us inside the Stopwatch::start() method thus a running timer
  3758. * will not restart.
  3759. */
  3760. else print_job_timer.start();
  3761. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3762. }
  3763. #if ENABLED(AUTOTEMP)
  3764. planner.autotemp_M109();
  3765. #endif
  3766. #if TEMP_RESIDENCY_TIME > 0
  3767. millis_t residency_start_ms = 0;
  3768. // Loop until the temperature has stabilized
  3769. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3770. #else
  3771. // Loop until the temperature is very close target
  3772. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3773. #endif //TEMP_RESIDENCY_TIME > 0
  3774. float theTarget = -1;
  3775. bool wants_to_cool;
  3776. cancel_heatup = false;
  3777. millis_t now, next_temp_ms = 0;
  3778. KEEPALIVE_STATE(NOT_BUSY);
  3779. do {
  3780. now = millis();
  3781. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3782. next_temp_ms = now + 1000UL;
  3783. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3784. print_heaterstates();
  3785. #endif
  3786. #if TEMP_RESIDENCY_TIME > 0
  3787. SERIAL_PROTOCOLPGM(" W:");
  3788. if (residency_start_ms) {
  3789. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3790. SERIAL_PROTOCOLLN(rem);
  3791. }
  3792. else {
  3793. SERIAL_PROTOCOLLNPGM("?");
  3794. }
  3795. #else
  3796. SERIAL_EOL;
  3797. #endif
  3798. }
  3799. // Target temperature might be changed during the loop
  3800. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3801. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3802. theTarget = thermalManager.degTargetHotend(target_extruder);
  3803. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3804. if (no_wait_for_cooling && wants_to_cool) break;
  3805. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3806. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3807. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3808. }
  3809. idle();
  3810. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3811. #if TEMP_RESIDENCY_TIME > 0
  3812. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  3813. if (!residency_start_ms) {
  3814. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3815. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3816. }
  3817. else if (temp_diff > TEMP_HYSTERESIS) {
  3818. // Restart the timer whenever the temperature falls outside the hysteresis.
  3819. residency_start_ms = millis();
  3820. }
  3821. #endif //TEMP_RESIDENCY_TIME > 0
  3822. } while (!cancel_heatup && TEMP_CONDITIONS);
  3823. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3824. KEEPALIVE_STATE(IN_HANDLER);
  3825. }
  3826. #if HAS_TEMP_BED
  3827. /**
  3828. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3829. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3830. */
  3831. inline void gcode_M190() {
  3832. if (DEBUGGING(DRYRUN)) return;
  3833. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3834. bool no_wait_for_cooling = code_seen('S');
  3835. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value());
  3836. #if TEMP_BED_RESIDENCY_TIME > 0
  3837. millis_t residency_start_ms = 0;
  3838. // Loop until the temperature has stabilized
  3839. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3840. #else
  3841. // Loop until the temperature is very close target
  3842. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3843. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3844. float theTarget = -1;
  3845. bool wants_to_cool;
  3846. cancel_heatup = false;
  3847. millis_t now, next_temp_ms = 0;
  3848. KEEPALIVE_STATE(NOT_BUSY);
  3849. do {
  3850. now = millis();
  3851. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3852. next_temp_ms = now + 1000UL;
  3853. print_heaterstates();
  3854. #if TEMP_BED_RESIDENCY_TIME > 0
  3855. SERIAL_PROTOCOLPGM(" W:");
  3856. if (residency_start_ms) {
  3857. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3858. SERIAL_PROTOCOLLN(rem);
  3859. }
  3860. else {
  3861. SERIAL_PROTOCOLLNPGM("?");
  3862. }
  3863. #else
  3864. SERIAL_EOL;
  3865. #endif
  3866. }
  3867. // Target temperature might be changed during the loop
  3868. if (theTarget != thermalManager.degTargetBed()) {
  3869. wants_to_cool = thermalManager.isCoolingBed();
  3870. theTarget = thermalManager.degTargetBed();
  3871. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3872. if (no_wait_for_cooling && wants_to_cool) break;
  3873. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3874. // Simply don't wait to cool a bed under 30C
  3875. if (wants_to_cool && theTarget < 30) break;
  3876. }
  3877. idle();
  3878. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3879. #if TEMP_BED_RESIDENCY_TIME > 0
  3880. float temp_diff = fabs(theTarget - thermalManager.degBed());
  3881. if (!residency_start_ms) {
  3882. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3883. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  3884. }
  3885. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3886. // Restart the timer whenever the temperature falls outside the hysteresis.
  3887. residency_start_ms = millis();
  3888. }
  3889. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3890. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3891. LCD_MESSAGEPGM(MSG_BED_DONE);
  3892. KEEPALIVE_STATE(IN_HANDLER);
  3893. }
  3894. #endif // HAS_TEMP_BED
  3895. /**
  3896. * M110: Set Current Line Number
  3897. */
  3898. inline void gcode_M110() {
  3899. if (code_seen('N')) gcode_N = code_value_long();
  3900. }
  3901. /**
  3902. * M111: Set the debug level
  3903. */
  3904. inline void gcode_M111() {
  3905. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3906. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3907. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3908. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3909. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3910. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3912. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3913. #endif
  3914. const static char* const debug_strings[] PROGMEM = {
  3915. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3916. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3917. str_debug_32
  3918. #endif
  3919. };
  3920. SERIAL_ECHO_START;
  3921. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3922. if (marlin_debug_flags) {
  3923. uint8_t comma = 0;
  3924. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3925. if (TEST(marlin_debug_flags, i)) {
  3926. if (comma++) SERIAL_CHAR(',');
  3927. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3928. }
  3929. }
  3930. }
  3931. else {
  3932. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3933. }
  3934. SERIAL_EOL;
  3935. }
  3936. /**
  3937. * M112: Emergency Stop
  3938. */
  3939. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3940. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3941. /**
  3942. * M113: Get or set Host Keepalive interval (0 to disable)
  3943. *
  3944. * S<seconds> Optional. Set the keepalive interval.
  3945. */
  3946. inline void gcode_M113() {
  3947. if (code_seen('S')) {
  3948. host_keepalive_interval = (uint8_t)code_value_short();
  3949. NOMORE(host_keepalive_interval, 60);
  3950. }
  3951. else {
  3952. SERIAL_ECHO_START;
  3953. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3954. SERIAL_EOL;
  3955. }
  3956. }
  3957. #endif
  3958. #if ENABLED(BARICUDA)
  3959. #if HAS_HEATER_1
  3960. /**
  3961. * M126: Heater 1 valve open
  3962. */
  3963. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3964. /**
  3965. * M127: Heater 1 valve close
  3966. */
  3967. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  3968. #endif
  3969. #if HAS_HEATER_2
  3970. /**
  3971. * M128: Heater 2 valve open
  3972. */
  3973. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3974. /**
  3975. * M129: Heater 2 valve close
  3976. */
  3977. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  3978. #endif
  3979. #endif //BARICUDA
  3980. /**
  3981. * M140: Set bed temperature
  3982. */
  3983. inline void gcode_M140() {
  3984. if (DEBUGGING(DRYRUN)) return;
  3985. if (code_seen('S')) thermalManager.setTargetBed(code_value());
  3986. }
  3987. #if ENABLED(ULTIPANEL)
  3988. /**
  3989. * M145: Set the heatup state for a material in the LCD menu
  3990. * S<material> (0=PLA, 1=ABS)
  3991. * H<hotend temp>
  3992. * B<bed temp>
  3993. * F<fan speed>
  3994. */
  3995. inline void gcode_M145() {
  3996. int8_t material = code_seen('S') ? code_value_short() : 0;
  3997. if (material < 0 || material > 1) {
  3998. SERIAL_ERROR_START;
  3999. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4000. }
  4001. else {
  4002. int v;
  4003. switch (material) {
  4004. case 0:
  4005. if (code_seen('H')) {
  4006. v = code_value_short();
  4007. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4008. }
  4009. if (code_seen('F')) {
  4010. v = code_value_short();
  4011. plaPreheatFanSpeed = constrain(v, 0, 255);
  4012. }
  4013. #if TEMP_SENSOR_BED != 0
  4014. if (code_seen('B')) {
  4015. v = code_value_short();
  4016. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4017. }
  4018. #endif
  4019. break;
  4020. case 1:
  4021. if (code_seen('H')) {
  4022. v = code_value_short();
  4023. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4024. }
  4025. if (code_seen('F')) {
  4026. v = code_value_short();
  4027. absPreheatFanSpeed = constrain(v, 0, 255);
  4028. }
  4029. #if TEMP_SENSOR_BED != 0
  4030. if (code_seen('B')) {
  4031. v = code_value_short();
  4032. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4033. }
  4034. #endif
  4035. break;
  4036. }
  4037. }
  4038. }
  4039. #endif
  4040. #if HAS_POWER_SWITCH
  4041. /**
  4042. * M80: Turn on Power Supply
  4043. */
  4044. inline void gcode_M80() {
  4045. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4046. /**
  4047. * If you have a switch on suicide pin, this is useful
  4048. * if you want to start another print with suicide feature after
  4049. * a print without suicide...
  4050. */
  4051. #if HAS_SUICIDE
  4052. OUT_WRITE(SUICIDE_PIN, HIGH);
  4053. #endif
  4054. #if ENABLED(ULTIPANEL)
  4055. powersupply = true;
  4056. LCD_MESSAGEPGM(WELCOME_MSG);
  4057. lcd_update();
  4058. #endif
  4059. }
  4060. #endif // HAS_POWER_SWITCH
  4061. /**
  4062. * M81: Turn off Power, including Power Supply, if there is one.
  4063. *
  4064. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4065. */
  4066. inline void gcode_M81() {
  4067. thermalManager.disable_all_heaters();
  4068. stepper.finish_and_disable();
  4069. #if FAN_COUNT > 0
  4070. #if FAN_COUNT > 1
  4071. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4072. #else
  4073. fanSpeeds[0] = 0;
  4074. #endif
  4075. #endif
  4076. delay(1000); // Wait 1 second before switching off
  4077. #if HAS_SUICIDE
  4078. stepper.synchronize();
  4079. suicide();
  4080. #elif HAS_POWER_SWITCH
  4081. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4082. #endif
  4083. #if ENABLED(ULTIPANEL)
  4084. #if HAS_POWER_SWITCH
  4085. powersupply = false;
  4086. #endif
  4087. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4088. lcd_update();
  4089. #endif
  4090. }
  4091. /**
  4092. * M82: Set E codes absolute (default)
  4093. */
  4094. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4095. /**
  4096. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4097. */
  4098. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4099. /**
  4100. * M18, M84: Disable all stepper motors
  4101. */
  4102. inline void gcode_M18_M84() {
  4103. if (code_seen('S')) {
  4104. stepper_inactive_time = code_value() * 1000UL;
  4105. }
  4106. else {
  4107. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4108. if (all_axis) {
  4109. stepper.finish_and_disable();
  4110. }
  4111. else {
  4112. stepper.synchronize();
  4113. if (code_seen('X')) disable_x();
  4114. if (code_seen('Y')) disable_y();
  4115. if (code_seen('Z')) disable_z();
  4116. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4117. if (code_seen('E')) {
  4118. disable_e0();
  4119. disable_e1();
  4120. disable_e2();
  4121. disable_e3();
  4122. }
  4123. #endif
  4124. }
  4125. }
  4126. }
  4127. /**
  4128. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4129. */
  4130. inline void gcode_M85() {
  4131. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  4132. }
  4133. /**
  4134. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4135. * (Follows the same syntax as G92)
  4136. */
  4137. inline void gcode_M92() {
  4138. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4139. if (code_seen(axis_codes[i])) {
  4140. if (i == E_AXIS) {
  4141. float value = code_value();
  4142. if (value < 20.0) {
  4143. float factor = planner.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4144. planner.max_e_jerk *= factor;
  4145. planner.max_feedrate[i] *= factor;
  4146. planner.axis_steps_per_sqr_second[i] *= factor;
  4147. }
  4148. planner.axis_steps_per_unit[i] = value;
  4149. }
  4150. else {
  4151. planner.axis_steps_per_unit[i] = code_value();
  4152. }
  4153. }
  4154. }
  4155. }
  4156. /**
  4157. * Output the current position to serial
  4158. */
  4159. static void report_current_position() {
  4160. SERIAL_PROTOCOLPGM("X:");
  4161. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4162. SERIAL_PROTOCOLPGM(" Y:");
  4163. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4164. SERIAL_PROTOCOLPGM(" Z:");
  4165. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4166. SERIAL_PROTOCOLPGM(" E:");
  4167. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4168. stepper.report_positions();
  4169. #if ENABLED(SCARA)
  4170. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4171. SERIAL_PROTOCOL(delta[X_AXIS]);
  4172. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4173. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4174. SERIAL_EOL;
  4175. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4176. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4177. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4178. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4179. SERIAL_EOL;
  4180. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4181. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_unit[X_AXIS]);
  4182. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4183. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_unit[Y_AXIS]);
  4184. SERIAL_EOL; SERIAL_EOL;
  4185. #endif
  4186. }
  4187. /**
  4188. * M114: Output current position to serial port
  4189. */
  4190. inline void gcode_M114() { report_current_position(); }
  4191. /**
  4192. * M115: Capabilities string
  4193. */
  4194. inline void gcode_M115() {
  4195. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4196. }
  4197. /**
  4198. * M117: Set LCD Status Message
  4199. */
  4200. inline void gcode_M117() {
  4201. lcd_setstatus(current_command_args);
  4202. }
  4203. /**
  4204. * M119: Output endstop states to serial output
  4205. */
  4206. inline void gcode_M119() { endstops.M119(); }
  4207. /**
  4208. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4209. */
  4210. inline void gcode_M120() { endstops.enable_globally(true); }
  4211. /**
  4212. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4213. */
  4214. inline void gcode_M121() { endstops.enable_globally(false); }
  4215. #if ENABLED(BLINKM)
  4216. /**
  4217. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4218. */
  4219. inline void gcode_M150() {
  4220. SendColors(
  4221. code_seen('R') ? (byte)code_value_short() : 0,
  4222. code_seen('U') ? (byte)code_value_short() : 0,
  4223. code_seen('B') ? (byte)code_value_short() : 0
  4224. );
  4225. }
  4226. #endif // BLINKM
  4227. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4228. /**
  4229. * M155: Send data to a I2C slave device
  4230. *
  4231. * This is a PoC, the formating and arguments for the GCODE will
  4232. * change to be more compatible, the current proposal is:
  4233. *
  4234. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4235. *
  4236. * M155 B<byte-1 value in base 10>
  4237. * M155 B<byte-2 value in base 10>
  4238. * M155 B<byte-3 value in base 10>
  4239. *
  4240. * M155 S1 ; Send the buffered data and reset the buffer
  4241. * M155 R1 ; Reset the buffer without sending data
  4242. *
  4243. */
  4244. inline void gcode_M155() {
  4245. // Set the target address
  4246. if (code_seen('A'))
  4247. i2c.address((uint8_t) code_value_short());
  4248. // Add a new byte to the buffer
  4249. else if (code_seen('B'))
  4250. i2c.addbyte((int) code_value_short());
  4251. // Flush the buffer to the bus
  4252. else if (code_seen('S')) i2c.send();
  4253. // Reset and rewind the buffer
  4254. else if (code_seen('R')) i2c.reset();
  4255. }
  4256. /**
  4257. * M156: Request X bytes from I2C slave device
  4258. *
  4259. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4260. */
  4261. inline void gcode_M156() {
  4262. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4263. int bytes = code_seen('B') ? code_value_short() : 0;
  4264. if (addr && bytes) {
  4265. i2c.address(addr);
  4266. i2c.reqbytes(bytes);
  4267. }
  4268. }
  4269. #endif //EXPERIMENTAL_I2CBUS
  4270. /**
  4271. * M200: Set filament diameter and set E axis units to cubic millimeters
  4272. *
  4273. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4274. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4275. */
  4276. inline void gcode_M200() {
  4277. if (get_target_extruder_from_command(200)) return;
  4278. if (code_seen('D')) {
  4279. float diameter = code_value();
  4280. // setting any extruder filament size disables volumetric on the assumption that
  4281. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4282. // for all extruders
  4283. volumetric_enabled = (diameter != 0.0);
  4284. if (volumetric_enabled) {
  4285. filament_size[target_extruder] = diameter;
  4286. // make sure all extruders have some sane value for the filament size
  4287. for (int i = 0; i < EXTRUDERS; i++)
  4288. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4289. }
  4290. }
  4291. else {
  4292. //reserved for setting filament diameter via UFID or filament measuring device
  4293. return;
  4294. }
  4295. calculate_volumetric_multipliers();
  4296. }
  4297. /**
  4298. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4299. */
  4300. inline void gcode_M201() {
  4301. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4302. if (code_seen(axis_codes[i])) {
  4303. planner.max_acceleration_units_per_sq_second[i] = code_value();
  4304. }
  4305. }
  4306. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4307. planner.reset_acceleration_rates();
  4308. }
  4309. #if 0 // Not used for Sprinter/grbl gen6
  4310. inline void gcode_M202() {
  4311. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4312. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * planner.axis_steps_per_unit[i];
  4313. }
  4314. }
  4315. #endif
  4316. /**
  4317. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4318. */
  4319. inline void gcode_M203() {
  4320. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4321. if (code_seen(axis_codes[i])) {
  4322. planner.max_feedrate[i] = code_value();
  4323. }
  4324. }
  4325. }
  4326. /**
  4327. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4328. *
  4329. * P = Printing moves
  4330. * R = Retract only (no X, Y, Z) moves
  4331. * T = Travel (non printing) moves
  4332. *
  4333. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4334. */
  4335. inline void gcode_M204() {
  4336. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4337. planner.travel_acceleration = planner.acceleration = code_value();
  4338. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4339. SERIAL_EOL;
  4340. }
  4341. if (code_seen('P')) {
  4342. planner.acceleration = code_value();
  4343. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4344. SERIAL_EOL;
  4345. }
  4346. if (code_seen('R')) {
  4347. planner.retract_acceleration = code_value();
  4348. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4349. SERIAL_EOL;
  4350. }
  4351. if (code_seen('T')) {
  4352. planner.travel_acceleration = code_value();
  4353. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4354. SERIAL_EOL;
  4355. }
  4356. }
  4357. /**
  4358. * M205: Set Advanced Settings
  4359. *
  4360. * S = Min Feed Rate (mm/s)
  4361. * T = Min Travel Feed Rate (mm/s)
  4362. * B = Min Segment Time (µs)
  4363. * X = Max XY Jerk (mm/s/s)
  4364. * Z = Max Z Jerk (mm/s/s)
  4365. * E = Max E Jerk (mm/s/s)
  4366. */
  4367. inline void gcode_M205() {
  4368. if (code_seen('S')) planner.min_feedrate = code_value();
  4369. if (code_seen('T')) planner.min_travel_feedrate = code_value();
  4370. if (code_seen('B')) planner.min_segment_time = code_value();
  4371. if (code_seen('X')) planner.max_xy_jerk = code_value();
  4372. if (code_seen('Z')) planner.max_z_jerk = code_value();
  4373. if (code_seen('E')) planner.max_e_jerk = code_value();
  4374. }
  4375. /**
  4376. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4377. */
  4378. inline void gcode_M206() {
  4379. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4380. if (code_seen(axis_codes[i]))
  4381. set_home_offset((AxisEnum)i, code_value());
  4382. #if ENABLED(SCARA)
  4383. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4384. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4385. #endif
  4386. sync_plan_position();
  4387. report_current_position();
  4388. }
  4389. #if ENABLED(DELTA)
  4390. /**
  4391. * M665: Set delta configurations
  4392. *
  4393. * L = diagonal rod
  4394. * R = delta radius
  4395. * S = segments per second
  4396. * A = Alpha (Tower 1) diagonal rod trim
  4397. * B = Beta (Tower 2) diagonal rod trim
  4398. * C = Gamma (Tower 3) diagonal rod trim
  4399. */
  4400. inline void gcode_M665() {
  4401. if (code_seen('L')) delta_diagonal_rod = code_value();
  4402. if (code_seen('R')) delta_radius = code_value();
  4403. if (code_seen('S')) delta_segments_per_second = code_value();
  4404. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4405. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4406. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4407. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4408. }
  4409. /**
  4410. * M666: Set delta endstop adjustment
  4411. */
  4412. inline void gcode_M666() {
  4413. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4414. if (DEBUGGING(LEVELING)) {
  4415. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4416. }
  4417. #endif
  4418. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4419. if (code_seen(axis_codes[i])) {
  4420. endstop_adj[i] = code_value();
  4421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4422. if (DEBUGGING(LEVELING)) {
  4423. SERIAL_ECHOPGM("endstop_adj[");
  4424. SERIAL_ECHO(axis_codes[i]);
  4425. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4426. SERIAL_EOL;
  4427. }
  4428. #endif
  4429. }
  4430. }
  4431. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4432. if (DEBUGGING(LEVELING)) {
  4433. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4434. }
  4435. #endif
  4436. }
  4437. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4438. /**
  4439. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4440. */
  4441. inline void gcode_M666() {
  4442. if (code_seen('Z')) z_endstop_adj = code_value();
  4443. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4444. SERIAL_EOL;
  4445. }
  4446. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4447. #if ENABLED(FWRETRACT)
  4448. /**
  4449. * M207: Set firmware retraction values
  4450. *
  4451. * S[+mm] retract_length
  4452. * W[+mm] retract_length_swap (multi-extruder)
  4453. * F[mm/min] retract_feedrate
  4454. * Z[mm] retract_zlift
  4455. */
  4456. inline void gcode_M207() {
  4457. if (code_seen('S')) retract_length = code_value();
  4458. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4459. if (code_seen('Z')) retract_zlift = code_value();
  4460. #if EXTRUDERS > 1
  4461. if (code_seen('W')) retract_length_swap = code_value();
  4462. #endif
  4463. }
  4464. /**
  4465. * M208: Set firmware un-retraction values
  4466. *
  4467. * S[+mm] retract_recover_length (in addition to M207 S*)
  4468. * W[+mm] retract_recover_length_swap (multi-extruder)
  4469. * F[mm/min] retract_recover_feedrate
  4470. */
  4471. inline void gcode_M208() {
  4472. if (code_seen('S')) retract_recover_length = code_value();
  4473. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4474. #if EXTRUDERS > 1
  4475. if (code_seen('W')) retract_recover_length_swap = code_value();
  4476. #endif
  4477. }
  4478. /**
  4479. * M209: Enable automatic retract (M209 S1)
  4480. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4481. */
  4482. inline void gcode_M209() {
  4483. if (code_seen('S')) {
  4484. int t = code_value_short();
  4485. switch (t) {
  4486. case 0:
  4487. autoretract_enabled = false;
  4488. break;
  4489. case 1:
  4490. autoretract_enabled = true;
  4491. break;
  4492. default:
  4493. unknown_command_error();
  4494. return;
  4495. }
  4496. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4497. }
  4498. }
  4499. #endif // FWRETRACT
  4500. #if EXTRUDERS > 1
  4501. /**
  4502. * M218 - set hotend offset (in mm)
  4503. *
  4504. * T<tool>
  4505. * X<xoffset>
  4506. * Y<yoffset>
  4507. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4508. */
  4509. inline void gcode_M218() {
  4510. if (get_target_extruder_from_command(218)) return;
  4511. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4512. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4513. #if ENABLED(DUAL_X_CARRIAGE)
  4514. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4515. #endif
  4516. SERIAL_ECHO_START;
  4517. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4518. for (int e = 0; e < EXTRUDERS; e++) {
  4519. SERIAL_CHAR(' ');
  4520. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4521. SERIAL_CHAR(',');
  4522. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4523. #if ENABLED(DUAL_X_CARRIAGE)
  4524. SERIAL_CHAR(',');
  4525. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4526. #endif
  4527. }
  4528. SERIAL_EOL;
  4529. }
  4530. #endif // EXTRUDERS > 1
  4531. /**
  4532. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4533. */
  4534. inline void gcode_M220() {
  4535. if (code_seen('S')) feedrate_multiplier = code_value();
  4536. }
  4537. /**
  4538. * M221: Set extrusion percentage (M221 T0 S95)
  4539. */
  4540. inline void gcode_M221() {
  4541. if (code_seen('S')) {
  4542. int sval = code_value();
  4543. if (get_target_extruder_from_command(221)) return;
  4544. extruder_multiplier[target_extruder] = sval;
  4545. }
  4546. }
  4547. /**
  4548. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4549. */
  4550. inline void gcode_M226() {
  4551. if (code_seen('P')) {
  4552. int pin_number = code_value();
  4553. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4554. if (pin_state >= -1 && pin_state <= 1) {
  4555. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4556. if (sensitive_pins[i] == pin_number) {
  4557. pin_number = -1;
  4558. break;
  4559. }
  4560. }
  4561. if (pin_number > -1) {
  4562. int target = LOW;
  4563. stepper.synchronize();
  4564. pinMode(pin_number, INPUT);
  4565. switch (pin_state) {
  4566. case 1:
  4567. target = HIGH;
  4568. break;
  4569. case 0:
  4570. target = LOW;
  4571. break;
  4572. case -1:
  4573. target = !digitalRead(pin_number);
  4574. break;
  4575. }
  4576. while (digitalRead(pin_number) != target) idle();
  4577. } // pin_number > -1
  4578. } // pin_state -1 0 1
  4579. } // code_seen('P')
  4580. }
  4581. #if HAS_SERVOS
  4582. /**
  4583. * M280: Get or set servo position. P<index> S<angle>
  4584. */
  4585. inline void gcode_M280() {
  4586. int servo_index = code_seen('P') ? code_value_short() : -1;
  4587. int servo_position = 0;
  4588. if (code_seen('S')) {
  4589. servo_position = code_value_short();
  4590. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4591. servo[servo_index].move(servo_position);
  4592. else {
  4593. SERIAL_ERROR_START;
  4594. SERIAL_ERROR("Servo ");
  4595. SERIAL_ERROR(servo_index);
  4596. SERIAL_ERRORLN(" out of range");
  4597. }
  4598. }
  4599. else if (servo_index >= 0) {
  4600. SERIAL_ECHO_START;
  4601. SERIAL_ECHO(" Servo ");
  4602. SERIAL_ECHO(servo_index);
  4603. SERIAL_ECHO(": ");
  4604. SERIAL_ECHOLN(servo[servo_index].read());
  4605. }
  4606. }
  4607. #endif // HAS_SERVOS
  4608. #if HAS_BUZZER
  4609. /**
  4610. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4611. */
  4612. inline void gcode_M300() {
  4613. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4614. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4615. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4616. buzz(beepP, beepS);
  4617. }
  4618. #endif // HAS_BUZZER
  4619. #if ENABLED(PIDTEMP)
  4620. /**
  4621. * M301: Set PID parameters P I D (and optionally C, L)
  4622. *
  4623. * P[float] Kp term
  4624. * I[float] Ki term (unscaled)
  4625. * D[float] Kd term (unscaled)
  4626. *
  4627. * With PID_ADD_EXTRUSION_RATE:
  4628. *
  4629. * C[float] Kc term
  4630. * L[float] LPQ length
  4631. */
  4632. inline void gcode_M301() {
  4633. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4634. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4635. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4636. if (e < EXTRUDERS) { // catch bad input value
  4637. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4638. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4639. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4640. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4641. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4642. if (code_seen('L')) lpq_len = code_value();
  4643. NOMORE(lpq_len, LPQ_MAX_LEN);
  4644. #endif
  4645. thermalManager.updatePID();
  4646. SERIAL_ECHO_START;
  4647. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4648. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4649. SERIAL_ECHO(e);
  4650. #endif // PID_PARAMS_PER_EXTRUDER
  4651. SERIAL_ECHO(" p:");
  4652. SERIAL_ECHO(PID_PARAM(Kp, e));
  4653. SERIAL_ECHO(" i:");
  4654. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4655. SERIAL_ECHO(" d:");
  4656. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4657. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4658. SERIAL_ECHO(" c:");
  4659. //Kc does not have scaling applied above, or in resetting defaults
  4660. SERIAL_ECHO(PID_PARAM(Kc, e));
  4661. #endif
  4662. SERIAL_EOL;
  4663. }
  4664. else {
  4665. SERIAL_ERROR_START;
  4666. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4667. }
  4668. }
  4669. #endif // PIDTEMP
  4670. #if ENABLED(PIDTEMPBED)
  4671. inline void gcode_M304() {
  4672. if (code_seen('P')) thermalManager.bedKp = code_value();
  4673. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value());
  4674. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value());
  4675. thermalManager.updatePID();
  4676. SERIAL_ECHO_START;
  4677. SERIAL_ECHO(" p:");
  4678. SERIAL_ECHO(thermalManager.bedKp);
  4679. SERIAL_ECHO(" i:");
  4680. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4681. SERIAL_ECHO(" d:");
  4682. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4683. }
  4684. #endif // PIDTEMPBED
  4685. #if defined(CHDK) || HAS_PHOTOGRAPH
  4686. /**
  4687. * M240: Trigger a camera by emulating a Canon RC-1
  4688. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4689. */
  4690. inline void gcode_M240() {
  4691. #ifdef CHDK
  4692. OUT_WRITE(CHDK, HIGH);
  4693. chdkHigh = millis();
  4694. chdkActive = true;
  4695. #elif HAS_PHOTOGRAPH
  4696. const uint8_t NUM_PULSES = 16;
  4697. const float PULSE_LENGTH = 0.01524;
  4698. for (int i = 0; i < NUM_PULSES; i++) {
  4699. WRITE(PHOTOGRAPH_PIN, HIGH);
  4700. _delay_ms(PULSE_LENGTH);
  4701. WRITE(PHOTOGRAPH_PIN, LOW);
  4702. _delay_ms(PULSE_LENGTH);
  4703. }
  4704. delay(7.33);
  4705. for (int i = 0; i < NUM_PULSES; i++) {
  4706. WRITE(PHOTOGRAPH_PIN, HIGH);
  4707. _delay_ms(PULSE_LENGTH);
  4708. WRITE(PHOTOGRAPH_PIN, LOW);
  4709. _delay_ms(PULSE_LENGTH);
  4710. }
  4711. #endif // !CHDK && HAS_PHOTOGRAPH
  4712. }
  4713. #endif // CHDK || PHOTOGRAPH_PIN
  4714. #if ENABLED(HAS_LCD_CONTRAST)
  4715. /**
  4716. * M250: Read and optionally set the LCD contrast
  4717. */
  4718. inline void gcode_M250() {
  4719. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4720. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4721. SERIAL_PROTOCOL(lcd_contrast);
  4722. SERIAL_EOL;
  4723. }
  4724. #endif // HAS_LCD_CONTRAST
  4725. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4726. /**
  4727. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4728. */
  4729. inline void gcode_M302() {
  4730. thermalManager.extrude_min_temp = code_seen('S') ? code_value() : 0;
  4731. }
  4732. #endif // PREVENT_DANGEROUS_EXTRUDE
  4733. /**
  4734. * M303: PID relay autotune
  4735. *
  4736. * S<temperature> sets the target temperature. (default 150C)
  4737. * E<extruder> (-1 for the bed) (default 0)
  4738. * C<cycles>
  4739. * U<bool> with a non-zero value will apply the result to current settings
  4740. */
  4741. inline void gcode_M303() {
  4742. #if HAS_PID_HEATING
  4743. int e = code_seen('E') ? code_value_short() : 0;
  4744. int c = code_seen('C') ? code_value_short() : 5;
  4745. bool u = code_seen('U') && code_value_short() != 0;
  4746. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4747. if (e >= 0 && e < EXTRUDERS)
  4748. target_extruder = e;
  4749. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4750. thermalManager.PID_autotune(temp, e, c, u);
  4751. KEEPALIVE_STATE(IN_HANDLER);
  4752. #else
  4753. SERIAL_ERROR_START;
  4754. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4755. #endif
  4756. }
  4757. #if ENABLED(SCARA)
  4758. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4759. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4760. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4761. if (IsRunning()) {
  4762. //gcode_get_destination(); // For X Y Z E F
  4763. delta[X_AXIS] = delta_x;
  4764. delta[Y_AXIS] = delta_y;
  4765. calculate_SCARA_forward_Transform(delta);
  4766. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4767. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4768. prepare_move();
  4769. //ok_to_send();
  4770. return true;
  4771. }
  4772. return false;
  4773. }
  4774. /**
  4775. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4776. */
  4777. inline bool gcode_M360() {
  4778. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4779. return SCARA_move_to_cal(0, 120);
  4780. }
  4781. /**
  4782. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4783. */
  4784. inline bool gcode_M361() {
  4785. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4786. return SCARA_move_to_cal(90, 130);
  4787. }
  4788. /**
  4789. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4790. */
  4791. inline bool gcode_M362() {
  4792. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4793. return SCARA_move_to_cal(60, 180);
  4794. }
  4795. /**
  4796. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4797. */
  4798. inline bool gcode_M363() {
  4799. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4800. return SCARA_move_to_cal(50, 90);
  4801. }
  4802. /**
  4803. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4804. */
  4805. inline bool gcode_M364() {
  4806. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4807. return SCARA_move_to_cal(45, 135);
  4808. }
  4809. /**
  4810. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4811. */
  4812. inline void gcode_M365() {
  4813. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4814. if (code_seen(axis_codes[i])) {
  4815. axis_scaling[i] = code_value();
  4816. }
  4817. }
  4818. }
  4819. #endif // SCARA
  4820. #if ENABLED(EXT_SOLENOID)
  4821. void enable_solenoid(uint8_t num) {
  4822. switch (num) {
  4823. case 0:
  4824. OUT_WRITE(SOL0_PIN, HIGH);
  4825. break;
  4826. #if HAS_SOLENOID_1
  4827. case 1:
  4828. OUT_WRITE(SOL1_PIN, HIGH);
  4829. break;
  4830. #endif
  4831. #if HAS_SOLENOID_2
  4832. case 2:
  4833. OUT_WRITE(SOL2_PIN, HIGH);
  4834. break;
  4835. #endif
  4836. #if HAS_SOLENOID_3
  4837. case 3:
  4838. OUT_WRITE(SOL3_PIN, HIGH);
  4839. break;
  4840. #endif
  4841. default:
  4842. SERIAL_ECHO_START;
  4843. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4844. break;
  4845. }
  4846. }
  4847. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4848. void disable_all_solenoids() {
  4849. OUT_WRITE(SOL0_PIN, LOW);
  4850. OUT_WRITE(SOL1_PIN, LOW);
  4851. OUT_WRITE(SOL2_PIN, LOW);
  4852. OUT_WRITE(SOL3_PIN, LOW);
  4853. }
  4854. /**
  4855. * M380: Enable solenoid on the active extruder
  4856. */
  4857. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4858. /**
  4859. * M381: Disable all solenoids
  4860. */
  4861. inline void gcode_M381() { disable_all_solenoids(); }
  4862. #endif // EXT_SOLENOID
  4863. /**
  4864. * M400: Finish all moves
  4865. */
  4866. inline void gcode_M400() { stepper.synchronize(); }
  4867. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4868. /**
  4869. * M401: Engage Z Servo endstop if available
  4870. */
  4871. inline void gcode_M401() {
  4872. #if HAS_SERVO_ENDSTOPS
  4873. raise_z_for_servo();
  4874. #endif
  4875. deploy_z_probe();
  4876. }
  4877. /**
  4878. * M402: Retract Z Servo endstop if enabled
  4879. */
  4880. inline void gcode_M402() {
  4881. #if HAS_SERVO_ENDSTOPS
  4882. raise_z_for_servo();
  4883. #endif
  4884. stow_z_probe(false);
  4885. }
  4886. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4887. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4888. /**
  4889. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4890. */
  4891. inline void gcode_M404() {
  4892. if (code_seen('W')) {
  4893. filament_width_nominal = code_value();
  4894. }
  4895. else {
  4896. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4897. SERIAL_PROTOCOLLN(filament_width_nominal);
  4898. }
  4899. }
  4900. /**
  4901. * M405: Turn on filament sensor for control
  4902. */
  4903. inline void gcode_M405() {
  4904. if (code_seen('D')) meas_delay_cm = code_value();
  4905. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4906. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4907. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  4908. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4909. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4910. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4911. }
  4912. filament_sensor = true;
  4913. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4914. //SERIAL_PROTOCOL(filament_width_meas);
  4915. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4916. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4917. }
  4918. /**
  4919. * M406: Turn off filament sensor for control
  4920. */
  4921. inline void gcode_M406() { filament_sensor = false; }
  4922. /**
  4923. * M407: Get measured filament diameter on serial output
  4924. */
  4925. inline void gcode_M407() {
  4926. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4927. SERIAL_PROTOCOLLN(filament_width_meas);
  4928. }
  4929. #endif // FILAMENT_WIDTH_SENSOR
  4930. /**
  4931. * M410: Quickstop - Abort all planned moves
  4932. *
  4933. * This will stop the carriages mid-move, so most likely they
  4934. * will be out of sync with the stepper position after this.
  4935. */
  4936. inline void gcode_M410() { stepper.quick_stop(); }
  4937. #if ENABLED(MESH_BED_LEVELING)
  4938. /**
  4939. * M420: Enable/Disable Mesh Bed Leveling
  4940. */
  4941. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4942. /**
  4943. * M421: Set a single Mesh Bed Leveling Z coordinate
  4944. */
  4945. inline void gcode_M421() {
  4946. float x = 0, y = 0, z = 0;
  4947. bool err = false, hasX, hasY, hasZ;
  4948. if ((hasX = code_seen('X'))) x = code_value();
  4949. if ((hasY = code_seen('Y'))) y = code_value();
  4950. if ((hasZ = code_seen('Z'))) z = code_value();
  4951. if (!hasX || !hasY || !hasZ) {
  4952. SERIAL_ERROR_START;
  4953. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4954. err = true;
  4955. }
  4956. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4957. SERIAL_ERROR_START;
  4958. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4959. err = true;
  4960. }
  4961. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4962. }
  4963. #endif
  4964. /**
  4965. * M428: Set home_offset based on the distance between the
  4966. * current_position and the nearest "reference point."
  4967. * If an axis is past center its endstop position
  4968. * is the reference-point. Otherwise it uses 0. This allows
  4969. * the Z offset to be set near the bed when using a max endstop.
  4970. *
  4971. * M428 can't be used more than 2cm away from 0 or an endstop.
  4972. *
  4973. * Use M206 to set these values directly.
  4974. */
  4975. inline void gcode_M428() {
  4976. bool err = false;
  4977. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4978. if (axis_homed[i]) {
  4979. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  4980. diff = current_position[i] - base;
  4981. if (diff > -20 && diff < 20) {
  4982. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  4983. }
  4984. else {
  4985. SERIAL_ERROR_START;
  4986. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4987. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4988. #if HAS_BUZZER
  4989. buzz(200, 40);
  4990. #endif
  4991. err = true;
  4992. break;
  4993. }
  4994. }
  4995. }
  4996. if (!err) {
  4997. sync_plan_position();
  4998. report_current_position();
  4999. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5000. #if HAS_BUZZER
  5001. buzz(200, 659);
  5002. buzz(200, 698);
  5003. #endif
  5004. }
  5005. }
  5006. /**
  5007. * M500: Store settings in EEPROM
  5008. */
  5009. inline void gcode_M500() {
  5010. Config_StoreSettings();
  5011. }
  5012. /**
  5013. * M501: Read settings from EEPROM
  5014. */
  5015. inline void gcode_M501() {
  5016. Config_RetrieveSettings();
  5017. }
  5018. /**
  5019. * M502: Revert to default settings
  5020. */
  5021. inline void gcode_M502() {
  5022. Config_ResetDefault();
  5023. }
  5024. /**
  5025. * M503: print settings currently in memory
  5026. */
  5027. inline void gcode_M503() {
  5028. Config_PrintSettings(code_seen('S') && code_value() == 0);
  5029. }
  5030. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5031. /**
  5032. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5033. */
  5034. inline void gcode_M540() {
  5035. if (code_seen('S')) stepper.abort_on_endstop_hit = (code_value() > 0);
  5036. }
  5037. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5038. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5039. inline void gcode_SET_Z_PROBE_OFFSET() {
  5040. SERIAL_ECHO_START;
  5041. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5042. SERIAL_CHAR(' ');
  5043. if (code_seen('Z')) {
  5044. float value = code_value();
  5045. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5046. zprobe_zoffset = value;
  5047. SERIAL_ECHO(zprobe_zoffset);
  5048. }
  5049. else {
  5050. SERIAL_ECHOPGM(MSG_Z_MIN);
  5051. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5052. SERIAL_ECHOPGM(MSG_Z_MAX);
  5053. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5054. }
  5055. }
  5056. else {
  5057. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5058. }
  5059. SERIAL_EOL;
  5060. }
  5061. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5062. #if ENABLED(FILAMENTCHANGEENABLE)
  5063. /**
  5064. * M600: Pause for filament change
  5065. *
  5066. * E[distance] - Retract the filament this far (negative value)
  5067. * Z[distance] - Move the Z axis by this distance
  5068. * X[position] - Move to this X position, with Y
  5069. * Y[position] - Move to this Y position, with X
  5070. * L[distance] - Retract distance for removal (manual reload)
  5071. *
  5072. * Default values are used for omitted arguments.
  5073. *
  5074. */
  5075. inline void gcode_M600() {
  5076. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5077. SERIAL_ERROR_START;
  5078. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5079. return;
  5080. }
  5081. float lastpos[NUM_AXIS];
  5082. #if ENABLED(DELTA)
  5083. float fr60 = feedrate / 60;
  5084. #endif
  5085. for (int i = 0; i < NUM_AXIS; i++)
  5086. lastpos[i] = destination[i] = current_position[i];
  5087. #if ENABLED(DELTA)
  5088. #define RUNPLAN calculate_delta(destination); \
  5089. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5090. #else
  5091. #define RUNPLAN line_to_destination();
  5092. #endif
  5093. //retract by E
  5094. if (code_seen('E')) destination[E_AXIS] += code_value();
  5095. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5096. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5097. #endif
  5098. RUNPLAN;
  5099. //lift Z
  5100. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  5101. #ifdef FILAMENTCHANGE_ZADD
  5102. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5103. #endif
  5104. RUNPLAN;
  5105. //move xy
  5106. if (code_seen('X')) destination[X_AXIS] = code_value();
  5107. #ifdef FILAMENTCHANGE_XPOS
  5108. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5109. #endif
  5110. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5111. #ifdef FILAMENTCHANGE_YPOS
  5112. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5113. #endif
  5114. RUNPLAN;
  5115. if (code_seen('L')) destination[E_AXIS] += code_value();
  5116. #ifdef FILAMENTCHANGE_FINALRETRACT
  5117. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5118. #endif
  5119. RUNPLAN;
  5120. //finish moves
  5121. stepper.synchronize();
  5122. //disable extruder steppers so filament can be removed
  5123. disable_e0();
  5124. disable_e1();
  5125. disable_e2();
  5126. disable_e3();
  5127. delay(100);
  5128. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5129. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5130. millis_t next_tick = 0;
  5131. #endif
  5132. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5133. while (!lcd_clicked()) {
  5134. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5135. millis_t ms = millis();
  5136. if (ELAPSED(ms, next_tick)) {
  5137. lcd_quick_feedback();
  5138. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5139. }
  5140. idle(true);
  5141. #else
  5142. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5143. destination[E_AXIS] = current_position[E_AXIS];
  5144. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5145. stepper.synchronize();
  5146. #endif
  5147. } // while(!lcd_clicked)
  5148. KEEPALIVE_STATE(IN_HANDLER);
  5149. lcd_quick_feedback(); // click sound feedback
  5150. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5151. current_position[E_AXIS] = 0;
  5152. stepper.synchronize();
  5153. #endif
  5154. //return to normal
  5155. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5156. #ifdef FILAMENTCHANGE_FINALRETRACT
  5157. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5158. #endif
  5159. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5160. sync_plan_position_e();
  5161. RUNPLAN; //should do nothing
  5162. lcd_reset_alert_level();
  5163. #if ENABLED(DELTA)
  5164. // Move XYZ to starting position, then E
  5165. calculate_delta(lastpos);
  5166. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5167. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5168. #else
  5169. // Move XY to starting position, then Z, then E
  5170. destination[X_AXIS] = lastpos[X_AXIS];
  5171. destination[Y_AXIS] = lastpos[Y_AXIS];
  5172. line_to_destination();
  5173. destination[Z_AXIS] = lastpos[Z_AXIS];
  5174. line_to_destination();
  5175. destination[E_AXIS] = lastpos[E_AXIS];
  5176. line_to_destination();
  5177. #endif
  5178. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5179. filament_ran_out = false;
  5180. #endif
  5181. }
  5182. #endif // FILAMENTCHANGEENABLE
  5183. #if ENABLED(DUAL_X_CARRIAGE)
  5184. /**
  5185. * M605: Set dual x-carriage movement mode
  5186. *
  5187. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5188. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5189. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5190. * millimeters x-offset and an optional differential hotend temperature of
  5191. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5192. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5193. *
  5194. * Note: the X axis should be homed after changing dual x-carriage mode.
  5195. */
  5196. inline void gcode_M605() {
  5197. stepper.synchronize();
  5198. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5199. switch (dual_x_carriage_mode) {
  5200. case DXC_DUPLICATION_MODE:
  5201. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5202. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5203. SERIAL_ECHO_START;
  5204. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5205. SERIAL_CHAR(' ');
  5206. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5207. SERIAL_CHAR(',');
  5208. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5209. SERIAL_CHAR(' ');
  5210. SERIAL_ECHO(duplicate_extruder_x_offset);
  5211. SERIAL_CHAR(',');
  5212. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5213. break;
  5214. case DXC_FULL_CONTROL_MODE:
  5215. case DXC_AUTO_PARK_MODE:
  5216. break;
  5217. default:
  5218. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5219. break;
  5220. }
  5221. active_extruder_parked = false;
  5222. extruder_duplication_enabled = false;
  5223. delayed_move_time = 0;
  5224. }
  5225. #endif // DUAL_X_CARRIAGE
  5226. /**
  5227. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5228. */
  5229. inline void gcode_M907() {
  5230. #if HAS_DIGIPOTSS
  5231. for (int i = 0; i < NUM_AXIS; i++)
  5232. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value());
  5233. if (code_seen('B')) stepper.digipot_current(4, code_value());
  5234. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value());
  5235. #endif
  5236. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5237. if (code_seen('X')) stepper.digipot_current(0, code_value());
  5238. #endif
  5239. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5240. if (code_seen('Z')) stepper.digipot_current(1, code_value());
  5241. #endif
  5242. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5243. if (code_seen('E')) stepper.digipot_current(2, code_value());
  5244. #endif
  5245. #if ENABLED(DIGIPOT_I2C)
  5246. // this one uses actual amps in floating point
  5247. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5248. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5249. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5250. #endif
  5251. #if ENABLED(DAC_STEPPER_CURRENT)
  5252. if (code_seen('S')) {
  5253. float dac_percent = code_value();
  5254. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5255. }
  5256. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5257. #endif
  5258. }
  5259. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5260. /**
  5261. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5262. */
  5263. inline void gcode_M908() {
  5264. #if HAS_DIGIPOTSS
  5265. stepper.digitalPotWrite(
  5266. code_seen('P') ? code_value() : 0,
  5267. code_seen('S') ? code_value() : 0
  5268. );
  5269. #endif
  5270. #ifdef DAC_STEPPER_CURRENT
  5271. dac_current_raw(
  5272. code_seen('P') ? code_value_long() : -1,
  5273. code_seen('S') ? code_value_short() : 0
  5274. );
  5275. #endif
  5276. }
  5277. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5278. inline void gcode_M909() { dac_print_values(); }
  5279. inline void gcode_M910() { dac_commit_eeprom(); }
  5280. #endif
  5281. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5282. #if HAS_MICROSTEPS
  5283. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5284. inline void gcode_M350() {
  5285. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value());
  5286. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, (uint8_t)code_value());
  5287. if (code_seen('B')) stepper.microstep_mode(4, code_value());
  5288. stepper.microstep_readings();
  5289. }
  5290. /**
  5291. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5292. * S# determines MS1 or MS2, X# sets the pin high/low.
  5293. */
  5294. inline void gcode_M351() {
  5295. if (code_seen('S')) switch (code_value_short()) {
  5296. case 1:
  5297. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value(), -1);
  5298. if (code_seen('B')) stepper.microstep_ms(4, code_value(), -1);
  5299. break;
  5300. case 2:
  5301. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value());
  5302. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value());
  5303. break;
  5304. }
  5305. stepper.microstep_readings();
  5306. }
  5307. #endif // HAS_MICROSTEPS
  5308. /**
  5309. * M999: Restart after being stopped
  5310. */
  5311. inline void gcode_M999() {
  5312. Running = true;
  5313. lcd_reset_alert_level();
  5314. // gcode_LastN = Stopped_gcode_LastN;
  5315. FlushSerialRequestResend();
  5316. }
  5317. /**
  5318. * T0-T3: Switch tool, usually switching extruders
  5319. *
  5320. * F[mm/min] Set the movement feedrate
  5321. */
  5322. inline void gcode_T(uint8_t tmp_extruder) {
  5323. if (tmp_extruder >= EXTRUDERS) {
  5324. SERIAL_ECHO_START;
  5325. SERIAL_CHAR('T');
  5326. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5327. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5328. return;
  5329. }
  5330. float stored_feedrate = feedrate;
  5331. if (code_seen('F')) {
  5332. float next_feedrate = code_value();
  5333. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5334. }
  5335. else {
  5336. #ifdef XY_TRAVEL_SPEED
  5337. feedrate = XY_TRAVEL_SPEED;
  5338. #else
  5339. feedrate = min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]);
  5340. #endif
  5341. }
  5342. #if EXTRUDERS > 1
  5343. if (tmp_extruder != active_extruder) {
  5344. // Save current position to return to after applying extruder offset
  5345. set_destination_to_current();
  5346. #if ENABLED(DUAL_X_CARRIAGE)
  5347. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5348. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5349. // Park old head: 1) raise 2) move to park position 3) lower
  5350. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5351. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5352. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5353. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5354. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5355. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5356. stepper.synchronize();
  5357. }
  5358. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5359. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5360. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5361. active_extruder = tmp_extruder;
  5362. // This function resets the max/min values - the current position may be overwritten below.
  5363. set_axis_is_at_home(X_AXIS);
  5364. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5365. current_position[X_AXIS] = inactive_extruder_x_pos;
  5366. inactive_extruder_x_pos = destination[X_AXIS];
  5367. }
  5368. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5369. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5370. if (active_extruder_parked)
  5371. current_position[X_AXIS] = inactive_extruder_x_pos;
  5372. else
  5373. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5374. inactive_extruder_x_pos = destination[X_AXIS];
  5375. extruder_duplication_enabled = false;
  5376. }
  5377. else {
  5378. // record raised toolhead position for use by unpark
  5379. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5380. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5381. active_extruder_parked = true;
  5382. delayed_move_time = 0;
  5383. }
  5384. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5385. #else // !DUAL_X_CARRIAGE
  5386. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5387. // Offset extruder, make sure to apply the bed level rotation matrix
  5388. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5389. extruder_offset[Y_AXIS][tmp_extruder],
  5390. 0),
  5391. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5392. extruder_offset[Y_AXIS][active_extruder],
  5393. 0),
  5394. offset_vec = tmp_offset_vec - act_offset_vec;
  5395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5396. if (DEBUGGING(LEVELING)) {
  5397. SERIAL_ECHOLNPGM(">>> gcode_T");
  5398. tmp_offset_vec.debug("tmp_offset_vec");
  5399. act_offset_vec.debug("act_offset_vec");
  5400. offset_vec.debug("offset_vec (BEFORE)");
  5401. DEBUG_POS("BEFORE rotation", current_position);
  5402. }
  5403. #endif
  5404. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5405. current_position[X_AXIS] += offset_vec.x;
  5406. current_position[Y_AXIS] += offset_vec.y;
  5407. current_position[Z_AXIS] += offset_vec.z;
  5408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5409. if (DEBUGGING(LEVELING)) {
  5410. offset_vec.debug("offset_vec (AFTER)");
  5411. DEBUG_POS("AFTER rotation", current_position);
  5412. SERIAL_ECHOLNPGM("<<< gcode_T");
  5413. }
  5414. #endif
  5415. #else // !AUTO_BED_LEVELING_FEATURE
  5416. // Offset extruder (only by XY)
  5417. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5418. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5419. #endif // !AUTO_BED_LEVELING_FEATURE
  5420. // Set the new active extruder and position
  5421. active_extruder = tmp_extruder;
  5422. #endif // !DUAL_X_CARRIAGE
  5423. #if ENABLED(DELTA)
  5424. sync_plan_position_delta();
  5425. #else
  5426. sync_plan_position();
  5427. #endif
  5428. // Move to the old position
  5429. if (IsRunning()) prepare_move();
  5430. } // (tmp_extruder != active_extruder)
  5431. #if ENABLED(EXT_SOLENOID)
  5432. stepper.synchronize();
  5433. disable_all_solenoids();
  5434. enable_solenoid_on_active_extruder();
  5435. #endif // EXT_SOLENOID
  5436. #endif // EXTRUDERS > 1
  5437. feedrate = stored_feedrate;
  5438. SERIAL_ECHO_START;
  5439. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5440. SERIAL_PROTOCOLLN((int)active_extruder);
  5441. }
  5442. /**
  5443. * Process a single command and dispatch it to its handler
  5444. * This is called from the main loop()
  5445. */
  5446. void process_next_command() {
  5447. current_command = command_queue[cmd_queue_index_r];
  5448. if (DEBUGGING(ECHO)) {
  5449. SERIAL_ECHO_START;
  5450. SERIAL_ECHOLN(current_command);
  5451. }
  5452. // Sanitize the current command:
  5453. // - Skip leading spaces
  5454. // - Bypass N[-0-9][0-9]*[ ]*
  5455. // - Overwrite * with nul to mark the end
  5456. while (*current_command == ' ') ++current_command;
  5457. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5458. current_command += 2; // skip N[-0-9]
  5459. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5460. while (*current_command == ' ') ++current_command; // skip [ ]*
  5461. }
  5462. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5463. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5464. char *cmd_ptr = current_command;
  5465. // Get the command code, which must be G, M, or T
  5466. char command_code = *cmd_ptr++;
  5467. // Skip spaces to get the numeric part
  5468. while (*cmd_ptr == ' ') cmd_ptr++;
  5469. uint16_t codenum = 0; // define ahead of goto
  5470. // Bail early if there's no code
  5471. bool code_is_good = NUMERIC(*cmd_ptr);
  5472. if (!code_is_good) goto ExitUnknownCommand;
  5473. // Get and skip the code number
  5474. do {
  5475. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5476. cmd_ptr++;
  5477. } while (NUMERIC(*cmd_ptr));
  5478. // Skip all spaces to get to the first argument, or nul
  5479. while (*cmd_ptr == ' ') cmd_ptr++;
  5480. // The command's arguments (if any) start here, for sure!
  5481. current_command_args = cmd_ptr;
  5482. KEEPALIVE_STATE(IN_HANDLER);
  5483. // Handle a known G, M, or T
  5484. switch (command_code) {
  5485. case 'G': switch (codenum) {
  5486. // G0, G1
  5487. case 0:
  5488. case 1:
  5489. gcode_G0_G1();
  5490. break;
  5491. // G2, G3
  5492. #if DISABLED(SCARA)
  5493. case 2: // G2 - CW ARC
  5494. case 3: // G3 - CCW ARC
  5495. gcode_G2_G3(codenum == 2);
  5496. break;
  5497. #endif
  5498. // G4 Dwell
  5499. case 4:
  5500. gcode_G4();
  5501. break;
  5502. #if ENABLED(FWRETRACT)
  5503. case 10: // G10: retract
  5504. case 11: // G11: retract_recover
  5505. gcode_G10_G11(codenum == 10);
  5506. break;
  5507. #endif //FWRETRACT
  5508. case 28: // G28: Home all axes, one at a time
  5509. gcode_G28();
  5510. break;
  5511. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5512. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5513. gcode_G29();
  5514. break;
  5515. #endif
  5516. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5517. #if DISABLED(Z_PROBE_SLED)
  5518. case 30: // G30 Single Z probe
  5519. gcode_G30();
  5520. break;
  5521. #else // Z_PROBE_SLED
  5522. case 31: // G31: dock the sled
  5523. case 32: // G32: undock the sled
  5524. dock_sled(codenum == 31);
  5525. break;
  5526. #endif // Z_PROBE_SLED
  5527. #endif // AUTO_BED_LEVELING_FEATURE
  5528. case 90: // G90
  5529. relative_mode = false;
  5530. break;
  5531. case 91: // G91
  5532. relative_mode = true;
  5533. break;
  5534. case 92: // G92
  5535. gcode_G92();
  5536. break;
  5537. }
  5538. break;
  5539. case 'M': switch (codenum) {
  5540. #if ENABLED(ULTIPANEL)
  5541. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5542. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5543. gcode_M0_M1();
  5544. break;
  5545. #endif // ULTIPANEL
  5546. case 17:
  5547. gcode_M17();
  5548. break;
  5549. #if ENABLED(SDSUPPORT)
  5550. case 20: // M20 - list SD card
  5551. gcode_M20(); break;
  5552. case 21: // M21 - init SD card
  5553. gcode_M21(); break;
  5554. case 22: //M22 - release SD card
  5555. gcode_M22(); break;
  5556. case 23: //M23 - Select file
  5557. gcode_M23(); break;
  5558. case 24: //M24 - Start SD print
  5559. gcode_M24(); break;
  5560. case 25: //M25 - Pause SD print
  5561. gcode_M25(); break;
  5562. case 26: //M26 - Set SD index
  5563. gcode_M26(); break;
  5564. case 27: //M27 - Get SD status
  5565. gcode_M27(); break;
  5566. case 28: //M28 - Start SD write
  5567. gcode_M28(); break;
  5568. case 29: //M29 - Stop SD write
  5569. gcode_M29(); break;
  5570. case 30: //M30 <filename> Delete File
  5571. gcode_M30(); break;
  5572. case 32: //M32 - Select file and start SD print
  5573. gcode_M32(); break;
  5574. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5575. case 33: //M33 - Get the long full path to a file or folder
  5576. gcode_M33(); break;
  5577. #endif // LONG_FILENAME_HOST_SUPPORT
  5578. case 928: //M928 - Start SD write
  5579. gcode_M928(); break;
  5580. #endif //SDSUPPORT
  5581. case 31: //M31 take time since the start of the SD print or an M109 command
  5582. gcode_M31();
  5583. break;
  5584. case 42: //M42 -Change pin status via gcode
  5585. gcode_M42();
  5586. break;
  5587. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5588. case 48: // M48 Z probe repeatability
  5589. gcode_M48();
  5590. break;
  5591. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5592. case 75: // Start print timer
  5593. gcode_M75();
  5594. break;
  5595. case 76: // Pause print timer
  5596. gcode_M76();
  5597. break;
  5598. case 77: // Stop print timer
  5599. gcode_M77();
  5600. break;
  5601. #if ENABLED(PRINTCOUNTER)
  5602. case 78: // Show print statistics
  5603. gcode_M78();
  5604. break;
  5605. #endif
  5606. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5607. case 100:
  5608. gcode_M100();
  5609. break;
  5610. #endif
  5611. case 104: // M104
  5612. gcode_M104();
  5613. break;
  5614. case 110: // M110: Set Current Line Number
  5615. gcode_M110();
  5616. break;
  5617. case 111: // M111: Set debug level
  5618. gcode_M111();
  5619. break;
  5620. case 112: // M112: Emergency Stop
  5621. gcode_M112();
  5622. break;
  5623. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5624. case 113: // M113: Set Host Keepalive interval
  5625. gcode_M113();
  5626. break;
  5627. #endif
  5628. case 140: // M140: Set bed temp
  5629. gcode_M140();
  5630. break;
  5631. case 105: // M105: Read current temperature
  5632. gcode_M105();
  5633. KEEPALIVE_STATE(NOT_BUSY);
  5634. return; // "ok" already printed
  5635. case 109: // M109: Wait for temperature
  5636. gcode_M109();
  5637. break;
  5638. #if HAS_TEMP_BED
  5639. case 190: // M190: Wait for bed heater to reach target
  5640. gcode_M190();
  5641. break;
  5642. #endif // HAS_TEMP_BED
  5643. #if FAN_COUNT > 0
  5644. case 106: // M106: Fan On
  5645. gcode_M106();
  5646. break;
  5647. case 107: // M107: Fan Off
  5648. gcode_M107();
  5649. break;
  5650. #endif // FAN_COUNT > 0
  5651. #if ENABLED(BARICUDA)
  5652. // PWM for HEATER_1_PIN
  5653. #if HAS_HEATER_1
  5654. case 126: // M126: valve open
  5655. gcode_M126();
  5656. break;
  5657. case 127: // M127: valve closed
  5658. gcode_M127();
  5659. break;
  5660. #endif // HAS_HEATER_1
  5661. // PWM for HEATER_2_PIN
  5662. #if HAS_HEATER_2
  5663. case 128: // M128: valve open
  5664. gcode_M128();
  5665. break;
  5666. case 129: // M129: valve closed
  5667. gcode_M129();
  5668. break;
  5669. #endif // HAS_HEATER_2
  5670. #endif // BARICUDA
  5671. #if HAS_POWER_SWITCH
  5672. case 80: // M80: Turn on Power Supply
  5673. gcode_M80();
  5674. break;
  5675. #endif // HAS_POWER_SWITCH
  5676. case 81: // M81: Turn off Power, including Power Supply, if possible
  5677. gcode_M81();
  5678. break;
  5679. case 82:
  5680. gcode_M82();
  5681. break;
  5682. case 83:
  5683. gcode_M83();
  5684. break;
  5685. case 18: // (for compatibility)
  5686. case 84: // M84
  5687. gcode_M18_M84();
  5688. break;
  5689. case 85: // M85
  5690. gcode_M85();
  5691. break;
  5692. case 92: // M92: Set the steps-per-unit for one or more axes
  5693. gcode_M92();
  5694. break;
  5695. case 115: // M115: Report capabilities
  5696. gcode_M115();
  5697. break;
  5698. case 117: // M117: Set LCD message text, if possible
  5699. gcode_M117();
  5700. break;
  5701. case 114: // M114: Report current position
  5702. gcode_M114();
  5703. break;
  5704. case 120: // M120: Enable endstops
  5705. gcode_M120();
  5706. break;
  5707. case 121: // M121: Disable endstops
  5708. gcode_M121();
  5709. break;
  5710. case 119: // M119: Report endstop states
  5711. gcode_M119();
  5712. break;
  5713. #if ENABLED(ULTIPANEL)
  5714. case 145: // M145: Set material heatup parameters
  5715. gcode_M145();
  5716. break;
  5717. #endif
  5718. #if ENABLED(BLINKM)
  5719. case 150: // M150
  5720. gcode_M150();
  5721. break;
  5722. #endif //BLINKM
  5723. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5724. case 155:
  5725. gcode_M155();
  5726. break;
  5727. case 156:
  5728. gcode_M156();
  5729. break;
  5730. #endif //EXPERIMENTAL_I2CBUS
  5731. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5732. gcode_M200();
  5733. break;
  5734. case 201: // M201
  5735. gcode_M201();
  5736. break;
  5737. #if 0 // Not used for Sprinter/grbl gen6
  5738. case 202: // M202
  5739. gcode_M202();
  5740. break;
  5741. #endif
  5742. case 203: // M203 max feedrate mm/sec
  5743. gcode_M203();
  5744. break;
  5745. case 204: // M204 acclereration S normal moves T filmanent only moves
  5746. gcode_M204();
  5747. break;
  5748. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5749. gcode_M205();
  5750. break;
  5751. case 206: // M206 additional homing offset
  5752. gcode_M206();
  5753. break;
  5754. #if ENABLED(DELTA)
  5755. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5756. gcode_M665();
  5757. break;
  5758. #endif
  5759. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5760. case 666: // M666 set delta / dual endstop adjustment
  5761. gcode_M666();
  5762. break;
  5763. #endif
  5764. #if ENABLED(FWRETRACT)
  5765. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5766. gcode_M207();
  5767. break;
  5768. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5769. gcode_M208();
  5770. break;
  5771. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5772. gcode_M209();
  5773. break;
  5774. #endif // FWRETRACT
  5775. #if EXTRUDERS > 1
  5776. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5777. gcode_M218();
  5778. break;
  5779. #endif
  5780. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5781. gcode_M220();
  5782. break;
  5783. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5784. gcode_M221();
  5785. break;
  5786. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5787. gcode_M226();
  5788. break;
  5789. #if HAS_SERVOS
  5790. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5791. gcode_M280();
  5792. break;
  5793. #endif // HAS_SERVOS
  5794. #if HAS_BUZZER
  5795. case 300: // M300 - Play beep tone
  5796. gcode_M300();
  5797. break;
  5798. #endif // HAS_BUZZER
  5799. #if ENABLED(PIDTEMP)
  5800. case 301: // M301
  5801. gcode_M301();
  5802. break;
  5803. #endif // PIDTEMP
  5804. #if ENABLED(PIDTEMPBED)
  5805. case 304: // M304
  5806. gcode_M304();
  5807. break;
  5808. #endif // PIDTEMPBED
  5809. #if defined(CHDK) || HAS_PHOTOGRAPH
  5810. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5811. gcode_M240();
  5812. break;
  5813. #endif // CHDK || PHOTOGRAPH_PIN
  5814. #if ENABLED(HAS_LCD_CONTRAST)
  5815. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5816. gcode_M250();
  5817. break;
  5818. #endif // HAS_LCD_CONTRAST
  5819. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5820. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5821. gcode_M302();
  5822. break;
  5823. #endif // PREVENT_DANGEROUS_EXTRUDE
  5824. case 303: // M303 PID autotune
  5825. gcode_M303();
  5826. break;
  5827. #if ENABLED(SCARA)
  5828. case 360: // M360 SCARA Theta pos1
  5829. if (gcode_M360()) return;
  5830. break;
  5831. case 361: // M361 SCARA Theta pos2
  5832. if (gcode_M361()) return;
  5833. break;
  5834. case 362: // M362 SCARA Psi pos1
  5835. if (gcode_M362()) return;
  5836. break;
  5837. case 363: // M363 SCARA Psi pos2
  5838. if (gcode_M363()) return;
  5839. break;
  5840. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5841. if (gcode_M364()) return;
  5842. break;
  5843. case 365: // M365 Set SCARA scaling for X Y Z
  5844. gcode_M365();
  5845. break;
  5846. #endif // SCARA
  5847. case 400: // M400 finish all moves
  5848. gcode_M400();
  5849. break;
  5850. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5851. case 401:
  5852. gcode_M401();
  5853. break;
  5854. case 402:
  5855. gcode_M402();
  5856. break;
  5857. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5858. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5859. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5860. gcode_M404();
  5861. break;
  5862. case 405: //M405 Turn on filament sensor for control
  5863. gcode_M405();
  5864. break;
  5865. case 406: //M406 Turn off filament sensor for control
  5866. gcode_M406();
  5867. break;
  5868. case 407: //M407 Display measured filament diameter
  5869. gcode_M407();
  5870. break;
  5871. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5872. case 410: // M410 quickstop - Abort all the planned moves.
  5873. gcode_M410();
  5874. break;
  5875. #if ENABLED(MESH_BED_LEVELING)
  5876. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5877. gcode_M420();
  5878. break;
  5879. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5880. gcode_M421();
  5881. break;
  5882. #endif
  5883. case 428: // M428 Apply current_position to home_offset
  5884. gcode_M428();
  5885. break;
  5886. case 500: // M500 Store settings in EEPROM
  5887. gcode_M500();
  5888. break;
  5889. case 501: // M501 Read settings from EEPROM
  5890. gcode_M501();
  5891. break;
  5892. case 502: // M502 Revert to default settings
  5893. gcode_M502();
  5894. break;
  5895. case 503: // M503 print settings currently in memory
  5896. gcode_M503();
  5897. break;
  5898. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5899. case 540:
  5900. gcode_M540();
  5901. break;
  5902. #endif
  5903. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5904. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5905. gcode_SET_Z_PROBE_OFFSET();
  5906. break;
  5907. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5908. #if ENABLED(FILAMENTCHANGEENABLE)
  5909. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5910. gcode_M600();
  5911. break;
  5912. #endif // FILAMENTCHANGEENABLE
  5913. #if ENABLED(DUAL_X_CARRIAGE)
  5914. case 605:
  5915. gcode_M605();
  5916. break;
  5917. #endif // DUAL_X_CARRIAGE
  5918. case 907: // M907 Set digital trimpot motor current using axis codes.
  5919. gcode_M907();
  5920. break;
  5921. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5922. case 908: // M908 Control digital trimpot directly.
  5923. gcode_M908();
  5924. break;
  5925. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5926. case 909: // M909 Print digipot/DAC current value
  5927. gcode_M909();
  5928. break;
  5929. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5930. gcode_M910();
  5931. break;
  5932. #endif
  5933. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5934. #if HAS_MICROSTEPS
  5935. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5936. gcode_M350();
  5937. break;
  5938. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5939. gcode_M351();
  5940. break;
  5941. #endif // HAS_MICROSTEPS
  5942. case 999: // M999: Restart after being Stopped
  5943. gcode_M999();
  5944. break;
  5945. }
  5946. break;
  5947. case 'T':
  5948. gcode_T(codenum);
  5949. break;
  5950. default: code_is_good = false;
  5951. }
  5952. KEEPALIVE_STATE(NOT_BUSY);
  5953. ExitUnknownCommand:
  5954. // Still unknown command? Throw an error
  5955. if (!code_is_good) unknown_command_error();
  5956. ok_to_send();
  5957. }
  5958. void FlushSerialRequestResend() {
  5959. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5960. MYSERIAL.flush();
  5961. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5962. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5963. ok_to_send();
  5964. }
  5965. void ok_to_send() {
  5966. refresh_cmd_timeout();
  5967. if (!send_ok[cmd_queue_index_r]) return;
  5968. SERIAL_PROTOCOLPGM(MSG_OK);
  5969. #if ENABLED(ADVANCED_OK)
  5970. char* p = command_queue[cmd_queue_index_r];
  5971. if (*p == 'N') {
  5972. SERIAL_PROTOCOL(' ');
  5973. SERIAL_ECHO(*p++);
  5974. while (NUMERIC_SIGNED(*p))
  5975. SERIAL_ECHO(*p++);
  5976. }
  5977. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  5978. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5979. #endif
  5980. SERIAL_EOL;
  5981. }
  5982. void clamp_to_software_endstops(float target[3]) {
  5983. if (min_software_endstops) {
  5984. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  5985. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  5986. float negative_z_offset = 0;
  5987. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5988. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5989. if (home_offset[Z_AXIS] < 0) {
  5990. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5991. if (DEBUGGING(LEVELING)) {
  5992. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5993. SERIAL_EOL;
  5994. }
  5995. #endif
  5996. negative_z_offset += home_offset[Z_AXIS];
  5997. }
  5998. #endif
  5999. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS] + negative_z_offset);
  6000. }
  6001. if (max_software_endstops) {
  6002. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6003. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6004. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6005. }
  6006. }
  6007. #if ENABLED(DELTA)
  6008. void recalc_delta_settings(float radius, float diagonal_rod) {
  6009. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6010. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6011. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6012. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6013. delta_tower3_x = 0.0; // back middle tower
  6014. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6015. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6016. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6017. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6018. }
  6019. void calculate_delta(float cartesian[3]) {
  6020. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6021. - sq(delta_tower1_x - cartesian[X_AXIS])
  6022. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6023. ) + cartesian[Z_AXIS];
  6024. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6025. - sq(delta_tower2_x - cartesian[X_AXIS])
  6026. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6027. ) + cartesian[Z_AXIS];
  6028. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6029. - sq(delta_tower3_x - cartesian[X_AXIS])
  6030. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6031. ) + cartesian[Z_AXIS];
  6032. /**
  6033. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6034. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6035. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6036. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6037. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6038. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6039. */
  6040. }
  6041. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6042. // Adjust print surface height by linear interpolation over the bed_level array.
  6043. void adjust_delta(float cartesian[3]) {
  6044. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6045. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6046. float h1 = 0.001 - half, h2 = half - 0.001,
  6047. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6048. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6049. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6050. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6051. z1 = bed_level[floor_x + half][floor_y + half],
  6052. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6053. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6054. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6055. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6056. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6057. offset = (1 - ratio_x) * left + ratio_x * right;
  6058. delta[X_AXIS] += offset;
  6059. delta[Y_AXIS] += offset;
  6060. delta[Z_AXIS] += offset;
  6061. /**
  6062. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6063. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6064. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6065. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6066. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6067. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6068. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6069. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6070. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6071. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6072. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6073. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6074. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6075. */
  6076. }
  6077. #endif // AUTO_BED_LEVELING_FEATURE
  6078. #endif // DELTA
  6079. #if ENABLED(MESH_BED_LEVELING)
  6080. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6081. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6082. if (!mbl.active) {
  6083. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6084. set_current_to_destination();
  6085. return;
  6086. }
  6087. int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
  6088. int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6089. int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
  6090. int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
  6091. pix = min(pix, MESH_NUM_X_POINTS - 2);
  6092. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  6093. ix = min(ix, MESH_NUM_X_POINTS - 2);
  6094. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  6095. if (pix == ix && piy == iy) {
  6096. // Start and end on same mesh square
  6097. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6098. set_current_to_destination();
  6099. return;
  6100. }
  6101. float nx, ny, nz, ne, normalized_dist;
  6102. if (ix > pix && TEST(x_splits, ix)) {
  6103. nx = mbl.get_x(ix) + home_offset[X_AXIS];
  6104. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6105. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6106. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6107. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6108. CBI(x_splits, ix);
  6109. }
  6110. else if (ix < pix && TEST(x_splits, pix)) {
  6111. nx = mbl.get_x(pix) + home_offset[X_AXIS];
  6112. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6113. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6114. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6115. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6116. CBI(x_splits, pix);
  6117. }
  6118. else if (iy > piy && TEST(y_splits, iy)) {
  6119. ny = mbl.get_y(iy) + home_offset[Y_AXIS];
  6120. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6121. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6122. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6123. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6124. CBI(y_splits, iy);
  6125. }
  6126. else if (iy < piy && TEST(y_splits, piy)) {
  6127. ny = mbl.get_y(piy) + home_offset[Y_AXIS];
  6128. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6129. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6130. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6131. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6132. CBI(y_splits, piy);
  6133. }
  6134. else {
  6135. // Already split on a border
  6136. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6137. set_current_to_destination();
  6138. return;
  6139. }
  6140. // Do the split and look for more borders
  6141. destination[X_AXIS] = nx;
  6142. destination[Y_AXIS] = ny;
  6143. destination[Z_AXIS] = nz;
  6144. destination[E_AXIS] = ne;
  6145. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6146. destination[X_AXIS] = x;
  6147. destination[Y_AXIS] = y;
  6148. destination[Z_AXIS] = z;
  6149. destination[E_AXIS] = e;
  6150. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6151. }
  6152. #endif // MESH_BED_LEVELING
  6153. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6154. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6155. if (DEBUGGING(DRYRUN)) return;
  6156. float de = dest_e - curr_e;
  6157. if (de) {
  6158. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6159. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6160. SERIAL_ECHO_START;
  6161. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6162. }
  6163. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6164. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6165. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6166. SERIAL_ECHO_START;
  6167. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6168. }
  6169. #endif
  6170. }
  6171. }
  6172. #endif // PREVENT_DANGEROUS_EXTRUDE
  6173. #if ENABLED(DELTA) || ENABLED(SCARA)
  6174. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6175. float difference[NUM_AXIS];
  6176. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6177. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6178. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6179. if (cartesian_mm < 0.000001) return false;
  6180. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  6181. int steps = max(1, int(delta_segments_per_second * seconds));
  6182. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6183. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6184. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6185. for (int s = 1; s <= steps; s++) {
  6186. float fraction = float(s) / float(steps);
  6187. for (int8_t i = 0; i < NUM_AXIS; i++)
  6188. target[i] = current_position[i] + difference[i] * fraction;
  6189. calculate_delta(target);
  6190. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6191. if (!bed_leveling_in_progress) adjust_delta(target);
  6192. #endif
  6193. //DEBUG_POS("prepare_move_delta", target);
  6194. //DEBUG_POS("prepare_move_delta", delta);
  6195. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  6196. }
  6197. return true;
  6198. }
  6199. #endif // DELTA || SCARA
  6200. #if ENABLED(SCARA)
  6201. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6202. #endif
  6203. #if ENABLED(DUAL_X_CARRIAGE)
  6204. inline bool prepare_move_dual_x_carriage() {
  6205. if (active_extruder_parked) {
  6206. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6207. // move duplicate extruder into correct duplication position.
  6208. planner.set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6209. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6210. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6211. sync_plan_position();
  6212. stepper.synchronize();
  6213. extruder_duplication_enabled = true;
  6214. active_extruder_parked = false;
  6215. }
  6216. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6217. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6218. // This is a travel move (with no extrusion)
  6219. // Skip it, but keep track of the current position
  6220. // (so it can be used as the start of the next non-travel move)
  6221. if (delayed_move_time != 0xFFFFFFFFUL) {
  6222. set_current_to_destination();
  6223. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6224. delayed_move_time = millis();
  6225. return false;
  6226. }
  6227. }
  6228. delayed_move_time = 0;
  6229. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6230. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6231. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
  6232. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6233. active_extruder_parked = false;
  6234. }
  6235. }
  6236. return true;
  6237. }
  6238. #endif // DUAL_X_CARRIAGE
  6239. #if DISABLED(DELTA) && DISABLED(SCARA)
  6240. inline bool prepare_move_cartesian() {
  6241. // Do not use feedrate_multiplier for E or Z only moves
  6242. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6243. line_to_destination();
  6244. }
  6245. else {
  6246. #if ENABLED(MESH_BED_LEVELING)
  6247. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6248. return false;
  6249. #else
  6250. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6251. #endif
  6252. }
  6253. return true;
  6254. }
  6255. #endif // !DELTA && !SCARA
  6256. /**
  6257. * Prepare a single move and get ready for the next one
  6258. *
  6259. * (This may call planner.buffer_line several times to put
  6260. * smaller moves into the planner for DELTA or SCARA.)
  6261. */
  6262. void prepare_move() {
  6263. clamp_to_software_endstops(destination);
  6264. refresh_cmd_timeout();
  6265. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6266. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6267. #endif
  6268. #if ENABLED(SCARA)
  6269. if (!prepare_move_scara(destination)) return;
  6270. #elif ENABLED(DELTA)
  6271. if (!prepare_move_delta(destination)) return;
  6272. #else
  6273. #if ENABLED(DUAL_X_CARRIAGE)
  6274. if (!prepare_move_dual_x_carriage()) return;
  6275. #endif
  6276. if (!prepare_move_cartesian()) return;
  6277. #endif
  6278. set_current_to_destination();
  6279. }
  6280. /**
  6281. * Plan an arc in 2 dimensions
  6282. *
  6283. * The arc is approximated by generating many small linear segments.
  6284. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6285. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6286. * larger segments will tend to be more efficient. Your slicer should have
  6287. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6288. */
  6289. void plan_arc(
  6290. float target[NUM_AXIS], // Destination position
  6291. float* offset, // Center of rotation relative to current_position
  6292. uint8_t clockwise // Clockwise?
  6293. ) {
  6294. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6295. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6296. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6297. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6298. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6299. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6300. r_Y = -offset[Y_AXIS],
  6301. rt_X = target[X_AXIS] - center_X,
  6302. rt_Y = target[Y_AXIS] - center_Y;
  6303. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6304. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6305. if (angular_travel < 0) angular_travel += RADIANS(360);
  6306. if (clockwise) angular_travel -= RADIANS(360);
  6307. // Make a circle if the angular rotation is 0
  6308. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6309. angular_travel += RADIANS(360);
  6310. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6311. if (mm_of_travel < 0.001) return;
  6312. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6313. if (segments == 0) segments = 1;
  6314. float theta_per_segment = angular_travel / segments;
  6315. float linear_per_segment = linear_travel / segments;
  6316. float extruder_per_segment = extruder_travel / segments;
  6317. /**
  6318. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6319. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6320. * r_T = [cos(phi) -sin(phi);
  6321. * sin(phi) cos(phi] * r ;
  6322. *
  6323. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6324. * defined from the circle center to the initial position. Each line segment is formed by successive
  6325. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6326. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6327. * all double numbers are single precision on the Arduino. (True double precision will not have
  6328. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6329. * tool precision in some cases. Therefore, arc path correction is implemented.
  6330. *
  6331. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6332. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6333. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6334. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6335. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6336. * issue for CNC machines with the single precision Arduino calculations.
  6337. *
  6338. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6339. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6340. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6341. * This is important when there are successive arc motions.
  6342. */
  6343. // Vector rotation matrix values
  6344. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6345. float sin_T = theta_per_segment;
  6346. float arc_target[NUM_AXIS];
  6347. float sin_Ti, cos_Ti, r_new_Y;
  6348. uint16_t i;
  6349. int8_t count = 0;
  6350. // Initialize the linear axis
  6351. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6352. // Initialize the extruder axis
  6353. arc_target[E_AXIS] = current_position[E_AXIS];
  6354. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6355. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6356. if (++count < N_ARC_CORRECTION) {
  6357. // Apply vector rotation matrix to previous r_X / 1
  6358. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6359. r_X = r_X * cos_T - r_Y * sin_T;
  6360. r_Y = r_new_Y;
  6361. }
  6362. else {
  6363. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6364. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6365. // To reduce stuttering, the sin and cos could be computed at different times.
  6366. // For now, compute both at the same time.
  6367. cos_Ti = cos(i * theta_per_segment);
  6368. sin_Ti = sin(i * theta_per_segment);
  6369. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6370. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6371. count = 0;
  6372. }
  6373. // Update arc_target location
  6374. arc_target[X_AXIS] = center_X + r_X;
  6375. arc_target[Y_AXIS] = center_Y + r_Y;
  6376. arc_target[Z_AXIS] += linear_per_segment;
  6377. arc_target[E_AXIS] += extruder_per_segment;
  6378. clamp_to_software_endstops(arc_target);
  6379. #if ENABLED(DELTA) || ENABLED(SCARA)
  6380. calculate_delta(arc_target);
  6381. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6382. adjust_delta(arc_target);
  6383. #endif
  6384. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6385. #else
  6386. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6387. #endif
  6388. }
  6389. // Ensure last segment arrives at target location.
  6390. #if ENABLED(DELTA) || ENABLED(SCARA)
  6391. calculate_delta(target);
  6392. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6393. adjust_delta(target);
  6394. #endif
  6395. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6396. #else
  6397. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6398. #endif
  6399. // As far as the parser is concerned, the position is now == target. In reality the
  6400. // motion control system might still be processing the action and the real tool position
  6401. // in any intermediate location.
  6402. set_current_to_destination();
  6403. }
  6404. #if HAS_CONTROLLERFAN
  6405. void controllerFan() {
  6406. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6407. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6408. millis_t ms = millis();
  6409. if (ELAPSED(ms, nextMotorCheck)) {
  6410. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6411. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6412. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6413. #if EXTRUDERS > 1
  6414. || E1_ENABLE_READ == E_ENABLE_ON
  6415. #if HAS_X2_ENABLE
  6416. || X2_ENABLE_READ == X_ENABLE_ON
  6417. #endif
  6418. #if EXTRUDERS > 2
  6419. || E2_ENABLE_READ == E_ENABLE_ON
  6420. #if EXTRUDERS > 3
  6421. || E3_ENABLE_READ == E_ENABLE_ON
  6422. #endif
  6423. #endif
  6424. #endif
  6425. ) {
  6426. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6427. }
  6428. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6429. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6430. // allows digital or PWM fan output to be used (see M42 handling)
  6431. digitalWrite(CONTROLLERFAN_PIN, speed);
  6432. analogWrite(CONTROLLERFAN_PIN, speed);
  6433. }
  6434. }
  6435. #endif // HAS_CONTROLLERFAN
  6436. #if ENABLED(SCARA)
  6437. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6438. // Perform forward kinematics, and place results in delta[3]
  6439. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6440. float x_sin, x_cos, y_sin, y_cos;
  6441. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6442. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6443. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6444. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6445. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6446. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6447. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6448. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6449. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6450. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6451. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6452. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6453. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6454. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6455. }
  6456. void calculate_delta(float cartesian[3]) {
  6457. //reverse kinematics.
  6458. // Perform reversed kinematics, and place results in delta[3]
  6459. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6460. float SCARA_pos[2];
  6461. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6462. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6463. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6464. #if (Linkage_1 == Linkage_2)
  6465. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6466. #else
  6467. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6468. #endif
  6469. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6470. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6471. SCARA_K2 = Linkage_2 * SCARA_S2;
  6472. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6473. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6474. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6475. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6476. delta[Z_AXIS] = cartesian[Z_AXIS];
  6477. /**
  6478. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6479. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6480. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6481. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6482. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6483. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6484. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6485. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6486. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6487. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6488. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6489. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6490. SERIAL_EOL;
  6491. */
  6492. }
  6493. #endif // SCARA
  6494. #if ENABLED(TEMP_STAT_LEDS)
  6495. static bool red_led = false;
  6496. static millis_t next_status_led_update_ms = 0;
  6497. void handle_status_leds(void) {
  6498. float max_temp = 0.0;
  6499. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6500. next_status_led_update_ms += 500; // Update every 0.5s
  6501. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6502. max_temp = max(max(max_temp, thermalManager.degHotend(cur_extruder)), thermalManager.degTargetHotend(cur_extruder));
  6503. #if HAS_TEMP_BED
  6504. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6505. #endif
  6506. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6507. if (new_led != red_led) {
  6508. red_led = new_led;
  6509. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6510. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6511. }
  6512. }
  6513. }
  6514. #endif
  6515. void enable_all_steppers() {
  6516. enable_x();
  6517. enable_y();
  6518. enable_z();
  6519. enable_e0();
  6520. enable_e1();
  6521. enable_e2();
  6522. enable_e3();
  6523. }
  6524. void disable_all_steppers() {
  6525. disable_x();
  6526. disable_y();
  6527. disable_z();
  6528. disable_e0();
  6529. disable_e1();
  6530. disable_e2();
  6531. disable_e3();
  6532. }
  6533. /**
  6534. * Standard idle routine keeps the machine alive
  6535. */
  6536. void idle(
  6537. #if ENABLED(FILAMENTCHANGEENABLE)
  6538. bool no_stepper_sleep/*=false*/
  6539. #endif
  6540. ) {
  6541. thermalManager.manage_heater();
  6542. manage_inactivity(
  6543. #if ENABLED(FILAMENTCHANGEENABLE)
  6544. no_stepper_sleep
  6545. #endif
  6546. );
  6547. host_keepalive();
  6548. lcd_update();
  6549. #if ENABLED(PRINTCOUNTER)
  6550. print_job_timer.tick();
  6551. #endif
  6552. }
  6553. /**
  6554. * Manage several activities:
  6555. * - Check for Filament Runout
  6556. * - Keep the command buffer full
  6557. * - Check for maximum inactive time between commands
  6558. * - Check for maximum inactive time between stepper commands
  6559. * - Check if pin CHDK needs to go LOW
  6560. * - Check for KILL button held down
  6561. * - Check for HOME button held down
  6562. * - Check if cooling fan needs to be switched on
  6563. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6564. */
  6565. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6566. #if HAS_FILRUNOUT
  6567. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6568. handle_filament_runout();
  6569. #endif
  6570. if (commands_in_queue < BUFSIZE) get_available_commands();
  6571. millis_t ms = millis();
  6572. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6573. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6574. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6575. #if ENABLED(DISABLE_INACTIVE_X)
  6576. disable_x();
  6577. #endif
  6578. #if ENABLED(DISABLE_INACTIVE_Y)
  6579. disable_y();
  6580. #endif
  6581. #if ENABLED(DISABLE_INACTIVE_Z)
  6582. disable_z();
  6583. #endif
  6584. #if ENABLED(DISABLE_INACTIVE_E)
  6585. disable_e0();
  6586. disable_e1();
  6587. disable_e2();
  6588. disable_e3();
  6589. #endif
  6590. }
  6591. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6592. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6593. chdkActive = false;
  6594. WRITE(CHDK, LOW);
  6595. }
  6596. #endif
  6597. #if HAS_KILL
  6598. // Check if the kill button was pressed and wait just in case it was an accidental
  6599. // key kill key press
  6600. // -------------------------------------------------------------------------------
  6601. static int killCount = 0; // make the inactivity button a bit less responsive
  6602. const int KILL_DELAY = 750;
  6603. if (!READ(KILL_PIN))
  6604. killCount++;
  6605. else if (killCount > 0)
  6606. killCount--;
  6607. // Exceeded threshold and we can confirm that it was not accidental
  6608. // KILL the machine
  6609. // ----------------------------------------------------------------
  6610. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6611. #endif
  6612. #if HAS_HOME
  6613. // Check to see if we have to home, use poor man's debouncer
  6614. // ---------------------------------------------------------
  6615. static int homeDebounceCount = 0; // poor man's debouncing count
  6616. const int HOME_DEBOUNCE_DELAY = 2500;
  6617. if (!READ(HOME_PIN)) {
  6618. if (!homeDebounceCount) {
  6619. enqueue_and_echo_commands_P(PSTR("G28"));
  6620. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6621. }
  6622. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6623. homeDebounceCount++;
  6624. else
  6625. homeDebounceCount = 0;
  6626. }
  6627. #endif
  6628. #if HAS_CONTROLLERFAN
  6629. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6630. #endif
  6631. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6632. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6633. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6634. bool oldstatus;
  6635. switch (active_extruder) {
  6636. case 0:
  6637. oldstatus = E0_ENABLE_READ;
  6638. enable_e0();
  6639. break;
  6640. #if EXTRUDERS > 1
  6641. case 1:
  6642. oldstatus = E1_ENABLE_READ;
  6643. enable_e1();
  6644. break;
  6645. #if EXTRUDERS > 2
  6646. case 2:
  6647. oldstatus = E2_ENABLE_READ;
  6648. enable_e2();
  6649. break;
  6650. #if EXTRUDERS > 3
  6651. case 3:
  6652. oldstatus = E3_ENABLE_READ;
  6653. enable_e3();
  6654. break;
  6655. #endif
  6656. #endif
  6657. #endif
  6658. }
  6659. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6660. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6661. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS],
  6662. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS], active_extruder);
  6663. current_position[E_AXIS] = oldepos;
  6664. destination[E_AXIS] = oldedes;
  6665. planner.set_e_position(oldepos);
  6666. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6667. stepper.synchronize();
  6668. switch (active_extruder) {
  6669. case 0:
  6670. E0_ENABLE_WRITE(oldstatus);
  6671. break;
  6672. #if EXTRUDERS > 1
  6673. case 1:
  6674. E1_ENABLE_WRITE(oldstatus);
  6675. break;
  6676. #if EXTRUDERS > 2
  6677. case 2:
  6678. E2_ENABLE_WRITE(oldstatus);
  6679. break;
  6680. #if EXTRUDERS > 3
  6681. case 3:
  6682. E3_ENABLE_WRITE(oldstatus);
  6683. break;
  6684. #endif
  6685. #endif
  6686. #endif
  6687. }
  6688. }
  6689. #endif
  6690. #if ENABLED(DUAL_X_CARRIAGE)
  6691. // handle delayed move timeout
  6692. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6693. // travel moves have been received so enact them
  6694. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6695. set_destination_to_current();
  6696. prepare_move();
  6697. }
  6698. #endif
  6699. #if ENABLED(TEMP_STAT_LEDS)
  6700. handle_status_leds();
  6701. #endif
  6702. planner.check_axes_activity();
  6703. }
  6704. void kill(const char* lcd_msg) {
  6705. #if ENABLED(ULTRA_LCD)
  6706. lcd_setalertstatuspgm(lcd_msg);
  6707. #else
  6708. UNUSED(lcd_msg);
  6709. #endif
  6710. cli(); // Stop interrupts
  6711. thermalManager.disable_all_heaters();
  6712. disable_all_steppers();
  6713. #if HAS_POWER_SWITCH
  6714. pinMode(PS_ON_PIN, INPUT);
  6715. #endif
  6716. SERIAL_ERROR_START;
  6717. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6718. // FMC small patch to update the LCD before ending
  6719. sei(); // enable interrupts
  6720. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6721. cli(); // disable interrupts
  6722. suicide();
  6723. while (1) {
  6724. #if ENABLED(USE_WATCHDOG)
  6725. watchdog_reset();
  6726. #endif
  6727. } // Wait for reset
  6728. }
  6729. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6730. void handle_filament_runout() {
  6731. if (!filament_ran_out) {
  6732. filament_ran_out = true;
  6733. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6734. stepper.synchronize();
  6735. }
  6736. }
  6737. #endif // FILAMENT_RUNOUT_SENSOR
  6738. #if ENABLED(FAST_PWM_FAN)
  6739. void setPwmFrequency(uint8_t pin, int val) {
  6740. val &= 0x07;
  6741. switch (digitalPinToTimer(pin)) {
  6742. #if defined(TCCR0A)
  6743. case TIMER0A:
  6744. case TIMER0B:
  6745. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6746. // TCCR0B |= val;
  6747. break;
  6748. #endif
  6749. #if defined(TCCR1A)
  6750. case TIMER1A:
  6751. case TIMER1B:
  6752. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6753. // TCCR1B |= val;
  6754. break;
  6755. #endif
  6756. #if defined(TCCR2)
  6757. case TIMER2:
  6758. case TIMER2:
  6759. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6760. TCCR2 |= val;
  6761. break;
  6762. #endif
  6763. #if defined(TCCR2A)
  6764. case TIMER2A:
  6765. case TIMER2B:
  6766. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6767. TCCR2B |= val;
  6768. break;
  6769. #endif
  6770. #if defined(TCCR3A)
  6771. case TIMER3A:
  6772. case TIMER3B:
  6773. case TIMER3C:
  6774. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6775. TCCR3B |= val;
  6776. break;
  6777. #endif
  6778. #if defined(TCCR4A)
  6779. case TIMER4A:
  6780. case TIMER4B:
  6781. case TIMER4C:
  6782. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6783. TCCR4B |= val;
  6784. break;
  6785. #endif
  6786. #if defined(TCCR5A)
  6787. case TIMER5A:
  6788. case TIMER5B:
  6789. case TIMER5C:
  6790. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6791. TCCR5B |= val;
  6792. break;
  6793. #endif
  6794. }
  6795. }
  6796. #endif // FAST_PWM_FAN
  6797. void stop() {
  6798. thermalManager.disable_all_heaters();
  6799. if (IsRunning()) {
  6800. Running = false;
  6801. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6802. SERIAL_ERROR_START;
  6803. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6804. LCD_MESSAGEPGM(MSG_STOPPED);
  6805. }
  6806. }
  6807. float calculate_volumetric_multiplier(float diameter) {
  6808. if (!volumetric_enabled || diameter == 0) return 1.0;
  6809. float d2 = diameter * 0.5;
  6810. return 1.0 / (M_PI * d2 * d2);
  6811. }
  6812. void calculate_volumetric_multipliers() {
  6813. for (int i = 0; i < EXTRUDERS; i++)
  6814. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6815. }